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1. Preliminary Remarks 

1.1. The notion of homogeneous space will be used in this chapter. 
Though this notion is much older, the term has been coined by Elie 
Cartan [l]. 

A pair consisting of a space R and a transitive group F of topological 
mappings of R onto itself is called a homogeneous space. (Transitivity 
means: for every pair s, y E R there is an f~ F such that fx = y.) 

In a homogeneous space fR, Fl the set 

IS” = if EF IhI = x0> 

is a subgroup of F, the isotropy or stability group of x0. If 

then 

so the stability groups of the points of R are conjugate in F. Often we 
will speak of the stability group of a homogeneous space without men- 
tioning the point from which it was taken. If 

then 
gx, = Xl, gEF, XiER 

puts R in a (canonical) one-to-one relation with the set F II0 of left-hand 
cosets of Jz, in F. 

145 
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In the sequel we restrict ourselves to “nice” cases without going into 
details about the nicety conditions which have to be fulfilled (see, e.g., 
Freudqnthal [l]). Then we may state: 

As a set of mappings of R onto itself, F is gifted with some topology 
in which it is a topological group represented in R, such that 

is a continuous or even open mapping of TR, Fl onto R with 

and lz is a closed subgroup. Then, using the canonical identification of 
R with F/J, the homogeneous space ‘R, Fl may also be defined as the 
space of left-hand cosets of J in F with the usual topology and acted 
on by left-hand multiplications with elements of F. 

Starting with a topological group F and a closed subgroup J, one can 
define a homogeneous space by putting R = F J, providing R with the 
usual topology, and defining f. for every a E F, such that 

fax = acJ for all x = C/E R. 

This yields a representation of F in R. Its kernel consists of those a that 
fulfill acj = CJ identically in c; in other words, the kernel is the greatest 
normal subgroup N of F in J. The representation is faithful if, and only 
if, J does not contain a normal subgroup of F with more than one element. 
Otherwise, it leads to a homogeneous space IR, Finn. 

A homogeneous space is called asystafic (Lie) if the stability groups of 
all points are different, in other words, if J is not a normal subgroup of 
any larger subgroup of F. 

1.2. We shall mainly be concerned with Lie groups. We admit 
“mixed” (not connected) Lie groups. The algebra of a Lie group is 
denoted by the corresponding boldface letter. Boldface type is also 
used for elements and subsets of Lie algebras. 

The inner automorphisms of a Lie group G yield the adjoint representa- 
tion G of G. For a E G the inner automorphism taking x E G into axa-’ 

is called E. The adjoint group of G admits of a natural linear representa- 
tion in G which is also called G. Likewise, 

dx = uxa-1 for aEG. XEG. 
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The same notation is used in the adjoint algebra, 

Ix = [a, x]. 

A closed subgroup J of a Lie group is a Lie group too; the homogene- 
ous space R = Fl J is an analytic variety acted on analytically by F. 

Let ft E F with f. = 1, (df,/dt)l,,, = f~ F de$ne a dzflerentiable curve 
f, J on R. Its tangential vector in x,, = J may be identified with f + J, 
so the tangential space T of R in x0 may be identi$ed with the linear space 
F mod J. Then j E J takes f, J into jflj-’ J, hence f + J into jfi-’ + J. 
J behaves in T as a linear group; every j E J acts upon T, such as j does 
upon F mod J. 

However, this representation of J need not be faithful, in other words, 
generally J is not fully described by its linear behavior around x0 . This 
is a crucial point in solutions of the Helmholtz-Lie space problem. A 
counter example is the projective line with its projective group. If x0 
is the point at infinity, the translations leave x,, and all vectors at x,, 
invariant. 

Generally, let K be the set of all j E J that leave T pointwise invariant, 
hence k E K if, and only if, &f = f mod J for all f E F. Then K is a normal 
subgroup of J. The behavior of J on T is described by J/K, the (first- 
order) retrenchment (Lie: Verkurzung) of J. (Higher order tangential 
spaces lead to higher order retrenchments with analogous properties. 
They shall not be considered in this chapter.)- 

The elements k of K are characterized by kf = 0 mod J. So K is 
the largest subset of J fulfilling [K, F] C J. It is not known whether K is 
always solvable. 

As a linear space F may be written as a direct sum J + F, . By the 
local mapping 

R = F/J may be locally identified with F, . Moreover, if F, is invariant 
under ally (j E J), J b e h aves locally in R, such as g does in F, . Then 
a neighborhood of x,, is pointwise invariant under K; if R is connected, 
this is true for all R, and K comes out to be trivial. 

Generally, if K is trivial and hence-J locally linear, the space is called 
first-order homogeneous. This happens to a connected space as soon as 
F splits linearly into J + F, with F, invariant under -7 (j E J), for in- 
stance, if J is compact or semisimple and connected. 
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2. The Helmholtz-Lie Space Problem 

2.1. In the 19th century, until Hilbert [I] published his Grundlugen 
der Geometrie (1899), “f oundations of geometry” meant a kind of research 
instigated in 1868 by Helmholtz’ Obey die Tutsachen, die der Geometrie 
zum Grunde liegen [2]; once, in 1902 Hilbert himself resumed that older 
terminology [2]. Its first occurrence, previous even to Helmholtz, is 
1854 in the title of Riemann’s “Habilitationsvortrag,” tiber die Hypo- 
thesen, welche der Geometrie zu Grunde liegen, which was then published 
in 1867 [l]. 

2.2. Riemann [l] introduced what is now called Riemannian metrics. 
At the end of his lecture Riemann asked for those manifolds with 
Riemannian metric in which the shapes can be moved without deforma- 
tion. They are characterized by constant curvature. The first proof for 
this assertion was given by Lipschitz [l]. It is evident that the change- 
free mobility has to be required for the (two-dimensional) surface 
elements only. According to Schur [l] from the third dimension onward 
it suffices to suppose that the surface elements can be freely turned; 
this capability implies that of being freely displaced. 

2.3. Though the title of Helmholtz’ paper aims at a philosophical 
reproof of Riemann’s view (facts versus hypotheses), it is mathematically 
independent of Riemann’s. Against Riemann, Helmholtz argued that 
metric presupposes congruence and, hence, the existence and free 
mobility of solid bodies. But as soon as this property is granted, one 
would be able to prove the ds2 (square of the line element) to be a quadrat- 
ic form on the tangential space, instead of postulating such a ds2 as did 
Riemann. 

This objection, repeated again and again in the 19th century (originally, 
even by Poincare), is, of course, false. Physically, Riemannian metric 
does not depend on the existence of solid bodies; it only needs solid 
measuring stages (one-dimensional bodies). The use of such measuring 
staffes, however, does not anticipate on sophisticated congruence 
axioms. 

2.4. Helmholtz’s approach is based on four axioms. The first postulates 
that space is an n-dimensional manifold with differentiability properties. 
The second axiom would read in a modern formulation: There is a 
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metric, and motions are the isometric transformations belonging to the 
component of identity. Notice, however, that Helmholtz does not suppose 
that distance is nonnegative or fulfills some other axioms of our metric 
spaces; distance is no more than a nice function. Helmholtz third axiom 
is that of free mobility of solid bodies. This means that by motion every 
(Fnite) point set can be carried into any congruent one. Helmholtz takes 
for granted that after fixing n - 1 general points the mobility is restricted 
to 1 -parameter motions. His fourth axiom requires that this motion 
should be periodic (and not spiraling). This is the so-called monodromy 
axiom. 

It is Helmholtz’ claim that his axioms characterize the class of Euclidean 
and non-Euclidean geometries. 

Helmholtz’s axioms were meant as local assumptions, valid for 
general point sets, and nice functions. His formulations were surprisingly 
clear for that time. His axioms and methods anticipated geometric 
group theory and Lie groups, though possibly at that time Helmholtz 
had never heard of groups, and Lie groups had not yet come into existen- 
ce. Helmholtz’s exposition suffers from this lack of an explicit formula- 
tion of the underlying notions of group theory. Moreover, there is a 
serious gap in his proof, as pointed out by Lie [l, 21. This criticism is 
not to belittle the merit of Helmholtz’ work, which was the first serious 
approach to foundations of geometry after Steiner’s failure and the first 
approach at all by group theory methods. 

2.5. From about 1870 Lie studied continuous groups. In 1890 he 
applied his methods to the Helmholtz problem [l, 21. When analyzing 
Helmholtz’s axioms and proofs, he noticed a tacit substitution of 
infinitesimal free mobility for free mobility, such as formulated explicitly. 
By this substitution the problem had been simplified enormously. In 
this article we will refer to the problem formulated by Helmholtz as the 
strong Helmholtz-Lie space problem or problem A. The problem which 
has actually been dealt with by Helmholtz shall be called the weak 
Helmholtz-Lie space problem or problem B. 

In our terminology of Section 1.2 we may say that Helmholtz tacitly 
assumed the group of motions to be locally linear (the space to be first- 
order homogeneous). He used the free mobility not for ordinary point 
systems, but for systems of infinitely adjacent points. Eventually, when 
doing so, one cannot benefit properly from the invariant distance 
function. On the other hand, one has to impose some upper boundary 
to the group, and this was done by a mobility constraint. 
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2.6. In modern terms Helmholtz’ implicit conditions may be formulat- 
ed as follows: 

Problem B. rR, Fl is a smooth @t-order homogeneous space. The 
stability group 9 of the point x0 induces a linear group JT in the tangential 
space at x,, . JT is simply transitive over the sets of all totaljags through x,, . 
(A total flag is an ascending sequence of i-dimensional linear subspaces 
Ti of T; i = 0, 1, . . . . n - 1.) 

Under these conditions TR, Fl is essentially a Euclidean or non-Euclid- 
ean geometry. 

The condition to which the group JT is subjected is commonly called 
free mobility in T. This is misleading. It is true that transitivity means 
a freedom of mobility. However, the adverb “simply” adds a constraint 
of mobility. 

