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SINGULARITIES OF 2-SPHERES IN 4.SPACE AND
COBORDISM OF KNOTS”
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Consider an oriented 2-dimensional manifold m imbedded as a subcor
in a triangulated oriented 4-dimensional manifold M in such a way tha
boundary of m is contained in the boundary of M and the interior of m is cont
in the interior of M. We will assume that M is 2 “piccewise linear manif
that is, the star neighborhood of any point should be piecewise linearly ho
morphic to a 4-simplex. One can measure the local singularity of the imbex
at an interior point x of m as follows. Let N denote the star neighborho
xin M. The boundary S=8N of IV is a 3-sphere with an orientation inhe
from that of M, and k=m 8N is a 1-sphere with an orientation inherited
that of m. The oriented knot type x of the imbedding of 2 in S is ca
the singularity of the imbedding at x. When k is of trivial type in 8N we
say that the singularity is 0 or that x is a non-singular point or that m is k
Aat at x. A surface m is called locally flat if it is locally flat at each of its pe

RemarK. The singularity of m at x is clearly a combinatorial invaria
M, that is it is not altered if we subdivide A3 rectilinearly. We do not |
whether or not this singularity is a topological invariant, except in the sp
case of a locally flat point. The topological invariance of the concept of
flatness is easily proved, making use of Dehn’s lemma, [12, §28(i)].

Of course the local singularity can also be measured at a boundary poi
In this case 8N is a 3-cell, mM 8N is a 1-cell spanning it, and the singulari
a type of spanning 1-cell. In this paper we shall consider only imbeddings w
boundary points are all nen-singular.

Since a singular point must be a vertex in any triangulation of the
mC M the singular points are always isolated. If s is compact {as it wi
from now on) there can therefore be only a finite number of singular pc
For the rest of this paper s will be a 2-sphere and M will be the 4-dimens!
euclidean space R*; that is, the 4-sphere punctured at . 'Fhe basic prol

1} This paper follows cur announcement [3]. We wish to express our thanks to (
Giffen for help in the revision.
2} These concepts are due to V.K.A, Guggenheim [3, §7. 321
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that motivated this paper is the following: Under what conditions can a given
collection of knot types &, -+, &, be the set of stngularities of some imbedding of a
2-sphere m in the 4-space R'7

Recall that the various types of knots are the elements of a commutative
semigroup® .4; the operation of this semigroup, which has been variously
designated “product”, “‘sum”, “composition”, etc., will be denoted here simply
by the symbol +. In section one we show that collection (x, -+, k) can
occur as the set of singulavities of some imbedding if and onky if the collection con-
sisting of the single element x, where k=r i+ ky, OCCUTS a3 the set of
singularities of some imbedding. 'This reduces the basic problem to the following
special case: Which knot types « can occur as the only singularity of « 2-sphere m
in R*? Ttis shown that a given x can occur if and only if there is a locally flat
2-sphere m and a hyperplane J of R, which cuts #in two, such that k=m0 J
is a knot of type « in J. Such a knot 2C J has been called a slice knot and its
type « may be called a slice type (Compare [4, p. 135].) Clearly k& is a slice
knot if and only if it spans a non-singular 2-disk which lies completely within
one of the two haif-spaces bounded by J.

An example of a slice knot is illustrated in Figure 1. Depending on the
number of twists, this figure can represent the knot type 6, or 8, or 9, etc..
(The notation for knot types follows [13, p. 70]. Fora proof that such a diagram
represents a slice knot see [4, p. 172].)

k’“\_\

Figure 1,

Our basic question can now be reformulated as follows: Which knot types
are slice types?

Although it is unreasonable to expect a complete and meaningful answer to
this question, partial answers of significance can be looked for. In section two

3) H. Schubert [14]. The semigroup A is free commutative with the “prime” knot
types as free penerators.
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it is shown that not every knot is a slice knot, inasmuch as” the Alexander
nomial A(t) of a slice knat must be of the form p(t). p(1]t) for some integral
nomial p(f).

As examples, consider the knots with seven or fewer crossings in the
ander-Briggs table. The Alexander polynomials of these knots (see [1, p.
are all distinct and, with one exception, are all irreducible. Hence these
cannot be slice knots. T'he one exception is the stevedore’s knot 6,, with
nomial

25428 = (2—1)(1—28) .

We have already remarked that 6, is actually a slice knot.

