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THE familiar concept of unbranched covering (Unverzweigte Ueber-

lagerung) is a topological concept (cf. [14, 23]) abstracted from the

analytical concept Riemann surface, or rather that part ofthe Riemann
surface remaining after the branch points have been deleted. Hitherto

the concept of branched covering (Verzweigte Ueberlagerung) has

apparently been formulated only in combinatorial terms. For ex-

ample, Heegard[12], Tietze[21], Alexander [1, 2, 3] and Reide-

meister[16] considered combinatorially defined branched coverings
of spherical n-dimensional space. In fact, Tietze conjectured and
Alexander [1] proved that every orientable n-dimensional manifold

can be represented by such a covering. Later Tucker [22] gave a

combinatorial definition of a more general type of covering in which

there is allowed not only
'

branching
'

but
'

folding
'

as well. Seifert [17]

gave a combinatorial definition of a covering of a 3-dimensional

manifold branched over a (single or multiple) knot, and [18, 19,20]
derived important knot-invariants therefrom.

The principal object of this note is to formulate as a topological

concept the idea of a, branched covering space. This topological concept

encompasses the above-mentioned combinatorial concept used by

Heegard, Tietze, Alexander, Reidemeister and Seifert. This has as a

consequence that the knot-invariants defined by Seifert (the linking

invariants of the cyclic coverings) are invariants of the topological

type of the knot (i.e. are unaltered by an orientation-preserving auto-

homeomorphism of 3-space). Without the developments of this note

I am unable to see any simple proof that these invariants are in-

variants of anything more than the combinatorial type of the knot.

It appears that the best way to look at branched covering is as a
*

completion
'

ofunbranched covering. This completion process appears

f This paper is based mainly on a course of lectures that I gave at the Institute de

Matematicas de la Universidad Nacional Aut6noma de Mexico in the summer of 1951.

I also had the opportunity of developing my ideas by lecturing on this topic to the

American Mathematical Soceity (1949), to the Summer Seminar of the Canadian

Mathematical Society (1953), and at the Universities of Delft and Stockholm, while

on a Fulbright grant (1952).
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in its simplest form if it is applied to a somewhat wider class of objects.
It is for this reason that I introduce the concept of & spread (a concept
that encompasses, in particular, the 'branched and folded coverings'
of Tucker). The basic theory of spreads is developed in 1-3 for

locally connected I^-spaces. In 4 it is shown how Freudenthal's

compactification process [8] can be evolved out of the new process.
In 5 the branched covering concept is given a precise meaning.
Conditions are found in 6 ensuring that a branched covering of a

complex (or manifold) be a complex (or manifold). The fundamental

group ofa branched covering is calculated in 7, and a possible further

line of development is indicated in 8.

1 . Spreads and their completions

A mapping g of a locally connected 7\-space Y into a locally con-

nected 7\-space Z will be called a spread if the components of the

inverse images of the open sets of Z form a basis of Y . The antecedent

is Y and the space over which the antecedent is spread is the subset

g( Y) of Z. A point z of Z will be called an ordinary point if it has a

neighborhood W in Z that is evenly covered [4] by g, i.e. if g~
l
(W)

is non-vacuous and each component ofg~
l
( W) is mapped topologically

upon W by g. The points of Z that are not ordinary will be called

singular points. In order that a map g: Y ->Z be a spread it is necessary
that g~

1
(z) be 0-dimensional for each point z of g(Y). This may be

expressed by saying that the antecedent of a spread must lie over the

image space in thin sheets.

If g: Y->Z is a spread and Z is regular, then Y must also be regular.

Let y be a point of Y and V a basic open set containing y. There is an

open set W of Z containing z = g(y) such that V is a component of

g~
l
(W). Since Z is regular, there is an open neighborhood W of z such

that Wl
^ W. Let Vl be the component of g~

1(Wl )
that contains y.

Then V1 c V fl flrWi), and hence Vl
c V fl g~

l
( Wj^Vft g~

l
( W) = V.

A spread g: Y-+Z will be said to be complete if for every point z

ofZ the following condition is satisfied: If to every open neighborhood
W of z there is selected a component V of g~

l
( W) in such a way that

^i
CI

^2 whenever Wl
cW2 ,

then f\w V is non-vacuous (and is therefore

a point).

