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0. INTRODUCTION

In this paper we will present a very simple discrete Morse theory for
CW complexes. In addition to proving analogues of the main theorems
of Morse theory, we also present discrete analogues of such (seemingly)
intrinsically smooth notions as the gradient vector field and the gradient
flow associated to a Morse function. Using this, we define a Morse complex,
a differential complex built out of the critical points of our discrete Morse
function which has the same homology as the underlying manifold.

This Morse theory takes on particular significance in the context of PL
manifolds. To clarify this statement, we take a small historical digression.
In 1961, Smale proved the h-cobordism theorem for smooth manifolds
(and hence its corollary, the Poincare� conjecture in dimension �5) using
a combination of handlebody theory and Morse theory [Sm2]. In [Mi2],
Milnor presented a completely Morse theoretic proof of the h-cobordism
theorem. In ([Ma], [Ba], [St]) Mazur, Barden and Stallings generalized
Smale's theorem by replacing Smale's hypothesis that the cobordism be
simply-connected by a weaker simple-homotopy condition. Along the way,
this more general theorem (the s-cobordism theorem) was extended to
other categories of manifolds. In particular, a PL s-cobordism theorem was
established. In this case, it was necessary to work completely within the
context of handlebody theory. The Morse theory presented in this paper
can be used to give a Morse theoretic proof of the PL s-cobordism theorem,
along the lines of the proof in [Mi2].

In the remainder of this introduction, we present an informal exposition
of the contents of the paper. To avoid minor complications we will restrict
attention, in this introduction, to simplicial complexes.

Let M be any finite simplicial complex, K the set of simplices of M, and
Kp the simplices of dimension p. A discrete Morse function on M will
actually be a function on K. That is, we assign a single real number to each
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Figure 0.1

simplex in M. Write _( p) if _ has dimension p, and {>_ if _ lies in the
boundary of {. We say a function

f : K � R

is a discrete Morse function if for every _( p) # Kp

*[{( p+1)>_ | f ({)� f (_)]�1. (1)

*[v( p&1)<_ | f (v)� f (_)]�1. (2)

For example, in Fig. 0.1, the function (i) is not a discrete Morse function
as the edge f &1(0) violates rule (2) and the vertex f &1(3) violates rule (1).
The function (ii) is a Morse function.

We say _( p) is critical (with index p) if

(1) *[{( p+1)>_ | f ({)� f (_)]=0.

(2) *[v( p&1)<_ | f (v)� f (_)]=0.

For example, in Fig. 0.1(ii), f &1(0) is a critical point of index 0, f &1(3)
is a critical simplex of index 1 and there are no other critical simplices.
Note that if _( p) is critical, it is necessarily critical of index p.

The above definition provides a discrete analogue of the smooth notion
of a critical point of index p. For example, suppose x is a critical point of
index 1 of a smooth Morse function F on a smooth manifold of dimension
n. Then the Morse Lemma (see [Mil], Lemma 2.2) states that there are
coordinates (t1 , ..., tn), with x corresponding to (0, ..., 0), such that in these
coordinates

F(t1 , ..., tn)=F(x)&t2
1+ :

n

i=2

t2
i .
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That is, beginning at the point x, F decreases to both sides in the t1 direction,
and increases in the transverse directions. Now suppose _ is a critical edge
of a discrete Morse function f. Then f (_) is greater than f at either boundary
vertex, and less than f at any 2-simplex with _ in its boundary (see, for
example, Fig. 0.2).

That is, f decreases as one moves from the edge to either boundary
component, and increases in every transverse direction. We can see that
this is, in fact, a discrete analogue of the smooth situation. Moreover, we
see that, heuristically, if _( p) is critical then the simplex _ can be thought
of as representing the p-dimensional ``unstable'' space at a smooth critical
point of index p.

Before stating the main theorems, we need to present a definition. Suppose
f is a discrete Morse function on a simplicial complex M. For any c # R
define the level subcomplex M(c) by

M(c)= .
f ({)�c

.
_�{

_.

That is, M(c) is the subcomplex of M consisting of all simplices { with
f ({)�c, as well as all of their faces.

Theorem. Suppose the interval [a, b] contains no critical values of f.
Then M(a) is a deformation retract of M(b). Moreover, M(b) simplicially
collapses onto M(a).

We will not define simplicial collapse here (the definition appears in
Section 1), but we will mention that the equivalence relation generated by
simplicial collapse is called simple homotopy equivalence. This indicates
that our Morse theory is particularly well suited to handling questions in
this category.

Figure 0.2
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Figure 0.3

Theorem. Suppose _( p) is a critical simplex with f (_) # [a, b], and there
are no other critical simplices with values in [a, b]. Then M(b) is homotopy
equivalent to

M(a) .
e* (p)

e( p),

where e( p) is a p-cell, and it is glued to M(a) along its boundary e* ( p).

Corollary. Suppose M is a simplicial complex with a discrete Morse
function. Then M is homotopy equivalent to a CW complex with exactly one
cell of dimension p for each critical simplex of dimension p.

This Corollary implies the standard Morse Inequalities (see Corollaries 3.6
and 3.7 and [Mi1]). We present a simple example. See Fig. 0.3.

Here f &1(0) is a critical simplex of index 0, f &1(8) is a critical simplex
of index 1, and there are no other critical simplices. Thus, it follows from
the above corollary that M is homotopy equivalent to a circle, as is evident
from the picture.

It is useful to indicate pictorially the simplicial collapse referred to in the
theorem. Suppose _( p) is a non-critical simplex with {( p+1)>_ satisfying
f ({)� f (_). We then draw an arrow from _ to {. The resulting diagram can
be seen in Fig. 0.4. A simplex is critical if and only if it is neither the tail

Figure 0.4
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Figure 0.5

nor the head of an arrow. These arrows can be viewed as the discrete
analogue of the gradient vector field of the Morse function.

It is better to think of the gradient vector field, which we now call V, as
a map of oriented simplices. That is, if v is a boundary vertex of an edge
e with f (e)� f (v), we want to think of V(v) as a discrete tangent vector
leaving v, i.e., with e given the orientation indicated by the arrow in Fig. 0.5

More generally, if {( p+1)>_( p) satisfies f ({)� f (_) then we set V(_)=\{
with the sign chosen so that

(_, �V(_)) =&1,

where ( , ) is the obvious inner product on oriented chains (with respect
to which the oriented simplices are orthonormal). That is, V(_)=&(_, �{) {
(the integer (_, �{) is usually called the incidence number of { and _). Now
V can be extended linearly to a map

V : Cp(M, Z) � Cp+1(M, Z),

where, for each p, Cp(M, Z) is the space of integer p-chains on M.
The next step is to define the discrete gradient flow. We define a map

8 : Cp(M, Z) � Cp(M, Z),

the discrete-time flow, by

8=1+�V+V �.

We illustrate by an example. Consider the complex shown in Fig. 0.6, with
the indicated gradient vector field V.

Figure 0.6
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Figure 0.7

Let e be the top edge oriented from left to right. We shall calculate

8(e)=e+�V(e)+V �(r)

in Fig. 0.7.
The properties of the map 8 are examined in Section 6.
Let C 8

p �Cp(M, Z) denote the 8-invariant p-chains, i.e., those p-chains
c such that 8(c)=c. Since

�8=8�,

the 8-invariant chains form a differential complex

C8 : 0 w� C 8
n w�� C 8

n&1 w�� C 8
n&2 w�� } } } .

We prove in Section 7 that

H
*

(C8)$H
*

(M, Z).

That is, this complex, which we call the Morse complex, has the same
homology as the underlying manifold. For discussions of the Morse
complex in the smooth category see, for example, [Mi2] and [Kl].

The Morse complex can also be defined using critical simplices. For each
p, let Mp �Cp(M, Z) denote the span of the critical p-simplices. We prove
in Section 8 that for each p

Mp $C 8
p .

Thus, the Morse complex C8 can be defined equivalently as the complex

M : 0 w� Mn w��
�

Mn&1 w��
�

Mn&2 w��
�

} } } ,
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Figure 0.8

where �� is the differential induced by the above isomorphism. We prove in
Section 8 that from this point of view, the differential can be defined by
setting, for any oriented critical simplex {( p+1)

�� {= :
_~ ( p)<{

(�{, _~ ) :

critical _ ( p)
oriented

_ :
# # 1(_~ , _)

m(#)& _,

where 1(_~ , _) is the set of gradient paths from _~ to _. Rather than define
this term precisely, we again illustrate by an example. In Fig. 0.8 we show
a single gradient path from the boundary of a critical 2-simplex { to a
critical edge _, where the arrows indicate the gradient vector field.

The coefficient m(#) is equal to \1 (in the case of a simplicial complex)
and is determined by whether the orientation on { induces (in a manner
defined precisely in Section 8) the chosen orientation on _, or the opposite
orientation.

It is frequently desirable to deform one Morse function into another. It
is often convenient to work instead with the gradient vector field. When
deforming the gradient vector field, it is necessary to know that the result-
ing vector field is, in fact, the gradient vector field of a Morse function.
Thus, it is important to characterize those vector fields which are gradient
vector fields of Morse functions. In the smooth case, Smale provided such
a characterization in [Sm1]. In Section 9, we provide an analogous
characterization of discrete gradient vector fields. First, we define an object
we call a discrete vector field. Such objects have been previously studied in
[Du], [Sta] (under a different name) and the references therein (see [Fo1]
for discrete vector fields on 1-dimensional complexes). We then prove,
essentially, that any discrete vector field which has no closed loops is, in
fact, a gradient vector field.

The results in Section 9 are very powerful, and in the remainder of the
paper we present some applications. For example, in Section 11 we prove
a ``cancellation'' theorem, a discrete analogue of Theorem 5.4 in [Mi2].
That is, if _( p) and {( p+1) are 2 critical simplices, and if there is exactly 1
gradient path from �{ to _, then _ and { can be cancelled. More precisely,
there is a Morse function with the same critical points except that _ and
{ are no longer critical. In the smooth case, the proof, either as presented
originally by Morse in [Mo] or as presented in [Mi2], is rather technical.
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Figure 0.9

In our discrete case the proof is simple. If, in Fig. 0.8, the indicated gradient
path is the only gradient path from �{ to _, then we can vary the gradient
vector field only along this path, replacing the figure by the vector field in
Fig. 0.9.

Our characterization of gradient vector fields immediately implies that
this new vector field is the gradient vector field associated to some Morse
function, and _ and { are no longer critical. This cancellation theorem is
the fundamental tool in the Morse theoretic proof of the s-cobordism theorem.

In analogy with [Sm1] and [Sm2], in sections 9 and 11, rather than
working with a single cell complex, we work instead with a cellular triad,
which plays the role of a cobordism in the cellular category.

In [Wi], Witten provided a Hodge-theoretic proof of the main theorems
of smooth Morse theory, as well as an analytic derivation of the Morse
complex. In [Fo2], we provide a discrete Hodge-theoretic derivation of the
main theorems of discrete Hodge theory and the Morse complex.

