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FREE DIFFERENTIAL CALCULUS, IV. THE QUOTIENT 
GROUPS OF THE LOWER CENTRAL SERIES 

BY K.  T. CHEN, R .  H. FOX'and R .  C. LYNDON 

(Received September 3, 1957) 

The quotient groups Qn(G)= G,/G,+, of the lower central series 
G=GI3G, 3G, 3...of a finitely generated group G are finitely generated 
abelian groups. Our object is to develop an algorithm for the calcula-
tion of Q, from any given finite presentation of G. As a preliminary 
step, the special case of a free group X is considered. I t  is known [2], 
[7] that, for a free group X of rank q, the group Qn(X)is a free abelian 
group whose rank is the Witt  number +,(q), and a basis for Qn(X)has 
been exhibited by M. Hall [42]. Our approach is somewhat different in 
that  we construct, by means of the free differential calculus, a basis for 
the dual group Q," = Hom [Q,,J]. The corresponding dual basis of Q, is 
not the same as the Hall basis, although i t  bears a superficial resemblance 
to it.  

In the course of this construction we re-prove Witt's result [7] that  the 
elements of X, are just those for which the non-constant terms of the 
Magnus expansion are all of degree a t  least n, in short, that  the lower 
central groups coincide with the " dimension groups " of Magnus [2]. 
Further, we derive a complete set of finite identities for the coefficients 
in the Magnus expansion of an element of X. The algorithm for Q,(G) 
is to be found in the last section. 

The authors wish to thank Julian Brody for his help in simplifying the 
arguments, and for selection of the example in $4. 

1. Standard sequences 

Our considerations are based on a given ordered set. The number q 
of elements in this ordered set may be either finite or infinite, although 
the algorithm in $4 is not necessarily effective unless q is finite. For sim-
plicity we write 1,2, . ., q for the ordered set although in fact  i t  need 
not be well-ordered. The free semigroup generated by the given ordered 
set is ordered lexicographically and denoted by %. Thus each element 
a of 2 is a sequence of finite positive length n(a). The elements of given 
length n constitute a subset of 2 denoted by 2,; the subset %, is identical 
with the originally given ordered set. For future reference we record 
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several of the properties of lexicographic order: 
(Ll)  ab < ac if and only if b < c. 
(L2) If b < a < bc then a = bd where d < c. 
(L3) If a < b but n(a) 2 n(b) then ac < bd. 

A sequence c=c,c,- -c,(,) will be called the result of an infiltration (or 
generalized shufle) of two sequences a = a,a,-. -a,(,) and b = b,b,-. .bn(,) 
if there are %(a)indices a ( l ) ,  a(2), ..., a(n(a)) and n(b) indices P(l), 8(2), 
.., P(n(b)) such that  

( i )  i1s a(1) < 4 2 )  < < a(n(a)) 5 n(c) 
15 P (1)< P(2) < .. < B(n(b)) ln(c) 

( i i)  c,(~)= at ,  i = 1, 2, ..-,n(a) 
cg(,) = bl, j = 1, 2, ., n(b) 

(iii) { each index k = 1, 2, . -,n(c) is either an  a( i )  
for some i or a p(j) for some j or both. 

The infiltration itself consists of the two indexings a and P. We shall 
denote the set  of infiltrations of a and b by the symbol I (a,b). 

We note thot n(c)Sn(a)+n(b) and that  c may be the result of several 
different infiltrations of a and b. For example, the sequence 122343 
results from infiltration of the sequences 123 and 1234 in two ways. In  
counting infiltrations, we count the number of distinct elements of I (a,b); 
that  is, we count the number p(c) of distinct indexings a ,  /?that  yield the 
same c. 

If a(i)  is always distinct from p(j) the infiltration will be called a 
shufle. Thus in a shuffle 

(iiif) {each index Ic=l, 2, . . . , n(c) is either an a( i )  for 
some i or a P(j) for some j but not both. 

If c is a shuffle of a and b then, of course, n(c) = n(a) + n(b). General 
infiltrations will not be used until 53; as there will be no occasion to 
count shuffles, we shall refer to c as itself a shuffle. 

A proper terminal segment of a sequence c will be called an end of c. 
Thus the ends of c,c,. ..c,(,, are the sequences c,c3. .cn(,,, c3.. en(,,, .. , 
cn(c) 

We define subsets a ' ,  a" ,  a"', a""(which will later be shown'to coin-
cide) as follows: 

(a ' )  c e 2' if either c e a,or G = ab where a e a ' ,  b e a' and a < b. 
(a") c e a'' if c is less than each of its ends (i.e., c < e for each 

end e of c). 
(%!I"') c e 2"' if c is less than each of i ts  (non-trivial) cyclic permu-

tations. 
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(a"") c E 21ffffif, to each factorization c = ab, there is a t  least one 
shuffle d of a and b that  is greater than c. 

