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FREE DIFFERENTIAL CALCULUS 111. SUBGROUPS 

BY RALPHH .  FOX 

(Received February 17, 1956) 

1. Subgroups of free groups. Consider the free group X of rank n ( 5  cc) on 
a set of generators (x,), a subgroup TV of index u ( 5  x), and its right cosets 
1Vg (mith TV1 = TT7). In each coset select a representative element 1 TITg1 ,  
mith 1 TTr1 .I = 1. 

Denote by TV* the free group of rank nu on a set of generators ( x , ~ ) ;  the 
generator x,g corresponds to the generator z ,  and the coset Ttrg . Since Ttr* is a 
free group, a homomorpism T of TV* into TV is determined by defining 

(1.1) xi8 = / TVg I .x , .  / IVgx, I-'. 
To each coset Wg there is a mapping, which will be denoted by the same symbol 

Ttrg , of X into Ttr* defined as follows:' 

I t  is easily verified, from this definition, that 

From t,hese formulae and the definition of T, it follo~vs, by induction on I ,  that2 

By (1.3), the restriction u to TT7 of the mapping TV1 is a homomorphism, and, 
by (1.4), the endomorphism TU of TY is the identity. Hence u is an isomorphism 
of TV onto a subgroup TV" of W*, and T is a homomorphism of TT7* onto TV, such 
that T I W a= up'. iiccordiilgly TV will be identified with W";the isomorphism u 
thereby becomes the injection of TV into TV*. Since (x:g) generates TV, the identifi- 
cation is coilsummated by setting x:g equal to 2;; , i.e. by the formula" 

Thus S n TV* = TT7, and 7 is a retraction of TI7* upon TV. The mapping 8, 
defined by as = a .  a-', is a retraction of TT7* upoil the kernel of T (since 8' = 8). 
Since (ab)' = absa-'.a0, and (a-I)' = a-'a-Oa, it follows that 

For the definition of the kth initial section u ( k )  see formula (2.7) of FDCI. 
I t  is often convenient to  write just ug instead of uwa. To avoid possible confusion, I 

remark that ,  in this paper, the Greek letters a ,  8 ,  y are reserved for the designation of a 
variable coset of W . Of course the index 1, when applied as a sul-)script to a coset represen- 
tative, refers to the coset mapping It'l ; thus I Wg ]I means I l lVg1" ' .  
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408 	 H.4.LPH H. FOX 

(1.6) the liernel of T zs fhe consequence qf fhe nu elements xta = x,,,-zG7, so fhat 
ri- = ( (x ,~ ) :( x , ~= x ; ~ ) ) ~ .  

I t  follows from (1.4) that 1 IVa 1, belongs to the kernel of T, and from (1.1) and 
(1.5) it follows tha? 

('onsecluently 
(1.7) the /<ernel of T i s  the consequence of fhe u - 1 elements 1 TITB11 , f l  # 1; fhtis" 

TV = ((x,,) : (1 TT7p 11 = I 1 /3 # 

Obviously the presentation (1.7) may be obtained from the presentation (1.6) by 
Tietze transformations (I)and (I)-'. 

The system 2 of coset representatives 1 TVp 1 is called a Schreier system if the 
initial segments of any coset representative are also coset representatives. I t  is 
known that a Schreier system always exists. Schreier's proof [30] of this fact is 
quite straightforward and even proves a little more-that there always exists a 
minimal Schreier system, i.e. one for which the length l(1 TtrB1 )  of any coset 
representative I TVB I is not larger than the length ~ ( z L )of any other element u of 
the coset IVB . 
iigenerator x,a of TV* will be called a trivial generator if x;a = I ,  i.e. if 

Thus the occurreilce of a trivial generator x , ~  corresponds to an occurrence of a 
coset representative u of length, say, 1 whose ( I  - l ) s t  initial segment u is also 
a coset representative. (Here u E TtrP if LI = ZLX,, and u E TTTP if 6) = uxyl.) Thus 
there can be a t  most u - 1 trivial generators, and this maximum number ob- 
tains if and only if 2 is a Schreier system. 