Any locally connected subset X of the antecedent Y of a spread g

is itself the antecedent of a spread; the spread with which it is asso-

ciated is/= g |
X, and the space over which it is spread isf(X). In this

circumstance the spread g is an extension off. A more precise definition

would be the following: an extension of a spread/: X-+Z is a spread
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g: Y-+Z together with a homeomorphism i of X into Y that satisfies

gi =/. However, I shall use the more informal definition, as this is

unlikely to cause any real confusion. Two extensions g. Y^Z and

g2 : Y2-*Z are equivalent if there is a homeomorphism (f>
of Y^ upon Y2

satisfying <72
=

0i and ^2! X = 1- An extension g: 7->Z of a spread

f\X-+Z will be called a completion off if
gr is complete and X is dense

and locally connectedf in Y.

2. The existence theorem

EXISTENCE THEOREM. Every spread has a compktion.
Given a spread/: X-+Z, we are going to construct a space Y in

which X is contained and a mapping g of Y into Z in such a way that

g is a completion of/.

(a) The points of Y and the function g. Let z be any point of Z.

A point y of the subset g~
l
(z) of Y is a function that associates to

each open neighborhood W of z a component yW of/
-1

( FT) in such a

way that yWl
is contained in yW2 whenever Wl is contained in W2 . This

defines simultaneously the set Y and the function g. (Of course there

may be points z for which g~
1
(z) is vacuous.)

(b) The topology of Y. Given any open set WofZ and any component
U off~

l
(W) define t// JF to be the set of those points of Y for which

yW=U. For any union Ua C/a of components Ua of f~
l
(W) define

(Ua t/a)/W
r=Ua (C/a/W

r

). Consider components ^ and *72 of /"TO
&ndf~

l(W2 ) respectively. It is obvious that

*Wl n ^2/^2 C Ul
^ *Wl n Hi-

If conversely, y e^ n UJW^ n 1F2 then y(W1 n JT2 )
c [7

;
.

(j = 1
, 2). But

yWj
is the component off'

l
(WJ) that contains the component y(W^ n W2)

of /^(J^nWi). Since
f/^

is a component of /^(WJ) that contains

y(Wl n Wi), it foUows that V
j
=

i/W^,
i.e. that y t/,/WJ.

Thus it has been

shown that jy f|r n^^ = ^ n jy^r n pf2 .

This formula justifies the use of the collection of sets UjW 9 W ranging

over the open sets of Z and U over the components of f~
l
(W), as a

basis of Y\ a topology is thereby defined in F. It is easily verified

that Y is a ?\-space.

t A space X is locally connected in a space Y if there is a basis of Y such that

Vr\X is connected for every basic open set V. An example of a space X not locally

connected in a space Y is the following : Y is the Cartesian plane, Y X is the origin

and the positive half of the real axis. Here X fails to be locally connected at any of

the points of 7-X except the origin. If Z= Y the identity map of Y into Z is not

the completion of the identity map of X into Z; in the completion of t: X-+Z each

point of Y -X other than the origin gets covered by two points corresponding to the

two sides of the real axis.
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(c) The imbedding of X in Y. For any point x of X and open

neighborhood W off(x) define xW to be that component of f~
l(W )

in which x is contained. It is clear that xW^xW^ whenever W^W2 ,

so that x determines a point of Y . SinceX andZ are ^-spaces, distinct

points of X determine distinct points of Y. We shall identify each

point ofX with the point of Y that it determines; X is then a subset

of Y. It is obvious that, for any basic open set U ofX
,

so that the topology ofX is identical with the relativization topology
induced in X by Y. Since the intersection of X with any basic open
set of Y is non-vacuous and connected it follows that X is dense and

locally connected in Y. Furthermore/= g
\

X (and hence

(d) The continuity of g. This is an immediate consequence of the

fact that, for any open set W of Z,

(e) The spread property of g. For any open set W of Z and com-

ponent U off~
l
(W), we have

so that each UjW is seen to be connected. (This shows that Y is locally

connected.) On the other hand,

U ranging over the components off~
1
(W) 9

and

= if

so that each U/W is clopen (closed and open) in g~
l
(W). Thus the

components of g~
l
(W) are the sets U/W, U ranging over the com-

ponents off~
l
(W).

