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FREE DIFFERENTIAL CALCULUS. I

Derivation in the Free Group Ring

By Rareu H. Fox
(Received November 4, 1952)

The free differential calculus grew up naturally out of an analysis that I began
in the years 1944—45 of the basic idea of Alexander’s knot polynomial [1]. My
immediate objective was to solve the outstanding problem of the topological
classification of the (3-dimensional) lens spaces by a scheme involving a general-
ization of Alexander’s polynomial. This I have recently succeeded in doing, and
a proof that Reidemeister’s combinatorial classification [4] of the lens spaces is
also the topological classification will appear in a later part of this paper.

As the calculus developed it became increasingly clear that free differentiation
1s the fundamental tool for the study of groups defined by generators and relations.
It is closely connected with several of the significant modern developments of
algebra and topology and, in fact, reveals hitherto unobserved relations between
them.

A. In a cell-complex with a single vertex the 1-cells £; and 2-cells p; correspond
to the generators z; and relations r; of a presentation of the fundamental group
G. The Reidemeister homotopy boundary [3, 5] of p; is D_ci; £ , where the coeffi-
cients ¢;; belong to some homomorph of the integral group ring of G. These
“incidence numbers’ ¢;; turn out to be homomorphs of the free derivatives
dr;/0z; . Thus the theory of 2-dimensional Reidemeister homotopy chains may
be developed from the fundamental group and the free calculus. Conversely the
free calculus, at least as regards its applications to group presentations, may
be regarded as an application of the Reidemeister theory. The first viewpoint
reduces the theory of 2-dimensional homotopy chains to algebraic algorithms;
the second viewpoint gives a topological interpretation of the free calculus.
Basically the free calculus and the theory of homotopy chains are founded on the
same idea,—the systematic utilization of the ‘“Decktransformationen.” The
first and the deepest investigations in this direction were those of Reidemeister;
these pioneer results now take on new meaning.

B. In the Magnus theory [2] of representation by formal power series the
coefficients are free derivatives of various orders evaluated ‘“‘at the point z = 1.”
Thus in the free calculus the Magnus series plays a role analogous to that of the
Maclaurin series.

C. From the point of view of the cohomology theory of groups [9] the deriva-
tives are just the 1-dimensional cocyecles, if one regards the group ring as operat-
ing on itself in a certain way. In particular the partial derivatives d/dz; consti-
tute a basis for the 1-dimensional cohomology group of the free group ring
(operating on itself in the peculiar way required). Conversely the calculation of
the cohomology groups of a group, insofar as it is done algebraically and not by
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548 RALPH H. FOX

reference to topological models, is an application of the free calculus. Determi-
nation of the cohomology groups of dimensions 1, 2, 3, - - - rests on the Jacobian
matrices of the group, and may sometimes be carried through explicitly. This
has been done for groups with only one defining relation by Lyndon [11] and for
certain finite groups by E. Artin and J. Tate (publication forthcoming).

Through their connection with the free calculus the three theories—(A) Reide-
meister homotopy chains, (B) Magnus series expansions, (C) Eilenberg-Mac-
Lane cohomology of groups—are seen to be related. Recently a connection be-
tween the free calculus and the theory of ends of groups has been discovered by
B. Eckmann [25].

In Part I below is contained the definition of derivative in a group ring, the
definition of the free partial derivatives in the free group ring, and various con-
siderations in the free group ring. In particular the Magnus series expansion is
considered in §3. Later parts of this paper will be concerned, among other things,
with (a) the application of the free calculus to the isomorphism problem of
groups, including the Jacobian matrices of a group and some invariants (like
the Alexander polynomial) derived therefrom, Reidemeister homotopy chains,
the cohomology groups of a group, algorithms for the calculation of various
subgroups and quotient groups, (b) applications to topology, including algo-
rithms for the calculation of the homology groups and other invariants of a
covering space, a general ‘“‘addition theorem” for Alexander polynomials of 3-di-
mensional manifolds, the topological classification of 3-dimensional lens spaces,
and applications to knot theory.