The kind of mobility that is postulated is exactly that of the group 
of rotations in n-space. A partial step in characterizing the class of 
Euclidean and non-Euclidean geometries by B is: B’, the characterization 
of the rotation group by its simple transitivity over the flags. 

If B has to be solved, B’ is to be completed by B”: the inbedding of the 
stability groups characterized by B’. 

Weyl [3] identified B’ with the Helmholtz-Lie problem, and so did 
most of those who worked along Weyl’s lines. However, Baer [I] stressed 
that B’ is only a partial step. On the other hand, Birkhoff [3] called the 
other part B”, the Riemann-Helmholtz problem. 

2.7. Lie’s solution [2] of B is reasonably exact and simple. It proceeds 
by induction from n = 3. For Lie simple transitivity over the total 
flags is a local notion, which for n = 2 does not exclude groups with 
spiral orbits, though by global simple transitivity they are excluded. 
For n = 2, Lie has to rely on Helmholtz’ monodromy axiom. 

2.8. Weyl’s proof [3] of B’ is more involved, probably because 
Weyl did not use Lie group theory effectively. From B’ Weyl stepped 
over into Riemannian geometry to prove B; in fact B’ guarantees that 
the space R can be gifted with a Riemannian metric invariant under the 
group F. 

2.9. A modern proof of B would be as follows: 

1. JT is irreducible. 
2. For n > 2, JT is even irreducible over the complex extension of T. 
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3. For 12 > 2, JT is semisimple. 
4. The only semisimple groups of n-space of the dimensionality 

+(n - 1) required by the mobility condition are the real types of the 
orthogonal group. 

5. An indefinite quadratic is to be rejected. 
6. dimF = n + dim Jr = &n(n + 1). 
7. If F is semisimple, the dimension argument shows that it is a real 

type of the orthogonal group of (n + I)-space, so ‘F, Rl is a non- 
Euclidean geometry. 

8. Let N be an abelian ideal of F, then for j E J, N + J invariant 
under /; because of the irreducibility of JT in T, N + J = F; because 
of the semisimplicity of J, N n J = 0. So exp N is a normal sub- 
group of translations. ‘F, Rl is Euclidean geometry. 

2.10. A simple proof for rz = 3 has been given by Reidemeister [l]. 

2.11. 3’ has also been studied from an algebraic point of view. 
Iyanaga and Abe [l] still made additional assumptions; the same is true 
of Pickert’s paper [l]. Baer [l] managed to remove the additional 
assumptions. Wilker’s proof [l] is still more elementary than Baer’s. 

A noteworthy refinement has been introduced; transitivity is not 
postulated for total flags, but for total half-flags (built up from half- 
spaces). Half-flags up to the dimension n are required to characterize, 
besides the rotations group, the entire orthogonal group. 

2.12. The fact that a bounded group of linear transformations which 
is transitive over the half-lines through the origin, possesses one, and 
essentially only one, quadratic invariant was advanced by Laugwitz [l] 
as a solution of the Helmholtz problem. The misinterpretation was 
possibly caused by Reidemeister’s paper. Laugwitz’s proposition is 
much weaker than B’ which aims at a characterization of the rotations 
group. 

2.13. In Section 2.2 Riemann’s approach was mentioned. Birkhoff 
[3] undertook to characterize Euclidean and non-Euclidean geometries 
among n-dimensional Riemann metrics by group theory features, viz., 
by postulating the maximal free mobility, i.e., an +z(n + l)-dimen- 
sional group F of isometries. It is evident that this postulate is much 
too strong. It better suits the Helmholtz case, where the Riemannian 
character of the metric still has to be proved, than the Riemann case 
where this character is presupposed. 
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According to section 2.2 it follows that for n > 3, the stability group 
J of any point is supposed to be transitive over the set of bivectors of 
unit area. Then it is easily shown that J is transitive on the unit sphere, 
and even on the set of orthogonal pairs of points on the unit sphere. The 
orthogonal groups which are transitive on the unit sphere have been 
classified (Tits [6], Freudenthal [5]); one has still to single out those 
which are transitive on the set of orthogonal pairs. From the existence 
of such kind of isotropy groups in every point one can derive that of a 
transitive group F of isometries. Finally, one has to find all F in which 
J can be imbedded as an isotropy group (Freudenthal [5]). 

2.14. In the realm of foundations of geometry Helmholtz’s weak 
problem is unsatisfactory, because it cannot be formulated without 
differentiability assumptions. 

Lie tackled the strong problem A, too, though only for n = 3, 4. 
Lie supposed an essentially positive distance function; but, on the other 
hand, he used free mobility for triples of points only (even for n = 4). 
By this means he succeeded to characterize the class of Euclidean and 
non-Euclidean geometries, but it is difficult to estimate to which degree 
his proofs can withstand modern demands of rigor. Of course, Lie 
adhered to the traditional differentiability assumptions. 

2.15. The first purely topologic approach is credited to Hilbert. 
In Anhang IV (1902) of his Grundhgen der Geometrie [2] he formulated 
and solved the strong space problem for the plane in a topologic way. 
As an underlying topologic space he took the Euclidean plane, so he 
excluded spheric and elliptic geometry. He postulated the existence 
of a group F of orientation preserving homeomorphisms such that: 

For every x0 f x1 the orbit of x1 under the stability subgroup of x0 is 
infinite. 

For every sequence fn E F with lim fn(xo) = x, limfn(yo) = y, lim 
fn(zo) = z, there exists an f E F with f(x,,) = x, f(y,,) = y, f(z,,) = z. 

The first property is much weaker than Helmholtz’ free mobility; 
the second property combines a kind of topologic completeness with 
a rigidity assumption (a substitute for Helmholtz’s metric). Under the 
action of the group two different points cannot arbitrarily approach 
each other. 

Hilbert proved that his postulates characterize Euclidean and hyper- 
bolic plane geometry. 
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2.16. For many years Hilbert’s result was the ultimate landmark in 
the space problem field, though attempts at partial solutions by Brouwer 
[l] in 1909-1910, Moore [1] in 1919, S&s [1] in 19251927, Cairns 
[l] in 1923, Lubben [l] in 1928, van KCrCkjarto [l] in 1950, and Mont- 
gometry and Zippin [l] in 1940 were made. 

2.17. In 1930 Kolmogorov [ 1] attempted to solve the general problem. 
His formulation is entirely topologic: R shouZd be a metrizable, locally 
compact, connected space. F should be a transitive group over R fulfilling 
a rigidity condition (called uniform continuity) and separation conditions 
at dzflerent levels. On the first level the separation condition applies to 
rR, Fl itself. It means that, given two orbits of the stability group J of X, 
one of them separates R between x and the other. On the second level 
F is replaced by F’ = any J, and R by R’ = any orbit under this J; 
and the separation conditions are applied on ‘R’, F’l, and so on. This 
process is supposed to stop on some finite level. 

Kolmogorov asserted that his conditions characterize the classic 
solutions of the Helmholtz-Lie problem, but he did not publish the 
proof. It is still unknown whether this assertion is true without the 
additional assumption that F be complete. 

2.18. Meanwhile, Birkhoff [I, 21 in 1941 and 1944 and Busemann [l] 
in 1941 and 1942 returned to the original, metric formulation of the 
Helmholtz problem. They considered a metric space and imposed 
conditions on its group of isometries: congruent sets (Birkhoff) of con- 
gruent 3-point subsets (Busemann) can be carried into each other by an 
isometry of the whole space. Their metrics, however, are not arbitrary; 
they have to fulfill rather strong conditions (a kind of convexity). 

2.19. In 1951 and 1952 Wang [l, 21 1 e iminated such additional condi- 
tions. He classified all compact, connected metric spaces in which every 
pair of points can be carried in every congruent one by a space isometry. 
He tackled the same problem for locally compact spaces, too, though 
under additional assumptions, among which that of even dimensionality. 
The classification was made possible by the solution of Hilbert’s fifth 
problem (on the analyticity of continuous groups). 

2.20. The question was finally settled by Tits [I, 21, in 1952 who 
took the ideas of Kolmogorov. The first-level separation condition ap- 
peared to be strong enough for a successful classification. This is the 
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main step. At the second or third level (this depends on the exact 
formulation of the problem) the variety of solutions is restricted to the 
Euclidean and non-Euclidean geometries. F was not supposed to be 
connected; much attention was paid to the enumeration of all possible 
components of F. Tits published his proofs in his Thbe d’Agrt!ggt of 
1955 [6]. 

2.21. Freudenthal’s investigations on this subject in 1954 [5] and 
1956 [6], were instigated by Tits’s first communication. His conditions 
are weaker, and his proof is quite different. 

The space R is supposed to be locally compact and connected. The 
transitive group of homeomorphisms over R has to fulfill three conditions: 

Rigidity. Given two disjoint closed sets A, B in R, one of which is com- 
pact, there is a nonvoid open set U such that for every f E F one of the sets 
f U n A and f U n B is void. 

This is essentially the condition called uniform continuity by Kolmo- 
gorov. It causes a uniform structure in R invariant under F. 

Completeness of F. Possibly this condition can be dismissed. 
Separation. There exists an orbit of the stability group J of x0 E R which 

dissects R. 
This condition is weaker than Kolmogorov’s which was used by 

Tits also. 
Using topologic methods and especially the solution of the generalized 

fifth Hilbert problem (Yamabe [l]), one can prove that F is a transitive 
Lie group with a finite number of components and a compact stability 
group J, which in a suitable local coordinate system becomes a linear 
orthogonal group and transitive on the distance sphere. Using techniques 
of the representation theory of semisimple groups, one can draw up the 
following list* of possible J (with compact exp J): 

* We use Cartan’s notation for simple Lie algebras and fundamental represen- 
tations, adding 0 as a symbol for the null-algebra and A, for the one-dimensional 

algebra. Also see the Appendix. 
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and the real representations (of the double dimension) belonging to 

+o)~ 
~(4) (I > 2) plus a facultative direct summand representing A,,, 

Tl(CJ (I >, 1) plus a facultative direct summand representing A, or A,. 