(f) The completeness of g. It was shown in (e) that a component V
of g~

l
(W) is of the form UjW, where U is a component of f~

l
(W).

The condition 'UJW^U^W^ whenever W^W^ is equivalent to the

condition
'

Di c: ?7a whenever W <= W2 '. Thus C\w V = C\w U\W contains

the point y, where yW=U.
LEMMA. //X and Z are separable then Y is also separable.

IfX is separable the components U off~
1
(W) are enumerable, and

if Z is also separable a countable basis of Y is made up of the sets

UjW, W ranging over a countable basis of Z, and U ranging over the

components off~
l
(W).
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3. The uniqueness theorem and the extension theorem

LEMMA. IfX is dense and locally connected in Y then the intersection

ofX with any connected open set of Y is connected.

Let V be a connected open subset of Y and suppose that the set

U= Fn X (which is not vacuous, because X is dense in Y) is not

connected. Then C7 = ^4 1
U^4 2 , where A

l
and A 2 are disjoint non-

vacuous open subsets ofX . SinceX is locally connected in Y, any point

y of V has an open neighborhood N(y) contained in F whose inter-

section M(y) with X is connected. Clearly either M(y)<^A l or

M(y)c:A 2 . Let B
J
= {y\M(y)^A j} (j=l,2). Then V =Bl uB2 and

jB1 O.B2
= 0; BJ is open because Bj=\JyeB N(y)\ Bj is non-vacuous

because B^Aj. Hence V cannot be connected. This contradiction

shows that U must be connected.

Let/jt X l ->Z1 and/2 : X2 ->Z2 be spreads. A mapping a ofXl into

X2 covers a mapping c of Zl into Z2 if /2a = cfv Let g^. Yl
-^Z1 and

<72 : y2 ->Z2 be completions of/x and/2 respectively.

EXTENSION THEOREM. TAe mapping a: X1
->X2 can be extended to

a mapping b:Yl -^Y2 that also covers the mapping c: Zl
-^Z2 .

Let yl be any point of Y and consider any open neighborhood W2

of z2
= c(gl(y1 )).

Then W = c~1(W2 )
is an open neighborhood ofzl = gi(y^.

Let ^ be the component of gi
1(W1 )

that contains yv By the lemma,

Z/js^nJfj is a component of/f 1^). Since a(UJ is a connected

subset of/2~
1
(W2 ), it is contained in a component ^ of (/^(Wsj)- Clearly

V2 <^V2 whenever W^ c Tf2
. Since gr2 is complete, n V2 is a point y2 .

Define b(y^)
= y2 . It is obvious that b

\

Xl
a and that g2 b = cgv

To prove that 6 is continuous, consider a basic open set of Y2 ,
i.e.

a component V2 of g2
1
(
W2 )

for some open set W2 of Z2 . Let [72
= ^ n X2

and Wi = c"1
(WJ). It is easily seen that &~1

(^) is the union of those

components of 0fH^i) that intersect a~l
(U9 ). Hence b~l

(V2 )
is an

open set.
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UNIQUENESS THEOREM. Any two completions of a spread are

equivalent.

Let
<7j: Yl -^Z and g%:Y2-+Z be completions of a spread/: X->Z.

By the extension theorem, there exist mappings <f>:
Yl -^Y2 and

^: YZ-+Y! such that
<f>\
X = ^| X = 1, g2^-9v an(* 9ift-92- The map

\lf(f>:
Y1->Yl is an extension of the identity map 1: X-* X] since X is

dense inYv i/r<f>=l. Similarly <f>i/r
= 1

;
therefore

<j>
is a homeomorphism

of Pi upon Y2 and ^= 0-
1

.

By virtue ofthe uniqueness theorem we may speak of the completion
of a spread.