The subgroup of IT7*  generated by the trivial generators x , ~  will be denoted by 
T, and the subgroup generated by the non-trivial generators x3a will be denoted 
by S .  Thus Itr* = S * T and T is contained in the kernel of T. 

(1.8) If 2 i s  a Schreier system, fhe elements / Wg l1 all lie in T .  For then, if the 
reduced word representing 	 / Ttrb/ is x:;, the image under TB1 of / 7t7a 1 is 

3kak, for certain indices P1 , . . . , and it is easily verified that u:-1x P k  	 , f l ~  

are, in fact, trivial generators. 
I t  follows from (1.7) that, in this case, the kernel of T is the consequence of 7', 

and thus that T 1 S maps S isomorphically upon TV. Thus 
(1.9) (Nielsen-Schreier) T h e  group TY i s  isomorphic to fhe free group on the non-  

trivial gcnerafors Xja  determined by fhe Schreier system 2. T h u s  
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I t  is easily verified that the rank N of TI' is equal to the first betti number of 
the coset diagram [30].This is equal to n u  - v + 1 if v is finite [30]; if v is infinite, 
*V is known [30] to be infinite whenever W is normal, and may be finite when T i '  
is not normal. 

I t  follows from (1.1), (1.5) and (1.8) that TIr* is freely generated by the trivial 
generators x,p and the images under 7 of the non-trivial generators x , ~. Thus 

(1.10) TV* = W * T .  

2. Subgroups of arbitrary groups. Consider a subgroup F of index v in a group 
G = ((x,): ( r ,  = 1))'. The free group X is mapped by 4 homomorphically upon 
G, and the kernel R of + is the consequence of the set of elenlents (r,). The inverse 
image TV of F is a subgroup of X that contains R, and its index v is the same 
as the index of F in G. The cosets of F are the images Fp = JV,$ of the cosets of 
IY. Since the normal subgroup R is the consequence in X of the elements r ,  , it 
follows that R is the consequence in TIT of the elements 

This proves the lieidemeister-Schreier theorem [26, 30, 31, 411: 
(2.1) THEOREM.If 2 i s  a Schreier system then 

F = ( ( x j a ) : ( r i a= I), (xjp = I 1 x3p E T))" 

= ( (x i@I xjp E S ) : ( P i ,  = l ) y r ,  

where P, ,  i s  obtained from r , ,  by deleting the occurrences of tririal generators. The 
relations r,, = 1 and x,p = I I x,p E T are called in [26] the relations of the first 
and second kind respectively. 

According to (2.1), the kernel of 47 is the consequence 1x1 TV* of (r,,) and 7'. 
Hence the kernel of 4 is the consequence in TV of (r:,). The homomorphism 4 of 
IV upon F and the identity automorphism of T together determine a homomor- 
phism 4* of IV* = TV * T upon F* = F * T, and the kerrlcl of +* is then the 
consequence in TV* of (r:,). But, by (1.4) and (1.5),  

and hence the kernel of 4* is the consequence in TB* of (ri,). Thus 

The presentation (2.2) has the notable feature that it does not depend on the 
choice of a system of coset representatives. In other ~ o r d s ,  without selecting any 
coset representatives a t  all, one can write down a presentation of the free product 
F* of the given subgroup F and a free group T of rank v - 1. The reason for 
doing this is that, for some purposes, knowledge of F * T is just as good as know- 
ledge of F. An application is given in the next section. 
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I t  is well-known [32,  Ch. 111that a subgroup F of G determines a representa- 
tion p = pF of G upon n transitive group of permutations of the symbols 

This representation p, which is said to belong to F, is defined as follows: 

where FB(g)= Fog. The coset Fg consists of those elements g of G for which 
1 (g) = p; in particular g e F if and only if 1 (g) = 1. The correspondence between 
subgroups F of G and transitive representations p of G into the symmetric group 
of permutations of the symbols 1,2,  . . . , u is one to one, provided that the sym- 
bol 1 is the index of the identity coset F in every case. I t  is convenient for some 
purposes to specify the subgroup F only indirectly by means of the representation 
p that belongs to it. 