As a next step, one has to determine the (possibly nonconnected) 
/ belonging to these J. FinaIly, one has to find the possible F in which 
the J can be embedded as stability groups. This problem can be dealt 
with by the method described in Section 2.9(7-8). 

The definitive list of possible ‘F, Rl fulfilling the three conditions 
may be found in Tits [ 1, 21 or Freudenthal [5]. It consists of Euclidean, 
elliptic, spheric, and hyperbolic unitary geometries over the real and 
complex numbers, quaternions, octaves (the spheric geometry over the 
real numbers only, octave geometries for n = 2 only), and six other 
particular geometries. 

When extending the separation condition to the second level, one is 
left with the real Euclidean, elliptic, spheric, and hyperbolic geometries, 
and four particular geometries; on the third level three of the particular 
geometries are eliminated, the last one disappearing on the fourth level. 

The result applies immediately to the Birkhoff-Busemann-Wang 
formulation of the space problem. Indeed, if F is transitive over the pair 
of points with the distance y (0 < y < upper bound of all distances), the 
I,“-orbit consisting of the points in a distance y from x,, dissects R. 

Let F be the group of all isometries of the metric, connected, locally 
compact R. Let F be transitive over the pair of points with the distance 
y, where y is some positive number below the upper bound of the set 
of all distances in R. Then ‘R, Fl is a Euclidean, elliptic, spheric, or 
hyperbolic, unitary geometry over the real numbers, complex numbers, 
quaternions, or octaves (the spheric geometry over the reals only, octave 
geometries for n = 2 only). Let F be transitive over the triples with 
distances y, y, y’, where y’ is some positive number below the diameter 
of the distance sphere of radius y. Then R, F is a Euclidean, elliptic, 
spheric, or hyperbolic geometry over the reals. 

2.22. It should be observed that this soIution of the strong Helm- 
holtz-Lie problem, which looks so simple that it might be called final, 
excludes all kind of indefinite metric; though from the original Helm- 
holtz point of view, with its local interpretation of transitivity, indefinite 
metrics should be admitted. It would be desirable to forge a frame in which 
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geometries based on an indefinite metric, like that of special relativity, 
can be fitted. Efforts to do this have not been as successful as in the 
definite case. Conditions which characterize Euclidean and non-Euclidean 
together with pseudo-Euclidean and pseudo-non-Euclidean geometries 
have been formulated, but they are more involved and less natural 
than in the former case (Freudenthal 1121). 

First of all, though the usual metric spaces have appeared as a reason- 
able generalization of the metrics induced by positive quadratic forms, 
no analogue has been developed for indefinite quadratic forms. As a 
consequence, properties which should be derived from metrical as- 
sumptions have been enforced by group theory. Furthermore, the 
system of characterizing conditions is not free from inventions ad hoc. 

The solution presented by Freudenthal 1121 is as follows: 
R is a locally compact, connected, separably met&able space. p is a 

nontrivial, continuous quasi-metric on R, p(x, x) = 0. F is a transitive 
group of homeomorphisms of R with invariant p. F is topologized in the 
sense of continuous convergence, and in this topology F is locally compact 
and separably; metrizable. F fulfills the conditions: 

@i(R, P, J-1: If x1 , . . . . xi E R, f, E F, lim fnxj = xj , then there are 
g, E F, such that lim g, = 1 and gnxi = fnxj . (Actually the condition 
is only used for i < 3. For i = 1 it implies that the mapping of F/Jzd 
onto R by means offJ -+ x,, is topologic. For i > I it implies the analog- f 
ous property on the i-th level.) 

For x E R, L, means the light cone of x, i.e., the set of y with p(x, y) 
= 0. S,,, means the set of y with p(x, y) = CL 

@,(R, p, F): Let x0 # x1 . Then for no open W, LzO n W = L,, n W, 
unless both sets are void. 

(This condition, which means that light cones cannot coincide locally, 
excludes two-dimensional relativity. This, however, is a minor defect. 
The condition can still considerably weakened: 

LetyE&,y #x0. Let MzoU be the set of x1 f y with the property: 
there is a neighborhood W of y with LX0 n W = L,, n W. Then MSoV 
is disconnected.) 

oz(R, p, F): Every x E R, x # x0 , has a neighborhood W such that 
for any y G W with p(x,, , x) = p(xO , y) there exists an f E J,, with 
fx = y. 

(This condition, which means local transitivity of J on the distance 
spheres, would be entirely satisfactory if it were formulated with the 
provision p(xo , x) # 0. However, we need the local transitivity on the 
light cones, too.) 
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@,(R, F): In some neighborhood of x0 no S,O,z (CX + 0) is O-dimensional. 
(This condition excludes all one-dimensional geometries, but this is 

a minor defect. It is a condition ad hoc, which can not be dismissed.) 
Under these conditions F appears to be a Lie group, and J a maximal 

Lie subalgebra of F. 
In the case of a nonsimple F the further analysis, which looks much 

like that of section 2.9(7-8), . is not too laborious. For simple F, however, 
the danger that CR, Fl might fail to be first-order homogeneous (see 
Section 1.2) is a source of difficulties. Possibly they are not essential; 
meanwhile second-level conditions are invoked to conquer them. 

Let R, be the x-component of the orbit I,, X, and F, the group in- 
duced by Jz, in R, . Let the restriction of p to R, still be called p. 

The second level conditions are: Qi(R, , F, , p) for all x in some 
neighborhood of x,, with p(xO , x) # 0. 

Assuming these conditions, one is able to reduce the classification 
of the admissible / to an algebraic problem: 

/ is a Lie group, linearly and irreducibly represented in a real finite- 
dimensional linear space T. J is semisimple up to a facultative one- 
dimensional compact direct factor. p is a nontrivial continuous real 
function on T, p(0) = 0. p is invariant under jr. In some neighborhood 
of 0, x0 # 0 can be carried into any neighboring x with p(x) = p(xJ 
byajEJnotfarfrom 1. 

One has to find all J fulfilling this condition. 
Again, the local transitivity is needed on the light cones also. The 

list of admissible J is rather long; the tedious analysis depends on the 
theory of real simple Lie groups and real representations. 

To embed an admissible / as a stability group into a suitable F, one 
has to work along the same lines as in the definite case. 

Adding third-level conditions C#J one can finally reduce the variety 
of geometries to Euclidean, non-Euclidean, pseudo-Euclidean, and 
pseudo-non-Euclidean geometries. 

3. The Weyl-Cartan Space Problem 

3.1. In a smooth manifold R an affine connection is given when to 
every line element IX, dxl of R corresponds a linear mapping A(x, dx) 
of the tangential space T, in x into Tztdz in x + dx, such that A depends 
smoothly on x, linearly on dx, and A(x, dx) 6x = A(x, 6x) dx. 

Let R be a generalized metric manifold, i.e., gifted with metrics 



158 HANS FREUDENTHAL 

in the T, depending smoothly on X. An affine connection is called com- 
patible with the generalized metric, if for anv line element lx, dxl of R, 
A(x, dx) is an (infinitesimal) isometric mapping of T, into Tridr . 

In the sequel it is supposed that the metric is essentially the same in 
every T, , i.e., that the metric in T, arises from that in x,, by a linear 
mapping B, (or rather by a linear mapping preserving elementary volumes 
defined smoothly in the various Tz). 

3.2. In a note to his 1919 edition of Riemann’s Hubilitationsoortrag 
Weyl [l] raised the problem to characterize Riemannian manifolds 
among those generalized metric manifolds, and he formulated the con- 
jecture that this could be done by the postulate: 

Given the metric in TX, , there exists for any B an afine connection 
compatible with the generalized metric defined by B and the metric in Tz, . 

The problem solved by Weyl in 1922 [2, 31 is slightly different. (The 
difference was noticed by Laugwitz [2].) The generalized metric is 
replaced by a “group metric.” This means that a linear Lie group is 
given in every T, which again is related to that in Tz, , called L, by a 
linear mapping B, . The compatibility of an affine connection with such 
a group metric means that .4(x, dx) belongs to B,+,JB;l. On the other 
hand, Weyl now postulated that the affine connection be uniquely 
determined by B. 

Weyl’s proof that this condition characterizes Riemannian metrics is 
extremely involved, mainly because no effective use was made of the 
techniques of the representation theory of semisimple Lie groups. 

3.3. In 1923 l?. Cartan [5] gave a much simpler proof, which applies 
to Weyl’s first problem as well, * The variety of admissible groups L is 
sharply restricted by the assumption of the mere existence of the affine 
connection for any given B. Cartan obtained the groups of linear trans- 
formations of T leaving invariant 

1. the volume 
2. the volume and a given direction 
3. a nondegenerate quadratic form 
4. a nondegenerate skew bilinear form. 

(Actually, the fourth group may still be excluded for tl > 4; see Freuden- 
thal [9].) 

* The author could not find any justification for Scheibe’s remark [I] (p. 198) 
that Cartan’s proof should be “vtillig unzureichend,” and for Scheibe’s much 
more involved own proof. The author did not find any gap in Weyl’s proof either. 
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To come back to Weyl’s problems, it suffices to add the postulate 
that the orbits are nowhere dense, in order to characterize Riemannian 
metrics. Of course, this postulate is much weaker than Weyl’s uniqueness 
postulate. 

3.4. Another proof of Cartan’s problem was given by Freudenthai 
[9], who dropped the volume invariance condition. His list is somewhat 
longer; the fourth group is now admitted for n = 4. 

