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FREE DIFFERENTIAL CALCULUS. I1 

The isomorphism problem of groups 

BY RALPHH. FOX 

(Received hlarch 18, 1953) 

1. Group presentations 

Consider the free group X generated by x = (xl , x2 , . . .), and let r = 

(rl ,r 2 , . . .)be any set of elements of X .  The smallest normal subgroup of X that 
contains all of the elements rl , r2 , . . . is the intersection R of all the normal 
subgroups of X that contain these elements; R consists precisely of those ele- 
ments of X that are of the form flzk,lukr:~ukl, where uk E X and EL. = &I.  The 
elements of R are consequences of r, and R itself is the consequence of r. 

The set x of generators and the set r of elements of X determine iiniquely 
the quotient group G = X / R .  The associated homomorphism 4 of /Y on G 
carries x into a set X" (xf , xg, . . .) of generators of G. Conventionally the set 
x itself may be called a set of generators for G. The set r is called a set of rela- 
tors,' and the equations r, = 1 are called defining relations for G. This some\vhat 
awkward terminology has been inherited from former times when elements of 
G were not clearly distinguished from elements of X. To abbreviate the termi- 
nology the whole situation may be summarized symbolically 

G = (x: r). 

The symbol on the right I call a presentation of G; it consists of a set of gener- 
ators x and a set of relators r. The name 'presentation' was chosen because the 
situation is, in a sense, dual to that of group representation. 

That every group has a presentation is simply a restatement of a 1%-ell-known 
fact; however it may be very difficult to decide whether two given presenta- 
tions define the same group or not. This is the isomorphism problem. 

The cardinal number of the set x is the rank of the presentation (x: r). The 
rank of a group G is the minimum of the ranks of its presentations, i.e., the rank 
of G is the smallest n such that G may be generated by n of its elements. I t  is 
well-known that the free group X generated by (xl , . . . , x,) is of rank 72. A 
group (or a presentation) is said to be finitely generated if it is of finite rank. 
In this paper the group G under consideration is assumed to be finitely gen- 
erated, and only its finitely generated presentations will be considered. I t  will 
be sufficiently obvious where this restriction could be removed if desired; the 
theory to be developed is more or less ineffective on groups that are not finitely 
generated. Since a finitely generated group is necessarily countable the set of 
relators may be assumed enumerable. 

A presentation (x: r)  is finite if both of the sets x and r are finite; a group is 

Terminology suggested by H. Freudenthal. 
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finitely presented if it has a finite presentation. A finitely generated group need 
not be finitely presented [28]. 

I t  is convenient to generalize slightly the concept of a presentation of a group. 
Consider the free group X generated by x = (xl , x 2 ,  . . .) and the free group 
A = (al , a2, . . .). The free product X * -4 is just the free group generated by 
(x; a )  = (xl , x 2 ,  . . . ; a1 I a % ,. . . ) .  Let r = ( r l ,  r 2 ,  . . . )  be any set of ele- 
ments of X * A and R the consequence of r in X * A. In this situation there 
is uniquely determined not only the group G = X * AIR but also the subgroup 
F = RA/R % ,4/R n ,4 of G. The associated homomorphism 4 of X * A on 
G maps A on F. The generators al , as , . . . are called distinguished generators. 
I write 

(G, F)  = (x; a :  r) 

and call the symbol on the right a presentation of the pair (G, F) .  X presenta-
tion of the pair (G, 1) consisting of G and the trivial subgroup 1 is nothing else 
than a presentation of G. The isomorphism problem of groups may be extended 
to the isomorphism problem of pairs: given presentations (x; a :  r) and (y ;b : s), 
does there exist an isomorphism of X * AIR on Y * B/S that maps RA/R on 
SB/S? 

The cardinal number of the set x of non-distinguished generators is the rank 
of the presentation. The rank of a pair (G, F)  is the minimum of the ranks of its 
presentations, i.e., the rank of (G, F)  is the smallest n such that G may be gen- 
erated by F and n other elements of G. It is a trivial exercise to show that every 
pair has a presentation and that, moreover, a pair consisting of a finitely gen- 
erated group and a finitely generated subgroup has a finitely generated presenta- 
tion, i.e., one in which the sets x and a are finite. From now on XT-e assume that 
F as well as G is finitely generated. 