Before leaving this introduction, we note that there have been earlier
attempts to develop a Morse theory for PL manifolds, by restricting
attention to piecewise-linear functions (see, for example [K] and, [B-K]).
There are some drawbacks to such a theory. For example, while it is easy
to define a critical point for such functions, without further restrictions the
notion of the index of a critical point is more difficult. More significantly,
the Morse complex does not appear in this setting. Hence there seems
to be no direct way of seeing the more subtle topological information
contained in the Morse theory. The simpler theory we present in this paper
exhibits neither of these drawbacks, and, in addition, applies to much more
general cell complexes.

1. Preliminaries

Although the primary objects of study in this paper will be CW complexes,
we will occasionally require extra structure. The four types of complexes we
will study (in order of increasing structure) are: finite CW complexes,
regular CW complexes, polyhedra, and PL manifolds. In this section, we
define these different types of complexes, as well as some of their fundamental
properties. The interested reader may skip this section and refer back as
necessary.
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Let M be a finite CW complex (see [L-W] for definitions and basic
properties of CW complexes and regular CW complexes) and let K denote
the set of open cells of M, with Kp the cells of dimension p. The notation
_( p) will indicate that _ is a cell of dimension p. To indicate relationships
between cells, we write {>_ (or _<{) if _{{ and _/{� , where {� is the
closure of {, and we say _ is a face of {. We write {�_ if either {=_ or
{>_.

Suppose _( p) is a face of {( p+1). Let B be a closed ball of dimension p+1,
and

h : B � M

the characteristic map for {, i.e., h is a continuous map that maps
interior(B) homeomorphically onto {.

Definition 1.1. Say _( p) is a regular face of {( p+1) if

(i) h : h&1(_) � _ is a homeomorphism

(ii) h&1(_) is a closed p-ball.

Otherwise we say _ is an irregular face of {.
We note that if M is a regular CW complex (and hence if M is a

simplicial complex or a polyhedron) then all faces are regular. Of crucial
importance is the following property. Suppose _( p) is a regular face of
{( p+1). Choose an orientation for each cell in M and consider _ and { as
elements in the cellular chain groups Cp(M, Z) and Cp+1(M, Z), respectively.
Then

(�{, _) =\1 (1.1)

where (�{, _) is the incidence number of { and _ (for a proof see
Corollary V.3.6 of [L-W]).

We will require the following property of CW complexes

Theorem 1.2. Suppose {( p+1)>_( p)>v ( p&1), then one of the following
is true.

(i) _ is an irregular face of {.

(ii) v is an irregular face of _.

(iii) There is a p-cell _~ {_ satisfying

{>_~ >v
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Proof. Suppose neither (i) nor (ii) is true. Choose an orientation for
each cell of M. Since _ is a regular face of {, (1.1) holds, so that

�{=\_+ :

_~ <{
_~ ( p){_

c_~ _~

for some integers c_~ . Similarly, since v is a regular face of _,

�_=\v+ :
v~ {v

cv~ v~ .

Therefore,

0=�2{=\�_+ :
{>_~ {_

c_~ �_~ =\v+ :
{>_~ {_

c_~ �_~ + :
v~ {v

cv~ v~ .

For this equation to hold, there must be some _~ , with {>_~ {_, satisfying

�_~ =cv+(sum of ( p&1)-cells other than v)

for some c{0. This implies _~ >v, so that {>_~ >v as desired. K

If M and N are CW complexes, say M and N are isomorphic, denoted
by M$N, if there is a homeomorphism

h : N � M,

which maps each cell of N homeomorphically onto a single cell of M. Say
M� is a subdivision of M if there is a homeomorphism

h : M� � M,

which maps each cell of M� into a single cell of M. Say M and N are
equivalent, denoted by M=N, if there are finite subdivisions M� of M and
N� of N with M� $N� .

Suppose M is a CW complex and _( p)<{( p+1) are 2 cells of M which
satisfy

(i) _ is a regular face of {.

(ii) _ is not a face of any other cell.

Let N=M&(_ _ {). We say M collapses onto N. More generally, we say
M collapses onto N, and we write MzN, if M can be transformed into N
by a finite sequence of such operations. For example, Fig. 1.1 illustrates a
2-simplex collapsing onto a vertex.
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Figure 1.1

Note that if MzN then, in particular, N is a deformation retract of M.
Recall that a regular cell complex is a CW complex M in which for every

p-cell _ of M there is a homeomorphism from the closed p-dimensional ball
B into M which maps the interior of B homeomorphically onto _. In
particular, every simplicial complex, and more generally every polyhedra
(with a fixed polyhedral decomposition), is a regular cell complex. We
observe that if M is a regular cell complex, then if _( p)<{( p+1), _ is
necessarily a regular face. From Theorem 1.2 we learn that if M is a regular
cell complex, then {( p+1)>_( p)>v ( p&1) implies there is a _~ ( p){_ such that
{>_~ >v. In fact, we will make use of the following generalization.

Theorem 1.3. Suppose M is a regular cell complex, and for some p and
r�1 we have {( p+r)>v( p&1). Then there are p+r&1-cells _( p) and _~ ( p) such
that _{_~ and

{>_>v, {>_~ <v.

Proof. The proof is by induction on r. Suppose r=1, that is, we have
{( p+1)>v( p&1). Since M is regular, the p-cells in {(={� &{) are dense in {* ,
i.e.,

.
_ ( p)<{

_={� &{.

Thus, there is a p-cell _( p) with {>_ such that _>v. Theorem 1.2 then
guarantees the existence of _~ ( p){_ such that {>_~ >v.

For general r, we again have that the ( p+r&1)-cells in {* are dense in
{* . Thus we can find a ( p+r&1)-cell _ with {>_>v( p&1). Continuing in
this fashion, we can find a ( p+r&2)-cell v~ such that _>v~ >v. Applying
Theorem 1.2 to the triple {>_>v~ we learn there is a ( p+r&1)-cell _~ {_
such that {>_~ >v~ . The cells _ and _~ satisfy the desired properties. K

We will occasionally require that M be a polyhedron (see [St] for the
foundations of polyhedral topology). At such times, one can restrict
attention to simplicial complexes without any significant loss of information.

A CW complex M is a polyhedron if M can be embedded in some Euclidean
space such that every p-cell of M is convex and lies in a single p-dimensional
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Figure 1.2

affine subspace. Isomorphism, subdivision and equivalence are defined as
for general CW complexes, with the proviso that when we speak of a map
h : N � M between polyhedra we always mean a map which is linear on
each cell of N, and we only consider subdivisions M� of M which are them-
selves polyhedra (we will occasionally emphasize this point by refering to
M� as a polyhedral subdivision).

The main advantage of using the more general polyhedra, as opposed to
simplicial complexes, is that one can restrict attention to a small set of
subdivisions called bisections, in which a single cell is divided into two (see
[St] for a definition). In Fig. 1.2 we show a sequence of bisections of a
simple polyhedron.

The following is Corollary 1.10.5 of [St].

Theorem 1.4. If M� is any finite polyhedral subdivision of a polyhedron
M then there is a finite polyhedral subdivision M�� of M� (and hence of M)
which can be produced from M by applying a finite sequence of bisections.

Corollary 1.5. If M and N are polyhedra, then M and N are equivalent
if and only if there is a subdivision M� of M resulting from a finite sequence
of bisections, and a subdivision N� of N resulting from a finite sequence of
bisections, with M� $N� .

At a few points, we will require that a polyhedron is a PL n-manifold, i.e.
that each vertex of M has a PL neighborhood equivalent with the standard
n-cell (see [St] for precise definitions). The reader need not be familiar
with such objects. The main point is that we can make use of Whitehead's
remarkable Theorem of Regular Neighborhoods (see [Wh] or [Gl] for
simplicial complexes and [St] for PL manifolds). We quote a special case.

Theorem 1.6. Let M be a PL n-manifold with boundary and v a vertex
of M. If Mzv then M is a PL n-cell (i.e., M is equivalent to an n-simple x
with its standard triangulation).

For applications of this theorem see Theorems 5.1 and 9.8.
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2. COMBINATORIAL MORSE FUNCTIONS

In this section we introduce the main definitions. Let M be a finite CW
complex. All definitions and notation are as in Section 1.

Definition 2.1. A discrete Morse function on M is a function

f : K � R

satisfying for all _ # Kp

(i) If _ is an irregular face of {( p+1) then f ({)> f (_). Moreover,

*[{( p+1)>_ | f ({)� f (_)]�1.

(ii) If v( p&1) is an irregular face of _ then f (v)< f (_). Moreover,

*[v( p&1)<_ | f (v)� f (_)]�1.

Definition 2.2. Given a combinatorial Morse function f on M we say
_ # Kp is a critical point of index p if

(i) *[{( p+1)>_ | f ({)� f (_)]=0.

(ii) *[v( p&1)<_ | f (v)� f (_)]=0.

We note that a face _ of dimension p cannot be a critical point of any
index other than p. Thus, without any loss of information, we may refer to
_ simply as a critical point.

Example 2.3. Definitions 2.1 and 2.2 imply that if M is regular then
the minimum of f must occur on a vertex, which must then be a critical
point of index 0. This follows from the observation that if p�1, then every
p-cell has at least 2 ( p&1)-dimensional faces.

Example 2.4. If M is a triangulated n-dimensional manifold without
boundary, then the maximum of f must occur on a n-face, which must then
be a critical point of index n. This follows from the observation that if
p�n&1, then every p-cell is a face of at least 2 ( p+1)-cells.

It follows from Definition 2.2 that a p-cell _ is not critical if and only if
either of the following conditions holds

(i) _{( p+1)>_ such that f ({)� f (_).

(ii) _v( p&1)<_ such that f (v)� f (_).
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Lemma 2.5. Conditions (i) and (ii) cannot both be true.

Proof. Condition (ii) requires p�1 which we now assume. Suppose (i)
is true. Then _ must be a regular face of {. Moreover, from condition (i)
from Definition 2.1, if _~ {_ is any other p-face of {, we must have

f (_~ )< f ({)

so that, in particular,

f (_~ )< f (_). (2.1)

Now suppose (ii) is true. Then v must be a regular face of _. By Theorem
1.2, there is a p-cell _~ {_ satisfying

{>_~ >v.

From condition (ii) of Definition 2.1, f (v) cannot be � both f (_) and f (_~ ).
Thus f (v)< f (_~ ) Combining this with (2.1) we learn

f (_)� f (v)< f (_~ )< f ({)� f (_),

which is a contradiction. K

3. THE MORSE THEOREMS FOR REGULAR CELL COMPLEXES

In this section we prove the main theorems of Morse theory in the case
that M is a regular cell complex (the theorems are extended to general CW
complexes in Corollary 8.3 and section 10). Let M be a regular cell
complex and f a discrete Morse function on M.

Definition 3.1. For c # R, define

M(c)= .

f (_)�c
_ # K

.
{�_

{,

That is, M(c) denotes all cells on which f is �c, as well as all of their
faces. In particular, M(c) is a subcomplex of M.

