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0. INTRODUCTION 

0.0. Preface 

Be either consequent or inconsequent, never both together. (An unknown moralist.) 

This is not a motto. It is rather an anti-motto. The authors have tried to 
be both. One may still wonder whether consequential inconsequence or 
inconsequential consequence prevails. Purity of method has been pursued, 
sometimes as an ideal, sometimes as a hobby, sometimes for no reason what- 
soever. Impurity of method has been allowed for pragmatic reasons or because 
of its charm. Group and Lie algebra methods are by turns interwoven and 
neatly separated. Diction vacillates between formality and looseness. Function 
notation has been perfected, but still the authors struggled with derivatives. 
Categories have not been used, even where they were badly needed. The most 
serious flaw, however, is that the authors stuck to our grandfathers’ fields of 
the real and complex numbers. So neither algebraic groups nor Lie algebras 
over more general fields have been mentioned. In contrast, the restriction to 
linear Lie groups has been rather pragmatic. 

The present work is a textbook in the sense that it aims at leading the reader 
more and evermore quickly to attractive results, even if this means a maze of 
unrelated subjects in a seemingly illogical arrangement and a lack of lengthy 
introductions of a highly abstract character. On the other hand, it looks like a 
compendium where it goes into pedantic classificatory details, summarized 
in so many tables (those of Section 75 included) that before long it will belong 
to the class of books which contain all possible tables except those one needs 
at the precise moment. 

The reader of the present book is expected to have mastered the fundamental 
ideas of modern mathematics so that he may employ them with decent skill. 
The main subjects treated are classification of semisimple complex and real 
Lie algebras, their finite-dimensional linear representations and their auto- 
morphisms, the fundamental groups and Betti numbers of Lie groups, sym- 
metric spaces, and Tits geometries. Some results and many methods are new. 
Deviations from traditional notations and nomenclature are justified after this 

xv 
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preface, and an inventory of definitions is found on page 539. References are 
always to chapters, sections, and subsections, never to pages. 

The present work has grown from gradually revised courses taught by the 
first author since 1931. From 1962 he has been assisted by the second author 
who has taken an ever increasing part in its contents and its formulation. 
Their cooperation has grown so close that finally the first of them does not 
understand how he could ever have thought to write this book alone. 

Utrecht, Nijmegen 

May 1967 

HANS FREUDENTHAL 
H. DE VRIES 



0.1-7. ON NOTATION AND NOMENCLATURE 

0.1. Logical Symbols 

1 (non), A (or), v (and), --f (if.. . then),* (if and only if), iff (if and only if). 

V, (there is an x), A, (all x). 

Remark These notations are didactically justified by their analogy with the 
set theory notation. 

0.2. Set Theory Symbols 

0 (void set). 

Remark A void circle is the most intuitive symbolization of a void set. The 
struck out circle (or digit zero), quite usual nowadays, rather conjures the idea 
of a nonvoid set. This is clearly shown by the great confusion between = .@ 

and # n in the literature. During the first half-century of set theory, the 
void set was indicated by the same symbol as the number zero. Of course 
this had to be changed. A circle is a natural symbol for a void set and looks 
sufficiently different from a digit zero. 

E (element of), $ (not element of). 
c (included in), 3 (includes), +, $ (negations of the preceding). 
u ,  U (union), n, n (intersection). 
(x E A \B) t t  [(x E A)  A (x 4 B)] .  

Fa, b’ (the ordered pair of a, b). 
ra l ,  . . ., (the ordered n-tuple). 
r A ,  B I (the set of ru, b1 with a E A and b E B).  
TA ,, . . ., A,1 (analogously). 

(x E { U I ,  . . ., a,)) tf v, (x = UJ.  

Remark Brackets are needed for other purposes. It is desirable to spare 
them. 

txe  A F ( x )  (the set of x E A with the property F ) .  

Remark The usual notation {x E AIF(x)) has several disadvantages: it 
spills braces, which are badly needed in punctuation and in pair forming, as 
tools for binding variables. It indicates the binding of a variable in a rather 
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unusual way. It has been misinterpreted and misused so often that there is no 
longer a clear agreement on the place of the variable that undergoes binding. 

The presenc notation derives from B. Russell's i ( (x E A )  A F(.Y)). To avoid 
typographical troubles, the roof has been put on a pole. 

yx (. . . s . . .) (the expression between the parentheses 21s a function 

yx ,  A (. . . Y . . .) (needs no further explanation). 
of s). 

Examples 

yxs2 = square of . . . . 
y ~ log x = log. 
I f  a group G is under discussion: 

YaYxa.~a-'  = t h e  canonical homomorphic mapping of G onto its group of 
Yxaxa-l = the inner automorphism of G induced by a. 

inner automorphisms. 
I f  on the group G a set of functions is considered : 

g c  Y Y a dac )  (right translation). 
-9 = yc y, y,rp(ac) 

2, F = Y a d a c )  (right translate). 

(representation by right translation). 

Remark No doubt a symbol for function forming is badly needed. Tradi- 
tional arrow notation like x + (. . . .Y . . .) would lead to clumsy expressions 
in the last few examples. 

The historical background of the present notation is analogous to that of 

The composition of mappings has been denoted in the natural way rother 

f l A  (restriction of ;I mapping/'to ;I set A ) .  
= (equal), # (unequal). 
<, >, <, 2 

T x  E A F(.Y). 

than by a sign -1. 

are used to describe various order relations besides those between cardinalities 
and real numbers. 

inf (greatest lower bound), sup (least upper bound). 

0.3. Topological Symbols 

lim (limit). 
A (closure of the set A ;  see, however, 0: sub 0.4). 
dim (topological dimension; see also dim sub 0.4). 
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0.4. Algebraic Symbols 

The signs 

+, . (often omitted), -, -', x, n, 0 (sometimes boldface), I ,  

are used to denote the algebraic operatioiis of addition, multiplication, and 
so on, and the zero and unit elements of various algebraic systems, besides 
those of the field of complex numbers; 0 and 1 are also used to indicate the 
null and identity mappings in liiiear spaces. 

U. 
P - ' a  is sometimes written - or a/P. 

The syggram .t means that a t  that spot in the context both signs are 
allowed. If more syggrams occur in the same context, it is usually explicitly 
indicated whether or not their contents vary dependently. 

B 

A sub B means that A is a substructure (not only a subset) of B. 
A/B (factor group, homogeneous space of the multiplicative group A with 

A mod B ("factor" group, or ring, of the additive group, or ring A ,  with 

A + B, A - B, A B ,  A - I ,  and so on (the set of a + 6 ,  a - b, ab, a-I, with 

A' (transpose [of a matrix]). 
tr (trace [of a linear mapping]). 
det (determinant [of a linear mapping]). 
rank (rank [of a linear mapping]; see, however, Definitions 15.3 and 72.2). 
0 (tensoring symbol). 
(. . ., . . .), . . ., . . . (inner product). 
A L  (orthoplement of a set A in  a linear space with an inner product, that 

a I (orthoplement of an element a). 
i (imaginary unit of the field of complex numbers). 
Re, Im (real, imaginary "part"). 
ii (complex conjugate of a).  
1 . . . I (absolute value, vector norm). 
Boldfacet characters usually indicate Lie algebras or elements and subsets 

L, L type indicate certain classes of Lie groups, and Lie algebras. C, a" are 

respect to the subgroup B ) .  

respect to the subgroup, or the ideal B). 

a E A ,  h E B). 

is, the set of elements orthogonal t o  all of A ) .  

thereof. 

the adjoints o f a ,  I( ( in  ;I Lie group or algebra). 

t On the blackboard underlining is a substitute for boldface type. 
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0.5. Analytic Symbols 

lim (limit). 
e (basis of natural logarithms). 
exp (exponential function). 
T (half perimeter of unit circle). 
r (gamma-function). 
grad (gradient; see Key to Definitions on page 539). 

0.6. Logograms 

(Not all occurring combinations of logograms are listed.) 
Rea: field of real numberst 
Con1 : field of complex numberst 
Qio: skew field of quaternionst 
Spa: spaces 
Lin: linear 
Spa Lin: linear spaces 
Spa Lin Rea: real linear spaces 
Spa Lin Com: complex linear spaces 
Top: topological 
Hau: Hausdorff (as an adjective) 
Spa Top: topological spaces 
Spa Lin Top: linear topological spaces 
CIS: closed 
Con : connected 
pc: pathwise connected 
Ipc: locally pathwise connected 
Isc: locally simply connected 
Nor: provided with a norm 
Spa Lin Nor: normed linear spaces 
Inp: 
Gru: groups 
Lie: Lie (as an adjective) 
Gru Lie Lin: linear Lie groups 
Alg: Algebras 
Alg Rea : real algebras 
Alg Com: complex algebras 
Alg Lin Lie: 
SS: semisimple 

provided with an inner product 

linear Lie algebras 

SSS: simple semisimple 
End: structure of endoniorphisnis (of a 

Int : structure of inner automorphisms (of 

Aut: structure of automorphisms (of a 

sgsa: (see Key to Definitions on page 539) 
Spa Sym: symmetric spaces 
Sye: elliptic symmetric spaces 
Syh: hyperbolic symmetric spaces 
Symi: minimal symmetric spaces 
Syma: maximal symmetric spaces 
Syemi, Syema: minimal, maximal elliptic 

Syhmi, Syhma: minimal, maximal hyper- 

rad: radical o f . .  . 
osc: oscillation 
ing: integral 
st: standard 
un: unitary 
cl: central 
nst : near standard 
ncl: near central 
lim: (see 0.3, 0.5) 
tr, det, rank, Re, Im: (see 0.4) 
exp, grad: (see 0.5) 

given structure) 

a given structure) 

given structure) 

symmetric spaces 

bolic symmetric spaces 

0.7. Nomenclature 

A more imaginative nomenclature than one relying on overburdened 
terms such as “fundamental,” “principal,” “regular,” “normal,” “charac- 
teristic,” “elementary,” and so on is desirable. Inventors of important math- 

t With their topologies. 
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ematical notions should give their inventions suggestive names. The dis- 
advantage that good names might prevent the inventor’s name from being 
immortalized as an adjective describing his invention would be more than 
compensated by the advantage that this honor could not possibly be bestowed 
on noninventors, either. This does not mean a taboo on personal names for 
mathematical notions, principles, and theorems; but it would be a gain if 
historically wrong or at least ridiculous attributions could be avoided. 

The present authors have tried a few modest innovations in nomenclature, 
some of which have been in domestic use for many years. A few examples 
may be explicitly mentioned: 

Trunk, instead of Cartan subalgebra and subgroup: a horticultural 
terminology suggested by the presence of roots and complemented by the 
admission of branches, that is, the eigenvectors belonging to the roots, and 
nodes, the commutators of branches belonging to opposite roots. 

In  the real case different kinds of trunks are to be distinguished, among 
which maximally compact and minimally compact ones play a role. 

Distinguishing between roots and roofforms, that is, the restrictions of the 
roots to a trunk. 

Primitive, instead of simple, roofforms: the usual terminology deviates 
from what is traditionally meant by simplicity and multiplicity of roots. 

Investigations into semisimple Lie algebras often depend on the previous 
choice of a trunk, on a norming of the branches with respect to the trunk, on 
a partial order chosen within the trunk, and so on. To avoid a great many 
clumsy reiterations of definitions, the term dressing, with a suitable adjective, 
indicates such a system of previous choices; for instance, a semisimple Lie 
algebra G in  ordered second dressing is a system consisting of G, a trunk H 
of G, a certain norming of the nodes and branches with respect to H ,  and a 
certain partial order on H ” ;  therefore, if in some proof a partial order is used, 
it is supposed to be that implicitly contained in the presupposed ordered 
second dressing. 

There are first, second, and third dressings, which may be ordered, maxi- 
mally compact, minimally compact, or real, and a Chevalley dressing. 

Certain important expressions for semisimple Lie algebras have been 
named the Weyl tool and the Casimir tool. Clearly the usual “Casimir opera- 
tor” no longer fits into today’s terminology. 

Among the automorphisms of Lie algebras some have been distinguished 
as the plus-automorphism and the minus-automorphism. 

The real types of simple semisimple Lie algebra have been divided into 
inner, outer, and trcin. Particular roles are played by the unitary and standard 
types. Irreducible linear representations may be virtually real, antireal, and 
areal. There equivalent and contravalent top weights are discussed. 

For the important notion of the sum of the coefficients of a rootform with 
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respect to a basis of primitive ones (a natural basis) the term altitude has been 
chosen; it suggests the term altimeter for a certain element of the trunk. 

In the numbering of primitive rootforms (the dots of the graph) E. Cartan’s 
system has been followed. The numbering of the fundamental weights as well 
as the system adopted to indicate the various real types of a complex simple 
semisimple Lie algebra depends on the numbering of the primitive rootforms. 

Complex linear mappings that can be put into diagonal form are called 
pure; the usual term “semisimple” suffers from ambiguity as soon as the 
notion is extended to sets of linear mappings. 

An element of a Lie algebra is called ad-pure or ad-nilpotent if its adjoint is 
pure or nilpotent. 

An important operation on complex linear structures is waiuing, that is, 
restricting the scalar multiplications to those by real numbers. Complex 
extending of a real linear structure followed by waiving is called twinning. In 
particular, if applied to real simple semisimple Lie algebras, it leads to the 
twin types. 

To avoid ambiguities the term covering (with respect to topological spaces) 
is replaced by the more visual wrapping. 

The usual ad x, Ad x ,  which lead to clumsy formulas, are replaced by f, 2. 
The term gradient (grad) is used for the differential of any differentiable 

Contractions : conducible from completely reducible, 
mapping (not only if the image set is in Rea or Com). 

orthoplement from orthogonal complement, 
inner class from equivalence class under inner automor- 

phisms (class of conjugate elements). 
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1-5 

PRELl M I NARIES 

1. COMPLEX EXTENSION, REAL RESTRICTION, AND WAIVING 

Linear spaces (Spa Lin) will in general be taken over the fields of real and 
complex numbers as scalars (Spa Lin Rea and Spa Lin Corn). Algebras will 
be considered over the same fields (Alg Rea and Alg Com). Terminology on  the 
relation between the real and the complex case is the subject of Section 1.t 

1 .l. Definition A complex extension of R E Spa Lin Rea is an S E Spa Lin 
Com which as a real linear space is the direct sum of R and iR. Two complex 
extensions of R are canonically isomorphic. In the text R will often occur as a 
real subspace of a complex linear space, with R n iR = {0}, and then the com- 
plex span of R is a complex extension of R, usually denoted by Rcom and 
referred to as the complex extension of R. In other cases it makes sense to 
reserve this notation and terminology for the complex extension of R obtained 
by means of the tensor product of R and Corn. 

1.2. Definition A mapping A of R E Spa Lin Corn into S E Spa Lin Corn 
is called semilinear if it respects addition and obeys A(ax) = &Ax for scalar a. 

1.3 Rcom of I .  I possesses the involutory semilinear mapping r + ir' --t r - ir' 
for r, r' E R. It will be said to belong to the complexification from R to Rcom. 

1.4 Under complex extension of R E Spa Lin Rea, linear subspaces S of R 
are passing into special ones of Rcom characterized by invariance under the 
mapping of 1.3. 

1.5 Under complex extension of R, R' E Spa Lin Rea linear mappings of 
R into R' extend to certain linear mappings of Rcom into Rho,,, characterized by 
their commuting with the involutory semilinear mapping of 1.3 (taken re- 
spectively on Rcom and on RhOm). 

1.6. Definition If D is an involutory semilinear mapping of R E Spa Lin 
Corn onto itself, the D-restriction of R is the set of D-invariant elements of R or, 
equivalently, the set of x + Dx with .Y E R. It is denoted by RD. D-restrictions in 
general are called real restrictions. 

t The notions will only gradually be used in the seqilel. 
I 
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Note that the D-restriction of R is in Spa Lin Rea and that R is a complex 
extension of RD. In fact, this yieids a one-to-one correspondence between 
involutory semilinear mappings and complex extensions. 

1.7 Under D-, D'-restriction of R, R' E Spa Lin Com, a linear mapping A of 
R into R' with D'A = AD is restricted to a linear mapping of RD into Rb, .  

1.8. Definition By ignoring scalar multiplication with nonreals, Spa Lin 
Corn is mapped into Spa Lin Rea. This mapping is called waiving. 

By complex extension and real restriction the dimension is preserved ; by 
waiving it doubles. 

Under waiving in R, linear subspaces of R E Spa Lin Com subsist as real 
linear subspaces; under waiving in R, R' E Spa Lin Com linear mappings 
subsist. 

1.9. Definition Twinning, as described hereafter, produces out of an 
R E Spa Lin Com a pair rR', D'' consisting of R' E Spa Lin Com and an 
involutory semilinear mapping D' of R' onto itself: R is mapped one-to-one by 
w+, w- ,  respectively, linearly and semilinearly onto R,, R - ;  in R' = R+ + R- 
(direct sum), D' is defined by 

D' w+ x = w-X, D'w-x = w+ X .  

An a E End R is transferred to a' E End R' by putting 

a' w- x = w- ax. a' w+ x = w+ ax, 

The a' E End R' arising this way are characterized by their commuting with D'. 
Evidently rR', D'l does not depend essentially on the choice of w*,  R,. 

Proposition Twinning R into rR', D'l can be performed by first waiving 
and then complex extending. D' is then the semilinear mapping belonging to 
this complex extending. 

Proof R' obtained from R by waiving and complex extending can be con- 
sidered as coming from the adjunction of a new imaginary unit j to the scalar 
field underlying R. The new algebra of scalars has the idempotents +( 1 F ji) 
whose product vanishes. Note that the semilinear D' belonging to the com- 
plexification of the waiving of R satisfies D'ix = iD'x, D'jx = -jx for x E R.  

Now when multiplication with +( 1 F ji) is called w+, then 

w+ ix = i(1 - ji)ix = j * +(1 - ji)x = jw+ x, 

w-ix = +(1 + ji)ix = -j * +(l + ji)x = -jw-x, 
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which shows that w+ is linear and w- is semilinear. (Note that the imaginary 
uni t  of R' isj.) 

If R, = w+ R, then clearly R' = R+ + R- directly. Also 

D' w+ x = D' f( 1 f ji)x = f( 1 'f ji)x = wT x, 

which shows that all conditions on twinning'are fulfilled by R', D', and w+,w-. 

1 .lo. Definition The complex extension of G E Alg Rea is denoted by 
Gcom or G 0 Com. It is explained by extending G as a linear space and extend- 
ing multiplication on G in a natural way. 

Under complex extension, subalgebras (ideals) pass into subalgebras 
(ideals) and homomorphisms into homomorphisms. 

1.1 1. Definition A mapping of G E Alg Com is called a semimorphism if 
it is semilinear and respects multiplication. 

The mapping of 1.3 (in algebras) is a semimorphism. 
C-restriction (by means of an involutory semimorphism C) and waiving 

applied to G E Alg Com create real algebras. Twinning (by means of iso- 
morphic and semimorphic w+,w-) applied to G E Alg Com creates a direct 
sum G' = G,  + G- of algebras G, = w ,  G. 

1.1 2. Proposition Twinning G E Alg Com into 'G ,  C" can be performed 
by first waiving and then complex extending. C' is then the semimorphism 
belonging to the extending. 

Proof The proof of 1.9 is extended by showing that w+ respects the prod- 
uct, and that the sum G ,  + G- is direct; thus G, * G- = (0). These facts 
rest on the idempotency of f( 1 ji): w,(ab) = wk2(ab) = (w+ a) (w+ b) and on 
(1 - ji)(l + ji) = 0. 

2. THE EXPONENTIAL 

2.1 Often in what follows, particularly in 2.2-6, R means a topological 
linear space (Spa Lin Top) over Rea or Com (scalars are indicated by Greek 
letters). Its topology is supposed to stem from a norm in the usual way. 
If employed for the purpose of a convenient description of the topology, such 
a norm is indicated by I.. .I. 

Mostly dim R < a, and then without impoverishing the structure of R, one 
may forget its topology. All norms are then topologically equivalent. 
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2.2 End R means the set of (continuous) endomorphisms of R. 
End R E Spa Lin by means of the definition 

( A  + B).y = A x  + B.v, (d)x =  AS) for all s E R ,  

if A ,  B E End R. Moreover, End R E Spa Lin Nor by 

In fact, [A1 < io because by continuity there is a &neighborhood of 0 E R 
where I A s J  Q 1. But then JAsl < 6-' if 1x1 G 1.  Furthermore, one can easily 
prove 

J A l  = O t t A  =o, IA +BI Q J A l +  JBI, laAl= I*I*IAl. 

With A B  defined by 
A B  = yx ABx, 

lABl Q I A l * I B I  

because lABxl Q IAI.IBxl Q 1A(.IBJ*lxJ; hence suplxlsl IABxl G I A J . I B ( .  

Hence : 
End R E Alg Nor. 

Suppose that R is complete. Then End R is complete, and A E End R can be 
substituted into polynomials and even into power series such as 

m 

m=O 
expA = ( l /m!)A",  

the exponential of A ,  also written eA. 

IAl Q y, then Cz=o a m A m  also converges. Indeed, 
If the numerical power series cz=o (amlym converges and A E End R ,  

IA"I = IAA"-'J < IAl +P-'( Q . . , Q y m  

implies that 
p+k 

C a m A m  Q C I a m l * I A m l  Q C I a m l y m  1 mL::I I m = p + l  m = p + l  

becomes arbitrarily small for all sufficiently large p .  
This convergence criterion justifies the definition of the exponential. 
Let the numerical functionsf, g, h be given by power series 

f ( x )  = a[ xi, g(x) = c /3[ 2, h(x) = c y [  xi 

g ( X )  = C PI Xi, 
such that h has arisen by substitution offinto g .  Define for X E End R 

f ( X >  = c Q i  X ' ,  h ( X )  = c yi xi, 
if convergent. Then, obviously, h(A) = g(f(A))  as long as the underlying series 
converge in the norm. 
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Define the logarithm by 
m 

I 
log(1 + A )  = c [(-l)"-'/n] A" 

as far as convergence in the norm prevails. Then by the foregoing 
exp log X =  log exp X =  X 

as long as convergence in the norm prevails. 

2.3 In  topological linear spaces it makes sense to speak of curves, tangent 
vectors, and so on. 

Definition A k-times continuously differentiable mapping of an open 
connected set of real or complex numbers into R is called a real or complex 
Ck-cwre on R. 

A C1-curve is simply called a curve. 
If x is a curve one defines 

wherever this limit exists. 

(is) ( t ) ,  also written 

is called its rangerit uector at t ,  or at s ( t ) .  
Analogs of well-known rules are 

and if A ( r ) ,  B ( t )  are continuous linear mappings of R into R, depending differ- 
entiably on r ,  

d 
dr 

d 
dr 

x ( r )  + A ( t ) - x ( r ) ,  

2.3.2 B(r) + A ( ? ) -  B(r). 

d 
dt 

2.3.1 

If A ( t ) - '  exists, it is easily seen to be differentiable with respect to rand its 
derivative can be found by differentiating A ( t ) A ( t ) - '  = 1 : 

thus, 
d 
dt  

2.3.3 ~~ ( A ( t ) - I )  = -A(r)-'  
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2.4 It  follows from the definition of exp that 

d 
- exp !A = A exp tA = (exp t A ) A .  dt 2.4.1 

For commuting continuous linear mappings A ,  B 

exp(A + B) = exp A .exp B. 

This results from the same principle used at  the end of 2.2. It is worthwhile, 
however, to prove it by a method that will be applied in the sequel in a more 
profound way: 

First 2.4.1 is generalized. 

2.4.2 For AB = BA, (d/dt)etA+B = AefAtB 
Indeed, 

d 4! ((tA + B)"' = m(tA + B)"'-' - ( t A  + B) 
dt dt 

because all things commute. Therefore, 
d l  - (tA + B)" = A 2 (tA + B)"'-l, 
dt m. m- I ) !  

which proves 2.4.2. 
Now 

- d (e-tA etA+B) = -Ae-tA etAtB + e-tA A e t A t B  = 0 
dt 

because factors commute. So 
C = e-fA e r A t B  

is constant. Substituting t = 0, one gets 

Substituting t = 1 : 
C = eB. 

2.4.3 e-A eA+B = eB 

and, more particularly, for B = 0 
e-A e A = l ;  

thus, 

Multiplying 2.4.3 by eA, one finally gets 

e-A = (&)-I ~ 

2.4.4 exp(A + B) = exp A.exp B for commuting A, B. 
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2.5 A consequence of 2.4.4 is 

exp(T, + T J A  = exp T ,  A .  exp T~ A .  

This means that 
Y f exp t A  

is a homomorphic mapping of the addition group of scalars. It is a continuous 
and even a differentiable homomorphism: 

d 
- exp t A  = A exp t A .  
dt  

2.6t Any A ( t )  as a function o f t  with A(0)  = 1 may be interpreted as aflow 
in R :  the particle that was in a at time 0 will be in A ( t ) a  at time t .  In this sense 
(d /d t )A(r)  is the velocity field of the flow at time t .  

If the flow is of the special kind A ( t )  = exp t A ,  the particle that was in a at 
t = 0, and consequently in b = (exp rA)a at time t ,  will show there the velocity 
A(exp tA)a  = A b  at time t. This means that the velocity at any time depends on 
the spatial spot only, not on time. Particles passing through a given spot b will 
have the same velocity there. This kind of flow is called stationary. 

Y t  exp tA yields a stationary flow with the velocity field 

A =  -exptA . (i ) r=o 

It is clear that in a stationary flow all particles passing through b will arrive 
at some other spot in the same lapse of time T so that A(t  + T )  * a  will not depend 
on t, provided A ( t ) a  = 6 .  In other words, A ( t  + T)A(  t)-' does not depend on t ,  
thus equals A ( T )  which just restates the homomorphic character of yr A ( t ) .  

2.7-1 0. Examples 

2.7 Suppose that dim R = n < co. Assume an ordered basis in R. Then a 
linear mapping is described by a matrix. 

Let A be triangular with zeros below the main diagonal. Then Am is also 
triangular and so is exp A .  To every diagonal element h of A corresponds eA of 
exp A .  Thus, 

2.7.1 

In particular, 

det exp A = exp tr A .  

t This section will not be used in the sequel. 
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2.7.2 if tr A = 0, then detexp A = 1. 

suitable basis, a linear mapping of R (dim R < m) takes the triangular form. 
These formulas are generally valid because over the complex field and on a 

2.7.3 detexpA # 0 forall A. 

2.8. Suppose 

dim R = 2, 
A = (: k). 

Then 

Generalization: let A be n-dimensional triangular with a vanishing main 
diagonal. Then in A 2  all elementsjust above the main diagonal also vanish and 
so on; finally, A” = 0. Thus exp T A  is a polynomial in T of degree SG n - 1. 

2.9 Suppose that A is skew. With A’ the transpose of A, 
A’ = - A ;  

(A”)’ = ( - A ) m ,  
thus, 

(exp A)’ exp A = 1. 
Therefore, if A is skew, exp A is orthogonal. 
In the same way one proves the following. 
If A is hermitean skew, then exp A is unitary. (Hermitean skew means that 

A* =-A, where A* is the conjugate transpose of A ;  unitary means that 
A*A = 1.) 

2.1 0 t The importance of the exponential is illustrated in a quite informal 
way by the next example. 

Let R be the linear space of functions of a real variable in [-a, 031. The sub- 
stitution 5 + 5 + t in the argument produces a mapping T, of R onto itself: 

(7-2 9)(5) = dt + 0;  

(Ts Tt 9 M )  = 9(t + t + s) = V S + ,  d ( 5 ) Y  

T, transfers the graph of y over a distance t to the left; T, is linear, and, because 
of 

t This section is not used in the sequel. 
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Y,T, maps the addition group of real numbers homomorphically. One might 
expect it to be a stationary flow. Differentiating, one gets 

d ((; T,).) (0 = g ( t  + t )  = D d f  + t )  = (Tt D d ( 0 ,  

where D is the differentiation operator, 

Thus, 
d 
dt 
-Tt = T , D =  DT,. 

D is the velocity field of the flow. (Note that it is restricted to the subspace of 
differentiable functions.) 

Analogy suggests that 
T, = exp tD, 

which means that 

that is, Taylor's formula. Because of its restricted validity, the analogy is 
merely formal. 

By a Fourier transformation of this example, another develops: 

(Zcp)(q) = (2n)-'I2 I" e-'c? ~ ( 5 )  df  

defines the Fourier transform Z v  of v in a certain subspace of R.  It is invertible 
there : 

-a 

(Z- l  v*)(f)  = (2n)-'12 s" v*(q) d7. -a 

Translating T, from the "planguage" into the "q*-language," one gets 

P, = ZT,Z-'.  

Now 
( z - 1  P, v*)( f )  = (T, Z - 1  v*)(o = (27T) -112  Jm eiq(e+t) v * ( 4 4  

e'c? e'?' v*(q) dq, 

--m 

= (2n)-'12 

thus, 
(P, v*) (7) = e'?' V*(T). 
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Again, 
ps+t = pspt. 

y t P t  maps the addition group of real numbers homomorphically. For the 
velocity field A of this flow one finds 

A is the multiplication by i times the argument. Again formally, 
P, = eta. 

3. SOME LIE GROUPS 

The groups that appeared in Section 2 were homomorphic images of the 
addition group of real or complex numbers. This section is a preliminary 
exploration of groups in which the general element depends on more para- 
meters. 

3.1 The multiplication group of n-n-matrices with determinant # 0 (or the 
group of automorphisms of linear n-space). The element a depends on n2 
parameters, the matrix coefficients all (a). 

3.2 The subgroup of 3.1 singled out by the condition det a = 1. The group 
element a now depends on n2 - 1 parameters, one matrix coefficient being 
redundant: a. has some matrix coefficient au(ao) with nonvanishing minor; 
near a. the equation det a = 1 can be solved with respect to cq,, and a is fully 
described by the remaining matrix coefficients as parameters. The validity of 
this parameter system is merely local; it breaks down as soon as the minor 
vanishes. 

3.3 The subgroup of 3.2 consisting of orthogonal a;  thus a‘a = 1. Later on it 
will be shown that a depends on +n(n - 1) parameters. 

3.4 The group of complex n-n-matrices a with a*a = 1 (unitary matrices). 
The number of (real) parameters is n2. 

3.5 The group of matrices with real a, /3 and /3> 0; two parameters. 

3.6 The group of matrices 

riis e2it), s, t real. 
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There are two parameters s, t. The pairs rs , , t l l ,  rs2,t21 produce the same 
element iff s2 - s, and t2  - t l  are integers. The topology of this group is  that of 
the torus; a model is the square defined by 0 G s G I ,  0 G t G I ,  with identi- 
fication of opposite sides. 

3.7 The subgroup of 3.6 defined by 

s =  CLT, t = / 3 ~ ,  a, /3 fixed, /3#0, T variable. 

There is one parameter T .  In the model of 3.6 the subgroup shows up as a 
straight line in the rs, t l-plane brought back piecewise into the square by 
reduction mod 1. Two cases are to be distinguished : 

3.7.1 
T-interval suffices to describe the subgroup. 

a//3 rational. Then CLT, / 3 ~  are both integers for some T,  and a finite 

3.7.2 a//3 irrational. Different T furnish different group elements. The group 
3.7.2 is dense in 3.6. 

In 3.7.2 one can distinguish two topologies, one borrowed from 3.6 but 
pathological for 3.7.2 and the other that of the straight line, which is more 
adapted to 3.7.2. 

This phenomenon explains some precautions which will be taken in the 
fundamental definition of Section 6. 

3.8 The group consisting of the (real or complex) upper triangular n-n- 
matrices (those of the form with 1’s in the main diagonal); the number of 
parameters is +n(n - 1). 

4. TOPOLOGICAL GROUPS 

4.1-7. Group Topology 

4.1. Definition A topological group (Gru Top) is a set with a group 
structure and a topology such that multiplication and inversion are continuous 
operations in the given topology. 

It suffices to suppose that 

ab is a continuous function of ra,bl at ‘1,l l ;  

a-l is a continuous function of a at 1 ; and 
ab is a continuous function of a as well as of b. 
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Then the continuity of at x is proved by considering ~ - ~ ( a x - ~ ) - l  for 
fixed x and that of )' ra,bi ab at r ~ , y l  by considering x(x-'a)(by-')y for fixed 
x ,  Y .  

4.2 In groups, AB means the set of ab with a E A, b E B; A-' means the set of 
a-1 with a E A. 

4.3 The continuity of group operations at 1 can be expressed as follows: 
for every 1-neighborhood U there is a 1-neighborhood V such that V-I c U, 
V V C  u. 

4.4 In a topological group, left (right) multiplication with a fixed element and 
inversion carry open sets into open sets. 

4.5 In a topological group the 1-component is a closed normal subgroup. 

4.6.1 
over the set of the 1-neighborhoods in G equals the closure A of A. 

If A c G E Gru Top, then the intersection of all UA with U ranging 

Indeed 
x E A t t  A" U - ' x  n A # 0 ++ x E nu UA. 

4.6.2 Pc YVfor any 1-neighborhood Vin G E Gru Top. 
This follows from 4.6.1. 

4.6.3 Any T,-group is Hausdorff and even regular. 
Indeed, given a 1-neighborhood U, there is a I-neighborhood V such that 

V V c  U, but then P= U. This property carries over to any point by left 
multiplication. 

4.6.4 Any open subgroup of G E Gru Top is closed. 
This follows from 4.6.2 applied to an open subgroup V 

4.6.5 A connected topological group (Gru Top Con) is generated by any 
nonvoid open subset. 

Indeed, the set generates an open subgroup which by 4.6.4 is closed; since 
the group is connected, it is identical with the whole group. 

4.7 A discrete normal subgroup N of a connected topological group G lies in 
the center of G. 

Indeed, the set of axu-' (a E G) is connected for x E G, and discrete for 
x E N whence consisting of one point, which by taking a = 1 is identified as x.  
So axa-' = x for all a E G and x E N. 
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4.8. Coset Spacest 

4.8.1 lf H is a subgroup of the topological group G, the topology of G is 
transferred to the left coset space G / H  by the convention that the open sets in 
G/H are just the images of open sets in G under the canonical mapping. 

The Hausdorff property and many others are preserved under this transition 
if H is closed. 

4.8.2 Under the canonical mapping o f G  onto G / H ,  the image of a connected 
set is connected; the inverse image of a connected set is connected if H is 
connected. 

In particular, if both G/H and H are connected, then G is connected. 
(Indeed, Y,aH maps open subsets of G onto open subsets of G / H  even 

when restricted to some CH as a subspace of G.) 

4.8.3. Definition A (continuous) representation .f of G E Gru Top in  
R €Spa Top is a homomorphic mapping of G into the group of auto- 
homeomorphisms of R (notation: f = Yatc.fa) such that, in addition to the 
requirement that f a  fb  ' . f ob  for a,b E G, 

Y r a . X i E r C . R  j ,fas iscontinuous. 

The stabilitj> group o f  sfl E R consists of the a E G with,fax, = xfl. 
For any A c G, fAx means the set of,f,x with a E A .  
,fis called transitiz~e if for all x,y E R there is an a E G with,f,x = J'. 

4.8.4 
conjugate in C. If H is the stability group of so, then 

Clearly, if ,f is transitive, then the stability groups of all points are 

maps G/H 0r.e-to-one and continuously into R. If/is transitive, this mapping 
is even onto. 

Proposition Let G be a locally compact Hausdorff group that satisfies the 
second countability axiom and let R be a locally compact Hausdorff space. 
Let G be transitively, continuously represented in R by f and let H be the 
stability group of .yO. Then 

Y aHfabi SO 

is a homeomorphic mapping of G/H onto R. 

t The results obtained in  this section will only incidentally be used in thesequel. 
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Proof It suffices to prove that there are “arbitrarily small” open I-neighbor- 
hoods U in G such thatfuxo is again open. 