A presentation may be altered in several ways without changing the iso- 
morphism type of group, or pair, presented. The basic alterations are the Tietze 
transformations (I), (11) of first and second kind [26, 271, whose definitions I 
generalize here to presentations of pairs. In a Tietze transformation of first 
kind (I) = (I)" one adjoins to the set of relators r of a presentation (x; a :  r)  
any set of consequences of r. The inverse operation (I)-' deletes from the set 
of relators r any set of relators that are consequences of the remaining set. In a 
Tietze transformation of second kind one either (11') adjoins to the set a of 
distinguished generators a new generator b and simultaneously adjoins to the 
set of relators r a new relator s of the form s = b.f-' with f E A,  or (11) adjoins 
to the set of non-distinguished generators a new generator y and simultaneously 
adjoins to the set of relators a new relator of the form s = y.f l  with f E X * A. 

It is easily verified that the pair presented is unaltered in isomorphism type 
by the Tietze operations (I), (11), (11'); of course the inverse Tietze operations 
(I)-', (11)-', (11')-', when applicable, also do not change the isomorphism type 
of pair presented. The basic fact about groups and their presentations is the 
well-known Tietze theorem, which I generalize slightly to a theorem about 
pairs and their presentations. 
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(1.1) TIETZETHEOREM [26, 271. V presentations 

define isomorphic pairs then it i s  possible to pass from one to the other by  a finite 
sequence of Tietze transformations. 

PROOF. A upon GBy hypothesis there are given homomorphisms + of X * 
and 11, of Y * B upon G such that R is the kernel of 4 and S is the kernel of 11, 
and + ( A )  = + ( B )  = F .  Let f 1  , . . . , f ,  be elements of Y * B and 71,  . . . , qp  

elements of X * A such that x! = f t  and q; = yF. Similarly let a1 , . . . , a ,  be 
elements of B and pl , . . . , p, elements of ,4 such that a? = a t  and pf = 6:. 
Determine homomorphisms (actually retractions) p and o of X * A * Y * B 
upon X * A and B * A respectively by defining 

It is obvious that +p = 11,o.The kernel of p is the consequence of yq-' and bp-l; 
it follows that the kernel T of +p is the consequence of yq-l, bp-' and r. Simi-
larly T ,  as kernel of $a, is found to be the consequence of xf-l, aa-' and s. Thus 

(G, F )  = ( x , y ;  a ,  b :  xf-l, yq-l, aa-', bp-', r ,  s) .  

But 

( x ;  a :  r )  -+ (x ,  y ;  a, b :  yq-', bp-', r, s )  by ( I I I p  ( I I f ) q ,  

-+ (x , y ;  a ,  b :  xf-', yq-l, aa-l, bp-l, r ,  s )  by (11, 

-+ ( x , y ;  a ,  b :  xt-', aa-l, S )  by (I)- ' ,  

-+ ( y ;  b :  s )  by (II)-m(II ')-n.  

The importance of this theorem is that it reduces the problem of showing that 
a given function of presentations is an invariant of the isomorphism type (of 
group or pair) presented to checking that it is unaltered by the Tietze transforma- 
tions. 

2. Jacobians 

Let ( x ;  a :  r )  be a presentation of a pair (G, F )  and let + be the associated 
homomorphism of X upon G. For each non-distinguished generator xi and 
relator ri the +image ( d r ; / a ~ ~ ) +(dri/dxi) is an element of the group ring of 
JG of G. The matrix (dr/dx)' = ( a ( r l ,  r 2 ,  . . . ) / d ( x l ,  xz , . . . , x , ) ) ~  = 
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1 1  (dr,/dx,)* 11  of elements of JG, whose rows (dr,/dx)%orrespond to the relators 
r, , and whose columns (ar/dx,)%orrespond to the non-distinguished generators 
x, , is called the Jacobzan matrix of the presentation [13]. 

The Jacobians of the various presentations of (G, F) are called the Jacobians 
of (G, F). In particular the Jacobians of (G, 1) are called the Jacobians of G. 
Let us examine the effect of the Tietze transformations on the Jacobian of a 
presentation. 

(I): If a new relator s is adjoined to the set of relators r, the Jacobian matrix 
acquires a new row (ds/dxl , . . . , ds/dx,)*. If s is a consequence of r this new 
row is a left-lznear combination of the rows (ar,/axl , . . . , ar,/az,)@. 

PROOF.A consequence s of r is an element of X of the form s =n1=1ukr:: ukl, where uk e X and ek ~ 1 .  claim == I that ( a ~ / a ~ , ) +  
Ej-1E L  uf (drzk/dx,)m; this calculation may be made directly, but it is enlightening 
to do it piecewise as follo~vs. 