As it stands, to see if a cell _ with f (_)>c lies in M(c) we must see if
there is any { with _<{ and f ({)�c. In fact, it is enough to consider { with

dim {=dim _+1.

This is the content of the following lemma.
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Lemma 3.2. Let _ be a p-cell of M and suppose {>_. Then there is a
( p+1)-cell {~ with _<{~ �{ and

f ({~ )� f ({).

Proof. Since {>_, it follows that dim {>dim _. If dim {= p+1 we can
let {~ ={. Assume

dim {= p+r, r>1.

Then by Theorem 1.3 we can find two ( p+r&1)-faces v1 , v2 satisfying

{>v1>_

{>v1>_.

From condition (ii) of Definition 2.1 either

f (v1)< f ({)

or

f (v2)< f ({).

In either case the result follows by induction. K

We now arrive at the main theorems of Morse theory.

Theorem 3.3. If a<b are real numbers such that [a, b] contains no
critical values of f, then

M(b)zM(a).

Proof. Note that if {( p+1)>_( p) satisfies f ({)� f (_) then we may
perturb f by replacing f ({) by f ({)&=, or f (_) by f (_)+=, for =�0
small enough, without changing which cells are critical. If _( p) satisfies
f ({( p+1)){ f (_){ f (v( p&1)) for each {( p+1)>_>v( p&1) then we may
perturb f by changing f (_) to f (_)\=, for = small enough, without
changing which cells are critical. Combining such operations, we may perturb
f slightly without changing M(b) or M(a) so that

f : K � R

is 1-to-1.
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If f &1([a, b])=< then M(a)=M(b) so there is nothing to prove.
Otherwise, by partitioning [a, b] into smaller intervals if necessary, we
may assume there is a single noncritical cell _ with

f (_) # [a, b].

By Lemma 2.5 exactly 1 of the following holds:

(i) _{( p+1)>_ with f ({)� f (_).

(ii) _v( p&1)<_ with f (v)� f (_).

In case (i), we must have f ({)<a. Thus {�M(a). Since _ is a face of {,
we have _�M(a) so that

M(a)=M(b)

and again there is nothing to prove.
Suppose case (ii) is true. From Lemma 2.6, case (i) cannot be true, so

for all {( p+1)>_ we have f ({)> f (_). In particular, f ({)>b. It follows
from Lemma 3.2 that for any {>_, f ({)>b. Therefore

_ & M(a)=<.

We have assumed there is a v( p&1)<_ with f (v)> f (_), so that, in
particular, f (v)>b. If v~ ( p&1){v is any other ( p&1)-face of _ we must have

f (v~ )< f (_)

(from condition 2(ii) of Definition 2.1) so that

f (v~ )<a.

Thus, v~ and all its faces are contained in M(a).
Let _~ ( p){_ be any other p-face of M with

_~ >v.

Then condition 2(i) of Definition 2.1 implies

f (_~ )> f (v)>b.

By Lemma 3.2, if _~ is any face of any dimension such that _~ >v then

f (_~ )>b
so that

v & M(a)=<.
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It follows that M(b) can be expressed as a disjoint union

M(b)=M(a) _ _ _ v,

where v is a free face of _. Therefore

M(b)zM(a). K

Theorem 3.4. Suppose _( p) is a critical point of index p with

f (_) # [a, b]

and f &1([a, b]) contains no other critical points. Then M(b) is homotopy
equivalent to

M(a) .
e* p

e p,

where e p denotes a p-dimensional cell with boundary e* p.

Proof. As in the proof of Theorem 3.3 we may assume f is 1&1. Thus
we can find a$ and b$ with

a<a$<b$<b

with

_= f &1([a$, b$]).

From Theorem 3.3 M(b)zM(b$) and M(a$)zM(a) so it is sufficient to
prove that M(b$) is homotopy equivalent to

M(a$) .
e* p

e p.

Since _ is critical, if {( p+1)>_ we have

f ({)> f (_)

so that

f ({)>b$.

From Lemma 3.2, if { is any face of M with {>_ then

f ({)>b$.
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Thus

_ & M(a$)=<.

It also follows from the criticality of _ that for every v( p&1)<_ we have

f (v)< f (_)

so that

f (v)<a$

which implies

v�M(a$).

Therefore,

_* �M(a$)

so that

M(b$)=M(a$) .
_*

_.

Since _ is homeomorphic to e p, the theorem follows. K

Let mp( f ) [or simply mp if it will not cause confusion] denote the
number of critical points of f of index p. The mp 's are called the Morse
numbers of f. As an immediate corollary of Theorems 3.3 and 3.4 we learn

Corollary 3.5. M is homotopy equivalent to a CW complex with exactly
mp( f ) cells of dimension p.

Let F be a field and

bi=dim H1(M, F)

the i th Betti number with coefficients in F.

Corollary 3.6. (The Strong Morse Inequalities). For any N�0

mN&mN&1+ } } } \m0�bN&bN&1+ } } } \b0 .
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Corollary 3.7. (The Weak Morse Inequalities). (i) For every N

mN�bN .

(ii) /(M)=b0&b1+b2& } } } \bdim M

=m0&m1+m2& } } } \mdim M .

For a discussion of how the corollaries follow from the preceding theorems,
see [Mi1].

4. EXAMPLES OF DISCRETE MORSE FUNCTIONS

Every CW complex M has a discrete Morse function. For example, define
a Morse function f by setting, for each _ # K,

f (_)=dim _.

Then every cell is critical. Corollary 3.5 (for regular cell complexes) and
Theorem 10.3 (for general cell complexes) imply the tautological statement
that a CW complex with mp faces of dimension p is homotopy equivalent
to a CW complex with mp cells of dimension p.

We now examine ways in which a Morse function on one cell complex
may induce a Morse function on another cell complex.

Lemma 4.1. Let M be a CW complex and N�M a subcomplex. Then
any discrete Morse function on M restricts to a discrete Morse function
on N. If _�N is a critical point for the original function, then it is critical
for the restriction.

Proof. The lemma follows directly from Definitions 2.1 and 2.2. K

The following lemma is a converse to Lemma 4.1.

Lemma 4.2. Let M be a cell complex and N�M a subcomplex. Then
any discrete Morse function on N can be extended to a discrete Morse
function on M. That is, if f is a Morse function on N, then there is a Morse
function g on M such that

g(_)= f (_)

whenever _�N.
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Proof. Let c=max_�N f (_). Define a combinatorial function g on M
by setting, for each face _ on M

g(_)={ f (_)
c+dim _

if _�N
if _�3 N

.

It can be easily seen that g is a Morse function on M that extends f. K

The Morse function constructed in the above proof may be very inefficient.
In particular, every face of M&N is critical. There may exist extensions
to M with many fewer critical points. This is partially rectified in the
following lemma.

Lemma 4.3. Let M be a CW complex and N�M a subcomplex such
that MzN. Let f be a Morse function on N and let c=max_�N f (_). Then
f can be extended to a Morse function on M with

N=M(c)

and such that there are no critical points in M&N.

Proof. By induction on the number of elementary collapses required, it
is sufficient to prove the lemma when M collapses onto N by a single
elementary collapse. Suppose _ is a face of M with a free edge {<_ such
that M is a disjoint union

M=N _ _ _ {.

Define a Morse function g on M by setting

g(v)= f (v) v{_, {

g(_)=c+1

g({)=c+2.

Then it is easy to check that g satisfies the desired properties. K

Corollary 4.4. Let 2n denote the n-simplex with its standard
triangulation, and 24 n its boundary. Then

(i) 2n has a Morse function with exactly 1 critical point.
(ii) 24 n has a Morse function with exactly 2 critical points.

Proof. Part (i) follows from Lemma 4.3, since 2n collapses onto any
vertex. Part (ii) follows from Lemmas 4.2 and 4.3 since, for any (n&1)-cell
_ of 24 n, 24 n&_ collapses onto any vertex. K
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For partial converses to Corollary 4.4 (ii) see Section 5.
We now present some general examples of how Lemma 4.3 may be used

to construct Morse functions with desired properties.
Let M be an n-dimensional CW complex and f a discrete Morse function

on M. Say f is a polar Morse function if

mo( f )=mn( f )=1.

This definition was introduced by Morse in [Mo] where he proved that
every smooth compact n-manifold without boundary has a smooth polar
Morse function. We now prove a discrete analog. The proof proceeds in
two steps.

Lemma 4.5. Let M be a connected polyhedron. Then M has a Morse
function f with mo( f )=1. Moreover, if v # K0 is a vertex of M, then f can
be chosen so that v is the unique critical point of f of index 0.

Proof. Let M1 denote the 1-skeleton of M. Then M1 is a connected
graph. Let T be a maximal (=spanning) tree of M1. That is, T is a connected,
contractible subgraph of M1 which contains every vertex of M1 (and hence
every vertex of M). It is easy to see if v is any vertex of T then

Tzv.

Thus, by Lemma 4.3, there is a Morse function on T such that v is the only
critical point. By Lemma 4.2, this Morse function can be extended to a
Morse function f on M. Since M&T contains no vertices, v is the only
critical point of f of index 0. K

Theorem 4.6. Let M be a connected polyhedron which is topologically a
compact n-manifold without boundary. Then M has a polar Morse function.
Moreover if v is a vertex of M and _ an n-face, then there is a polar Morse
function f such that v is the unique critical point of index 0 and _ is the
unique critical point of index n.

Proof. If dim M=0 then M must be a single point and the theorem is
trivial.

If dim M=1 then M must be a circle. Let N=M&_. Then Nzv so N
has a Morse function f with v the only critical point. Let

c=max
N

f
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and extend f to M by setting

f (_)=c+1.

Then f has the desired properties.
Suppose dim M�2. Let N=M&_. Then N is a connected polyhedron

which is topologically an n-manifold with boundary. Therefore NzL,
where L is a subcomplex of dimension �n&1 which contains the n&2
skeleton of N. (This can be seen by collapsing the n-faces of N one at a
time along free (n&1)-faces. For a proof see [Gl] p. 52.) From
Lemma 4.5, L has a Morse function f such that v is the only critical point
of f of index 0. By Lemma 4.3 f can be extended to N without adding any
critical points. Let c=maxN f. Extend f to M by setting

f (_)=c+1.

Then f has the desired properties. K

Our last goal of this section is to examine the relationship between
Poincare� duality and discrete Morse theory. Recall that if M is a compact
n-dimensional PL manifold without boundary then for any field F and
any p, 0� p�n

Hp(M, F)$Hn& p(M, F).

If M is a smooth manifold this duality is reflected in Morse theory by the
observation that if f is a smooth Morse function then & f is also a smooth
Morse function. Moreover, x # M is a critical point of f of index p if and
only if x is a critical point of & f of index n& p.

Now let us consider the discrete category. If M is a polyhedron and f is
a discrete Morse function, then &f is not a Morse function. Of course, a
general polyhedron does not satisfy Poincare� duality. However, suppose M
is a compact PL n-manifold without boundary. Then one can associate to
M a dual polyhedron M*. That is, M* is a PL manifold homeomorphic
to M. Moreover, for each p, 0� p�n, there is a 1-1 correspondence
between Kp(M) and Kn& p(M*). If _ # Kp(M) denote the corresponding
(n& p)-face of M* by _*. Then

{>_ W {*<_*.