Let a 1-neighborhood U3 in G be prescribed. Choose a compact l-neighbor- 
hood U in G such that 

u-’ U-’UU c u3. 

Suppose thatfuxo has no interior. Thenf,,xo =f,fuxo has no interior either. 
Now every point of G is interior to some all (a E G); hence by second count- 
ability there is a sequence in G such that U, a, U = G. Put A, =f,,uxo. 
Then 

A decreasing sequence of V,  c R will be defined such that 

A ,  is compact, A, has no interior, U A ,  = R. 

V, compact, V, has an interior, V,,, n A ,  = 0: 

V1 may be arbitrarily chosen to satisfy the first two requirements, and if V, 
has been determined then on the one hand V,  has an interior, whereas A, has 
not, so, since A, is closed, one finds in ?‘,\A, an interior point with a closed 
neighborhood V,+I also contained in V,\A,. 

Now n, V, has a void intersection with all A,, hence with R, whereas on the 
other hand it is nonvoid because of the compactness of the V, .  This contra- 
diction shows thatfuxo has an interior. Take an open U,  with U c  U o c  UU. 
Then 

fuoxo has a nonvoid interior W. 

UI = Uo n TaEG(f.xO E W) is open, and 
ful xo = W is open. 

Finally, U2 = U;’ U1 is an open 1-neighborhood in G, contained in U,-l U,, 
thus in the prescribed U3,  and fulxo = fu,-, fu,xo = fu,-l Wis still open. So U2 
is the required “arbitrarily small” open 1-neighborhood with open fu2 xo. 

4.8.5. Note More general theorems are found in H. Freudenthal, Ann. 
Math. 37,46-56 (1936). 

4.8.6. Corollary Under the conditions in 4.8.4, if both R and H are 
connected, then G is connected. (See 4.8.2.) 

4.8.7. Corollary Let rp be a (continuous) homomorphism of the locally 
compact Hausdorff group G with second countability axiom onto the locally 
compact Hausdorff group G’, with H its kernel. Then G / H  and G‘ are topo- 
logically isomorphic in a natural way. 

Indeed, puttingfa = YxEGt (rpa)x for a E G, one gets a transitive representation 
f of G in G‘ with H as the stability group at the unit element of G’ to which 
4.8.4 applies. 



4. TOPOLOGICAL GROUPS 15 

4.9-11. Local Groups 

Let G E Gru Top. 

4.9. Definition Two subsets of G are called locally identical if they co- 
incide i n  some I-neighborhood i n  G (thus i n  every sufficiently small one). 

This notion will sometimes also be applied to subsets of differenr topo- 
Iogicul groups. 

The next definition is concerned with local subgroups of G. A tentative 
definition would read : H is a local subgroup of G if it is locally identical with 
H-'  and with HH in a nontrivial way; that is, 

there is a 1-neighborhood U in G with 
1 E H n U = H-I n U = HH n U. 

Clearly nothing is lost if the requirement U = U-' is added. Further, if H is 
replaced by its local equivalent H,  = H n U,  then 

H , = H ; ' c U ,  H I H l n U = H l .  

This consideration leads to a more practical definition : 

4.10. Definition H is called a local subgroup of G if: 

1 E H = H - ' ;  

H is contained in some open U = U - ' ,  such that 

H H n U = H .  

Moreover, such an H is called a closed local subgroup of G if it is closed in U. 
(It will be seen that the condition of closedness does not depend on the 

choice of U.) 
A great many properties of topological groups extend to local subgroups H.  

For instance, the group operations as far as defined in H are continuous. 
There is a 1-neighborhood Ho in H with H G 1  = Ho, HoHo c H. For any a E 

H there is a I-neighborhood H, in H with aH, c H. If P is open in H and 
aP(Pa) = H, then aP(Pa) is open in H, and so on. 

4.1 1. Proposition A subset H of G is a closed local subgroup of G if and 
only if 1 E H = H-' and His open in the closure %of H H .  

Proof If: Let H be open in E. Then U = G\(%?\H) is open; if 1 E H ,  
U is a I-neighborhood, and, if H = H - ' ,  then U = U-I .  In any case, H c U ,  
and H H  n U = H, which shows that H is a closed local subgroup as soon as 
all conditions on Hare  satisfied. 
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Only if: Let U = U-I be open, 1 E H, H = H-' closed in U, and 
HH n U = H. Then, with A = G\U, 

HH= H u (HH n A), 

H H ~ R U  H H d  u A ;  

H H n  UcRn U = H ,  

- 

intersecting with U, 

which proves that H i s  open in E. 

4.12-1 3. Expanding Local Groups 

4.12 The local subgroup H of G will now be expanded into a topological 
group f i in  a natural and unique way. 

As a group, H will be the subgroup of G generated by H. The topology of a, 
however, is required to extend that of H in the following sense. 

Definition The topology of I? is said to extend that of H if H is open in I? 
and His  a subspace of A; in other words, if the following applies: 

4.1 2.1 Every set open in Hi s  open in I?. 

4.1 2.2 Every set open in l? intersects H in an open set. 

Suppose that such a topology exists. Then by 4.12.1 every aP ( a  E I?, P open 
in H)  is open in Hand so is every union of such sets. C a l l 9  the set of unions 
of aP (a E A, P open in H). Then any member of .T is open in I?. Conversely, 
let Q be any open set in Z?, and c any point of Q. Then c-' Q is open in Hand, 
by 4.12.2, Q' = c-' Q n H open in H. So cQ' belongs to Y, and, since 1 E Q', 
c E cQ' c Q, there is a member cQ' of 9 containing c and contained in Q. 
This shows Q as a union of members of 9, and therefore Q E 9. Thus, if it 
exists, the topology of I?is described by9- as its set of open sets. 

Its existence is guaranteed as soon as the intersection of any two members of 
9 (defined as above) belongs to 9. Set theory distributivity allows restriction 
to the case of aP and a'P', where a,a' E I?, P, P' open in H. Without loss of 
generality, one may even suppose that a' = 1 and P' = H. Let 

c E a P n  H. 

One then has to find a neighborhood Q of c in aP n H. One knows 

C E H  and a - ' c E P c  H. 
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Because of the continuity of left multiplication with a-' in H ,  one gets a 
c-neighborhood Q in H with a-' Q still c P ;  hence Q c a p .  So c E Q c  
UP n H ,  which proves the existence of the required topology of H. 

With this topology H appears to be a topological group: 
First, multiplication and inversion are continuous at 1, because they are so in 

H. Left multiplication is continuous because it leaves Y invariant. The con- 
t inu i ty  of right multiplication requires Pb to be open for any open P in fi and 
b E H .  To prove this one may assume that b E H (which generates I?) and 
furthermore that P is open in  H. Given c E Pb, c has to be proved an interior 
point of Pb. Now b-' E c-IP n H ,  which is open in H ;  thus there is a 1- 
neighborhood Q i n  H such that Qb-' c c-'P n H ;  hence c E cQ c Pb, which 
shows the continuity of right multiplication. 

This proves the following proposition. 

Proposition I f  H is a local subgroup of G, then A, generated by H and 
provided with the unique topology that extends that of H ,  is a topological 
group. If H is connected, then fi is also connected. 

4.1 3 Note that the topology of H may differ from that induced by G. This is 
illustrated by 3.7.2, in which 171 i w defines a local subgroup H of the topo- 
logical group G of 3.6. Its H i s  essentially the addition group of real numbers 
with the ordinary topology. As a dense subgroup of G, however, it bears 
another topology. 

Yet the following is true. 

Proposition If H is a closed local subgroup of G and fi bears the topology 
of subspace of G, then H has to be closed. If  G is locally compact and 
satisfies the second axiom of countability, the converse still holds: if I? is 
closed as a subset of G,  it bears the topology of subspace of G. 

Proof Let fi bear the topology of subspace of G. Since H i s  open in H ,  one 
finds a U open in G with H n U = H and H closed in U. Let a belong to the 
closure of fi. There is then some b E H n aU. Now a-lb belongs to U and to 
the closure of H ,  so that it belongs even to the closure in U of I? n U =  H, hence 
to H (and A) ,  since H is closed in U .  From a-l b E fi and b E H it follows that 
a E H. Consequently, l? is closed. Conversely, if G is locally compact, the 
closed subspace H is also locally compact, and 4.8.7 applies; namely, the 
identity mapping of into G is homeomorphic and therefore the topology of 
Hcoincides with that induced by G in I?. 

Remark There is no real need of the Hausdorff property, for the assertions 
are not influenced by the factoring out of the closure of { l} in  G. 
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4.14-15. Local Coset Spacest 

4.14. Definition If G E Gru Top and H is a closed local subgroup of G, 
then for any sufficiently small 1-neighborhood V = V-I in G the local c o w  
space V/His defined as the set of the a H  n V with a E V,  topologized by calling 
the subsets of V / H  open whose unions are open in V .  

To justify this definition, one has to find a Vsuch that the sets aH n V con- 
stitute a partition of V :  

4.1 4.1 

This is achieved as follows. 

[ a ~ V / ( b ~ ( a H n  V ) ] - + [ a H n  V = b H n  V ] .  

As in 4.10, take an open 1-neighborhood U = U-l  in G such that 

H H  n U = H closed in U. 

Take a 1-neighborhood H ,  in H such that 

H I  H I  = H 

and a 1-neighborhood V = V-' in G such that 

To verify 4.14.1 for a E V ,  take 
V V c U  and H n  V V c H I .  

b , E a H n  V ( i = l , 2 ) .  

a-' 6,  E H n a-' V c  H n V V c  H , ;  
Then 

hence 
by1 b2 = (u-' bl)-' (a-' b,) E HI HI c H ,  

and likewise 

which proves 4.14.1. 

Proposition If G E Gru Top and H and H '  are closed local subgroups of 
G which coincide locally and such that H c H ' ,  then for sufficiently small 
1-neighborhoods V both V / H  and V / H '  make sense and coincide. 

Moreover, if H is a closed subgroup of G,  then for open or compact V ,  V / H  
is topologically a subspace of G/H.  

t The results of 4.14-15 will be used only incidentally. 
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Proof Clearly V can be chosen so that V/H as well as V/H'  are well defined, 
so one has only to make sure that (aH' n V =  bH' n V )  + (aH n V = bH n V ) ,  
in other words, b E aH'  n V + b E aH n V ;  but this is evident as soon as V is 
so small that H and H' coincide in VV. 

The remainder of the proposition is evident. 

4.1 5. Proposition As defined in 4.14, V/H is Hausdorff and even regular. 

Proof With U and Vas above and a E V,  His closed in U, so that H n a-l Vis 
closed in U n a - l V .  Now a - ' V c V V c U ,  U n a - ' V = a - l V ;  hence 
H n a-I V is closed in a-I V,  aH n V is closed in V,  which proves V / H  to be a 
TI-space. 

A neighborhood of aH n V i n  V/H can be given in such a form that its union 
is Wa n V, where W is a 1-neighborhood in G.  Let another neighborhood of 
aH n V have as its union W,a n V, where Wl is now a 1-neighborhood in G 
with W;' W,  c W. To ensure regularity the union of the closure of the latter 
neighborhood in V / H  must be shown to be contained in Wa n V. 

Indeed, let bH n V belong to this closure, with b E V. Then W ,  bH n V, 
representing a neighborhood of bH n V in V / H ,  has a nonvoid intersection 
with Wl a n V. This shows that bh E W;' Wl a c Wa for some h E H,  whence 
b H n  V c  W a n  V.  

4.1 6-1 7. Locally Connected Sets 

4.16. Proposition Let G be a topological group satisfying the second 
countability axiom, H a  closed local subgroup of G, and fi defined as in 4.12. 
Let the subset A of fi be locally connected in the topology of G .  Then the 
topologies induced on A by G and by fi coincide. 

Proof For given a E A it suffices to find a neighborhood W of a in A according 
to the topology of G such that on W both topologies coincide. As a matter of 
convenience one may suppose that a = 1. 

As in 4.14, Vis constructed on the evidence of H .  Moreover, Vis assumed to 
be open and V / H  is defined as in 4.14. Note that V,  H,  and V / H  fulfill the 
second countability axiom. It is easily verified that the same is true of I?. 

4.1 6.1 Y C W  n V )  

maps A n V continuously onto a subset A' of V/H.  In the fi-topology the 
different cH n V =  c(H n c-l V )  with c E A n V are open and pairwise 
disjoint (see 4.15). Therefore, since I? fulfills the second countability axiom, 
their number is countable. Consequently, A' is countable. 
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Since V / H  is regular (see 4.15), it may be presumed to be equipped with a 
metric, Its restriction to A' assumes a countable number of values. From this it 
follows easily that A' is of dimension 0. Therefore the components of A' are 
single points. 

Since A is locally connected, A n Vcontains a connected 1-neighborhood W 
(in the sense of G). Its image according to 4.16.1 is connected, thus a com- 
ponent of A', and thus a point, which must be Hn I/. This shows 
W c H n V c H ;  but by the construction of I? its topology coincides with that 
of G on H, hence on W. This proves the assertion. 

4.17 The foregoing proposition will be applied later to make sure that a 
curve of G lying on f i i s  also a curve on A. 

5. DIFFERENTIABLE MAPPINGS 

E, F E Spa Lin Top, dim E, dim F < 03. 

5.1. Definition Iffmaps an open part of E into Fandfadmits of a linear 
mapping A of E into F such that 

(i.e., E goes to 0 if x and x' go to xo), then A is called the gradient mapping or 
the gradient off at xo, 

A = grad,,$ 
If it exists, A is unique. It exists as soon as f possesses continuous partial 
derivatives at x0 on some basis. AE is called the tangent space of the mapping at 
xo or, if confusion is unlikely, the tangent space at f ( x o ) .  

f i s  called of class Ck(Cm; Cm) if it possesses continuous kth-order deri- 
vatives (if it possesses derivatives of any order; if it is analytic). 

In statements involving Ck it is understood that 03 and an are values of k. 
The inequality k < Q) < an is assumed. 

In the case of complex E, Fit is known that C k  = C"" fork > 1. In this case by 
means of a semilinear K, one defines semi-Ck = K.Ck. 

f ( X ' )  - f ( X )  = A(x' - x) + Ix' - XI E(X -+ Xo, x' --f XCJ 

5.2 Ifgfmakes sense and iffhas the gradient A at xo, and g has the gradient 
Batf(xo), then gfhas the gradient BA at xo. 

Iff-' makes sense, and iffandf-' have gradients, A , B  at xo, f (xo) ,  respec- 
tively, then B = A-* .  

If dim E = dim F = rank grad,,I, then f maps a neighborhood of xo onto 
a neighborhood of f (xo ) ,  and then f-' exists locally near f (xo) ,  and 
grad,,x,,f-' = (grad,,f)-'. 

If dim E = rank grad,,f, thenfis one-to-one near xo. 
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5.3 Manifolds will mostly occur smoothly embedded in finite-dimensional 
linear spaces. The next definitions concern such manifolds. For a more abstract 
definition, see 5.6. 

Definition A C,k-piece in Fis the image M of an open ball Sin E, dim E = r, 
by means of a mappingj; which is (a) homeomorphic, (b) of class Ck, and (c) 
provided with a nondegenerate gradxffor all x E S or, equivalently, provided 
with an r-dimensional tangent space at f ( x )  for all x E S. The pair ‘E , f l  is 
called the presentation of the C,k-piece M .  The piece M is endowed with the 
topology induced by F. 

The notion of C1-curve for I <  k on M ,  the notion of a C’-mapping and 
semi-C ‘-mapping of M ,  the notion of gradient of such a mapping, are explained 
in terms of E by means of the presentation of M .  (They do not depend on the 
choice of the presentation.) 

Note that the tangent space of M at p depends continuously on p .  
Near p any affine projection of M on its tangent space is a C k-mapping with 

an identity gradient. 

Definition A C,k-manfold M in F is a connected topological space with the 
following Properties: (a) M is a subset of F, (b) M is the union of a countable 
number of C,k-pieces M,, such that (c) any M, is a subspace of M ,  and (d) any 
M, is open in M .  

If ‘E,f’ is the presentation of a C,k-piece contained in M andfmaps the open 
ball S in  E such that its center is mapped intop, thenfis called a localpresent- 
ation of M near p .  

The foregoing remarks on tangent spaces, curves, mappings, and gradients 
extend to M .  

Note that the topology of M need not coincide with that induced by F. 
Whether a piece or a manifold is called real or complex depends on the 

underlying field of E. 

5.4. Definition An infinitesimal measure m on the real C,’-manifold M 
is an assignment of a nondegenerate r-linear skew functional m, to the tangent 
space at p, depending continuously on p E M .  

An infinitesimal measure m on M can be integrated into a measure either 
directly by lifting the infinitesimal measure from the tangent spaces into M by 
means of affine projection and forming Riemann sums or indirectly by choosing 
a parallelepiped P in E (a sequence of r vectors), such that 

and putting 
mx ((gradxf)(P)) ’ 0, 

P ( W  = S,.,,m,((grad,f)(P))dv(x) 
where Y is the ordinary measure in E, gauged by v ( P )  = 1. 
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The result does not depend on the presentation of M. This follows from a 
formula known in calculus as “transformation of multiple integrals.” 

5.5. Definition G is called a C,k-group if it is a topological group, its space is 
a C,k-manifold, and its group operations are Ck-mappings with respect to the 
C,k-structure of the manifold G. 

The examples in 3.1-8 are Con-groups. For Aut R (3.1) it follows directly 
from the analyticity of matrix multiplication and inversion; for the others, it 
is less obvious but it will formally be proved in 11.3.5. 

Under left and right multiplication and inversion, the tangent spaces of a 
C,’-group are mapped by nondegenerate mappings (see 5.1). 

5.6t Sometimes more abstract notions of C,k-manifolds and -groups are 
needed. They are described by the following. 

Definition A C,k-manifold consists of a pathwise connected topological 
space Mand a set @ of mappings with the properties : 

5.6.1 
dimensional E E Spa Lin Top into M. 

Any cp E@ is a homeomorphic mapping of an open ball of an r- 

5.6.2 The images of some countable number of 

5.6.3 For qi E@, q;’tpl, as far as it is defined, is a Ck-mapping with no- 
where-degenerate gradient. 

E @ cover M. 

It can be useful to add the following assumption. 

5.6.4 @ is maximal with respect to 5.6.1-3. 
C,k-mappings and local presentations of such manifolds are defined in an 

obvious way, (The cp E@ are local presentations of the defined manifold.) 
To define the tangent space of rM,@l at  some p E M ( p  = rpa, where tp is 

some local presentation near a and a belongs to a ball S) an auxiliary tangent 
space of S at a is introduced : 

The set of C’-curves x in S with x(0) = a ,  [ d / d ~ x ( ~ ) ] ~ = ~  = c, is called the 
auxiliary tangent vector uc of S at a. The uc form the auxiliary tangent space of 
S a t  a, with that structure of linear space in which u becomes a linear mapping. 

The pimage of an auxiliary tangent vector uc is the set of C’-curves 8 on 
rM,@l such that 8(0) = p and 8 coincides with some q x  (x E oc) in a O-neigh- 
borhood; quc is called a tangent vector of rM,@l at  p; these tangent vectors 
form the tangent space at p with that structure of linear space in which q 
becomes a linear mapping. 

The union over p of the tangent spaces at  p E M of rM,@l is gifted with a 
structure of CrF-manifold in an obvious way. 

?The definitions of this section will only be used incidentally. 
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THE CONNECTION BETWEEN LOCAL LINEAR LIE GROUPS AND 
LIE ALGEBRAS 

6. DEFINITION OF LOCAL AND GLOBAL LINEAR LIE GROUPS 

R E Spa Lin Top, E E Spa Lin Top, dim R = n < 03, dim E = r < 03. 

6.1. Definition G is called an r-dimensional local linear Lie group (Gru Lie 
LOC Lin) in R if it is a local subgroup of Aut R, and a C2-piece (in some 
‘E, fl-presentation). 

G is called an r-dimensional (global) linear Lie group (Gru Lie Lin) in R 
if it is the extension according to 4.12 of an r-dimensional local linear Lie 
group in R.  

According to the field underlying E, a local G and its global extension are 
called real or complex. If R is real, then E is supposed to be real as well; if R is 
complex, then E is either real or complex. (Gru Lie LOC Lin Rea or Com; 
Gru Lie Lin Rea or Com.) 

Real restriction and waiving in G are understood to be induced by the same 
operations in  E if they again lead to (local) linear Lie groups. (Of course, a real 
restriction of the domain ball offmust again be a ball in the restriction of E.) 
Both are to be distinguished from real restriction and waiving in R (and 
consequently in Aut R),  which may or may not accompany the corresponding 
operations in G.  

Complex extension of G, which must be some converse of real restriction, is 
explained in 10.6. 

6.2 The examples in 3.1-8 will reveal themselves as linear Lie groups (see 
11.3.5). Every linear Lie group will prove to be a Can-group (see 8.3). 
Meanwhile, a weaker assertion can be proved : 

6.3. Proposition A linear Lie group is a C2-group. 

Proof Let G be the underlying local group; 6, according to 4.12, is a connected 
topological group. The aG (a  E 6) are C2-pieces because of the analyticity of 
left multiplication in Aut R and the nondegeneracy of the gradients. An 
everywhere dense countable subset A of G generates an everywhere dense 
countable subset B of e. The bG (b E B) form a countable system of C2-pieces 
covering 6 and are open subspaces of e according to its construction. The 

23 
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Cz-character of group operations in G follows from the analyticity of those in 
Aut R. 

6.4 Incidentally it will be useful to consider a group GI that is locally the 
isomorphic image of a given linear Lie group G. This means that by a certain 
tp a 1-neighborhood U in G is homeomorphically mapped onto a l-neighbor- 
hood U, in G, such that F(ab) = Fa-Fb as far as it is defined. Such a GI may 
possess several components, which, necessarily, are isolated. If such a GI is 
connected, it shares with G the same simply connected wrapping, as will be 
shown in Section 29. 

By means of the local presentations avf(u E G,, f as in 6.1) every component 
of G, is to be considered as a Cz-manifold [even a Can-manifold (see 6.2)], 
though not an embedded one. The 1-component then is a Cz-group (even a 
Can-group). 

6.5. Historical Note Local Lie groups aredue to Sophus Lie (1842-1899). 
The adjective “linear” means the restriction to groups whose elements are 
linear mappings of some linear space. This restriction is pragmatic. An exact 
definition of general local Lie groups would be long-winded. The present 
methods are such that they can easily be adapted to general local Lie groups. 

Hilbert’s Fifth Problem asked for an elimination of differentiability as- 
sumptions from the definition of Lie groups. Its complete solution was 
reached in numerous steps from 1929 to 1952. (See D. Montgomery and L. 
Zippin, Topological Transformation Groups, Wiley (Interscience), New York, 
1955; 3rd ed., 1965.) 

Its solution for local linear Lie groups is expounded in Section 11. 

7. THE INFINITESIMALALGEBRA OF A LOCAL 
LINEAR LIE GROUP 

G E Gru Lie LOC Lin, dim G = r, G c Aut R, in ‘E, f ’-presentation. 

7.1. Definition The tangent space of G at 1 is called G. Its elements are 
called the infinitesimal elements of G. 

Another way of looking at G will be useful: take a curve y, a, on G with a. = 1 
and the tangent vector 

a =  (&) . 
1-0 

G consists of all a. 

proved. 
G is an r-dimensional linear subspace of End R. In 7.5 the following is 



7. THE INFINITESIMAL ALGEBRA 25 

Proposition a,b E G -+ ab - ba E G. 

7.2 The expression ab - ba is the keynote of the Lie theory. I t  is called the 
(infinitesimal) commutator of a, b. 

Definition For linear mappings a,b of a linear space into itself, one writes 

[a,b] = ab - ba. 

It is called the commutator of a and 6. 
[. . ., . . .] is anticommutative, 

[a, 61 + [b, a1 = 0, 

and Jacobi-associative, 

“a,b], cl + “b, c1,aI + “c,al,bl = 0. 

The first is obvious; the second results from simple computation. 
Furthermore, 

[. . ., . . .] is bilinear. 

With [. . ., . . .]interpreted as a product, G becomes an algebra, the injinitesimal 
algebra of G.  

7.3 Disregarding the particular origin of the elements and the products 
[. . ., . . .], a general definition is given : 

Definition An algebra with the product operation [. . ., . . .] is called a Lie 
algebra (Alg Lie, Rea or Com) if it fulfills 

anticommutativity, [a,b] +[b,a] = 0, 

and 
Jacobi-associativity, [ [a ,b] ,  c] + [[b,  c],a] + [[c,a],b] = 0. 

Complex extension, real restriction (if it leads to an algebra), and waiving in 

From any associative algebra a Lie algebra is derived by putting 
Lie algebras again lead to Lie algebras. 

[a, b] = ab - ba. 

In fact, any finite-dimensional Lie algebra can be derived this way up to 
isomorphy, even as a linear Lie algebra as defined in 7.4. This is known as 
Ado’s theorem [see Trans. Amer. Math. SOC. Transl. 2 (1949)], which is not 
proved in this book. 
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7.4. Definition A linear Lie algebra (Alg Lie Lin) in R is a Lie algebra 
contained in End R, with [. . .,. . .] defined by [a,b] = ab - ba. 

R acted on by a complex linear Lie algebra G has to be complex; R acted on 
by a real linear Lie algebra G may be real or complex. 

Complex extension, real restriction, and waiving with respect to G are to be 
distinguished from the same kind of processes with respect to R, though in 
some applications they can go together. 

Proposition 7.1 can now be stated as follows. 

Theorem The tangent space of G at 1 is an r-dimensional linear Lie algebra 
G, the injinitesimal algebra of G. 

Remarks (1) The term “infinitesimal algebra of G” is also used with global 
linear groups. (2) Infinitesimal elements and algebras, and subsets thereof, are 
usually indicated by boldface type. If a (local) group is identified by some 
capital letter, its boldface counterpart usually indicates the infinitesimal 
algebra. (3) The converse of the theorem, that is, the unique existence of 
G E Gru Lie Lin with a given infinitesimal algebra G E Alg Lie Lin, is proved 
in Sections 8 and 10.1. It justifies the use of italic and boldface counterparts 
for related Lie groups and algebras. 

7.5 Proof of Proposition 7.1. As a paradigm of future procedures, the fact 
that G is an r-dimensional linear space is restated in 7.5.1-3. 

7.5.1 a E G +- aa E G (a scalar). 

Proof There is a curve Y t U r  on G with a. = 1, a = [(d/dt)arlr,o. The curve 
Ytaar lies at least partly on G. Its tangent vector at t = 0 is [ ( d / d t ) ~ , , ] , , ~  = 

a[(d/dt)a,],,o = aa. Hence aa E G. 

7.5.2 a , b E G + a + b E G .  

Proof There are curves )‘rat, Y,b, on G with a0 = bo = 1, a = [ ( d / d t ) ~ , ] , , ~ ,  
b = [(d/dt)b,],,,. By c, = arbr for small t ,  a curve on G is defined, and 

which proves a + b E G. 
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7.5.3 dim G = r. 

Proof It may be assumed thatfO = 1 in the 'E,fl-presentation of G. On a 
basis of E curves on G can be expressed by 

at = f ' ~ , ( t ) ,  *,Tr(t)', 
with continuously differentiable p, and rp,(O) = 0. In particular, 

defines a curve Y,a,(t) on G with 
v,(t) = t ,  cpk(t) = O  for k # j  

The a, are the images of the basis vectors in E under gradof, which is of rank r, 
and are linearly independent. 

Any a E G is the tangent vector at  1 of some curve defined by 

ar = f ' ~ i ( t ) ,  ., v X ~ ) '  ; 
hence, 

is linearly dependent on u l , .  . .,a,, which consequently form a basis of G. 

Remark Every a E G is a tangent vector of a C2-curve on G. Indeed, if u is the 
grad,jhiginal of u, then )',f(tu) has the required property. 

7.5.4 a,b  E G+ [u,b] E G. 

Proof According to the preceding remark, C2-curves Yrar, Yrb, can be found 
with -ao = bo = I ,  

.=(&a,) r =o , b = ( & b , )  t -0 . 
The finite commutators for small t ,  

c, = a, b, a;' b;', 

define a curve Y, c, on G with co = 1. 

7.5.4.1 

hence, 

7.5.4.2 
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Also 

7.5.4.3 

LOCAL LINEAR LIE GROUPS AND LIE ALGEBRAS 

Differentiating 7.5.4.1 once more, putting t = 0, and using 7.5.4.2 one obtains 

7.5.4.4 

7.5.4.5 

($a,)  a;' + 2 (:a,) ($a;') + a, ($ a;') = 0. 

($ a,),_o + ($ a;l) = 2a2. 

( g b )  dt2 1=0 + ( C b - l )  dt2 ' =2b2. 

1-0 

Differentiating Yrc,, one gets 

+ arbl (:a;') 6;' + arbla;' ( $ b ; l ) ,  

which because of 7.5.4.2-3 shows 

( i c , )  =o. 
1-0 

Differentiating once more, putting t = 0, and using 7.5.4.2-3, one gets 

($ ct)t=o = 2ab - 2a2 - 2ab - 2ba - 2b2 + 2ub + 2a2 + 2b2 
= 2(ab - ba). 

The statement 7.5.4. now follows from the following lemma. 

7.5.5. Lemma If Yrc, is a @curve on G E Gru Lie LOC Lin, and cg = 1,  
(dc/dt),,, = 0, then (d2c/dt2)1=o E G. 

Proof Y,c;'c,+, is a C2-curve on G for any small r.  Its tangent vector for 
t=Ois  

c, = c;' (;Cl+,) E G. 
1=0 

Since Cis a closed set, (d/dT)c, E G too, but 
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7.6. Examples Though the Lie character of the groups G of 3.1-8 has 
not yet been formally discussed, it is possible to compute G: 

ad 3.1 
)',at is a curve on G with 

Clearly G c End R. Let a E End R. If a, = exp tu then det a, # 0 and 

hence G =  End R. 

ad 3.2 If a, E G, det a, = 1, then d/dt det a, = 0. On an ordered basis a, is 
presented by a matrix r~i,(t)ly,,=l and det a, is a sum of terms &aI,, . . . anJn. 

For t = 0, (xi, = 0, unless i = j .  Every summand other than ccl . . . a,, possesses 
at least two nondiagonal factors. Therefore after differentiation of det a, at  
t = 0 the only remaining contribution is 

Thus u E G + tr u =O.  
Conversely, from 2.7.1, one learns that if tr u = 0 then det exp tu = 1. Then 

a, = exp tu defines a curve on G with [(d/dt)a,],,o = a. 
Consequently, u E G ++ [a E End R A tr u = 01. 

ad 3.3 If a, E G, u = [(d/dt)a,],,o, then aia, = 1; hence 

u' + u = 0. 

Thus u is skew. 

Consequently, G consists of the skew matrices of End R. 
Conversely, ifu is skew, a, =exp tu is orthogonal (see2.9)and [ ( d / d f ) ~ , ] , , ~  = u. 
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The skew matrices are also called infinitesimal rotations. The case of n = 3 is 
particularly interesting. Then with 

one gets ax = [u ,x ] ,  where u = r ~ , , w 2 ,  w3 '  and [. . ., . . .] denotes the vector 
product; u is the axis of the infinitesimal rotation a and the rotations exp ta. 
(Note that au = 0.) 

ad 3.4 G consists of the hermitean skew matrices a of End R,  a* + a = 0. 

(: :)a 

ad 3.5 G consists of the matrices 

ad 3.6 G consists of the matrices (0" ;) with imaginary u, p. 

(Fi;) ad 3.7 G consists of the real multiples of 

ad 3.8 G consists of the triangular matrices of the form \ with zeros in the 
main diagonal. 

Thanks to the nilpotency of a - 1 for a E G, the power series of log a = 

log(1 + (a - 1)) converges (see 2.2). So log exists as the inverse of exp all over 
G and G, respectively; hence 

exp maps G homeomorphically onto G. 

In all cases 3.1-8 one easily verifies directly that Cis a Lie algebra. In particu- 
lar, 3.2 states that the commutator of two matrices with vanishing trace again 
hasvanishingtrace.ThisistrueevenofanypairA = ral,ly,,=l, B =  rp,,l;,j=L of 
n-n-matrices because tr AB = I; all p,l is symmetric in A ,  B. 

In 3.3 the case of n = 3 is again of particular interest. Given a ,b  E G, there 
are vectors u, v such that, for all x, 

ux = [u ,x ] ,  

bx = [v ,x ] .  
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Then 
abx = [u, [u, XI], 

bax = [ v ,  [u,x]]. 

Computing the commutator of the matrices a,b, one finds 

[a, blx = “u ,  01, XI ; 

[u, [ V J I l  - [ V ,  [U,XIl = “u,uI,xl, 
thus, 

which is a well-known property of the vector product, closely related to 
Jacobi-associativity. 

Lie algebras of linear mappings in function spaces play a role in quantum 
mechanics. Let Q, P, and I be defined by 

Then 
[P ,  I ]  = [Q, I] = 0. 

[P, Q l  = I, 

The linear combinations aI + ,!?P + y Q  with scalar a, f l ,y  form a Lie algebra. 

7.7 Real restriction and waiving in (local) linear Lie groups induce the same 
kind of processes in their infinitesimal algebras. 

7.8. Historical Note Commutators and Jacobi-associativity first 
appeared in Jacobi’s study of partial differential operators. 

8. THE EXPONENTIAL PRESENTATION 

G E Gru Lie Lin, G c Aut R, G locally presented as ‘E,fl, j-0 = 1, G its 
infinitesimal algebra. 

8.1. Proposition The tangent space of G at a. is a. G. 
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Proof By left multiplication with a,' a curve )',a, through a. on G is 
mapped into a curve Y,b, on G through 1, 

The tangent space of G at a. is made up of the 

which belong to aoG. 

8.2 How does one reconstruct G from G? The examples 7.6 suggest that it 
could be done by the exponential. Indeed, local coincidence of G and exp G 
will be shown. The first step is the following proposition. 

Proposition a E G --jc exp fa E G. 

Proof c, = exp fa as a function of t is characterized by the differential 
equation 

8.2.1 d 
;i; c, = c, a, 

with the initial condition 

8.2.2 co= 1. 

The solution to 8.2.1-2 in End R is unique. If it can be shown that for small 
t 8.2.1-2 can already be solved on G, the uniqueness of the solution will 
guarantee exp fa E G for small t and so for all t because the exp fa form a group. 

According to 8.1 , ca belongs to the tangent space of G at c E G. Marking the 
vector ca at any point c E G, one gets a continuous vector field on G. By inte- 
grating it? one obtains a curve y , a, for small t ,  with a, E G, a. = 1, and such that 
for any t its tangent vector is just the prescribed a,a. Therefore the curve 
fulfills 8.2.1-2, which consequently can be solved on G. This proves the 
assertion. 

t It is done by translating the problem into E throughf-I, where the resulting differential 
equation has to be solved. 



8.  THE EXPONENTIAL PRESENTATION 33 

8.3 The previous proposition shows: exp G c G. By the equality of dimen- 
sions and by the fact that grado exp is the identity mapping of G, it follows 
from Proposition 4.16 that exp maps a sufficiently small open 0-neighborhood 
of G homeomorphically and nondegenerately onto an open 1-neighborhood 
of G. 

This yields a new presentation of G near 1, E being replaced by G (as a 
linear space) and f by exp. The new presentation has the advantage of being 
intrinsic and analytic (because exp is so). By left multiplication this presenta- 
tion is transferred to any point of G, which shows that G is analytic. 

This suggests the following definition. 

Definition The ‘E,f’-presentafion of G near 1 is called exponential if 
E = G (as a linear space) and f is the restriction of exp to an open ball around 
0 in G. 