(1) If rl , rz E R then (a(ra2)/(dx,)' = (drl/d~,)' + rf'(arz/ax,)@= (arl/dx,)" 
(ar2/ax,)*; 

(2) If rl e R then (drll/ax,)" -r?(dr,/dx,)" - (arl/ax,)@; 
(3) If rl e R and u E X then (d(urlu-')/ax,)@ = (1 - ur l~ - ' )m(a~ /a~ , ) '+ 

u"ar , /a~,)~= um(drl/ax,)+. 
This shows, more explicitly, that 
(1) when two relators are multiplied together the corresponding rows are added 

together; 
(2) when a relator is replaced by its inverse the corresponding row changes sign; 
(3) when a relator is transformed the corresponding row is multiplied on the left 

by a group element. 
(11): If a new generator y is adjoined to the non-dzstinguished generators 

XI , . . , xm and a new relator y.f-', where f E X * A,  is simultaneously adjozned + 

to the relators rl , rg , . . . the Jacobian matrix acquires a new row and a new column. 
The entry in the intersection of the new row and column is (d(yf-')/dy)' = 1, the 
other elements of the new colwmn are (ar,/ay)+ = 0. The other elements of the 
new row are (a(yf-')/ax,)@ = - (df/dx,)+; the fact that these elements are not 
quite arbitrary might conceivably be useful but I know of no way to make use 
of it. 

(11'): If a new distinguished generator b and a new relator b.f-', where f e A,  
are simultaneously adjoined, the Jacobian matrzx acquires a new row whose entrzes 
are (d(bf-')/ax,)@ = 0. 

With the above calculations in mind we define two matrices over a ring to be 
equzvalent if one can be obtained from the other by a finite number of elementary 
transformations (0), (I), (11), (I)-', (11)-', where these are defined as follows: 

(0) Permute the rows in any way or permute the columns in any way; 
(I) Adjoin to the matrix A = j j  a: j j  any (countable) number of rows, each 

new row being a left-linear combination of the rows of A ;  
(11) Adjoin to the matrix A a new row and a new column such that the entry 

mailto:ar,/az,)@


200 RALPH H. FOX 

in the intersection of the new row and column is 1 and the remaining entries 

in the new column are all 0 ;  A -+ 

Clearly the Tietze operations (I) &nd (11) induce in the Jacobian matrix the 
elementary transformations of the same designation. The Tietze operation 
(11') induces a very special kind of elementary transformation (I),  that is 
designated below by (Io). Thus 

(2.1) THEOREM.The Jacobian matrices of the jinitely generated presentations 
of a finitely generated group G all belong to a single equivalence class over JG. 
More generally, the Jacobian matrices o f  the finitely generated presentations of a 
pair (G, F)  consisting of a finitely generated group G and a finitely generated sub- 
group F, all belong to a single equivalence class over JG. 

Among the Tietze transformations of first kind a special role is played by the 
transformation (10) that adjoins to the set of relations a number of empty 
relations 1 = 1. The corresponding elementary transformation is (10): Adjoin 
to the matrix -4 a number of O-rows (0, . . . ,0). [In order to avoid a certain type 
of mistake at  a later stage of the development I have found it advisable to 
adjoin mentally a sufficient number of O-rows to every Jacobian matrix.] 

To adjoin a O-column is not an elementary transformation; it would correspond 
to adjoining a new free generator (which would obviously change the isomorphism 
type presented). Thus the roles of row and column are not completely inter- 
changeable; nevertheless, as will be shorn-n below, they are almost interchangeable. 

By compounding several Tietze transformations of the first kind one may 
obtain the transformation (111) that multiplies each relator of a given subset 
of r by an appropriate consequence of the relators in the complementary set. 
The corresponding elementary transformation is 

(111) Add to each row of a given subset of the rows an appropriate left-linear 

combination of the rows in the complementary set; I I i l i  - IIB +A 
PAI' 

where 

P is an arbitrary matrix of the proper size. 
Surprisingly, the "analogous" transformation of columns is also an elementary 

transformation. 
(111*) -Add to a column a right-linear combination of other columns. This is 

done as follows: 



FREE DIFFERENTIAL CALCULUS. I1 

[(111*) need not correspond to any Tietze transformation of group presentations 
because the elementary transformations (11) used might not correspond to 
Tietze transformations (II).] 

In the presence of (111*) we see that (11) can be replaced by the special case 

Thus the definition of equivalence may be given by the more nearly "symmetric" 
set of elementary transformations (0), (Io), (IIo), (111), (111*) in place of the 
"unsymmetric" set (O), (I), (11). 