I t  may be noted that p"s the representation of X that belongs to It7, since 
F8 = IVt, and that P(u) = B(g) if and only if g and ZL' lie in the same coset of F .  

The representation p is useful in ~ r i t i n g  down the presentation (2.2), because 
(1.2) can be written' 

thus making it possible to m i t e  down the u relations T,, = 1 (a= 1, 2 ,  . . . ,u) 
in one operation, as will be illustrated below ( 8 5 ) .  

3. Jacobians of subgroups. Let 

= 0 otherwise, 

for every u e X .  (Note that 6,~(1) is the ordinary Kronecker delta 6 , ~.) For ally 
group r ,  denote by %K!(I') the ring of u X v matrices over the group ring J r .  The 
formulae 

uW= .zLlm / /  for ZL e X,1 1  8a8(z~) 
(3.1) 

(f + gIW= f W+ gw for f ,  g e J X ,  

determine a homomorphism w of J X  into %Yl(TV*); in fact 

The homomorphism r w  of J X  into %R(TV) is the monomial representation 
132, Ch. TT]  of J X  in JITT. 
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The effect of w on a derivative is especially interesting. I,ct 1 1  

so that' d z ~/ a x j  = x:=l 1 .2~(,.) ~ ~ ~ 

= nL,1 x;: , 
~ 6 . Then 

But u,  r::"""'",so that = n:=l 

Thus 

If r ,  is any relator of the presentation ( z : r ) % f  G ,  then 8,b(r) = a , @ ,  and 
(rta)'* = 1, SO that r!'" = 1 '  1 1  = E e %Yl(F*).Thus u 6  = 21 '  implies that 
I L ' * ~  = u ~ ' ~ ,  that a homomorphism w of J G  into %Yl(F*)is defined by the SO 

formula uW6= 2~'*", where (b* denotes the homomorphism of 92(TV*) upon 
%Yl(F*)that is induced by the homomorphism (b* of It'* upon F*. With this nota- 
tion, there follo\vs from (3.2) the following theorem. 

(3.3) Each Jacobian I a r , /dx ,  II%j G i s  mapped by w into a Jacobian 

of F*. From (2.2) it therefore follows that3 
(3.4) 1 dr , /axJ /1'*" i s  equivalent to 1 1  M 0 1 zcl~ere0 denotes the null matrix oj  

lrzv rows and v - 1 columns, and M i s  a Jacobian q f  F.  
This algorithm is especially efficient when applied to the problcm of deter- 

mining the structure of F / [ F ,  F] .  Consider the homomorphism wo = ow of J X  
into m(1).Since ow = @*w = 04,me have, by (3.3), 

(3 .5)  A relation matrix fov F*/[F*, F*] i s  I 'ar , /aa ,  "O. Consequently, i f  G 
i s  finitely generated and u < x , the torsion numbers of F / [ F ,  F ]  are the invariant 
factors qf / / dr,/dxJ / I" ' ,  and the betti number of F / [ F ,  F]  i s  equal to the null i fy  of 

I j ar,/arJ ;l"Vecreased by u - 1. 
If F 2 [G, GI the structure of F / [ F ,  F ]  can be conveniently calculated in terms 

of the Alexander matrix I '  ar , /dxJ 1 '"Here 4 is the abelianizing homomorphism 
that maps G upon H = G / [ G ,  GI. Since TV 2 [X, X] wr have c"O = / 6,b 11  for 
any c e [X, X ]  so that 2 ~ ' ~= V" implies ZL"' and a homomorphism wo of= 1 l W o ,  

J H  into %Yl(l)is therefore defined by the formula ( ~ ' 9 " ~  Thus= uwO.  
(3.6) If F 2 [G, GI the matrix / d r , /ax ,  ," '  that appcnrs i n  fhc statement (3.5) 

i s  equal to ( ' I  dr,/dxJ I " ) " 0 .  