The following has been proved : 

Theorem A linear Lie group may be considered as an analytic group. Near 1 
it admits an exponential presentation. 

8.4. Definition An open ball N around 0 in G E Alg Lie Lin (according 
to some norm in G )  is called a smooth ball if, in the closure of N, exp is one-to- 
one and grad exp is nondegenerate. By exp the notion of smooth ball is 
carried to G, if G is the infinitesimal algebra of G. 

The existence of smooth balls follows from grado exp = 1 and the con- 
tinuity of y. grad, exp. 

Note that if Nis a smooth ball then exp Nis a C”“-piece. 

Proposition If N is a smooth ball in G E Alg Lie Lin and N’ is a smaller 
concentric open ball in G such that 

exp N . exp N’ = exp N, 

then exp N’ is a closed local subgroup of Aut R, as well as a local linear Lie 
group. 

This follows from 4.11. 

Proposition For the infinitesimal algebra G of the linear Lie group G, sets 
N, N ‘  as introduced in the preceding proposition exist and then exp N’ is 
locally identical with G. 

8.5 The exp-image of a straight line through 0 as far as contained in N’ 
(see 8.4) is a one-dimensional local linear Lie group. This leads to  the following 
theorem. 
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Theorem A 1-neighborhood in G is covered by a smooth system of one- 
dimensional local linear Lie groups, intersecting in 1 only. 

8.6 Globally things might be less smooth. The torus group 3.6 admits an 
infinity of one-dimensional subgroups through every one of its points. 

On the other hand, it may happen that G is not exhausted by exp G. As an 
example, take the group G of 2-2-matrices with complex coefficients and 
unit determinant. Then G consists of the 2-2-matrices I( with tr a = 0. There is 
no basis on which 

a=(- '  0 -1 I ) ~ G  
appears in diagonal form. The same can be said of a if exp a = a. Con- 
sequently, a should have two equal eigenvalues. Since tr a = 0, both must 
vanish and those of a should be 1, whereas in fact they are -1 .  This shows 
a 4 exp G. 

8.7. Proposition Let K ,  ( i  = I , .  . . , k )  be C'-pieces in G ,  passing through I 
and with the respective tangent spaces Kf at 1.  Let G = z: K f  directly as 
linear spaces. Then there are C'-pieces K ;  c K I  with the same tangent spaces 
at 1 such that 

Y Tol,  a i .  . . .. 0x1 a,  ' 0 2 '  * . * ' a k  

maps TK; ,  K;,  . . ., KLl homeomorphically onto a I-neighborhood in G. I n  
particular, K ,  ' K ,  * - * * - K k  contains 1 in its interior with respect to G. 

Proof The Kl may be assumed in 'E,,.f,'-presentations w i t h h t ,  defined for 
t i  E SI and Sf open balls around 0 in E, ( i  = 1, .  . .,I?); the El may be assumed to be 
direct summands of E = C El .  Put 

Thenfis a C1-mapping into G and 

(gradof)(z: II) = z: (gradoh) t l ,  

det(grad,f) = det(grad,f,) # 0. 

Sofmaps a small 0-neighborhood in E homeomorphically onto a I-neighbor- 
hood in G,  which proves the assertions. 

8.8 The special case in which Uis a small I-neighborhood in G and 

K1 = (exp KI) n U, 

leads to the following. 
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Definition Let G = K ,  + K2 +*  * -+ Kk directly as linear spaces and let w1 

be the natural projection of G onto K1. Then ‘E,fl is called a generalized 
exponential presentation of G near 1, induced by the aforementioned direct 
splitting, if E = G, 

fa=expw,a.expw,a-  * - .  -exp wka. 

The existence of such presentations has just been proved. 

9. HOMOMORPHISMS, AUTOMORPHISMS, AND 
DERIVATIONS 

9.1. Local Homomorphisms G, H E Gru Lie Lin. 

Definition 0 is called a local homomorphism of G into H if it maps a 1- 
neighborhood in G continuously into H such that 

O(a6) = @a.  Ob 

as far as @a, Ob, @(ab) are defined. Two local homomorphisms coinciding in 
some 1-neighborhood in G are considered identical. If such a 0 maps every 
sufficiently small l-neighborhood of G onto a 1-neighborhood in H,  it is called 
a local epimorphism. The terms local endo-, iso-, and automorphism apply in 
an obvious way. It is also clear what is meant by a local C2-homomorphism and 
a local semi-C2-homomorphism (see 5.1, 5.3) .  

A local C2-homomorphism 0 of G into H induces a linear mapping, also 
called 0 (instead of grad,@), of their infinitesimal algebras G into H such that 
if 

a = ( $ a , )  Ec, 
t = O  

then 

lffor C2-curvesY,a,, Y,b,,  

a =  ($a,)  , 6 = ( $ b , )  EG, 
t = O  1-0 

then (see 7.5) 



36 6-12. LOCAL LINEAR LIE GROUPS A N D  LIE ALGEBRAS 

= - 1 [- d2 (@a, * Ob, *(@a,)-' @b,)-l))] 
2 dt2 1=0 

= [@a, 061. 

This proves the following proposition. 

Proposition A local C2-homomorphism of linear Lie groups induces a 
homomorphism of their infinitesimal algebras. 

In 10.4 the converse will be proved. In fact exp and 0 will be shown to 
commute. As a consequence, the validity of the prefixes epi, endo, iso, and 
auto, with respect to local groups and their infinitesimal algebras, will imply 
each other. 

It is clear how the proposition is to be stated for local semi-C2-homo- 
morphisms. 

9.2-4. Derivations 

9.2 The automorphisms of a Lie algebra G form a linear group, denoted by 
Aut G. Though the Lie character of Aut G still has to be established (see 
11.3.4), the Lie group notions can be applied to Aut Gin a heuristic approach. 

Definition IR is called an injinitesimalautomorphism of Gif 

for some curve )', 0, in Aut G with 0, = 1. 

differentiation at t = 0 

Clearly52 is linear. 

With the notation of this definition one gets @,[a,b] = [@,a, 0,6]; hence by 

52[a,b] = [IRa,b] i [a, Qb]. 

This suggests the following. 

9.3. Definition A linear mapping IR of G into itself is called a derivation of 
G if 

Sl[a,b] = [Qa, b] + [a, Qb]. 

It has been shown that an infinitesimal automorphism is a derivation. 
The converse is also true: 
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Proposition The notions of infinitesimal automorphism and derivation of 
a Lie algebra G coincide. I f  Q is a derivation, exp s;! is an automorphism. 

Proof Let s;! be a derivation of G. Put c, = [(exp fQ) a, (exp fQ) 61. Then 
d 
- c, = [Q(exp tQ)a, (exp rQ)b] + [(exp tQ)a, Q(exp tQ)b] 
dt 

= Q[(exp &)a, (exp tQ)b] 

=QCt. 

The differential equation 

admits the unique solution 

This proves exp tQ E Aut G. Because of 
c, = (exp tQ) [a,b]. 

($exp tn) =Q, 
t=o 

Q is an infinitesimal automorphism. 

9.4. Proposition The derivations of a Lie algebra G form a linear Lie 
algebra. 

Proof Clearly they form a linear space. LetQ,,Q2 be two derivations of G. 

.n ,Q,[a ,~ l=[Q,Q,a ,b]+  [Q,a ,  Q,bI+[Q,a, Q,bI+[a,  Q,Q,bI. 

= [ ( Q , Q 2  -Q,Q,)a,bl + [a,<Q,Q2 -Q2Q,)bI 

= “Q,, Q21 a, 61 + [a, [Q,, Q 2 1 4 ,  

[Q,, Q21 [a, 61 = Ql Q2 [a, 61 - Q2 Q, [a, bl 

which proves that [Q,, Q,] is again a derivation of G. 

9.5-7. Inner Automorphisms 

9.5 Any group G possesses a special kind of automorphisms called inner, 
which again form a group, denoted by Int G .  

Definition For c E G 
c“ = yo& cac-‘. 
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The group of E with c E G, with the composition of mappings as the group 
product, is called the group Int G of inner automorphisms of G. 

Indeed, Int G is a group because 
N 

E1(E2 a) = cl c1 acs 'c i '  = CI c2 a(cl cJ-' = ~1 CZ a, 
N 

E l  Ei' u = ~1 c i '  u 2 a. 

This also shows the following. 

Proposition y,Eis a homomorphism of G onto Int G. Its kernelconsists of 
those c that fulfill cac-' = a for all a E G. This is the center of G. 

9.6 If, moreover, G E Gru Lie Lin, then according to 9.1, E induces an auto- 
morphism of G, mapping 

a = (;at)  t=O 

It can be directly verified that E is an automorphism of G: the linearity is 
evident and c[a, b] c-' = ~ ( a b  - ba) c - l=  cac-'. cbc-' - cbc-' cac-l = [cac-I, 
cbc-'I. 

Moreover, 
N 

El(E2 a) = ~ 1 ~ 2  U C ~ '  ci '  = ~1 CZ U ( C ~  cJ-' = CI CZ 4. 

This leads to the following. 

Definition The adjoint group G of G E Gru Lie Lin is the group of linear 
mappings E = YaEG cac-l of G onto itself with c E G. 

The following has been shown. 

Proposition ycc" is a linear representation of G in G. 
G is a linear group. In 9.1 1 it is proved to be a linear Lie group. 

9.7 The representation in 9.6 of G by G in G may fail to be faithful just as 
much as the representation in 9.5 of G by Int G. It may be asked how they are 
related. Their actions are connected by exp: 
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One notes that in the case of an automorphism 0 of the form t i t  is evident that 
0 and exp commute (see end of 9.1). 

Therefore, if c",,F2 coincide in G, they do so near 1 in G, but because they are 
homomorphisms and any l-neighborhood in G generates G, the same is true all 
over G .  

This shows: 

Proposition If G E Gru Lie Lin, then e and Int G are isomorphically 
related by the mapping exp of the spaces G into G ,  on which and Int G act, 
respectively. 

9.8-1 1. Inner Derivations and Automorphisms 

9.8 Since G c Aut G, the notions of 9.2 apply to e if 0 is specialized to F. 
Taking, as usual, a curve yr c, on G with co = 1 and putting 

one obtains an infinitesimal automorphism of G, hence a derivation. 

This definition of E makes sense if G is a general (not necessarily h e a r )  Lie 
algebra : 

E is a derivation, since E is linear and 

f a  = [c,a]. 

P[aybI = Ic,I@,bII = [ [c ,a] ,b]  t [ a , [ ~ , b ] ]  

by anticommutativity and Jacobi-associativity. 

Notation For G E Alg Lie and c E G 

= Y aeC [c, a1 
or, if G has to be mentioned explicitly, 

adc c = Y aeG [c, a]. 

For any N c G, 6, or adc N, means the set of E with c E N. 

Definition For G E Alg Lie the f with c E G are called the inner deriziations 
of G. The linear Lie algebra made up of these f (see next proposition) is called 
the adjoint algebra of G. 
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Proposition For finite-dimensional G E Alg Lie: (1) c E Alg Lie Lin; 
(2) yo ii maps G homomorphically onto G. 

Proof 
N 

(orE)a = a(Eu) = a[c,a] = [ac,a] = ac u, 
N 

(El +C,)a = E,u + E,a = [c1,a] + [c,,a] = [Cl + c2,4] = c1 + c24, 

N 

~ ~ , , ~ , 1 4 = ~ 1 ~ , ~ - E , E , a =  [cl,[c,,all- [c,,[c,,all= “c,,c,l,al= [ClrC21U, 

by using anticommutativity and Jacobi-associativity. 

9.9 Pursuing the application of 9.3 to finite-dimensional G E Alg Lie, one 
notes that exp E is an automorphism of G, which could be called inner. It is 
not yet clear, however, whether these mappings generate a linear Lie group 
and whether this is G. This is proved in 10.3. Meanwhile there is no objection 
to expressing the following definition. 

Definition If G is the infinitesimal algebra of a linear Lie group, this group 
is called Int G. 

Meanwhile one can go farther if it is assumed that G E Alg Lie Lin or even 
that G is the infinitesimal algebra of some G E Gru Lie Lin. This is done in 
9.10-11. 

9.10. Proposition If G E Alg Lie Lin, then 

(expE)a = expc.a.exp(-c). 

Proof The differential equation 

d 
-a, = fa , ,  
dt 

a0 = a, 

is solved by 
a, = (exp tE)a 

a, = exp tc.a.exp(-tc). 
as well as by 

The uniqueness of the solution proves the assertion. 

9.11. Proposition If G E Gru Lie Lin and G is its infinitesimal algebra, 
then Int G exists and equals G. 
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Proof Under the present condition the result of 9.10 may be written 

(exp Z) (I = exp c (I, 
N 

or, for short, 

9.1 1.1 
N 

exp E = exp c. 

Now a local linear Lie group of which e is the infinitesimal algebra is found 

Take a smooth ball N in G (see 8.4). Then, by 8.4, an open ball N' in  G 

by the following construction: 

around 0 can be found such that 
exp N'.exp N' c exp N. 

By 9. I 1.1 the mapping Y,F yields 

exp N' * exp NJ c exp N. 
If N has been chosen so small that N' is still a smooth ball with respect to G, 
then from this relation it follows (by 8.4) that exp N' is a local linear Lie 
group whose infinitesimal algebra is e. Consequently, Int G, as introduced in 
Definition 9.9, exists as the global extension of exp N'. By 9.10 it coincides 
with G". 

9.12-13. The Topology of Int G 

9.1 2 One should first be inclined to topologize Int G as a set of mappings of 
G onto itself, preferably by means of compact convergence (i.e., a sequence of 
mappings converges if it does so on any compact subset). If Int G and G are 
identified according to Proposition 9.7, this topology of Int G would coincide 
with that of c as a subgroup of the general linear group of the linear space G. 
This, however, need not be the topology that is borne by e as a linear Lie 
group. Of course, both topologies coincide as soon as is closed. With a 
view to a later application, one is advised to express the following: 

Definition G E Alg Lie is called ad-closed if Int G is closed in the general 
linear group of the linear space G. G E Gru Lie Lin is called ad-closed if its 
infinitesimal algebra C i s  ad-closed. 

For ad-closed G the topology borne by Int G as a set of mappings of G 
coincides with the linear Lie group topology of c. 
9.13 Another obvious topology to impose on Int G of G E Gru Lie Lin 
would be that of the coset space G / Z ,  where Z is the center of G.  It will soon 
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become clear (see 12.14) that this topology coincides with that borne by c‘ as a 
linear Lie group (after due identification of c‘ and Int G). 

10. EXPANDING LINEAR LIE ALGEBRAS AND THEIR 
HOMOMORPHISMS INTO LINEAR LIE GROUPS 
AND THEIR LOCAL HOMOMORPHISMS 

G E Alg Lie Lin. 

10.1. Theorem Gru Lie Lin is one-to-one mapped onto Alg Lie Lin by the 
functor “infinitesimal algebra of..  . .” 

This was announced in  7.4, Remark 3. In Section 8, the functor mapping of 
G into G was inverted by means of the exponential. What is still left to prove 
can be formulated as the following theorem. 

Theorem 
G E Gru Lie Lin. 

G is the infinitesimal algebra of some (uniquely determined) 

Proof According to 6.1, a local construction of G is sufficient; according to 
8.3, one may expect exp G to do the job. 

Let N be a smooth ball in G. The first step is to show that at  any point 
exp co (co  E N) the tangent space of exp Nis (exp co) G, as might be expected 
from 8. I .  A curve on exp N is given by y, exp c,, where y, c, is a curve on N. 
It is proved that 

then, because of the nondegeneracy of grad exp in 
tangent vectors at exp co exhaust (exp co) C. Put 

N. it is evident that the 

a 
at 

10.1 .I y ( t ,  s) = exp(-sc,) .- exp sc,. 

Differentiating with regard to s and interchanging differentiations in s and t ,  
one obtains 

a a a 
as at at 
~~ y( f ,s )  = - exp(-sc,).c, exp sc, + exp(-sc,). (c, exp sc,) 

d 
= exp(-sc,). -c,*exp sc,. 

dt 

which belongs to G because of 9.9-10. Integrating in s yields 
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' I  d 
dt 

10.1.2 

According to the definition of y ,  this means 

y(r, I )  = J exp(-sc,)* c, .exp sc, ads E G. 

This proves that (exp co)G is the tangent space of exp N a t  exp co. To 
complete the proof a smaller concentric open ball N' is constructed such that 

exp N'-exp N' c exp N .  

Then by 8.4 exp N' is a local linear Lie group with the infinitesimal algebra G. 

c, = exp amexp tb 

for a E N and b E C. The curve Y,c, is characterized by the differential 
equation 

To find such an N' one considers 

d 
dl c, = c, 6 ,  co = exp a. 

The solution can also be obtained by integrating the field of vectors (exp a)b 
(b  fixed E C),  which have been shown to lie in the tangent space of exp N at  
exp a. By the same reasoning as in 8.2 the solution is found within exp N for 
small t .  So, for small b and 0 Q t s 1 ,  c, E exp N. Because the solution depends 
continuously on a and b, this means that 

exp a.exp b E exp N 
for small a,b, say, in a ball N '  around 0. This proves the assertion. 

10.2 In  the preceding proof, when putting 
C, = CO + tb ( b  E G),  

one obtains from 10.1 .l-2 
I 

exp(-c,) (i exp c,) =y(O, 1) = 1, exp(-sco).b- exp sco.ds 
1-0 

= exp(-sZ,).b.ds. JI, 
For later use 

I 1 1 
2!  3! k,, = so exp(-sf,) ds = 1 - ~ E~ + - - E,* - . . . 

is defined as a linear mapping of G into itself. Then 

exp(-co) (g exp c,) = k,, b. 
1=0 
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Theorem If c, = co + tb, then 

where 
1 - exp(-E) 

E 
k, = 1: exp(-sE) ds = 

(this fraction with its degenerate denominator has to be understood as a power 
series). 

In other words, 

This shows that exp maps G onto a Can-manifold, as long as exp is one- 

Furthermore, if H is a linear subspace of G, the tangent space of exp(c + H) 

grad, exp = (exp c) k,. 

to-one and det k ,  # 0. 

at exp c will coincide with (exp c) k ,  H as long as det k ,  # 0. 

Proposition k ,  as defined before can degenerate only if E has some eigen- 
value that is a nonvanishing integral multiple of 2ai. 

Indeed, these are the only zeros of the numerical function y,(1 - e-.)/x. 

10.3 The next theorem, which was mentioned in 9.9, is an immediate 
consequence of 10.1. 

Theorem For any Lie algebra G, Int G exists as a linear Lie group. 

10.4 By a simple artifice the converse of Proposition 9.1 is derived from 
Theorem 10.1, 

Theorem Let G, H E Gru Lie Lin. Then a homomorphism 8 of their in- 
finitesimal algebras G into H extends to a local one of G into H, namely, by 
means of 8 exp u = exp(8a). 

Remark It is clear how the t h e m m  is to be stated for a semimorphism 8. 

Proof With G c End R, H c End S, a new linear Lie algebra I: c End T is 
built up, where T is the direct sum R + S. For u E G, u* E End T is defined by 

u*x=ux  for X E  R, 

u*y=(@u)y  for YES. 
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By definition F is the set of a* with a E G. Using bases of R and S and their 
union as a basis of T, one can write a* as a matrix: 

The linearity of 0 implies that F is a linear space and @[a, b] = [@a, @b] implies 

So F E Alg Lie Lin. By Theorem 10.1 F extends to an F E Gru Lie LOC Lin, 
the elements of which are 

for small a. exp((l 0 @a ‘ ) = ( e x p a  0 exp O )  @a 

For small a, b 

is some 

(‘“0“ exp O @c ) € F ,  

hence, 

which proves the assertion. 

O(exp a-exp b) = 0 exp a - @  exp b, 

10.5 It is now evident that local C2-homomorphisms of linear Lie groups 
and their infinitesimal algebras induce each other locally. Globally, this 
assertion may fail to be valid, The addition group of real numbers, expressed 
as a linear group by the matrix 

and the multiplication group of complex numbers of absolute value 1, 

(e’7, 
have isomorphic infinitesimal algebras. They are locally but not globally 
isomorphic. 

10.6 The functor “infinitesimal algebra of.. . ” clearly maps the set of real 
restrictions of G and the waiving of G onto those of G. 

This suggests defining complex extension of G via G so that the functors 
“infinitesimal algebra of. . .” and “complex extension of. . .” commute. 
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10.7. Historical Note The proof in 10.1 is a modern adaptation of ideas of 
F. Schur, Math. Ann. 33,49-60 (1889), 35,161-197 (1890), 38,263-286 (1893), 
41, 509-538 (1893). See also H. Kneser, Jahresber. Deutsche Math. Ver. 39, 
72-78 (1930), and H. Freudenthal, Jahresber. Deutsche Math. Ver. 43,2639 
(1933). It has been formulated so to remain valid for nonlinear Lie groups. 

11. DROPPING DIFFERENTIABILITY ASSUMPTIONS 

R E Spa Lin, dim R < 00. 

11.1-3. Closed Local Groups 

11 .l. Definition A closed local linear group (Gru Cls LOC Lin) in R is a 
closed local subgroup (see 4.10) of Aut R. 

Notice that Gru Lie LOC Lin c Gru CIS LOC Lin. 

11.2. Theorem Every closed local linear group G coincides locally with a 
real local linear Lie group. 

Remark Differentiability assumptions have been replaced by the topological 
assumption of closedness. 

Proof Put F = Aut R, consider F as a real linear Lie group (if needed after 
waiving), and denote its infinitesimal algebra by F. Let N be a smooth ball in P 
and N = exp N. Replacing given G, if needed, by C n N ,  one may suppose that 

11.2.1 1 E G ~ N ,  G G n N c G ,  G - ' = G  

(see 4.10). Now a set G c P is defined as follows : a E G if there is a sequence of 
a, E N such that 

11.2.2 a, = exp a, E G and lim a, = 1 

and a sequence of positive numbers aJ such that 

11.2.3 lim a, a, = a. 

Note that 11.2.2 implies lim a, = 0. From 11.2.3 it follows that if a # 0 then 

G will turn out to be a linear Lie algebra; to be more precise, that of the 
lim a, = 00. 

local linear Lie group coinciding locally with G. 
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In the definition of G the positive numbers a, could be replaced by positive 
integersp,. Indeed, ifp, is the integral part of a, and a # 0, then limp,a, = lim 
aJa, - lim (a, -p,)a,  = lim a,a,, so that nothing is lost by that restriction. 

It will be proved that 

11.2.4 a E G n N + e x p a E G .  

It may be supposed that a # 0. By definition there are a, E G and natural 
numbers p, such that 

11.2.5 exp a, E C, a = limp, a,. 

Since (I E N, one may assume that allp,a, E Nand,  since Nis a ball around 0, 

11.2.6 pa, E N for all nonnegative integersp G p j .  

so 
11.2.7 

Induction shows that 

(exp a,)” = exp pa, E exp N = N for the same p. 

11.2.8 (exp a,)” E G for all nonnegative integers p G p,. 

Indeed this is true for p = 0. If it is true for some p G p, - 1, then exp a,, 
(exp a,)” E G ,  exp a,.(exp a,)” E N by 11.2.7, hence an element of G by 1 1.2.1, 
which settles the induction. 

In particular, 
exp p, a, = (exp a,)”’ E G ;  

exp a E G. 
thus, since G is closed in N ,  

This proves 1 1.2.4. 

The next step is to prove the following. 

11 -2.9 If c, E G is differentiable in the real variable t and co = 1 , then 

($,) E G. 
1-0 

c, may be assumed to be in the form exp c,, where c, E N is differentiable and 
CO = 0. NOW 
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where j runs through the positive integers and l imj  = co. By definition this 
limit belongs to G, which proves 11.2.9. 

The following step is to ascertain that 

11.2.10 

Evidently for positive a 
a E G + ua E G. 

Replacing a, in 1 1.2.2 by -a, one finds the same for a = -1, and so it may be 
asserted for all real u. Suppose that a, b E G; then by 11.2.4 and 11.2.1 for 
small t 

G E Alg Lie Rea. 

exp ta, exp tb, c, = exp ta-exp tb E G. 

By 11.2.9, 

a + b = ( & c , )  EG. 
t-0 

Applying the same kind of argument to 

k, = exp ta-exp tb.exp(-ta)*exp(-tb) with s = t2, 

one gets 

This proves 11.2.10. 

[a, b] E G. 

Finally it is shown that 

11.2.11 exp G n N coincides locally with G. 

Let K be a linear complement of G in 10 (defined in the beginning of the 
proof). The direct splitting of linear spaces I; = G + K induces a generalized 
exponential presentation of Fnear 1 (see 8.8) which shows that 

y rb,ci exp b-exp c 

maps homeomorphically a 0-neighborhood in I: onto a 1-neighborhood in F. 

a, E G\exp(G n N) with lim a, = 1. 

Suppose that 1 1.2.1 1 is false. Then there is a sequence of 

It may be assumed by the foregeing that 

a, = exp b, * exp c, 

b , E G n N ,  c , € K n N ,  
with suitable 
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and 
lim b, = lim c, = 0, 

though c, # 0. All a, belong to G and so do all exp 6, by 11.2.4; hence almost 
all exp c, belong to G. Let a, be the largest integer such that ale, EN, 
thus near the boundary of N for large j. Then the a, c, may be assumed to 
converge to some c # 0, which contradicts the definition of G. This proves 
1 1.2.11 and therefore the theorem. 

11.3.1. Proposition Let G be a connected closed local linear group. Then 
the expansion e of G, according to 4.12, is a real linear Lie group. 

Proof By 11.2 there is an open 1-neighborhood V c Aut R such that H = 

G n V is a local linear Lie group. The global expansion of H is I?. Clearly 
fi c e and every open set of I? is also open in 6. So I? is open in e; but, since 
G is connected, e is also connected so that it coincides with I? which is a linear 
Lie group. 

11 -3.2 An immediate consequence is the following. 

Proposition A connected closed linear group is a real linear Lie group. 

11.3.3. Proposition Let G be a closed linear group. Its l-component Go is 
then a real linear Lie group; Go is isolated in G and so are all other components. 

Indeed, by 11.2 G n U E Gru Lie LOC Lin for some 1-neighborhood U of 
Aut R. Then G n U is connected, hence contained in Go. So Go contains a 
1-neighborhood of G, whence Go is open in G. This is the assertion that had 
to be proved. 

11.3.4. Proposition Let G E Alg Lie. The l-component (Aut G), of Aut 
G is then a linear Lie group, with the algebra of the derivations of G as its 
infinitesimal algebra. 

Since Aut G is closed, this follows from 11.3.3 and 9.2-4 if G is real. If G is 
complex, one gets a real linear Lie group. Its infinitesimal elements are again 
the derivations of G, its infinitesimal algebra can be provided with the complex 
structure of the algebra of the derivations of G, and this can be used to give 
(Aut G ) ,  a structure of complex linear Lie group as desired. 

11.3.5 It is now easy to provide the overdue proof of the statement: 

The examples 3.1-3.8 are linear Lie groups. 
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For 3.5-8 this needs no proof. In all other cases proceed by induction: 
consider the closed subgroup H ,  which fixes the first basis vector: G is 
transitive on its orbit S under G. Both G and S are locally compact 
Hausdorff spaces that satisfy the second countability axiom. So 4.8.6 can 
be applied, since by induction H is  seen to  be connected and S is also 
connected. Hence G itself is connected. Since G is closed, 11.3.2 can be applied, 
with the result that G is a real linear Lie group, which in the case of complex 
scalars even bears a complex structure. 

Clearly the infinitesimal algebras of G are those computed in 7.6. 

11.4. Continuous Homomorphisms By the same trick as used in 10.4 
the notion of homomorphism can be freed of differentiability assumptions. 
(The continuity assumption will always be included in the notion of homo- 
morphism.) 

Theorem A local homomorphism 0 of real linear Lie groups G into H is 
analytic (in the usual analytic structure of G and H )  and induced by a'homo- 
morphism of their infinitesimal algebras G into H .  

Remark Note that for complex linear Lie groups such a theorem could be 
stated only after waiving. 

Proof G, H may be replaced by local linear Lie groups acting on R, S E Spa 
Lin, where bases are introduced. Let F be the set of 

a* = (a  O ) with a E G. 
0 @a ' 

Since 0 is a homomorphism, 

(a ,  az)* = a,* a** 

is locally valid. After open I-neighborhoods U = U - I ,  V =  V-' have been 
chosen in Aut R, Aut S,  such that 

1 EG=G- I ,  G c U ,  G G n  U = G ,  

1 E H = H - ' ,  H c  V,  HH n V =  H ,  

one defines W = U V c Aut(R + S ) .  Then 

1 E F = F - ' ,  F c W ,  F F n  W = F .  

So F i s  a local subgroup of Aut(R + S ) .  F i s  closed in W. Indeed, 

(al O ) , F ,  I i m r  " ) = (  a 0  ) E w  
0 @a, 0 @aj 0 b 



1 1. DROPPING DIFFERENTIABILITY ASSUMPTIONS 51 

implies lim @a, = b. Since 0 is continuous, however, lim @a, = 0 lim a, = @a. 
This shows b = @a; hence 

By 11.2 F possesses an infinitesimal algebra F (sub G + H ) ,  the elements of 
which have the form 

c * = ( f  i) ( a E G , b E H ) .  

For small c* E F, exp c* E F. Therefore, if a = 0, then b = 0. Since F intersects 
G trivially, it induces a linear mapping 0 of C into H such that 

Furthermore, since F E Alg Lie Lin, 

Thus 0 is an algebra homomorphism. It clearly induces the given one, which 
consequently is analytic. 

11.7. C2-Connected Subgroups 

Definition A subset G of a C2-manifold M is called C2-connected if for 
every a,b E G there is a C2-curve in G containing a and b. 

Note that for complex M the C2-curve containing a and b is understood in 
the complex sense. 

Though it is not obvious whether complex M itself is C2-connected, it is 
easily seen that any linear Lie group G is C2-connected. Indeed, the C2-curves 
through 1 in G cover a neighborhood of 1, and by 4.7 the product of such 
curves, which are C2-curves also, cover all G. 

Theorem A C2-connected subgroup G of Aut R (R E Spa Lin) is a linear 
Lie group. 

Proof Let H be the set of tangent vectors at 1 of C2-curves in G. The method 
of 7.5 shows that His  a linear Lie algebra (check, in particular, the argument of 
7.5.5). Its Lie group is denoted by H.  
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If Ytc, is a C2-curve on G, then y,c;'c, has the same property. Its tangent 
vector for t = lo belongs to H.  Thus, 

d 
dt 

c;' - C, E H .  

By the method of 8.2 it follows that the whole curve lies on Has  soon as one of 
its points. Therefore G c H. 

Let u, ,  ..., ur form a basis of H. There are C2-curves YrcIJ) with tangent 
vectors a, at 1. From 8.7 it follows that the c~:)-c~:). .c:)cover a I-neighbor- 
hood in H. Together with G c H this proves that G and Hcoincide. 

11.8. Historical Note Dropping the differentiability assumptions in the 
definition of linear Lie groups and their homomorphisms is due to J. von 
Neumann [Mafh.  Z. 30,342 (1929), Collected Works I ,  No. 221. The theorem 
in Section 11.7 was proved by H. Freudenthal [Ann. Math. 42, 1051-1074 
( 1941 11 

12. SUBGROUPS AND SUBALGEBRAS, NORMAL 
SUBGROUPS AND IDEALS 

12.1-3. Closed Local Subgroups 

12.1. Definition If G is a (local) linear Lie group, the term (local) Lie sub- 
group and the notation H sub G is reserved for H which are (local) subgroups 
of G and at the same time (local) linear Lie groups over the same field (Rea or 
Com) as is G. 

Clearly : 

Proposition If H sub G, then H sub G for the infinitesimal algebras H ,  G 
of H, G. Conversely, if H sub G, then H is the infinitesimal algebra of some 
H sub G. 

Notation 
relation (subgroup-subalgebra-relation). 

The relation between H sub G and H sub G is called the sgsa- 

12.2 Not too much is lost by the restriction of the class of subgroups to that 
of Lie subgroups: 

Proposition Any closed (local) subgroup H of G E Gru Lie Rea (LOC) Lin 
is locally a linear Lie group. 
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Proof Let G be in  Aut Rand let U be ;I smooth ball in G. Put HI = H n U. 
The closure of HI  in  G is compact and so is the closure of HI H,. Thus it does 
not change if taken in Aut R.  According to 4.1 I ,  H ,  is also a closed local sub- 
group of Aut R ,  and by 11.2 it coincides locally with a local linear Lie group. 

12.3 
stated as consequences of 12.2. 

For G E Gru Lie Rea Lin the following analogies of 11.3.2-3 can be 

Proposition The expansion, according to 4.12, of a connected closed local 
subgroup of G is a linear Lie group. A connected closed subgroup of G is a 
linear Lie group. The components of a closed subgroup of G are isolated. 

Note that in the complex case a connected closed subgroup need not be a 
Lie subgroup. Even the closure of a Lie subgroup H of G E Gru Lie Lin Corn 
need not be a Lie subgroup, as is shown by the following. 

Counterexample Let G be the addition group of pairs of complex numbers 
modulo the integers (which can easily be turned into a complex linear Lie 
group). Let H be the subgroup of the pairs ra, 4 2  a'. Its closure is a real 
linear Lie group but not a complex one. 

12.4-1 3 G E Gru Lie Lin, acting on R E Spa Lin, G its infinitesimal algebra 
if no other assumption is made. 

12.4. Normal Subgroups and Ideals 

Definition A local subgroup of G is called normal if it is locally identical to 
any of its conjugates. 

Let H be a normal local Lie subgroup of G, and Hi t s  infinitesimal algebra; 
H is invariant under the adjoint of C,6H = H for a E G. Consequently, it is 
also invariant under G, This means that 

12.4.1 I t H c  H for a E G, 

in other words, 

12.4.2 [G, HI = H .  

12.4.1 ; hence, 
Conversely, if 12.4.2 is satisfied for a subalgebra H of G, the same is true of 

(exp CS) H c H for a E G, 

aHa-' = H 
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for a E G near 1, thus for all a E G, and finally 
a(exp H)a-' c exp H, 

which shows that H gives rise to a normal local subgroup of G.  

G;  so it has been proved : 
In the language of algebras 12.4.2 reads: the linear subspace Hi s  an ideal of 

Proposition Under the sgsa-relation normal local Lie subgroups and 
ideals correspond to each other. 

Furthermore : 

Proposition A linear subspace of G E Alg Lie is an ideal if and only if it 
is invariant under Int G. 

12.5-6. Abelian Subgroups and Algebras 

12.5 A center element of G is characterized by invariance under all inner 
automorphisms. The center of G is closed in G. Its infinitesimal algebra Z 
generates a Lie subgroup 2 of G. Though Z need not exhaust the center, it is 
open and closed in the center (12.2). The full center consists of isolated cosets 
of 2. 

If z E 2, then z = [ ( d / d t ) ~ , ] ~ = ~  for some curve Yrz, on Z ;  hence & a  = a for 
all a E G, and after differentiation in t = 0: fa = 0. Thus ZG = (0). 

Conversely, if z E G, ZG = {0}, then exp tf is the identity on G, hence on G .  
Thus exp t z  E Z .  

Definition The center of a Lie algebra G is the set of z E G with [z,  GI = (0). 

It is evident that the center is an ideal. The following has been proved. 

Proposition Under the sgsa-relation the 1-component of the center corre- 
sponds to the center. 

12.6 An abelian (or commutative) group is characterized as being its own 
center. So if G is abelian, then [ G, GI = (0) and conversely. 

Definition A Lie algebra G is called abelian if [C, GI = (0). 