COROLLARY OF THE EXTENSION THEOREM. Let f: X-+Z be a

spread and g: Y->Z its completion. Let Q be any locally connected

T^space, let c: Q x [0, 1] ->Z be a homotopy of Q in Z and let the 'open
9

homotopy c
\
Q x [0, 1) be covered by an 'open' homotopy

a: Qx[0, 1)->X.

Then a can be extended to a homotopy b: Q x [0, 1] -> Y that covers c.

The identity mapping of Q x [0, 1) into Q x [0, 1] is clearly a spread,

and its completion is the identity mapping of Q x [0, 1] upon itself.

The corollary follows immediately. Of particular interest is the special

case where Q is a point. The corollary then says that an open path a

in X that covers the interior of a path c in Z can be extended to a path
b in Y that covers the path c.

4. The ideal compactification

LEMMA. Let f: X->Z be a spread and g: Y-+Z its completion.

Suppose that X and Z are separable, thatf(X) is compact, and that Z has

a basis such that, for each basic open set W, the number of components

ff~
l
(W) is finite. Then Y is compact.

Since Y is separable and X is dense in 7, it suffices to show that

any sequence of points xv x2 , ... of X has a subsequence converging

in y. Let Zj=/(a^); since f(X) is compact it is no loss of generality to

assume that the sequence zv z2 , ... converges to a point z . Let

Wl
"=>W2

^ . . . be a local basis of Z at 2 such that the number of com-

ponents of each set/~
1
(WJl )

is finite. Let U^ be a component off~
1(Wl )

that contains an infinite subsequence of
{x^}. Select, inductively, for

each n> 1, a component Un off~
l(Wn )

in such a way that Un <^ Un^
and Un contains an infinite subsequence of {x^}.

This can be done

because f~
l(Wn )

n Un^ contains an infinite subsequence of {x^} and

has only a finite number of components. Define yWn = Un . Any neigh-
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borhood W of z contains Wn for some index n\ define yW to be that

component of/~
1
( W) that contains Un . Thus a point y of Y is defined.

It is obvious from the construction that some subsequence of {Xj}

converges to y.

It is well known that any locally compact Hausdorff space X that

is not already compact can be compactified by the adjunction of one

point, i.e. there is a compact Hausdorff space Z containingX such that

Z X is a point. Furthermore, if X is connected, locally connected,

separable, and regular, then so is Z. On the other hand Freudenthal [8]

has shown that any connected, locally connected, locally compact,

separable, regular space X has an ideal compactification, i.e. X is

contained in a connected, locally connected, compact, separable,

regular space Y in such a way that X is dense, open and locally con-

nected in 7, and the set Y-X is 0-dimensional, hence discrete. The

concept of completion of a spread allows us to establish a relation

between these two kinds of compactification.

COMPACTIFICATION THEOREM. Let X be connected, locally connected,

locally compact, separable, regular, and not already compact, and let

Z =XuzQ be its one-point compactification. The identity mapping
1 : X -> Z is a spread ;letg: Y -> Z be its completion. Then Y is the ideal

compactification of X.

Since the ideal compactification is determined by the properties

listed above, it suffices to check that Y has them. Compactness of Y
is the only one of these properties that is not clear from the preceding

sections. According to the lemma it suffices to show that Z has a local

basis at z such that, for each open set W of this local basis, the

number of components of/
-1

(W )
is finite.

Consider any neighborhood Wl
of z . There is an open neighborhood

W
2 of z such that W2

c Wv Since the boundary B of W2 is a compact
subset of the locally connected space X, it can meet only a finite

number of the components of Wl
- z

, say Ul9
. . .

,
Un . Define

Since X is connected, no component of W - z lies within W%. Hence

W is an open neighborhood of z . Obviously W cWv and

has only a finite number of components.
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5. Covering spaces

A spread /: X -> Z over a connectedf set Z is an unbranched (or

non-singular) covering if the antecedent space X is connected and

there are no singular points; the antecedent X is an unbranched (or

non-singular) covering space, the map /is onto, and the spacef(X) Z
over which the antecedent is spread is the base space. If z and z' are

any two points of Z, the number of points mf"l
(z) and/"

1
^') is the

same (the set of points z' for which the number of points \nf~
l
(z') is the

same as the number of points in f~
l
(z) for some fixed z is easily seen

to be non-vacuous and clopen in Z) ;
it is the index jf (Blaetterzahl) of/.