In practice a useful elementary transformation is 
(IV) Left-multiply a row by a unit e of the ring. [If e = -1 this corresponds 

to replacing a relator by its inverse; if e is a group element i t  corresponds to 
replacing a relator by one of its conjugates.] 

In general it may be done as follows: 

I . ... . 
-+ 0 . .  0 by (111) 1 

1 1  ea; . ea,1 I
I 
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The "analogous" transformation of columns is also an elementary transformation 
[although it is harder to prove because there need not be any convenient 
0-columns.] 

(IV*) Right-multiply any column by a unit e of the ring 

o ' a: . . . a'. aye1
+ . 1 by (IV) 1 - I . . * *  -

1 1 - - a' ' 1ale a2 

. . . a: by (11)-' and (0). 

. . . . . .  

I t  may be convenient, in practice, to deal directly with the group ring JG. 
Instead of group-homomorphism 4 of X on G with kernel R associated with a 
presentation (x: r) we consider the ring-homomorphism of J X  on J G .  Its 
kernel is the ideal 93 generated by the elements r ,  - 1. Thus me are led to 
consider a presentation (x: 'r) of a ring J G  mhere 'r ,  = r ,  - 1 (or more generally 
(x: q) where q, is an element of the fundamental ideal 5 ) and 93 is the consequence 
of 'r, i.e. the ideal generated by the elements 'r ,  . I t  is easily verified that Tietze's 
theorem holds for ring-presentations with the following modifications: the 
consequences of 'r, i.e. the elements of 93, are the elements of the formx:=1aktr,,bn , mhere ak , b k  E J X ;  the new ring-relator in Tietze (11) is y - f 
where y is the new generator and f E X (or more generally f E J X  such that 
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f o  = 1 ) .  Since ' r t  = 0 ,  it is especially easy to verify that Tietze ( I )  in its ring 
form adjoins new rows that are left-linear combinations of the old rows. For (axa 'rb/axj )+= xC((aa/axj) '  'r%O + a'(a 'r/axj)+b0 + dlr ' (ab/axj ) ' }  = x a'(dl r/dxj)'bo. 

3. Homomorphs o f  the  Jacobians 

A homomorphism2 II. of the ring JG maps the Jacobians (arlax)' of (GI F )  
into matrices (ar/ax)*' whose entries belong to the ring (JG)*. I call (ar/ax)*' 
the Jacobian of (x;a:  r )  at I ) ,  or a Jacobian of (G, F )  at I ) .  Clearly 

(3.1) The Jacobians of (G, F )  at I) belong to a single equivalence class over the 
ring (JG)*. 

Suppose that for every group G of a certain type there is assigned a homo- 
morphism I) = I)o of the group ring J G ;  the group rings JG of these groups are 
then said to have a generic homomorphism I). Let G"' = (x: r )  and G"' = ( y : S )  

be groups of the type considered. Then 
(3.2) I n  order that G"' % G"' it i s  necessary that (JG"')*' % ( JG" ' )*~ .If  this 

condition is  satisjied it i s  then further necessary that the matrices (ar /a~) '* l '~  and 
( d ~ / a ~ ) * ~ "should be equivalent over ( JG" ' )*~  for some isomorphism 8 of (JG"')" 
upon (JG"')*~.  

In applications to knot theory the follo~ving sharper statement is required: 
(3.3) Suppose that the group rings JG of the group G of a certain type have a 

generic homomorphism I)into a given ring (JG)*. Then two groups, G"' = ( x :  r )  
and G"' = ( y :  s ) ,  of this type can be isomorphic only i f  the matrices (ar/dx)*'" 
and (as/ay)*202 are equivalent over (JG)*. 

A simple example of a generic homomorphism is the endomorphism 0: JG -+ J. 
Another generic homomorphism is the abelianizing homomorphism #: JG -+ J H ,  
where H denotes the commutator quotient group G/G2. These and various 
intermediate possibilities have the practical advantage that the image rings 
are commutative. In a later part of this paper representations of JG by matrices 
over a ring will be considered; generally speaking, these will not be generic. 

Of all the choices for II. certainly the least prepossessing is the endomorphism 
o. It is therefore very auspicious that 

(3.4) The commutator quotient group H = GIG2 i s  determined by the Jacobian 
class of G at 0. 

This follows from the noteworthy fact that 
(3.5) The Jacobians of G at o are relation matrices for H ,  which follows im-

mediately from the observation [FDCI $21 that (dr,/ax,)"is the exponent sum of 
x ,  in r,. Thus 

(3.6) The torsion numbers of H are the invariant factors of ( d r / d x ) k n d  the 
betti number of H is  the nullity (the number of columns minus the rank) of 
(&/ax)".  