Proposition Under the sgsa-relation abelian local subgroups and abelian 
subalgebras correspond to each other. 

I f  G is abelian, every subset a ] ,  . . .,ak of C linearly spans a subalgebra. So 
abelian G has local Lie subgroups of any dimension < dim G. 
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If G is abelian and aI , .  . .,ar form a basis of G, then C is the direct sum of r 
one-dimensional ideals generated by the a,. Passing from G to G, one sees that 
abelian G is locally a direct product of r one-dimensional local Lie subgroups: 

e.up(alal + * ~ * + t ~ , a , ) = e x p c r , a ,  ***expa ra , .  

Proposition An abelian G is locally (isomorphic to) a direct product of one- 
dimensional local Lie subgroups. All r-dimensional abelian linear Lie groups 
are locally isomorphic. 

Globally there is a greater variety, though the first assertion is still true. In 
30.5 it will be seen that there are two kinds of one-dimensional real abelian 
Lie groups, those that are isomorphic to the multiplication group of positive 
numbers and those that are isomorphic to the unit norm complex numbers. 
Real abelian Lie groups are isomorphic to direct products of factors of one or 
both kinds. 

Definition Direct products with the first kind of factors only are called 
Jut abelian groups; direct products with the second kind of factors only are 
called rorus groups. 

12.7. Direct Products and Sums The anticipated localization of the 
notion of direct product has still to be sanctioned. 

Definition G E Gru Top is the direct product of GI,G2,  sub G, if G,,G2 are 
closed normal, and y rgl,s2i rcl,G21 g1g2 maps homeomorphically onto G. 

G E Gru Top is locally the direct product of its local subgroups GI,G2,  if 
GI,G2  are closed normal, and 'f rg1,g2i rc,,c2-1 g1g2 maps homeomorphically 
onto a I-neighborhood in G. In this case G is also said to be locally the direct 
product ofthe subgroups generated by G I ,  G2 according to 4.12. Similarly, any 
local subgroup of G coinciding locally with G is said to be locally the direct 
product of the above GI,G2.  

I f  G E Gru Lie Lin, the (local) direct factors may also be assumed to be the 
Lie kind. 

For a Lie algebra G the notion of direct sum is understood in the algebra 
sense: G = G ,  + G,, where, of course, the Gi are ideals, GI n G2 = (0); thus 

Let G and G I ,  C, sub G, respectively, be the infinitesimal algebras of G and 
G I ,  G,. If G is locally the direct product of G1,G2, one may assume G I  n G, = 

{ I } ;  sincz, generally, C ,  n G2 is the infinitesimal algebra of GI n G,, this 
implies GI n G, = (0) and, finally, that G is the direct sum of GI and G,. The 
converse is proved by applying Proposition 8.7 to the (elementwise commuting) 
pieces exp(C, n U ) ,  where U is an open ball in G around 0. 

[G, ,  G,l = (01. 
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Proposition Under the sgsa-relation local direct products and direct 
algebraic sums correspond to each other. 

12.8-9. Commutator Group and Ideal 

12.8. Definition The group generated by the commutators aba-lb-' with 
a, b E G is called the commutator group C ( G )  of G. The algebra generated by 
the [a,b] with a,b E G is called the commutator algebra C(C) of C.  

Since the notion of commutator is invariant under inner automorphisms, 
C ( G )  is normal in G. Because [C, [G, C ] ]  c [G, C], C(C)  is also an ideal of G. 
Note that both are invariant under all (not only inner) automorphisms. Note 
also that G/C(G) and C mod C(G) are abelian. 

Proposition If G is a linear Lie group, then C ( G )  is a linear Lie group and 
its infinitesimal algebra is C(C).  

Proof If a and b E G are C2-connected with 1 by curves Y,a,, Y,b,, then 
so is aba-lb-' by y ,  a, b,a;l bT1. Multiplying these curves, one notes that C ( G )  
is C2-connected. By 11.7 it has an infinitesimal algebra, say H. The proof in 
7.5.4 shows that 

12.8.1 C(G) = H. 

To prove 

12.8.2 H = C(G), 

the first step is 

12.8.3 (a E G )  A (b  E G )  + ah- '  - b E C(G) .  

For a = exp a (a E C) this follows from 

(exp b)b = b + db + * d 2 b  + = b + [a,b] + +[a, [a, b]]  + . 
An arbitrary a E G can be written as 

a = akak-1  a2al with a, = exp a,,, a, E G. 

Putting 
b, = b 

b,-l =a , - lb , -2a ;~ l  for v = 2  ,..., k, 
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one gets 

57 

k 

I 
aba-l - b = C (a, b,-' a;' - bV-') E C(G),  

which proves 12.8.3. 
For differentiable )',a,, y,b, on G put 

with a,, b, E G. 

Then 

By differentiating 

and dropping the subscripts f, one gets 

c, =a,b,a;lb;' 

= aba-' b-'((bab-I) a(bab-')-' + (ba) b(ba)-' - (ba)a(ba)-' - bb b-I) 

= c, c,, 

with c, E C ( C )  because of 12.8.3. 
By known methods (8.2) this implies that c, lies on the Lie group generated 

by C ( C ) ,  which consequently contains C(G). So C(G) contains the infinitesi- 
mal algebra of C(G), which is H .  This proves 12.8.2. 

12.9 The next propositions are methodically related to the preceding one. 

12.9.1 . Proposition Let C be a linear Lie group, 1 E H c G, K c G, and H 
C2-connected (e.g., H is a Lie subgroup). Then the group L generated by the 
hkh-' k-I (h E H ,  k E K )  is a Lie subgroup. 

Indeed, as in the proof of 12.8.1 one shows that L is C2-connected. 

12.9.2. Proposition Let G be a linear Lie group, and H a  normal subgroup 
that is its own commutator group. Then H i s  a Lie subgroup. 

This follows from the foregoing proposition with G and H instead of H 
and K ;  the group generated by ghg-l h-I ( g  E G, h E H) coincides with H .  

12.9.3. Proposition A normal subgroup H of G E Gru Lie Lin, not con- 
tained in the center of G, contains a normal Lie subgroup of G of positive 
dimension. 
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Proof I f  a E H is not in the center of G and Yrcr is a suitable C2-curve on G, 
then Ytctac;I appears to be a nonconstant C2-curve on H. The set of all 
c E H ,  C2-connected in H with 1, is a normal Lie subgroup of G of positive 
dimension. 

12.9.4. Proposition A discrete normal subgroup of G E Gru Lie Lin is in 
the center of G. 

A more general statement has already been proved in 4.7. 

12.10. Simple Groups and Ideals 

Definition G # (1) is called locally simple if its only normal Lie subgroups 
are { 1) or G ;  G # (0) is called simple of its ideals are (0) or G. 

12.10.1. Proposition G is locally simple if and only if G is simple. 

12.10.2. Proposition If G E Gru Lie Lin is locally simple, its normal sub- 
groups are in the center of G, which is a discrete subgroup, or G. 

This follows from Proposition 12.9.4. 

12.1 1-1 2. Coset Spacest 

12.1 1 Let H be a local Lie subgroup of G. The local coset space G/H can then 
be described more easily than in 4.14-15, provided H i s  sufficiently small: 

Let K be a linear complement of H in G, and let U and V be open balls 
around 0, respectively, in Kand H .  Thus, by 8.7-8, if U and Vare sufficiently 
small and 

K ,  = exp U, 

HI = exp V, 

then 
GI = KI HI 

is a 1-neighborhood in G and C , / H ,  is a homeomorphic image 

of K l  byY,aH,, and of U byy.(exp a)  HI .  

This leads to the following definition. 
t The contents of these sections will only be used incidentally. 
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Definition If H I  is a small local Lie subgroup of G, Ka  linear complement of 
H ,  in G, GI a suitable open connected 1-neighborhood in G, a natural homeo- 
morphic mapping of a 0-neighborhood Uin K onto G I / H ,  is defined by 

v = Y oeu (exp a) HI ; 

G , / H I  is interpreted as a C""--manifold according to 5.6 by means of the 
presentation 'K ,  vl. 

Clearly this analytic structure does not depend on the choice of K. Moreover: 

Proposition As far as defited, the action of G on GI/HI by left multipli- 
cation is analytic. 

12.12 Let H be a closed subgroup of G. Then G/H makes sense as a topo- 
logical space. Let H I  and G ,  be 1-neighborhoods in H and G, respectively, to 
which Definition 12.1 1 applies. Then by 4.14 an HI-neighborhood in GJH, is 
homeomorphically mapped into G/H by the inclusion map, denoted by j .  

Definition G/H is provided with a structure of C""-manifold (according to 
5.6) by considering jv, as far as defined, homeomorphic and nondegenerate, 
as a local presentation near Hand transferring it by left multiplication to other 
points of G / H .  

This definition is justified by Proposition 12.11. It is easily seen that the 
C""-structure does not depend on the choice of H I .  

12.1 3-14. Factor and Mod Reduction 

12.1 3 The case in which H is a normal local Lie subgroup of G merits a 
special discussion. In the realm of Lie algebras its counterpart is H, an ideal of 
G. 

Definition If H i s  an ideal in G, then G mod Hrefers to the Lie algebra on 
the linear space G mod H with [a + H, b + HI defined by [a,b] + H. 

Clearly this is a Lie algebra and 'fa (a + H) is a homomorphism of G onto 
G mod H (the canonical one). 

If, moreover, G,H are the infinitesimal algebras of G, H E Gru Lie Lin, one 
would guess that G mod N is the algebra of G / H .  Bear in mind, however, that 
G/H does not exist as a linear Lie group, so under the present restriction to 
linear Lie groups the infinitesimal algebra of G/H is not defined. 

Of course, GI/HI can still be defined as in 12.1 1 and it even bears something 
like a local group structure, though in a wider sense than that of Definition 
4.10, in which only local subgroups of given groups were considered. 
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Within the frame of the present discussion, however, some refinement of 
12.1 1 is still possible if H is normal : 

Proposition Let H be a normal local Lie subgroup of G. For a suitable 
0-neighborhood U in G, and for every a E U, there is a 0-neighborhood Ho in H 
and a 1-neighborhood H, in H such that exp(a + Ho) and (exp a) H, coincide. 

Proof Choose an open ball Usuch that k,, as defined in 10.2, is nondegenerate 
and note that k ,  H c H, since EH c H. As long as c E U, at exp c the tangent 
space of exp(c + H) coincides with (exp c) k ,  H = (exp c) H, which is also the 
tangent space of the coset (exp c ) H  at exp c. With the usual techniques of 
differential equations (see 8.2), one concludes that for any a E U the manifolds 
exp(a + H) and (exp a) H coincide near exp a. 

12.1 4 One can go further if there is no doubt about the linear Lie character 
of G / H  or G mod H: 

Proposition Let G, G' E Gru Lie Lin. Then a local epimorphism of G onto 
G '  with the (local) kernel H induces the epimorphism of G onto G' with the 
kernel H for the corresponding infinitesimal algebras. 

Let G,G' E Alg Lie Lin. Then an epimorphism of G onto G' with the 
kernel H induces a local epimorphism of G onto G' with the local kernel H. 

Locally G '  bears the topology of G / H .  If the epimorphism is global, G '  bears 
the topology of G / H  globally. An immediate consequence (see 9.13): 

If Z is the center of G E Gru Lie Lin, the topological groups 6 and G/Z are 
isomorphic. 

12.1 5. Centerfree Groups 

12.1 5.1 Let G be a linear Lie group and G its infinitesimal algebra. Even if 
G is centerfree (i.e., d = 0 -+a = 0), it can happen that G has a nontrivial 
center (is not centerfree). This is not the case, however, if G is the adjoint of 
a centerfree algebra. Indeed : 

Proposition If G E Alg Lie and G is centerfree, then Int G is centerfree. 

Proof e as acting on G is the infinitesimal algebra of Int G (see 9.9 and 
10.3). Similarly, &, acting on G, is that of Int G. Since G is centerfree and e, 
as its isomorphic image, is also centerfree, v defined by 

v a = d  
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maps G isomorphically onto 6; G and &, however, are not only isomorphic, 
they are also equivalent as linear algebras by means of 6 defined by 

9 a = a  

(i.e., identifying the linear spaces G and G by 6 causes G and 6 to  coincide): 

CpD = 6D6-1 

(6-I exists because G is centerfree). 

D 
G --t G 

G + G  
a 

6.1 4-8 

N 

This extends to a" E Int G, 5 E Int G :  

= qa" = 9.6 6-1. 

Now, if a" belongs to the center of I n t  G, then B = 1 ; hence 868-l = 1, whence 
a"=l. 

12.15.2. Corollary If G E Gru Lie Lin and G is centerfree, then G is 
centerfree if and only if G is isomorphic to Int G. 

12.1 5.3 If G E Alg Lie Lin Rea, then because of the natural embedding of 
Int G into Int G,,, the following applies : 

Proposition G E Gru Lie Lin Rea i s  centerfree if and only if it is iso- 
morphic to a real restriction of some centerfree complex linear Lie group. 

12.1 6.t  ad -Closed Groups Let G E Gru Lin Lie act on R E Spa Lin. The 
closure of G in the topology of Aut R is a linear Lie group F. Let G, F be the 
infinitesimal algebras of G, F ;  G is invariant under ygugu-' for a E G and thus 
for u E Fas  well. As a consequence, Cis  an ideal of F. 

Every Ysugu-' (a E F )  belongs to the closure of Int G. Hence, if G is ad- 
closed (see 9.12) and Z is the center of F, then F = GZ. 

With the same notation one has the following. 

Proposition If G is ad-closed, the center Z, of G is dense in the center 2, of 
F i n  the topology of Aut R .  Moreover, if Z, is compact, then G is closed in the 
topology of Aut R.  

t This will not essentially be used in the sequel. 
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Proof Let z E 2,. There is a sequence of g,, E G such that lim g,, = z in the 
topology of Aut R.  Then lim g,, = 1 ; hence by 12.14 lim g,,& = Z,. Thus 
there is a sequence of z,, E Zc such that lim z i 'g , ,  = 1 in the topology of G, 
hence in that of Aut R, which shows lim z,, = z in the topology of Aut R and 
proves the first part. If 2, is compact, then Z ,  = Z,; thus F = G, which proves 
G to be closed. 

Remark For ad-closed G the compactness of the center is also required for G 
to be closed in all larger groups. (Without proof.) 

12.17. Historical Note 12.15.1 seems to be due to H. Freudenthal; 12.16 
is a special case of problems dealt with by M. Got& Faithful representations 
of Lie Groups I, Math. Japonicae 1, 107-119 (1948), and particularly by 
W. T. van Est, Dense imbeddings of Lie groups [Proc. Kon. Ned. Akad. Wet. 
A54, 321-328 (1951); A55, 255-266,267-274 (1952) = Indagationes Math. 13 
(1951), 14 (1952)l. 
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13. SOLVABLE GROUPS AND SOLVABLE LIE ALGEBRAS 

G E Gru Lie Lin, G E Alg Lie, dim G = r < co. 
Read first the definition of 13.2 and Theorems 13.9, 13.10, and 13.12. 

13.1.1. Proposition If F, is normal Lie sub G and F2 is Lie sub G, then 
F, F, is Lie sub G. If F ,  is ideal sub Gand F, is sub G, then F ,  + F2 is sub G. 
Moreover, if G,F,, F2 correspond to G, F , ,  F, under sgsa, then FIF2  
corresponds to F ,  + F,. 
13.1.2. Proposition If F,, F, are normal Lie sub G, then F, F, is normal 
Lie sub G. If F , ,  F2 are ideals sub G, then F, + F2 is ideal sub G. 

13.1.3. Proposition If Fis normal Lie sub G, the commutator group C ( F )  
is normal sub G. If F is an ideal sub G, the commutator algebra C ( F )  is an 
ideal sub G. 

13.1 -4. Proposition If Fl is normal sub G and F2 is sub G, then 

C(F, F2) = FI W 2 ) .  

If F,  is an ideal sub C and F, is sub C,  then 

C(FI + F2) C F ,  + C(F2)- 

These propositions are self-evident. The last assertion of Proposition 13.1.3 
follows from Jacobi-associativity, 

[G, [F, F l 1 =  [ [G,  FI, FI + [F, [G, F l l c  [F, FI = C V ) ;  

thus [C,  C ( F ) ]  = C ( F ) .  

13.1.5. Proposition If F sub G, then for the topological closures C(F)  = - 
C(F). 

This is self-evident. 

13.2 Iterating the process of forming the commutator group (algebra), one 
descends along the commutator sequence of the given group (algebra). 

63 
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Definition A group (Lie algebra) is called solrable if its commutator 
sequence stops descending after a finite number of steps at  (1) ((0)). 

By sgsa and 12.8 it follows: 

13.2.1. Proposition 
infinitesimal algebra is solvable. 

A linear Lie group is solvable if and only if  its 

13.2.2. Proposition Solvability is preserved by taking subgroups (sub- 
algebras) and by mapping homomorphically. The (topological) closure of a 
solvable subgroup is solvable. 

13.2.3. Proposition 
then G is solvable. If 
G is solvable. 

If  H is a solvable ideal of G and G mod His  solvable, 
is solvable, then C is solvable. If C ( C )  is solvable, then 

Proof C k ( G  mod H )  = (0) means C k ( G )  c H .  If, moreover, C'"(H) = {0} ,  
then Ck+'"(G) = (0). The remainder is self-evident. 

13.3 It follows from 13.1.1-4 that if FI,F2 are solvable normal Lie sub G 
( F , , F ,  are solvable ideals sub C ) ,  then F,  F2 ( F ,  + F2) has the same property. 
This fact guarantees the existence of a unique maximal one. 

Definition The maximal solvable normal Lie subgroup of G is called the 
radical of G (rad G). ,The maximal solvable ideal of G is called the radical of 
G (rad C ) .  

Note that as a consequence of Proposition 13.1.5 the following subgroups of 
G are closed (if existent) : 

Any maximal solvable subgroup. 
The maximal solvable normal subgroup. 
Any maximal solvable connected subgroup. 
The maximal solvable connected normal subgroup. 
Any maximal solvable Lie subgroup. 
The maximal solvable normal Lie subgroup. 

Note also that the Lie character of subgroups need not be preserved if one 
passes to the closure. (See 12.3.) Therefore, to verify the last two statements 
in the complex case one must recur to Lie algebras and use the fact that 
solvability is preserved under complex extension. 

Proposition The infinitesimal algebra of the radical of a linear Lie group is 
the radical of its infinitesimal algebra. 
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13.4. Definition A linear Lie group (Lie algebra) is called semisimple if its 
radical is { I }  ((0)). 

Proposition A linear Lie group is semisimple if and only if its infinitesimal 
algebra is semisimple. 

Proposition G/rad G (if in Gru Lie Lin) is semisimple; G mod rad G is 
semisimple. 

Since solvability is preserved under closure (see 13.2.2), one has the following: 

Proposition A linear Lie group is semisimple if and only if it has no solvable 
closed normal subgroup of positive dimension. 

Note that discrete solvable normal subgroups are allowed. 

A locally simple linear Lie group (Lie algebra) that is not semisimple must 
be its own radical, thus solvable, thus abelian, and thus of dimension 1. 

Proposition A locally simple linear Lie group (simple Lie algebra) of 
dimension > 1 is semisimple. 

This explains the term “semisimple” historically. 

The last nontrivial term in the commutator sequence of the radical of G (C), 
if it exists, is abelian, and by 13.1.3 normal (an ideal). Thus: 

Proposition A linear Lie group (Lie algebra) is semisimple if and only if it 
has no abelian normal Lie subgroup (abelian ideal) # { 1) ((0)). 

13.5. Definition If R E Spa Lin, then K c End R is called reducible if there 
is a nontrivial proper S sub R ( S  # {0} ,  # R )  which is invariant under K,  that 
is, KS c S.  Otherwise K is called irreducible. 

The invariance of linear subspaces under a linear Lie group and under its 
infinitesimal algebra imply each other. The same is true with respect to irreduci- 
bility. 

In the sequel R E Spa Lin Com, dim R < to. 

If dim R > 0, there is an S sub R with dim S > 0 on which G (C) acts 
irreducibly. 

13.6. Proposition Let R E Spa Lin Com, 0 < dim R < to, K c End R, and 
let the elements of K commute with each other. Then, if K acts irreducibly, 
dim R = 1. In  other words, without the supposition of irreducibility: K 
possesses a simultaneous eigenvector x, that is, an x #  0, x E R such that for all 
(I E K and suitable A,: 

ax = A, x.  
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Proof Suppose irreducibility. For a E K there is a scalar A, and x E R, x # 0 
such that ax = Ax. Let S be the set of all x E R such that 

ax = Ax. 

Then S sub R, S # {0}, and, for any b E K, 

abx = bax = Abx, 

thus bx E S. This shows that S is K-invariant, thus S = R, and a behaves like 
a scalar multiplier on R. Hence, every T sub R is invariant under a. This is 
true of any a E K.  Thus dim R = 1. 

13.7. Proposition Let R E Spa Lin Com, dim R < co, G E Gru Lie Lin 
(C E Alg Lie Lin), G c Aut R (G c End R), G ( G )  irreducible. Suppose that A 
normal Lie sub G (A ideal sub G )  possesses a simultaneous eigenvector. Then 
A (A) consists of scalar multiplications. 

Remark Independent proofs are given for the group and the algebra case, 
though the statements imply each other under sgsa. The proof for algebras is 
more involved than that for groups. The proof for groups does not use analytic 
properties of the Lie group G but only the fact that G is connected, hence also 
connected in the topology induced by Aut R. 

Proof for groups The given simultaneous eigenvector of A belongs to an 
eigenvalue A, (a E A). Lef S be the set of x such that 

a x = A , x  for a E  A .  

For x E S, g E G,  a E A one gets g-I ag E A ; thus, 
Then S sub R. Again it is shown that GS c S. 

ugx = g(g-' a g ) x  = gAg-laex = A,-,,,gx; 

a and g-l ag have the same set of eigenvalues but A,, 
However, they will turn out to be equal. 

a, whence constant because G is connected. This proves 

could be different. 

Indeed, )'lCGhO-l,u is continuous, with values in the finite set of eigenvalues of 

g x E S  for g EG. 

Because of the irreducibility and of S # {0}, it appears that S = R. This 
proves that A consists of scalar multiplications. 

Proof for algebras The given simultaneous eigenvector belongs to an 
eigenvalue A, ( a  E A). Define S,, as the set of x with 
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13.7.1 (a - A,)% = 0 for all a E A .  

Then S, sub R ,  S,  # (0). Further 

13.7.2 s,, S P t l ,  

13.7.3 (a - A,) z E for all u E A t) z E S,. 

By induction it will be shown that 

13.7.4 gS,,-, c S, for g E G. 

Assuming 13.7.4, the subscript p can be raised by a unit: For x E S,,, g E G, 
U E A ,  

13.7.5 

NOW (a - A,)x E S,,-l by 13.7.3; thus by 13.7.4 
(a - A,)gx = g(a - A,) x + [a,g] x.  

g(a - A,)x E sp. 

b,g l  x = h[a,gl x mod Sp-l ; 

(a - A,)gx E S,, for all a E A ,  

Further [a,g] E A ;  thus by 13.7.3 

thus in 13.7.5 

which provesgx E Sp+I, and therefore 

gs,, = S P +  1 9  

which settles the induction. 
From 13.7.4 it follows that the union of the S, is G-invariant and thus equals 

R.  This shows that with a suitable p 13.7.1 prevails for all x E R.  Therefore all 
eigenvalues of a E A are the same; [a,g], for a E A ,  g E G, is in A and as a 
commutator it has 0-trace. Therefore its eigenvalues vanish : 

h[o.gl= 0. 

For x E S, by 13.7.1 

Supposing that x E S ,  in 13.7.5, it turns out that gx E S1 ; thus S ,  is invariant 
under G and SI = R, 

ax=A,x  forall X E R ,  U E A ,  

[a,gIx=Aca,gl~=O- 

which proves the assertion. 
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13.8 The following is an immediate consequence of 13.7: 

Proposition If G E Gru Lie Lin (C E Alg Lie Lin) acting on a complex 
linear space is irreducible and det g = 1 for g E G (tr g = 0 forg E C), then G (C) 
is semisimple. 

Indeed, if this were not true, the last proposition of 13.4 would provide an 
abelian normal A # (1) (an abelian ideal A # (0)) with a simultaneous eigen- 
vector according to 13.6. Then 13.7 would apply to the effect that A ( A )  
consists of scalar multiplications, hence of 1 (0) only. 

13.9 If from U E  End R one subtracts the scalar multiplication by 
(dim R)-l tr a, one gets a certain cpa E End R with tr cpa = 0. Obviously q maps 
the Lie algebra End R endomorphically. If cp is applied to irreducible C c  
End R, a G' E Alg Lie Lin is obtained that is still irreducible and, by 13.8, 
semisimple. 

Suppose, moreover, that C is solvable. Then by 13.2 C' is also solvable. It 
was shown to be semisimple; therefore it is (0) and G itself is abelian ; hence by 
Proposition 13.6 dim R = 1 as soon as C # (0). This proves that 13.6 still 
prevails if K is presumed solvable instead of abelian. This fact is known as: 

Lie's Theorem Let R E Spa Lin Com, 0 < dim R < m. If solvable G E Gru 
Lie Lin (C E Alg Lie Lin) acts irreducibly on R,  then dim R = 1. In other words, 
without supposing irreducibility, G (C) possesses a simultaneous eigenvector. 

This has been proved for algebras and by sgsa is still valid for groups. 
The group part, however, could easily have been proved independently. 

13.10 Thanks to Lie's theorem, a concretization of 13.7 is obtained: 

Theorem Let R E Spa Lin Com, dim R < 03. If G E Gru Lie Lin (C E Alg 
Lie Lin) acts irreducibly on R, then rad G (rad C) consists of scalar multi- 
plications. 

In 19.14 this statement is strengthened to the effect that rad G is even a local 
direct factor (rad C a direct summand). 

13.1 1 If G is a solvable linear Lie group (C is a solvable linear Lie algebra) 
as before and xI is a simultaneous eigenvector, then Lie's theorem applies 
anew to R mod x I  where G (G)  again acts as a solvable linear Lie group 
(solvable linear Lie algebra) and an eigenvector mod x I  is obtained. This pro- 
cess continues. One gets vectors x I ,  . . ., xk that span a linear subspace & of R 
and an xk+l 6 S, such that 

UXk+l = XAk+')Xk+l mod sk for a E G 

(respectively, ax,+, = XLk+')xk+1 mod Sk for a E G). 
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On the basis xI,  . . ., x, (n = dim R) the elements a (a) of G (C) take the 
simultaneous triangular form 7, the diagonal coefficients being Aik) (A:)). 

Triangle Theorem A linear Lie group (algebra) acting linearly in complex 
R is solvable if and only if it is triangular on a suitable basis. 

“Only if” has just been proved. “If” follows from the next proposition: 

Proposition Let G (G) be the group of all complex n-n-7-matrices with 
nonvanishing determinants (the Lie algebra of all complex n-n-7-matrices). 
Then G (G)  is solvable. 

(Remember that solvability is preserved when passing to subgroups and 
subalgebras.) 

Proof Let C, be the set of u E C with zeros in the main diagonal and in the 
first i - 1 parallels above the main diagonal ( i  = 0, 1,. . .). For the matrix 
coefficients apq of u this means 

a E G 1 t t a p q = O  for q < p + i - 1 ,  

Go = G. 

Then 

which shows that G is solvable. 

normal subgroup of G1-l. For u E G,, b E G,, a = 1 + a, b = 1 + 6, 

[G,, G,I = Gl-t,, [GOY Go1 = GI, 

Let G, be the set of 1 + a with a E C,, for i a 1, and Go = G. Then Gi is a 

aba-l b-I = (1 + a)(l + b)(l - u + a2 - * - ) ( I  - b + b2 - * - a )  

= 1 + (ab - ba) + - E G,+,, 

aha-' b-I E G I .  
and, for i = j = 0, 

(Note that some positive power of a E G, (i > 0) vanishes.) 
This proves the proposition. 

1 3.1 2 According to 13.2.3, solvability is preserved in the passage from G to G. 
By applying the triangle theorem to for complex Gone finds a basis x1 , . . ., x, 
of C such that, for a E G, 

&k+1 = hzxk+l mod XI, . . ., Xk. 

Let G, be the subspace linearly spanned by xl, . . ., Xk. Then 

LC, ck l  Gk* 

Thus Gk is an ideal in G. 
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This shows : 

Theorem In a complex solvable Lie algebra G of dimension r there is a 
sequence of ideals Gk (k = 1 ,  . . ., r )  such that Gk c Gk+, and dim Gk = k. 

13.1 3 Clearly, solvability is preserved under complex extension, real 
restriction, and waiving. Lie’s theorem and some of its consequences, however, 
cease to be true in the real case. 

14. INVARIANTS OF LINEAR LIE GROUPS AND ALGEBRAS 

R E Spa Lin Top, dim R < 03. 

14.1 
q~ goes into 

If 

Let y be a function defined in an open part of R.  Under a E End R, 

s a  9 = Y x dax).  

one may define 

whenever is continuously differentiable. Then 

or 
Sa v = (grad y )  u. 

If q~ is invariant under S,,, then Sag, = 0. 

following definition : 
These notions apply to Lie groups of linear mappings of R. They lead to the 

Definition A CI-function tp on R (or part of R)  is called (infinitesimally) 
invariant under a E G E Alg Lie Lin in R if 

(grad v) u = 0; 

g~ is called (infinitesimally) invariant under G if this equality holds for all u E G. 
Since no confusion is likely, the term “infinitesimally” is usually omitted. 
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Proposition 
is invariant under G if and only if it is invariant under G. 

Let G E Gru Lie Lin i n  R .  Then a C1-function q~ defined on R 

Proof "Only if" is known. Let Sup, = 0 for all u E G. Then for a C'-curve 
",a, on G and 6, - a,a;l, [(d/dr)b,],_o = 6, one gets 6 E G ;  thus 

which proves "if." 

14.2 I n  particular, v may be a form of degree p that arises from a p-linear 
form B :  

?(x) = B(.Y, . . ., s). 

Then 

B ( x  + r h ,  . . ., s + th)  

= B( / I , x , .  . . ,s)  + * . *  + B ( x , .  . . , ~ , h ) .  

Invariance of p, under G then reads 

B(u.v,.\-, , . . ,x) + ... + B ( s , .  . . , s ,  ax) = 0. 

14.3 G E Alg Lie, hence G E Alg Lie Lin, dim G = Y. By 10.3 the adjoint 
group G' exists. By 11.3.4 the 1-component (Aut G),, of Aut G is a linear Lie 
group; its infinitesimal algebra consists of the derivations of G. 

lmportant invariants are introduced: 

Proposition The yc, t r (2)  ( p  positive integral) are invariant under the auto- 
morphisms of G and infinitesimally invariant under the derivations of G. 
So are the coefficients vv of the polynomial in h defined by 

14.3.1 

which are vth degree polynomial functions on G. 

Proof Let A be an automorphism of G;  thus [ A x , A y ]  = A [ x , y ] ,  which can be 

rewritten iis Ax = A f  A - l ;  this proves the statement on automorphisms. The 
statement on derivations is an immediate consequence. A direct proof runs as 
follows : 

N 

Let Q be a derivation of G ;  thus 

[Qx, rl + [ x ,  Qrl = q x ,  y1, 
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which can be rewritten as 
N 

ax =a2 - aQ. 

Applying SZ infinitesimally to y.tr(Zp), one gets 
N 

(grad, Yxtr(fp))i2x = tr(9.Qx.Tk), 

which vanishes because tr(AB) = tr(BA) for any two linear mappings A, B. 
This proves the statement on Y.tr(Zp). 

Theqy(a) are the values of the elementary symmetric functions for the A-roots 
of det(ii - A) = 0; the pth powers of the roots are the eigenvalues of a‘” and 
tr(P) is their sum. A well-known universal formula expresses one kind of 
symmetric functions by the other. This completes the proof. 

./+k+l = p  

Remark The statement still holds if semimorphisms instead of automor- 
phisms are allowed. 

14.4. Definition Yatr(ii2) is called the Killing form of G. The correspond- 
ing symmetric bilinear form is indicated by & (the subscript is usually 
omitted). 

Thus 
#(a, b) = tr i 6  = tr 6 i .  

Self-explanatory subscripts C and Com are attached to a+h to indicate re- 
strictions and extensions corresponding to real restrictions and complex 
extensions of G. 

The invariance of # yields 

14.4.1 #(Ea, b) + +(a, Eb) = 0. 

14.5 Note that 
vr(a) = tra‘, 

2q2(a) = (tr Z)2 - tr ii2, 

tp,(a) = det Z = 0, 

because iia = [a,a] = 0 makes Z degenerate. 

14.6 Under complex extension and real restriction the forms undergo the 
corresponding processes. Under waiving they are replaced by forms on the 
resulting real spaces. 
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G E Alg Lie Com, dim G = r .  

15.1. Definition The roots of det(a" - A) = 0 or, equivalently, the eigen- 
values of a" E C? are called the roots of a E G. 

Proposition There is a connected open dense subset S c  G such that in a 
neighborhood of any a E S the roots can be considered as analytic functions. 

Proof Let 9 be the ring of polynomial functions on G, and 9 [ A ]  the ring of 
polynomials in h over 9. As an element of 9 [ A ] ,  det(i - A) splits into irreduc- 
ible elements f,(a; A) of 9 [ A ] ;  in &(a; A) the highest A-power coefficient is 
assumed to be scalar. The irreducibility of f, guarantees thatf, and af,/aA have 
no nontrivial common factor in P[A]. Thus there are u,,u, E B [ h ] ,  w, E 9, 
w, # 0 such that 

af, u, f, + 0,- = w,. ah 
Let N, be the set of a E Gsuch thatf,(a; A) = 0, (afi/ah)(a; A) = 0 have some 

common A-root. Thus w,(a) = 0 for a E N,, which shows that N, is nowhere 
dense. The same is true of N = U N,. Take S as the complement of N .  Then 
S is open and dense in G, and for a E S the equations f,(a; A) = 0 and 
(a/dA)f,(a; A) = 0 have no common A-root. Thus the A-roots off,(a; A) = 0 
and consequently those of det(d - A) = 0 are analytic functions near every point 
of S. (Of course, they might become multivalued by analytic continuation.) 

If a, b E G, then w,(( 1 - T ) U  + ~ b )  as a polynomial in T has a finite number 
of zeros unless it vanishes identically. So a,b E S can be connected by a curve 
yt((l - T [ ) U  + ~ , b )  ( t  real) avoiding the zeros of the various w,. Hence S is 
connected. 

15.2 Notice that S, as defined in the proof of 15.1, is invariant under Int G 
and C?; by 14.3, so are the roots as (multivalued) functions on S. 

15.3 Let the mappings@ and Au be defined by 

@a = rqJ,(4, * * .,qJ,(a)' (a E GI, 

where 
r 

J-0 
det(a - A) = q+, (a) (--A)', 

and by 
A,a = 'A,(a), . . ., Ar(a)' (a E q, 
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where U is an open connected set in which the roots A , ,  . . ., Ar of det(6 - A) = 0 
(a E U )  are defined as analytic functions. 

The mapping r is defined by 
m,,. . . , A ~ '  = r E , , .  .., E r l ,  

where E, is the value of the vth elementary symmetric function for the argu- 
ments A,,  ..., A,. Then 

15.3.1 @a=I'A,a for U G U .  

Definition The rank of G E Alg Lie Com, usually indicated by I ,  is the 
maximal rank of grad@ or, equivalently, the maximal rank of grad A ,  (for all 
admissible V ) .  

In other words, it is the maximal number of functionally independent 
coefficients of det(& - A) or, equivalently, zeros of det(6 - A). T o  justify the 
definition both parts must be shown to be equivalent. 