4. Covering spaces. If G is the fundamental group of :I topological space 
Zo , then to each subgroup F of G there belongs an unbranched covering space 

3 This generalization of (3.5) is due to  the late R.  EI. ICyle. Tllc, idea of replacing the 
representation wo by permutation matrices by the more powcl . f~~l"monomial representa-
tion" w is also due to him. 
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X and a base point of X lying over the base point of 2 0  ;conversely, given X 
and p, the subgroup F is uniquely determined. The fundanlental group of X is 
isomorphic to F. Accordingly, the results of $52, 3 may be interpreted as al- 
gorithms for calculating the fundamental group of an unbranched covering 
space and its Jacobians, etc. In particular (3.5) and (3.6) describe the lsthomol-
ogy group of an unbranched covering space. These results will now be extended 
to branched covering spaces. 

Let Z be a barycentrically subdivided, connected, locally finite complex and 
d: a subcomples such that, for each vertex 4 of S, the intersection S(4) of Z - S 
with the open star st 4 of 4 is non-vacuous and connected. Let y be a finitely 
branched covering of Z whose singular set Z, is a subcomplex of C. Let F be the 
subgroup of G = rl(Z - 2) to which the associated unbranched covering of 
Z - 6: belongs. Then [33, $71 r l (y )  w F I N ,  where N is the consequence of those 
elements a of F that are represented in at  least one of the regions S(3). The rela- 
tions a = 1 will be called the branch relations; the determination of r l (y )  is seen 
to rest on calculation of a suitable "defining" set of branch relations. This is 
very simple to do if, for each vertex 4, the elements of G that are represented in 
S(4) are all consequences of one such element. Such a situation arises [33, $61 if 
Z is a connected, barycentrically subdivided, combinatorial q-dimensional mani- 
fold and d: is a combinatorial (q - 2)-dimensional manifold, polyhedrally im- 
bedded in the interior of Z in such a way that the star of each vertex of d: is 
flat i n z .  (For then each S(3) belongs to the homotopy type of the circle.) 

If b is an elenlent of G represented in S(2) such that its consequence includes 
every element represented in SG), then the branch relatioils at 4 are just those 
elements (gbXg-')&I, g e G, X = 1, 2, . . . , that lie in 8'. Let 2~ and z! be elements 
of X such that ZL' = b and v' = g. In order that vdv- '  lie in TV = @-'(F), i t  is 
necessary and sufficient that the permutation (VU~V-')~' leave fixed the symbol 
1, i.e. that the permutation (~')~"eave fixed the symbol @ = l(v9into which 
the symbol 1 is sent by the permutation up" Thus X must be a multiple of the 
length of the cycle of up' that contains P. If up" = . . ((PI P? . . . PA) . . . , where 
pl = /3, say, then2 

021 
X

2'
-1 = = viV1(up,21p2( l ' z ? ~ - ~ ) ~ ~ '  . . . U ~ , ) Z ' - ~ ' ,  

so that the corresponding branch relation is z~plup2 . . . up, = 1. Thus 
(4.1) If Z is a connected, barycentrically subdivided, combinatorial q-dimensional 

manifold and 6: is a combinatorial (q - 2)-dimensional manifold, polyhedral and 
locally $at in the interior of Z, and if 3 is a jnitely branched covering of Z whose 
singular set is a subcomplex of 6: and F is the subgrozcp of G = T ~ ( Z- 2 )  to which 
the associated ~clzbranched covering of Z - 2 belongs, then a presentation of TI(%) is 
obtained from the presentation (2.1) of F by adjwlning the branch relations 

where (pl . . . PA) ranges over the distinct cycles of up$ and the elements u are szscl~ 
that any clemcnt of G that is represented in sonze S(4) is a conseq~lence of some u'. 
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Thus 

where T denotes the homomorphisnz of F into a l (y)induced by  the injection. 
Since the kernel of T ~ T  . . . z ~ p ~ ) ,is the consequence in IV* of T ,  (r,,), and ( Z L ~ ~ U ~ ~  

it follows that the consequence in IV of (rl,) and ( ( z ~ p ~ . u p ?  ~ ~ is the kernel ~. . . p ) ) 

of T+.Denote by T* the honlon~orphisn~ of F * T upon TI(%)* T determined by 
the hon~onlorphisin T of F upon a l ( y )  and the identity auton~orphism of 7'. 
The kernel of T*+* is the consequence in TV* of 