Certain aspects of the free differential calculus were announced in [13], [14],
[15], [16] and [18]. Essential use of the calculus has been made in [10], [11], [12]
and [22]. In addition there are references to the results of this paper in [5], [17],
[19], [20], [21] and [23].

1. Derivatives in a group ring

With any multiplicative group G there is associated its group ring JG with
respect to the ring J of rational integers. An element of JG is a sum Y _a,g, ¢
ranging over the elements of G, where the integer g, is equal to zero for all but
a finite number of g. Addition and multiplication in JG are defined by Y _a,g +
2°bg = 2.(a, + by)g and (2oas9) - (2obg) = 2.(2sap-1bi)g. The element
a of J is identified with the element a-1 of J@ and the element g of G is identified
with the element 1-g of JG, so that J and G are to be regarded as subsets of JG.

A homomorphism ¢ of a group @ into a group H induces a ring-homomorphism
of JG into JH. This ring-homomorphism, denoted by the same symbol ¢, is the
linear extension of the group-homomorphism, (3 a,g)¥ = > a,¢*, and leaves
fixed each element of J. The kernel of the group-homomorphism ¥ is the normal
subgroup N consisting of those elements of G that are mapped by ¢ into the
identity element 1 of H; the kernel of the ring-homomorphism ¢ is the both-
sided ideal N consisting of those elements of JG that are mapped by ¢ into the
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zero element 0 of JH. In this way a both-sided ideal N is made to correspond
to each normal subgroup N. (Note that N and R have no elements in common.)
Conversely each both-sided ideal M in JG determines a normal subgroup of G,
— the subgroup consisting of those elements of G that are mapped into 1 by
the ring-homomorphism JG — JG/M. Clearly the ideal N that corresponds to a
given normal subgroup N determines N, and is the smallest ideal of JG that de-
termines N.

If ny , ny , etc. generate N in G then n, — 1, ny, — 1, etc. generate N in JG. Sup-
pose, in fact, that D _a,g e N, so that Za,,g" = 0. Then, for any element h of H,
>'a, = 0, where )/ is extended over those elements g for which ¢* = h. Let
go be an element such that g§ = h. Then D a,g = D" a,(ggo" — )go + 2’ augo
= > a,(990" — 1)go . Thus D _a,g is a linear combination of the elements n — 1,
n e N. That D _a,g is a linear combination of n, — 1, n, — 1, etc. now follows
from the identities

nt—1=—n"'n - 1),

(n = 1) +n@ — 1),
gng” — 1 =gn — 1)g".

Of special importance is the retraction o of JG upon J induced by the trivial
homomorphism 0:G — 1; an element Y _a,g of JG is mapped by o into its coeffi-
cient sum (Q_a,9)° = X a,g° = 2.a, . The kernel of the ring-homomorphism o,
i.e. the ideal & corresponding to @ itself, consists of all elements of coefficient
sum zero; & will be called the fundamental ideal of JG.

By a derivation in a group ring JG will be meant any mapping D of JG into
itself which satisfies

' — 1

(1.1) D(u + v) = Du + D,

(1.2) D(u-v) = Du-v° 4+ u-Dv, u, v e J@.
Note that, for elements of G, (1.2) takes the simpler form

(1.2) D(gh) = Dg + gDh, g, he@.
The following consequences of (1.1) and (1.2) are worth noting:

(1.3) Da = 0, ‘ aed,
(1.4) D(2 ag) = 2 a,Dy,

(1.5) Dty » -+ W) = Dby Uy + - Uiy Dus-ulys -+ - uJ,

(1.6) D(g™) = —¢ Dy, geG.

The derivations in JG form a right JG-module, where addition is defined by
(D1 + D2)u = Dyu + Dyu and right-multiplication by an element v of J@ is
defined by (D-v)(w) = Du-v.
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2. Derivations in a free group ring

A free group X has a set! of generators (z) = (x;, 22, - -- ). An element of X
is an equivalence class u of words and is represented by a unique reduced word
Ilic 2, e = £1, & + €10 X< 0if Jk = Je+1 . By the length of u is meant the
length [ of the representative reduced word. The identity element 1 is repre-
sented by the empty word and is of length 0. The inverse " of u is represented
by the reduced word [ [s—; 277% .