Let the rank of grad @ be maximal a t  ao. It is the same i n  a neighborhood of 
a,, which by 15.1 contains a point of S. Thus a. E S may be supposed. a, 
possesses an open neighborhood U, such that A,, makes sense. Then by 
15.3.1 

rank grad,, @ G rank grad,, A,, G max, rank grad A,. 

In general, it is assumed that the neighborhoods U for A,  are chosen such that 
rankgrad,/lu does not depend on a E U ;  then rank grad A, has the obvious 
meaning. 

Conversely, let rank grad A,, = max,rank grad A,. Let a ,  be chosen in  U ,  
such that the number of different roots of a E U ,  is maximal for a = a, .  Let a be 
the minimum of the positive ones among the numbers IAi(al) - A,(a,)l. Let V 
be open such that a,  E V c  Ul, IAj(a) - Aj(al)l < :a for a E Y and all j ,  and 
such that A,, maps V onto an analytic piece of dimension rank grad A,, .  
Then the root systems of a,b E Vcannot be equivalent with each other under 
permutation unless Aj(a) = Aj(b) for all j .  Though, in general, r is one-to-one 
only up to root permutations, it is actually one-to-one on A,, V.  Then A,, V 
must contain an element Au,a2 for some a2 E V such that r restricted to 
A,, V is nondegenerate in AUla2.  Then, by 15.3.1, 

rank grad,,@ = rank grad.,A,, = max, rank grad A,, 

max, rank grad,@ 2 max, rank grad A", 
whence 

which proves the equivalence of both definitions. 

15.4. Definition The nullify of a E C is the multiplicity of its root 0. The 
nirllity of C is the minimal nullity of all a E G ;  equivalently, it is the largest 
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integer k such that det(n - A) as a polynomial contains a factor Ak. An element 
of G is called regular if its nullity equals that of C. 

Note that rank of G = 0 if and only if nullity of C = dimension of C.  

Proposition The set of regular elements of Cis open, dense, and connected. 

Indeed, the set of nonregular elements of C is defined by q ~ - ~ - ~ ( a )  = 0, 
where k is the nullity of G (see 14.3.1). It is closed and does not contain an 
interior point because otherwise cp,.+I would vanish identically. Its connected- 
ness is shown by the argument at the end of 15.1. 

15.5. Theorem Nullity of G 2 rank of G. 

Proof Let 1 be the rank of G and rank grad @ at a be 1. It is constant near a so 
by 15.4 a may be supposed to be regular. The solutions of 

c p j w  = cp,(a; ( j  = 1,. . ., r) 

form a C,?,-piece Mnear a. Because of the invariance of the v, under Int G, one 
gets 

The tangent space of M at a, of dimension r - I, contains all Za, hence Ga. 
Because of Ea = -&c, it coincides with dG;  thus 

d imdCGr-1 .  

As dim C = r, the kernel of d has dimension 2 I, which proves the assertion. 

(exp E)a E M for small c. 

15.6 The nullity of a real Lie algebra is defined in the same way as that of a 
complex one. For the rank of a real Lie algebra the first part of the definition in 
15.3 is taken. Then nullity and rank remain unchanged under complex 
extension. 

15.7 Remark As a consequence of 14.3, expressions and properties depend- 
ing on the coefficients of det(d - A) are invariant under automorphisms. 
Such is the nullity of an element and its regularity. 

16. IMPORTANT CLASSES OF COMPLEX LIE ALGEBRAS 

16.1. Notation In the following sections light face sans serif types like G 
with or without subscripts are used to indicate entire classes of locally iso- 
morphic linear Lie groups and bold face sans serif types like G to indicate 
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entire classes of isomorphic Lie algebras ; G contains the infinitesimal algebras 
of groups belonging to G. 

The introduction of A,, B,, C,, D, is made by representatives. They are 
complex linear Lie algebras. Under every letter, first a group and then its 
infinitesimal algebra is mentioned; R, E Spa Lin Com, dim R, = n. When 
needed, a basis in R, is chosen. 

These groups also admit aprojective interpretation if viewed as acting on the 
projective derivative of R,. The projective interpretation is locally an iso- 
morphism, its kernel consisting of the scalar multipliers. 

A, (12 1). The subgroup of Aut R,+, characterized by det = 1. The Lie 
subalgebra of a E End R,+,,  characterized by tr a = 0. 

B, ( I >  1). The subgroup of Aut Rz,+, characterized by det = 1 and the invari- 
ance of a nondegenerate quadratic form s = s’ (in matrix notation). The Lie 
subalgebra of a E End characterized by u’s + sa = 0. 

C, (1 > 1). The subgroup of Aut Rz, characterized by the invariance of a non- 
degenerate skew bilinear form, in matrix notation s = -s’. The Lie subalgebra 
of a E End Rzl ,  characterized by a’s + sa = 0. 

D, (1 2 2). As B,, with 21 instead of 21 + 1 I 

These groups belonging to A,, B,, C,, and D, are also called the 

special (1 + 1)-linear group, 
special (21 + 1)-orthogonal group, 
21-symplectic group, 
special 21-orthogonal group. 

The dimensions are 

A,: (I+ 1)’- 1; 
B, and C, : 1(21+ 1); 
D,: 421- 1). 

The representatives with which these classes of groups have been introduced 
are linear Lie groups. For a few of them it has been proved in 11.3.4 and for 
the others the proof is analogous. 

16.2 G E A,. Let H be the (maximal abelian) subalgebra consisting of the 
diagonal matrices with trace 0. The diagonal coefficients in due order are 
functions defined on H, denoted by ul, ..., w,+,, with I; u,(h) = 0 for h E H 
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or, for short, w ,  =O. The elements e,, ( i  # j )  are defined as bearing 1 on the 
i-jth place and 0 elsewhere. Together with a basis of H, they form one of G. 
The structure of G is described by the commutator relations: 

H abelian, 

[h, el,] = (w, - w , ( N  e,,, for E H, 
[e,,,e,,l = 0 for i # q ,  P # j ,  

re,,, eJkl = elk for i # k ,  

[el,, e,,l = hi, E H 

[e,,, ekll  = -ekj for j # k, 

where wp(h,,) = 1 for p = i, = -1 for p = j ,  = 0 for p # i, j .  

terminology, H i s  called a trunk of G. 
H is no ideal in a larger subalgebra of G. Anticipating a more general 

h, = (w,  - w,) 

kho=0  for ho EH, 
e,,, 

for h E H, show that the roots of h are (wi  - w,)(h) and I-fold 0, with simultan- 
eous eigenvectors of h: e,, and nonvanishing elements of H. 

The restrictions of the roots to Hare called the rootforms (with respect to H). 
They are linear functions on H, and are simple, except 0, which is I-fold. 
Among them there are 1 linearly independent ones : 

w ,  - 0 2 ,  0 2  - w3, . .., w ,  - w,+,. 

Every rootform is a linear combination of this subset with integral coefficients, 
all > 0 or all G 0. 

I = number of linearly independent rootforms 
= number of functionally independent rootforms 
G number of functionally independent roots 
= rank of G (see 15.3) 
Q nullity of G (see 15.5) 

G multiplicity of rootform 0 
= 1. 

This shows that 
rank G = 1. 

The negative of every rootform is again a rootform. 
The eigenvector e,, (determined up to a scalar factor) of the rootform 

w ,  - w, is called the brunch (with respect to H) belonging to the rootform 
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w, - u,. The commutator of branches belonging to opposite rootforms is 
called the node belonging to them (determined up to a scalar factor); /I,, is the 
node belonging to w1 - w,. 

ForhEH 
tr R = 0, tr RZ = 2 z (w, - w , ) ~  (/I). 

I<, 

It is easy to see that 
tr R z,, = 0, 

tr E , ,  I, ,  = 0, for ‘p,ql # ‘j, P ,  

tr 8,, O,, = 2(I+ l), 
and 

which is computed as follows: 

2i.l t,, = (w,  - w,) hi, 

shows that /I,, is an eigenvector of B,,E,, wth the eigenvalue (wi - w,)(h,,) = 2, 
and thus the subspace of H defined by (w,  - w,)(h) = 0 is the (dim H- 1)- 
dimensional eigenspace of the eigenvalue 0 within H. Other contributions to 
tr O,,P,, are furnished by 

namely, 1 for p = i, q # j ,  and for p # i, q = j ,  and 2 for p = i, q = j .  Together 
z i j  2,i e p 4 ,  

2 + (1 - 1) + ( I  - 1) + 2 = 2(1+ 1). 

With these data the Killing form is determined. It is nondegenerate. 

16.3 G E D,. On the most convenient basis the quadratic invariant is 

251 5,+, + 252 51+2 + * - - 25, 521 

in coordinates el, . . ., 521, with the matrix 

where 0 and 1 represent 1-1-matrices. Analogously, by writing u E G as 

the defining equality 

becomes 

a’s + su = 0 

LIZ + fa; = a3 + a; = a1 + u; = 0. 
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A trunk H i s  the (maximal abelian) subalgebra of diagonal matrices, where 
in the diagonal the values of 

w1, w2, . . ., wt, - W , ,  -w2, . . ., -w1 

are found. There are three kinds of branches, for 1 G i, j s 1, i # j :  

ell: 1 oni, j ;  -1 o n j  + 1, i + 1; 
el,j+l: -1 onj, i + 1; 
el,.l,j: 1 o n i +  1,j; -1 o n j +  1,i; 

1 on i , j  + 1; 

0 on all others. These branches belong to the rootforms 

w1- wj ,  wi + wj,  -wi - wj,  

which are simple, whereas 0 is 1-fold. As a basis of the rootforms, one can take 

w1 - 9, w2 - w3, . . ., w1-1 - w1, w1-1 + q, 
from which every rootform can be built by linear combination with integral 
coefficients, all > 0 or all s 0. The negative of every rootform is a rootform. 
The rank is again 1. The commutator relations are somewhat involved. The 
following general principle is useful : 

If e, e‘ belong to the rootforms a, a’, then [e,e’] either belongs to the rootform 
a + a’ or vanishes. 

Indeed, from 
[h, el = a(h) e, 

one obtains by Jacobi-associativity 

[h, e‘] = d ( h )  e’, 

[h, [e, e l l =  “h, el, ell+ [e, [h, e’ll = (a  + a‘)(h) [e, e‘l. 

From this it follows that [e,e’] E H as soon as a + a’ = 0 because H 
is maximal abelian. Furthermore, for any e,e’ chosen from the set of 
branches elj, 

[e, e’] = scalar multiple of e”, tr IC‘ = 0, 

if CL + a’ # 0 is a rootform and e” its branch. 
Let 1 s i, j G 1, i # j .  The pairs ell, ej, and el,j+l, ej+l,l belong to opposite 

rootforms and their nodes are hlj  E H with 1 on the ith and ( j  + 1)th places, 
-1 on the j th  and (i+ I)th places, and hi, j+l  E H with 1 on the i th and j th  
places, and -1 on the (i + l)th and ( j  + 1)th places. 

On H the Killing form 
tr R2 = 4(1- 1) wj(h)2 

is nondegenerate and so is the total a,h, which can be shown by a somewhat 
longer computation. 
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16.4 G E B,. The quadratic invariant is assumed to be 

t o 2  + X I  &+, + * * + 2& t 2 b  

with the matrix 

a horizontal and a vertical line being added to the s of 16.3. The elements 
of G have the form 

-a; -a; 

a2 a3 -a1 

with a2 + a; = a3 + a; = 0. 
A trunk His again the set of diagonal matrices with the values of 

0, w1, . . .) w,, -w1, * * ., -w, 

as diagonal coefficients. 
To the branches of D, are added 

eoi (1 Q i Q I )  with 1 on 0, i; -1 on i + 1, 0, 
qo (1 Q i Q I) with 1 on i, 0; -1 on 0, i + 1. 

They belong to the rootforms -w,,w, so that 

kw,, fw, f wJ ( i  # j ,  independent) and 1-fold 0 

are all rootforms. A basis with the old properties is provided by 

w1 - w2, w2 - w3, . . ., W,-l  -w,, w,. 

The rank is 1 and all the other properties reappear. 

16.5 G E C,. The skew bilinear invariant has the matrix 

s = (  -1 O 0 1). 

where 0, 1, -1 represent I-l-matrices. From 

and 

one gets 
a 's  + sa = 0 
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a* = a;, a, = a;, 111 + a; = 0; 

a2 and a, are symmetric instead of skew, as they were i n  D,. After the usual 
choice of a trunk H ,  this means branches and rootforms like those of D,, 
though in the second and third kind the matrix coefficient -1 should be 
changed to 1 ; furthermore the branches 

e i , i+ ,  with 1 on i , i +  I, with 1 on i +  I,i, 

and zeros elsewhere, with the rootforms 2wi, -2wi, must be added. All 
rootforms are 

*2wi, &wi * w j  (i # j ,  f independent) and I-fold 0. 

A basis with the usual properties is provided by 

w ,  - w * ,  w* - w3, . . .) wl- ,  - wi, 2w,. 

The usual properties can be verified again. 

16.6 The properties displayed in  theseexamples arecommon to the important 
class of complex semisimple Lie algebras. Their study is pursued in Sections 
20-27. 

17. SOLVABLE SUBALGEBRAS 

G E Alg Lie (generally Com, sometimes Rea), dim C = I' < cc ; R E Spa Lin 
Com, dim R = IT < 33.  

17.1-3. Nilpotency 

17.1. Definition An element u of End R is called nilpoteiit if up = 0 for 
some positive integral p. A subset A of End R is called iiilpoterit if A P  = 0 for 
some natural p. (Here A p  is defined inductively by A' = A ,  A4+I = AAq.)  

Evidently an element is nilpotent i f f  all its eigenvalues are zero. 
I f  Gi is defined as the set of complex 17-n-matrices with zeros under and i n  

the main diagonal and in the first i -  1 parallels above the main diagonal 
(i = 0, I ,  . . .), then 

(see 13.11, Proof). Thus 
Gi cj = Gi+j 

GI is nilpotent. 

Definition a E C ( A  c C )  is called ad-nilpotent if B ( A )  is nilpotent. An 
element is ad-nilpotent iff  all its roots vanish. All elements of Ca re  ad-nilpotent 
iff  G is of rank 0. 
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Proposition 
element of G is nilpotent, then G is solvable and even nilpotent. 

Let G c  End R be a complex linear Lie algebra. I f  every 

Proof The statement is supposed by induction to be true for any R’ instead 
of R and any G’ (c End R’)  instead of G as soon as either dim G’ < dim G or 
dim R‘ < dim R .  

Let H be a maximal proper subalgebra of G. Then every element of H is 
nilpotent, so by induction H is solvable. According to Lie’s theorem (13.9) 
take x E R as a simultaneous eigenvector of H. Because of the nilpotency of 
the elements of G 

17.1 .I HX = (0). 

Let K be the maximal subalgebra of G such that Kx = {O}. Then K = G or 
= H. If Gx = {0},  then G acts upon R‘ = R mod x as an algebra G‘ which by 
induction is nilpotent; this implies the nilpotency of G. 

If K = H then ax # 0 for all a E G\H. 
H is invariant under h with h E H. Thus h induces a linear mapping B(h) 

of Gmod H into itself; B is a homomorphism; B(H), as a homomorphic 
image of H, is solvable. According to Lie’s theorem there is a simultaneous 
eigenvector of i!(H). Thus for some u E G, u f H ,  

17.1.2 ha = a(h)a mod H for all 1 E H .  

Now 

- 

has = [h, a] s + ahs 

= a(h) US 

because of 17.1.1-2. The nilpotency of h requires a(h) = 0, which by 17.1.2 
shows that the algebra spanned by H, a, hence G, is solvable. I t  may be assumed 
to be triangular, but then it has zeros in the main diagonal and so it  is nilpotent. 

Corollary A complex linear Lie algebra has rank 0 if and only if its adjoint 
is t i  i I po ten t . 

17.2 A solvable linear Lie algebra need not be nilpotent. Its commutator 
algebra, however, is nilpotent because the diagonal of the commutator of 
triangular matrices vanishes. 

Proposition 
algebra is nilpotent. 

A complex linear Lie algebra is solvable iff  its commutator 

17.3 
linear Lie algebra G. 

If G is a Lie algebra, the preceding propositions can be applied to the 
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First Criterion on Solvability The complex Lie algebra G is solvable iff 
its commutator algebra C(G)  is of rank 0 (ad-nilpotent). 

Proof If G is solvable, then by 17.2, for any u E C(G) ,  all eigenvalues of & 
vanish and, in particular, all roots of u as element of C(G) .  Conversely, if 
rank C(G)  = 0, its adjoint is nilpotent, and therefore solvable, and so are 
C(G)  and G. (See 13.2.3.) 

17.4-1 2. Trunks 

17.4 Let G E Alg Lie Com, ho E G. According to the different roots of h,, G 
as a linear space splits directly into linear subspaces G, such that 

(KO - a)d'mCa G, = (0). 

Proposition [G,, G,] c G,,, or = (0) (if a + /3 is no root of ho). 

Proof For x E G,, y E G,, and some i, j 

(Lo - a)' x = (Lo - p)'y = 0. 

Now 
( 6 0  - a - B) [ w l =  [(KO - a) x,ul+ [x, ( 6 0  - B)Yl. 

Iterating this, one gets 

(Lo - a - /3)'+'-' [x,yI = a sum of [(KO - (Lo - ,QqyI, 

with p + q = i + j - 1, hence p > i or q 
vanish and proves the assertion. 

j .  This means that all summands 

17.5 In particular, [Go,Go] c Go, which shows that Go is a subalgebra. 

17.6. Definition For any regular ho E G the set of all x E G such that 

& X = O  forsomep 

is called the trunk of Lo. The letter H usually denotes a trunk. 

Theorem A trunk H of G E Alg Lie Com is a solvable subalgebra of rank 
0; H i s  the trunk cf all its G-regular elements and contains all simultaneous 
eigenvectors of 6 (h  E H) for the eigenvalue 0. It is an ideal in no larger 
subalgebra of G. 

Proof H, the trunk of regular ho, called Go in 17.5, is an algebra and 
therefore invariant under with h E H. The multiplicity of the eigenvalue 0 
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ofh, as acting onHand GmodH, is denoted by nH(b) and nmdH(b),respectively. 
Continuity prevents &,,OdH(b) from increasing near b,; regularity prevents the 
nullity of 6, that is, nH(b) + nmodH(b) ,  from decreasing. Therefore nH(b) 2 
nH(b,) for b near b,. Hence 

RPx = 0 for x E H and some p 

and for all /I E Hnear b,, but because of the analyticity of hPx as a function of 
b this holds good for all b E H. All b E H are ad-nilpotent as elements of the 
subalgebra H; by 17.1 the same is true of H, which, again by 17.1, is also 
solvable. 

The trunk of any regular /I E His  at least H. It cannot be larger because this 
would enlarge the nullity of b. 

The third assertion of the theorem is a mere consequence of the definition of 
trunk. 

If H were a proper ideal of some subalgebra of G, there would be some 
a $ H such that ha E H for all b E H and hp"a = 0 for some p, which would 
produce the contradiction a E H. 

17.7 A converse of 17.6 is proved in 17.1 1 : 

Theorem Let A be a subalgebra of rank 0 of the complex Lie algebra G and 
let A be ideal of no larger subalgebra of G. Then A is a trunk of G. 

17.8t Under automorphisms of G a trunk goes into trunks. In 17.1 1 it will be 
proved : 

Conjugacy Theorem Two trunks of complex G are equivalent under the 
action of Int G. 

17.9 The proofs are prepared by means of the next propositions. 

Proposition Let G E Alg Lie Rea or Com, A a linear subspace of G, a, E A 
such that d,A c A and the mapping induced by do in the linear space G mod A 
is nondegenerate. Then the (exp b) A with b from a O-neighborhood in G cover 
a neighborhood of a,. If, moreover, G E Alg Lie Corn, then A contains a 
regular element of G. 

Proof As a linear space, G is the direct sum of A and a linear subspace B. The 
mapping 6 defined by 

9 ra,bl = (expb)(ao + a) for a E A, b E B 
t 17.8-12 will not essentially be used for some time. 
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has at ‘0,Ol 
(grad 6) ru, b1  = u + [b, a,] = u - b. 

Now u - dob  = 0 would mean a,b = 0 mod A ,  which by the supposition on 
nondegeneracy implies b = 0, hence u = 0. Therefore grad 6 at ‘0,O’ is non- 
degenerate and 6 maps a neighborhood of ‘0,O’ onto a neighborhood of uo. 
This proves the first assertion. The set of regular elements is dense, so the 
neighborhood of uo covered by the (exp6)A ( b e l l )  contains a regular 
element. Since (expd)A possesses a regular element for some b, and the notion 
of regular element is Int G-invariant (see 15.7), A has the same property. 

17.10. Proposition Let G E Alg Lie Com, A sub G, rank A = 0. Let the 
mapping induced by d (a  E A )  in the linear space C mod A have an identically 
vanishing eigenvalue. Then A is an ideal in a larger subalgebra of G. 

Proof Let h, E A be chosen with a minimal nullity in G among elements of 
A .  As in 17.4, G, is defined with respect to h,. Then, since rank A = 0, A c Go. 
The postulated behavior of h, in G mod A implies the existence of x E C\A 
such that h,x E A ,  hence x E Go and Go # A .  By 17.4 Go is invariant under A,. 
The restriction of h, to Go is nilpotent, and the same reasoning used in 17.6 
shows that this property remains true for all h E A because of the minimal 
nullity ofh,. So A is represented nilpotently in Go byyhpAh, and so it is in Go mod 
A .  Let x + A E Go mod A be an eigenvector of this representation (with the 
eigenvalue 0). Then the linear subspace spanned by A and x is a subalgebra 
properly containing A as an ideal. 

17.11 Proofof Theorem 17.7-8. Let A be assumed as in 17.7. Then by 17.10 
no identically vanishing eigenvalue of the mapping induced by a (a  E A )  in 
G mod A exists. By 17.9 A possesses a regular element h, of G, the trunk of 
which is called H .  Since rank A = 0, the restriction of h, to A is nilpotent, and 
since H itself is the maximal linear subspace with this property, A is contained 
in H.  If A # H ,  then A, acting nilpotently on H m o d  A ,  has an eigenvector 
belonging to the eigenvalue 0. Hence there is some x E H\A such that Ax = 

(0). The subalgebra spanned by A and x contains A as an ideal. This con- 
tradiction shows that A = H, hence that A is a trunk. 

For any trunk H let @ ( H )  be the set of regular elements of (Int G)H.  By 
17.9 (which applies because of 17.10) @ ( H )  is open, and by the same reason 
every regular element belongs to some @(H). If there were several @ ( H ) ,  the 
set of regular elements, which is connected (15.4), would split into @(H,) and 
a union of certain @ ( H ) ,  which are both open. This contradiction proves 17.8. 
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17.1 2. Theorem Let cp be a homomorphism of G E Alg Lie Com onto 
G' E Alg Lie Com. By cp the regular elements of C are mapped into regular 
elements of G', and the trunks o f  G' are the images of the trunks of G. 

Proof Let N be the kernel of cp; G' is canonically isomorphic with G mod N. 
If h, is a regular element of G, then cp(h,) is one of G' because the regular 
elements of C' are dens,e in G' and a slight variation of ho does not change its 
nullity on N, thus cannot decrease its nullity on G mod N. It is clear then that 
the trunk H associated with a regular element ho of G is mapped onto the 
trunk H' associated with cp(ho). Any other trunk of G' is of the form#'H' for 
some $' E Int G'. Now Int G' is canonically the image of Int G, and, if 
t,h E Int G is mapped into #', then #H is a trunk of G mapped onto I)' H' by cp. 

17.13-15. Rootforms and Nodes 

17.1 3.1 Definition Let H be a trunk of G E Alg Lie Com. The restrictions 
of the roots to H are called the rootforms (with respect to H). The system of 
rootforms, with due multiplicities, is denoted by W or, more precisely, 
W(G, HI. 

Since H is solvable, its respresentation by y h h  may be considered tri- 
angular, with the rootforms in the diagonal. Thus: 

Theorem The rootforms are linear functions on the trunk. 

17.1 3.2 The set of h E H such that a(h) = p(h) for some couple a, @ ofdifferent 
rootforms is nowhere dense in H. One can choose some h, E H such that for 
any couple a,fl of rootforms a(ho) # fl(ho) unless a = fl. Splitting G into G, 
(see 17.4) with respect to h,, one obtains 

(6, - .(ho))d'"C"Ga = (0). 

Because of 17.4, G, is invariant under h (h E H). The restriction of h, to G, has 
one eigenvalue only. With a view to the choice of A,, it appears that this 
property belongs to all h E H.  Hence : 

Theorem Let H be a trunk of G E Alg Lie Com. Then G splits as a direct 
sum of subspaces G, corresponding to the different members a of W such that 

(h - a(h))d'mGaG , = (0) for h E H ;  

[G,,Gp] c G,+p or (0) (if a + f l  is no rootform). Go is the same as H. 

17.14 By 17.8, W ( G , H )  is essentially the same for all trunks H of G. Any 
functional dependency among roots causes a dependency among the corre- 
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sponding rootforms, and conversely any dependency among rootforms is 
raised to a dependency among roots by the action of Int G. Functional depend- 
ency among rootforms coincides with linear dependency. Therefore: 

Theorem The rank of C equals the number of linearly independent root- 
forms. 

The last-mentioned number does not exceed dim H, which is the nullity of 
C .  This confirms Theorem 15.5. 

17.1 5. Definition If a and -a belong to W, the nonvanishing elements of 
[G,,C-,] are called the a-nodes (with respect to H ) .  

Of course, the cr-nodes belong to H .  

Theorem For any a-node h and any rootform p,p(h)  is a rational multiple 
of a@), where the factor does not depend on h (though it may depend on a 
and p). 

Proof Let h = [ f+,f-] where f+ E G,, f- E G-,. Then 

as far as existent. Put 
F =  C Gp+jo,;  

j integer 

F is invariant underf+,r-, thus under 6. Since 6 is a commutator of elements 
preserving F, trF6 = 0; however, trF6 = Z I  trG,,+,,6. In Gp+Ia the only eigen- 
value of 6 is (p +ja)(A) with multiplicity dim Gp+I,. Thus, 

C dim Gp+Ja.(p +ja)(h)  = 0. 
I 

This proves the assertion. 

17.16-17. The Killing Form and Solvability 

17.1 6 If E sub G one can restrict the Killing form to E and then distinguish 
between 

and 

which in general will be different. However: 

$ E ( x ,  Y )  = t r E  fj (x, Y E )  

$G(x, Y )  = trG f$ (x, Y E E), 

Proposition If E is an ideal in G E Alg Lie, then 

4E(x, Y )  = #G(x, Y )  for x, Y E- 
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Indeed, if E is an ideal, then 2jz  E E for x,y E E, even if z $ E. So contri- 
butions to the trace come from z E E only. 

17.1 7 If G E Alg Lie Com is solvable, then, according to the first criterion 
on solvability (17.3), all roots of elements of C(C) vanish [not only on C(C) 
but also on G because C(G) is an ideal]. As the sum of the squares of the eigen- 
values of 2, $(x,x) then vanishes for all x E C(C). The converse is also valid: 

Second Criterion on Solvabi!ity G E Alg Lie Corn is solvable if and 
only if i,b(x,x) = 0 for all x E C(G). 

Proof One still has to show that if $(x,x) = 0 for all x E C(G) then G is 
solvable. By 17.16 the supposition implies 

t r E f 2 = 0  for x E E, 

where E = C ( E )  is the last member of the commutator sequence of G. It has 
to be shown that E = (0). 

Suppose that E # (0) and choose a trunk H of E. Then H # (0). As a trunk 
H is solvable, whereas E = C ( E )  is not, and so there exists a rootform # 0 
with respect to H. Since E= C(E) ,  the trunk Hi s  spanned by the nodes; there- 
fore there is a node ha of some a such that P(ha) # 0. Then, according to 17.15, 

0 = $(h,, h,) = dim C,, ~ ( h , ) ~  = Ka(ha)’ 
P 

with K # 0. Therefore a(ha) = 0 and again, by 17.15, p(h,) = 0 for any root- 
form p, in particular for p, which is a contradiction. 

17.18. The Real Aspect By 13.13 and 14.6 the notions of solvability, 
commutator algebra, and vanishing Killing form are invariant under complex 
extension, real restriction, and waiving. These properties are also shared by 
the notion of being of rank 0. The two solvability criteria remain valid in 
G E Alg Lie Rea. 

17.19. Historical Note Theorem 17.12 is due to H. de Vries. 

18. CLEAVING 

18.1 R E S p a L i n C o m , d i m R = n c m .  

Definition A subset and in particular, an element of End R is called pure 
if it takes the diagonal form on a suitable basis. 
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Definition IfhEEnd R,  the splitting h = a + e  is called a cIeauingifaEEnd 
R is pure, e E End R is nilpotent and ae = ea. 

18.1 .I. Proposition h E End R admits one and only one cleaving. The 
cleaving components are scalar linear combinations of the powers of h with 
positive integral exponents. 

As a consequence : Every u E End R commuting with h also commutes with 
the cleaving components. Every linear subspace invariant under h is invariant 
under the cleaving components. Even: if S,  T sub R and hS c T c S ,  then 
aS c T, eS c T. 

Proof R splits directly into subspaces R, corresponding to the different 
eigenvalues A, ,  . . ., A, of h. In every R, choose a basis on which the restriction 
ofh to RI is triangular. Take the union of these bases as one for R. The diagonal 
part of h is taken as a, the remainder as e.  Obviously this is a cleaving. 

Conversely, if the cleaving h = a + e is given and Xi are the different eigen- 
values of a with eigenspaces Ri,  

then 
(h  - A,)" R, = ( (a  - A,) + e)" R,, 

which by the binomial formula and by en = 0 turns out to be (0). This shows 
that the X i  are the eigenvalues of h and the R,  the corresponding subspaces, 
and that the cleaving coincides with the previous one. 

(a - A,) R* = w, 

Further define a polynomial y(z )  such that for ~ ( z )  and its derivatives 
y(0) = 0, y(AJ = A,, y'(Ai) = * . . = y+')(A,) = O for i = 1, . . ., p .  

The polynomial y ( z )  - A, then has a factor ( z  - A,)". Substituting h = a + e 
into v, one gets y(h) = a. This is a linear combination of hi (i > 1) as required. 

18.1.2 t Cleaving as defined in End R has a multiplicative analog in Aut R. 

Proposition h E Aut R can be split uniquely as h = au where a is pure, u is 
unipotent (i.e., all its eigenvalues are l), and au = ua. 

This follows from the cleaving h = a + e with pure a, nilpotent e,  and 
ae = ea by putting u = 1 + a-'e .  

18.1.3 Let D be the set of h E End R such that all eigenvalues X of h satisfy 
-IT < Im A < rr, 

and D, the subset of pure elements of D. Then exp is one-to-one on D,. 

t 18.1.2-5 will not be used before Section 38. 
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exp maps the (additive) cleaving of h E End R on the multiplicative one of 
exp h ;  moreover, it maps the set of nilpotents onto the set of unipotents, since 
exp is inverted by log. Therefore 

exp maps D one-to-one. 

18.1.4 Now interpret End R as a linear Lie algebra G. The kernel of the 
trace in End R is a member Go of An-,. For a E G let a, be such that a - uo is a 
scalar multiplier. The eigenvalues of a' or, equivalently, of do are the roots of ao, 
hence are differences of the eigenvalues of a, or, equivalently, of a if a, belongs 
to a trunk of Go. Hence by a continuity argument this, however, holds in 
general. 

So for a E D and all roots a 

-2r  < Im .(a) < 27r; 

hence, by 10.2, grad, exp is nondegenerate. Together with 18.1.3 this yields 
the following. 

Theorem exp maps D homeomorphically and with nowhere degenerate 
gradient onto an open subset of Aut R, which is an analytic manifold. 

18.1.5 An application. 

Proposition If G is the linear Lie algebra of the real n-n-triangular 
matrices of the form A, then exp G coincides with the group infinitesimally 
generated by G (which, in fact, is the group of real n-ti-triangular matrices 
with positive eigenvalues), and exp is a homeomorphism of G onto exp G. 
The same holds for subalgebras of G as well. 

18.2 The foregoing is applied to the adjoint of G E Alg Lie Com. Con- 
sider the splitting of G into G, under some h E G, as introduced in 17.4. Then 

(h - a)d'mCaG, = {0}, [G,, Gp] c G,+p or (0). 

Define a linear mapping 9. of C into itself by 8x = ax for x E G,. Then 6 is a 
derivation of G, for 

if x EG,, y E G ~ ,  then [ x , y ]  E G , + ~  or 0; 

hence 
9.[n,yl = ( a  + 8) [X ,Yl=  [ax,yl+ [x, PYl = [9.X,Yl+ [x, 9.Yl 

or 0 in the first and last members. 
Since 9. is the first component of the cleaving of k, one is led to the following. 
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Proposition 
derivations of G. 

If G E Alg Lie Coni, the cleaving components of h (h  E G) are 

18.3 A stronger assertion can be made ifG is centerfree and a l l  its derivations 
are inner. (Such is the case for the seniisitnple algebras to be studied later on.) 

Definition h E G E Alg Lie Corn is called ad-pire if h is pure. A subset A 
of G is called ad-piwe if the set ofu with a E A is pure. 

Definition 
a,e E G, a is ad-pure, e is ad-nilpotent, and [ q e ]  = 0. 

For h E G E Alg Lie Coni, I1 = a + e is called an ad-clearing if 

Theorem Let G t Alg Lie Coni such that C is centerfree and has inner 
derivations only. Then every element k of G admits unique ad-cleaving. If h 
belongs to the trunk H ,  then the same is true of its ad-cleaving components. 

Proof According to 18.2, the cleaving components of h are derivations and 
thus inner derivations of the form cS.,P with [ B , P ]  = 8 .  Then [aTe] = 8 ,  hence 
[a ,e]  = 0 because Giscenterfree. This proves the first part. If li E H ,  h leaves H 
invariant; by 18. I . I  the same is true of its ad-cleaving components; by the last 
remark of Theorem 17.6 their ad-originals belong to H .  

18.4. Proposition 
possess ad-nilpotents # 0, all elements of H are ad-pure. 

If cleaving is possible i n  G and tlie trunk H does not 

A direct consequence of the proof of 18.3. 

18.5t 
Then the linear span of A is also pure. 

Suppose that R E Spa Lin Com, dim R = I I  .< a, A c End R, A pure. 

Call R,  the subspace belonging to the eigenvalue o! (as a function on A ) .  
Suppose that S sub R is invariant under A .  Then tlie following is easily 

shown by the method of 18.1. 

18.5.1 S is the direct sum of the S n R,. 

18.5.2 The restriction of A to S is still pure. 

18.6. Proposition 
and both A and Bare pure, then A u B is pure. 

If R E Spa Lin Com, A u B c End R, A u B abelian 

Proof R, is again defined with respect to A .  Since A u B is abelian, R, is 
B-invariant. The restriction of B to R, is still pure. For every o! take a basis of 

t 18.5 will not be used for some time. 
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R,  on which B is diagonal and combine them. This provides one on which 
A u B is diagonal. 

18.7. Historical Note The importance of cleaving in semisimple Lie 
algebras was discovered by F. Gantmakher, Mat. Sbornik 5 ,  (47), 101-144 
(1939). 

19. SEMISIMPLICITY 

First read the criteria and theorems. 
G E Alg Lie, dim G =  r < 03. 

19.1-1 3. Criteria 

19.1 Repetition of parts of Section 13. 

Definitions The maximal solvable ideal of G is called the radical, rad G, of 
G. G is called semisimple if rad G = {0), equivalently, if G has no abelian 
ideal except (0). 