The following theorem follows directly from the definitions.
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Theorem 4.7. Let f be a Morse function on a compact PL n-manifold M
without boundary. Then & f is a Morse function on M*. That is, we can
define a Morse function g on M* by setting

g(_*)=&f (_).

Moreover, _( p) # Kp(M) is critical if and only if _*(n& p) # Kn& p(M*) is a
critical point of & f on M*. In particular, for all p, 0� p�n

mp( f )=mn& p(& f ).

5. SPHERE THEOREMS

If M is a smooth compact manifold without boundary with a smooth
Morse function with exactly 2 critical points then M is homeomorphic to
a sphere ([Re], [Mi1]). In this section we prove the analogous theorem
in the cellular context under various assumptions on M.

Theorem 5.1. (1) Let M be a general CW complex with a Morse
function f with exactly 2 critical points. Then M is homotopy equivalent to
a sphere.

(2) If, in addition, M is a finite polyhedron which is topologically an
n-manifold without boundary then M is homeomorphic to Sn.

(3) If, in addition, M is a compact PL n-manifold without boundary
then M is piecewise linear equivalent to a PL n-sphere (i.e., M is equivalent
to 24 n+1, the boundary of an (n+1)-simplex with its standard triangulation).

Remark. Our proof of (2) requires the Poincare� conjecture in dimensions
{3. However, our proof of (3) does not rely on the Poincare� conjecture,
and instead follows from Whitehead's theorem on regular neighborhoods
[Wh], as extended by Stallings to polyhedra [St].

Proof. (1) Since H0(M, R){0, the Morse inequalities imply that at
least one critical point must have index 0. If the other critical point has
index p, then Corollary 3.5 (if M is a regular cell complex) and Theorem 10.3
(if M is a general CW complex) imply M is homotopy equivalent to a
p-cell with its boundary glued to a point, which is precisely a p-sphere.

(2) As in (1), at least one critical point must have index 0. Moreover,
since Hn(M, Z�2Z){0 the Morse inequalities imply there must be at least
one critical point of index n. Thus, from Corollary 3.5 and Theorem 10.3,
M is a homotopy n-sphere. By the resolution of the generalized Poincare�
conjecture in dimensions other than 3, if n{3 then M is homeomorphic
to Sn.
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Suppose n=3. Any finite polyhedron which is topologically a 3-manifold
without boundary is, in fact, a PL 3-manifold ([Gl] Exercise II.8). Thus in
dimension n=3, the result follows from part (3).

(3) Let _ be the critical n-face of f and let N=M&_. Then N has
only 1 critical point occuring at a vertex v. Hence, by Theorem 3.3 Nzv.
It follows from Whitehead's theorem (Theorem 1.6) that N is a PL n-cell.
Clearly _~ is a PL n-cell. Thus

M=N _ _* _�
is a PL n-sphere. K

The following theorem is a partial converse to Theorem 5.1 (compare
with Corollary 4.4).

Theorem 5.2. Suppose M is a PL n-sphere. Then, by performing a finite
sequence of bisections, M can be subdivided to a polyhedron M$ which has
a Morse function with exactly 2 critical points.

Proof. If n=0 the theorem is trivially true so assume n�1.
Since Mr24 n+1, M and 24 n+1 have isomorphic subdivisions. In fact,

these subdivisions can be chosen to result from a finite sequence of
bisections of M and 24 n+1 respectively. Since 24 n+1 has a Morse function
with exactly 2 critical points (Corollary 4.4), the theorem follows from
Theorem 11.1. K

Theorems 5.1 and 5.2 yield an interesting reformulation of the PL
Poincare� conjecture.

Corollary 5.3. The following 2 statements are equivalent:

(1) (PL Poincare� Conjecture) Let M be a PL n-manifold which is a
homotopy n-sphere. Then M is a PL n-sphere.

(2) Let M be a PL n-manifold which is a homotopy n-sphere. Then, by
a series of bisections, M can be subdivided to a complex which has a Morse
function with exactly 2 critical points.

6. THE DISCRETE GRADIENT VECTOR FIELD AND
THE ASSOCIATED FLOW

In smooth Morse theory, the gradient of the Morse function and the
associated flow are essential tools in investigating the relationship between
the critical points and the topology of the underlying manifold. In this
section we define the gradient vector field and the corresponding flow in
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the cellular setting. In the following sections, the discrete gradient flow will
be used to establish a more precise relationship between the critical points
and the topology of the underlying complex than that provided by
Theorems 3.3 and 3.4. We emphasize that in this section, and in the rest of
the paper, M will denote a general CW complex, i.e., M need not be
regular.

Our first goal is to define an object Vf which will represent a discrete
analog of the gradient vector field &{f, and the associated flow 8f . For
now, we assume a Morse function f has been fixed, and we write V and 8,
for Vf and 8f , respectively. We begin our discussion with the vertices of M.
Let v # K0 . If v is a critical point, then any reasonable definition of gradient
should vanish at v so we set

V(v)=0.

If v is not critical, then there is a unique edge e>v with

f (e)� f (v).

The edge e specifies the unique direction in which f is not increasing so
&{f at v should be e. We must now be more precise. We wish to think of
V(v) as a discrete tangent vector pointing away from v. (See figure 0.6).
That is, V(v) is e with a chosen orientation.

We pause here to introduce the chain complex of M. Fix an orientation
for each cell _ of M. Let Ci (M, Z) denote the free abelian group generated
over Z by these orientated cells of M. We now identify &_ with _ given
the opposite orientation. Let � denote the usual boundary operator

�: Cp(M, Z) � Cp&1(M, Z).

Then

�_= :
v ( p&1)<_

=(_, v) v,

where the ='s are integers called the incidence numbers.
It is convenient to introduce an inner product ( , ) on C

*
by declaring

the cells of M to be an orthonormal basis. Using the inner product we can
write

�_= :
v ( p&1)<_

(�_, v) v.

We are now ready to complete our definition of V. If v # K0 is not critical
and the edge e satisfies

e>v, f (e)� f (v)
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we set

V(v)=\e,

where the sign is determined so that

(�(V(v)), v)=&1.

It is now clear how to define the (discrete time) flow 8 on the vertices
of M. If v is critical, i.e., V(v)=0, then v is fixed under the gradient flow,
so

8(v)=v.

If v is not critical, and V(v)=\e, then v should flow to the ``other end''
of e. That is,

8(v)=v+�(V(v)).

Note that this formula holds for all vertices, whether critical or not.
We can extend V and 8 linearly to maps (which we also call V and 8)

on chains

V : C0(M, Z) � C1(M, Z)

8 : C0(M, Z) � C0(M, Z).

We now extend V to higher dimensional cells.

Definition 6.1. Let _ be a p-cell of M (with a fixed orientation). If
there is a {( p+1)>_ with f ({)� f (_) we set

V(_)=&(�{, _) {.

(note that _ must be a regular face of {, so (�{, _)=\1). If there is no
such {, then set

V(_)=0.

For each p, we extend V linearly to a map

V : Cp(M, Z) � Cp+1(M, Z).

Note that V(_)=0 does not imply _ is critical. Consider the example
shown in Fig. 6.1 (where the arrows indicate the chosen orientations on the
edges).
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Figure 6.1

We observe that V(e1)=0. However, e1 should not remain fixed under
8. The boundary of e1 moves downward, so e1 should also. The main
point is that for any face _, V(_) can be thought of as representing the
component of &{f which is transversal to _. The component of &{f which
is tangent to _ is determined by V(�_).

Definition 6.2. For any oriented face _ we define the (discrete time)
gradient flow , by

8(_)=_+�V(_)+V(�_)

or, more succinctly,

8=1+�V+V�

(see Fig. 0.8).

The main properties of V and 8 are contained in the following theorems.

Theorem 6.3. (1) V b V=0.

(2) If _ is an oriented p-cell, then

*[v( p&1) | V(v)=\_]�1.

(3) If _ is an oriented p-cell of M then

_ is critical W [_ � Image(V) and V(_)=0].

Proof. (1) If V(v( p&1))=\_( p) then v<_ and f(_)� f (v). By Lemma 2.5
there is no {( p+1)>_ with f ({)� f (_). Thus

V(_)=0.
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(2) If V(v( p&1))=\_( p) then v<_ and f (_)� f (v). By condition 2(i)
of Definition 2.1, v is unique.

(3) From Definition 2.2, _ is critical if and only if

(i) There is no v( p&1)<_ with f (v)� f (_) and

(ii) There is no {( p+1)>_ with f ({)� f (_).

These conditions are equivalent to

(i) There is no v( p&1) with V(v)=\_ and

(ii) There is no {( p+1) with V(_)=\{

i.e.,

(i) _ � Image(V) and

(ii) V(_)=0. K

Theorem 6.4. (1) 8�=�8.
Let _1 , ..., _r denote the p-cells of M each with a chosen orientation. Write

8(_i)=:
j

aij_j .

(2) For every i, aii=0 or 1, and aii=1 if and only if _i is critical.
(3) If i{ j then aij # Z. If i{ j and aij {0 then f (_j)< f (_i).

Proof. (1) Using 8=1+�V+V� we find

8�=(1+V�+�V)�=�+V�2+�V�=�+�V�

�8=�(1+V�+�V)=�+�V�+�2V=�+�V�.

(2) and (3) We prove these simultaneously. First, since � and V both
map integer chains to integer chains, each aij # Z.

By Theorem 6.3 each cell _( p) satisfies exactly one of the following
properties:

(i) _ is critical.

(ii) \_ # Image(V).

(iii) V(_){0.

We examine each case independently.

(i) If _ is critical, then V(_)=0, so

8(_)=_+V(�_)=_+ :
v ( p&1)<_

(�_, v) V(v).
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Since _ is critical, for each v( p&1)<_

f (v)< f (_).

For each such v, either V(v)=0 or V(v)=_~ ( p) with

f (_~ )� f (v)< f (_).

Thus

8(_)=_+: a_~ _~

where

a_~ {0 O f (_~ )< f (_).

(ii) Suppose \_ # Image(V)�ker(V). Then

8(_)=_+V(�_)=_+ :
v ( p&1)<_

(�_, v) V(v).

By Theorem 6.3 part (2) there is exactly one ( p&1)-face v~ <_ with

V(v~ )=\_

and

(�_~ , v~ ) V(v~ )=&_.

Moreover, v~ {v<_ implies V(v)=0 or V(v)=_~ with f (_~ )� f (v)< f (_).
Thus

8(_)= :
_~ ( p)

a_~ _~ ,

where a_~ {0 implies f (_~ )< f (_).

(iii) Suppose V(_)=&(�{, _) {{0. Then

8(_)=_+V(�_)+�(V(_)).