An element of the free group ring JK is a free polynomial f(z) = Y a.u, u e X,
a. € J, where almost all a, are equal to zero. A homomorphism ¢ of X into a
group G maps (z) into (z*) = («f, 2¢, - - -). The induced ring-homomorphism
¢:JX — JG maps f(z) into f(z*) = > a,u’. In particular the homomorphism
0:JX — J maps f(z) into f(1) = D> a.x’ = Y a., the coefficient sum of f(z).
The fundamental ideal ¥ of JX consists of those polynomials f(x) for which
fa) =o.

The set of derivations in JX has a peculiarly simple structure.

TrEOREM. To each generator x; of X there corresponds a derivation f(x) —
D;f(x) = f:;(x) = 8f(x)/dx,, called the derivative with respect to x; , which has
the property

axk
(2.1) — = §;, (Kroneker delta).

ox;
Furthermore there is one and only one derivation f(x) — f'(x) mapping x, , s, « - -
into prescribed elements hy(z), he(x), -+ - of JX; it is given by the formula

22) 1@ = £ YD ).

o}
Proovr. For each index j and element u of X define
(j, w) = 11if z; is an initial segment of the reduced word representing u,
= 0 otherwise,
and extend this definition linearly to JX:
(G f@) = G, 22 awu) = 2au G, w).
For each index j, element w of X and free polynomial f(x) define
(G w, f(2)) = (G, wf @) — (G, w) f(L).

Then (j, w,u) = (j,w 'u) — (j, w ') vanishes whenever w is not an initial segment
of u, for in that case x; is an initial segment of w'u if and only if it is an initial
segment of w . It follows that, for given j and f(x), the integer (j, w, f(z)) =
(G, w, 2_a.u) = 2_a, {j, w, u) is equal to zero for all but a finite number of the

1 The set of generators need not be enumerable, but it is convenient to write (z) as a
sequence anyway.
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elements w of X. The derivative of f(x) with respect to z; is now defined to be
the finite sum

of(x)

é)a:j

= Zwex <.7) w, f(x)> w.

It is clear that (1.1) is satisfied; it is therefore sufficient to prove the special
case (1.2)" of (1.2). Let u, v ¢ X. Then

) o T (G ) = (G

= 20 (G w ™) — G, w ™ Mw + X (G, v w) — (G, w ™ w)w
= Zw (<.7) w—lu> - <.71 w_l»w + u Et (<.7) t_1v> - <.7y t~1>)t
ou o
R
To prove (2.1), we observe that the only initial segments of x; are 1 and z; , hence

ox . .
a—k = <.7’ 1, xk> + <.7’ Ty xk>xk
£

= (o) — G+ (1) = G m )
= (6% — 0) + (0 — 0)xy.

Finally we prove (2.2). Since 9f(x)/dx, vanishes for all but a finite number of
indices j, the sum

2 %ii) hj(x)

is a finite sum. Since the derivations in JX form a right JX-module, f(z) —
> (0f(x)/dx;)h;(x) is a derivation; furthermore x; — hi(z) for each index k.
If f(x) — f'(x) is any derivation mapping x:, 2, - - - into hy(x), he(x), - - - then
f@) — f'ix) — >, (8f(x)/8x;)h,(x) is a derivation mapping each z, into 0,
hence each z;' into —z7'-0 = 0. From (1.1) and (1.2) it follows that every
element of JX is mapped into 0; hence f'(z) = Zj (0f (x)/dx;)h;(x).

It is easily verified that the mapping f(x) — f(x) — f(1) is a derivation map-

ping z1, 2, -+ intox; — 1,z — 1, --- . Hence by (2.2), we obtain the funda-
mental formula
i)
23) 1@ = 1) + 2, ¥ @ -,
¢

This formula shows that any element f(x) of JX can be explicitly recovered
from f(1) and the derivatives D,f(z), j = 1, 2, - -, in particular any element
u of the free group X can be explicitly recovered from its derivatives du/dz, ,
6u/ Xy, + - .
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The derivative of a power of a generator is easily calculated from the funda-
mental formula (2.3).