Notation If G is semisimple: G E Alg Lie SS. If G is semisimple and 
simple: G E Alg Lie SSS. If G E Gru Lie Lin the predicates SS and SSS 
indicate that G E Alg Lie SS and SSS, respectively. 

It has been proved that if G is simple and dim G > 1 , then G E Alg Lie SSS. 
G mod rad G E Alg Lie SS. 

19.2 The Killing form of G is denoted by $. This is a &invariant (see 14.4.1). 

Notation For K c G the $-orthoplement of K is written K L  ; thus, 

u E K J -  - $(u,K) = (0). 

19.5 From 

19.5.1 

it follows : 
$(ex, Y )  + $(x, ZY) = 0 

Proposition IfFis an ideal in G, the orthoplement FJ- of Fwith respect to Q, 
defined by 

Y E FJ- tf A ~ ( x , Y )  = 0, 
XEF 

is again an ideal of G. 
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19.6 In particular, the set G1 of ally such that 

$(x,y) = O  for all x EG 

is an ideal. By 17.16 +(x,x) = $,i(x,x) for x E G I ,  and by the second criterion 
on solvability G1 is a solvable ideal of G. 

Therefore, if G is semisimple, the only solution of 

$(x,y) = O  for all x EG 

is y = 0, which means that $ is nondegenerate. 
If, however, G is not semisimple and F # (0) is an abelian ideal of G, then 

f j z  = [x, [y, z]] E F for x, z E G, y E F. 

If z contributes to tr fj, then z E F, but then [y,z] = 0; thus f j z  = 0. Conse- 
quently, tr 29 = 0, 

$(x ,y)  = 0 for x E G, y E F, 

which means that $ degenerates as soon as G is not semisimple. 
This yields the: 

First Criterion on Semisimplicity G is semisimple iff its Killing formis 
nondegenerate. 

19.7 Let F be an ideal of G and let F1 be defined as in 19.5. If dim G = r and 
x,, . . ., x, form a basis of F, then FL is the intersection of the linear subspaces 
Lj  of at  least (r - 1)  dimensions, defined by 

y E L, - $ ( X j , Y )  = 0. 

This makes dim Fl r - s, 

dim F + dim F1 > dim G; 

F n FL is an ideal of G and is solvable because of 17.16 and the vanishing of t,h 
on F n P. 

19.8 Applying this result to a semisimple ideal F of G, one gets the ideal Fl 
(see 19.5) with F n FL = (0) and F + FL = G. 

Theorem If a semisimple Lie algebra is an ideal in a larger one, it is so in a 
trivial way, that is, as a direct summand. 

If a semisimple linear Lie group is a normal subgroup in a larger one, it is 
so in a locally trivial way, that is, as a local direct factor. 

19.9 A consequence of 19.8: 



94 13-19. SOLVABILITY AND SEMISIMPLICITY 

Theorem All derivations of semisimple F a r e  inner. 

Proof Let G be the linear Lie algebra of derivations of semisimple F and let 
E be that of the inner derivations; P is an ideal in G since, for @ E G ;  [@, ci]x = 

@ax - a@,x = @[a,x]  - [a, @x] = [@a, x] + [a, @XI - [a, @XI = @ a x ;  hence: 
N 

v 

19.9.1 [@,&I = @a, thus [@,PI c F. 
Since Fis semisimple, its center is (0) and Pis  isomorphic to F; consequently, 

it is semisimple. By 19.8 G is the direct sum of P a n d  Pl. For @ E it follows 

from 19.9.1 that 6 2 [@,a] = @a; thus @a = 0 for all a E F. Hence @ = 6 and 
G = P. 

N 

Corollary For any x E G E Alg Lie Com SS cleaving of 2 is possible within 
G. (See 18.3.) 

19.10. Theorem The 1-component of Aut F of semisimple F is Int F. Both 
are closed in the group of linear space automorphisms of F. 

Indeed, by 11.3.4, the infinitesimal algebra of the 1-component of Aut F 
consists of the derivations of F, which by 19.9 are all inner and infinitesimally 
generate Int F. The closedness of Aut F is obvious and implies that of Int F. 

Remark In 38.5 it will be shown that any G E Gru Lie Lin SS acting in 
R E Spa Lin is closed in Aut R. 

19.1 1 A consequence by means of 9.1 is the following. 

Theorem The automorphisms of G E Gru Lie Lin SS i n  the l-component 
(even the local ones) are inner; Aut G/Int G is discrete. 

19.1 2 Now apply 19.7 to the case of a semisimple G and an ideal F. Again 
F n FL as a solvable ideal of G is { O }  and G is a direct sum of F and FL,  which are 
again semisimple. Repeating this process, one obtains the following: 

Second Criterion on Semisimplicity G is semisimple iff it is a direct 
sum of nonabelian simple Lie algebras. 

The sufficiency is obvious. 
Note that the splitting of semisimple G is uniquely determined. 
Indeed, any simple ideal other than the summands would have zero-inter- 

section with each of them and therefore would commute with each of them 
elementwise; thus it would be contained in the center, which is {O}. 

Globally : 
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Theorem G E Gru Lie Lin is semisimple iff it is locally isomorphic to a direct 
product of locally simple nonabelian linear Lie groups. 

19.1 3 From 19.12 it is evident that any ideal and any homomorphic image of 
semisimple C is semisimple. 

Proposition If G’ is an ideal sub C, then rad C’ is still an ideal sub G. 

Proof This follows most easily by observing that any rp E Int G induces an 
automorphism of G’ ,  which consequently maps rad G’ onto itself. In a purely 
algebraic fashion from the semisimplicity of G mod rad G one draws the 
conclusion that C ‘  mod G’ n rad G, isomorphic to an ideal of the former, is 
also semisimple; thus rad G’ c G’ n rad G, which is a solvable ideal of G’, 
hence equals rad G‘.  

19.14-1 6. Irreducible Algebras 

19.14 Because of 19.12 semisimple Cis  clearly its own commutator algebra. 
Thus, on G E Alg Lie Lin SS the trace function vanishes. 

Theorem Let R 6 Spa Lin Com, dim R < co. If G E Alg Lie Lin acts irre- 
ducibly on R ,  it splits directly as a sum of a semisimple ideal Go and a Lie 
algebra of scalar multiplications. 

This re-enforces 13.10. 

Proof Let Go be the set of g E G with tr g = 0. Then Go is an ideal of G. By 
19.13 the same is true of rad Go, which according to 13.10 consists of scalar 
multiplications. Since tr(Go) = {0} ,  it follows that rad Go = (0) and that Go is 
semisimple. According to 19.8, G E Go + A as a direct sum. The commutator 
algebra of C is in the kernel of the trace, thus in Go, from which it follows that 
A is abelian, and thus by 13.10 consists of scalar multiplications. 

19.1 5 The following is an extension of 19.14: 

Theorem Let R E Spa Lin Com, dim R < co, be the direct sum of R, sub R.  
If G E Alg Lie Lin acts on R,  leaves the R, invariant, and acts irreducibly on 
each R,, then G is a direct sum of simple Lie algebras. 

Proof The restriction of G to R, is a linear Lie algebra Gj, homomorphic 
image of G by means of canonical 6,. The kernels F, of 5, have intersection (0). 
Let C’  and C; be the commutator algebras ofG,G,. Then 5,C’ = G;. By 19.14 
G; is semisimple, 5, rad G’ c rad G; = (0). Thus rad G’ = {0}, G‘ is semisimple, 
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G = G’ + A as a direct sum and, because of 19.8, A abelian. This proves the 
assertion. 

19.1 6. Theorem All G E A,, B,, C,, D, of Section 16 are semisimple. 
Because of 13.8 it has only to be shown that the representatives G are 

irreducible. Since an invariant linear subspace would also be invariant under 
the associative algebra with unit element generated by G, it suffices to show that 
the latter is irreducible, that is, the full matrix algebra of complex d-space on 
which G acts. The trunk of G, together with the unit matrix, generates all 
diagonal matrices, and by multiplying the diagonal matrices ‘0, . . ., 0, l  , 0, . . .O1 
by branches of G one gets all branches of Ad. In this way the full matrix 
algebra of complex d-space is produced. 

19.17. The Real Aspect 
Because of the validity of the solvability criteria for real Lie algebras the 

results of Section 19 prevail for real as well as complex Lie algebras. This is 
especially true of the semisimplicity criteria. 

Semisimplicity is preserved under complex extension, real restriction, and 
waiving. 

With a slight modification 19.1415 can be extended to the case of real R. 
Then, of course, G has to be real. To tackle 19.14 one passes to the complex 
extension Rcom of R, which as a matter of fact can become reducible. 
Together with S # (0}, R, its conjugate DS is invariant sub Rco,. The real 
restrictions of S n DS and S + DS are invariant sub R, and thus = (0)  and R, 
respectively, which shows that Rcom = S + DS. To this situation, however, 
the method of 19.15 readily applies. 

In the formulation of 19.14 for real R the scalar multiplications must still 
be allowed over the complex field. 

19.1 8-22. Purity and Cleaving 

19.18 If G E Alg Lie is centerfree, then G is isomorphic to G. Then, up 
to isomorphy, Gmay be assumed to be linear. This remark applies in particular 
to semisimple G. 

19.1 9t. Theorem Let G E Alg Lie Corn Lin. Then every pure element of 
C is ad-pure and every nilpotent element of G is ad-nilpotent; in particular, if 
G admits cleaving, G also admits ad-cleaving; therefore if G is centerfree and 
admits cleaving, then for elements of G the notions of purity, nilpotence, and 
cleaving coincide with those of ad-purity, ad-nilpotence, and ad-cleaving. 

t 19.19-22 will not necessarily be used for some time. 
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Proof G c End V with V E Spa Lin Com. 
(End V ) ,  is the kernel of the trace of End V. One may suppose that dim V > 1. 
First assume that G = (End V),. Then by 19.16, G is semisimple. Since the 

cleaving components of a linear mapping with trace 0 also have trace 0, G 
admits cleaving. From 16.2 it is easily seen that G contains a pure trunk; in 
fact, every pure element of G is in a trunk of G. The elements of the given 
trunk are ad-pure; hence the elements of any trunk are ad-pure because the 
trunks are conjugate under G (if G is the group of linear mappings with deter- 
minant 1) and G" preserves ad-purity. By putting a nilpotent element of G in 
triangular form it is also easily verified that each nilpotent element of G 
is ad-nilpotent. Hence a cleaving.in C i s  also an ad-cleaving. Thus the notions 
of cleaving, purity, and nilpotence coincide with those of ad-cleaving, ad- 
purity, and ad-nilpotence, respectively. (Note that ad-cleaving is unique 
because G is centerfree.) 

Next assume that G sub (End V),, that is, all elements of G have trace 0. 
Now observe that an element of G, which is ad-pure as an element of (End V), ,  
is also ad-pure as an element of G and the same applies to ad-nilpotence. From 
this, and the above special case, the same assertions follow. 

If not all elements of G have trace 0, let G act on a vector space V' spanned 
by Vand an element w not in V, by 

g(v + aw) = gv - a tr g .  w, for v E V,  

It is easily seen that this yields a faithful representation of G which does not 
alter the notions of purity and nilpotence; the theorem also follows in this case. 

g E G, a a complex number. 

19.20. Theorem Let G E Alg Lie Com Lin admit cleaving, and let A be 
a maximal pure subspace of G, with H as its idealizer. Then: 

19.20.1 H i s  a trunk of G, 

19.20.2 A consists of the pure elements of H. 

19.20.3 H = A + N is a direct sum of Lie algebras in which N consists of 
the nilpotent elements of H. 

19.20.4 N c rad G, even +(N, G) = (0). 

Proof By the same device used in the proof of Theorem 19.19 one may 
suppose that G c (End V),. By 19.19 one may substitute ad-cleaving for 
cleaving, and so on, ad-cleaving, ad-pure and ad-nilpotence being meant in 
the sense of (End V), .  
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As i n  17.4, G splits into subspaces G, # (0) with respect to the adjoint 
image of A ,  but now (i acts on G, as a scalar multiplication by .(a) because 
of its purity; the a’s are elements of the linear dual of A.  Obviously 

[A, Go] = { O } ,  A = Go = H.  

The ad-pure elements of Go, like all elements of Go, commute with every 
element of A ,  hence are in A because of the maximality of A ; this proves 
19.20.2. The commutator of an element of A in which all a are different from 0, 
with an element not in Go, still is not in Go. This implies that His  its own ideal- 
izer in G. The last assertion of Proposition 18.1.1 applied with S =  T =  H 
implies that the ad-cleaving components of an element of H ,  being also in 
G, are even in H.  Since A is in the center of H i t  follows that H has rank 0, and 
H is a trunk of G. Then H = A + N as asserted in 19.20.3, since the ad- 
nilpotent elements of the solvable Lie algebra H form an ideal of H.  

Obviously [G,,Gp] c G,+p or = (0). From this it easily follows that: 

#(G,,Gp) = (0) if a + # 0. 

$(H, N> = (01. 

$(G, N )  = (0). 

Putting the image of H in the adjoint of Gin triangular form, one sees that 

Hence, 

So by 19.6 Nis  a solvable ideal of G, from which N c rad G. 

19.21 . Theorem If G E Alg Lie Com Lin admits cleaving, the maximal 
pure subspaces of G are equivalent under Int G, that is, conjugate under G, 
where G is the group infinitesimally generated by G. 

Proof Indeed, trunks of G are conjugate under G, and the elements of (7 
preserve purity; the assertion follows from 19.20. 

19.22. Theorem If G E Alg Lie Com S S ,  the trunks of G are the maximal 
ad-pure subspaces of G ;  in particular, they are abelian. 

Proof The assertion follows from 18.3 and 19.20 applied to the adjoint 
action. 

19.23. Historical Note Theorems 19.19-21 are due to H. de Vries, 
though partly anticipated by S .  Tag6 [Math. Z .  75, 305-324 (1961); J .  Sci. 
Hiroshima Uniu. A-I, 25,63-93 (1961)l. They are closely connected to results 
of C .  Chevalley ( T h h i e  des groupes de Lie, Vol. 111, p. 230, 1955). 
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DRESSINGS AND CLASSIFICATION OF SEMISIMPLE COMPLEX 
LIE ALGEBRAS 

20. THE FIRST DRESSING OF COMPLEX SEMISIMPLE 
LIE ALGEBRAS 

C E Alg Lie Com SS, dim C = r ,  t+h is the Killing form of C, and H is a 
trunk of C.  The Ca of 17.13.2 are defined with respect to H.  

20.14. The Trunk 

20.1 From 17.13.2 it follows that 

#(x, y) = tr fjj = 0 

for 

Exploiting the first criterion of semisimplicity one gets for any h E H, h # 0 the 
existence of h,  E H with 

and for any a E W ,  a # 0,  f +  E C,, f +  # 0 the existence of an f -  E G-, with 

20.1.2 t+hcf+,f-) # 0. 

20.2 If [ f + , f - ]  = 0, then f + ,  f- generate an abelian, hence solvable algebra; 
takingf+,f- simultaneously triangular and noting that all eigenvalues of f+,f- 
vanish (because of f+C, C Cfi +,), one gets t+h(f+,f-) = trf+f- = 0, which 
contradicts 20.1.2. Therefore in the case of 20.1.2 one may conclude that 
[ f + , f -  I # 0. Thus, 

20.2.1 [Ga,C-al # (0) for a E W, a # 0. 

In other words, there are a-nodes for a # 0. 
99 
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20.3 The solvability of H can be used to put h,k, simultaneously into tri- 
angular form. Then 

Hence by 20.1.1 : 

20.3.1 If L E Hand p(h) = 0 for all p E W, then tr = 0. 

This proves again that H has no ad-nilpotents # 0. Consequently, by 18.4: 

20.3.2 All elements of H are ad-pure. 

20.4 If L E H is linearly spanned by u-nodes, 17.15 can be applied which 
means that p(b) = 0 as soon as u(L) = 0. Then 20.3.1 becomes: 

20.4.1 If L is spanned by u-nodes and u(L) = 0, then L = 0. 

Applied to u = 0, this yields that every O-node vanishes; thus it is shown 
anew (cf. 19.22) that 

20.4.2 His  abelian. 

If, however, tc # 0, then by 20.4.1 the homomorphism u maps the linear 
space spanned by [G,, G-,] in such a manner that the kernel of the mapping is 
(0). Thus its dimension is <1, whereas by 20.2.1 it is > 0. Hence 

20.4.3 dim[(;,, G-,] = 1 if u # 0. 

some u-node. 
In other words, the a-node (u # 0) is unique up to a scalar factor. Let ha be 

Since L, # 0,20.4.1 shows 

20.4.4 u(L,) # O  for u#O. 

short of dim H. Combined with 17.14 this shows that 
By 20.3.1 the number of linearly independent members of W cannot fall 

20.4.5 dim H = rank G. 

20.5 Ladders 

Choose f+ E G, (u # 0) as a simultaneous eigenvector of the Y h  h- 
representation of H. Thus 
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20.5.1 [h , f+ ]  = a(h)f+ for all h E H.  

Choosef- E G-, such that yh(f+,f-) # 0 (see 20.1.2). Thus [ f + , f - ]  (see 20.2) is 
an a-node, denoted by h, : 

20.5.2 

Choose p # 0, p E W, and x E G,,, x # 0 such that 
[ f + , f - I  = h, # 0. 

20.5.3 h x = p ( h ) x  for all h E H 

and 

20.5.4 f - x  = 0. 

(Note that ifp - a .$ Wthen 20.5.4 is a mere consequence of x E G,,; therefore, 
if p is chosen to imply p - a $ W, 20.5.4 is fulfilled.) 

An “a-ladder” xo,xI, , . . is defined by 

20.5.5 x j  =3;’x, j integer > 0. 

Then x, E G,,+ja or = 0. 
By induction it is verified anew that 

20.5.6 hax, = (p  +ja ) (hz )x j :  

hax,+, = t f + x , = . f + h a x j  + [ha,f+Ix, 

= (P +/a)  (ha) xj+ 1 + a(ha) XJ+ I 

where 20.5.5,20.5.1, and 20.5.6 (inductively) have been used. 
By an analogous induction, 

20.5.7 f - x ,  = P,-1 XJ-1 

with certain scalar p j :  

JI-Xj+i =f-f+ x j  =f+f- x, - [f+,f-I xj 

= Pi-1 .f+ xi-1 - ha x j  

= PJ-I x, - (p +ja) (k )x , ,  

where 20.5.5,20.5.7 (inductively), 20.5.2, and 20.5.6 have been used, the basis 
of the induction being 20.5.4, provided x - ~  is understood as 0 and p-l as 0. 
Moreover, 

20.5.8 P I  = P j - 1 -  (P +ja)(ha)* 

Adding up overj = 0, 1, . . ., i, it turns out that 
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20.5.9 

Since the number of spaces G, is finite, there is a p  such that 

xp f 0, 

X p + ,  = 0. 

This makes pp = 0; hence 
P 

J =o 
C (P + i.1 (ha) = 0, 

(P + 1) Aha) + MP + 1) .(ha) = 0, 

20.5.1 0 

is the length of the ladder, counting intervals rather than rungs. Again one notes 
that p(ha) is a rational multiple of a(ha) (see 17.15). The midpoint of the 
corresponding rootform sequence is 

20.5.1 1 

if 
X=p++a  

with an arbitrary real scalar f .  Thus all sequences of rootforms corresponding 
to a-ladders and lying on the straight line p + fa ( f  variable) have the same 
midpoint. 

Rewriting 20.5.9 by means of 20.5.10 one finds 

= +(i + l)(p - i )  a(ha). 

Hence by 20.5.7 

20.5.12 f - f + x , = + ( j + l ) ( p - j ) a ( h , ) ~ ~ # O  

which can be memorized by noting that j + 1 is the rank number of x, in its 
a-ladder and p - j  is the number of elements above x, in its ladder. 

Thus by inverting an a-ladder one gets (up to scalar factors # 0) a (-a)- 
ladder. 

for j = O , l ,  ..., p-1 ,  



20. THE FIRST DRESSING 103 

20.6-7. Branches 

20.6 

pure (20.3.2), there is a y E G,, not linearly dependent on f+, with 

It is now proved that dim G, = I for a # 0. 
f+, f-,h, are defined as in 20.5. Suppose that dim G, > 1 .  Then, since 6, is 

- 
20.6.1 hay = a(ha)Y. 

Sincef-y is an a-node, it is some multiple of ha because of 20.4.3. Therefore 
in x = y + uf+ the scalar u may be chosen to make 

20.6.2 f- x = 0. 

The conditions in 20.5.1-4 are fulfilled with a instead ofp .  Hence, according to 
20.5.10, the a-ladder initiated by x should have length -2, which is not 
possible. The supposition dim G, > 1 must be wrong. This proves that 

20.6.3 dimG,= 1 for a#O. 

20.7. Definition The elements # 0 of G, for u # 0 are called a-branches. 
Later on they are indicated by e,. 

It has been proved that the a-branch is uniquely determined up to a scalar 
factor. 

20.8-1 2. Ladders of Rootforms 

20.8. Definition For a E W, a # 0, the po, ..., p,, form an a-ladder of 
rootforms if p,+, - p, = a and forf, E G,, 

20.8.1 

20.8.2 f+G,,,#{O} for j = O  ,..., p - 1 .  

Let p E W and x E Gp. Then y =f_4x # 0, f-f_q+'x = 0 for some positive 
integer q. By 20.5.11-12, f+qy# 0. So p belongs to an a-ladder which by 
20.5.1 I ,  20.6.3 is unique. By 20.5.7 the inverse of an a-ladder is a (-a)-ladder. 
By 20.5.1 1 it happens that all (&a)-ladders on the real straight line p + (a (5 
variable) have the same midpoint. Therefore the a-ladder po, . . ., pp con- 
tains all p E W with p = po mod a. 

20.8.3 f+GG,#{O}  if f + E G , ,  f + # O ,  a#0 ,  a , p , p + a e W .  

20.9 If po, . . ., pp is an a-ladder, then by 20.5.10 



104 

For pf = po + j a  

20-27. DRESSINGS AND CLASSIFICATION 

Since any rootform is a member of some a-ladder, this shows that 

20.9.1 

Defining 

P(hJ 
a(h,) 

-2 - -- is an integer for any p E W. 

one gets 

This shows that S,  manages to invert the a-ladders. Since every rootform 
belongs to some a-ladder, S,  maps W onto W. 

The definition of S,  can be extended. The rootforms are special linear 
functions on H.  One is led to define S,  for all linear functions on H .  

Sm Pi = p.p-j* 

20.10. Definition H* is the dual space of H (i.e., the linear space of 
complex linear functions on H ) .  For a E W, a # 0, S, is the linear mapping of 
H *  onto itself, defined by 

It was shown that S,  maps W onto itself; S, leaves the subspace o f f  with 
[(h,) = 0 invariant, and it changes a into -a. Thus it is a kind of rejection. 
In any case, SZ2 = 1. 

20.11 

This is shown as follows: One may suppose It1 2 1. 

If A, p E Wand p = t A  # O  with a scalar t ,  then t = k 1. 

are integers by 20.9.1. Hence t = + I  or +2. In the case t = *2 a A-ladder is 
formed by -2A, -A, 0, A, 2A. With f+ E GA, xo E G-2A, no # 0, xi =$! xo # 0 
for j = 0, 1, 2,  3,4,  one would get 

xo E G-2~9 xi E G-A, ~2 E Go, x3 E GA, x4 E G ~ A ,  

where x3 would be a scalar multiple off,; therefore x4 =$+ x3 = 0, which is a 
contradiction. Thus t = *1. 

Note that all ladders through 0 have the form -a, 0, a. 
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20.12 By means of 20.5.12 the trace off-f+ in C;=o G,,+,, can be computed 
as the sum of the p j ;  thus 

n- I + -E- ( j  + 1) (P - A  a(ha), 
I=O 

By elementary algebra (e.g., induction on p) this turns out to be 

-?~P(P + I)(P + 2)a(ha)- 

Hence 

where the sum runs over the set of all a-ladders and p is their respective length. 

20.13. First Dressing The results are collected in a definition and a 
theorem. 

Definition G E Alg Lie Com S S  is said to be infirsf dressing with respect to 
a trunk H if the branches ea and the nodes ha have been normed such that 
[e,,e-,l = ha.  

First Dressing Theorem on the complex semisimple Lie algebra G of 
rank I with the trunk H, its dual H*, the Killing form i,h, and the rootform 
system W. 

H is abelian, dim H = 1, 

the rootform 0 is I-fold, and all others are simple. 
Among the rootforms there are I independent and no more. 
If a E W ,  then -a E W, and no other multiple # 0 of a belongs to W. 
To every a E W ,  a # 0, there is a branch em, unique up to a scalar factor, 

such that 
[h,eal= a(h)ea for h~ H, 

[e,,epl=Na,peatp#O if a + / 3 # 0 ,  a + / 3 E  W, 

[e,, e-,l ha E H, 

= o  if a + / l $ W .  

The nodes h, span H linearly; G is spanned by H a n d  the branches ear which 
are a basis of a linear complement of H. 

a(!(ha)#O for a E W ,  a#O. 

-2[h(h,)/a(ha)] is a n  integer for a,h E W, a # 0. 
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Sa (see 20.10) maps H *  onto H*, W onto W, and inverts the a-ladders of 
rootforms. 

I f  a ,h E W, a # 0, then any p E H *  which is congruent to h mod a and is 
situated between h and Sax, belongs to W. 

I f  a ,h E W ,  A - a 4 W, any rootform that is congruent to h mod a belongs 
to the a-ladder from h to Sah. The length of the ladder is -2[h(ha)/a[ha)]. 

t,h is nondegenerate on G, and on H. 
For h,h’ E H :  $(h,h’) = CPEw p(h)p(h’). 
For h E H :  t,h(h,e,) = 0. 
For a,p E W, a # 0, p # 0, a + p # 0: $(e,,eb) = 0. 

t,h(ea, e - a )  = -1% I; P ( P  + I ) ( P  + 2) a(ha) = Nay 

the sum running over all a-ladders,p being their respective length. 
If in its a-ladder y is the ( j  + 1)th element withp -jelements following, then 

2-a 2, e,, = t ( j  + 1) (P -1) 4ha) ey’ 

where for y = 0 the role of e,, is played by ha. 

Definition Na and Na,s  are defined by their occurrence in the first dressing 
theorem. Moreover, Na,s  = 0 if a,p E W, a,p # 0, a + f i  4 W. 

20.1 4. Historical Note The preceding analysis of semisimple Lie algebras 
and most of the notions on which it depends are due to W. Killing and E. 
Cartan (see 26.25). Killing’s work exhibits some gaps and errors, yet by no 
means enough to justify the tradition, going back to S .  Lie himself, of belittling 
or ignoring Killing’s part. 

20.1 5-1 6.t Semisimple Subalgebras 

20.15. Proposition Let G E Alg Lie Com S S ,  let H be a trunk of G, 
and let F sub G, H c F. Then F is linearly spanned by Hand some branches of 
G with respect to H. If, moreover, ea E F implies ca E F (a E W ) ,  then F is 
the direct sum of a subalgebra HI of H and of a semisimple F l .  

Proof H being ad-pure, G as a linear space splits under the h (h  E H )  into H 
and uniquely determined one-dimensional linear subspaces, each spanned by a 
branch. The splitting of F is part of the splitting of G, which proves the first 
assertion. Further, let V be the set of CL E W with ea E F, let HI be the inter- 
section of the kernels of the a E V ,  and let FI be the linear span of the ea and 
ha with a E V. Then F1 sub F, [H,,F,] = (0) and H, + I;, = F.  

To show that F, is semisimple, think of I,/J~, as being degenerate. Then 
t,hF,(ea,e-a) = 0 for some a E V,  from which it would follow that t,hFI(ea, F , )  = 

t,hFl(Fl,e-a) = (0); thus ea,e-, E rad F,. This, however, contradicts ea,e-,, ha 
spanning a semisimple subalgebra of F,. 

.t The contents of 20.15-16 will not be used for some time. 
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20.1 6 Remark If  F is a subalgebra of the real Lie algebra obtained from 
C E Alg Lie Com SS by waiving, and F contains a trunk of C, then F is even 
a (complex) subalgebra of C. 

21. THE FIRST WEYL NORMING AND THE SECOND 
DRESSING OF COMPLEX SEMISIMPLE LIE ALGEBRAS 

G E Alg Lie Corn SS. The notation is that of 20.13. 

21 .I. Norming the Branches By applying the G-invariance of # 
(19.5.1) with the derivation 0-, to #(h,,e,) one gets 

#G-,hA, e,) + # ( ~ A A , , e , J  = 0. 

Since 
0-,, h~ = - PA, e-,I = 

0-, e,, = - [e,, e-,I = -h,, 
e-,, 

this becomes 

21 .I .I 

Replacing the e ,  by appropriate scalar multiples, one can make 

N ,  = #(hh h,J. 

21.1.2 N ,  = #(e%, e-,)  : I .  

This is called a first Weyl norming, which in the sequel is assumed to have been 
carried out. Note that the nodes no longer depend on the choice of norming as 
long as the norming has been carried out according to 21.1.2. Now 21.1.1 reads 

21 .I .3 = #(hAJ,). 

Consider, for p fixed, the linear function on H 

Y h(p(h) - #(h* 

It  vanishes for all nodes hA, but since they span H i t  vanishes on all H :  

21 .I .4 p(h)  = #(h,h,) for h E H .  

This suggests the following. 

Definition of the (canonical) mapping 5 of H o n t o  H * :  

5 = Y h’ Y h #(h, h’), 

in other words 
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21.1.5 (&W))(h) = #(h, br) for h, h’ E H. 
5 is linear and one-to-one because of the nondegeneracy of #. 

21.1.6 5h, = p 

because of 21.1.3. 

on H*, written (..., ...) : 
# can be interpreted as an inner product on H. It induces an inner product 

Definition 

21.1.7 (5k5h’) = #(A, h’). 

Note that the definition of the inner product on H* does not depend on the 
norming. 

With the use of this inner product, 21.1.3 reads 

21.1.8 pL(hA) = 

By means of 21.1.8 formulas like those of the ladders’ length and of S, can 
be rewritten. 

The inner product on H* like that on His nondegenerate, but since H* is a 

By the first dressing theorem 
complex space there is no question of definiteness of the inner product. 

#(hA, = a(hA) 
ffEW 

which now becomes 

21.1.9 

a remarkable formula, which remains true if A and p are replaced by arbitrary 
linear combinations of rootforms and thus by arbitrary elements of H*. 

From N, = I (and the formula for N, = #(e,,e-,) in 20.13) it follows that 
all (a ,a )  (a  E W )  are rational. Since all -2[(P,a)/(a,a)] (a ,  /3 E W, a # 0)  are 
integers, it follows that 

21.1.10 all (a ,@)  are rational (a,@ E W ) .  

On a basis of H* consisting of rootforms p,, . . ., p, every rootform p is 
presented as 

P = z rj PI. 
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From 
( P ~ P , )  = C rj(Pj,Pi) 

J 

the r,, if computed by Cramer’s rule, turn out to be rational. 
Therefore all rootforms are rational-linearly dependent on I among them. 

Correspondingly, by 21 . I  .6 the nodes are rational-linearly dependent on I 
among them. 

21.2. The Standard Trunk 

Definition After norming N, = 1, H,, resp. H: is the real linear space 
spanned by the nodes h,, resp. by the rootforms. 

They do no depend on the choice of norming N ,  = 1 ; H,, is called the 
standard trunk belonging to H for reasons made clear later on. 

Obviously 
CH,, = H:, 

dim H,, = dim H: = 1. 

H, H* are the complex extensions of H,,, H:. 

forms are real. 

is real-valued. By 21.1.9 

H,, can also be characterized as the maximal subset of H on which all root- 

There is a nondegenerate inner product on H: by restriction. By 21.1.10 it 

which shows the positive definiteness of the inner product on H:. 

positive definite. 

subfield of Com), $ is nondegenerate. 

Correspondingly, the inner product on H,, by restriction of $(. . ., . . .) is 

On any linear space spanned by real linear combinations of nodes (over any 

21.3. The Reflections Thanks to 20.10 S, is a kind of reyection; because 

S, a = -a, 

S a t =  ( for ((,a) =0, 

S, is even orthogonal with respect to the inner product on H*. 
S, maps W onto itself and consequently H: onto itself. Its restriction to 

H: (also called S,) turns out to be the orthogonal reflection in the orthop- 
lement of a with respect to the inner product on H:. 
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By means of (-' the reflection S,  can be transferred to Hst.  It is again called 
S, (instead of ( -I  S,  5). In H,, it is the reflection in the kernel of a. 

21.4. Second Dressing The results are collected in a definition and a 
theorem : 

Definition G E Alg Lie Corn SS in first dressing is said to be in second 
dressing if the branches have been normed according to thejirst Weyl norming, 
that is, such that 

Na = $(ea, e-J  = 1 I 

and consequently the nodes such that 

p(hA) = $(hA, h p )  for A, p E w, A, p # 0, 

and an inner product (. . ., . ..)has been introduced in H* such that 

( k p )  = $(hA,hp) for A,p E w, A, p # 0. 

Second dressing is always possible. 

Second Dressing Theorem on the complex semisimple Lie algebra G 
(see 20.13). 

Under second dressing one obtains for A,p E W, A,p # 0, 

p(hd = (A, II.1 = $(h, h p )  = c ( k a )  (p, a), 
aeW 

and, more generally, 

(5 ,q)  = c (5 ,4 (q ,a )  for 5,q E H*.  
aEW 

Furthermore, 
(A,p) rational for A,p E W, 

(A, A) ' 0 for h E W, A#0. 

On any basis of rootforms all rootforms have rational coordinates. 
The second dressing nodes and the inner product on H* do not depend on 

the choice of the norming. 
On the real linear space H: spanned by W the inner product is real-valued 

and positive definite; the same is true of $ on the real linear space H,, spanned 
by the nodes ha. 

On any linear space spanned by the nodes (over any subfield of Com) $ is 
nondegenerate. 

S, is a reflection in the sense of the inner product. 
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Notation If by means of 5 endomorphisms (and semiendomorphisms) of 
H and H,,  are carried to H *  and H:, respectively, and conversely, they are 
indicated by the same symbols. 

An immediate consequence is the following: 

Proposition If T is an endomorphism of H and T’ is its transpose with 
respect to #, then 

5(TW = (T ’ t ) (h ) ;  

in particular, if T is orthogonal with respect to #, 

E(TN = W-’ O ( 4 .  

21.5. Gordon Brown’s Formula A remarkable conclusion derived 
from 21.1.9 is 

(a ,a)  = I (= rank G) .  
U E W  

Proof Considering the symmetric matrix M of (X,p) (h,p E W, A,p # 0), 
one can read 2 1.1.9 as 

M *  = M .  

Clearly rank M = 1. Thus ZuEw (a, a)  = tr M = rank M = 1, since for idem- 
potent matrices trace and rank are equal. 

21.6. Historical Note The norming N ,  = 1 (actually -1) was introduced 
by H. Weyl in Mark Z .  24 (1926); see Selecta, 338-342 (1956). Notwith- 
standing its great theoretical importance, it suffers from the large denomin- 
ators in the rational numbers #(h,,hp) which make it less practicable for 
computations in Lie algebras. This is the reason for not identifying Hand  H *  
in this exposition, contrary to common usage. 

Gordon Brown’s formula is found in Proc. Amer. Math. SOC. 15, 518 (1964). 

22. G DETERMINED BY W *  

G E Alg Lie Corn S S  in second dressing. The notations are those of Sections 
20-2 1 .  

