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FREE DIFFERENTIAL CALCULUS III. SUBGROUPS
By Rarry H. Fox
(Received February 17, 1956)

1. Subgroups of free groups. Consider the free group X of rank n(< «) on
a set of generators (z;), a subgroup W of index v(= ), and its right cosets
Wp (with Wy, = W). In each coset Wj select a representative element | Wy |,
with | Wy = 1.

Denote by W* the free group of rank nv on a set of generators (zj); the
generator x5 corresponds to the generator x; and the coset Ws. Since W* is a
free group, a homomorpism 7 of W* into W is determined by defining
(L.1) wig = | We |-2j-| Wea; |

To each coset W there is a mapping, which will be denoted by the same symbol
W5, of X into W* defined as follows:'

a® =z
Wt = [Tis 2™ if w = [T sk,
It is easily verified, from this definition, that

(u)"® = "B,

(1.3) 18 =1,

(U_I)WB — v—ng“‘.

(1.2)

From these formulae and the definition of 7, it follows, by induction on [, that®
(1.4) (ug)” = | Wg|-u-| Weu|™

By (1.3), the restriction ¢ to W of the mapping W; is a homomorphism, and,
by (1.4), the endomorphism 7o of W is the identity. Hence ¢ is an isomorphism
of W onto a subgroup W’ of W* and 7 is a homomorphism of W* onto W, such
that 7 | W* = ¢ . Accordingly W will be identified with W; the isomorphism «
thereby becomes the injection of W into W*. Since (xs) generates W, the identifi-
cation is consummated by setting zjs equal to 273, i.e. by the formula®

(1.5) | We |-a;-| Wezs | =‘| We x| Wezj o

Thus X n W* = W, and 7 is a retraction of W* upon W. The mapping 6,
defined by @’ = a-a™", is a retraction of W* upon the kernel of 7 (since 6° = ).
Since (ab)’ = ab’a'-d’, and (")’ = a7'a’a, it follows that

1 For the definition of the k&t initial section u() see formula (2.7) of FDCI.

2Tt is often convenient to write just ug instead of «™#. To avoid possible confusion, I
remark that, in this paper, the Greek letters a, B, v are reserved for the designation of a
variable coset of W. Of course the index 1, when applied as a subscript to a coset represen-
tative, refers to the coset mapping W, ; thus | Wg|, means | Wg |"1.
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(1.6) the kernel of 7 is the consequence of the nv elements xls = z 275 , so that
W= ((zj8): (xjs = 2%))".

It follows from (1.4) that | W; |, belongs to the kernel of 7, and from (1.1) and
(1.5) it follows that’

xig = (ws-| Weas [-27g) | Wa |7
Consequently
(1.7) the kernel of = s the consequence of the v — 1 elements | Wg |1, 8 5= 1; thus’

W = ((xjg):(| We | = 1[8 = 1)).

Obviously the presentation (1.7) may be obtained from the presentation (1.6) by
Tietze transformations (I) and (I)™".

The system 2 of coset representatives | Ws | is called a Schreier system if the
initial segments of any coset representative are also coset representatives. It is
known that a Schreier system always exists. Schreier’s proof [30] of this fact is
quite straightforward and even proves a little more—that there always exists a
minimal Schreier system, i.e. one for which the length I(| Wz |) of any coset
representative | Wp | is not larger than the length I(w) of any other element u of
the coset Wp .

A generator x5 of W* will be called a trivial generator if xjs = 1, i.e. if

| We |-2; = | Wez;|.

Thus the occurrence of a trivial generator x5 corresponds to an occurrence of a
coset representative v of length, say, [ whose (I — 1)t initial segment w is also
a coset representative. (Here u e W if v = uz; , and v e Ws if v = ua;".) Thus
there can be at most v — 1 trivial generators, and this maximum number ob-
tains if and only if 2 is a Schreier system.

The subgroup of W* generated by the trivial generators x5 will be denoted by
T, and the subgroup generated by the non-trivial generators z; will be denoted
by S. Thus W* = S« T and T is contained in the kernel of .