3.5. The analogue of Weyl’s problem for almost complex manifolds 
was dealt with by Klingenberg [ 1 J. Though Klingenberg used Cartan’s 
rather than Weyl’s methods, he postulated both existence and uniqueness 
of the affine connection, as did Weyl. The result is a characterization of 
hermitean manifolds. 

4. Geometries Connected with the Exceptional Simple Lie Groups 

4.1. Though forshadowed by von Staudt’s [I] and Wiener’s [l] 
work,* Hilbert’s discovery of the relation between geometric incidence 
theorems (lock theorems) and axioms for algebraic structures, is the 
most striking feature of his Grundlagen der Geometrie [l] of 1899. To 
formulate these relations, we choose projective geometry instead of 
Euclidean, as did Hilbert. 

Adding Desargues’s theorem as a “lock incidence theorem” to the 
“trivial” incidence axioms, one gets a class of geometries which can be 
described algebraically as that of projective geometries over a (non- 
necessarily commutative) field. Adding Pappus-Pascal’s theorem al- 
gebraically means postulating commutativity. 

A momentous progress-the first one after Hilbert in this realm of 
ideas-was marked by Moufang’s [l, 21 discovery and analysis of 
harmonic geometries. The harmonic lock incidence theorem says that a 
harmonic quadruple is uniquely determined by its first triple, so it does 
not depend on its particular construction. Moufang showed that affine 
coordinatization is still possible by means of the harmonic theorem, 
though the underlying algebraic structure may fail to be associative 
with respect to multiplication. Associativity was replaced by a weaker 
law, called alternativity, which meansthat the associator 

{a, b, c} = (ub)c - a(bc) 

* For the history of Grundlagen der Geometrie, see Freudenthal [7, 81. 
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is multiplied with - 1 if Q, b, c undergo an odd permutation. In rings, 
where x = -x implies x = 0, this property is equivalent with 

a(ub) = a”b, (ub)a = a(bu), ub” = (ub)b. 

An alternative ring with a one-element and inverses with the usual 
properties is called an alternative field. The class of harmonic geometries 
can algebraically be described by the fact that they admit of affine 
coordinatizations over alternative fields. 

An example of a harmonic non-Desarguean plane geometry was 
provided by the alternative field of the octaves. Higher-dimensional 
projective geometries are always Desarguean. 

4.2. The octaves system* is one of the Hurwitz algebras, i.e., a 
finite-dimensional algebra with a one-element 1, an inner product with 
the usual properties, and a norm such that ! x j2 = (x, x) and 1 XY ; 
= / LT 1 . 1~ 1 . Over the reals (no other ground field will be admitted 
at the moment) there are four Hurwitz algebras, called .Yi , .#a, X4 , 
.X s of dimensions 1, 2, 4, 8, the commutative fields of the reals, and 
of the complex numbers, the associative field of the quaternions, and 
the alternative field of the octaves. 

A Hurwitz algebra possesses an involutory antiautomorphism x -+ 2 
with 5 = -x for (x, 1) = 0. 

4.3. Another important tool is the so-called Jordan algebras, charac- 
terized by commutativity and the identity 

a2(ub) = a(a”b) 

The important Jordan algebras J,,(X) are defined as follows. They 
consist of the n-dimensional hermiteun matrices over the Hurwitz algebra 
.X , the usual matrix product of a and b being replaced by the symmetrized 
product a o b = &(ub + ba). If A’ is the algebra of octaves, we must 
restrict n to be < 3. 

4.4. Besides the large classes of simple and srmisimple Lie algebras 
over the complex numbers, there are five exceptional ones, 

G,, F,, Es,. E,, Es 

* A brief history of the octaves may be found in van der Blij’s [I], an outline 
of their fundamental theory in van der Rlij and Springer [I]. 
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of dimensions 
14, 52, 78, 133, 248. 

For every one of these Lie algebras there exist real types other than 
the unitary one and the twin type (L, and L,, if L is the complex type), 

. t VlZ., 

G 2.2 with maximal compact A,+ A,, 

F F4.s 4.1, with maximal compact B,, C3 + A,, 

Es.1, Es.2, EB,o., Es.,., with maximal compact D, + &, A, + AI, F4, C,, 

Em &.a Em with maximal compact D, + AI, E, + A,, A,, 

E R,l, E,,, with maximal compact E, + AI, D,. 

4.5. Whereas the groups of the large classes are given by simple 
definitions with intuitive geometric interpretations, the exceptional 
groups had originally been introduced in a purely formal way (I?. Cartan 

[I* 21). 
However, in 1914 I?. Cartan [4] mentioned without proof a represen- 

tation of G, ,, as the automorphisms group of the octaves (so is G, r of 
the split octaves). A new progress was made by Chevalley and Schafer 
[l] in 1950. They discovered that F d,O appears as the automorphisms 
group of Ia or, equivalently, as the invariance group of 

tr(x 0 x) and tr(x 0 x 0 X) 

in Ja(.Ya). Actually, all that is needed for this discovery can be found 
in I?. Cartan’s paper [2]; however, in the case of the F4 Cartan overlooked 
the cubic invariant though he acknowledged such an invariant in the 
case of E, . Chevalley and Schafer also gave an interpretation of E, 
by means of J3(s8), but they did not mention the cubic invariant by 
which Cartan had introduced E, , 

4.6. An automorphism of the real projective plane is determined by 
the image of a general quadruple of points, so the group of automor- 
phisms (A3,2,*) depends on 8 parameters. For the complex projective 
plane the corresponding number is 2 . 8 (Aa,**); for the quaternion 
plane it is 4 * 8 + 3 (A5,0,*), where th e summand 3 accounts for the 
automorphisms of the quaternion field. For Moufang’s octavian plane 

t See Appendix. We retain Cartan’s notations for simple algebras and Cartan’s 
numberings of primitive root forms. There is no reason why every author should 
use his own system. For the real types we have proposed a more rational system 

of numbering. 
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analogous reasoning would give 8 * 8 + 14 = 78, which is the dimen- 
sion of E6 . It seems that in the late 1940’s several mathematicians 
guessed that some real form of the Es might be the automorphisms group 
of the octavian plane. 

In 1950 Bore1 [l] noticed that Cartan’s symmetric space F4 ,,/B, ,, , 
which is 16-dimensional, is provided with a structure of a projective 
plane. This remark led him to calling this symmetric space the plane 
of octaves. Somewhat earlier, in 1949, Hirsch [l] had constructed the 
octavian plane by purely topologic means. At the same time Jordan [I ] 
stated without proof a presentation of the octavian plane by the idempot- 
ents of Ja(Za). 

4.7. Starting from the Chevalley and Schafer paper of 1950 though 
not acquainted with the investigations mentioned in Section 4.6 (except 
Hirsch’s), Freudenthal in 1951 [2] looked for an algebraic presentation 
of the octavian plane and its automorphisms group. 

The usual algebraization of projective n-space takes place in linear 
(n + l)-space by means of the lattice of its linear subspaces. Because 
of the lack of associativity in 2s this method would not work in the 
case of the octavian plane. 

Another method of some importance in von Neumann’s continuous 
geometry is to start with unitary (n + 1)-space and the lattice of its 
orthogonal (hermitean) projections; the points of projective n-space 
would be described by the projections with a one-dimensional image. 
This algebraization of projective space takes place in J,+r(Z) by means 
of the idempotents of this Jordan algebra; the points are described by the 
irreducible idempotents, and the inclusion relation p C q is explained 
by p o q = p. The automorphisms are described by p -+ a*pa with 
det a = 1. 

This method of algebraization was adopted by Freudenthal. It still 
works for the octavian plane which can be described by the lattice of 
idempotents of Ja(Xs). But while in the case of associative% any irre- 
ducible idempotent of J,+,(Z) can be factorized as the matrix product 
xx* of a vector x and its conjugate transposed x*, this reduction to the 
first method of algebraization fails in the octavian case. 

An important role is played in J&@a) by a cubic form called det, 
defined by 

= E1t2E3 - (6 I x1 I2 + t2 I x I2 + t3 I x3 I”) + 2Rehw3). 
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det can be expressed by traces, 

det x = i tr 9 - 4 tr x2 tr x + &tr x)“. 

A symmetric trilinear form ( , , ) is defined by 

(x,x,x) = det x. 

An inner product is provided in J,(.F,) by 

By means of 

(x, y) = 3 tr v. 

(x x y, 2) = 3(x, y, 2) 

one can define a cross product of x and y. 
The irreducible idempotents of J3(Z8) are characterized by x x x 

= 0, tr x = 1. Defining P by 

XEPHXXX=O 

and taking the elements of P up to a scalar factor, we may consider 
P as the set of points of the octavian plane. If in the description of 
straight lines we replace the idempotents x with tr x = 2 by 1 - x, 
we can use the same set P as the set of straight lines. Then the incidence 
of a point x and a line u is described by 

xou = 0 

or, equivalently, by 
tr xz4 = 0. 

The straight lines are 8-dimensional spheres. The straight line through 
the different points x, y is given by 

the intersection of two lines u, v by 

l.4 x 0. 

The invariance group of det coincides on P with the group of auto- 
morphisms of the plane. It is the representation xi(or 7~~) of E,,,,, . 
Its Lie algebra is the sum of two linear subspaces K and L, 
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K consisting of the mappings x -+ a*x + xa, where a is a 3-matrix 
over X, with tr a = 0; 

L consisting of the mappings induced by infinitesimal automorphisms 
of X, . 

Let @ and ~0’ (infinitesimal elements of the invariance group of det) 
represent the same infinitesimal automorphisms of the plane, once 
with P interpreted as the point plane and afterwards as the lines plane. 
Then (up to a scalar factor) 0 and CD’ are related by a -+ -a* in K and 
by the identity in L. If the point representation of E6 is 7ri , the line 
representation is xa (Freudenthal [3]). 