An element of a" will be called a standard sequence. A sequence 
c = c,c,...c,(,) of length n(c) 2 2 has a t  least one standard end, for ex-
ample c,(,), hence a unique lcngest standard end b and a corresponding 
standard facto.i-ixation c=ab. We denote 3, n 2' by 'U,' etc. 

(1.1) LEMMA. If b E a'' and e is a n  end of ab such that a < e then 
ab < e. 

PROOF. Suppose that  some end e of ab were such that  e 5 ab. Then, 
by (L2), e = ad where d 5 b. Since e = ad is an end of ab, d must be an  
end of b, and therefore b cannot belong to 2I". 

(1.2) LEMMA. If ab is  the standard factu~ixationof a n  element of 
a" then a e a". 

PROOF. We may assume that  %(a)> 1, since a,c a" ,  hence that  a 
has a t  least one end. Consider any end d of a. Since b is the longest 
standard end of ab the end db of ab cannot belong to a". Therefore 
there must be an end e of db such that  db 2 e. By Lemma 1.1d 2 e. 
Since e is also an end of ab and ab E a'' we must have ab < e. Hence 
a < a b < e I d .  

(1.3) LEMMA. If ab is  less than or equal to each of i ts  cyclic permu-
tations then ba is  maximal among the shuffles of a and b. 

PROOF. We proceed by induction on the length n(ab) = n(a) + n(b) of 
ab. The statement is trivially true for n(ab) = 2. Suppose, inductively 
that  n(ab) 2 3. Let a = a, . . -an(, , ,  b = b,...b,(,, and let c =c,..-c,(,) be 
any shuffle of a and b such that  c 2 ba. Then n(c) = %(a)+ n(b) and 
there are indices a ( l ) ,  ..., a(n(a)); iTj(l), ., P(n(b)) satisfying (i), (ii) 
and (iii'). We have to show that  c = ba. I t  is no loss of generality 
to assume that  the symbol 1occurs a t  least once as  a c,. Then, writing 
l2for 11, l3for 111, etc., we have a = 1' a,,,. ..an(,), b = l"b,,,...bn(,), 
c = ItC ~ + ~ - ~ - C ~ ( , ) ,where a,,, > 1,  b,+, > 1, c,,, > 1, and 0 5 r 5 n(a), 
0 5 s 5 n(6), 0 5 t 5 n(c). 

Since ab is less than or equal to each of its cyclic permutations we 
must have a, = 1, hence r 2 1. On the other hand if r = ~z(a),that  is, 
if a = In(") ,the conclusion of the lemma is immediate, so we may assume 
r < n(a). Then 1' a,,,. ..b,(,) = ab 5 ba = 1%-a,(,), and hence s 5 r. 
If s = n(b), i.e., if b =  In(",,we would have lTa,+,..-b,(,) = ab 5 ba= 
lr+n(b)a,,,. -anca) ,which is impossible; hence s < ~z(b). Since 
an(,) = ba 2 c = 1' c,,,. -c,(,), i t  follows that  t 5 s. We have to consider 
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two cases: a(1) = 1or ?(I) = 1. 

CASEI. Suppose a(1) = 1. Then c, = a,. If :?(j)= t f1for some j ,  
hence b, = c,,, > 1, than j would have to be larger than s, so that  t 
would have to be larger than s, because c,. -c, would have to include a,  
as well as b,. -b,. Therefore a(i)  = t + 1for some i ,  hence a,  = c,,,. It 
follows that  i must be larger than r ,  and hence r =( t because c,. -.c, 
must include a,. ..a,. We now have r 5 t =( s 5 r ,  hence r = s = t .  
Since by hypothesis ab 5 a,(,) b,. .-b,(,) a,.-.a,(,) -,and ab 5 bnch)a,.. - an~ 

bl-..bnCb)-,, we must have an(,) > 1 and bn(,, > 1. Since r = s 2 1, we 
have a,  = 1and b, = 1. 

Now we introduce a new semigroup 23, freely generated by the symbols 
2,, 3,, .. , q, for i = 0, 1, ..., r .  A homomorphism p of 23 into '21 is de-
fined by taking p(k,) = Ic and, for i > 0, ~ ( l c , )= 1%. Evidently p maps 
% isomorphically upon the subset of '21 that  consists of those elements 
whose last letter is not 1and which contain no block of the form 1"with 
m > r ;  for such an element e we write 83 for its inverse image ~ - l ( e )in 
23. Moreover the  induced order on 23 is precisely the lexicographical 
order determined by the induced order on its generators. 