(1.8) If = 7s a Schreier system, the elements | Wy |, all lie in T. For then, if the
reduced word representing | W | is [[f=1 25%, the image under W, of | W, | is
H;lc=1 x5%s, , for certain indices 81, - - - , B1, and it is easily verified that

LBy "y Ty

are, in fact, trivial generators.

It follows from (1.7) that, in this case, the kernel of 7 is the consequence of 7,
and thus that = | S maps S isomorphically upon W. Thus

(1.9) (Nielsen-Schreier) The group W s isomorphic to the free group on the non-
trivial generators x ;5 determined by the Schreter system Z. Thus

W = ((xj):(@js = 1|xeT))
= ((xjs |z e S))".
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It is easily verified that the rank N of W is equal to the first betti number of
the coset diagram [30]. This is equal to nv — v + 1 if v is finite [30]; if v is infinite,
N is known [30] to be infinite whenever W is normal, and may be finite when W
is not normal.

It follows from (1.1), (1.5) and (1.8) that W* is freely generated by the trivial
generators z;s and the images under 7 of the non-trivial generators z ;3 . Thus

(1.10) W* = WaT.

2. Subgroups of arbitrary groups. Consider a subgroup F of index v in a group
G = ((z;):(r; = 1))*. The free group X is mapped by ¢ homomorphically upon
G, and the kernel R of ¢ is the consequence of the set of elements (r;). The inverse
image W of F is a subgroup of X that contains R, and its index v is the same
as the index of F in G. The cosets of F are the images Fs = W3 of the cosets of
W. Since the normal subgroup R is the consequence in X of the elements r;, it
follows that R is the consequence in W of the elements

lWa lrz‘ IVa !_1 = lWa l'ri'l W.,’I‘,' I—l = T;a .

This proves the Reidemeister-Schreier theorem [26, 30, 31, 41]:
(2.1) THEOREM. If Z is a Schreier system then

F = ((jg):(ria = 1), (s = 1|z eT)”
= ((@ss| 28 € 8): (Fia = 1)),

where ., 1s obtained from v;, by deleting the occurrences of trivial generators. The
relations r;,, = 1 and z;3 = 1| x5 € T are called in [26] the relations of the first
and second kind respectively.

According to (2.1), the kernel of ¢7 is the consequence in W* of (r;.) and 7.
Hence the kernel of ¢ is the consequence in W of (ri.). The homomorphism ¢ of
W upon F and the identity automorphism of T' together determine a homomor-
phism ¢* of W* = W x T upon F* = F x T, and the kernel of ¢* is then the
consequence in W* of (r7,). But, by (1.4) and (1.5),

T:’a = l Waz ll‘ria'[ Waz ll—ly
and hence the kernel of ¢* is the consequence in W* of (r;,). Thus
(2.2) F* = ((x8): (ria = 1))*".

The presentation (2.2) has the notable feature that it does not depend on the
choice of a system of coset representatives. In other words, without selecting any
coset representatives at all, one can write'”down a presentation of the free product
F* of the given subgroup F and a free group T of rank v — 1. The reason for
doing this is that, for some purposes, knowledge of F * T is just as good as know-
ledge of F. An application is given in the next section.
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It is well-known [32, Ch. II] that a subgroup F of G determines a representa-
tion p = pr of G upon a transitive group of permutations of the symbols

1,2 -,

This representation p, which is said to belong to F, is defined as follows:

) . 1 2 v
@3 I ‘(1<g> 20g) - v<g>>’ el

where Fgy = Fgg. The coset Fs consists of those elements g of G for which
1(g) = B;in particular g € F if and only if 1(g) = 1. The correspondence between
subgroups F' of ( and transitive representations p of G into the symmetric group
of permutations of the symbols 1, 2, - - - | v is one to one, provided that the sym-
bol 1 is the index of the identity coset F in every case. It is convenient for some
purposes to specify the subgroup F only indirectly by means of the representation
p that belongs to it.