If g: Y-^Z is any spread, the set Z of ordinary points is obviously
an open subset of Z. Hence X =

g-~
l
(Z )

is an open subset of 7, and

therefore locally connected. Thus fg \

X is a spread. If Z is non-

vacuous and connected and its inverse image X is connected, the

spread/: X->Z is an unbranched covering; I shall call it the un-

branched covering associated with g.

I shall call a spread g: Y-+Z a branched covering, or simply a

covering^ if (1) Z is connected, dense and locally connected in Z,

(2) g~
l
(Z )

is connected (so that g has an associated unbranched

covering), and (3) g is the completion of its associated unbranched

covering. The space Y is a covering space (or a branched covering space) ;

Z is the base space of g. The set Z8
= Z Z is the singular set. An

unbranched covering is a covering whose singular set is vacuous.

Riemann surfaces [23] and Riemann spreads [1,2] are covering

spaces.

If y is any point of the covering space F, W any connected open

neighborhood of z = g(y) such that W Wr\Z is also connected,

f Here I have adopted the customary requirement that an unbranched covering

space is connected. Although this is convenient, it is not really essential. It could be

weakened to the requirement that the inverse image of each component of Z be

connected, without causing any other than verbal difficulties. Of course this last

condition is absolutely indispensable if one has any hopes of denning a universal

covering space.

J Condition (3) excludes 'adhesions' of all sorts, in particular the 'folded coverings'
of [22] are excluded. (An example of a spread with an 'adhesion' is the projection
onto the plane 2= of the double cone x2

-f 2/
2 = z2 .) Condition (1) excludes 'slits'

(exemplified in footnote, p. 245) and certain undesirable pathological singularities

(such as isolated points).
A puzzling kind of spread is given by Fox and Kershner[7]. Here an open 2-dimen-

sional manifold (of infinite genus) is mapped onto the plane. The branch points lie

over a dense subset of the plane, so that every point is singular. Nevertheless, the

branch points are isolated and the projection is a local homeomorphism at all other

points. According to the present definition this is not a covering space, although its

exclusion might be debatable.



COVERING SPACES WITH SINGULARITIES 251

V the component of g~
l
( W) that contains y, E7= F n X, q = g\ V and

p = q\ U, then q: V->W is a covering with p: U-*W =Wr\Z its

associated unbranched covering. Denote by j(y, W) the index of p
(over W ). Obviously j(y, W) ^j(y, W) whenever TFcW . Denote by
j(y) the minimum of the numbers j(y, W)\ this is the index of branching
of the point y. The number /i(y) =j(y] 1 is the classical order of

branching [23] of y. Clearly z is a singular point ifj(y) > 1
;
the converse

need not be true. It is not clear from the literature what a branch

point is, but it seems most probable that it is a point y for which

I shall call a covering g: Y -+Z finitely branched if the index of

branching j(y) is finite for each point y of Y. I shall call a covering

regular if its associated unbranched covering is regular.

6. Covering complexes

It is obvious that a simplicial mapping g of a locally finite simplicial

complex Y into a locally finite simplicial complex Z is a spread if and

only if no simplex is mapped degenerately. Such a mapping may be

called a simplicial spread. Its singular set Z8
= Z Z is a stibcomplex

of Z. Furthermore, a principal open simplex ofZ (i.e. one which is not

on the boundary of any other simplex of Z) belongs to Z or not

according as it does or does not belong to g( Y). Thus Z is dense in Z
if and only if g maps Y onto Z. The condition that Z be dense and

locally connected in Z is equivalent to the condition that, for each

simplex r of the subcomplex Z8 , the intersection S(r) of Z with the

open star stz r of r be non-vacuous and connected. Thus we are led

to the following statement:

// the locally finite simplicial complex Z is connected, a simplicial

spread g: Y ->Z is a covering if and only if (I) S(r) = Z C\ stz r is non-

vacuous and connected for every simplex r of Z8 , (2) X g~
l
(Z )

is con-

nected and, (3) S(cr)
=X n str cr is non-vacuous and connected for every

simplex & of Y X. Such a mapping may be called a simplicial

covering, and the antecedent may be called a covering complex.