Now if any block 1% of a or b does not occur consecutively in c, then 
by moving the i symbols 1 to the right in c until they immediately 
precede the symbol k we obtain a new shuffle c" of a and b such that  
c" 2 c. Successively modifying c in this way a finite number of times, 
we arrive a t  a new shuffle c' 2 c in which each block 1% of a or b occurs 

consecutively. Observe that  a and b, and hence E', are defined; this fol-
lows from the third paragraph of the proof and the assumption that  no 

cyclic permutation of ab is less than ab; moreover E' is a shuffle of ii and 8. 
Since c' 2 c 2 ba, we have E' 26;since ab is not larger than any of 

its cyclic permutations, ab is not larger than any of i ts  cyclic permuta-

tions. Since ab is a shorter word than ab, i t  follows from the inductive 

hypothesis that  E' =ba, hence that  c' =ba. Therefore ba 2 c 5 c' = ba, 
so that  c = ba as required. 

CASE 11. Suppose p(1) = 1, so that  c, = b,. In  this case c = ef where 
b = eb' and f is a shuffle of a and b' whose first symbol is a,. Clearly 
c' = fe is a shuffle of a' = ae and b'. Since ef = c 2 ba = eb'a, we have 
f 2 b'a by (Ll). Hence c' =fe 2 b'ae = b'a' by (L3). Since c' begins with 
the symbol 1we have, by Case I ,  that  fe = c' = b'a' = b'ae, hence f = b'a 
and c = ef = eb'a = ba. This completes the proof. 

(1.4) THEOREM.The subsets a', a", '21"' and a"" of '21 are identical. 
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PROOF.Since %'I -- %"I --%I"= 3;"'= a , ,  we have to prove that  
3,' = 2,'' = a,"' = 3""for n 2 2. 

3 '  c : If c e a,' then c = ah where a e a,', b e Z,' r + s = n, 
a < b. By the induction hypothesis, a e ST",b e 3,". I t  must be shown 
that, given any end e of ab, we have ab < e. By Lemma 1.1 it  is suffi-
cient to show that  a < e. An end e of ab is one of three types, either e 
is an end of b, or e = b, or e = db where d is an  end of a. If e is an  end 
o f b t h e n b < e b e c a u s e b  e a",  h e n c e a < b < e .  I f e = b t h e n a < b = e .  
If e = db then a < d, because a e a", and hence a < d < db = e. 

91," c ?I,': If c e 2," we consider its standard factorization c = ab. 
By definition b e a" ,  and a e 3"by Lemma 1.2. Hence by the induction 
hypothesis a e 3' and b e 3'. Furthermore, a < a b  < b since ab e 2,". 
Thus c e 3,' 

2 "  c 3" :  If c e a," and c' is a cyclic permutation of c then c = ab 
and c' = ba. Since c e 3," we have c < b < ba = c'. 

' c 3 :  If c e 3,"' and b is any end of c, so tha t  c = ab then 
c < ba. Suppose b 5 c .  Since c # b we must have b < c. By L2 we have 
c = bd where d < a. Since c e 3,"'we have c < db, hence d < a < ab < db. 
By L2 again, a = de where e < b. Hence ba = bde = ce = abe, which is 
impossible because ba is necessarily shorter than abe.

ant'' %nut': If c e 3,"' and c = ab, then c = ba. Since ba is a 

, shuffle of a and b i t  follows that  c e 2,"".
%,'I" 3,"': If c e 2,"" and c' is any cyclic permutation of c then 

c = ba and c' = ab. Since c e 3,"", ba cannot be maximal among the 
shuffles of a and b. Hence by Lemma 1.3, c' must be larger than a t  least 
one of its cyclic permutations. Since no proper cyclic permutation c' of 
c can be minimal among all the cyclic permutations of c, i t  follows that  
c itself must be minimal, and hence c e 2,'". 

(1.5) THEOREM[ 7 1. The number of standard sequences of length 
n on q < oo letters i s  

$,(n> = C1 d l n  p(nld)qd
n 

where p denotes the Mobius function. 

PROOF.Let us call an element of 3 acyclic if i t  is not equal to any of 
its cyclic permutations. Writing a2for aa,  a3for aaa, etc., we see that  
each element c of 2, can be written uniquely in the form c = an',, where 
d is a divisor of n and a is an acyclic element of 3,. Thus q" = C,,,B,(d), 
where B,(d) denotes the number of acyclic elements of 2,. 
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Clearly an element of 2,"' is acyclic, and each of its acyclic permuta-
tions must also be acyclic. Under acyclic permutation the acyclic elements 
of adfall into sets of d elements each, and each such set contains exactly 
one element from 2,"'. Hence, if +,(d) is the number of elements in 
a,"', then O,(d) = d.+,(d). 