It may be noted that p® is the representation of X that belongs to W, since
Fs = W§, and that 8(u) = 4(g) if and only if g and »® lie in the same coset of F.

The representation p is useful in writing down the presentation (2.2), because
(1.2) can be written'

!
(2.4) us = [Jxa TiiBtua) »

thus making it possible to write down the v relations r;o = 1 (& = 1,2, --- jv)
in one operation, as will be illustrated below (§5).

3. Jacobians of subgroups. Let
Baﬁ(u) =1 if Wau= Wvg
=0 otherwise,

for every u e X. (Note that 8,5(1) is the ordinary Kronecker delta d,5.) For any
group T, denote by M(T) the ring of v X v matrices over the group ring JT. The
formulae

u = | 8ap(w) - u”™ | for u e X,
F+o"=7r"+yg for f, g e JX,
determine a homomorphism w of JX into M(W*); in fact
[ Sas(u)tta || 1| 857 (0)0 | = || 225 8ap(w)py(0)u” 0™ || = || ay(uw) ™0™ |
= || Bary(w) - () .

The homomorphism 7w of JX into (W) is the monomial representation
[32, Ch. V] of JX in JW.

(3.1)
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The effect of w on a derivative is especially interesting. Let u = [[iz 25%,
so that' du/dx; = D i1 &d,,; uay - Then

u\’ )
<53;_ ) = i &by || Sap(an) uls || = || 2ok €8ji8as (e - ulis || -
7

But u, = H,f=l " 50 that

e -
= Dokt €084 Bap () UGS -

dzxjs

Thus

u\’ g ||
3.2 — ) = 2.
32 <8x,-> dzx;g

If r; is any relator of the presentation (z:r)® of G, then 8,5(r) = 845, and
(ria)® = 1, so that 7?™ = || 8as || = E e M(F*). Thus u® = v* implies that
u®® = »*™*, so that a homomorphism w of JG into M(F*) is defined by the
formula u°® = u®™, where ¢* denotes the homomorphism of MM(W*) upon
IM(F*) that is induced by the homomorphism ¢* of W* upon F*. With this nota-
tion, there follows from (3.2) the following theorem.

(3.3) Each Jacobian || dr;/dx; ||® of G is mapped by w into a Jacobian

[| ari/ox; [|°® = || ari/ax; |** = || oria/0ais ||*

of F*. From (2.2) it therefore follows that®

(3.4) || 9ri/dx; ||*™ is equivalent to || M O || where O denotes the null matriz of
mv rows and v — 1 columns, and M s a Jacobian of F.

This algorithm is especially efficient when applied to the problem of deter-
mining the structure of F/[F, F]. Consider the homomorphism wy = ow of JX
into M(1). Since ow = 0 w = owg, we have, by (3.3),

(3.5) A relation matrixz for F*/[F* F*] is || dr:/dx; ||*°. Consequently, iof G
1s finitely generated and v < o, the torsion numbers of F/|F, F| are the invariant
factors of || ar:/dz; ||“°, and the betti number of F/[F, F)] is equal to the nullity of
Il 9r:/0x; ||“® decreased by v — 1.

If F D [G, G] the structure of F/[F, F] can be conveniently calculated in terms
of the Alexander matrix || 9r;/dz; ||*®. Here ¢ is the abelianizing homomorphism
that maps G upon H = G/[G, G]. Since W D [X, X] we have ¢** = || 84| for
any c ¢ [X, X] so that «'® = v** implies u*° = v*°, and a homomorphism wo of
JH into M(1) is therefore defined by the formula (**)*° = u*°. Thus

(3.6) If F D [G, G] the matriz || 9r;/dx; ||*° that appears in the statement (3.5)
is equal to (|| 9r;/dx; |1¥®)“".