Since V(_){0, \_ � Image(V). Thus, for each v( p&1)<_, either V(v)=0
or V(v)=\_~ , where

f (_~ )� f (v)< f (_).
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Moreover,

�(V(_))=&(�{, _) �{=&(�{, _) 2 _+: bb� _~ =&_+: b_~ _~

where b_~ {0 implies f (_~ )� f ({)< f (_).
This completes the proof. K

Intuitively, Theorem 6.4 says that 8 decreases f and _�8(_) if and only
if _ is critical. For example, consider again the circle in Fig. 6.1. In the
smooth category, if 8 were the time 1 map corresponding to the flow along
&{f, where f is the height function, we would have

8(r1)$e1

8(e2)�e2

8(e3)�e3 .

In fact, with the combinatorial Morse function f indicated in the figure

8(e1)=e1+e2+e3

8(e2)=8(e3)=0.

7. THE MORSE COMPLEX AND INVARIANT CHAINS

Let C 8
p (M, Z) denote the 8-invariant p-chains of M. That is,

C 8
p (M, Z)=[c # Cp(M, Z) | 8(c)=c].

From Theorem 6.4 (i), the boundary operator � maps C 8
p to C 8

p&1. Thus
we have a differential complex

C8 : 0 w� C 8
n (M, Z) w�� C 8

n&1(M, Z) w�� } } } w�� C 8
0 (M, Z) w� 0. (7.1)

The complex C8 is called the Morse complex. For discussions of the Morse
complex in the smooth category, see, for example, [Mi2] and [Kl].

The goal of this section is to prove that the homology of C8 is precisely
the homology of M. The first step is to investigate the stabilization map
C

*
� C

*
8 given by

8�= lim
N � �

8N.

In fact, the goal of the next 2 results is to show that for N large enough

8�=8N.
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Lemma 7.1. Let c # C 8
p (M, Z) and write

c= :
_ # Kp

a_ _.

Let

_*=any maximizer of [ f (_) | a_ {0].

Then _* is a critical cell of f.

Proof. Since c is 8-invariant

c=8(c)= :
_ # Kp

a_ 8(_).

Therefore,

a_*=(c, _*) = :
_ # Kp

a_(8(_), _*).

From Theorem 6.4 (iii), if _{_* and f (_)� f (_*) then

(8(_), _*)=0.

Thus,

0{a_*=a_*(8(_*), _*)

so

(8(_*), _*){0.

Theorem 6.4 (ii) now implies _* is critical. K

Theorem 7.2. For N large enough 8N=8N+1= } } } =8�.

Proof. Fix _ # K. We will show that for N large enough

8N(_)=8N+1(_)= } } } =8�(_).

The proof is by induction on

r=*[_~ # K | f (_~ )< f (_)].

Suppose r=0, then by Theorem 6.4, either 8(_)=_ or 8(_)=0. In either
case 8(_)=8�(_).
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For general r, suppose first that _ is not critical. Then, by Theorem 6.4

8(_)= :
f (_~ )< f (_)

a_~ _~ .

By induction on r there is an N� so that 8N� (_~ ) is 8-invariant whenever
f (_~ )< f (_). Therefore, 8N� +1(_) is invariant.

Now suppose _ is critical, and let

c=V(�_).

Then

8m(_)=_+c+8(c)+ } } } +8m&1(c).

It follows that 8N(_) is invariant if and only if 8N(c)=0 for some N. As
seen in the proof of Theorem 6.4, c is the sum of p-cells _~ with f (_~ )< f (c).
By induction, there is an N� so that 8N� (c) is 8-invariant.

We now observe that c # Image(V) and Image(V) is 8-invariant, since

8V=(1+�V+V�) V=V(1+�V)

(from Theorem 6.3 (i)). Thus, 8N� (c) # Image(V). From Theorem 6.3 (iii),
the image of V is orthogonal to the critical faces. Hence 8N� (c) is a
8-invariant p-chain which is orthogonal to the critical faces and therefore,
by Lemma 7.1, 8N� (c)=0. That is, for N large enough 8N(c)=0 so 8N(_)
is 8-invariant. K

By Theorem 7.2, there is an N large enough so that for every chain c

8N(c)=8N+1(c)=8N+2(c)= } } } .

Let 8�(c) denote this 8-invariant chain. Then for each p we have maps

8� : Cp(M, Z) � C 8
p (M, Z)

i : C 8
p (M, Z)/�Cp(M, Z*)

where i is the natural inclusion. Note that 8� b i is the identity on C ,
p(M, Z).

We are now ready to state and prove the main theorem of this section.

Theorem 7.3. Let C
*
8 denote the Morse complex (7.1). Then for each p

Hp(C
*
8)$Hp(M, Z).
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Proof. Consider the following commutative diagram:

0 ww� Cn(M, Z) ww�� Cn&1(M, Z) ww�� } } } ww�� C0(M, Z) ww� 0

8� i 8� i 8� i

0 ww� C 8
n (M, Z) ww�� C8

n&1(M, Z) ww�� } } } ww�� C8
0 (M, Z) ww� 0.

Let

8
*
� : H

*
(M, Z) � H

*
(C

*
8)

i
*

: H
*

(C
*
8) � H

*
(M, Z)

denote the induced maps on homology. Our goal is to show that i
*

and
8

*
� are isomorphisms. In fact, we will see that they are inverses of each

other. Since 8� b i=1 it follows that

1=(8� b i)
*

=8
*
� b i

*
.

To see that i
*

b 8
*
�=1 it is sufficient to find an operator

L : C
*

(M, Z) � C
*&1(M, Z)

such that

1&i b 8�=�L+L�

since then 1&i b 8� would map closed forms to exact forms and would
thus be the zero map on homology. Since i is the identity map on chains
and 8�=8N for some N large enough

1&i b 8�=1&8N=(1&8)(1+8+ } } } +8N&1)

=(&�V&V�)(1+8+ } } } +8N&1)

=�[&V(1+8+ } } } +8N&1)]+[&V(1+8+ } } } +8N&1)] �

(we have used Theorem 6.3 (i)). Let

L=&V(1+8+ } } } +8N&1). K

8. THE MORSE COMPLEX AND CRITICAL POINTS

In section 7 we defined the Morse complex, built out of the 8-invariant
chains of M, which has the same integer homology as M. In this section we
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will show that the Morse complex can be expressed directly in terms of the
critical cells. The first goal of this section is to prove that the space of
8-invariant chains is canonically isomorphic to the span of the critical
cells. The second goal is to express the boundary operator of the Morse
complex more explicitly in terms of the critical points.

For each p, let Mp denote the span of the critical p-cells, i.e.,

Mp={ :
_ # Kp

a__ | a_ # Z and a_ {0 O _ critical= .

By restricting the map 8� defined in Section 7, we get a map

8� : Mp � C 8
p (M, Z). (8.1)

Fix an orientation for each p-cell _ and identify &_ with _ given the
opposite orientation.

Lemma 8.1. Let _ be a critical p-cell. If _~ {_ is critical, then

(8�(_), _~ )=0.

Proof. As seen in the proof of Lemma 7.1

8�(_)=_+c,

where c # Image(V)�M=
p . This proves the lemma. K

Theorem 8.2. The map (8.1) is an isomorphism.

Proof. (Onto) Suppose c # C 8
p (M, Z), and let

c~ = :
_ critical

(c, _) _ # Mp .

We shall see that

8�(c~ )=c.

It follows from Lemma 8.1 that for any critical _

(8�(c~ ), _)=(c, _).

Therefore, 8�(c~ )&c is a invariant chain such that for any critical _

(8�(c~ )&c, _) =0.
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It now follows from Lemma 7.1 that

8�(c~ )&c=0.

(One-to-one) Suppose c # Mp satisfies 8�(c)=0. Then, for any _
critical

(8�(c), _)=0.

It follows from Lemma 8.1 that for any _ critical

(c, _) =0,

which implies c=0. K

Theorem 8.2 implies that the Morse complex is isomorphic to

M : 0 w� Mn w���
Mn&1 w��� } } } w���

M0 w� 0 (8.2)

where, for c # Mp , _ a critical ( p&1)-face

(�� c, _) =(�8�c, _)=(8��c, _) (8.3)

(by Theorem 6.3 (i)). Since H
*

(M)$H
*

(M, Z), we learn from the
Universal Coefficient Theorem that for any field F.

H
*

(M�F)$H
*

(M)�F$H
*

(M, Z)�F$H
*

(M, F).

Thus, M�F is a differential complex of vector spaces over F with the
same holmology as M. Since dimFMp �F=mp( f ), it follows from standard
linear algebra that

Corollary 8.3. If M is a finite CW complex, f is a discrete Morse function
on M and F is any coefficient field, then the Strong Morse Inequalities (as
stated in Corollary 3.6) and hence the Weak Morse Inequalities (as stated in
Corollary 3.7) hold.

Our goal now is to find a more convenient expression for �� . Namely, we
will show that for {( p+1) and _ ( p) critical, (�� {, _) can be expressed in
terms of gradient paths from �{ to _.

Definition 8.4. A gradient path of dimension p is a sequence # of
p-cells of M

#=_0 , _1 , _2 , ..., _r
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such that for every i=0, ..., r&1

(i) if V(_i)=0 then _i+1=_i .

(ii) if V(_i){0 then _i+1<V(_i) and _i+1 {_i .

We say # is a gradient path from _0 to _r , and the length of #, denoted
by |#|, is equal to r.

We record in the following lemma two easily verified properties of
gradient paths

Lemma 8.5. (i) If #=_0 , _1 , ..., _s is a gradient path then for each
i=0, 1, ..., s&1 either _i=_i+1 or f (_i)> f (_i+1).

(ii) If #1=_0 , _1 , ..., _r and #2=_r , _r+1 , ..., _r+s are two sequences
of p-cells, then

_0 , _1 , ..., _r+1 , ..., _r+s

is a gradient path if and only if both #1 and #2 are gradient paths.

Suppose _{_~ are two p-cells of M and { is a ( p+1)-cell with _<{ and
_~ <{ and both are regular faces. Then an orientation on _ induces an
orientation on _~ in the following way. An orientation on _ induces an
orientation on { (so that (�{, _)=&1). Given the orientation on {, we
choose the orientation on _~ so that (�{, _~ )=1. Equivalently, fixing an
orientation on _ and {, an orientation is induced on _~ so that

(�{, _)(�{, _~ )=&1.

Loosely speaking, we induce an orientation on _~ by ``sliding'' _ across { to
_~ . In Fig. 8.1, an orientation is shown for _ and the induced orientations
on { and _~ are indicated.

On the other hand, if _=_~ , then an orientation on _ induces the same
orientation on _~ . Thus, if #=_0 , _1 , ..., _r is a gradient path an orientation
on _0 induces an orientation on each _i in turn, and, in particular, on _r .
Recall that we have fixed an orientation for each face of M. Write m(#)=1
if the fixed orientation on _0 induces the fixed orientation on _r , and
m(#)=&1 otherwise. Equivalently,

m(#) : `
r&1

i=0
V (_i ){0

(�V(_i), _i)(�V(_i), _i+1) . (8.4)

We can use this formula to define the multiplicity of any gradient path.
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Figure 8.1

Definition 8.6. Let

#=_0 , _1 , ..., _r

denote a gradient path of dimension p. We define the multiplicity of #, m(#),
by the formula (8.4).