(r:,) = ( 1  IV, l l . ~ , , .  1 IV, 1-l) and ( ( ~ p .~. . ~ ~ p p ~ ~ ) ~ ) 

hence of (r,,) and ti^, . . . tiaA).T ~ U F  

Denoting by zik , k = 1, 2, . . ., the branch relators z?, we have 

i s  a Jacobian of a ( % )  * T ,  and i s  therefore equivalent to 1 N 0 I ' ,  u)hcre 0 denotes 
the null matrix q f  u - 1 columns, and N is a Jacobian of al(y). 

(4.4) A relation matrix for the commutator quotient group of TI(%) * T i s  
w o$ 1 1 1  . 

' d ~ k1 

i G I ,  
Hence, if G i s  finitely generated and u < cc, the torsion nrbrnbers of the l-dimen- 
sional homology group H l ( y )  = a 1 ( Y ) / [ a l ( y ) ,al(Y)]are the invariant factors of 
this matrix, and the betti number of H1(Y) i s  the nullity of this matrix decreased by 
U - 1. 

I t  follows, as a t  the end of the preceding paragraph, that 
(4.5) I f  F 3 [G, GI the matrix 

6. Some simply connected spaces. If, in (4.1), Z is the q-dimensional euclidean 
space (or the q-dimensional sphere) and 2 is a (q - 2)-dimensional manifold, 
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polyhedral and locsally flat i11 Z, then there is a presentatiol~ 

of G that has the follo~ving property: each .c: is represented in some S ( d ) ,  arid 
every element of G that is represented in some S(2) is a transform of an appro- 
priate power of one of the elements rf , . . . , x:. (If q = 3 and 6: is a knot or 
link, such a presentation is, for example, any over presentation [29], a special 
c,ase of which is the well-knoxvri JVirtinger presentation.) 

Suppose that 2;' is the product of c,  distinct cycles 

'l'he (.orresponding branch relations 

allow us to eliminate c,  of the generators 5 , p k  , . . . . Xone of the gerierators so 
eliminated need be trivial generators. For if r,pl , x , ~ ,, . . . , xl;l, were all trivial 
generators then in S we would have / TVp1 12, = 1 IYB, 1 ,  1 T178, I T , = I T I T P s  1 ,  . . . , 

. Xand henre 1 T178, 1.r: = I To,, 1.e. x, = 1, which is impossible, since h > 0. 
Thus, by means of the branch relations and the "triviality" relatioris of the 
second liind we can eliminate el + c2 + . . . + c,, + u - 1 of the generators. 
Ilence 

(5.1) The yank of nl(Y) is uf n ~ o s lnu - xy=lc ,  - u + 1. 
In particular Y is simply connected if c,  = /2u - u + 1.  This occurs 

when the coset diagram is, aside from reentrant edges, a tree. 111 the case of a 
knot d: in 3-space Z, the generators xf , . . . , x: are conjugate in G, so that 
?I = . . .  = c,, , arid thus the condition is satisfied if and only if 

rI7he simplest instance of this is n = 2, v = 3, and c = 2, i.e. 

Such a representation can be found for a large class of knot groups (those for 
which A(-1) = 0 (mod 3) [:31]). The simplest such knot is the overhand knot 
:31 . Its group is 

?'he irregular 3-sheeted covering 3 of this knot is therefore simply connected. 
The same holds for the knots , 74, 7 ;  , etc. Of course these covering spaces are 
probably 3-spheres; in the case of the covering of 3, , I am almost certain that Y 
is a 3-sphere. Assuming that it is, it is interesting to exanline the situation of the 
branch curves in Y, and this affords an illustration of the use of the algorithms 
developed in the preceding sections. 
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Since c = 2 thc knot 31 is covered by a link of multiplicity 2 in the presumed 
h p h e r e  2;the index of branching of these two curves is 1 and 2. According to 
52 the fundamental group of the u~lbranched covering x of z - d: is 

which is the group of the link made up of two circles with linking number 2. 
I t  would therefore appear that the overhand knot is covered by two circles, of 
branching index 1 and 2, respectively, which are doubly linked. (Cf. [35].) In 
the same way it would appear that the knot 61 is covered by a circle (with 
branching index 2) and an overhand knot (with branching index 1) doubly linked. 