The invariance group of det and the inner product together coincides 
with the group of automorphisms of ja(.~?s) (in the O-sense). Its Lie 
algebra consists of the Cp = @‘. In the 26-dimensional subspace of 
ja(X s) of elements of trace 0, it is the representation r1 of F4,0. Geo- 
metrically, it can be interpreted as the transitive group of automorphisms 
of an elliptic geometry of the plane. By means of this group every element 
of Ja(jYs) can be put in a diagonal form, which is unique up to the order 
of the diagonal elements. (This theorem is the main tool by which the 
above properties were proved by Freudenthal [2, 31.) 

4.8. In 1953 Tits [3] gave another proof (supplemented in [4]) for 
the identity of the group of automorphisms of the octavian plane with 
E a,o,; ) using algebraic techniques of affine geometry. In the same paper 
he called attention to the polarities, especially the so-called hermitean 
polarities of the plane which on every straight line behave as inversions 
of the g-sphere. The mapping carrying every point x into the line x 
is an elliptic polarity, defining the above elliptic geometry. Using a 
hyperbolic polarity, one gets a hyperbolic geometry of the plane with 
the group F4,r (Tits [4]). 

The algebraic expression of the general hermitean polarity @ is 

@a = 2(u X u) x a - (a, 24)~; 

the points a coinciding with its polar lines are given by (a, u) = 0 
(Freudenthal [4, VI). H ermitean polarities and perspectivities have 
been extensively studied by Freudenthal [4, III; 4, v]. 

4.9. The algebra developed for the investigation of the plane over 
Xs works as well, if X, is replaced by &‘, , Hz, @, , though some 
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traces appearing as numerical coefficients have to be changed. In the 
cases :;// i , Xz , X, , X8 the automorphisms groups yield: 

elliptic: B 1.0 A 2.0 c F&O 3.0 

hyperbolic: B,., A,,, C,,, I+‘4,1 

projective: 40,* 4..* 4,0,* &,o.* 

Of course, in the case of Xz one has to disregard noncontinuous auto- 
morphisms. 

Complexification and quaternionization can, of course, be imposed 
on the four large classes of simple groups also. One has to start with their 
usual linear representations (respectively, ni , 7r2 , n1 , ~a) and to inter- 
pret the invariant symmetric or skew form in the hermitean sense. One 
gets: 

81 32 z4 

4 A, + A, A22+1 

4 A?, c 22+1 

CL A22-1 D2, 

4 A21-1 c2, 

It is easy to account for the real types too. Octavization, however, is 
possible for low 1 only. 

4.10. Octavian planes have been investigated by purely algebraic 
methods too; the restriction to the real ground field was dropped, only 
the characteristic was supposed # 2, 3. Using as a tool the Peirce 
decomposition instead of transformation on the diagonal form, Springer 
[I] restated the essential geometric results. The group of automorphisms 
has been studied by Jacobson [1], Springer [4, 51, and Suh [l]. It 
becomes slightly more involved though it is still related to an algebraic 
group E6. In the total group one has to distinguish the subgroup 
generated by the perspectivities and that generated by the perspectivities 
with united center and axis. The algebraic counterpart is the group 
of cr-semilinear f with 

detfx = v(det x) (v f 0) 

and the subgroups defined by u = 1, respectively, u = 1, v = 1. 
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This equation also describes isomorphisms between different projective 
planes (over different octavian algebras). An extensive study of hermitian 
polarities, elliptic and hyperbolic plane geometries over octavian algebras 
with the same methods has been made by Springer and Veldkamp [l]. 
In the same paper a relation to the geometry of reflections has been 
established. 

4.11. Though Freudenthal’s investigations into the geometric nature 
of E, and E, started as early as 1953 [4, II; 4, III], they have in a latter 
stage gradually developed under the influence of parallel work by Tits. 
The influence was due to his paper [4], his manuscript [5], and mainly 
to personal communication. This makes it hard, if not impossible, to 
give a faithful account on details of the course of inventions. However, 
it should be noticed that from the beginning the framework of Tits’ 
investigations was broader; in an early stage he obtained possession of a 
tool of huge heuristic importance which will be dealt with in Section V 
of this account. 

Freudenthal [4, I] introduced linear spaces R and L? of elements 

respectively, 
P = Ix, II, 6, WI 

where x, U, a, b E Is(X), @ is an infinitesimal automorphism of /s(Z) 
and p, 4, w are real numbers; furthermore, a commutative cross product 
on R mapping rR, R1 on 2, and a product OP mapping IL, K1 on R; 
finally, the varieties %B of P with P x P = 0 and % of 0 with 0a = 0 
(i.e., 02R = 0). For P,: 

dim R = 56, dim Q = 133, dim proj YR = 27, dim proj % = 33. 

L! could be identified with E, 2 represented in R by left-hand multiplica- 
tions according to nr, leaving YR invariant, and characterized by this 
fact. % appeared to be invariant under the adjoint transformations, 
both ~11 and P being transitively transformed. Cartan’s symplectic and 
fourth degree invariant of this representation could be identified as 

and 
PI! p21 = (x,, u2) - (X2,%) + 61~2 - 52% 

;{(PxP)P,P}=-;(PxP,PxP). 

(These numerical coefficients are valid for %a .) 
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The main algebraic tool was an identity 

(x x x) x (x x x) = (det X)X 

for x E la(X), which has been proved by Springer [3] to be characteristic 
for det, and an identity for R, 

(P x Pl>PZ - (P x P,)P, = tv5, PAP + &e P,)P, + Q(4, w,. 

This algebra led to a geometric interpretation: The elements of % 
(up to scalar factors) are called points. [O, O,] = 0 reads: the points are 
joined. Maximal sets of joined points are planes; intersections of different 
planes, if consisting of at least two points, are called straight lines. 

The planes are described by the P E !U in the sense that 

OP=O 

means incidence of the point 0 and the plane P. The planes then have 
the structure of projective planes over X. For two different joined 
points there is one and only one line containing both of them. The 
intersection of different planes is void, a point, or a line. Given a plane 
P and a point 0 outside, there is one and only one plane passing through 
0 and intersecting P in a line; algebraically, it is given by OP. Two 
planes P, , P, intersect in a line, iff P, X Pz = 0, in a point iff 
{Pr , Pz} = 0, and P, x P, # 0. Then P, x P, is the intersection. 
Given a line and a point outside, there is either one plane containing 
both of them or one line meeting both of them, etc. 

These properties are reminders of symplectic geometry of 5-dimen- 
sional projective space with its points, lines, planes, and conjugateness 
with respect to the fundamental skew bilinear form interpreted as 
jointness of points. When drawing this conclusion, Freudenthal was 
influenced by Tits [4] who discovered it in another context, to be displayed 
in Section V. 

Indeed, if Zi is taken for Z, it is symplectic geometry of 5-dimen- 
sional space, though not presented in linear 6-space but in 14-space, 
where the symplectic group C,,, is represented by ~a instead of 7~~. 
For LP = X2 and X4 one gets symplectic geometry in complex and 
quaternion projective 5-space (with a hermitian skew form), and the 
groups A,,, represented by 7r3 , and D,,, represented by ~7~ . 

4.12. Hence, after the quadruple elliptic (hyperbolic) and projective 
plane geometries over the four Hurwitz algebras we found a quadruple 
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of symplectic geometries of 5-space with the groups (complex classifica- 
tion) 

elliptic: & A2 G F4 
projective: A, A, + 4 A, Es 
symplectic: C, A, Da E, 

which have the dimensions 

hence, 

3 8 21 52 

8 16 35 78 

21 35 66 133, 

5p - 2 + 0, 0, 3, 14, 

8~ + 0, 0, 3, 14, 

14p + 7 + 0, 0, 3, 14, 

where p = 1, 2,4, 8 and 0, 0, 3, 14 are the dimensions of the continuous 
automorphisms groups of X1 , X, , .?P4 , 8s . (There are a few more 
arithmetic properties like this, for instance, the varieties of points, lines, 
and planes in symplectic geometry having the dimensions 1 + 4p, 
2 + 5p, 3 + 3p.j 

The 3 x d-rectangle of groups shows a symmetry, which suggests 
the completion by a fourth line 

with the dimensions 

Extrapolating by 

F4 4 4 * 

52 78 133 *. 

26~ + 26 + 0, 0, 3, 14, 

one may guess that the dimension of the missing group must be 248, 
which is the dimension of Es , and by such number mystical tricks one 
finds that the real types in the fourth line should be 

The first indication of the magic square arising from this addition 
is to be found in Tits’s Thise d’agrigge’ [6], though its arithmetical proper- 
ties are not mentioned. It was probably independently found and used 



LIE GROUPS IN THE FOUNDATIONS OF GEOMETRY 169 

as a heuristic tool by Freudenthal and Rozenfeld. The problem arose 
to fill the fourth line with a quadruple of geometries over the four 
Hurwitz algebras. In 1956 Rozenfeld [3] proposed a unified solution 
for the whole magic square, which will be considered in Section 4.16. In 
1958 (or perhaps 1957) Tits and Freudenthal found independent ex- 
planations. The fourth geometry was called metasymplectic by Freuden- 
thal [4, VIII], so the magic square now reads: 

2-dim eiliptic geometry: B, A* c, F4 
2-dim projective geometry: A, A2 i A, A, E, 
5-dim symplectic geometry: c3 -4, D6 ET 
metasymplectic geometry: F4 EB ET & 

Elliptic plane geometry has one kind of space element, points, (because 
straight lines connected to points by a fixed polarity are redundant). 
Projective plane geometry has two kinds, points and lines, 5-dim 
symplectic geometry has three, points, lines, and planes. Metasymplectic 
geometry may be expected to have a fourth kind, namely the sym- 
plectic geometries of the third line, called for short “symplecta” (plural 
of symplecton). The algebraic apparatus to deal with this geometry has 
been developed by Freudenthal in 1958, though partially it goes back 
as far as 1954 [4, II]. The knowledge of Tits’ broader framework of 
geometries proved to be a useful clue in many details. The method 
applying to the real metasymplectic geometry was published in 1959 
[4, VIII-IX], the unified method in 1963 14, X-XI]. 