Usually iC. will be the  extension to  JG of a group-homomorphism iC. of G (so that  ( JG)$  
would be the group ring of G*).However this need not be the case. For instance a homo- 
morphism of JG into the  ring of integers of an algebraic number field may be useful. 
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Similarly it may be shown that the Jacobians of (G, F)  a t  o are relation 
matrices for G divided by its smallest normal subgroup that contains Gz and F .  
(Notice that (ar/ax)" is unaltered if we set equal to 1the distinguished generators 
a l ,  a s ,  . . .). 

The above indicates that the Jacobian class of G a t  a homomorphism fi 
contains information about the structure of G that is destroyed by fi itself. 
Roughly speaking, the Jacobian class of G a t  fi determines the structure of G 
modulo the commutator subgroup of the kernel of fi; the exact statement may 
be found in [lo]. 

4. The Alexander matrices 

Consider a matrix A over an arbitrary commutative ring and an arbitrary 
non-negative integer d .  The ideal generated by the minor determinants of A of 
order n - d ,  where n is the number of columns, is called the dth elementary 
ideal &(A) of A. It is to be understood that '&(A) = (1) for d 2 n, and that 
'&(A) = (0) if A has fewer than n - d roms. Clearly &(A) c @d+l(A);thus to 
each matrix A there is associated its chain of elementary ideals 

By the length of this chain is meant the smallest integer d for which (&(A) = (1). 
The smallest integer d for which &(A) = (0) is the nul l i ty  of A. 

(4.1) Equivalent matrices have the same chain of elementary ideals.  
This is most easily checked by sho\ving that @d is unaltered by the elementary 

transformations (Io), (111), (111*) and (IIo). For (Io), (111) and (111*) this is 
immediate. (Note that the fact that Gd = (0) if A has fewer than n - d roms 
enters into the consideration of (Io).) The elementary transformation (110) 

replaces A by 1 1  % (: I . Clearly every minor determinant of order n - d of the 

matrix A appears as a minor determinant of order n + 1 - d of the matrix 

A '1 and conversely every minor determinant of of order n + 11 1 %  !/I
1 0  1 1 '  
- d is a linear combination of minor determinants of A of order n - d .  Thus 

Gd ( 1 ff y 1 ) = &(A) for every d < n. Furthermore 

The theory of the Jacobians a t  a homomorphism into a commutative ring is 
dominated by the theory of the Jacobians a t  the abelianizing homomorphism 
fi: J G  -+ JH. I call a Jacobian matrix a t  fi an Alesandel r n a t r i ~ . ~By the dth 
elementary ideal of (G, F)  will be meant the dth elementary ideal of an Alexander 
matrix of (G, F ) .  It follows from (3.1) and (4.1) that this ideal of the ring JH 

" u c h  matrices generalize t h e  matrices introduced b y  Alexander i n  [I]. 
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does not depend on the presentation of (G, F )  used; it will be denoted by &(G, F )  
By the dth elementary ideal Qd(G) of G will be meant @d(G, I).  The elementary 
ideals of (G, F )  form the chain of elementary ideals of (G, F )  

From (3.2) it follo~vs that 
(4.2) G"' w G'~ 'only i f  H"' w H'?' and some isomorphism of H"' upon H"' 

transforms the chain of elementary ideals of G"' into the chain of elementary ideals 
of G'~ ' .  

Let us consider now two subgroups F and E of G, where E c F .  Let the 
rank of (F ,  E )  be c and consider a presentation (xl , . . . , x, ; a1 , . . . , a m  : r )  
of (G, E )  which is such that (xl , . . . , xn-c ; xn-C+I, . . . , x , ,  a l .  . . .  , am : r )  
is a presentation of (G, F ) .  (It  is easily seen that such a one always exists.) 
Consider a minor determinant of order n - d of the Alexander matrix 
(dr/a(xl , . . . , xn))*' of the given presentation of (G, E ) .  Its Laplace expansion 
according to those of the columns (dr/a~~-,+~)*' ,. . . , (dr/dr,)*' that are present 
shows that it belongs to one of the ideals @Le(G, F )  for some e = 0,  1 ,  . . , c, 
hence to the ideal @d(G, F ) .  Thus @d(G, E )  c &(G, F ) .  On the other hand a 
minor determinant of order (n - c)  - d of the Alexander matrix 
(ar/d(x, , . . . , x,-,))*' of the given presentation of (G, F )  is a minor determinant 
of order n - (c  + d )  of the -4lexander matrix (dr/d(xl , . . . , x,))*%f (G, E) .  
Thus &(G, F )  c Qd+c(G, E). Summarizing: 

(4.3) If  E c F c G then Gd(G, E )  c ed(G,  F )  c &+i(G, E ) ,  where c is the 
rank of (F ,  E ) .  