4. Covering spaces. If G is the fundamental group of a topological space
Zo , then to each subgroup F of G there belongs an unbranched covering space

3 This generalization of (3.5) is due to the late R. H. Kyle. The idea of replacing the
representation wo by permutation matrices by the more powerful ‘‘monomial representa-
tion”’ w is also due to him.
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X and a base point p of & lying over the base point 4 of Z, ; conversely, given &
and p, the subgroup F is uniquely determined. The fundamental group of « is
isomorphic to F. Accordingly, the results of §§2, 3 may be interpreted as al-
gorithms for calculating the fundamental group of an unbranched covering
space and its Jacobians, etc. In particular (3.5) and (3.6) describe the 1%t homol-
ogy group of an unbranched covering space. These results will now be extended
to branched covering spaces.

Let Z be a barycentrically subdivided, connected, locally finite complex and
£ a subcomplex such that, for each vertex « of £, the intersection S(v) of Z — £
with the open star st a2 of 2 is non-vacuous and connected. Let 4 be a finitely
branched covering of Z whose singular set Z, is a subcomplex of £. Let F be the
subgroup of G = m(Z — £) to which the associated unbranched covering of
Z — &£ belongs. Then [33, §7] m(Y) = F/N, where N is the consequence of those
elements a of F that are represented in at least one of the regions S(z). The rela-
tions a = 1 will be called the branch relations; the determination of = (YY) is seen
to rest on calculation of a suitable “defining” set of branch relations. This is
very simple to do if, for each vertex 1, the elements of G that are represented in
S(2) are all consequences of one such element. Such a situation arises [33, §6] if
Z is a connected, barycentrically subdivided, combinatorial ¢g-dimensional mani-
fold and £ is a combinatorial (¢ — 2)-dimensional manifold, polyhedrally im-
bedded in the interior of Z in such a way that the star of each vertex of £ is
flat in Z. (For then each S(2) belongs to the homotopy type of the circle.)

If b is an element of G represented in S(:2) such that its consequence includes
every element represented in S(e),.then the branch relations at 2 are just those
elements (gb'g™)*', geG, x = 1,2, --- , that lie in F. Let u and v be elements
of X such that u* = b and v* = ¢. In order that vu’v™" lie in W = ¢ (F), it is
necessary and sufficient that the permutation (vu'v™")** leave fixed the symbol
1, i.e. that the permutation () leave fixed the symbol 8 = 1(v*) into which
the symbol 1 is sent by the permutation v**. Thus A must be a multiple of the
length of the cycle of u*® that contains 8. If u*®* = -~ (818 - -~ B») - - -, where
B = B, say, then®

™ = () = 0 (g, - ug

so that the corresponding branch relation is ug,ug, - - - ug, = 1. Thus

(4.1) If Z is a connected, barycentrically subdivided, combinatorial g-dimensional
manzfold and £ is a combinatorial (¢ — 2)-dimensional manifold, polyhedral and
locally flat in the interior of Z, and if Y is a finitely branched covering of Z whose
singular set s a subcomplex of £ and F s the subgroup of G = m(Z — £) to which
the associated unbranched covering of Z — £ belongs, then a presentation of m(Y) 7s
obtained from the presentation (2.1) of F by adjoining the branch relations

Ug Uy ~ -~ U, = 1,

where (B; - - - B») ranges over the distinct cycles of u*®, and the elements w are such

that any element of G that is represented in some S(2) is a consequence of some u®.
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Thus
7"1((3) = ((xjﬁ):(riu = 1)7 T = 1, (u’ﬂxuﬂz Tt Ugy, = 1))T¢7;

where T denotes the homomorphism of F into m (YY) induced by the injection.

Since the kernel of T¢r is the consequence in W* of T, (r:a), and (ug,ug, - - - us,),
it follows that the consequence in W of (r.) and ((us,-ug, - - - ug,)") is the kernel
of T¢. Denote by T* the homomorphism of F * T upon m1(Y) * T determined by
the homomorphism T of F upon 7 (YY) and the identity automorphism of 7.
The kernel of T*¢* is the consequence in W* of

(i) = (| Walirriar| Wal™) and  ((ugug, -+ ug,)")

= (| Wa, li-ug,ug, - ugy-| Wa, [7),
hence of (r:.) and (us,us, - - - ug,). Thus
(4.2) () * T = (i) (ria = 1), (Up,ug, -~ ug, = D)%
Denoting by ux, k = 1, 2, - - -, the branch relators u", we have
ari T'dl‘w
ErS
(4.3) !
ou
61:1'

is a Jacobian of w(Y) *» T, and 1s therefore equivalent to || N O ||, where O denotes
the null matrixz of v — 1 columns, and N s a Jacobian of m(Y).