4.13. The exposition of the algebraic apparatus is postponed in order 
to start with a selection from the numerous geometric results. 

In metasymplectic geometry there are three relations between points, 
in decreasing strength: 

joined, i.e., contained in a line, which is unique if the points are differ- 
ent; 

interwoven, i.e., contained in a symplecton, which is unique if the 
points are not joined; 

hinged, i.e., joined to a third point, which is unique if the points are 
not interwoven. 

There are dual relations between symplecta: 
joined, i.e., intersecting along a plane, which is unique if the symplecta 

are different; 
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interwoven, i.e., intersecting, in a point if they are not joined; 
hinged, i.e., joined to a third symplecton, which is unique if they are 

not interwoven. 

If a point A and a symplecton @ are given there is a point in @ inter- 
woven with A (and a symplecton through A interwoven with @), In 
the general case they are unique, otherwise A and @ are called 

half-incident, and then there is even a line in @ joined to A, unique 
if A and @ are not incident (and a pencil of symplecta through A joined 
to @, unique if A and @ are not incident), and every point in @ is hinged 
with A (every symplecton through A hinged with @). 

If the points A, 3 are interwoven, and B, C joined, then A, C are 
hinged (and the analogue for symplecta). 

In two given symplecta two joined points, one in each of both, may be 
found, iff they are hinged (and the dual). 

A symplecton is a maximal set of pairwise interwoven points, and the 
set of symplecta through a given point is a maximal set of interwoven 
symplecta. (Notice, however, that the converses are not true.) 

So far there was a duality-points t) symplecta, lines tf planes. This 
duality breaks down as soon as the algebraic structure of the symplecton 
(as a variety of points) is compared with that of the point (as a variety 
of the symplecta containing the point). The first one is just a symplecton, 
the other is a quadric of projective dimension 5, 6, 8, 12 and signature 
1, 2, 4, 8. 

The variety of the symplecta around a line has the structure of a real 
projective plane, whereas the variety of the points in a plane is just a 
plane over #. The variety of the symplecta around a plane has the 
structure of a real projective line, whereas the variety of the points in a 
line is just a line over X. 

The automorphisms groups of the metasymplectic geometries are 
the groups of the fourth line of the magic square. They are transitive 
on the varieties of points, lines, planes, and symplecta. 

4.14. The special algebraic apparatus for the real metasymplectic 
geometry (group F’& is, actually, according to a remark of T. A. Springer, 
a Jordan algebra over split octaves. However, it was formulated in a 
nonoctavian way, using the well-known cubic form in the presentation 

det A + det B + det C - tr ABC, 

where A, B, C are 3-3-real matrices. This form is closely related to the 
27 straight lines on a cubic surface. 
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The unified algebraic apparatus uses quite different tools. Let 9$ 
be a Lie algebra of the fourth line of the magic square. For at E Ytf, a 
linear mapping (@, @) of %a into itself is defined by 

(@, @)@p* = @@* + Ep(tr $kF*p - c,l(tr#*)@* 

c2 = 9, 12, 18, 30, 
9.52 

c3=7$, 72, 126, 240. 

4 means the adjoint of @. 
(@, , Q2) is the symmetric bilinear expression belonging to (@, @). 
%I is the linear space spanned by the (@i , G2). The adjoint of %a is 
represented in %i in a natural way. 

@ E ‘B, iff Q, E %, and (@, Cp) = 0, The elements # 0 of +U, up to 
scalar factors are the symplecta. 

A E ‘Lu, iff A has the form (@i , Q2) with [@r , @,J = 0. The elements 
# 0 of 9~~ up to a scalar factor are the points. 

The symplecta Q1 , Q2 are 
joined iff (Qz, , Q2) = 0; 
interwoven iff [CD1 , @J = 0; 
hinged iff tr @rG2 = 0. 

The points A, B are 
joined iff AB = 0; 
interwoven iff [A, B] = 0; 
hinged iff tr AB = 0. 

The point A and the symplecton @ are 
incident iff there is a symplecton @* with @ = A@*; 
half incident iff A@ = 0. 

4.15. Freudenthal’s [4, V-VII J was dedicated to an axiomatic approach 
to octavian symplectic geometry. The axiomatic system is extremely 
simple. Its elements is a set 91 of “points” and a binary reflexive sym- 
metric relation, called jointness. The maximal sets of pairwise joined 
points are called planes; they form a set 9-X. Intersections of two planes 
containing more than one point are called lines. 

Axiom A,: Every plane with its points and lines is a plane over 2, , 

Axiom 6: If 0 is a point and P a plane, 0 E P, then the set of points 
in P joined to 0 is a line. 
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Two disjoint planes P, , Pz are connected by a natural antiautomor- 
phism PI -+ P, carrying a point 8 of P into the line in P, which is 
pointwise joined to 0. 

Axiom C: (P, -+ Pl)(Pz -+ P,)(Pl + PJ (fog p&wise disjoint Pi) 
is a polarity of P, . 

This axiom can also be formulated as a pure incidence theorem. 
The axiomatic system characterizes the 5-dimensional symplectic 

geometries over the reals (p = 1) and over the octaves (p = 8). For 
p = 2,4 it is possibly not sufficient. 

A general axiomatic system for polar geometries comprising geometries 
on a quadric, unitary, and symplectic geometries over arbitrary fields 
has been developed by Veldkamp [l]. However, it does not cover the 
(non-Desarguean) symplectic geometry over Z’s . 

Metasymplectic geometry has not yet been axiomatized. 

4.16. The groups of the magic square possess symmetric spaces the 
dimension of ,which is a power of 2, viz., 2pq for the group in the p-th 
column and q-th row, where both,columns and rows are numbered by 
p = 1, 2, 4, 8, q = 1, 2, 4, 8. These symmetric spaces belong to the real 

types 
B 1.1 4.1 G,, F4.1 

A 2.*r 4.2 41 

n 4.1 6.4 

E 8.2 . 

Their stability groups are spin representations of certain orthogonal 
groups (see Cartan [6]). 

This remark led Rozenfeld [3] to explain the compact types of the 
magic square groups as elliptic groups of planes over H, @ H, . The 
plane structure should be a weak one; there might be exceptional pairs 
of points with no unique joining line. 

The origin of Rozenfeld’s idea to admit tensor products of Hurwitz 
and related algebras is found in his book [2]. A projective geometry can 
be interpreted as an elliptic geometry by the following trick: 

Consider pairs of points x, y and pairs of hyperplanes u, v in a projective 
n-space. Such quadruples possess a projective invariant 
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Combine x and u into one 

A = xe, + ue- 

analogously, 

B = ye+ f ve- 

where 

e+ = $(I + e), e- = $(I - 4 

are “dual numbers,” 

e2 = I. 

A and B may be considered as points of a projective n-space over the 
algebra of dual numbers; indeed, multiplication of A with the dual 
number eye+ + flee- yields oLxe+ f fiue- . Hence, it means multiplication 
of x and u separately. Using the automorphism (Y -N & of the algebra of 
dual numbers which is induced by e--f -e, one gets 

AA = (x, u), I@ = (Y, v), AB . BA = (x, v) (y, u). 

So the above projective invariant of four elements may be written as an 
invariant of two points 

Al?. B&AA- BB 

which provides the projective space over the algebra of dual numbers 
with an elliptic structure. 

Had we started with a projective geometry over the complex numbers 
or over the quaternions, the result would have been an elliptic geometry 
over an algebra of dual numbers with complex or quaternion coefficients, 
in other words, over the tensor product of the algebra of dual numbers 
with that of complex numbers or quaternions. (Here one has to be careful 
with the order of the factors in the invariant.) 

Likewise, symplectic geometry can be interpreted as an elliptic geo- 
metry over split quaternions (basis 1, i, e, ei, multiplication rules as for 
quaternions except e2 = (e~)~ = 1). Lines are to be interpreted as points; 
the cross ratio of two lines with their polars in symplectic geometry 
becomes the elliptic invariant. Again one can start with symplectic 
geometry over complex numbers and quaternions to arrive at elliptic 
geometry over the tensor product of the algebra of split quaternions 
with that of complex numbers or quaternions. 

This device has been used by Rozenfeld in a systematic way. 
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4.17. In a tensor product R of Hurwitz algebras A?~ or split Hurwitz 
algebras Xr,’ the conjugate of an element is defined by taking the 
conjugates in both factors. !JO if one factor is Z, or XP’ and the other 
.?Fp or A?*‘, the dimension of the subspace of real elements is 

P4--P---Q+2 

of pure imaginary elements is 

p+q-2. 

Unitary groups of affine n-space over .W are defined by imposing in- 
variance of a hermitean form over LX?-. The dimension of such a group 
can be computed by counting the number of real parameters in the 
infinitesimal unitary skew hermitean matrices and adding the dimension 
of the automorphisms group of Y which is the sum of those of the factor 
(0, 0, 3, 14). Th e matrix has n purely imaginary diagonal coefficients 
and (!J general coefficients. So the dimension of the unitary group of 
affine n-space over X becomes 

(P + 4 - an + PP@) + (0, 0, 3, 14) + (0, 0, 3, 14) 

according top = 1, 2, 4, 8, q = 1, 2, 4, 8. 
Elliptic geometry of projective n-space over X should admit this 

group as its stability group. The group of motions should have pqn 
additional dimensions. Comparing its dimension with those of semi- 
simple groups, we find as elliptic groups of projective n-space over Ix: 

P9 9 I ’ 2 4 a 

I / D+,nAl, or Btn A. c “+I F4 
2 / A, x A, A *“+I EB 
4 I D **+a E, 
8 I E8 

In the last column it is assumed that n = 2. The real types of these 
groups will depend on the signature of the underlying form and the 
division or split character of the factor algebras of .x?. 