THEOREM. Let Z be a barycentrically subdivided, connected, locally

finite simplicial complex and let g: Y->Z be any (not necessarily

simplicial) covering whose singular set Z8 is a subcomplex such that

S(r) = Z C\si>z T is non-vacuous and connected for every simplex r of

Z
s . If the index of branching j(y) is finite for each point y of Y, then Y

is a locally finite simplicial complex and g is a simplicial covering.

Let X = g~
1
(Z ) and/=(/|X, so that/: X-+Z is an unbranched

covering. We are going to define a locally finite simplicial complex Y'
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containing X and a simplicial mapping g
f

: Y' ->Z such that g' \

X =/;
it will be clear that g

f

is a completion of/ and hence equivalent to g.

If 7 is any open n-dimensional simplex of Z
,
the components of

/~
1
(r)
=

gr'~
1
(r) are open w-dmiensional simplexes cr

t-,
i ranging over

the cosets of the subgroup H of n^(Z )
to which/ belongs. If r and r*

are simplexes of Z such that T<T* (i.e. r is on the boundary of r*)

then there is a permutation p=pr>T* of the cosets of H such that

cr
i
< cr* if and only if i=p(j).
If 7 is any open n-dimensional simplex of Zg ,

the components of

g'~
l
(r) are to be open w-dimensional simplexes cr

it
i ranging over the

components S^T) of/~
1
(S(r)) =/~1

(st r). Since the index of branching
of g is finite at each point of g~

l
(r), the number of simplexes comprised

in any S^r) is finite.

If 7 and r* are simplexes of Z8 such that r <r*, then S(r)=>S(r*),

so that each
/8^(r*)

is contained in some S
{(T). The incidence relations

in Y f

that are to cover the incidence relation r < r* are : cr
i
< <r* if and

onlyifS,(r)=>flf,(7*).

If7 is a simplex ofZ8 and r* a simplex ofZ such that r < 7* then the

incidence relations in F' covering this are to be: cr
i < erf

if and only if

It is easy to verify that the simplexes cr of F', with the incidence

relations described above, form a locally finite simplicial complex.

(In order to prove that no two simplexes of Y' have the same vertices

it is necessary to use the fact that Z has been barycentrically sub-

divided. For example, a simplicial subdivision of the 2-sphere Z

might not be covered by a simplicial subdivision of a given Riemann

surface if there were branching over both end-points of some 1-dimen-

sional simplex of Z.) It is also easy to verify that g' is a completion of

/ and hence equivalent to g. The homeomorphism of Y' on Y induces

the triangulation of Y.

Of special interest are the finitely branched coverings of a con-

nected n-dimensional (combinatorial) manifold Z whose singular

sets are pure (n 2)-dimensional simplicial complexes tamely im-

bedded in the interior of Z. (An (n 2)-dimensional simplicial com-

plex is pure if every principal simplex is (n 2)-dimensional.) If we

assume, as we may, that Z is triangulated in such a way that Za is

a subcomplex, and then barycentrically subdivided, then, by the

preceding theorem, such a covering is simplicial and the antecedent

Y is a locally finite simplicial complex. Under what conditions is the

covering complex Y also an n-dimensional manifold?

It is well known that, for n= 2, Y is always a manifold. For n > 2
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the situation is more complicated. In any particular case it can be

decided (in principle) by the following method. Let z be any vertex

of the singular set Z8 , assumed to be in the interior of Z; then the

boundaryB ofthe star of z is a triangulated (n l)-dimensional sphere
and Br\Z8 is a pure (n 3)-dimensional subcomplex. The com-

ponents ofg~
1
(B) are finitely branched covering complexes of jB whose

singular sets are subcomplexes of B n Z8 . One has only to examine

these components and decide whether or not they are (n l)-dimen-

sional spheres. The answer is affirmative in one general case (which
includes all the examples that have been considered in the literature):

THEOREM. Let Z be a connected, barycentrically subdivided, com-

binatorial n-dimensional manifold and let L be a polyhedrally imbedded

combinatorial (n 2)-dimensional manifold such that the star of any
vertex in L isflat[l 1] in Z. Then any finitely branched covering complex

ofZ whose singular set is a subcomplex ofL is a combinatorial ^dimen-

sional manifold,
For simplicity let it be assumed that L is in the interior of Z. If

L intersects the boundary of Z the proof following has to be

modified.