In the third section it is shown that the sum x+(—=x) of a2 knot t
and the type —« obtained from x by reversing the orientation of bot]
knot £ and the containing 3-sphere S is always a slice knot. This result r
possible the introduction of an abelian group & whose elements are equiva
classes <x> of knot types « and whose operation + is inherited from
operation + of the abelian semigroup .4.  When the equivalence relation ~
repartitions the elements of 7 into elements of & is expressed in a more
metrical form which we call cobordism it becomes evident that & is in f
{relative} cobordism group. In terms of this group the principal results o
paper as well as various outstanding problems may be clearly expressed.

1. Confluence of singularities

Consider a polyhedral 2-sphere m in the 4-space R', with singular p
& v, &, Let wlx),-, e(x,) be the corresponding singularity types.

Theorem 1. The sum w{x)+--+«fx) of the singularities is the
type of a skice knot.

Proof. Choose a polygonal arc pCm which traverses all of the sin
points x;. Choose some fixed rectilinear triangulation of R* so that m and
subcomplexes. Using this triangulation, let v, ,---, ¥, be the wvertices o‘J
subcomplex p, listed in their natural order along p. Clearly each singular j
x; occurs as one of these vertices y;.

Let & denote the star neighborhood of p in the first derived complex o
and let N, denote the star neighborhoed of the vertex y;; so that

N=NUN,U--UN,.

4} Bince this polynomial condition was announced by us mn 1937 several other neces
conditions have been established: [10].
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Each N is a 4-cell and can be identified with the cone over the 3-sphere 8IV;.
Similarly the intersection m(\ N is 2 7-cell, and can be identified with the cone
over mMNaN;. The knotted circle

mON;CoN,

represents the knot type of the singularity w(¥;).

Note that each intersection N; VN, ,=0N ;N AN,_, is a 3-cell spanned by
the unknotted arc m NN ;N N;y,. The cells N; are mutually disjoint otherwise.
From this it follows that their union N is a 4-cell.  Furthermore, the circle

mNoNcCoN

represents the knot type of the sum «(y,)+++-+#(y,). This is of course equal to
efx)4 - A-rel(x,).

Choose a base point x, on 8N which does not belong to m.  Choose a
piecewise linear homeomorphism % from the sphere St=R4|J oo to itself which
carries x, to the point at infinity, and carries 8N—x, onto the hyperplane J.
Then the image A(mNaN) will be a knot kC J representing the required knot
type x(x,)+ -+ r(xa): Furthermore A{m—Interior N) will be a non-singular
2-disk which spans %, and otherwise lies completely on one side of f. Taking
the union of this disk with its mirror image in f we obtain a non-singular 2-sphere
m' which intersects J in the required knot k. This shows that k is a slice knot,

and completes the proof.

Remvark. It is of course essential that m should be a 2-sphere. Any knot
of genus cne can appear as the unique singularity type of a knotted torus in 4
space. Similarly it is essential that the containing 4-manifold should be a
sphere or cell. In the (4-dimensional) complex projective plane, any torus knot
of type p, p+1 can appear as the unique singularity type of an imbedded 2-
sphere. (Compare [7]: or consider the algebraic variety which is defined by the
homogeneous equation 2,37="2¢"".)

Now consider the converse situation:

Theorem 1. Let x,,x, be knot types such that eyt otiy is a siice
type. Then there exists a 2-sphere mC R* with singularities of type Ky, Kus and
with no other singularities.

Proof. Represent the knot types «; - €« by knots &, k., which lie
within disjoint cubes in the hyperplane Jc R, and which can be joined by

rectangular bands B, B.,C J as illustrated in Figure 2. Choose vertices
®, ,+++, Uy below the hyperplane J, so that the cones
t}lkl PR | E"sku
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g

3

B

k; k:! ka

Figure 2,
will be pairwise disjoint. Then the union
D=vk B UDAUBU -UB, Uv.k

i? a 2-cell “fhich lies in the lower half-space bounded by J, and which has just
sbmgular pr;nnts.-im1 0ty Uny With singuiarity types #,,--, «, respectivel JT'
oun};larﬁ of Dhls a knot 2C [ representing the knot type x,+ -+« T
v hypothesis, % is a slice knot, Hence there exi \-sin
., Dy hypothe . sts a2 non-singular 2-
@CR which lies above the hyperplane J, and which spans &, T;ﬁf‘;:‘:r )

D' =D'nJ=k.
The union

m=D0UD’
is now the required 2-sphere.