From the resulting relation 

qn = Ed,md+,(d) 

the required result follows by an application of the Mobius inversion 
formula. 

We conclude this section with a lemma which will be required in 92. 

(1.6) LEMMA. Let  c = ab be a standard factorization and let d be any  
standard sequence such that  d 5 b. T h e n  cd i s  a standard factorixatian. 

PROOF.Let e be any end of cd that  is longer than d .  Either e = fd  
where f is an end of b or e = bd or e = gbd where g is an  end of a .  If 
e = f d  we have b <f,  since b is standard, and hence d 5 b < f < f d  so 
that  e is not standard. Similarly if e = bd we have d 2 b < bd so that  
again e is not standard. In the case e = gbd we may assume tha t  e is 
standard and that  g is the shortest end of a which is such that  gbd is 
standard. Referring to the  first two cases, we see that  d must be the 
longest standard end of gbd. By Lemma 1.2 it follows that  gb must be 
standard. But this contradicts the assumption that  b is the longest 
standard end of ab. Thus we have proved that  d is the longest standard 
end of cd. 

2. Standard commutators 

We consider the free group X generated by symbols x,, ...,x,, and 
the abelian groups Q, = X,/X,+,, n = 1,2, .. The object of this section 
is to show that  Q, is generated by certain " standard commutators "; in 
the next section i t  will be shown that  Q, is a free abelian group and the 
standard commutators constitute a basis of it. 

By a monomial of weight 1 we mean an  element of a,. For n > 1 a 
monomial of weight n is a symbol ( a ,  b )  where a is a monomial of weight 
r and b is a monomial of weight s ,  r + s = n and, in case r = s ,  a f b. 
We denote by YX, the collection of monomials of weight n, and by Y, the 
free group generated by this collection IrJI,. A homomorphism d, of Y,  
into X, is defined inductively by 

Ic" = xI c ,  Ic € m, = a,, 
( a , b ) " =  [a",b"] ,  a c 9 I T , b  c 9ts,r+ s = n .  
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Since [ n , u : ~ ,n j v ; j ]  = ne,,[u,,vj]"llj(mod X,,;), where u Le X,, v ,  e X,, 
r + s = n , E , =  * I , ? , =  ~ l , a n d [ u , u ] = [ u , l ] = [ l , u ] = l ,  
it is easily shown that  Q, is generated by the cosets uX=Xn+,,u e 92,. 

We denote by S ,  the consequence in y, of the following elements: 

(s l )  ( a ,b)(b,a ) ,  a e  !JX,,b e m s , a f  b , r + s = n > = 2 ,  

(S2") ( (a ,(a ,b)),b)((b,(b,a ) ) ,a ) ,  a e 2R,, b e a,,a # b, 
2r + 2s = n 2 4 ,  

(S2)  ( (a ,b), c ) ,a)((c,a ) ,b), a e im,, b e !Dl,, c e ! J X t ,  
c f a ,  b, (a ,b) , (b,a ) ,a f  b, c ,  (b,c) ,  (c ,b), 
b f c, a ,  (c ,a ) ,  (a ,c)  r + s + t = n 2 3, 

(S3) I I j lb j fa(a ,b,)'j, a e 94, bj e !Dl,, r + s = n 2 2 ,  E ,  = rt 1 ,  
whenever n j b ; j  e 5,. 

I t  is easily checked that  5:. c X,,, ; hence that  2,  induces a homo-

morphism % of Yn/Snupon Xn/Xn+,= Q,. 
To each monomial a e !Dl, we associate a sequence 1 a 1 e a, as follows ; 

[ k l  = k for k e sN,= a, 
[(a ,b)l = lallbl for a e !Dl,, b e m,, r + s = n 2 2. 

Conversely to each sequence a e we associate a monomial a x  e m, as  
follows : 

k x  = k for k e = at, 
c X= ( a x ,b x )  for a e a!,b e 'U!, c e ah, r + s = n 2 2 

where ab is the standard factorization of c. I t  should be observed that, 
for any a e ah, 

but that  for a e !Dl,, [ a 1 is not generally defined and when defined is not 
generally the same as a. For example [ ( ( I ,2) ,3)Ix = (123)" = (1 ,  (2 ,3)) .  
Those monomials a e !JX, for which 1 a l x  = a will be called standard 
monomialsz, and the collection of standard monomials of weight n will be 
denoted by mtk. Obviously 2JI; = im,, and !JXl,c !JX, for n = 2, 3,  . - .  If 
a e imi then 1 a1 e ah. The R ,  -image of a standard monomial of weight 
n will be called a standard commutatorbf  weight n. Thus the object of 
this section has been reduced to that  of showing that  Y n / S nis generated 
by the cosets us,, u e iml. 