22.1 By 17.8 the adjoint group Int G acts transitively on the set of trunks. 
By this action the W(C,H)  of different Hare  related. The structure of W does 
not depend on the choice of H. 
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Definition 
possesses : 

W* is the subset of W consisting of the rootforms # 0. W* 

22.1.1 the strong structure of a system of vectors in an I-dimensional linear 
space with nondegenerate inner product, and 

22.1.2 the weak structure of a system of things a, /?, y, ..., related by 
abstract relations a + /3 = 0 and a + fi  + y = 0. 

22.1.3. Proposition The strong structure of W* is fixed by the weak 
structure. 

Proof Given the weak structure, one can subsequently determine the ladders, 
their lengths, the mappings S, as far as they act on W* (namely, inverting the 
ladders), the (a, a) by formula 20.13 for N, = #(ea, e-,) = 1, the (a, /3) by the 
ladder length formula, all linear relations among the rootforms by the values 
of (a,/3) because of the nondegeneracy of the inner product, the rank as the 
number of independent ones, and the embedding of W* in H: up to orthogonal 
mappings. 

22.1.4 The influence of the choice of H on the structure of W ( G )  was 
eliminated by the adjoint group. This appeal to Int G can be avoided. With a 
continuous change of H, the branches, after suitable norming, change con- 
tinuously. So do the $(earre-,), and therefore the norming factors needed for 
second dressing may be assumed to be continuous. Then the second dressing 
nodes depend continuously on H. Since, by the end of 21.1 they are rational- 
linearly dependent on I among them, the rational-linear, hence the real 
relations among the nodes and, consequently, among the rootforms are 
invariant under a continuous change of H. This shows anew that the weak, 
and consequently the strong, structure W(G,  H) does not depend on H. 

22.2. Theorem W* determines G up to isomorphy. For two complex 
semisimple Lie algebras G, G’, with trunks H, H’,  any isomorphism of 
W*(G, H )  to W*(G’,H‘) is induced by some isomorphism of G onto G‘, thus 
relating H to H’ and mapping nodes into nodes and branches into branches 
after suitable norming in second dressing. 

The theorem is proved in 22.3-5. 

22.3 W*(G,H) and W*(G’,H’) are identified according to the given iso- 
morphisms; notation W*. 

G,G’ are assumed in second dressing with respect to H,H’.  Thus 
N,(G, H )  = N,(G’, H ‘ )  = 1. 
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The normed a-branches and a-nodes are called ex, e;, h,, h:. 
hi is made to correspond to h,. This correspondence is extended by 21.1.6 

A scalar multiple of e: is to be assigned to e, as its image. Independent of the 
to a linear mapping of Honto H ’ .  

choice of this multiple, the relation 

[h, e,l = 0) e, (h  E HI, 

remains valid if h, e, are replaced by their images. 
Rather than mapping e, into a multiple of e:, it is advisable to renorm the e;. 

In doing so, one has to keep N,(G‘, H ’ )  = 1. Thus renorming means multiply- 
ing e:, e’, by reciprocal factors. Then t,b(e;,eL,), as well as h; = [e;,el,], is 
preserved. 

To settle the isomorphy of Gand C’,  one has to renorm thee; such that 

[e:, 41 = [ear, 91’ 
(Of course, for any scalar K ,  (KeA) ’  means K e i . )  

22.4 Suppose a,/3,y E W*, a + /3 + y = 0. If 

[e;, ebl= [e,, epl’, 

[ei,e;I = [eg,eyl’. 
then 

Proof In 
“e,, egl, eyl + “eg, eyl, eul + “ey, eul, 91 = 0 

“4, eil, ell + “eb, e;l, 41 + “e;, 41, $1 = 0 
and 

the first summands are the same multiples of hy and h;, respectively, the other 
summands are multiples of h,, hg and hL,hb, respectively.Thereisessentially one 
relation between them: 

hy + ha + hg = 0, 

h; + h; + hi = 0 

(see 21.1.6 and 20.11). Thus the last two summands are the same multiples 
of h,,hp respectively hi , /$ ,  and consequently [ea,ey], [ei,e;] are the same 
multiples of e-, and L,. This proves the assertion. 

22.5 
ordered with respect to their coordinates. The order relation is denoted by >. 

Suppose that renorming of the e,’, has been achieved within W p :  

On an ordered basis of H,*, the elements of W are lexicographically 

For p > 0, p E W* the set of all p E W* such that -p < p < p is called Wp.  
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22.5.1 [ei,e;] = [eA,e,]’ for X,p, X + p E W,. 

It is expanded to  

This means that by renorming ei,eL, one has to satisfy 

w, u {PI ” {-PI. 

22.5.4 [ei, eL,] = [e,,e-,]’. 

Then 22.5.2-3 are void, whereas 22.5.4 is fulfilled in advance. 
If p # X + p for all h,p E W,, then the same is true of -p, and h + p 4 W,. 

Thus suppose 
p = u + j3 for some 

e i  is some multiple of [ek,el;]. It is renormed by requiring that it be the same 
multiple of [e;,el;] as e, is of [e,,ep]. Then 

a, j3 E W,. 

is fulfilled. Likewise one can make 

22.5.6 [eL,, eLp] = [e-,, e-p]’. 

The norming N p  = 1, however, might now be lost. Moreover, the definition of 
e;, seemingly depends on the choice of u,/3 in p = a + j3. Let y,6, with p = 

y + 6, also be a choice (y,S E W,). It must be shown that 22.5.5 remains true 
with y,  6 instead of a, j3. (This implies that e;, do not depend on the choice of 
Q, B.> 

By Jacobi-associativity 

22.5.7 

Now j3 < p, hence p = a + /3 < a + p, hence 0 < a ;  thus 0 < u < p. Likewise 
0 < j3 < p, 0 < y < p, 0 < 6 < p, hence 

“4, eil, e’,l + “e;, eL,l, 41 + “eLy, 41, $1 = 0. 

-p < a - y < p, -p < j3 - Y < p ;  

if a - y, /3 - y are rootforms, they belong to W,. Finally, 6 = u + /3 - y E W,. 
Consequently the second and third summands of 22.5.7 are constructed 

within W,. There one may pull the dashes out of the brackets. But then it is 
also allowed in the first summand 
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22.5.8 

This permission extends to the case y = a,  hence to the expression 

and likewise to 

thus by Jacobi-associativity to 

and by 22.5.6 to 

and consequently to 

“[e;, e i l ,  e’bl, e’al, 

“ek, eb19 [e’a e’fill, 

[Lea, ebl‘, [e-a, e-fil’l, 

Lei, e’, I .  
Now 22.5.4 is satisfied and so is the norming N p  = 1. It is possible to apply 

From 22.5.8 it follows that 
22.4. 

[e;, el_,] = [e,, e-yl’, 

[e’,, eL1 = ky, e-d’ ,  

thus half of 22.5.3. Thanks to 22.4, this proves the validity of 

which is half of 22.5.2. The other halves are obtained by interchanging p and 
-P. 

23. THE SECOND WEYL NORMING AND THE THIRD 
DRESSING OF COMPLEX SEMISIMPLE LIE ALGEBRAS 

G E Alg Lie Com S S  in second dressing. The notations are those of 20.13. 

23.1 
it is induced by an automorphism M of G with 

The mapping a + -a is an automorphism of W*. According to 22.2, 

Mh, = h-,, hence Mh = -h for h E H ,  

Me,  = v,e-, 

with scalar v,. Because of 

Mh, = M [ e , , e - , ] =  [Me , ,Me- , ]=  v,v-,[e-, ,e,]= v,v-,h-,, 

one obtains 

23.1 .I V a V - ,  = 1 
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For all a E W*, e, is replaced by 

e: = d C a e a ,  

d< dTa = 1. 

where because of 23.1.1 the square roots can be chosen to arrive at 

This norming retains N, = 1. 

23.1.2 Me: = dr ,  Me, = G v ,  e-, = d < e - ,  = e:,. 

The process just carried out is called second Weyl norming. It brings G into 
its third dressing. More precisely: 

Definition An automorphism of G E Alg Lie Com SS is called a minus- 
automorphism with respect to a trunk H (and generally indicated by M) if it 
preserves Hand behaves on Has  the scalar multiplier -1. 

Note that M is not uniquely determined by H. Any element of (exp l?)M 
satisfies as well. The converse holds too (see 33.9). 

Proposition M 2  = 1. 

This follows from 23.1.2. 

Definition G E Alg Lie Com SS is said to be in third dressing if a pair 
‘H, M l  has been chosen consisting of a trunk H of G in second dressing 
and a minus-automorphism M with respect to H, which are connected by the 
requirement 

Me, = e-, (a E W, a # 0). 

Third Dressing Theorem Third dressing is always possible, namely by a 
readjustment of the branches which preserves second dressing. 

Note that this readjustment depends on the choice of M, but even if M were 
fixed the ambiguity of the d c  would allow for changing ‘e,,e-,l into 
‘-e,,-e-,l for any set of u E W * .  This, however, is the only indeterminacy 
left. 

23.2 Assume that G is in third dressing. 
The structure of G is settled by the knowledge of the N,,s in 

[ea,efiI=Na,fiea+B (B#--oL)* 
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By applying M, one gets 

[e-,,e-pI = N,,pe-,-p; 
hence 

23.2.1 N,.p = N-,*-p. 

According to 20.5.12, 

L % e p  =%+ N p - j ) ( ~ 9 e p  

LZffep= N-ffsff+pNff,pep9 

N-ff,ff+pN,*p =Ki+ l)(P -d(%4* 

if j3 is the ( j  + 1)th element in its cr-ladder of lengthp. Now 

hence 

By Jacobi-associativity applied to e-=, e q ,  one obtains 

N-,.-pL-p + N-p.ff+p4z + N,+p,-ffAp = 0. 

Thus, because of R - q - p + R f f + h  - 0  and the independence of R,,bp for 
j3 # -a, a (#  0), all N in that equation are equal. Hence p. - 

and by 23.2.1 
N,.p = W ( H j +  l)(P -A(a,a))* 

This proves the following : 

Theorem In third dressing, if j3 is the ( j  + 1)th element in its a-ladder (of 
length PI, 

N,.p = k i d ( W +  1)(P -.x% 4) = N-ff.-p, 

thus purely imaginary. 

23.3 In third dressing the N,,p are uniquely determined up to factors f l .  

24. THE UNITARY AND STANDARD RESTRICTIONS OF A 
SEMISIMPLE LIE ALGEBRA 

G E Alg Lie Corn SS in third dressing. The notation is the same as that 
preceding. 
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24.1-4. Standard and Unitary Semimorphism 

24.1. Definition The semilinear (see 1.2) mappings C,, and C,, of G in 
third dressing onto itself are defined by 

C,, h = h for h E H,,, C,, ea = -ea. 

C,, = MC,, = C,, M ;  

hence 
C,,h = -h for h E H,,, Cunea = -e-a. 

Proposition C,, and C,, are involutory semimorphisms (see 1.6, 1.11) of 
G. 

Proof It suffices to show that 

24.2. Definition C,, and C,, are called the standard and the unitary semi- 
morphisms of G in third dressing (with respect to H ) ;  the Csl- and C,,- 
restrictions of G (see 1.6) are called the standard and unitary restrictions: G,, 
and Gun. 

The standard and unitary trunks (in H )  are H,, = H n G,, and H,, = H n G,,, 
and I),,, I),,, are the restrictions of I) to G,,, Gun. Their signatures are called 
the signatures of GsI, G,,, respectively. 

If G is given as a linear Lie algebra, then G,,, G,,, H,,, H,, are the linear 
Lie groups infinitesimally generated by G,,, G,,, H,,, Hun. 

More generally, if C is an involutory semimorphism of G and H is a C- 
invariant trunk of G, then H n  G, is called a C-trunk of G or a trunk of G,. 
The signature of G, is the signature of $,. 

By Definition 1.6 the C-restriction consists of the u = Cu or, equivalently, 
the u + Cu. This means that 
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G,, is the real linear space spanned by H,, and the ie,, 
Gun is the set of iR + CaEW* Torea with R E H,, and T,  + 

conjugate of T ) .  

Hun = iHst. 
Note that H,, and Hun do not depend on the choice of M and that Cst, C,,, 

In  33.13 it is shown that a unitary semimorphism is a unitary semimorphism 

= 0 (? the 

C,,, Gun depend on Hand M only (not on the choice of the signs in the ea). 

with respect to any trunk left invariant by it. 

24.3. Theorem G,, and Gun are real Lie algebras with the complexextension 
G. The signature of G,, is rank G, that of Gun is -dim G; +,,,, is negative definite. 

Proof The first assertion follows from the general principle of Section 1. 

+st is positive definite on H,, (21.2), 

&t(k ea) = 0 for R E H,t, 
+st(C Ta iea, C Ta iea) = -C Ta T-a, 

which shows that signature +,, = dim H,, = rank G. 

+,,,, is negative definite on Hun = iH,,, 

+Jilt, T~ ea - ?a e-a) = 0, 
+un( C (Taea - t a e - a ) ,  2 (Taea - Tee-a ) )  z - 2  C 7 a  ?a, 

a>o a>O a > O  

which shows that $un is negative definite. 

24.4 Together with an orthonormal basis of Hun for &,, the elements 

2/.)(ea - e-a), i2/$(ea + e-a), with u > 0, 
form an orthonormal basis of Gun for -$,,,,; Int (Gun) leaves #,,,, invariant. 
Therefore, being connected, it is a group of rotations and, as such, is bounded. 
By Theorem 19.10 it is closed, hence compact. 

Theorem Int Gun is compact. 

32.2.4 Gun itself is proved to be compact (if G is linear). 

general, there are more real restrictions than the unitary and standard ones: 

This fact explains the particular importance of the unitary restriction. In 

The standard restriction arises in numerous geometric contexts. In 

24.5. Historical Note Though the unitary restriction was already known 
in any particular case, H. Weyl first recognized its importance and proved its 
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existence by a method which is essentially that of Sections 22-23 [Math. 2. 24 
(1926); see Selecta, 342-346 (1956)], though he took its compactness for 
granted. 

24.6-7. Examples 

24.6 In 19.14 it was shown that the 

G E A,, B,, c,, D, 

of Section 16 are semisimple. It is worthwhile to find out what standard and 
unitary restrictions mean i n  these examples. 

It is easily seen by means of 17.7 that the subalgebra H of G indicated 
in Section 16 as a trunk is a trunk. The branches e,,e-, were chosen with real 
matrix coefficients and were transposes of each other. They do not obey the 
first Weyl norming. However, by computing 

[Lea, e-al, eal 

in the particular cases, one can verify that 

4 h a )  > 0 

(this result could be used for another proof of the semisimplicity of C ) .  Now, 
by 20.12.1 it turns out that 

N ,  > 0. 

The first Weyl norming can be performed by multiplying e,,e-, by equal 
real factors. After this norming e,,e-, are still real and are still transposes of 
each other; ha is also still real and consequently H,, consists of real diagonal 
matrices. 

For matrix groups )‘,,a’-l is an isomorphism. So is 

7 = Y ,,(-a‘) 

for Lie algebras of matrices. 
For G E A,, B,, C,, D,, as presented in Section 16, 7 is even an auto- 

morphism: in A, because tr a = 0 implies tr(-a’) = 0; in the others because 
the defining relation a’s’+ su = 0 remains true if a is replaced by -u’ (note that 
s = s-’). NOW 

- ~ # = - h  for h E H, 

Tea = -e-a, 

which shows (see 23.1) that one may put 

q = M  
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and that the second Weyl norming can be performed 
by replacing e,, e-, by ie,, -it?-,, 

where a runs through a set Xsuch that X n (-X) = 0 and X u (-X) = W*. 
The standard restriction is really spanned by H,, and by the new branches 

with factors *i, that is, by the old branches. 
Thus the standard restriction consists of the matrices defined in Section 16, 

interpreted with real matrix coefficients. For this very reason it was called the 
standard restriction. 

The unitary restriction means that opposite branches must have opposite 
conjugate coefficients. This requirement is not influenced by the factors i, -i at 
e,,e-,. Further, Gun has iH,, as its trunk, which makes the diagonal co- 
efficients purely imaginary. Since e,,e-, were transposes of each other, the 
unitary restriction in the matrix representation consists of matrices satisfying 

u + u’ = 0. 
This equation characterizes the infinitesimal algebra of the group of unitary 
matrices with determinant 1, which explains the term unitary restriction. The 
result can be formulated as follows : 

- 

Theorem For G E A,, B,, C,, D,, as introduced in Section 16, the standard 
restriction is obtained by restricting the matrix coefficients to real values; the 
unitary restriction is obtained as the intersection with the infinitesimal algebra 
of the group of unitary matrices. 

The latter property is extended in Theorem 38.4. 

24.7. Proposition On a suitable basis Gun of G E B,, D,, as defined in 
Section 16, is the infinitesimal algebra of the ordinary real rotation group in 
(21 + I)-  and 21-space. 

Proof for D, (the case B, is much the same). 
Let e l ,  ..., e2, be the ordered basis with respect to which the quadratic 

form is described, that is, has matrix s. Now the unitary restriction of this 
member of D, consists of those endomorphisms that leave both the quadratic 
form and the canonical positive definite hermitean form (with matrix 1 on 
e,, . . ., e2,) infinitesimally invariant. Take as the elements of a new basis 

b ,=+(l+i)e ,++(l  -i)e,+,, j = 1 ,  ... , I ,  
b,+,=+( l - i )e ,+f ( l+ i )e ,+ , ,  j = 1 ,  ..., 1. 

This new basis is orthonormal with respect to both the quadratic and the 
hermitean form. Hence the matrices on this basis of the elements of the unitary 
restriction of this member of D, are those that are both skew and hermitean- 
skew, that is, real and skew. This proves the assertion. 
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25. G DETERMINED BY W++ 

G E Alg Lie Com SS, if needed in second dressing on a trunk H. 

25.1. Angles of Rootforms 

c (A,p) (according to the inner product in H:) 
The notation remains the same. For independent A,p E W* under the angle 

25.1.1 

is an integer (20.13), 
4c0s2 C (A,p)<4; 

hence 
cos c = 0, Gdi, ~ 4 2 ,  4 4 4 3 ,  

C @,p) =90", 60", 120°, 45", 135", 30", 150°, 

m = 2,3,4,6. 

If (A, p) # 0, then at least one of the factors in 25.1.1 has absolute value 1, say 

the other being allowed the values 

This excludes ladders longer than 3. By 2(A,p) = %(A, A) one gets 

which settles the length ratio of nonorthogonal (independent) A,p. It can be 

41, 42, 43. 

Summarizing : 

Theorem For A,p E W*, A # fp, one gets 

cos C (A ,p )= f td j  (j=O,1,2,3), 
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Ladder lengths are < 3. 

25.2. Natural Bases and Ordered Dressing 

25.2.1. Definition A subset Zof  W* is called a natural basis if its elements 
are linearly independent and every element of W is a linear combination of 
elements of 2 with integral coefficients, all > 0 or all G 0. 

Clearly, such a 2 is a basis of H: and H * .  
Natural bases occurred in Section 16 for the cases A,, B,, C,, D,. Their 

existence is proved for all G E Alg Lie Com SS in 25.2.5. 

25.2.2. Definition A partial order on H: is a binary transitive irreflexive 
relation < on H: (with the inverse >) fulfilling the requirements 

( [ > O ~ p > O ) + p 4 > 0  for ( E H : ,  preal, 
4 1 < 4 2 + f i + q < f 2 + ~  for 4 1 , f 2 , 7 7 ~ H : ,  

CrE W*--t(a>OvCr<O). 

With respect to such an order, 
W +  = set of 5 E W* 

W -  = set of 5 E W* 
with 4 > 0, 
with 8 < 0, 

W + +  = W+\(W+ + W+) .  

The elements of W + +  are called primitive rootforms (with respect to the given 

A partial order on H: is called minimal if the set of r.$,r)l with 5 < r )  is 

If a partial order on H: is total as an order, it is called a total order on H:. 
Note that if f > 0 then 0 > -4, hence W +  n W -  =O, and W -  = -W+. 

partial order). They are usually indicated by p with subscripts. 

minimal. 

Furthermore, ( W +  + W') n W c W+.  

Proposition Every ho E H,, with a(ho) = 0 for no cc E W* determines a 
partial order on H$, by the requirement that 

f < rl -  f(h0) < rl(h0). 

This is obvious. 
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25.2.3. Proposition For any partial order on H,*, any natural basis 
contained in W +  is contained even in W++. 

Remark Later on such a basis turns out to coincide with W + + .  

Proof Let Z be such a natural basis contained in W+. If Z Q W + + ,  then 
u + j? E Z for some a, j? E W+. Both would be sums of elements of Z, which 
would imply a nontrivial linear relation between elements of Z. So Z c W++. 

25.2.4. Proposition (p ,u )  Q 0 for different p , u  E W + + .  

Proof Assume p,u E W++ different with (p ,u )  > 0. Then, by 20.13, p - u 

and u - p ~  W*. Now p - U E  W +  or u - p ~  W+, hence p ~ u +  W + c  
W+ + W +  or u E p + W +  c W +  + W+, which contradicts p, u E W + + .  

25.2.5. Theorem For any given G E Alg Lie Com SS with the trunk H 
there is a natural basis, namely, W++,  constructed by means of an arbitrary 
partial order on H:. Conversely, every natural basis can be obtained this way 
and even by the use of a minimal partial order. In this way minimal partial 
orders on H: and natural bases are one-to-one related. 

Proof Assume a partial order on H: (its existence was proved in 25.2.2). 
To prove the linear independence of the elements of W++ suppose that the 
relation 

exists between the elements pi,p; of W++,  all different, with r i , r i  > 0. Since 
c ri Pi = r, r; P; 

(Pi, Pi)  Q 0 (252.41, 
(Z ri pi, c r; Pi> 0, 

whereas the positive definiteness of (. . ., . . .) shows 

(c ri pi, r, ri Pi) 2 0. 

Thus r i p f  = X r ip;  = 0. On the other hand, ri,r; > 0, pi,p; > 0 ;  hence 
C r ip i  > 0 or Z r ip;  > 0 if the given relation is nonvoid, which would be 
contradictory. 

If u E W + ,  then either u E W++ or u E W +  + W+, whence u = /3 + y with 
suitable j?,y E W+, and j? < u, y < u. This splitting continues until u is 
written as a sum of primitive rootforms, with possible repetitions. 

Conversely, let a natural basis Z be given. Put 4 < T if and only if q - 5 is a 
linear combination out of Z with positive coefficients. Clearly, this defines a 
partial order on H: and even a minimal one. Furthermore, Z c  W+. From 
25.2.3 it follows that Z c W++; hence Z = W++.  

The last assertion is obvious. 
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25.2.6. Proposition Every natural basis can also be obtained as W + +  
belonging to a partial order as defined in Proposition 25.2.2. 

Proof Let the given natural basis Z consist of p , ,  ..., pi. Choose a basis 
h, ,  . . ., hi of H,, and define T by 

Th = C pi(h) hi for all h E H,,. 

Then Tis a nondegenerate linear mapping of H,, onto itself, so 

makes sense, and 
pi (ho)= 1 > O  for i =  1, ..., 1. 

In the order defined by ho according to Proposition 25.2.2, all pi > 0, hence 
pi E W’, Z C  W + .  From Proposition 25.2.3 it follows that Z c Wt+, hence 
z= W + + .  

25.2.7. Proposition Every natural basis Z can be obtained as W + +  
belonging to a total order on H:. 

Proof First order Z ,  and then H z  lexicographically with respect to Z as an 
ordered basis. 

25.2.8 I n  the sequel a minimal partial order on H: is mostly sufficient. 
Therefore the adjectives “minimal” and “partial” will be omitted. As soon as a 
total order on H: is needed, it will be explicitly mentioned. 

Definition C E Alg Lie Com S S  is said to be “in ordered dressing” with 
respect to the trunk H if a minimal partial order has been assigned to H: or, 
equivalently, if a natural basis has been fixed on H:. If needed, the order and 
the natural basis are transferred to HFt by means of <-’ (see 21.1.5). In this sense 
H,,, and H ,  for short, is called an ordered trunk of G. 

The meaning of ordered second (third) dressing is clear. 

25.3. The Graph The essentials of the structure of W + +  are recorded in a 
graph. 

Definition The elements of W + +  are accounted for by dots. Two dots 
p ,  u are joined by a j-fold bond ( j  = 1, 2, 3) if 

cos * (p,  0)  = +dj. 
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I f j  = 2 ,3 ,  an arrow is to point in the direction from the longest to the smallest 
rootform. This constitutes the graph of W++,  again denoted by W++. It is also 
called the graph of G (with respect to an ordered H:). 

Thus aj-fold bond (with an arrow pointing from p to u fo r j  = 2,3)  means 

25.3.1 

Theorem Up to isomorphy G is determined by W++ (G in ordered second 
dressing). 

To reduce this assertion to that of 22.2, W+ must be built from a given 
W++. This is done in 25.4. 

The converse of the present theorem, which would mean that the structure 
of W++ is determined by G, independent of the order chosen in H:, is verified 
in 33.5 .  

(u, u):(p,  u): (p, p) = 1 :+: j .  

25.4. Building W +  from W++ 

Proposition By successively applying the following rule, W+ can be rebuilt 
from W + + :  if in the course of rebuilding a E W +  has been secured and 
p E W + +  is such that (a,p) < 0, then Spa is added. The decision of whether 
the process continues, and if so in which way, can be made on the know- 
ledge of W++. 

(This proposition implies Theorem 25.3.) 

Proof Suppose 

First the existence of a E Z, p E W++ with (a,p) < 0 and Sp a 6 Z is shown. 
w++czc w+,  Z #  w+. 

Let 8 be such that all lower elements of W+ are already in Z. Then 

8 = C rJpJ,  rJ integer > 0, pJ E W+' 

Now 

thus for some j 
(87 I3 ' I P J )  = ( 8 7  p) > O; 

(87 rJ PJ > 07 

a = Sp,8 = /3 - mpI E W. 
6 W++, so, on the basis W", it has at least two positive coordinates and a 

has at least one; hence a E W+ though a < 8. Since p was a lowest element 
outside Zi t  follows a E Z. 

Sp,a = 8 = tc -k mpJ, 
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since S,, is involutory; thus 
(a, P,) 

(Pi9 PI) 
-2 __ = m > 0; 

hence (.,pi) < 0. 
This proves the existence of a,p (namely, p,), as required. 
The value (a,p) is determined by the presentation of a as a sum of elements of 

W++ and by the values of (p, u) for p, u E W + + .  This settles the remainder of the 
proposition. 

25.4.1. Proposition The coefficients of a E W +  on the basis W++ have no 
common divisor (except 1). 

Indeed, the assertion is evident for primitive rootforms and is preserved in 
the building up of W +  from W + + ,  since (in the preceding proof) any common 
divisor of the coefficients of p reappears in m, hence in the coefficients of a = 

B - mP* 
25.4.2 An immediate consequence of the construction of W +  from W++ is 
the following: 

Proposition G is generated by the eP,e-,  with p E W++.  

25.5. Direct Splittings 

Definition A splitting of W* into mutually orthogonal sets is called direct. 
A splitting of W++ into mutually orthogonal sets or, equivalently, into subsets 
with no bond from one to another is called direct. 

Theorem Direct splittings of G, W*,  and W + +  go together and induce each 
other. 

Proof Let G = GI + G2 be a direct sum. If H I ,  H2 are trunks of G1,G2, then 
H = H ,  + H2 is a trunk of G, and all trunks of G are obtained this way, thanks 
to the equivalence of trunks under the adjoint group. Branches of G,,G2 com- 
mute with each other because [ G l , G 2 ]  = (0). Therefore rootforms from 
GI,GZ are orthogonal; this is particularly true of rootforms in W + + ,  which 
consequently splits according to the assertion. 

Conversely, if W++ splits into nonconnected and consequently orthogonal 
subsets W i + ,  rebuilding W* by 25.4 only creates sums for every W:+ 
separately. They form orthogonal W,?, which constitute W + .  Adding the 
opposite rootforms produces W;”. For a, E W;” ( j  = i ,  k,  i # k)  one gets 
(at, ak) = 0 as well as aI + dk # W ,  hence 

which make G a direct sum of the G, corresponding to W;+. 
[hai, haJ= [ha,, eaJ=  [eat, earl = 0, 
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Corollary G is simple if and only if W++ is connected. 

25.6. The Top Rootform 

Proposition G E Alg Lie Com SSS (i.e., simple C )  in ordered dressing has 
one maximal rootform (i.e., exceeding all other rootforms). 

Proof Let a and /3 be maximal rootforms, a # By 
P = Z  b,p, (P,E W++). 

Of course, a,/3 E W+, b, > 0. Now a - /3 4 W+ because /3 is maximal and 
/3 - a $ W +  because a is maximal. Therefore a - B 4 W, whence (a, /3) = 0, 

r, b,(a, P,) = 0. 

(a,  p,) # 0 + b, = 0. 

Because of a # 0, there is a j  with (a,p,) # 0 and consequently with b, = 0. The 
graph of G is connected. Therefore there is some p E W++ with a neighbor 
u E W++ and such that p occurs in /3 with a coefficient > 0, whereas u does not. 
Thus (By u) < 0, /3 + u E W+, which contradicts the maximality of 8. 

The maximality of a implies (a,p,) 2 0 for allj; thus 

Definition If there is a unique maximal rootform, it is called the top 
rootform. 

Note that the existence of the top rootform is equivalent to the simplicity of 
G. 

25.7-8. Examples 

25.7 In Section 16 natural bases of W* were found for G E A,, B,, C,, D,. 
The corresponding graphs are : 

dimension 

AI: 0-C-O * * - O - - - O  ( I  + 1)’ -1 
PI p ,  p3 PI-2 PI-1 PI 

8, : **CJ - * .  *- 1(21+ 1) 
pa p3 p* PI-1 PI PI 

c,: **o.*.-c4a 1(21+1) 
PI p1 p3 P I 4  P I 4  PI 

DI: --o--o 0-0 g 1; l(21-1) 
p3  p4 P I  P I 4  PI 
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The primitive rootforms have been linearly arranged as in Section 16, 

A,: ~j = wj - wj+i, 

B,: p,=w, - , -w ,  for j > l ,  p , = w , ,  

C,: p,=w,-w,+, for j< l ,  pI=2w1,  

D,: p, = w , - ~  - wJWl for j z  3, p, = wI-l - wl ,  p2 = w,-, + wI .  

It is easily verified that no other bonds than those appearing in the diagrams 
are possible; for example, w ,  - w2 and u3 - w., are not joined because 
(0, - w2) + (w3 - u4) is not a rootform; w ,  - w2 and w2 - w3 are simply 
joined because (w ,  - w2)  + (w2 - 9) = w ,  - w3 is a rootform, whereas 
neither (wI - w2)  + 2(w2 - w3)  nor 2(w, - w2)  + (w2 - w 3 )  is a rootform. In 
the case of C E B, there are rootforms (wI- ,  - w, )  + j w l  for j  = 0,1,2; hence 

(WI-1- w19 w1) - - 2 -2 
(w1,wl) 

@ I - I  - WI,  w,)  

(UI-1 - 0 1 ,  w1-1 - 4 

(w,, 4 < ( U l - 1  - WI, U l - 1  - 4, 

and (see 25.1) 

= 1 ; -2 

thus 

which settles the direction of the arrow. For G E C, it points the other way. 

25.8 The graphs disclose a few isomorphies: 

25.8.1 A, = B, = C ,  

(DI was not defined). 

25.8.2 6 2  = C2. 

25.8.3 D2 = A, + A, 

(which is a way of saying that a member of D2 is the direct sum of two of A,). 

25.8.4 A3 = D3. 

These isomorphies can be proved directly. The proofs are sketched. 

25.8.1' By definition, A, = C ,  is trivial; A, = B, reflects the well-known 
local isomorphism between the projective group of the complex projective line 
(function theory sphere) and the rotation group in 3-space by means of the 
stereographic projection between plane and sphere. 
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5 1  5 2  5 3  5 4  

5, 5 2  5 3  5 4  

rll r l2  7?3 7 4  

?)I 112 7?3 7 4  

25.8.4‘ A, = D,. Linear mappings with unit determinants in 4-spaceY defined 
by 

(a) 5;. = c at“ 51, 
1 

induce mappings in the 6-space of skew tensors of degree 2: 
, 

n*,,* = (a I ’ l  - aJ’l a I ’J)  
1 h J  

This leads to a representation G’ of G E A, in 6-space. The variety of bivectors 
with coordinates 

=o. 

25.8.2‘ B2 = C2. With the same notation, G E C2 is the group of transform- 
ations (a) leaving the skew bilinear form 

c UII 5, 7, 
on 4-space invariant. In 6-space this implies invariance under G’ of a linear 
form : 

(for bivectors rnl,l, thus for all skew tensors rnl,l by linear combination). The 
nullspace of this form is a 5-subspace invariant under G‘. Its intersection with 

u I i n l J  
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(c) is a quadric in 5-space and is again invariant. Consequently G '  belongs to 

Inprojectivegeometry?; a i j , $ i ~ j ~ O d e f i n e ~ a s o - c a l l e d c o m p l e x ; ~  ol j r i j=O 
B2.  

gives the lines lying on the complex. 

25.8.3' D, 1 A, + A,. The projectivities of 3-space leaving a quadric 
invariant also leave invariant or interchange the two families of straight lines 
on the quadric. The second kind may be disregarded. The projectivities leaving 
every line of one family invariant form a subgroup that is essentially the 
projective group of a projective line. The whole group is the direct product of 
the two subgroups belonging to the two families. This verifies the assertion. 

An alternative argument: the rotations of 4-space can be presented by 
quaternion multiplications D,.,, 

DP, ,x  = p ~ q - '  (lPl = 141 = 1). 

The same is true of rotations B, of 3-space: 

B,x = pxp-' (Re s = 0, I pi = 1). 

The assignment of the pair rBp,Bq' to Dp,q produces a homomorphism of 
G E D, onto G '  E FBI, B,1 with the kernel consisting of Dl , l  and D,.-l.  It is a 
local isomorphism that induces an isomorphism of Gand G'. 

26. CLASSIFICATION OF SEMISIMPLE COMPLEX LIE 
ALGEBRAS UP TO ISOMORPHISM 

26.1 
of rank 2 1. 

Because of the second criterion on semisimplicity, C i s  supposed simple 

26.2 All systems W" must be determined. At present the lengths of their 
elements are not taken into account. The elements are normed as unit vectors. 

One has to solve the following problem: 

Problem To find the class B of nonvoid systems P of vectors in Euclidean 
space such that 

26.2.1 c c E P + l o r l = l ,  

26.2.2 the elements of P are linearly independent, 

26.2.3 forCL,BEP,a#B,(CL,B)=-~1/S withs=0,1,2,3, 
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26.2.4 P is not a union of mutually orthogonal proper subsystems. 

26.3 With the notation of 26.2.3, a,p are called s-fold joined if s # 0, un- 
joined if s = 0. The graph of P is connected because of 26.2.4. 

26.4 [P E 8 A P’ c P A graph P‘ connected] -+ P’ E 8. 

26.5 The graph of P E 8 is not a “circle.” 

Proof Suppose that P consists of different a l ,  . . ., a,,,, with (a,,a,+l) # 0 for 
j =  1, ..., m mod m. Then 

which cannot happen because of 26.2.2. 

26.6 From 26.4-5 it follows that the graph cannot contain a circle. By 26.3 
it is a %ee.” 

26.7 If a E P is joined to exactly k elements of P, it is called k-sided. If P E 8 
and a is k-sided, then P\{a} breaks into k nonvoid subsystems belonging 
to 8, called the arms of a. 

26.8 If P is some set of vectors, L(P)  denotes the linear space spanned by P. 

26.9 For P E B and a E P, define 
q(P, a) = square of distance a, L(P\{a}). 

O<gO’,a)<l,  

dP’, 4 2- dP, 4. 