6. The cyclic coverings of a knot. Consider now a knot b: in the 3-sphere 
Z, and an over-presentation (xo , . . . , x,,:rl, . . . , r,)%f G. The commutator 
quotient group G/[G, GI is infinite cyclic, and the generators x$ , . . . , xz all 
belong to the coset of [G, GI that generates G/[G, GI. Thus, for each positive 
integer v ,  there is a representation 

of G upon a cyclic group of permutations. The associated covering spaces x and 
y are called the vth cyclic coverings of b: (unbranched and branched respectively). 

To discuss the 1" homology group of x and Y it is most convenient to pass from 
the given over presentation to a presentation 

which is such that the elements a; all belong to the commutator subgroup 
[G, GI. This is easily done by introducing the new generators al , . . . , a,, by the 
formulae a, = writing x for xo and s,(x, al , . . . , a,,) for xL.,xgl, 

and writing again $I for the new canonical homomorphism. The abeliailizing 
homomorphism # maps G upon an infinite group H generated by an element 
which will be denoted by t. Then x*' = t and a:" 1. By the fundamental 
formula [FDC I (2.3)] we have ( t  - l)(ds,/dx)*" 0, hence (ds;/dx)*" 0. 
Hence the Alexander matrix [FDC 11p. 2041 is 
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where 0 de~lotes the null column vector, F(t) = fz ,( t)  Ili,j = 1, . . . , n and 
fd)= ( d ~ ~ / a a , ) + ~ .  

A Schreier system of representatives of the cosets of F = .rrl(x)is 

( 1  TTvb 1 = 2'-', = 1, 2, . . .  , v) .  

The T-images of the corresponding generators of TV* are xi = za-'.z..r-', 
p = 1, . . . , u - 1 ;  2: = :cu-1 . 2 . I - ' ;  a;o = :c"lajz-"-l' , = 1, . . .  , v, hence 
x l ,  " .  , xu_,are the t'rivial generat,ors, Thus, by (2.1), 

The corresponding relation mat'rix is obt'airled from t'he relation matrix for 
F*/[F*,  F*], i.e. t'he matrix A ( T ) , where T denotes the v X v matrix 

1 )1 1 1 ' I  
by deleting the first v - 1 columns. Thus a relation matrix for H 1 ( X )  is the 
nu X (nu + 1)  matrix / /  0 F ( T )  1 1 .  Since the branch relation is xlxs . . . z ,  = 1, 
i.e. xu = 1, the nu X nu matrix F ( T ) is a relation matrix for H 1 ( Y ) .Thus emerges 
the follo\~ring well-known fact: 

(6.1) The group H1(X)  i s  the direct sum of the group H 1 ( Y )  and the infinite cyclic 
group generated by  st"'. 

The invariants of the matrix F ( T )  have been investigated by knot-theoretical 
methods [36, 18, 371. On the other hand the determinant and the nullity of 
F ( T )  can be calculated by elementary algebra [38, 39, 40, 161. To do this the 
integral group ring JH of H is replaced by its group ring CH over the field C 
of complex numbers; although the elementary ideals of a matrix are, generally 
speaking, destroyed by equivalence over C H ,  its determinant and nullity are ob- 
viously preserved. 