Note that if #0=_0 , ..., _r and #1=_r , ..., _r+s are gradient paths, then

m(#1) m(#0)=m(#1 b #0) (8.5)

where

#1 b #0=_0 , ..., _r , ..., _r+s .

For p-cells _ and _~ , let 1r(_, _~ ) denote the set of all gradient paths from
_ to _~ of length r. The remainder of this section is devoted to proving that
if {( p+1) and _( p) are critical, then

(�� {, _) = :
_~ ( p)<{

(�{, _~ ) :
# # 1N (_~ , _)

m(#)

for any N large enough.

Definition 8.7. Define a reduced gradient flow

8� : Cp(M, Z) � Cp(M, Z)

by

8� =1+�V.

Note that 8� does not share most of the desirable properties of 8 listed in
Theorem 6.4. However, 8� is simpler to work with, and can be substituted
into (8.3).
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Lemma 8.8. For any critical faces {( p+1) and _( p)

(�� {, _) =(8� � �{, _) .

Proof. It is sufficient to prove that for every r�0

(8� r�{, _)=(8r�{, _).

This follows from the observation that for every chain c and every r�0

8r(c)&8� r(c) # Image(V)�M
*
=.

We prove this by induction on r. For r=0 there is nothing to prove. For
general r

8r(c)=8(8r&1(c))=8(8� r&1(c)+V(c~ ))

for some chain c~ (by the inductive hypothesis)

=(8� +V�)(8� r&1(c)+V(c~ ))

=8� r(c)+8� (V(c~ ))+V�8� r&1(c)+V�V(c~ )

=8� r(c)+V(c~ +�8� r&1(c)+V�V(c~ )),

where the last equality follows from

8� V=V+�V2=V. K

Lemma 8.9. For any _ ( p)
1 , _ ( p)

2 # Kp

(8� _1 , _2)= :
# # 11(_1 , _2)

m(#). (8.6)

Proof. First suppose V(_1)=0. Then

(8� _1 , _2)=(_1 , _2)={1,
0,

_1=_2

_1 {_2

.

On the other hand, the only gradient path of length 1 beginning at _, is
the trivial gradient path #=_1 , _1 so that m(#)=1. Thus, if _1 {_2 ,
11(_1 , _2)=< so

:
# # 11(_1 , _2)

m(#)=0
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and if _1=_2 , 11(_1 , _2)=# so

:
# # 11(_1 , _2)

m(#)=1.

Now suppose V(_1){0. If _1=_2 we calculate the left hand side of (8.6)
to find

(8� _1 , _1)=(_1 , _1)+(�V(_1), _1) =1&1=0.

On the other hand, since V(_1){0 there is no gradient path of length 1
from _1 to _1 so 11(_1 , _1)=< and

:
# # 11(_1 , _1)

m(#)=0.

Now suppose _1 {_2 . Then

(8� _1 , _2)=(_1 , _2) +(�V(_1), _2) =(�V(_1), _2).

If _2 is not a face of V(_1) then (8� _1 , _2) =0. Moreover, in this case there
are no gradient paths of length 1 from _1 to _2 so that

:
# # 11(_1 , _2)

m(#)=0.

If _2 is a face of V(_1) then there is exactly one gradient path from _1 to
_2 of length 1, namely #=_1 , _2 and

m(#)=&(_1 , �V(_1))(�V(_1), _2) =(�V(_1), _2)

as desired. K

Theorem 8.10. For any critical cells {( p+1) and _( p)

(�� {, _) = :
_~ ( p)<{

(�{, _~ ) :
# # 1N (_~ , _~ )

m(#)

for N large enough.

Proof. From Lemma 8.8

(�� {, _)=(8� N�{, _)
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for N large enough. Since

�{= :
_~ ( p)<{

(�{, _~ ) _~

we find

(�� {, _) = :
_~ ( p)<{

(�{, _~ )(8� N_~ , _)

for N large enough. We now prove inductively that all r�0

(8� r_~ , _) = :
# # 1r (_~ , _)

m(#).

The case r=0 is trivial, and r=1 is Lemma 8.9. For general r>1

(8� r_~ , _) =(8� (8� r&1_~ ), _)

= :
_$( p)

( (8� r&1_~ ), _$)(8� _$, _)

=:
_$

:
# # 1r&1 (_~ , _$)

m(#)(8� _$, _) (by induction)

=:
_$

:
# # 1r&1 (_~ , _$)

m(#) :
#$ # 11(_$, _)

m(#$) (by Lemma 8.8)

= :
# # 1r (_~ , _)

m(#)

(by Lemma 8.6 (ii) and (8.5)). K

9. SELF-INDEXING MORSE FUNCTIONS, CELLULAR TRIADS,
AND A CHARACTERIZATION OF GRADIENT VECTOR FIELDS

When manipulating Morse functions, one finds it is often convenient to
manipulate instead the corresponding gradient vector field. It is important
to know that after varying the vector field, one is left with the gradient
vector field of some Morse function. With this in mind, our goal in this
section is to characterize gradient vector fields of Morse functions. Along
the way, we shall prove that every Morse function can be replaced with a
particularly nice (i.e., self-indexing) Morse function with the same critical
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points. In this section we also introduce the notion of a cellular triad,
which will play the role of a cellular cobordism in later sections. The results
in this section are discrete analogues of those in [Sm1].

Definition 9.1. A discrete vector field is a map

W : K � K _ [0]

satisfying

(1) for each p, W(Kp)�Kp+1 _ [0]

(2) for each _( p) # Kp , either W(_)=0 or _ is a regular face of W(_).

(3) if _ # Image(W) then W(_)=0

(4) for each _( p) # Kp

*[v( p&1) # Kp&1 | W(v)=_]�1.

(When M is a simplicial complex such objects have previously been
considered under a different name, in [Du] and [Sta]. See also [Fo1] for
discrete vector fields on 1-dimensional complexes).

This definition is not quite consistent with our definition of the discrete
gradient vector field Vf in Section 6, in that Vf was defined to be a map
of oriented cells. However, ignoring orientations, Vf gives rise to a discrete
vector field as defined here. Conversely, if W is a discrete vector field, then
by properties (2) and (4) if W(_( p))={( p+1) then _ is a regular face of {.
Thus, we can consider W to be defined on oriented cells by endowing _
and { with orientations and setting W(_)=\{, with the sign chosen so
that

(_, �W(_)) =&1. (9.1)

With this in mind, we will frequently abuse notation and write expressions
of the form W=Vf . This means either that if one ignores orientations then
W=Vf as maps of unoriented cells, or if one extends W to oriented cells
via (9.1) then W=Vf as maps of oriented cells. These two points of view
are equivalent.

Definition 9.2. Let W be a combinatorial vector field. A W-path of
dimension p is a sequence of p-cells

#=_0 , _1 , ..., _r
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such that

(i) if W(_i)=0 then _i+1=_i

(ii) if W(_i){0 then _i+1 {_i and _i+1<W(_i).

Say # is a closed path if _r=_0 and # is non-stationary if _1 {_0 .

Theorem 9.3. Let W be a discrete vector field. There is a discrete Morse
function f with W=Vf if and only if W has no non-stationary closed paths.

Moreover, for every such W, f can be chosen to have the property that if
_( p) is critical, then

f (_)= p.

Such a Morse function is said to be self-indexing.

Remark. Note that W determines the critical points of f. Namely, if
W=Vf , then, by dilemma 6.3, _ # Kp is critical for f if and only if W(_)=0
and _ � Image(W).

We will not prove Theorem 9.3, as it will follow directly from the more
general Theorem 9.10. We pause here to note a corollary.

Corollary 9.4. Let f be a discrete Morse function. Then there is a
discrete self-indexing Morse function f� with the same discrete gradient vector
field, and hence the same critical points.

Proof. Given f, let W=Vf . By Theorem 9.3, W=Vf� for some self-indexing
Morse function f� . K

Before going further, we introduce the notion of a cellular triad.

Definition 9.5. A cellular triad (M, N&, N+) consists of a CW complex
M and two disjoint subcomplexes N & and N+ with the property that for
every p-cell _( p) of N& _ N+ there is exactly one ( p+1)-cell {( p+1) �3
N& _ N+ satisfying {>_. Moreover, we require that _ is a regular face of {.

For example, if M is any CW complex, we can set N&=N+=<. For
a less trivial example, suppose M is a PL n-manifold such that M can be
written as a disjoint union M4 =N& _ N+ where N& and N+ are sub-
polyhedra. Then (M, N&, N+) is a cellular triad. This is the most important
class of examples, and such a triad will be called a polyhedral triad.

Definition 4.6. Let (M, N&, N+) be a cellular triad. A discrete Morse
function f on (M, N&, N+) with image [a, b] is a function

f : K(M) � [a, b]
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satisfying

(1) f &1(a)=N&, f &1(b)=N+

(2) for all _( p) # Kp(M), _�3 N& _ N +,

(i) if _ is an irregular face of {( p+1) then f ({)> f (_). Moreover,

*[{( p+1)>_ | f ({)� f (_)]�1.

(ii) if v( p&1) is an irregular face of _ then f (v)< f (_). Moreover

*[v( p&1)<_ | f (v)� f (_)]�1.

Let f be a Morse function on (M, N&, N+). We call _( p) # Kp(M) a
critical point of f if

(1) _ p�3 (N& _ N+)

(2) (i) *[{( p+1)_ | f ({)� f (_)]=0

(ii) *[v( p&1)<_ | f (v)� f (_)]=0.

Definition 9.7. Let (M, N& , N+) be a cellular triad, and f a discrete
Morse function on (M, N& , N+). we will now define the discrete gradient
vector field Vf of f. Suppose that each cell of M has been endowed with an
orientation. If _( p) �3 N& _ N+ then we define Vf (_) as in Definition 6.1.
If _�N& then we set Vf (_)=0. If _�N + then we set Vf (_)=\{( p+1)

where { is the unique ( p+1) cell not in N & _ N+ which has _ as a face
(with the sign chosen as in Definition 6.1).

We observe that it is still true, in this more general setting, that if f has
no critical points then MzN&. If (M, N&, N+) is a polyhedral triad then
we can apply Whitehead's Theorem of Regular Neighborhoods ([Wh], see
Theorem 1.6 for a special case) to learn

Theorem 9.8. If (M, N&, N+) is a polyhedral triad, and f is a Morse
function on (M, N&, N+) with no critical points, then

M=N&_I,

where I is a closed interval.

This is the crucial theorem which makes possible a Morse theoretic proof
of the s-cobordism theorem.

Much of the previous chapters can be generalized to this setting. In
particular, one can define the Morse complex M associated to a Morse
function f on a cellular triad (M, N&, N+) exactly as in Section 8, with the
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differential �� defined as in Theorem 8.10. Following the proofs of the
preceeding sections we learn that in this case, the homology of M is not the
homology of M, but rather the homology of M relative to N&.