(2.1) THEOREM.If d e im(m:,and c e iml, u + t =n 2 2 ,  and ( d ,c)  $4 S,, 
-- - -

T h i s  terminology differs from that in [42]. 
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then there exist sequences c, and di such that 

(d, c)=nL,(di ,  ct)" (mod 8,) , 
where(dL,ct )e(m, ,Ei= f 1, I z l a n d ,  foreachi,eitherId,IIc,I>IdlIcl 
or IdiIIc,I = ldllcl and Idt[5 Idl. 

PROOF. Because of (Sl)  we may assume that  I d 1 5 I c 1 .  Since d e Tm; 
and c e Dl;, \d l  = Icl would imply that  d = \ d l x= Iclx = c, whichisim-
possible. Thus we may assume that  Id 1 < 1 cl. We shall prove the 
theorem by triple induction, firstly on n = 2 ,3 ,  ., secondly on I(d, c)l, 
and thirdly on Id\. To start  the induction we note that  the conclusion is 
trivially true for n = 2. To prove the inductive step we assume that  the 

theorem holds for all (a,Z), 2 e Tmi, G e Tmt, E + i = ii, (d,E) 9 S;; when-

ever either E < n, or G = n a n d  I(d,E)l > I(d,c)l, or G = n, I(d, E)l=l(d,c)l 

and 121 < \d l .  

CASEA. If u = 1then Ic 1 is necessarily the longest standard end of 
Id1 lcl. Hence I(d, c)lx = (Id1 Icl)" = (d, c), so that  (d, c) e W,. The 
conclusion holds with I = 1 

CASEB. If u > 1then d = (a, b) where a e Vt:, b e Dl;, r + s + t = 
n 2 3, la1 < Ib 1. We have three subcases. 

SUBCASEBA. If I c 1 5 I b 1 then, since 1 a 1 I b 1 is a standard factoriza-
tion, I c 1 is a standard sequence and I c 1 5 I b I i t  follows by Lemma 1.6 
that  Id 1 I c 1 is a standard factorization, and hence that  (d, c )  z (m',. Again 
the conclusion holds with I = 1. 

SUBCASEBB. If I b 1 < I c 1 and (a, c) = b we write, using (S2"), 
((a,b), c) = ((a, (a, c)), c) - (a, ((a, c), c)) = (a ,(b, c))(mod 8,). 
Since s + t < n it follows from the inductive hypothesis that  

(by c) ~ n j ( b j ,cjF1(mod Ss+c), 
where (b,, c,) e 9lI+,and, for each j ,  either I b, I I c, I > I b I I c 1 or I b, I I c, I = 
Ibl Icl and Ib,l =( Ibl. Consequently, by (S3), 

(a, (b, c)) =n j ( a ,  (bj, cj))*' (mod S,) , 
the product extended over those indices j for which (b,, c,) f a. But 
for each j ,  a e !XI;, (b,, c,) e %!I+,, and either 

or I(a, (bj, c,)>l = lal Ibjl Ic,I > lal Ibl Icl = l((a, b), c)l 
\(a,(b,, c,))l = la1 IbjI IcjI = lal Ibl Icl = l((a, b), c)l 

and I(a,b)l = la1 Ib l  > la1 
Therefore, by the inductive hypothesis, 
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(a, (bj, c,)) = ITt(aJr,el,)" (mod S,) , 
where (a,,, e,,) e YXk and, for each k, either I a,, I I e,, I > 1 a 1 I(b,, c,) 1 or 
l a,, I I e,, I = la l I@,, c,)l and l a,, I 5 l a l . Hence 

(a, (b, c)) 5nj.k(ajrt ej,)*' (mod S,) 

where la,, I Ie,, I 2 [(a, (b, c))l, and la,, I 5 la\ if equality holds. Thus the 
conclusion holds in this subcase. 

SUBCASEBC. If b < c 1 and (a,  c) f b we use (S2) to  write 

((a, b), c) =(a, (b, c))((a, c), b)) (mod Sn) . 
The term (a, (b, c)) is dealt with as in the preceding subcase. 