(24) Djz} =@ —1)/(x;—1) = 14z 4+ -+ +2" for p2=1,
= 0 for p =0,
= -zl -z — ...~ forp = —1

From this formula and (1.5) the following practical rule is evolved: Writing
u ¢ X in the form

— P1 P2 P
U = UL; UIT;" - Ug1 T Ug

where p1 -+, p, are non-zero integers and the reduced words representing
Uo, U1, *** , Ug do not involve the generator x; , we get

du zit—1
(2.5) - = U xP e Uy .

oz; z;— 1

For example, if m, n > 0,
Di(alzs 21" 2") = (L + o + -+ + 27™)
+ 2l (—a™ — a7 — s — 2l
=1 —alz2ai™ A + 2 + - + 7).

This example also illustrates the ‘““chain rule of differentiation’:

(2.6) If N is a homomorphism of a free group Y into a free group X then, for
any f e JY, 8f"/ox; = 2., (3f/ys)" 9yn/0; .

Although (2.5), in conjunction with (2.6), is the most practical way of calcu-
lating derivatives in individual cases, it will be useful to have an explicit formula
for du/dz; in terms of the representative reduced word of u. In deriving such a
formula it becomes apparent that what one needs are not the initial segments
of a word but a modification of them, which, to avoid confusion, I shall call
initial sections. The k™ initial section of a word [[ie; 5%, &, = =1, is defined
to be JI'=i z5i or [T%1 5% according as &, = +1 or &, = —1. The kt initial
section uw) of u € X is defined to be the k* initial section of its representative
reduced word. Thus

l k-

—1
ei (ex—1)/2
H Zji T .
(k) i=1

With this notation for &t section, k = 1, - - - , I, we get the formula
ou
(2.8) s =D &uw,

the summation extended over those indices k for which j, = j.
Because we have the fundamental formula (2.3) we may expect that every
property of an element u of X is faithfully mirrored in the properties of its de-
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rivatives. For example, the exponent sum Y ¢, , summed over those indices k
for which ji. = j, of a representative word [] -, 25 of an element u of X s equal to
(9u/dz,)°, as is seen immediately from (2.8). In fact according to (2.8), du/dxz,
may be regarded as a weighted exponent sum of z; in u; the exponent ¢ of z;, =
xz; is “weighted” by the factor uq, . It is remarkable that u is determined by its
derivatives du/dz; even though the weighted exponents are added, in formula
(2.8), by commutative addition.

It is worth while to note that on the right hand side of (2.8) no cancelling or
collecting is possible. Suppose, on the contrary, that ua = wu(, for indices k < 1.
It would follow that zfi*""* z%1! ... 252! 2" = 1. However z¢i - - - x5!
is, by hypothesis, a reduced word, so that this could only be possible if ¢ = k& + 1
and & = —1, &4 = 1. But this is also impossible for a reduced word z! - - -
x3; . A consequence of this observation is that the x;-lengthl; = 3 | & | , summed
over those indices k£ for which j, = j, is equal to the number of terms in du/dz; .
Also it may now be observed that a free polynomial f(x) can not be the deriva-
tive du/dz; of any element u of X unless its coefficients are all < 1 in absolute
value. (But note that this condition is insufficient; du/dx; = x; is not possible
for any u e X.)

3. Derivatives in JX of higher order
The higher order derivatives are defined inductively

) 2 ()

0%, 0%j,_y *+ 0%;,  OXj, \OTj,_, * - OTj

Alternative notations for (8"f(z)/dz;, - - - dz;,) are f‘in""h(x) and Dj,...;, f(x).
From (1.1) and (1.2) one obtains

@.1) D,,...;i\(f(x) + ¢(z)) = Dj,...;; f(x) + Dj,...iyg(),
(3:2) Djpsy(f@)g(x)) = 2521 Djpevrjy @)Dy yvniy 91) + @) Dijencsy 9(2).
By applying the fundamental formula (2.3) to f,i1 (z) ete. one obtains
Dji f(@) = Djy f(1) + 225 (Dsz, f(@))(x; — 1),
Dy, f(x) = Djyjy f1) 4+ 22i(Disas, f(2)) (s — 1),
etc., and hence, for each positive integer n,
33) f(z) = f() + 25D5fW)) (s, — 1)
+ 2 i Dinn J(D) @y — D@y — 1) + -+
+ Lineseoe it D) @iy = 1) - (7 = 1)
+ 2 i iisDipo i J@) @5 — 1) -+ (25, — 1).