T .
. 0 sumfr;anz;, we have proved that a collection {x, -, k.} of knot typt
gceur as the collection of singularities of ; ’

: a 2-sphere in 4-space {] ;
-t g, Is the tvpe of a slice knot. poce f and only f
. Here is another .chracterization of slice knots. Iet us call the singularit
m at x removable if there exists a modified 2-sphere m’ which coincides wit,

1

m except within an arbitrary small neighborh ]
o e nities e ghborhood U of x, and such that »' ha

L . . .
emma 1. The singularity af x is removable if and anly if it isaslice type

. tl;';c;oi.h Il:et N be t}.le star Peighborhood of x. If the singularity is remova
. e knot m NN CON spans a non-singular 2-disk m’ NN within the

4-cell N. Hence it is a slice kn
ot. Conv i .
2-disk DN then the 2-sphere onversely if m MN8N spans a non-singulat

m' = (m—N)UD

will have no singularities within &V (even on the boundary!). In order to replace
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N by a smaller neighborhood, it is only necessary to subdivide before performing
this construction, This completes the proof.

2. The polynomial condition

Theorem 2. If « is a shice type, its Alexander polynomial is of the form™
A =p(Op(1]t), where p(2) is a polynomial with integral coefficients.

Proof. Let m be a locally flat 2-sphere in the 4-space R*C S* and let J be a
hyperplane of R* such that the knot k=mN [ is of type x in J. Let H be one of
the (closed) half-spaces inte which R* is separated by J. A tubular neighbor-
hood ¥ of the 2-cell D=mn H in H is® of the form D xC, where C denotes a
2-cell, and ¥ (1 Jis just & xC. Coensider the closure @ of H—V in the sphere
§* and note that the boundary 36 of @ is the union of D X8C and the closure
W of J—V=]—(k <€) matched along the torus k£ x9C. Ttiseasyto check that
the 1-dimensional homology groups of 8@ and @ are both infinite cyclic and that
an isomorphism between them is induced by the inclusion 9QC&. Let 4§
denote the infinite eyclic covering of €. According to Milnor [9, Lemma 4]
there is a “torsion invariant” A() associated with this covering. This invariant
is a rational function A{(@)=a(£){b(t} where a(t) and b(t) are non-zero polynomials
with integral coefficients; it is well-defined up to sign and multiplication by powers
of .

The corresponding infinite cyclic covering of 3¢ is 8€}. According to
Milnor [9, Theorem 2] the torsion invariant A(BQ) is also defined, and given
by the formula

AQ) = MO)B@).

where the bar indicates the operation {—1/¢ of conjugation.

We can also compute A(BG) directly by referring to the subcomplex W
and its infinite cyclic covering W. According to Milnor [9, Theorem 4] the
invariant A(W) is defined, and

A(W) = ADi-1),

where A(t) denotes the Alexander polynomial of the knot AC /. Similarly,
there is defined a relative torsion invariant A(8Q, W), and

A(BQ) = AW) A(8Q, W) .

Note that the pair (8Q, W) can be reduced by excision to the pair (D x8C,
kx9C). Straightforward computation shows that

5) The notation A,(#)=4;(t} means A,(1}= 1.¢" A, {t) for some mteger ».
&) «cf. {11].
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A(BG, Wy = A(D x8C, k xaC) = 1{(t—1}.
Hence

| AQB@) = AWIE—1Y,
" so that
A() = e(tie(1})

where ¢{t) denotes the rational function (1—1)A(&). Since the ring of integrz
-polynomials is a unique factorization domain, £{t) can be expressed as th
quotient a{t}/b() of two relatively prime polynomials. Let d(#) denote th
greatest common divisor of a{l/t) and &(¢). Then a(l/t)=p(1/) d(t) and &(#)=
) d(2), and we have

dnye(lit) = ple) p{lin)ig(t) g(1it}

where the numerator and denominater are relatively prime.
this quotient is, m fact, a polynomial.

ADy=p(t)p(1/t) as claimed.

But we know tha
Consequently we must have g(t)=1, anc

Remark.  OQur original proof of Theorem 2 was substantially the same a:
the proof sketched by H. Terasaka [15]. The proof presented here avoids the
rather horrendous caleulations of the original.

3. The knot cobordism group
Lemma 3. If x is any knot type, then x+(—x) is a slice type.

Proof. This follows immediately by applying Theorem 1 to the 2-sphere
in B! which is obtained by “suspending™ a representative knot in R®, Alterna-
vely, here is a direct proof. We will use coordinates x,, ,, x,, x, in R*, Let &
an oriented knot representative of « that lies above the horizontal plane x,=
0 in the 3-space x,=0. A representative 2" of —« may be obtained by
reversing the orientation of & and reflecting it in 3-space about this plane. Thus
we see that in the 3-space x,=0 there is a representative k" of x-(—«) that is
symmetric about the horizontal plane x,=x==0 and intersects it in just two

mints. Then the set of points (x,, x,, x,, x,) of 4-space such that {x,, x,,[x,| -+
5, YER" forms a locally flat 2-sphere whose intersection with the hyperplane
®=0 is just &". (In Figure 3 some cross-sections of this 2-sphere by hyper-
planes parallel to x,=0 are shown for the case of the trefoil knot £=3,.)