For the term ((a, c), b) we have a similar argument. Since r + t < n 
i t  follows from the inductive 'hypothesis that  

(a, c) =n , ( a , ,  c,)" (mod ST+,) , 
where (a,, c,) e TX;,, and, for each i, either I a ,  I I c, I > 1 a 1 I c 1 or I a, I I c, I = 

lal lcl  and la,\5 la\. Consequently, by (S3), 

((a, c), b) = n , ( (a , ,  el), b)" (mod 8,) , 
the product extended over those indices i for which (a,, c,) f b. But, 
for each i, (a,, c,) e 9t;+,, b e at;,and 

(b, ( a ~ ,  ci))I = 1 b la, I c, 2 1 b 1 a 1 c > a b c = ((a, b), c)i , 
because a b E V1::'. Therefore, by the inductive hypothesis, 

(b, G,))=nh(bih,fib)" 8,) 1 

where (bib, fLIL)E TX6 and, for each h, 

fihl blhi i 2 b l l(aL, cZ)1 > ((a, b), c)) . 
Thus 

((at c), b)) =n t , ~ L ( b ~ ~ t ,(mod S,) Ah)" 

and the conclusion is seen to hold in this case also. This completes the 
proof. 

(2.2) COROLLARY. For  each n 2 1,the group Y,/S, i s  generated by 
the cosets US,, u e '3J1;. 

(2.3) COROLLARY.For each n > 1,the group Q, is  generated by the 
cosets that contain the standard commutators of weight n. 

3. Bases for Q, and Qz 

For any element w of X and any element a = a,a,. ..a, of 'U we denote 
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(anwjaxalaxa2.-axan)Oby Diw, or, more simply, by w:. Since [FDC I ,  (3.2)] 

(~8):= uiI...an+ ~~,. . .a,-~v{+ ... + u:~v~2 . . .  a,, + ~:~.. .a, ,, 

we conclude easily, by induction on n = n(a), that  

(3.2) (uv): = u: + vi if u,  v E X, ; and hence that  
-(3.3) [u, vl8 = ~i~ . . . a ,v~~+~. . . a ,v : ~ . . . ~ ~ u ~ ~ + ~ . . . ~ ,if u E X,, v E Xs and 

r + s = n .  
(To prove (3.3), write w = [u, v] and apply (3.1) and (3.2)to the identity 
(wvu)i = (uv)~.)  

The operators D: : J X  -+J are added and multiplied according to the 
following definitions : 

For each pair of sequences, a ,  b E a ,  we define the operator 

E a , ,  = Di 0: - CIca,,)D:= Di .0: - xCp(c)D:, 
where p(c) is the number defined in $1,the summations extended over 
the infiltrations of a and b and over the result c of infiltrating a and b. 

(3.3) LEMMA. For every w E X and every a ,  b e a ,  we have 

EXAMPLES. 

(w?)" 2wP, + w? [FDC I (3.9), n = 21 
wo 0 -

1W2 - w;z + w:1 [FDC I (3.10)] 

wYw7, = 3wYl1+ 2w:, cf. [FDC I (3.9), n = 31 . 
PROOF. We proceed, by induction on the length of the word w, to 

prove that wiw: = x,,,,,w:. 
Consider first the case w = x,. The left-hand side is equal to zero 

unless a = j and b = j ,  and the same is true of the right-hand side. If 
a = j and b = j we have (x,):(x,)g = 2(x,)gj + (2,); or 1 1= 2 .0 + 1. 

Next we consider the case w = a;'. Both sides are equal to zero 
unless a = j', b = j". The left hand side is then equal to (~;')~,(x; ')~~= 

(-1)": Denote by ( r ,  s), = (s, r) ,  the number of infiltrations of j' and 
j" that  yield j'. We have to prove that  
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we prove this by induction on s. We have ( r , I ) ,  = r and ( r ,I),,, = 

r + 1, hence (- 1)'r + (- l)"'(r + 1) = (- I)"', so that  (*,,) is true. 
For the inductive step we assume s > 1 and the t ru th  of (*,,) for any r .  
Since I(Y, I( j , js) )  = I(I(Y,j), js),  we have 

= CiI:( - l)?+"r,l)?by inductive hypothesis 

- (- 1)""" by inductive hypothesis 

Hence 

completing the induction. This completes the proof for words of length 1. 
If w is of length greater than 1 then w = uv. Suppose, inductively 

that  uiuf = C u :  and viv; = C v ; .  Then 
n ( a )  n ( b )  o 

W:W; = (Cr=o U: l...a,v8,+r...a,(a))(C,=o ubl...b,vt,+l...'n (b1  ) 