Of course, this is only heuristic arguments. They are even incorrect 
in the cases of the last column, because then the lack of associativity in 
Z forbids to define projective points as classes of scalar multiples of a 
vector. Outside the last column the argument can be validated by classic 
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methods. For p = 8, q = 1, Freudenthal’s method of Jordan algebras 
can be used. Rozenfeld [3] 1 c aimed that it works in all cases p = 8, 
but this claim can be refuted for q = 4, 8. For p = 8, q = 2, Springer 
has proved [unpublished observations] that the method still works. 
Elliptic geometry over octaves with complex coefficients yields the 
compact, symmetric space belonging to E,,, . 

To justify Rozenfeld’s assertions, which are undoubtedly true, one 
should prove that in any symmetric space of the magic square there 
exists: 

1. an invariant set of pq-dimensional manifolds (straight lines) such 
that two general points are contained in one and only one; 

2. an invariant polarity notion which imposes a structure of elliptic 
plane; 

3. a way to describe the structure of the space by means of the algebras 
N (see Freudenthal [13]). 

Rozenfeld found a few more arithmetical relations in the magic 
square, which still are waiting for an explanation. 

4.18. Tits [8] discovered a unified presentation of all algebras of the 
magic square with all their real types: 

K : a field of characteristic # 2,3; 

A = K or an alternative algebra of degree 2; 

C = K or a Jordan algebra of degree 3; 

A,, C, the kernels of the generic trace of A, C; 

B, D the algebras of derivations of A, C. 

For a, , us E A 

(a,, a&b = * [[a, a’]b] - gu, a’, b} 

defines an element (ui, aa) of B; for ci, c, E C 

(Cl, c,P = ClW) - c*(4) 

defines an element of D. 

In 
L=B+A,@C,+D 

a Lie algebra structure is defined. 
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In B and D the commutator is the usual one, 

LB, 4 = (Oh 
[b, a @ c] = ba @ c for 6 E B, a E A,, c E C,, 

[d, a @ c] = a @ dc for dE D, a E A,,, c E Co, 

[a1 0 cl* a2 0 51 = (6, 4 (a,, ae> + (u+* - (a,, a,)) 0 (C$p - (c,, CJ) 
+ (al, 4 (cl, cd for ai E A,, c, E C,. 

Taking for A and C the usual algebras, one gets all Lie algebras of the 
magic square. 

This unified presentation is likely to play a major role in the future. 

5. Tits Geometries 

5.1. If (complex) A, is presented as the group of linear mappings of 
(I + I)-space R with determinant 1, the fundamental representation 
xi of A, is just the representation induced in the space Rci’ of the 
i-vectors (skew i-tensors) of R. The highest weight-vectors of ni with 
respect to any (ordered) trunk (Cartan subgroup) are the pure i-vectors 
(exterior products of i vectors), which in the projective view represent 
the projective (i - I)-subspaces of R in the Plucker coordinatization 
of the i-Grassmann variety ri . 

If the weights of xi are wi , . . . . w,+i (~wj = 0), the root forms are 
wi - wj ) among which we can take pi = wi - wi+i in this order as 
primitive ones. Every positive root form is a sum pi + ps+l + . . . + pj 
of primitive ones. The highest weight of 7ri is wi + . . . + wi; it is called 
fTi tO0. 

ri acted on by ni(A r) is a homogeneous space. To find its stability group, 
we look for the elements of rr,(A,) which conserve the highest weight- 
vector up to a scalar factor. They are spanned by the whole trunk, by all 
branches e, belonging to positive root forms OL, and by all branches e-, , 
where cy as a sum of primitive root forms is free from summands pi . 

Reversing this argument one can define the Grassmann varieties by 
group theory as homogeneous spaces of A, , the stability groups of 
which are determined in a simple manner by the graph of Ar . 

5.2. This method can be generalized to arbitrary (complex) semi- 
simple groups. 
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Let G be a complex semisimple Lie algebra, H an ordered trunk, B 
the Bore1 subalgebra (hence, maximal solvable) spanned by H and the 
branches e, of positive root forms 01. Let pi, . . . . p1 be the primitive root 
forms, and Go) the subalgebra spanned by B and the branches e-, , 
where (Y as a sum of primitive root form is free from pi . 

(According to Morozov [l] and Karpelevic [l] the Gti’ are essentially 
all nonsemisimple maximal subalgebras of G.) 

In the case Al, Gti) is the stability group of ri , B the stability group 
of the homogeneous space of total flags. ri can be also considered as the 
variety of conjugates of G u), the variety of total flags as the variety of 
conjugates of B. Elements of different ri are considered as incident (i.e., 
one of them contains the other) iff the intersection of their stability 
groups contains a conjugate of B. 

Again these properties may be used as definitions in the general case. 
In the case A, the elements of all rj incident with an element c of ri 

and different from c fall into two subsets, the projective geometry 
within c with the group Aipl and the projective geometry around c with 
the group A,+ . Every element of the one is incident with every element 
of the other. 

5.3. Such considerations led Tits [S-7] to the notion of a category of 
incidence geometries J( IV) belonging to graphs W of semisimple groups. 

Every J( IV) consists of a graph IV, a family of sets E, corresponding 
to the nodes of IV, and a binary symmetric reflexive incidence relation 
Z on U Ei which on every single Ei coincides with the identity relation. 

The residual geometry of a I(W) with respect to an a E Ei consists 
of the graph IV’ arising from W by removal of the node i and its bonds 
with other nodes, the family of sets E,’ of c E Ej incident with a (j # i), 
and the restriction of Z to U Ej’. 

Axiom I: Let W be the disjoint union of W’ and w”. Then the sets 
of J(W) are those of J( W’) and f( W”), and the incidence relation of J(W) 
coincides with those of J( W’) and J( W”) in their definition domain and 
with the all-relation outside. 

Hence, if i and K are separated in W by j, then elements a E Ei and 
c E E, are incident with each other as soon as both of them are incident 
with some element b of Ej . 

Axiom II: Zf J(W) is given, let for any x E U Ei , and some j, Q(x) 
be the set of all elements of Ej incident with x. Then, if a and b are non- 
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incident and if @(a) n Q(b) is nonvoid, there exists some c, such that @(c) 
3 Q(u) n G(b). 

For instance, in the case A,, the intersection of two nonvoid projective 
subspaces, if containing a point, is again a nonvoid projective subspace. 

Axiom III: For any J(W), U Ei d oes not split into two totully non- 
incident subsets except if W consists of one single node. 

Hence, two elements of U Ei can always be joined by a finite chain of 
elements each of which is incident with the next one. One may even 
choose the links of the chain alternatively from two given sets Ei . 

These axioms are fulfilled in the example with which we started, i.e., 
the geometries belonging to the complex semisimple Lie groups G, 
where U Z?i is the set of maximal subgroups of G containing a Bore1 sub- 
group (or equivalently, the set of conjugates of G(l)), and a E Ei , b E Ej 
are called incident if a A b contains a Bore1 subgroup (conjugate of B). 
The main tool to prove this and to deal with these geometries is the 
lemma of Bruhat which for the present use can be stated in the form: 

Two Bore1 subgroups have a trunk in commbn. 
By this fact the study of the relations between elements of E is 

enormously simplified. One can replace Ei by the set Ei” of maximal 
subgroups of G containing a given trunk H (or equivalently by the 
subgroups equivalent to G”) under the kaleidoscope group), and E by 
E* =: u E.0 

As G”) “is generated by H and the e, with (.“i , CX) > 0 (n, = i-th 
fundamental weight), Eio may be identified with the set l7i of weights 
equivalent to rri under the kaleidoscope group. Incidence of two elements 
of E” is then translated by the relation (h, CX)(~, cx) 3 0 for all root forms 
cx between the corresponding h, p E n = U Di . 

This yields a simple algebraic tool to deal with the Tits geometries 
belonging to complex semisimple groups. 

5.4. In a category subjected to these axioms the geometries J(W) 
can be recursively studied on the basis of the knowledge of the geometries 
of rank 2, the W of which is the graph of A, , B2 , or Ga . 

The Axioms I-III are a marvelous tool to derive incidence relations. 
Let us write a chain such as mentioned after Axiom III by a string of 
numbers i, each representing an element of Ei , but not necessarily the 
same one if the number appears several times. Then one can formulate 
incidence theorems of the kind: 

For any puir of elements of Ei , Ej there exists a joining chain iubcj. 
If for two given elements of Ei , Ej there exists a joining chain iabcj, then 

for the same pair there exists a chain iuvj too. 
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if for two given elements of Ei , E, there exists a joining chain iabcj, it is 
either unique, or there exists a joining chain iuvj too. 

In the case of AI incidence theorems of this kind may read as follows: 
Given a point and a line, there is a chain 1212 joining them. 
If, given a i-space and a j-space, there is a k-space such that ikj, then 

there is for k’ = i + j - k - 1 and 0 < k’ < n, a k’-space such that ik’j. 
If, given a i-space and a j-space, there is a k-space (k < i) such that ikj, 

then this k-space is either unique, or there is a (k + I)-space such that 
i(k + l)i. 

n is called the length of the chain aOtil . . . a,. A chain is called irreducible 
if all its elements are different. A geometry of rank 1 = 2 is called a 
n-gonic structure if for any two elements of E, u E, there exists a joining 
chain of length < n and, at most, one joining chain of minima1 length < n. 

The characteristic incidence properties of this kind are for the geo- 
metries of rank 2: A,: a 3-gonic structure, B,: a 4-gonic structure, 
Ga: a 6-gonic structure. 