In order to compare the elementary ideals of G and a homomorph G/N of G 
it must be assumed that (G/W)/(G/N)Z % G/Gz, i.e. that N 3 G2. I t  is also 
only reasonable to assume F 3 N. If (G, F )  = (x; a: r) then (GIN, F/F A N) 
has a presentation (x; a: r ,  s), where each s, belongs to A. 

Then a(r, s)/ax = so that, for each d ,  Qd(G/N, F/F n .V) =I/drr1 1 ,  
@d(G, F ) .  Thus we get 

(4.4) Qd(G/N, F/F N )  = Qd(G, F), whenever N i s  a normal sz~bgroup of G 
szich that Gz c AT c F. I n  particular, Qd(G/N) = Qd(G, N) i f  G? C N. 

If, in an -4lexander matrix of (G, E ) ,  c columns are deleted, the result is an 
Alexander matrix of a pair (G, F )  where F 3 E and is such that the rank of 
(F,  E) is 5 c. Thus Qd+,(G, E )  = zFQd(G, F ) ,  where the summation is ex- 
tended over certain subgroups F for which the rank of (F,  E )  is 5 c. On the 
other hand if F is any such subgroup there can be found a presentation of 
(G, E) such that an Alexander matrix for (G, F )  is obtained from the Alexander 
matrix of this presentation of (G, E) by deleting c properly chosen columns. 
Hence 

(4.5) &+<(G, E )  = F) ,  summed over those s ~ ~ b g r o t ~ p s  &(G, F that are of 
rank c over E .  I n  particular &(G) = Go(G, F ) ,  summed over the sztbgroups F 
of rank d. 
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Now let us consider the free product G = G"' * G'~ 'of groups G(') and G'~'. 
The commutator quotient group of G"' * G ' ~ 'is the direct product H = H"' .H'~'  
of the commutator quotient groups H"' and H'~'of G(" and G ' ~ ' .Thus the 
rings JH"' and JH'~'are imbedded in J H  in a natural way, so that Alexander 
matrices of G"', G '~ 'and G can be compared. If G"' = (x; r) and G '~ '  = (y: s)  

then G = (a, y:  r, s ) ;  hence an Alexander matrix of G is O , where1 'I 0 A2 
A1 and A2 are Alexander matrices of G"' and G'~' .Hence 

Since the free group of rank n is the free product of n infinite cyclic groups it 
folloivs that 

(1.7) The  dth elementary ideal of the free group of rank n i s  

Next we consider abelian groups. 
(4.8) The  dth elementary ideal of the free abelian group H of rank n 2 1 i s  

where @ denotes the ftindamental ideal of J H .  
PROOF.That Qo = (0) is proved in $5 below. That Q, = (1) follo~vs from 

(4.7), (4.1) and (4.3). This proves (4.8) for n = 1. If n > 1 the group H = H'"' 
has the presentation (XI, . . . , x, : 1x1 , 221, . a . , 15,-2 , x,], [x,-l , x,]). Denote 
its Alexander matrix by A, . We have 

Since each entry of A, is an element of @ we have Qd(A,) c @n-d. On the other 
hand i t  may be seen that if d 2 1 any minor determinant D of A,-1 of order 
(n - 1) - d may be enlarged to a minor determinant of A, of order n - d 
whose value is (x, - l ) D  where j is any of the indices 1, . . . ,n .  Thus &(A,) 2 

(xl - 1, . . . , x, - l)@d(AnPl). Repetition of this argument shows that 
(%(An) 3 (XI - 1, , X, - l ) . (x l  - 1, . . .  , 2,-1 - 1) . . . 
(XI - 1, 5 2  - 1, . . .  , xd+l - 1). But the same formula must hold with the 
indices (1, . . . ,n )  permuted in any way. Hence &(An) 2 @n-d. 

mailto:l)@d(AnPl)
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In the  same way i t  m a y  be shown that  
(4.9) ~ h e d ' ~elementary ideal of the direct product H = H"' X H ' ~ 'X . .. X H'"') 

of cyclic groups of respective orders pl , pz , . . . , p, ,where pk 2 0 ,  is4 

where ak denotes the sum of the elements of the group H ' ~ 'if pk > 0 ,  and al; = 0 
if pk = 0 ,  and 4 k  denotes the ideal ( H ,  ak) consisting of those elements 1~ for which 
u0= 0 (mod pk). 