I t  is well known that one can find n X ~z matrices P ,  Q over the field R of 
rational numhers, such that P.F( t ) . Q  is a diagonal matrix 

and the product Al(t)  . . . A,,-d+l(t) of the first n - d + 1 diagonal elements is 
the g.c.d. in RH of the elementary ideal @d , d = 1, 2 ,  . . . ,n, i.e. a generator 
of the smallest principal ideal in RH that contains @d . I t  is easy to see that 



where xi>A, (T)  denotes the direct sum of the v X v matrices A, (T) ,  and 
P ( E ) ,  Q ( E )  are the nu X n v  matrices obtained from P and Q by replacing the 
entries p,, and q , ,  by the v X L] matrices p,,E, q,,E. Thus the nullity of  F ( T )  
is the szun of the nullitzes of A , (T ) ,  j = I ,  . . ., n, and the determinant of F ( T )  i s  
the prod~ict of the determinants of A , (T ) ,  j = 1,  . . . , n .  

I,et W o 	= 1 {"' a ~ - 1 , ~ , .. ,where { is a primitive L I root of unity; its inverse ~ ~ 

I a,P=l .', = U B 'Thusis wol = / v l { -"' ..," . Furthermore W ~ ' T W ~  = 


w o 1 .  A , ( T )  . W o  = A,(U) = A,({'). Hence the nullity of A , ( T )  i s  equal 

to the number of distinct vth roots of unity that are roots of the equation A,(t) = 0 ;  

and the determinartt of A , ( T )  i s  equal to ni=lA,({'). From this the following 

conclusions may immediately be drawn (cf. [38, 39, 40, 161): 


(6.2) The 1-dimensional betti number of y i s  equal to z,"=lb, ,where b, denotes 
the number of distinct vth roots of unity that are zeros of the jth elementary dizrisor 
A,(t) of F( t ) .  

(6.3) The order of the 1-dimensional homology group of Y i s  equal to the resultant 
of the polynomial t" - 1 and the Alexander polynomial A( t )  (=  det F( t ) )  of the 
knot C .  

I t  follows from (6.1 and (6.2) or (6.3) that the 1-dimensional betti group B ~ ( x )  
1s infinite cyclic, generated by the coset 2, containing z$", whenever A(t )  = 0 
and tu = 1 have no common roots. .A Jacobian of m ( X )* T is 

where x" = 

I X u  I 

and 

Q'
The hornornorphisin $ o : n l ( ~ )* T +B 1 ( X )* 1 = B 1 ( x )maps z f * ,  . . . , z,-1 and 
a11 a,?; into 1, hence also ze*" into 

1 

and 	 r f * i n t o ~ = ~ ~' .  
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Since kernel $ c kernel $ow, 3 homomorphism u of J H  into M(B1(x)) is defined 
by the fornlula (y')" = yi0", and t" = X, therefore, since X and E commute, the 
matrix A(X) = 1 ' 0 F(X) 1, where 0 denotes the nu X u null matrix, is a 
Jacobian of nl(x) * T a t  $0 . Hence a Jacobian matrix of al(X) a t  $o:nl(X) --t 
B1(X) is 0 F(X) , where 0 denotes here the null column-vector of dimension 
nu. Thus the lstelementary ideal Q1 of the Jacobian of nl(X) a t  $0 is a principal 
ideal whose generator A(?,) = det (F(X)) is an L-polynomial in 5, . This poly- 
nomial, which is determined only up to a factor , will be called tentatively, 
the Alexander polynomial 0.f X oL1eT its betti g~oup.  

As sho~vn above, F(X) is equivalent, over the rationals, to the diagonal matrix 
A,(X), so that A(?") = det A,(X). Let us now adjoin to the ring 

CB1(X) a new indeterminate c whose ut" power is 2, , and define 

where, as before, j- is a primitive uth  root of unity. Then 

and W-'XW = cU, so that w-'A~(x)w = A,(cU). Therefore 

Hence 
(6.4) If no root of A(t) = 0 is a u th  ~oo t  of unity, the *4lexander polynomial 

A(?,) of the uth  cyclic unbranched cozreriny X over its betti group is equal to the re- 
sullant of the polynomials t"- and A(t). 

For example if 6: is the overhand knot z1 we find 

d(2,) = 1 - 2, + 2; if u = &1 (mod 6) 

= 1 + 2, + P: if u = f 2  (mod 6) 

(For u = (mod 6) the betti group is not cyclic.) 
For 6: the figure eight knot 41 we find 

etc. 
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