From this “Taylor series with remainder” one obtains a formal ‘“Taylor series”
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expansion
(34) f(=z)
= f(1) + 225 (Dif (D) (@; = 1) 4+ Zjw Daf(1))(@; — 1D(me — 1) + -+ .
It is easy to verify that "z;/0z7 = 0 for n > 1 and 9"2;'/0z] = (—1)"z7 , so
that the formal expansions of f(x) = z; and f(z) = 27" are
z; =14 (z; — 1),
Fl=1l— @ - D@ =D = (= D

These expansions are identical with the expansions (1) of Magnus [2] if one
writes a for x; and s for z; — 1. Furthermore, if the expansions

fl@) = f(1) + 225 D;f@) (x5 — 1) + -+,

g@) = g(1) + 225(D;g(1))(x; — 1) + -
are formally multiplied together the result is
h(z) = f(2)g(z) = f()g(1) + 22; (D 1)g(1) + fA)D;g1)))(x; — 1) + - -
h(1) + 225 (D) (@5 — 1) + 250 (Dh(1)) (25 — V(e — 1) + -+ -,

by virtue of formula (3.2). Thus the expansion (3.4), applied to elements osz ,
is seen to be identical with the Magnus representation [2] of the free group by
elements of the ‘“free ring” on the quantities s; = z; — 1. (Magnus considered
only the representation of X, but it is trivial to extend it to a representation of
the whole ring JX.)

Using the coefficients f(1), fz;(1), fz;z(1), ete. and the rules (3.1) and (3.2)
would appear to be less cumbersome than using the formal expansion and
formal multiplication of expansions, as is required in the Magnus theory.

By repeated application of (2.8) an analogous formula for the higher deriva-
tives of u ¢ X is obtained:

9"u

(35) dxj, - - ox;j, - Z)\m'"-he’\ne)\n-l e E U,

where the summation is extended over all sequences of indices A, , - -+ , A; such
thatjy, = jifori =1, --- ,nand1 < Nipy S Ni— (1/2)(ex, + V) fori =1, -+,
n — 1l and Ay £ I. Thus Dj,...;, u consists of the same terms uu, as D;u does,
but with different coefficients. The absolute values of these coefficients are, of
course, <(I — 1)"%.

From (3.2) we have

y— _1 —
"z} 9"z} R LT
- =1
axj dax; axy

for n

(1%
—t

Since

|
-

8"z} /9z}) = ifn =0,
=0 ifp=0andn >0,
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it follows that

n P o
(3.6) <6_x;> = (p) for n = 0,
61171' n

where, as usual, (7’;) means (—1)" (n - z o 1) if p < 0. From (3.3) and (3.6)
it follows that

(3.7) ‘:'xf - (- )™ (x - :}: (z) (z; —1 )k> for  mzo0.

T

It may also be proved, by induction on n, that

N I L .
oz _ Z(p t 1)3:; if p=20,n=1,

oz} =\ n—1
(3.8) s -
=(-D" % <"j[z_1 >x;1+’ if  p<Onzl
=0 -

From (2.6), applied to the homomorphism A:z; — z;, 2y — 1 for k £ j of X
into the infinite cyclic group generated by z; , we get

(.__J >° = (___ “)‘ >°
axj axj )
for any f e JX. Consequently

(ﬁ o _ anfx o
() - G

Hence, for anir element u of X,

@) Gy - (&)

n

This is one of the many identities’ relating the coefficients of the Magnus ex-
pansion of an element of X. The simplest one is

au Y d’u > _ <6u>°( 6u>° .
(310) <6xjaxk> + (6xk6x,~ N 55; 6-1171; ’ e k’

which follows easily from (3.5) and (2.8).