5.5. To show how the recursive method works, we derive in the geo- 
metry of AI the existence of a line joining two given points: 

In any case there is a joining chain 121212 . . . 1. Deleting the node 1 
we get a geometry A,-, in which 2 plays the role of point. By induction 
we may suppose the existence of a 3 incident with the two first 2 of the 
above chain, hence 123212 . . . 1. Here, by the consequence of Axiom I 
we may omit a 2 between 1 and 3, as to get a chain 1312 ,.. I. Now, 
deleting the node 3 we get in the left-hand part of the graph a two- 
dimensional projective geometry which contains the first two 1’s of the 
chain. These are points which can be joined by a line so we get a new 
chain 1212 . . . 1 which is by two links shorter than the one we started 
with. This process can be repeated with the final result of the existence of 
121. 

To show the use of Axiom II, we prove the uniqueness of this line: 
If a pair of points and a pair of lines are such that every point is incident 
with every line, then according to Axiom II there is an element i incident 
with all of them. If the points and the lines are different, then i > 2. 
By induction with respect to 1 as in the former proof we can go back 
to 1 = 2 where the uniqueness is assumed as a base of the induction. 

The graph of Dr yields the geometry on a nondegenerate quadric 
in projective (21 - I)-space. E, is the set of points on the quadric, the 
geometry around a point has the graph of D,-, , which means that it is 
the geometry on a quadric in (21 - 3)-space. For 3 < i < 1, we get the 
(i - 3)-projective geometry within an element of Ei , and the geometric 
on a quadric in (21 - 2i + 3)-space around that element; Ei is the set 
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of projective (z’ - 3)-spaces on the quadric in (21 - I)-space. By such 
reasons an element of E, is a projective (t - 3)-space on the quadric, 
and the axis of two pencils of (I - I)-spaces, which are elements of E, 
and E, . Incidence is defined by means of the inclusion relation as in the 
case of Al, except for ai E Ei (i = I, 2), where it means intersecting in 
a (f - 2)-space. 

In the same way the graphs of the other simple groups may be used 
to study the nature of the geometric elements. A large number of in- 
cidence theorems such as mentioned above, are found in Tits’ paper [7]. 

5.6. The case F4 is particularly interesting. Its graph is 
.-. 
a b*i-h 

It shows that the geometry within an element of Ed is the symplectic 
one of projective 5-space; hence, an element of E, is a 5-symplecton, 
the points, lines, planes of which are elements of E, , E, , E,, . The 
geometry around a point (element of E,,), however, is that of a quadric, 
the points, lines, planes of which are the symplecta, planes, lines in the 
earlier sense. The symplecta around a plane form a pencil (projective 
line), whereas the geometry within a plane is just plane geometry etc. 

These are well-known properties of metasymplectic geometry. In 
Tits’ paper [ 121 a few incidence properties of the F,-geometry are found. 
Between two points one gets the chains aa (identical), aba (joined), 
ada (interwoven), ababa (hinged), and abababa (generic). Two lines 
can be in 17 different relative positions, which in the general case cannot 
be described by single chains (e.g., the condition on two lines of lying 
in one symplecton and intersecting in a point). 

5.7. The axioms of Section 5.3 do not define uniquely a geometry 
belonging to a given graph. The incidence properties mentioned thus 
far are “trivial” ones which have to be supplemented by nontrivial, 
lock incidence theorems of the kind of Desargues and Pappus-Pascal 
in usual projective geometry. 

In this respect G,-geometry is particularly novel. The algebraic 
tools to deal with it are split octaves. The set of points a is defined by 
a2 = 0 (equivalently (a, a) = 0 and Re c1 = 0); for two points a, b 
the relation of being joined is ab = 0; lines are maximal sets of joined 
points. Points and lines form a 6-gonic structure. Schellekens [l] has 
studied lock incidence theorems in ths actual G,-geometry, by which 
this geometry is characterized axiomatically among 6-gonic structures. 
This work was done in a broader context, which will be sketched in 
Section 5.9. 
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The axiomatic approach to polar geometries by Veldkamp has been 
mentioned in Section 4.15. 

5.8. Thus far we dealt with the notion of geometries J(W) subjected 
to the Axioms I-III with a view to geometries of complex semisimple 
Lie groups. The notion has proved still more useful in the investigations 
on geometries of real types of semisimple Lie groups. 

On a quadric in real projective (21 - I)-space characterized by a 
number of p positive and q = 21 - p negative squares in its quadratic 
form (p < q), there are projective subspaces only up to the dimension 
p - I. So there are no more than p kinds Ei of geometrical objects, 
where p is the real rank of the group G of the quadric (a real form of 
Di), The incidence structure in lJ Ei looks much like that of B,, or C,, . 

In a group theory interpretation the loss of geometrical objects means 
that maximal subgroups might be lost as soon as the complex group is 
restricted to a real type. Maximal subgroups of G might cease to be 
maximal in the complex extension, they might be the intersection of 
complex conjugate maximal subgroups of complex G. 

Tits [12] fitted geometries of real semisimple groups into the frame 
of geometries J(W): 

U Ei consists of the maximal proper subgroups of G containing a Bore1 
subgroup over the complex field, the Ei being classes of conjugacy; two 

elements of U Ei are incident, if their intersection still contains a Bore1 
subgroup over the complex field. The graph belonging to this system of 
Ei is defined a posteriori: To every Ei belongs a node of W. To know the 
numbers of bonds by which two nodes i, j are to be joined, we form the 
residual geometry with respect to a flag which has one element common 
with each E,,. (k # i, j). If this residual geometry is a m-gone, i and j 
are joined by a (m - 2)-fold bond. (So we have to use a 4-fold, instead 
of the traditional 3-fold, bond for C, .) 

It is not difficult to establish the list of graphs of real types of semi- 
simple groups (see Tits [ 121). 30 new kind of graphs appear. 

It is a new striking feature of the magic square that the real groups of 
every line show the same graph, viz., the 1 -point-graph for the hyperbolic 
plane geometries, the A,-graph for projective plane geometries, the 
C-graph for 5-dimensional symplectic geometries, and the F,-graph 
for metasympIectic geometries. This means that the trivial incidence 
properties are the same for geometries of the same line of the magic 
square. 

5.9. Tits’ formulations are still more general. They apply to algebraic 
groups also. A special case [ 131 dealt with is that of B, over a perfect 
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field of characteristic 2. There the permutation of the two nodes of B, 
can be extended to an outer automorphism. Geometrically, this means 
a duality between E, and E, (points and lines). Polarities and their sets 
of selfconjugated points (ovoids) have been studied and their groups 
have been related to the Suzuki groups. 

Another special case is related to the trialities on quadrics in projective 
7-space classified by Tits [l 11. These are automorphisms of the D,- 
geometry mapping E, + E, + E, -+ E, with the period 3. According 
to T. A. Springer [unpublished observations] one defines a *-product 
for split octaves over K by 

a * b = r% ~6, 

where 7 is an automorphism of K of period 3. Generalizing the method 
in Section 5.7 one defines points by a * a = 0, the relation of being 
joined by a * b = 0, and lines as maximal sets of joined points (see 
Schellekens [l]). The group of this geometry is a G, , if T = 1. If, 
however, T # 1, the group may be an exceptional D, over the subfield 
of T-invariants. In Schellekens’ earlier mentioned axiomatic approach 
to G,-geometry the existence of this kind of hexagonic structure is 
used to proving the independence of certain lock incidence axioms. 
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Appendix 

1. Numbering of primitive root forms and fundamental weights 
according to 8. Cartan: 

A,: i- i- .3 . . . l-l- ; 

B,: ;-i--h ,:. l-l- 1 D i 

C,: i-2-3 ... I&- 111-== i 

D,: g---i---; . . . 7 
A- ; \ 

.2 
'2 

E,: ;-;&;-; 

.3 

dimension 78 

E,: i-;-,-;-;-i 133 

.4 

E,: i-j--;--;-;--;--; 248 

F,: ;:-i ~3-i 52 

G2: ; i~i 14 

I f  PI , ..,, pl are the primitive root forms, the fundamental weight vi is 
defined by 

2(7Ti’pj)=o (i #A 
(Pi, fj) l (i = j). 

A, means the one-dimensional Lie algebra. 

2. Let M be a real Lie algebra and M @ co its complex extension. 
Let C the involutory semimorphism of M @ co which leaves invariant 
just the elements of M. Let C, be an involutory automorphism which 
defines a unitary restriction of M @ co. If M is simple, three things 
may happen: 

1. L =:= M x co is simple; CC,, is an inner automorphism; M is an 
inner real type of L. 

2. L = M @ co is simple; CC, is an outer automorphism; M is an 
outer real type of L. 

3. M x co splits as L -1 CC”L; M is a twin real type of L. 
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CC,, may be supposed to conserve a given trunk (Cartan subalgebra), 
in case 

1. elementwise, 

2. by a fixed nontrivial automorphism A of the graph, Ae, = eAp for 
primitive root forms p, 

In (1) and (2) T = CC, respectively, CC,A may be characterized by 
an integerj > 0 indicating that 

Te, = -e, or e, 

iff the primitive rootform pj occurs with an odd or even coefficient in 
a; or by j = 0 iff Te, = e, for all rootforms (Y. 

The corresponding real types are indicated by 

(I) Lj, (2) L* (3) L**. 
Using this notation one can easily read the maximal compact subalgebra 

from the graph. 
Notice that j need not be unique. 

3. With respect to an irreducible representation f of complex semi- 
simple L with highest weight A, and a real type L,, of L with the semi- 
morphism C, three cases can occur: 

(1) h and its conjugate CA are not equivalent, 

(2) X and CA are equivalent, E = - 1, 

(3) h and CA are equivalent, E = 1, 

where E is defined by 

CA - h = z, QYP”, 

C” = -1 for vfj, 

r z I;.%. 

for v = j, 

In (1) and (2) the representation f of L, is essentially complex; to get a 
real representation one has to double the number of dimensions. In 
(3) it is essentially real. In (2) f can be considered as a representation in 
quaternion space of half-dimensionality. 
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