Let g be the finitely branched covering, Y the covering complex,
K = g~

l
(L), so that Y K is an unbranched covering space, with

associated covering e = g
|

Y K. If r is any g-dimensional open sim-

plex of L and T
t-,
a ^-dimensional open simplex of K, one of the com-

ponents of g~
l
(r), then the closed star Str^ is a covering space of the

closed star Str (the associated covering being the restriction h of g

to St r
t )
whose singular set is a subcomplex of StL r = L n St r. Since

there is a homeomorphism that maps Str onto the Cartesian product
CxEn~2 of the plane disc C: x\ + x\^\ and the (rc-2)-cell En~2

:

^ x
i ^ 1 (i

= 3, . . .
, n) in such a way that StL r is mapped onto p x En~2

(where p denotes the point xl
= x2

=
0), the covering h must be of the

form dm xi, where i maps En~2
identically upon itself and dm is the

cyclic covering of C with branching index m at p exemplified in the

branch point that the Riemann surface of the function w ^z has

at the origin. Since all of these maps are simplicial it is clear that

StTj is a combinatorial n-cell.

7. The fundamental group of a branched covering

IfS is an open subset of a space Y, an element of TT
I ( Y) will be said

to be represented in 8 if it is represented by a loop of the form aya"
1

,

where y is a loop in 8 and a is a path in Y from the base point of TTI ( Y)

to the base point ofy . Note that, if S
l9 $2 > are ^he components of 8,
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an element of n^ Y) is represented in S if and only if it is represented
in some S+.

LEMMA. Let Y be a connected, barycentrically subdivided, locally

finite complex and let K be a subcomplex such that, for each vertex u of

K, the intersection S(u) of Y K with the open star st u of u is non-

vacuous and connected. Then the injection homomorphism :

is onto, and its kernel is the consequence^ of those elements O/TTI (
Y K)

that are represented in (Ju S(u).

Since Y has been barycentrically subdivided, the stars st u are the

components of \Ju stu (and the sets 8(u) are the components of

Uu S(u)). Let T be a simplicial tree in Y K rooted at the base point
of n^Y K) and meeting each Stu at exactly one point. The set

T U Uw S(u) is connected, and the image of the injection homomor-

phism n^T U UM S(u)) -> TT
I (
Y K) is the consequence of the elements

of n^Y K) that are represented in (J u S(u). The image of the injec-

tion homomorphism 7T1(T U Uu 8(u)) -> TTI ( Y) is clearly 1 . The theorem

follows from an application of van Kampen's theorem [13], regarding
Y as the union of Y K and T U UM st u.

THEOREM. Let Z be a barycentrically subdivided, connected, locally

finite complex and let Lbea subcomplex such that, for each vertex v of L,

the intersection S(v) of Z L with the, open star st v of v is non-vacuous

and connected. Let Y be a finitely branched covering of Z whose singular

set ZR is a subcomplex of L. Let H be the subgroup of G = 7T1(Z L) to

which the associated unbranched covering of Z L belongs. Then

7Ti( Y) H/N, where N is the consequence of those elements ofH that are

represented in Uv S(v).

By a preceding theorem, Y is a locally finite complex, mapped
simplicially onto Z. After another barycentric subdivision, Y and K,
the inverse image of L, satisfy the conditions of the lemma. The

theorem follows from the observations that an element of is covered

by an element of 7rx (
Y K

)
if and only if it belongs to H and that an

element of TTI (
Y K) is represented in Uu S(u) ifand only ifthe element

of G that it covers is represented in \J V S(v).

The following application of this theorem may be of some interest.