4. Structure of the free group ring

The powers of the fundamental ideal ® of a group ring J@G form a descending
chain of ideals

GoOo®>F>---

2 The complete set of such identities will be derived in [24].
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that is closely related to the lower central series’

G=G13G23G33"'

of the group G.
(4.1) A free polynomial f(z) belongs to X" if and only if all of its derivatives of

orders 0,1, --- ,n — lvanish at x = 1.

Proor. If f(z) € X" then f(x) = Ekflk(x)fgk(x) -+« fae(x), where fu(1) = 0.
From (3.2) it follows that f(1) = D,f(1) = --- = D, _,...;,f(1) = 0. Con-
versely if all the derivatives of orders 0, 1, --- , n — 1 vanish at = 1 it follows

from (3.3) that f() = 225, .jy (Dju_yoe i f@) @joey — 1) -+ (25, — 1) € Xn.

By the length I(f(x)) of a non-zero free polynomial f(z) = ayu; + « - + At
will be meant max;—,..., m{l(u;)}, assuming that u; ¥ w for 7 # k and that all
coefficients a,, - - -, an are different from zero. The length of the free poly-
nomial 0 is [(0) = 0.

(4.2) LEMMA. The length of a non-zero free polynomial f(z) of X" is not less
than n/2.

Proor. This will be proved by induction on n. The truth of the statement
for n = 1, 2, is obvious. Suppose n = 3 and let f(z) be an element of ¥” such
that [ = I(f(z)) < n/2. Each reduced word appearing in f(x) must end in a gen-
erator or the inverse of a generator. Hence f(z) = Z,- CRdE)) -z + B (2) 7Y,
where g*” (x) and 1‘? (z) are free polynomials of length less than I. Thus D;f(zx) =
a?(x) — b (z) 25", where a(x) is a free polynomial of length less than .
Therefore, if 7 > j, the length of D,f(z) is less than I, and the length of
D;((D;f(x))-x;) = Dj;f(x) + D;f(x) is less than I. Since f(x) ¢ ¥, it follows from
(4.1) that Dy;(f(x)), © # j, and D;((D,f(x))-z;) belong to X"~ It follows from
the inductive hypothesis that D.;f(z) = 0, ¢ # j, and D;;f(x) = —D,f(x). There-
fore, for any j, it follows from (2.3) that

Dif(z) = D;f(1) + 22: Diif(x)-(x; — 1) = —(D;f(@))-(x; — 1).

It follows that D;f(z) = (D;f(z) + (Dif(z))(z; — 1))z = 0, so that, by an-
other application of (2.3), f(z) = f(1) + Z,-(D,-f(x))-(x, — 1) = 0. This
completes the induction.

(4.3) UNIQUENESS THEOREM FOR FORMAL POWER SERIES EXPANSION. If f(1) =
9(1), Dif(1) = Djg(1), Diif(1) = D.jg(1) etc. then f(z) = g(x).

Proor. Under the conditions stated f(x) — g(x) ¢ X" for every n. Hence, by
(4.2), f(z) — g(x) does not have finite positive length. Therefore f(z) — g(z) = 0.

(4.4) CoroLLARY. N,X" = 0.

One can generalize (4.1), with virtually the same proof, to the following,
R being any ideal of JX that is contained in X:

(4.5) A free polynomial f(x) belongs to RX" if and only if it belongs to % and all
of its derivatives of order n belong to % (in which case its derivatives of order ¢
belong to RX" ", 7 = 0,1, --- , n).

3 G; is the subgroup of G = G, generated by the commutators
lg, h] = ghg™ k1, geGi_yv,heG.
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It is known®* that an element u of X belongs to the nt* lower central group X,
if and only if it has “dimension” =n, i.e. if and only if the derivatives of u of
orders 1, -+, n — 1 vanish at + = 1. This means that u ¢ X, if and only if
u — 1 eX". Thus

{4.6) The ideal X" determines the n* lower central group X, .

Of course X, is also determined by the ideal %, that corresponds to X, . This
ideal X, may be called the nt" lower central ideal; ¥, = ¥ and ¥, is generated by
the ring-commutators gh — hg, g € X, , h ¢ X; X, C X".