Lemma 3. If x, and &, ave both skice types then so 15 w,~x,.

Proof. Given spheres m, and m, with x, and «, as their respective only
singularities, it is easy to construct a sphere m with «, and «, as its only singu-
larities. The lemma therefore follows from Theorem 1.
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5 (e (=) (A +(—2)) is a slice type by Lemma 3'. Since A+(—\} is a slice
type according to Lemma 3, it follows from Lemma 3" that x4 (—zx) must
be a slice type. 'Thus ke~ and A~y implies x~p.

Let us write (x> for the equivalence class determined by the type x. It
” foltows easily from Lemma 3’ that the surn operatioen

Lo+ = {et+r>

1s well defined. 'Thus the set & of equivalence classes inherits the operation--
from the semigroup .4, and with respect to this operation forms an abelian group.
Che identity element of this group is the class <0 of slice knots, and the
hwverse of a class (x> is the class —{ed={—x>.
=l Theorem 3. In order that w~«, it is necessary and sufficient that there
exist in the 4-dimensional slab 0<x, <1 of R' a locally flat annulus A whose bounda-
: ries are knots k, in the hyperplane x,=0 and k, in the hyperplane x,—=1 representing
@e types ry, x, respectively, the orientations being such that k, is hamologous to k,
wbithin A.

Proof. I such an annulus A4 exists, then choosing a vertex v below the
~hyperplane x—0 and choosing a vertex w above the hyperplane #,— 1, the cones
g%w and wk, will be digjoint from each other and from the interior of 4. The
Hnion
m = vk,UA4 Uwk,

s then a 2-sphere with just two singularities: «, at » and —«, at w.
Conversely, given a 2-sphere with just two singularities, it is not diffiicult
to move it until it intersects the slab 0<x, <1 in a non-singular annulus whose
boundary curves represent the appropriate knot types.
;  In view of this theorem we may call the equivalence relation ~ cobordism,
the group &G the knot cobordism group. (Similar cobordism groups for
igher dimensiona! differentiable knots have been studied by A. Haefliger, M.
"Kervaire and J. Levine. See for example [6].)
Since there are knot types {many of them} that do not satisfy the polynomial
ondition of §2, the group & is non-trivial. Actually & is not even finitely
erated; this can be seen, for example, by observing that there are an infinite
imber of knots of genus 1, whose polynomials are quadratic, irreducible and
- distinct from one another.
Murasugi {10} has shown that the signature of the quadratic form associated
ith 2 knot is a cobordism invariant”. This implies in particular that the clover
‘leaf knot 3, determines an element of infinite order in & It is not known

L ) -
34

P43

&

Lemma 3. If A and w1+ are both slice types then so is x.

Proof. By Theorem 1’ there is 2 2-sphere m in 4-space R Ithat has 1011}?;
two singularities: & at a point X and X at a pomt y. But by :err;zze ol
singularity at y is removable. He;nce there exists a 2-sphere m’ W

i ity 1 . This proves 3"

Smgu’ll\Ta;:fyl;: ;csafvfite .«cw,\pto mean that x+{—2) is a slice type, and let ulsf :
check that ~ is an equivalence relation. By Lemma 3 .\;e havemimi-f; o
«+{—nx) is a slice type then so is —(;cj!,—(—?n)):x—l—(—fc), enc:_;c(xf_(_.p]
A~vie.  1f x4+ {—2) and A--(—p} are slice types then (¢ +H{—=A)+(AT(—r

7} 'This is strikingly reminiscent of the situation in the classica! Thom cobordism theory,
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whether or not the quotient group

Gl{elements of finite order)

is finitely generated.

Any invertible, amphicheiral® knot that is not a slice knot determines in g
an element of order 2. An example is provided by the figure eight knot 4,.
However it is not known whether or not & has any elements of order>2.
Neither is it known whether an element of order 2 is necessarily determined by
an amphicheiral knot.

An analogous concept of cobordism between links can also be studied
[4, 10]. Among the cobordism invariants of a link are the higher order
linking numbers u(z, -+, %,) of reference [8]. {Unpublished.)
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