-
-Cr,,Eu:(al...a,,bl...b,)vXa,+,...a,(,)t b,+; ...b n ( b )) 

where C ranges over the infiltrations of a:. - a, and b, .b,, and over 
the infiltrations of a,+,. - .an(,) and b,+, .bn(,,, 

where c = c,- .cn(,) ranges over the result of the infiltrations of a and b. 
Note that  a t  the extremes r = 0, r = %(a),s = 0,  s = n(b),t = 0, 
t = n(c)we have derivatives of zero order uo,vo,uO,vO,uO,vO;we use the  
natural convention that  the only infiltration of a sequence a with an 
empty sequence is the sequence a itself ; 

= CoP ( ~ ) w :. 
This completes the induction. 
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(3.4) LEMMA. I f  c e 'LIL and w denotes the standard commutator 
(ex)" then ( i ) w: = 0 for every e E ?I, sz~chthat e < c, and (ii) w: = 1. 

PROOF. We proceed by induction on n = n(c), the case n = 1 being 
trivial. If n > 1, then w = [ u ,v]  where u = (ax)" and v = (bx)", a e a;, 
b E Z;, r + s = n ,  and c = ab is the standard factorization. By (3.3) 

where e = fg = f 'g ' ,  n ( f )  = n(g') = n(a) ,  n(g) = n(f ') = n(b). If we 
assume that  e 5 c, i t  follows that  f '  < f'g' = e 5 c = ab < b. By the 
inductive hypothesis i t  follows that  v;, = 0, hence w9 = u.:vj. 

If e < c either f < a or f = a and g < b. In the first case uy = 0 by 
the inductive hypothesis, and in the second vi = 0. 

If e = c then f = a and g = b, whence, by the inductive hypothesis 
u; = 1, v; = 1. 

(3.5) THEOREM.The cosets wX,+, determined by the standard com-
mutators w form a basis for the free abelian group Q,. I f  g i s  finite, the 
operators De, c e Zk, form a basis for Q,*, the additive group of homo-
morphisms of the multiplicative group &, into the additive group J of the 
integers. 

PROOF. That the cosets zoX,+, generate Q, was proved in Corollary 
(2.3). By Lemma (3.4), we can construct linear combinations of the 
operators D:, c e 21;, assuming arbitrarily prescribed integer values on 
the standard commutators of weight n. Hence the D:,c e !Ilk, generate 
Q,". 

Now suppose that  nwk(")e X,+,, where k(w)  e J and the product is 
extended over the standard commutators w of weight n. Among those 
w for which k(w)  f 0 let w+ be the one for which c = I R;'(w)l is the 
smallest ; let e+= I R;'(w+)l. Then, by Lemma (3.4), 0 f k(w+)= 
C k(w)w:+=(n~~('~')):+= 0. Hence there can be no w for which k ( w )f 0, 
that  is, nwk(" )= 1. 

If C k(c)D:= 0, where k(c)e J and the summation is extended over 
the standard sequences of length n, we can show in an entirely analogous 
way that  all the coefficients k(c) are equal to 0. 

(3.6) COROLLARY(Witt [7]). A n  element w of X lies i n  X, i f  and 
only i f  Dt(w) = 0 for all c of length less than n. 

(3.7) LEMMA. If q is finite, and for each sequence e e ?I; U . . IJ21;. 
there is selected an integer a,then there can be found an element w of X 
such that w: = a,for every e e 3;U .. U 2G. 
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PROOF. For n = 1this is trivial ; assume inductively that  n > 1. By 
the induction hypothesis there is an element u of X such that  u: =a, for 
every e e 3;u - .U By Theorem 3.5, there is an element v of X, 
such that  v: = a, - u: for every e e 2;. Let w = uv. Then, by (3.1), 
w: = a, for every e e 3;U U 5%;. 

(3.8) LEMMA. Every operator D:, c e U . I.,%, can be expressed 
as a rational polynomial in  the operators E,,,, a e a, ,  b e %,, r + s 5 n, 
and the operators D:, e e 811 U .U 5%;. 

PROOF. The lemma is trivial for n = 1, because a,= %I, and, of 
course, for c e 3'u - .ua:,. We proceed by double induction on the 
length n of c and on the size of c in the ordered set 3,. Suppose n > 1 
and c 9 2'. Since c 9 'Uf = %"", there must be a factorization c = ab 
such that c is not smaller than any shuffle of a and b. Then, for some 
positive integer k, 

c' ranging over certain sequences e 2,u . .u a, for which c' < c. By 
the inductive hypothesis i t  follows that D: can be expressed as a polyno-
mial of the required type. 