In [5], I proved that the group F=(8l ,
82 , ...,Sd : nf-i^i= *> S i

i=s 1

(i= 1, ...,rf)), where each n
t
is a positive integer greater than 1, has

a normal subgroup N with finite index in F and contains no element

j" By the consequence of a set of elements in a group is meant the smallest normal

subgroup that contains all these elements.
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of finite order other than the identity. Let Z be the 2-sphere and

select d>l points sv s& ...,sd of Z. The fundamental group of

Z - (^ u s2 U . . . U sd )
is (xl9

x2 , ...,xd : Hi=i a^
=

1), where xi is repre-

sented by a small loop around 8^ Denote by </>
the homomorphism

x
i
-> fy of this group upon the group F. Since N has no elements of

finite order, x
t

m W =
<f>~

1
(N) if and only if m== (modr^). Let X be

the unbranched covering space of Z - (sl U s
z
U . . . U sd )

determined

by W. Thus X is a regular covering and Wx-n^X). The branched

covering space F ofZ to whichX is associated has fundamental group
N. Thus we have proved the following theorem:

// s
l9

8
29 ...,*d (d>l) are points of the 2-sphere Z and nv n2> ...,nd

any positive integers greater than 1, there exists a regular covering Y

ofZ offinite index for which the index of branching is equal to n
t
at each

point over s^

Naturally T is an orientable surface of genus

where n is the index ofN in F.

8. Generalizations

In 1, I defined a spread/: X->Z only when X and Z are locally

connected. If X and Z are arbitrary Trspaces, which are not neces-

sarily locally connected, a mapping/: X-+Z may be defined to be a

spread| if the clopen subsets of the sets/"
1
(FT), W ranging over the

open sets of Z, form a basis of X. To such a spread a 'completion'

g: F-> Z may be constructed, by a generalization of the process of 2.

A point y of g"
1

(z) is a function that associates to each open neigh-

borhood W of z a quasi-component yW off~
l
( W) in such a way that

yW^yW2 whenever W^c W2 . Basic open sets UfW are defined as in

2 for any clopen subset U of f~
l
(W). However, there are diffi-

culties with this generalization in connection with the uniqueness

theorem. Furthermore, its relation to Freudenthal's generalized ideal

t If Z is separable, regular, and X is compact, Hausdorff, a mapping / of X into

Z is a spread if and only if/~
l
(z) is totally disconnected for every z, i.e. if and only if

/ is a so-called light mapping. (Let x be any point in any open set ofX and let

W^W^p... be_a basic sequence of neighborhoods of z-f(x). Let Fn be the com-

ponent off-
l(Wn )

that contains x. Since f~
l
(z) is totally disconnected, and r\nFn is

connected, r\nFn = x. Hence, for some index n, FncO. Thus/ is a spread.) That the

compactness of X is essential here is shown by the following example constructed

by John Milnor: Let X be the plane set consisting of all straight lines y = ax + b,

a and 6 rational; let Z be the x-axis and let/ map X upon Z by orthogonal projection.

This is a light mapping (and X is locally connected), but/ is not a spread. In fact,

for any open interval W of Z the set/-
l
(^) is connected.
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compactification is unclear. For these reasons I am not certain that it

is the proper generalization, and have accordingly restricted myself to

the locally connected case.

It would be interesting to generalize our theory of covering spaces
with singularities to a theory of fibre spaces with singularities. A satis-

factory definition of
'

fibre space with singularities
'

should encompass
at least the types considered by Seifert[17] and probably also the

type considered by Montgomery and Samelson[15], In an attempt
at such a generalization, I replaced the set of components of quasi-

components off~
l
(W) by a decomposition off~

l
(W) subject to suit-

able conditions. However, the resulting theory turned out to be rather

unsatisfactory, in that the associated non-singular fibre space has

to have a '

totally disconnected group '. Such a restriction is obviously
much too severe. The example of the lens spaces, which are singular

fibre spaces in the sense of Seifert[17], shows that a singular fibre

space cannot be uniquely recovered from its associated non-singular
fibre space, at least unless some additional structure is posited. In

the case of the Seifert singular fibre spaces the additional structure is

roughly the type of torus knot determined by a non-singular fibre

in the neighborhood of a singular fibre, and is given by the numbers

a, p in the 'symbol' (cf. [17]).
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