5. T h e  order ideal 


T h e  othelementary ideal is called the order ideal. 

(5.1) The order ideal of a group G depends only on its commutator quotient 

group H .  I n  fact Qo(G) = ( a ) ,  where 

a = C h r R h if H i s  finite 

= 0 if H i s  infinite. 

PROOF.Since H is a finitely generated abelian group, H = H"' x H'" x 
. . X H'" where H'" = (ti : tP1) and p, 2 0. Choose a presentation (x: r )  o f  
G such that 2:" t ,  for j = I ,  ,p and sf" 1 for j ,= p + 1, . . , n (c f .  
[ I ] ) .  Let 

I t  is easily verified b y  direct calculation that ,  u(t i  - 1) = 0 for every j i f  and 
only i f  u = 0 (mod al . . . a,). B y  the  fundamental formula [FDCI (2.3)], 
(ar/as,)'"x:' - 1 )  = 0 .  Hence, for any  subset r' = (r;,, . . ,r,J of  the  relators, 
and any index k = 1, . . . , n ,  we find 

Consequently 

det  r&)*'= O(mod o). 

4 The case d = 0 is proved in the next section. 
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Thus &(G) c (a). Since ua = uOu for any u E J H ,  the ideal (a) consists of the 
integral multiples of U .  Hence there is a non-negative integer a such that 
@o(G) = (aa). Hence (@o(G))O = (up), where p = pip, . . . p, . On the other 
hand (&/ax)' is a relation matrix for H,  according to (3.5), so that (@o(G))", 
the order ideal of (&/ax)", must be the ideal (p), since p is the order of H. 
Thus a = I ,  and, consequently, &(G) = (a). 

6. The 1" elementary ideal 

Given any two elements gl and gz of G there may be found a presentation 
(xl , . . . , xn : r)  of G such that x? = gl and x$ = 92 . Then, by the fundamental 
formula [FDCI (2.3)], for any set r' = (rjl , . . , T ,,-,) of n - 1 relators, me 
find 

det ( ( x P  - 1)
d(x1 ,53, . . . ,xn) 


dr'

(xl - I),--,  . . . ,

ax3 

dr'(x2 - I ) , - - ,  . . . ,g)*'
dx:3 axn 

Thus, denoting by F'" and F'~'the subgroups of G generated by gl and g2 
respectively, 

Since x,,,Q(g$ - I )  is the fundamental ideal Sj of H,  i t  follows from (4.5) that 

From this we derive 
(6.3) If H is the in$nite cyclic group generated by t and if F is the 

subgroup of G generated by an element g for which g' = tX, then Qo(G, F) = 

e 1 ( ~ ) . ( t X- i)/(t  - 1). 
(6.4) If H is the free abelian group of rank p 2 2 then el(G) = 2 . Q  where D 

is a certain ideal, and if F is the subgroup of G generated by an element g then 
Q(G, F )  = 2 . (g*  - 1). 

PROOF.Let (ul , . . . , u,) be a basis for the ideal Ql(G) and let (vl , . . . , uB) 
be a basis for the ideal @o(G, F). A basis for the fundamental ideal Sj of J H  is 
(tl - 1, . . . , t, - 1) where tl , . . . , t, is a basis for H.  By (6.2) we must have 

(6.6) bjklul(g' - I)  = vj(tk - 1) ( j  = 1, . . .  ,6 ; k = I ,  . . .  , p). 
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Suppose first that H is infinite cyclic. Then p = 9' and1 = tAfor some integer 
A, so that (6.6) becomes 

I t  follo~vs that Elb,, u l  (tA- l ) / ( t  - 1)  = u ,  , since t - 1 is not a divisor 
of zero in JH. Thus Qo(G, F )  c al(G) . ( tA- l ) / ( t  - I ) .  On the other hand, 
using again the fact that t - 1 is not a zero-divisor, we get from (6.5) that 
u,.(tA - l ) / ( t  - 1)  = Elk azlkuj, SO that @l(G).(tA- l ) / ( t  - 1)  c Qo(G, F ) .  