In order to discuss the converse of Lemma (3.3), we consider the ring 
V of formal integral power series in the non-commuting variables x,-1, 
.-.,x, - 1. Define the norm of a non-trivial power series to be l l n  
where n is the smallest integer for which there is a term of degree n 
with non-vanishing coefficient, (and the norm of the trivial power series 
is defined to be 0). Then, defining the distance between two power series 
to be the norm of their difference, Yt is a metric, and hence a topological, 
ring. Let us denote by p the Magnus homomorphism 

of the group ring JX  into the ring Yt. Lemma (3.3) states that  a 
power series can belong to p(X)only if the coefficients satisfy certain 
identities indicated there. But, it  is easy to see that these identities are 
in fact satisfied by any power series that belongs to the closure of p(X) 
in the topology. Now we shall show that the converse holds. 

(3.9) THEOREM.An integral power series 

P(X>= 1+ xccc (x,, - 1)-..(x,, - 1)e il( 

belongs to the closure of u(X) if and only if, for every pair of sequences 
a,  b e 8 ,  
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= C c / * ( ~ ) ~ c1 

c ranging over the results of infiltrating a and b. 

PROOF.Given integers a, satisfying these identities, we can, by 
Lemma (3.7) find for each n an element w = wen) of X such that  w: = a, 

for every e c 21 u .u 2:. We have to show that  w: = a, for every 
c c 2 1 U . . . U ~ , .  

This last statement is trivial for n = 1, because 2, = a;, and of 
course, for c c 2l; u . u 3;.We proceed by double induction as in the 
proof of Lemma (3.8). If n > 1and c $3'there is a factorization c = ab 
such that c is not smaller than any shuffle of a and b. Since kw: + ..= 
wiwi = aaa,= ko, + . .., where k 2 1, it follows from the inductive 
hypothesis that  w: = a,. 

4. The ~ lgor i thm 

Let G = {x,, . .,x, : r,, r,, .- )  be a finitely generated group and let 
4 denote the canonical homomorphism of X, = X upon G, = G ; its 
kernel is the consequence R, = R of the elements 9-,, r,, ... in X. Since 

&X,) = G,, n = 1, 2, ..., there is induced a homomorphism, of Q, = 
Xn/Xn+,upon G,/G,+,. The kernel of $, = / X, is R, = R n X, and the 

kernel of F, is R, = R,X,+,/X,+,. 
Let r,,, r,,, . be any set of elements of X such that  the consequence 

in X of r,,, r,,, .and X,,, is R,. Then R, is the consequence in X, of the 

elements wr,,w-', w e X. But wr,,w-I =r,, (mod X,,,). Hence is the 
consequence in Q, of the cosets F, ,  = r,,X,+,. If El, E,, . . is a basis for 
Q, then 

Hence if E,V,E?, . is a dual basis for Q,V, i.e. EZE, = djk ,  then a simple 
calculation shows that  ?,, = i,t:'n%,so that  1 1  E:F,, 1 1  is a relation 
matrix for G,/G,+,. 

By Theorem (3.5), the operators D:, c c form a basis for Qf. Let 
El, E,, ... be a dual basis for Q,. (Such a dual basis can be computed by 
means of Lemma (3.4), but does not seem to have any simple direct des-
cription.) Thus I I D9 r,, / I  is a relation matrix for G,/G,+,. 

I t  remains to determine, for each n,  a set  of elements r,, whose con-
sequence in X is R,. For n = 1, such a set is obviously r,, r,, - - .. 
Assume inductively that  such a set has been determined for n 2 1. The 
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row space of the matrix / / DO,rni/ / is generated by some linearly independ-
ent set of vectors {D:s,) k = 1, 2, . , I,. Hence every r,, is congruent 
modulo X,,, to n,s,Rir, B,, E J. Thus the  elements s,, mi (n,s$k)-l have 
the same consequence R, as  the r, . Therefore [19, Lemma A51 R,,, is 
the consequence in X of the elements [s,, x,], k = 1,  .., I,, j = 1, . ., q 
an  the elements mi . ( n , s f ~ ~ ) - '  

We illustrate the algorithm with an  example. 

EXAMPLE^. G = {x,y : r, = [[x,Y],Y],r2= [x, [x, [x, ~111"). We have 
r, E X,, r, E X,. G,/G, 3 XX,/X,is free abelian of rank 2, G,/G, 3Xa/X3 
is free cyclic. For G,/G, we have the relation matric 

Hence G,/G, is free cyclic. For G,/G6we have the relation matrix 

Thus G,/G, is cyclic of order n. Similarly, Gj/G, and G,/G, are also cyclic 
of order n. 
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