(4.4) A relation matrix for the commutator quotient group of m(Y) T is
37',' “o

ox;

u
ox;

Hence, if G is finitely generated and v < o, the torsion numbers of the 1-dimen-
stonal homology group Hi(Y) = mi(Y)/[m(Y), m1(Y)] are the invariant factors of
this matriz, and the betti number of Hy() s the nullity of this matrix decreased by
v — 1.

It follows, as at the end of the preceding paragraph, that

(4.5) If F D (G, G] the matriz

or; |0 ar; wodd
ax; ox;
! that appears in the statement (4,4) 1s equal to !
| 0x; |l az; ||

5. Some simply connected spaces. If, in (4.1), Z is the ¢-dimensional euclidean
space (or the g-dimensional sphere) and £ is a (¢ — 2)-dimensional manifold,
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polyhedral and locally flat in Z, then there is a presentation
(T’l, e ,xn:'rly o .. ’rm)¢

of G that has the following property: each zf is represented in some S(2), and
every element of (G that is represented in some S(2) is a transform of an appro-
priate power of one of the elements 2f , --- | z%. (If ¢ = 3 and £ is a knot or
link, such a presentation is, for example, any over presentation [29], a special
case of which is the well-known Wirtinger presentation.)

Suppose that 2%? is the product of ¢; distinct cycles

= BBy - B)(e) e ().

The corresponding branch relations
T gy v Tigy, = 1, -

allow us to eliminate ¢; of the generators x5, , --- . None of the generators so
eliminated need be trivial generators. For if x5, , 245, , -+ - , @5, Were all trivial
generators then in X we would have | W, |z; = | Wa, |, | We, |x; = | Wa, |, -+,
and hence | W, |2} = | Ws, |, i.e. 2} = 1, which is impossible, since A > 0.
Thus, by means of the branch relations and the “triviality” relations of the
second kind we can eliminate ¢; + ¢o + -+ 4+ ¢, + v — 1 of the generators.
Hence

(5.1) The rank of m () is at most v — D _jyc; — v + 1.

In particular 9 is simply connected if Y j—;jc; = nv — v 4+ 1. This occurs
when the coset diagram is, aside from réentrant edges, a tree. In the case of a

knot £ in 3-space Z, the generators zf, .-, % are conjugate in G, so that
1 = -+ = ¢, and thus the condition is satisfied if and only if
v—1
c=v— .
n

The simplest instance of thisisn = 2, v = 3, and ¢ = 2, i.e.
— (1 2
Ty — (2 3).

Such a representation can be found for a large class of knot groups (those for
which A(—1) = 0 (inod 3) [34]). The simplest such knot is the overhand knot
3: . Its group is

G = (21, T21T12oT1 = Ta1T2).

The irregular 3-sheeted covering Y of this knot is therefore simply connected.
The same holds for the knots 6,, 7, , 77, ete. Of course these covering spaces are
probably 3-spheres; in the case of the covering of 3; , I am almost certain that ¢y
is a 3-sphere. Assuming that it is, it is interesting to examine the situation of the
branch curves in Y, and this affords an illustration of the use of the algorithms
developed in the preceding sections.
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Since ¢ = 2 the knot 3; is covered by a link of multiplicity 2 in the presumed
3-sphere V; the index of branching of these two curves is 1 and 2. According to
§2 the fundamental group of the unbranched covering % of Z — £ is

(211, T2, xlz.xuxzﬂm = TaZule ,
Loy , T2, xzs.xlzlexu = X22T13%23
Z13%23T12 = T23T12%21

Ty = 1,

Ty = 1)
= (212, lei(lexlz): = (55125521)2),

which is the group of the link made up of two circles with linking number 2.
It would therefore appear that the overhand knot is covered by two circles, of
branching index 1 and 2, respectively, which are doubly linked. (Cf. [35].) In
the same way it would appear that the knot 6, is covered by a circle (with
branching index 2) and an overhand knot (with branching index 1) doubly linked.