Theorem 9.9. Let f be a Morse function on a cellular triad (M, N&, N+)
and define the Morse complex as in (8.2) and Theorem 8.10. Then

H
*

(M)$H
*

(M, N&, Z).

We now present the main theorem of this section.

Theorem 9.10. Let (M, N&, N+) be a cellular triad, and

W : K(M) � K(M) _ [0]

a discrete vector field on M satisfying

(1) W has no non-stationary closed paths
(2) for all _( p)�N&, W(_)=0

(3) for all _( p)�N+, 0{W(_)�3 N& _ N+.

Then there is a Morse function f on the triad (M, N&, N+) such that W=Vf .
Moreover f can be chosen to be self-indexing. That is, we can choose f to
have image [&1�2, n+1�2] so that

(1) f &1(&1�2)=N&

(2) f &1(n+1�2)=N +

(3) if _( p) is a critical point of f then f (_)= p.

Proof. The proof is by induction on the skeleta of M. For each p, let
Mp denote the p-skeleton of M. We restrict W to a combinatorial vector
field Wp on Mp by setting

Wp(_(l ))={W(_ (l ))
0

if l<p
if l= p.

Define

N &
p =N& & Mp&1

N +
p =N+ & Mp&1.

Then for each p, (Mp , N &
p , N +

p ) is a cellular triad and Wp satisfies the
hypotheses of the theorem.

We will prove inductively that there is a Morse function fp on
(Mp , N &

p , N +
p ) with image [&1�2, p+1�2] satisfying
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(1) f &1(&1�2)=N &
p

(2) f &1( p+1�2)=N +
p

(3) if _(l ) is critical for fp then fp(_)=l
(4) Wp=Vfp .

p=0. In this case, M0 is the 0-skeleton of M, W0 maps every vertex to
0, and N &

0 =N +
0 =<. The function f0 , where

f0(v)=0

for every vertex v, satisfies the desired properties.

General p. Suppose we have a Morse function fp&1 defined on the triad
(Mp&1 , N &

p&1 , N +
p&1) with image [&1�2, p&1�2] satisfying

(1) f &1
p&1(1�2)=N &

p&1

(2) f &1
p&1( p&1�2)=N +

p&1

(3) if _(l )�Mp&1 is critical for fp&1 then fp&1(_)=l
(4) Wp&1=Vfp&1

.

Our goal is to extend fp&1 , after minor modifications, to a suitable
function on Mp .

Without loss of generality, we now assume dim M= p, so that (Mp , N&
p , N +

p )
=(M, N&, N+) and Wp=W.

We now define f on M. For l� p&2, set

f (_(l ))={ fp&1(_(l ))
p+ 1

2

if _(l )�3 N+

if _(l )�N+ .

We cannot define f on ( p&1)-cells in such a straight forward manner. For
suppose W(_( p&1))={( p). Then f must satisfy f (_)> f ({). Moreover, if
_~ ( p&1){_ is any other ( p&1)-face of { we must have f ({)> f (_~ ). In
particular, f must satisfy f (_)> f (_).

For each _( p&1) define d(_)=max[r | _ a W path _, _1 , _2 , ..., _r&1 , _r

with _r&1 {_r and W(_r)=0]D=max_ ( p&1) d(_) .
Note that d(_) must be finite since W has no closed paths. Now set

fp&1(_)+
d(_)

2D+1
if _�3 (N& _ N +)

f (_( p&1))={p+
1
2

if _�N +

&
1
2

if _�N&.

Note that fp&1(_)� p&1�2 so if _�3 N + then f (_)< p.
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We will now define f on the p-cells of M. Since for all _( p) we have
W(_)=0, _( p) is critical if and only if _ � Image(W). Thus, if _( p) � Image(W)
we set

f (_)= p.

On the other hand, suppose _( p)=W(v( p&1)). We will first see that if v~ ( p&1)

is any other ( p&1)-cell of _ then

f (v)> f (v~ ). (9.2)

Note that v~ �3 N+, since otherwise, by Definition 9.5, there is a unique
p-cell _~ such that _~ � (N& _ N+) and _~ >v~ . Thus we must have _~ =_.
However, by hypothesis (3) of the theorem we must have W(v~ )=_=W(v).
This contradicts condition (iii) of Definition 9.1.

We observe that (9.2) is certainly true if v�N+ since then f (v~ )<p+1�2
= f (v). Suppose v�3 N+. If v~ , v1 , ..., vr is any W-path then v, v~ , v1 , ..., vr is
a W-path. Thus d(v)>d(v~ ), which implies (9.2). Now set f (_)= f (v).

We will now prove that f satisfies the desired properties. We must
first check that f is, in fact, a Morse function on (M, N&, N +) with
image [&1�2, p+1�2]. By construction, f &1(N &)=&1�2, f &1(N+)=
p+1�2, and if _�3 N& _ N+, f (_) # (&1�2, p+1�2). This is condition (1)
of Definition 9.6.

We now check condition (2) of Definition 9.6. Let _(l ) # Kl (M). If
_�(N& _ N+) then 2(i) and 2(ii) are clearly true since v<_ O v�N& _ N+

and there is exactly 1 (l+1)-face { with {>_ and {�3 (N& _ N+).
Suppose _�3 (N& _ N+). If l= p then 2(i) is vacuously true and 2(ii) is

true by construction.
The following observation will simplify the remainder of the proof.

Suppose l< p, _(l) �3 N+, and v(l&1)<_. Then

f (_)< f (v) W fp&1(_)< fp&1(v) (9.3)

The proof is simple, but must be broken into a few cases.
If v�N+ then f (_)< f (v)= p+1�2 and fp&1(_)< fp&1(v)= p&1�2, so

(9.3) holds.
Suppose v�3 N+. Then f (v)= fp&1(v). If l< p&1 then f (_)= fp&1(_) so

(9.3) holds. If l= p&1 then f (_)> fp&1(_) so if fp&1(_)> fp&1(v) (9.3)
holds. If fp&1(_)< fp&1(v) then W(v)=_ which implies W(_)=0. Thus
d(_)=0 and f (_)= fp&1(_) and again (9.3) holds. This proves (9.3) in all
cases.

In particular, (9.3) implies, by induction, condition 2(i) if dimension
(_)� p&2 and 2(ii) if dimension (_)� p&1. Suppose dimension (_)=
p&1. By construction, if {( p)>_ then f ({)� f (_) W W(_)={. This implies
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condition 2(i) in this case. This completes the proof that f is a Morse function
for the triad (M, N&, N+) with image [&1�2, p+1�2].

We will now check that W=Vf . That is, if v(l&1)<_(l ) then

f (v)� f (_) W W(v)=_. (9.4)

By induction, if l� p&1 then fp&1(_)� fp&1(v) W _=Wp&1(v)=W(v).
Thus, in this case (9.4) follows from (9.3). If l= p then (9.4) is true by
construction.

Lastly, we must check that f is self-indexing. That is, if _(l ) is critical then
f (_)=l. If l= p this is true by construction. If l< p&1 then f (_)= fp&1(_)
and _ is critical for fp&1 so it is true by induction. If l= p&1 then if _ is
critical we have W(_)=0 so d(_)=0. This implies f (_)= fp&1(_). Since _
is critical for fp&1 the result follows by induction.

This completes the proof. K

We remark that it can be seen from the construction of the discrete
Morse function f that

(i) If _( p) # Image(W) then f (_) # ( p&1, p& 1
2).

(ii) If _( p) is critical then f (_)= p.

(iii) If W(_( p)){0 then f (_) # ( p, p+ 1
2).

10. THE MORSE THEOREMS FOR GENERAL CW COMPLEXES

In Section 3 we presented the Morse Theorems for a regular CW complex.
In Corollary 8.3 we deduced the Strong Morse Inequalities for general CW
complexes. Yet, for general CW complexes we still do not have the stronger
topological statement of Corollary 3.5. In this section we fill this gap.

There are 2 difficulties in applying the proofs in Section 3 in this more
general context. First, in Definition 3.1 we defined the level subcomplex
M(c) to be a union of some cells and all of their faces. However, unless M
is normal [L-W p. 78] this need not be a subcomplex. Second, Lemma 3.2
may not hold. We need to restrict attention to those discrete Morse
functions such that these difficulties do not arise. More precisely, for each
cell _, let Carrier(_) denote the smallest subcomplex of M which contains _.
Given a CW complex M and a discrete Morse function f, say (M, f )
satisfies the Discrete Morse Hypotheses if:

(DMH) (1) For every pair of cells _ and {, if {�Carrier(_) and { is
not a face of _, then f ({)� f (_). (This implies that for each c M(c) is a
subcomplex.)

136 ROBIN FORMAN



File: DISTIL 165048 . By:CV . Date:02:03:98 . Time:15:31 LOP8M. V8.B. Page 01:01
Codes: 2970 Signs: 1929 . Length: 45 pic 0 pts, 190 mm

(2) Whenever, for some p and r�0, there is a {( p+r+1)>_( p) with
f ({)< f (_) then there is a {~ ( p+1) with {~ >_ and f ({~ )� f ({).

Lemma 3.2 can now be restated as

Lemma 3.2. If M is a regular CW complex and f is a discrete Morse
function, then (M, f ) satisfies the Discrete Morse Hypotheses.

It is easy to check that if (M, f ) satisfies the Discrete Morse Hypotheses
then the proofs of Theorem 3.3 and Theorems 3.4, and hence Corollary 3.5,
go through. That is, we have

Theorem 10.1. If (M, f ) satisfies the Discrete Morse Hypotheses then
M is homotopy equivalent to a CW complex with exactly mp( f ) cells of
dimension p.

We now apply the results of Section 9. Let M be a CW complex and f
a discrete Morse function. Then, from Theorem 9.10 there is a Morse
function f� with the same critical cells such that

f� (Kp & Im V)�( p&1, p& 1
2), f� (Kp & Ker V)�[ p, p+ 1

2) (10.1)

(apply the theorem to the discrete vector field Vf and see the remark at the
end of Section 9). Thus if r�0 and

f� ({( p+r+1))� f� (_( p))

then necessarily r=0. This is part (2) of DMH. Let _( p) be any cell of M.
If _ # Ker V if follows from (10.1) that for any cell {�Carrier(_) f� ({)< f� (_)
(since dim {< p). If _ # Im V, then _ must have a codimension 1 face. This
implies that for any &( p&1)�Carrier(_), & is a face of _. Thus, any
{�Carrier(_) which is not a face of _ has dimension at most p&2, so that
(10.1) implies f� ({)< f� (_). This is part (1) of DMH. Thus we can apply
Theorem 10.1 to conclude

Theorem 10.2. Let M be a CW complex and f a discrete Morse function.
Then M is homotopy equivalent to a CW complex with exactly mp( f ) cells
of dimension p.