In view of (4.6) the theorem N,X" = 0 is equivalent to the known [2] fact
that N,X, = 1. Furthermore, a homomorphism ¢ of X on a group G maps X,
on G, and X" on ®". Thus

(4.7) The ideal @™ determines the n* lower central group G, . Consequently
N,®" determines N,G, . This shows that any invariant of G formed from its
lower central series G D G» D (3 D - - - must be calculable from the sequence
of ideals ® D & D ®® O --- . It is worth noting that this latter sequence may
be easier to deal with because the quotient ring ¥"/%¥" " has an explicit basis
(le - 1)(171‘2 - 1) (xfn - 1)’ jl) j2) )j" = 1’ sy q of qn elements

while X,/X._; is known [7] to be a free abelian group of ¥, = %Edin u(d)-q™"*

rather elusive generators.’

By means of the uniqueness theorem (4.3) one can give a very simple proof
of a theorem due to Higman [8]:

(4.8) The free group ring JX has no divisors of zero.

Proor. Let h(x) = f(z)-g(x), where f(z) % 0 and g(z) # 0. By (4.3) there
exist integers m, n such that f(z) ¢ X", f(x) e X", g(x) ¢ X", g(x) e X" (where
%° means JX). Then, by (3.2)

Dijpinerir(h(1)) = Djppspevsnsi(f(1)) - Doy (g(1)) #= 0
for proper choice of the indices jm4n, -« - , J1 . Therefore h(z) = 0.

It seems reasonable to conjecture that a group ring JG can not have divisors
of zero unless G has elements of finite order; this seems to be not an easy ques-
tion.

In view of (4.5) it would be interesting to know what subgroup of X is deter-
mined by the ideal R¥X", if 9 is the ideal corresponding to a normal subgroup
R of X. This question is answered by (4.6) for the case # = %, and has a trivial
answer for = 0 or n = 0. Beyond this the only result is the following theorem
of Schumann [6] and Blanchfield [10]:

(4.9) The ideal RX determines the commutator subgroup (R, R] of R.

Proor.’ For any u, v ¢ R we have

D;([u, v]) = Dj(wu ™) = (1 — wu™)Du + u(l — v v ™D ¢ R.

4 See [7]; a simple proof using only the free calculus will appear in [24].

¢ A somewhat simplified system of generators which has a certain additional desirable
property will be derived in [24].

¢ This proof differs from the proofs of Schumann [6] and Blanchfield [10]. Cf. also Lyn-
don [11].
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It follows from (4.5) that [u, v] — 1 ¢ RX. Since [R, R] is generated by the com-
mutators [u, v], u, v € R, it is contained in the subgroup determined by R¥X.

It must be shown that, conversely, the subgroup determined by R¥X is con:
tained in [R, R]. Consider an element w such that w — 1 ¢ RX; we shall prove by
induction on the length [ of w that w e [R, R]. This is trivially true for I = 0;
suppose then that I > 0. By (4.5), D,w ¢ % for every j. Since (Dw)* = 0, and
since JG = (JX)® is a group ring, the indices 1, ---, I in the reduced word
x5! - -+ x5} representing w may be paired in such a way that to each pair p < g
of indices we have j, = j, = 7, &, + & = 0 and

¢ __ €1 eq—1 ..(eq—1)/2 € Ep— (sp—1)/2v¢ __
(s + €we)" = &lx5 - 25371750 — i e apay” ) =0
Thence it follows that 2%} - -- 2522} ¢ R. Note that, since zj} --- x5} is a re-
duced word, ¢ must be larger than p + 1, so that z32}} - - - 252} can not be the
empty word.

Now, of the pairs of indices, there must be one p’ < ¢ which is farthest to
the left, i.e. if p < ¢ is any other pair of indices than¢’ < ¢. Thenp” = ¢’ — 1
must be paired with an index ¢” > ¢’. This shows that z3} - -- z}} is of the
form w = axibrix; “cxy " d, where a, b, ¢, d are reduced words, bz ¢ R and 25 °c € R.
(The indices j, k need not be distinct.) Then w = axj(bx})(x; c)xr"d =
ax;(x; °c)(bxl)xr" d mod [R, R], hence w = acbd mod [R, R]. Since [R, R] is con-
tained in the subgroup determined by ¥ we have acbd — 1 ¢ RX. Since the
length of acbd is < 1 it now follows from the inductive hypothesis that acbd be-
longs to [R, R]. Therefore w ¢ [R, R], completing the induction.