6. The cyclic coverings of a knot. Consider now a knot £ in the 3-sphere
Z, and an over-presentation (%o, -+, Z.:ir1, -+, r)® of G. The commutator
quotient group G/[G, G] is infinite cyclic, and the generators z¢ , --- , z% all
belong to the coset of [G, G] that generates G/[G, G]. Thus, for each positive
integer v, there is a representation

pixt > (1 2---v)

of G upon a cyclic group of permutations. The associated covering spaces X and
9 are called the vt* cyclic coverings of £ (unbranched and branched respectively).

To discuss the 1%t homology group of X and 4 it is most convenient to pass from
the given over presentation to a presentation

G = (x’aly et , AniSy, v ,Sn)¢

which is such that the elements a? all belong to the commutator subgroup

[G, G]. This is easily done by introducing the new generators a; , - - - , a, by the
formulae a; = x,x; ", writing x for zo and s,(z, a;, - - - , a,) for
Ti(xo y Mo, anxo),

and writing again ¢ for the new canonical homomorphism. The abelianizing
homomorphism ¥ maps G upon an infinite group H generated by an element
which will be denoted by ¢. Then 2** = ¢t and a¥* = 1. By the fundamental
formula [FDC I (2.3)] we have (¢ — 1)(3s;/0z)*®* = 0, hence (ds;/9z)** = 0.
Hence the Alexander matrix [FDC I7 p. 204] is

A = [lOFQ) ||
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where O denotes the null column vector, F(t) = || fi;@) ], =1, --- , n and
Fii(t) = (9s:/9;)"*.
A Schreier system of representatives of the cosets of F' = () is

(‘ IVﬁI = xﬁ“1y6= 1;,2, ’v)'
The r-images of the corresponding generators of W* are a5 = 2* '-z-27?,
B=1,--,v—1;2, =2 217" ajy = 2% a2 ®, 8 =1, .-, v, hence
1, * -+, %, are the trivial generators. Thus, by (2.1),

m(X) = (2o, (@) (sia = 1))*".

The corresponding relation matrix is obtained from the relation matrix for
F*/[F* F¥] ie. the matrix A(T), where T denotes the v X v matrix

1
w0

1]
1
by deleting the first v — 1 columns. Thus a relation matrix for H;(X) is the
nw X (nv 4 1) matrix | O F(T) ||. Since the branch relation is 2z, - - - 2, = 1,
ie.z, = 1, the nv X nvmatrix F(T) is a relation matrix for H1(Y). Thus emerges
the following well-known fact: ‘

(6.1) The group H,(X) s the direct sum of the group Hi(Y) and the infinite cyclic
group generated by x¥*".

The invariants of the matrix F(T) have been investigated by knot-theoretical
methods [36, 18, 37]. On the other hand the determinant and the nullity of
F(T) can be calculated by elementary algebra (38, 39, 40, 16]. To do this the
integral group ring JH of H is replaced by its group ring CH over the field C
of complex numbers; although the elementary ideals of a matrix are, generally
speaking, destroyed by equivalence over CH, its determinant and nullity are ob-
viously preserved.

It is well known that one can find n X n matrices P, Q over the field R of
rational numbers, such that P-F(¢)-Q is a diagonal matrix

AL(D)
21 =
AL (D)

and the product A;(¢) - -+ A,_qpi(f) of the first n — d + 1 diagonal elements is
the g.c.d. in RH of the elementary ideal €4, d = 1,2, --- , n, i.e. a generator
of the smallest principal ideal in RH that contains &, . It is easy to see that

P(E)-F(T)-Q(E) = 2_i% A«(T),
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where 2 ;% A;(T) denotes the direct sum of the v X v matrices A;(T), and
P(E), Q(E) are the nv X mv matrices obtained from P and Q by replacing the
entries p;; and ¢;; by the v X v matrices p;;E, ¢:;E. Thus the nullity of F(T)
is the sum of the nullities of A;(T), 7 = 1, - -+, n, and the determinant of F(T) is
the product of the determinants of Ay(T),j =1, --- , n.