ASuppose next that H is free abelian of rank p 2 2 and let g' = t;'tt2 . . . tPU. 
If 1 1 9' say, the polynomials 0 ,# - 1 and ts - 1 are relatively prime. Since, 
by (6.6) with k 9' 2,= - 1 divides u,(t2 - I ) ,  it follows that 

Denote by 22 the ideal (wl , . . . , wa), so that (6.7) says that Qo(G, F )  = 


E(9' - 1).  Substituting from (6.7) into (6.5) and (6.6) and dividing out by 

9' the non-zero-divisor - 1 yields 

which say that G1(G) c 2.a and a l (G)  3 IZ?.,@ 9' respectively. If = 1 it 
follows from (6.6) that Qo(G,F )  = (0).  

Theorems (6.3) and (6.4) are handy for calculating &(G) when H is torsion- 
free. Theorem (6.3) goes back to Alexander [ I ] .  

Of special interest are those groups G that have presentations in which there 
are more generators than relations. For instance the group of a knot of multi- 
plicity p 2 1 has this property. If p = 1 the ideal Ql(G) is a principal ideal; 
the generator of Q1(G)is the polynomial A(t), determined of course only up to a 
factor k t A ,that was defined by Alexander [ I ]  for the group of a single knot. If 
p 2 2, the ideal 2 is a principal ideal; its generator is a polynomial A(t1 , . . . , t,) 
that is determined only up to a factor f t t '  . . . t)'. For any value of p = 1 , 2 ,  . . . 
I have called A(tl , . . . , t,) the Alexander polynomial of G. Thus G has an 
Alexander polynomial A = A, whenever G/G2 is torsion-free and G can be 
presented with more generators than relations. If this last condition is not 
fulfilled we may speak of the Alexander ideal,--Ql(G) if p = 1, and if p 2 2. 
Recent investigations of the Alexander polynomial may be found in [12], [16], 
[18]and [29]. 

If H is not torsion-free the ring JH has divisors of zero and the situation 
becomes more complicated. This case may occur in important applications, but 
I am, a t  the moment, uncertain as to the proper way to treat it. 

It may be obsen-ed from (4.3), (4.4) and (4.8) that, Qd(G) is contained in 
v-dwhenever H is free abelian of rank and 1 5 d 5 p - 1. Hence, in par- 
ticular, QI(G) c 4'-'.Thus, if p 2 3, the Alexander polynomial A(tl , . . . , t,) 
must be of the form E a k  ,,...,A,-, ( tk ,  - 1)  . . . (ti,-, - 1) .  Furthermore if 
p = 1, the fact that (Q1(G))"is the 1" elementary ideal of (dr/dx)",which is a 

mailto:@l(G).(tA
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relation matrix for H, shows that (@l(G))"= (I) ,  hence that A(1) = f l  (cf. 
Dl). 

7. The cohomology groups of a group 

Recently Eilenberg and MacLane [9] have associated with an arbitrary group 
G and an arbitrary right JG-module % groups Hn(G, %) and Hn(G, %), called, 
respectively, the homology and cohomology groups of G over %. 

(7.1) The groups Hn(G, %) and Hn(G, %) are determined, for every n and %, 
by an arbitrary Jacobian matrix (dr/dx)%f G. 

To calculate these groups one first constructs a sequence of "incidence 
matrices" Mn-1 (n = 1, 2, . . ) over JG as follows: 

Mn is a matrix of an+lrows and ancolumns whose row space contains exactly 
those vectors v = (vl , . . . ,v,,) such that v.MnP1= 0;  a. = 1, a1 = n, a2 = m. 
Ifn > 2, there is no guarantee that anis finite; in fact it is an interesting question 
as to when Mz can be chosen to be a finite matrix. We consider the additive 
group Zn(G, %) whose elements are the vectors v = (vl , . . . , v,,) over % which 
have the property v.Mn-l = 0, and the additive group Zn(G, %) whose elements 
are the vectors v = (81, . . , v,,) over % which have the property5 v.Wk = 0. 
The vectors w.Mn-l form a subgroup Bn-l(G, %) of Zn-l(G, %), and the vectors 
w.WL form a subgroup B"+'(G, %) of z"+'(G, %).The homology and cohomology 
groups are Hn(G, 8 )  = Zn(G, 8)/Bn(G, %) and Hn(G, %) = Zn(G, %)/Bn(G, %). 
For details and proof see [ l l] .  

In the so-called case of "simple operation" the multiplication of an element 
a of % by an element u of JG is defined to be a.u = auo.In this case v.Mn = 
v.Mi , so that the groups Hn(G, %) and Hn(G,%) are determined by the sequence 
M: 	 , M L  MM"z , . . of integral matrices. 
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a'denotes the conjugate transpose of M, where "conjugation" is defined by Z,,,a,g = 
Z,ZQa,g-l. 