(4.10)" In order that an element v — 1 of JX belong to R it is necessary and suffi-
cient that there exist an element r of R such that v — r belong to RX.

Proor. If reRandv — r e RX¥ thenr = 1 (mod ) and v — r = 0 (mod R),
hencev — 1 = 0 (mod R). Suppose, conversely, that v — 1 ¢ R, i.e. thatv — 1 =
>l ewcisi — 1)b;, where &; = =1, ¢;, b; e X, s; € R, hence that v — 1 =
i ai(r; — 1)b; where a;, b; e X, r; e R(a; = cis$7°9” and r; = s}'). Define
r= 11,21 airia:l, sothatr e R. Thenr — 1 = Ef‘=1 a;(r; — l)a:IH;LHl KT,
so that r ¢ R. Thenr — 1 = ZL.I airi — 1)a7'[{iciss wmaz’, so that
v — 1 = ZLI ai(ri — Du;, where u; = b; — a7'[liciss awrvar’ € %. Thus

v — reRX.

6. Some commutator formulae

(5.1) If weX, then (Dj,...;w)° = 0 forr = 1,---, n — 1; furthermore if
u, v € X, then (Dj,...;;(w0))’ = (Dj,...;yw)’ + (Dj,...i0)°.

This is a well-known theorem (it was used to deduce (4.6)) but the following
proof recommends itself by its simplicity.

Proor. For n = 1 the first statement is trivially true and the second follows
from (1.2). Let n > 1; by the inductive hypothesis it is sufficient to prove the
first statement for w = [u, v], where u e X,_;1, veX, and r = n — 1. Since

7 This result was proved by Lyndon ([11]. Corollary 4.4); Lyndon’s statement is equiva-
lent to ours by a simple application of (4.5). The present proof is much simpler.
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wou = uv we have (Dj,_,...;,(wou))’ = (Dj,_,...;,(w))’. By (3.2) and the in-

ductive hypothesis we get from this that

Dssoit0)” 4 (Djyyoi®)” 4 Dipeyoreis)’= (Djo_yeeiytt)® + (Do ye0)°,

hence (Dj,_,...;;w)° = 0. The second statement now follows directly from (3.2).
(5.2) If ueX,, and v € X, then

(Dimineimsr 0) (Dijpeniyu)°

Dinsnreiner V)" (Djyovnjyv)’

Proor. This rule follows easily if we write w = [u, v], so that wou = up. For,
by (3.2) and (5.1), we get

Dipsre-it)” + Dipineeeing )’ Digereiy )’ = (Djprneeimsrh) (Do 0)’

Using the notations of §2 the well-known commutator formula

(Dfm+n"'f1 [u, U])a =

(5.3) [u, vw] = [u, v][u, w]’,
where b* denotes aba™’, may be generalized as follows:
(5:4) If v = J L afi then [u, o] = TTici [y, 2,07,

Proor. It follows from (5.3) that [u,v™"] = [u,»]™ . Then [u, x5 = [u, x;,]°%.
Hence

Il 207 = Tliale, o575 582t = (u, 25t 23] = [y, o).

Since [u, o] = [v, u] it follows that [v, u] = ITi=i ), , u]°®®. The two for-
mulae may be combined to express [u, v] as a product of transforms of [x;, x4)
but the order of the terms in the double product is rather awkward. This can
be avoided by reducing modulo [X;, X,]. The result is the curious formula

(55) [u, U] = Hk [xi) xk]a(u.v)/a(z,-,zk) mod [X2y X2]’
<

where d(u, v)/d(x;, xx) means du/dx,0v/dxr — Ou/dx; dv/dx; . The exponent
d(u, v)/d(x;, x) € JX makes sense only because we are dealing with a con-
gruence mod [X;, X,]; furthermore the exponent may be considered in X /X,
so that the multiplication in the exponent is commutative.
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