Let Wo = || £* |lag=1.0,...v , Where { is a primitive v** root of unity; its inverse
is Wo' = 1/0l ¢ laper2....n . Furthermore Wo'TW, = U = 2 %, ¢%. Thus
Wol-A;(T) - Wo = A;(U) = D g% Aj(¢%). Hence the nullity of A;(T) is equal
to the number of distinct v® roots of unity that are roots of the equation A;(t) = 0;
and the determinant of A;(T) is equal to [Ip—1 A;j(¢®). From this the following
conclusions may immediately be drawn (cf. [38, 39, 40, 16]):

(6.2) The 1-dimensional bettv number of Y is equal to > i1 b;, where b; denotes
the number of distinct v roots of unity that are zeros of the j*t elementary divisor
A(t) of F(t).

(6.3) The order of the 1-dimensional homology group of Y is equal to the resultant
of the polynomial £ — 1 and the Alexander polynomial A(f) (= det F(t)) of the
knot £.

It follows from (6:1 and (6.2) or (6.3) that the 1-dimensional betti group B;i()
is infinite cyclic, generated by the coset Z, containing z¥*", whenever A(f) = 0
and # = 1 have no common roots. A Jacobian of m () * T is

Z1
Y ¥
ds; 9s; ds; ||*™ w
I where 2° =
dxr da, dan |li=1,---n
Zy—1
Ty
and
a;y
ajo
a; =
Ajy

The homomorphism yo: (%) * T — By(X) * 1 = By() maps 2¢", -+ , 2¥’; and
all af5 into 1, hence also z*™ into

1 1

X = B and afintoE =
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Since kernel ¢ C kernel yow, a homomorphism w of JH into M(B;(X)) is defined
by the formula (¢*)* = ¢**°, and ¢* = X, therefore, since X and E commute, the
matrix A(X) = || O F(X) ||, where O denotes the nv X v null matrix, is a
Jacobian of m (%) * T at ¥ . Hence a Jacobian matrix of m1(X) at yo:m(X) —
Bi(x) is || O F(X) ||, where O denotes here the null column-vector of dimension
nv. Thus the 1°t elementary ideal &, of the Jacobian of 71() at ¢, is a principal
ideal whose generator A(Z,) = det (F(X)) is an L-polynomial in #,. This poly-
nomial, which is determined only up to a factor %, , will be called tentatively,
the Alexander polynomial of & over its betti group.

As shown above, F(X) is equivalent, over the rationals, to the diagonal matrix
> ik A;(X), so that A(Z) = J]j-idet A;X). Let us now adjoin to the ring
CB,(X) a new indeterminate ¢ whose vt" power is Z,, and define

W=l [lapmrnow,
where, as before, ¢ is a primitive vt* root of unity. Then
W_l = I/UH C_ﬁg'naﬁ Ha.8=l.2.~ v
and W'XW = cU, so that W 'A;(X)W = A,;(cU). Therefore
A#) = [T aer).

Hence

(6.4) If no root of A(t) = 0 is a vt* root of unity, the Alexander polynomial
A(%,) of the vt cyclic unbranched covering X over its betty group is equal to the re-

sultant of the polynomials ' — %, and A(%).
For example if £ is the overhand knot 3, we find

A@)=1—-2% + 7.ifv= %1 (mod6)
=1+% +#ifv= =22 (mod6)
=14+2% +iifv= (mod 6).

(For v = (mod 6) the betti group is not cyclic.)
For £ the figure eight knot 4; we find

AE) =1— Th+ %
A(F;) = 1 — 18%; +
ete.
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