11. CANCELLING CRITICAL POINTS

When using Morse theory to study the topology of a space, one frequently
desires the Morse function to be as simple as possible, that is, to have as
few critical points as possible. In this section we use the results of Section
9 to investigate means of simplifying a given Morse function.
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Theorem 11.1. Let (M, N&, N+) be a cellular triad and f a Morse
function on the triad. Suppose {( p+1) and _( p) are critical points of f satisfying

(i) There is a regular face _~ ( p)<{, and a gradient path

_~ =_0 , _1 , ..., _r=_

from _~ to _ such that for each i=0, ..., r&1, _i+1 is a regular face of V(_i).

(ii) There is no other gradient path from any p-face of { to _.

(gradient paths are defined in Definition 8.4). Then there is a self-indexing
Morse function f on M such that

[critical points of f� ]=[critical points of f ]&[{, _]. (11.1)

Moreover, Vf=Vf� except along the unique gradient path from �{ to _.

Proof. Suppose _~ ( p)<{ and

# : _~ =_0 , _1 , ..., _r=_ _r&1 {_r

is the unique gradient path from a p-face of { to _. Define a combinatorial
vector field W on M by setting

W(v)=Vf (v) if v � [_~ , _1 , ..., _r&1 , _]

W(_i)=Vf (_i&1) for i=1, 2, ..., r

W(_~ )={

(note that none of the cells _~ , _1 , ..., _r&1 , _, V(_~ ), V(_1), , V(_r&1) lie in
N& _ N +). We have simply changed Fig. 0.8 to Fig. 0.9.

Now W satisfies the hypotheses of Theorem 9.10. Namely, it is clear that
W is a combinatorial vector field (since Vf is). Moreover W has no non-
stationary closed paths. To see this, suppose $ is a non-stationary closed W
path. Since Vf has no such paths, $ must have dimension p and include at
least one p-face from # and at least one p-face which is not in #. Therefore,
$ must contain a segment $� of the form

$� : _i , v0 , v1 , ..., vr , _j

with r�0, and vn � [_0 , ..., _r] for all n (_i may equal _j). In particular,
since W(vn)=Vf (vn) for all n,

v0 , v1 , ..., vr , _j
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is a gradient path for f. In addition, if i{0, then

v0 {_i&1 , _i and v0<W(_i)=Vf (_i&1).

Thus

_~ =_0 , _1 , ..., _i&1 , v0 , v1 , ..., vr , _j , _j+1, ..., _r=_

is a second gradient path from �{ to _. If i=0 then

_~ {v0<W(_~ )={

and

v0 , v1 , ..., vr , _j , _j+1 , ..., _r=_

is a 2nd gradient path from �{ to _. In either case we reach a contradiction.
Thus, by Theorem 9.10, there is a self-indexing Morse function f�

with W=Vf� . In particular, the critical points of f� are those faces v with
v # Kernel(W), v � Image(W). However,

Kernel(W)=Kernel(Vf)"[_]

Image(W)=Image(Vf) _ [{],

which implies (11.1). K

Corollary 11.2. Let f be a Morse function on the triad (M, N&, N +).
If H0(M, N&)=0, then the critical points of f of index 0 can be cancelled
against an equal number of critical points of index 1.

Proof. Let v be a critical vertex of f. We will prove that there is a
critical edge e such that there is exactly 1 gradient path from �e to v. From
Theorem 10.1, the critical points v and e can then be cancelled. We can
then repeat the process until all critical points of index 0 have been
cancelled.

Applying Theorem 9.9 we learn that the map

�� : C1(M, N &) � C0(M, N&)

is onto. If e is any critical edge then �e=v1&v2 for some vertices v1 and
v2 of M. There is a unique gradient path beginning at each of v1 and v2 .
Each such gradient path either ends at N& or at a critical point of index
0. Thus, the image of �� e in C0(M, N&) equals 0, v1 , &v1 , or v1&v2 , where
v1 and v2 are distinct critical points of index 0. In particular, if v is a critical
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vertex and (�� e, v) {0 then (�� e, v) =\1 and there is exactly 1 gradient
path from �e to v. Since �� is onto, there is a linear combination

c= :
e-critical

aee

such that

�� � ae e=: ae �� e=v.

Thus

� ae(�� e, v)=1

so there must be at least one critical edge e with (�� e, v){0. This edge has
the desired property. K

The process described in Theorem 11.1 can be reversed to create a pair
of critical points.

Theorem 11.3. Suppose

# : _( p)=_0 , _1 , ..., _r

is a gradient path of f of dimension p and Vf (_r)={{0. Suppose further
that

# is the unique gradient path from _ to _r .

Then there is a Morse function f� such that

[critical points of f� ]=[critical points of f ] _ [_, {].

Moreover, Vf=Vf� except along the gradient path #.

Proof. Define a combinatorial vector field W by

W(v)=Vf (v) if v � [_0 , _1 , ..., _r]

W(_i)=Vf (_i&1)

W(_0)=0.

W has no closed paths because of (11.4). Hence by Theorem 9.10 W=Vf�

for a Morse function f� with the desired properties. K
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The simplest example of the hypotheses of Theorem 11.3 is when Vf (_)={.
Then we can simply take to be the trivial gradient path consisting only
of _. Then there is a Morse function f� such that Vf� =Vf on all cells except
_, and Vf� (_)=0. Changing f to f� creates the pair of critical cells _ and {.

12. INVARIANCE UNDER SUBDIVISION

As a final application of results in Section 9, we show that a discrete
Morse function on a polyhedron has a natural extension to any subdivision
resulting from a sequence of bisections. If one wishes to work in the
category of simplicial complexes, one could show, by similar arguments,
that a Morse function on a simplicial complex has a natural extension to
any subdivision resulting from a sequence of stellar subdivisions.

Suppose M is a polyhedron with a Morse function f and M� is a refinement
of M resulting from a sequence of bisections (see Section 1). We will show
that f induces an essentially equivalent Morse function f� on M� . In
particular, the Morse complex associated to f� is canonically isomorphic to
the Morse complex associated to f. Moreover, we can choose f� such that
Vf� is equal to Vf on all cells of M which are also cells of M� . We state the
theorem in terms of a single bisection, from which the general result clearly
follows.

Theorem 12.1. Suppose M is a polyhedron with a Morse function f, and
_( p) is a p-cell of M. Suppose M� is the refinement of M resulting from a
bisection

_( p)=_ ( p)
1 _ v( p&1) _ _ ( p)

2 .

Then there is a Morse function f� on M� with the following properties:

(i) {{_ is a critical point of f W { is a critical point of f� .

(ii) _2 is not a critical point of f� , and _ is critical for f W _1 is critical
for f� .

(iii) Off of _, Vf=Vf� . That is, if {1 {_{{2 then

Vf ({1)={2 W Vf� ({1)={2

and

Vf (_)={1 W Vf� (_1)={1 or Vf� (_2)={1

Vf ({1)=_ W Vf� ({1)=_1 or Vf� ({1)=_2 .
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(iv) If { (l)
1 {_ and {(l+1)

2 {_ are critical points of f, then there is an
algebraic-multiplicity preserving 1-to-1 correspondence between gradient paths
of f from �{2 to {1 in M and gradient paths of f� from �{2 to {1 in M� . If _ is critical
and either {1=_ or {2=_ then the same statement is true, replacing _ by _1 when
considering M� .

In particular, the Morse complex associated to f is canonically isomorphic to
the Morse complex associated to f� .

Proof. The proof is divided into 3 cases, depending on whether
_ # Image(Vf), Vf (_){0, or _ is critical.

Suppose first that _ # Image(Vf). Then _=Vf (:( p&1)) for some :( p&1)<_.
Either :<_1 or :<_2 . By relabeling if necessary, we assume :<_1 . Define
a discrete vector field W on M by setting

W(;)=Vf (;)

if ; is a cell of M and :{;{_

W(:)=_1

W(_1)=0

W(v)=_2

W(_2)=0

(see Fig. 12.1).
It is easy to see that since Vf has no closed paths, neither does W. Hence

W is, in fact, a combinatorial vector field and, by Theorem 9.10, W=Vf� for
some Morse function f� on M� . The critical points of f are identical to the
critical points of f� . The gradient paths of f which include neither : nor _
are precisely the gradient paths of f� which exclude :, _1 , v and _2 . Since
Vf (_)=0, any gradient path of f of dimension p which includes a must end
at _. Since _ is not critical, such paths do not play a role in the Morse
complex associated to f. Similarly, gradient paths of f� which include _1 or
_2 do not enter into the Morse complex associated to f� .

Figure 12.1
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Figure 12.2

If : is in a gradient path # of f, then it must be followed by some ( p&1)-
cell :~ {: of _. If :~ <_1 then a is also a gradient path of f� . If :~ <_2 then
replacing the segment :, :~ of #, by :, v, :~ we get a gradient path of f� . This
establishes a 1-1 correspondence between the gradient paths of f which
contain : and the gradient paths of f� which contain : and v. The only
gradient paths of f� which do not correspond to a gradient path of f are
those that include v but not :. Such a path must begin at v. Since v is not
the face of a critical p-cell, such paths play no role in the Morse complex.
Thus, f� satisfies the conclusions of the theorem.

Suppose Vf (_){0. Define a combinatorial vector field W on M� by
setting

W(;)=Vf (;)

if ; is a cell of M and ;{_

W(_1)=Vf (_)

W(v)=_2

W(_2)=0

(see Fig. 12.2).
Then W=Vf� for some Morse function f� on M� . The gradient paths of f

which do not include _ are precisely the same as the gradient paths of f�
which exclude _1 , v and _2 . Replacing _ by _1 establishes a 1-1 correspondence
between the gradient paths of f which include _ and the gradient paths of
f� which include _1 . The gradient paths of f� which include v or _2 do not
correspond to gradient paths of f. However, any gradient path which
includes v must begin at v. Since v is not a face of a critical p-cell, such a
path does not play a role in the Morse complex. Any gradient path which
includes _2 must end at _2 . Since _2 is not critical such a path does not
play a role in the Morse complex. Thus f� satisfies the conclusions of the
theorem.
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Figure 12.3

Lastly, suppose a is critical. Define a discrete vector field W on M� by
setting

W(;)=Vf (;)

if ; is a cell of M and ;{_

W(_1)=0

W(v)=_2

W(_2)=0

so that _1 is critical for W (see Fig. 12.3).
Then W=Vf� for some Morse function f� on M� . Gradient paths of f which

do not include _ are the same as gradient paths of f� which exclude _1 , v,
and _2 . Replacing _ by _1 gives a 1-1 correspondence between gradient
paths of f which include _ and gradient paths of f� which include _1 . As in
the other 2 cases, gradient paths which include _2 must end at _2 and
hence play no role in the Morse complex. Gradient paths of f� which
include v must begin at v. In this case, such paths are important in the
Morse complex because v is a ( p&1)-face of the critical p-cell _1 . Suppose
# is a gradient path of f beginning at a ( p&1)-face : of _. Then either
:<_1 or :<_2 . If :<_1 then # is a gradient path of f� . If :<_2 then v,
# is a gradient path of f� , and this establishes a 1-1 correspondence between
gradient paths of f beginning at �_ and gradient paths of f� beginning at
�_1 . Thus, in this case too, f� satisfies the conclusions of the theorem. K
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