Then 

and, for a E P’ c P, P,P’ E 8 

26.10 For some a E P E 8, let P, signify the different arms of a in P. Let 
a, E P, be s,-fold joined to a (according to 26.6, these vectors and numbers are 
uniquely determined). Put 

a, = dP,, a,), a = ?J(P, 4. 
Then 

This formula is the principal tool in this section. 
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Proof By definition there are 

yj  E L(Pj\{ajl), 

with 
laj - yj12 = aj. 

The elements of different arms are orthogonal to each other; hence 

(ai - yt ,  aj - y j )  = 0 for i # j .  

Moreover, 
(a, aj - Y j )  = (a, U j )  = -+ds,. 

p = a - c X j ( U j  - y j )  

/P I ’=  1 +c d \ / s , X j + C U j X j 2  

Put 

and determine the scalars x j  such that 

becomes minimal. This means 

which proves the assertion. 

26.11 At most, a E P E P  can be three-sided, for in the sum of 26.10 all 
summands are > 4, whereas a > 0. If it is three-sided, its joins are simple, if it is 
two-sided, one of its joins is simple and the other may be simple or twofold. 

26.12 If P , P , ~ 9 ( i = 1 , 2 ) ,  P ,  uP ,=P,  P l n P 2 = { a } ,  and v ( P I , a ) < + ,  
then y (P ,  8) G 3 for any j3 E P,. 

Proof For P2 = {a,  p}  this is a consequence of 26.10 because 

Induction on the number of steps needed to reach p from a and application of 
26.9 complete the proof. 

26.1 3 If a E P E 9 is at least two-sided, then v(P,  a )  G +. 

Proof Let a be joined to a,,a2. It suffices to prove the assertion for the 
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26.14 I f  /3 E P €9 is three-sided, then y(P,a)  < + for any a E P. 

Proof Thanks to 26.13, the case a = /3 may be waived. Suppose that a is in 
the arm P' of p and put P"  = P\P'. Then p E P" E 9'. In P",  p is at  least two- 
sided; hence, by 26.13, v(P",p) < + and by 26.12, y(P,a)  < +. 

26.1 5 P E B can have at most one three-sided element. 

Proof Assume that a, p are three-sided. Let P j  ( j  = 1, 2, 3) be the arms of a,  
and a, E Pi joined to a. Assume that p E PI.  Then v (P j ,a j )  < 1 and by 
26.14 v ( P l , a l )  < 4. NOW 

1 1 1  
v (P ,  a)  < 1 - - - - - ~ = 0 4.f  4.1 4 .1  ' 

which is not allowed by 26.2.2. 

26.1 6 No P E 9 with more than two elements has a threefold join. 

Proof It suffices to refute P = {a,P,y} with a threefold join between a and p 
and a join between /3 and y. This is contained in 26.11. 

26.1 7 If P E B has a twofold join, then q(P,y)  < + for all y E P. 

Proof By 26.12 it suffices to prove 26.17 for P = {a,  p}  : 
2 

4 - 1  y(P,  p) < 1 - - = +. 

26.1 8 No P E 9 possesses both a three-sided element and a twofold join. 

Proof Suppose that c( E Pis  three-sided and ,f3, y are twofold joined. They may 
be arranged so that an arm P' of y contains a, p. If a # p, then a is three-sided 
in P ' ;  hence, by 26.14, y(P' ,  p) G f .  If t~ = p, the same follows from 26.1 1. 
Now by 26.10 

2 
y ( P ' u  { y } , y ) <  1 ---0. 

4 . 3  

26.1 9 No P E 9 has more than one twofold join. 

Proof Assume twofold joins between u and fi and between y and 6. They may 
be arranged so that an arm P' of 6 contains a, p, y.  By 26.17 p(P',  y )  G f ;  hence 

-i 
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26.20 A P E 9' with a twofold join has a linearly arranged graph according 
to 26.18. I f  P has more than four elements, then the twofold join can stand at 
one of its ends only. 

Proof Consider P consisting of different a ] ,  a2,  a,, m4, 03, with ai, m i + ]  joined 
and a2,a3 twofold joined. Put P, = { a I ,  . . ., R j ) .  

_. I 
1 

1 
- =o. 4 . L 

4 . . I .  - 5, 
3 

4 

26.21 
ioined. Then 

Let K ,  E .P be the system of different a , ,  . . ., CL,, with cc j ,g j+ ,  simply 

Proof Obvious for q = 1. Induction 

26.22 Let 6 E P E @ be three-sided. By 26.15 and 26.18 the arms of 6 have the 
form K,,, K,, K,  (see 26.21). Hence 

From a function table fory = s/(2(.v + I ) ) ,  
s =  1 ,2 ,3 ,4 ,5 ,  ...) 
y = $, 4, 4, +, -,5?, . . ., increasing, 

not all of them are > 2, 
no two of them 2 3. 

it follows forp,q,r  that 

Suppose that p G q G r. Then the only admissible p,q,r are 

p = q = I ,  I' arbitrary, 
p = l , q = 2 ,  r ~ 4 .  
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26.23 In addition to the known connected graphs belonging to 

A, ( I  > I), B, ( I  > 3), C, (I 2), D, ( I  2 41, 

the only possible ones are : 
dimension 

(see Table B) 

Gz: 
P2 PI 

F4: o-----o 

P2 P4 P3 P I  

14 

52 

78 

Indeed, according to 26.16, the systems with threefold joins are exhausted 
by G,. According to 26.18, 26.19, and 26.20, the systems with twofold joins 
are exhausted by B,, C,, F4. According to 26.15 and 26.22 those with three- 
sided elements are exhausted by D,, E,, E,, E,. 

By these graphs the vector lengths in W++ are settled as well. An essential 
choice of how to point the arrow exists in the cases B,, C ,  ( I  > 2) only. 

26.24 Complex Classification Theorem The isomorphism classes of 
simple semisimple complex Lie algebras are given by 

A, ( I  2 I), B, ( I >  3), C, ( I >  2)s D, ( I >  4), 

G,, F4, E,, E,, E,. 

Actually, the existence of the five exceptional Lie algebras has not been 
proved here. In 27.1 it is done for G,. (See also 26.25.) 

Likewise, it has not yet been proved that all of these classes are different. 
This depends on the proof that the order chosen in H: does not exert any 
influence on the structure of W++ (see 2 5 . 3  and 33.5). 
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By the procedure in  25.4, W.+ can be built up from W++.  This also yields 
the dimension of the corresponding Lie algebra. The results of these com- 
putations are to be found in Table B. The top rootforms are collected in Table 
D. The construction of W +  (F4) is shown in 27.2. 

26.25 Historical Note The classification goes back to W. Killing, 
Math. Ann. 31 (1 888), 33 ( 1  889), 34 ( I  889), 36 (1 890) and E. Cartan (These, 
1894). B. L. van der Waerden simplified it by using the second Weyl norming 
[Math. Z. 37, 446-462 (1933)l. As a new tool, E. Dynkin introduced the 
notions of order and of natural basis, and the graph [Uspehi Mat.  Nuuk N.S .  2, 
59-127 (1947)], though graphs like these had already been used by L. Schlafli 
and H. S. M. Coxeter in similar situations. The present method was published 
by H. Freudenthal [Proc. Kon. Akad. Wet. Amsterdam 61,379-383 (1958)l. 

The exhibited numbering of the primitive rootforms corresponds to Cartan’s 
of the fundamental weights (see Euures I, 1, 355-398), which is the most 
natural (except in the case E,, in which it contains an inconsistency). Though 
it has become a habit for every author to use his own numbering, it would 
be better to stick to Cartan’s as has been done here. 

In E. Cartan’s thesis the existence of the simple Lie algebras occurring in the 
complex classification theorem has been ascertained by individual con- 
struction. A general, though cumbersome, construction was devised by 
Harish-Chandra (Trans. Amer. Math. Soc. 70, 28-96 (1951). Another, still 
involved, has been designed by J. Tits (unpublished). According to H. de Vries 
(unpublished), the case of simple bonds only can be dealt with by a rather easy 
method. 

The exceptional Lie algebras have been extensively studied in the last 15 
years. The literature on this subject can be found in part in the bibliography in 
H. Freudenthal, “Lie Groups in Geometry,’’ Aduan. Math. 1, 145-190 (1965). 
A general formula for the construction of all five exceptional Lie algebras has 
been given by J. Tits (Publ. Math. I.H.E.S. 31,525-562 (1966); see also R. D. 
Schafer, Proc. Kon. Akad. Wet. Amsterdam A69, 64-69 (1966) (Indagationes 
28). 

27. G2 AND F4. THE CHEVALLEY DRESSING 

27.1-2 G, and F4 

27.1 G E G ~ .  

( P I , P , ) = c ,  (P, ,PJ=-3c9 (pz,p2)=3c, 
with some c yet to be determined. Because of 
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there is a pl-ladder of length 3 from p2. This gives the rootforms 

Because of 
PZ + P I ,  p2 + p2 +  PI. 

( ~ 2  + 3/31 , ~ 2 )  

2P2 + 3P,. 

= 1 ,  -2 
(f27f2) 

there is still a rootform 

Furthermore, there are the opposite rootforms and twofold 0. Hence 
dim G = 14. 

P2 

- P2 

FIG. 1. 

There are 
1 p,-ladder of length 2 
2 p,-ladders of length 3 

1 p,-ladder of length 2 
4 p2-ladders of length 1 ] Npz =4(t%,P2). 

(The N p l ,  Np2 have been computed by 20.13.) 

Then (with E =*I) 
Since N p ,  = 1 ,  c = i+. To compute N,,p the formula in Theorem 23.2 is used. 

N p 1 . p 2  = i E l  4, 
N p I . p I + p l =  i E 2  4 

N p I . z p , + p l  = iE3  4 3  

N p z . 3 p 1 + p 1  = iE4 4, 
N p , + p 2 , 2 p 1 + p 1  = i E 5  4 
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with the relation 
E, E3 + €4 € 5  = 0 

by Jacobi-associativity. These determine the others. 

27.2 The method in 25.4 produces the rootforms of G E F4 (Fig. 2). 

gP1C-7O1 
!lo< \ 0110 0011 

1000 - 0100 

\ 3.. J 1 J  

\ l i  1(1 l) 21 

1220 ?2\ 0122 1121 \ 7 2 2  1221 

I 
1222 1231 

I 
1232 

1242 

J 
1342 

J 
2 3 4 2  

FIG. 2. 

Here the primitive rootforms have been arranged according to  their appear- 
ance in the graph. So 2342 means 2p2 + 3p4 + 4p, + 2p,. 

27.3.t The Chevalley Dressing 

G E Alg Lie Com SS in third dressing on H with branches e, and nodes ha. 

27.3.1. Theorem The branches eOr can be renormed into branches ei such 
that 

(a) all N i . s  in [ei,eb] = NL,sei+s are integral; 
(b) linear M defined by Mh = -h (h  E H )  and Me; = el, ( a  E W * )  is still an 

(c) the nodes h; = [e;,e',] are 
automorphism of G;  

ha ( a  E W*). 
2 h ' = - -  

OL (a900 

Of course, by such a renorming the third dressing will be destroyed. 
t The contents of 27.3 will not be used in the sequel. 
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27.3.2. Definition A first dressing with respect to a truck H, branches ei, 
and nodes hi is called a Chevalley or integral dressing if the ei and hi have the 
properties (a), (b), (c) enunciated in Theorem 27.3.1. 

The existence of Chevalley dressings follows from Theorem 27.3.1. Clearly, 
every Chevalley dressing can be derived from a third dressing by renorming 
the branches and adjusting the nodes. 

27.3.3. Proof of the theorem The new nodes hi are defined by 

In view of (d), the fact that the Na,s are purely imaginary, and (b), one is led 
to put 

Then 

from which by 23.2 

if 6 is the ( j +  1)th element in an a-ladder of length p. Only the case 
a + E W* is relevant. Then 

(g) i < P .  

If (a, p) = 0, then p = 2j, hence p = 2, j = 1 ; moreover 

whence by 25.1 

= 2, (a + 8, a + p) 
( 8 9  S )  

thus, 

(h) 

Now let (a,p) # 0. Because N&a = -Nb,a, it suffices to investigate the case 

if (a, p) = 0 then N& = 4. 

(a, 4 G (8, 8). 
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Then, again by 25. I ,  it follows from 

that 

Substituting these results into (f) one gets 

Substituting the possible valuesp = 1,2,3 a n d j  = 0,1,. . . , p  - 1, one obtains 
from (g), (h), and (0 

IN&,al = j +  1 (or 0). 

This proves the theorem. 

Proposition In Chevalley dressing the IN&,sl are j +  1 if 8 is the ( j +  1)th 
(but not the last) element in its a-ladder. 

This has been proved under the assumption (a, a) < (p ,  p). If (a, a) < (8, p), 
then necessarily j = 0, p = 2,3 so f l  is the first element in its a-ladder of 
length > I .  Then, however, a is also the first element in its 8-ladder (of length I), 
and j remains unchanged if a, p are interchanged. This shows that the condition 
(a, a) G (fl,p) can be dismissed. 

The assertion is true for any Chevalley dressing, which follows from the 
fact that apart from signs there is really no other choice fore: in (e). 

27.3.4. Historical Note Integral dressing, introduced by C. Chevalley in 
T6hoku Math. J .  7 (2), 14-66 (1959, proves its importance in algebraic groups. 
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TOPOLOGICAL AND INTEGRATION METHODS 

28. HOMOTOPY AND WRAPPING 

G is supposed to be a Hausdorff space (Spa Top Hau), G is pathwise con- 
nected (pc) from 28.7 on, locally pathwise connected (Ipc) from 28.8 on, and 
locally simply connected (Isc) from 28.13 on. 

28.1 A path on a topological space G is a continuous mapping of 
T T ( O  < T < I). The set of paths on G is called %’-(G) or, for short, Y T .  

For 1 1 3 ,  ~ 3 ’  E Ybp, with \I*( I )  = ii*’(O), a product 

11”’ = It’ 0 11” E w 

l\”’(T) 11’(2T) for O G T G  i, 
= H , ’ ( ~ T  - I )  for t < T < 1. 

is defined by 

For A , B  c G, by fbrAB is meant the set of 11’ E Y?’. with 

~ ( 0 )  E A, i i ( I )  E B. 

I f  A or B consists of a single point, its name i s  used in the notation r(bFAB. 

28.2 Two paths wo, l i q l  are called A-B-homotopic, if there is a system of 
paths IV,, depending on a parameter u (0 G u G I )  such that I\’, E Y/ ’ A B  and 
y ro, T i  I~?,,(T) is continuous. 

Clearly A-B-homotopy is an equivalence relation. 
If A or B consists of a single point, its name is used in the term A-B-  

wo, w I  are called homotopic (without specification) if they are a-b-homotopic 

The homotopy class of 11’ is denoted by [w]. The set of all homotopy classes 

homotopy. 

with a = wO(O) = w,(O), b = ~ ’ ~ ( 1 )  = ~ ~ ( 1 ) .  

in G is denoted by [W(G)] or, for short, [YY’”]. 

28.3 Every w0 E YTAG is A-G-homotopic with a constant path w,;  that is, 
I \ - ~ ( T )  = a for some a and all T .  

Indeed, put 
1t’,(T) = 1Vo(T)  for T <  1 - 0 ,  

= \t*o(I - u) for T 2 1 - u. 
142 



28. HOMOTOPY AND WRAPPING 1 4 3  

From w0 homotopic w,,wA homotopic w;, it follows wo o wi homo- 28.4 
topic M’, o IV; (if defined). This induces a product of classes: 

[It.] t: [II”] = [II’ 0 Il’’] .  

28.5 This product is associative. See Fig, 3 ;  the nonhorizontal lines are 

0 w w ’  w ” 1 

FIG. 3. 

mapped into points, the horizontal lines are mapped according to the functions 
shown by letters; formally 

for 0 G 47 G CJ + 1, 

= 11”(4~ - 0 - I )  for u + 1 G 47 G u + 2, 

for a + 2 ~ 4 ~ < 4 .  
2 - u  

Thus 
111 111 

1 1 ‘ ~  = ( i t -  o w’) o i t , ”  and I V ,  = it’ o (w‘ o IC”) 

are homotopic. 

28.6 With respect to this product [N’] E [ae] possesses one right unit (con- 
taining the constant path u = Y T  n(l)), one left unit (containing the constant 
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path YTM(0)), and a right and left inverse (containing the inverted path z = 

Y7w(1 - T)). (See Figs. 4 and 5. )  

[W] is a groupoid. 

o w  U 1 

FIG. 4. 

o w  2 1  

FIG. 5. 

28.7 The [w] with w E Wpp form even a group denoted by @,. 
From now on G is supposed to be pathwise connected (pc). 
Then, for two points p,q  E G, @, and @q are isomorphic by means of a 

mappingf defined by choosing some fixed u E Wpq and putting 
f[w] = [ul-' 0 [w] 0 [u]. 

Often the subscript p of Qi, is dropped. @ is called the fundamental group 
of G.  

G is called simply connected (sc) if @ consists of the unit only. Then any 
path w with w(0) = w(1) is homotopic with a constant path and any pair of 
paths wo,wl,  with wo(0) = wl(0), wo(l) = wl(l) ,  is homotopic, since [wO] = 

[wo o wi' o wl]  = [wl]. 

28.8 G is called locally pathwise connected (lpc) if every point of G has 
arbitrary small open neighborhoods that are pathwise connected. 

From now on G is assumed to be lpc. 
The set of [w] E [W] with w E WpG is called G, or simply 6. The set (? is going 

to be topologized and the result is called the universal wrapping of G. 
Let U be a pc open set in G and let K be a maximal set of p-U-homotopic 

paths. The set of all [w] c Kis called a sheet 6over U. Two different sheets over 
U are disjoint. 

Let U, be another pc open set in G, and 6, a sheet over U I .  Now U n U ,  as an 
open set in a lpc space is the union of disjoint pc open sets. From this it follows 
that 0 n 6, is a union of sheets (over those components of U n (II). 
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A set in e is called open if it is a union of sheets. 
From the last paragraph it follows that 6 has become a topological space. 

The method used in 28.7 shows that its structure does not depend on p up to 
homeomorphy. 

28.9 The mapping x defined by 

x"'] = M'( I )  

maps 6 onto G, since G is pc. It is called the projection. 
x maps a sheet over U onto U .  
To prove this take some [ w ]  E 0 (then w ( l )  E U )  and connect w(1)  with an 

arbitrary q E U by a path u within U .  Then, according to 28.3 applied to U 
instead of G, u is w(1)-U-homotopic with a constant path; therefore w o u 
is p-U-homotopic with w and consequently contained in an element of 0. So 
9 = x[w o u ]  belongs to TO. 

28.1 0 The x-original of a pc open U is the union of the sheets over U, hence 
open. Thus x is continuous. According to 28.9, r even maps open sets onto 
open sets. 

28.1 1 
u if y ro ,r i  M>,(T) is continuous. 

A system of paths w, is said to depend continuously on the parameter 

Let the paths w,, depend continuously on u (0 G u G 1) and put 

u1 = y, w,(i) for i = 0 , l .  

Then uo o w, is homotopicwith wo o u,  and with y, w,(u). (See Fig. 6.) 

wo 

FIG. 6. 
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Conversely, if for some paths uo,u, ,wo,wI,  vo o wI is homotopic with 
wo o u l ,  then there is a system of paths w, depending continuously on 
u (0 < u G 1) such that ui  = y, w,(i) for i = 0, l .  

28.1 2 Let A be a line segment or a square and w, E WpG depend continuously 
on a E A .  Then [w,] depends continuously on a. 

Proof As a neighborhood of [w,,] take a sheet 0 (over U ) .  Then wa0( 1) E U 
and still w,( l )  E U for a in some line segment or square neighborhood A ,  
of a,. Thus wag, w,  are p-U-homotopic by means of some subsystem of the 
wB (j3 E A,) .  In any case [w,] E o f o r  a E A,,  which proves the assertion. 

28.1 3 G is called locally simply connected (Isc) if every point of G possesses 
arbitrarily small simply connected open neighborhoods. 

From now on G is assumed to be Isc. 
Then T is locally topological. 
According to 28.9-10 it suffices to prove: 
Let 0 be a sheet over sc open U c G.  Then r maps 0 one-to-one. 

Proof Take [w,] ,  [ w , ]  E 0; hence wo, w, are p-U-homotopic. Suppose 
r[wo] = r[wl] = q, that is wo(l) = w l ( l )  = q  in addition to wo(0) = w,(O) =p. 
There is a system of w, depending continuously on u (0 G u G 1) such that 

M’,(O) = p, w,( 1) E u. 
By 28.11 wI  is homotopic with wo o y, w,(l). Since U is sc, the second factor is 
homotopic with Y,q, which proves the assertion. 

28.14 For a path w E WpG define 6 by putting 

W,(T)  = W(UT), [W,] = 6(U). 

By 28.12 6 is a path on 6. The process by which it was obtained is called 
stretching. 

If wy E WpG depends continuously on y (0 G y G l),  then Gy has the same 
property. 

This follows from 28.12 if applied with ‘y ,ul  instead of a. 

28.1 5 Projection and stretching are inverses of each other. 

Proof It is obvious that TGJ = w. Conversely, let a path on 6 be given by 

= Y J Y  T wo(T)1, [w,l= [YTPl 
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where II’, E $ITp‘ for each cr (0 Q u G I ) .  The set of z(cr) is covered by a finite 
number of sheets oi (over sc U i )  of which it can be assumed that there are cr,, 
i = 0, . . ., 177, such that co = 0, c, = I ,  ai _-’ u i + l ,  ~ ( u )  E oi+l for cri G cr G u,+~ ,  

z(ui) E oi n oi ,.,. Since z(ai),  ~ ( c r , ,  I )  t c,+,, it follows that i v u i  and w,,i+l are 
p - U i  ,,-homotopic. So there are paths uai depending continuously on CL 

( O < a <  1) such that uai(0) = p ,  t l a i ( I )  E Ui+l, = W U i ,  E l i  = wui+l .  Define 
y ,  = y2z*zi(l). Then by 28.11 ~ ‘ , , ~ ~ ~ ( = u ~ ~ )  is homotopic with wUi o yi ( = p o i  o y,). 
I n  turn, since U i  + I  is sc, y ,  is homotopic with xi arising by reparametrization 
fromY,,~ocoi+l  i r , ( l )  = 7 r Y u i ~ , , ~ u i + l  ~ ( c r ) .  So wui+l is homotopic with wUi o xi. 
From this it follows easily that wy is homotopic with 1 1 ’ ~  c ~ , ,wyU( l ) .  Putting 

y, w,( 1) = I\’’ 

and remembering that [lvO] = [y, p ] ,  one obtains 

z (y )  = [wY] = [y, ~ ’ ( y u ) ]  for 0 G y G 1 ; 

now 
”, z = w 

Trz = 11’ , 

which proves the assertion. 

28.1 6 6 is bathwise and) simply connected. 

Proof Let [ II ’ ]  be a point of 6. Then 6 is a path from “ f , p ]  to [I\’], which 
shows that is pc. Let z be a path on e with start and finish at [y, p ] .  There 
is a path 11’ i n  G such that z = Q. Since [w] = Q( I )  = [Y, p ] ,  

M’ homotopic with Y T  p .  

By 28.14 this homotopy is transferred to the strctching results so that 

Q homotopic with y, [Y, p ] ,  

which is homotopically trivial. 

28.17 
G by A. 

Besides G a space G ’  is considered; G ‘  is continuously mapped onto 

G’ is called a I i m p p i q  of G (by means of A), if the following holds : 

28.17.1 G’ is pc, 

28.1 7.2 A is locally topological, 
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28.17.3 
continuously into T = 1 as soon as )‘,A ~ ‘ ( 7 )  does SO. 

(by means of 7~). 

~ ‘ ( 7 )  E G‘ depending continuously on T for 0 < T < 1 extends 

From 28.14-16 it follows that the universal wrapping is a wrapping 

The foregoing conditions readily imply the following: 

28.1 7.4 Every path MI on G has a uniquely determined h-original-path w’ on 
G‘ such that ~ ’ ( 0 )  is a prescribed h-original of ~ ( 0 ) .  

The uniqueness follows easily from 28.17.2. Then, using 28.17.2 in a 
neighborhood of the prescribed X-original of w(O), one finds the existence 
of a maximal u with 0 < u G 1 such that M”(T) can be defined for 0 < T < cr. 
By 28.17.3 w’(a) can be defined as well, and by 28.17.2 w’ could even be 
defined beyond u if D were less than 1. So u = 1 and the result follows. 

28.1 8 One can dismiss the condition in 28.17.3 as soon as it is known that 
the h-original of any compact set of G is again compact. 

Indeed, then for a < 1, 

A-’ w(f, T 2 a) is compact, 

closure of w ’ ( ~ , T  2 a)  is compact, nonvoid, and connected, 

n,closure of w ’ ( ~ , T  2 a)  is nonvoid and connected, 

but on the other hand contained in h - l ~ ( l ) ,  thus finite, thus consisting of 
one point, which is limT=l ~ ‘ ( 7 ) .  

28.1 9 Let G’ be a wrapping of G by A. Then, if the paths wi on G’  are such 
that wA(0) and w,=XwA depend continuously on u, then wi depends con- 
tinuously on u. 

Proof Consider some uo. The set of w ~ , ( T )  is compact. It is covered by a finite 
number of open U ;  mapped topologically onto U,. Let w,&(T) E U; for 
T,-’ < T < T [ .  Then w,,,(T) E Ul for T,-’ < T < T ~ .  

Because of the continuity of y r0,,i w,(T), there is a 6 > 0 such that 

w,(T) E Uf for T , - ~  < T < T ~ ,  1 0  - 001 < 6 .  

If for some 

then by 28. 

it is known that 

w ~ ( T , - ~ )  E U ;  for Iu - uol < 6 ,  

7.4 it may be concluded that 

w ~ ( T )  E U ;  for T , - ~  Q T Q Tf and Icr - 001 < 6 .  
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It may also be assumed that wA(0) E U1 for la - croI < 6. Hence by induction 
this is true for all i. Using the topological nature of A in any U i ,  the con- 
tinuity of y r u , , i  w;(i-) is derived from that of y r U , , i  w,(T). 

28.20 Let G’ be a wrapping of G by A. Let A be sc, Ipc, and continuously 
mapped by p into G such that pq = p .  Then for a given p’ E G‘ with Ap‘ = p  
there is a unique continuous mapping p’ of A into G‘ with p‘q = p ’  such that 

Ap’ = p. 

(The mapping into G can be “lifted” to GI.)  
To construct p’(x) for any x E A ,  q is joined to x by a path v on A .  Then to 

p i =  1%’ on G the path w’ on C‘ is constructed such that Aw‘ = w ,  w’(0) = p ‘ .  
Finally p’(x) is put w‘(1). Any other choice of u is homotopic with this one, 
since A is sc. It leads to a homotopically equivalent w, hence by 28.19 to the same 
~ ‘ ( 1 ) .  The continuity of p’ also follows from 28.19, and Ap‘ = p is obvious by 
construction. So is the uniqueness of p‘. 

28.21 
w(0) = w( 1) = p .  Moreover, @ possesses a group structure. 

7r[w2], then [12’2] o [wl]-’ E @; hence [ w 2 ]  E @ o [wl] .  

In  21.7 @was defined as the set ofhomotopy classes of paths in G with 

Alternatively, @ may be said to consist of the x-originals of p .  I f  n [ w , ]  = 

If ~i = x, then @ o 2 is the entire T-original set of x. 
The elements of (9 act by left multiplication on G. They permute the sheets 

over an open pc U and operate continuously on G. 

28.22 Let G’ be a wrapping of G by A; Ap’ = p .  
If 28.20 is applied with the universal wrapping 6 instead of A ,  and Tinstead 

of p, and ~ f i  = p ,  one obtains a continuous mapping 7r’ of G onto G’ such 
that AT’ = r and ~ ‘ 0  = p‘. 

I t  is easily seen that the universal wrapping of G’ can be identified with G, T‘ 

being the corresponding projection. Then the d-originals of p‘ form a sub- 
group @‘ of @. The T’-originals of some x‘ form a set @’ o 2. 

Conversely, given a subgroup 0’ of 0, one can define a G’ as the set of all 
@’ o 2, a mapping T’ of 6 onto G‘ by ~‘(2) = @‘ o 2, and a mapping A of G’ 
onto G by A(@ o 2) = n2; one can also introduce a topology in G’ by calling the 
+-images of open sets of e open. Then G’  appears to be a wrapping of G by 
means of A; the ;\-original of r2 consists of the @ o 9 contained in @ o 2. 

The pairs rG’, p ’ l ,  where G’  wraps G by means of A and Ap’ = p ,  are divided 
into equivalence classes: If C ;  wraps G by means of A,, then ‘ G ; , p ; l  is equiv- 
alent to rGi, p i 1  if, and only if, there is a homeomorphism 9. of G; onto G; 
such that A, 19 = A, and 9.p; = p i .  



150 28-38. TOPOLOGICAL AND INTEGRATION METHODS 

The foregoing can be summarized as follows: 

The equiralence classes of rG‘, p” \\there G‘ \itraps G andp‘ lies abore p are 
one-to-one related to the subgroups 0’ of the fundamental group @ p  of G; a 
representative rG’, p” of the class belonging to @’ (sub @) is obtained.fiom 
the unhlersal nirapping by identfying points that proceed ,fiorn each other by 
the action of @’ and taking for p’ the image of the homotopy class of the constant 
path (=p). Thefirndamenialgroup @,,,(G’) of such a G ’  is essentially @’, 

I f  the wrapping G ’  of G by means of A is girlen arid p’ is alloit.ed to change 
(Ap’ = p ) ,  the subgroups 0 corresponding to the pairs rG‘, p” run through a 
class of cot?jugate subgroups of 0. 

29. FUNDAMENTAL GROUPS AND WRAPPINGS OF 
TOPOLOGICAL GROUPS 

The results of Section 28 are applied to  topological groups; p is taken to  be 

G E Gru Top Hau pc Isc. 
the group unit. 

29.1 The group multiplication induces a new multiplication on Y/ i: 

it”’ = ww’ means II”’(T) = W ( T )  II>‘(T). 

I f  I I ’ ~ ,  ii‘, are homotopic by means of I I ’ ~ ,  and ir;, 11,; by means of ii,:, then 1 1 ’ ~  ii,& 

it’, I \ * ;  are homotopic by means of ii’, 11.:. This produces a multiplication of 
homotopy classes, 

[W][\I~’] = [11’1\”]. 

By this definition the universal wrapping becomes a group that is easily 
recognized as topological. 

7r is now a homomorphism because of 

7r[l\’\i+] = (\tW’)( 1) = \I.( 1) l i t ’ (  I) = Tr[IV] 7r[IV’] .  

The kernel of 7r consists of all [w] with ~[II.] = ~ ( 1 )  = p ,  hence all of @. As a 
subgroup of e, it is isomorphic to @; this means that for w(0) = w(1) = 

IV’(0) = w’(1) = p 
[ III] 0 [\.I”] = [ w] [ w’] ; 

in other words 
w o w’ and are homotopic. 
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To prove it consider the square of ra, /?’, with 0 G a G 1,0 G /3 G 1 (see Fig. 
7) mapped by 

Y r.,p 1 )(.(a) rti’(B), 

and apply 28.11. 

“t 

W 

FIG. 7 

With a view on the other half of the square, it appears that 14’ e it,’, I I ”  o M’ 

This is not new, however; 4.7 states that @considered as a (discrete) normal 

Summarizing the results, one obtains the following theorem: 

are homotopic. Thus @ is commutative. 

subgroup of (connected) 6 is in the center of 6. 

Theorem Let G be a pc Isc Hausdorff group. Its universal wrapping 6 is also 
a pc Isc Hausdorff group, the projection 7~ of 6 onto G being a continuous 
homomorphism that maps open sets onto open sets; 6 is simply connected. 
The fundamental group 4 of G is a subgroup of 6 and lies in its center; G is 
topologically isomorphic with 6/@. I f  @‘ sub @ and G’  is the wrapping of G 
by means of A, characterized by 4’ (i.e., obtained from 6 by identifying points 
that proceed from one another by the action of @’), then G ’  bears a natural 
structure o f  a topological group and X is a continuous homomorphism that 
maps open sets onto open sets. The universal wrapping of G ’  is essentially 6. 
I f  T’ is the projection of 6 onto G’, then 0’ c @and 7~ = AT‘. 

29.2 
morphic (they are locally isomorphic). A converse: 

Theorem I f  G ,G’  E Gru Top Hau pc Isc are locally topologically iso- 
morphic, they possess a common wrapping; thus they have topologically 
isomorphic universal wrappings. The local isomorphism extends to a global 
one of the universal wrappings. 

I n  a neighborhood of the group unit G and 6 are topologically iso- 
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Proof Suppose that the l-neighborhood U ,  in GI  by a topological iso- 
morphism f is mapped onto the 1-neighborhood U2 in G2. Form the direct 
product G of G I  and G2 with the natural projections wi of G on G,. Take an 
open pc l-neighborhood V ,  = V;' in GI such that V ,  V ,  c UI and define 
V c  G as the set of 

'a, fa1 with a E V, .  

VV n TVI,fV,l  c V, 
Then 

which shows that V is a local subgroup of G. 
By the method of 4.12 V expands to a connected and even pc topological 

group G3 such that cV is open in G3 for any c E G3.  This G3 is easily seen to 
wrap G ,  by the restriction of wi  ( i  = 1,2). 

This proves the first statement. If applied to universal wrappings, it proves 
the second. 

30. COMPACTNESS ASPECTS OF SEMISIMPLE AND 
ABELIAN GROUPS 

30.1 For G E Alg Lie Lin SS acting on R E Spa Lin it was seen in 19.10 
that Int G is closed in the group of linear space automorphisms of G. In 38.5 
G infinitesimally generated by G itself will be shown to be closed in Aut R. 

If, moreover, G is a unitary restriction, then by 24.4 Int G is compact; in 
32.2.4 C itself will be shown to be compact. 

The following proposition, though not used in the sequel, shows the degree 
to which noncompactness pervades a noncompact semisimple group. 

30.4.t Compact Inner Classes 

Proposition If centerfree G E Gru Lin Lie S S S  has a relatively compact 
inner class (i.e., class of conjugate elements) # {l}, it is itself compact. 

Proof The first step is the construction of a relatively compact l-neighbor- 
hood, invariant under Int G.  

Let the inner class of x be denoted by [XI and let [c] be relatively compact, 
c # 1.  Then [ c - ' ] =  [c]-' is also relatively compact, as is any repeated product 
of [c] and [c-'1 with a finite number of factors. 

Since c is not a center element of G, there is a u E G with b #u.  Take Y,u, 
on G with uo = 1 and ((d/dr)u,) ,=,  = u and define 

a, = u, cu;' c-1. 

The contents of 30.4 will not be used in the sequel. 
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Then 

a()= 1, = u - Fuf 0. 

Note that 

30.4.1 [all = [CI [c-ll. 
Because G is simple, G acts irreducibly on G (see 12.4). Thus G is linearly 

spanned by the Sa ( I *  E G), hence by a finite linearly independent set among 
them, Cia, ..., 6,a. 

Put 
a;" = c ia f ,  

form the inner classes ofthe a:" and the union of products 

N is invariant under Gand, by 30.4.1, relatively compact. 
On the other hand, 

y rf , . . . . . lr i  a : : )  * . .  a'" l r  

maps '0, . . ., 0' into 1 and the E-ball around 0 i n  r-space into N .  Its gradient at 
'0, . . . ,O. '  maps the ith basis vector into Si a ;  because of their independence the 
gradient is nondegenerate. Consequently, 1 is an inner point of the image and 
therefore of N .  

So N is a relatively compact, Int G-invariant I-neighborhood. 
To prove the proposition it suffices according to 30.1 to show that G' is 

bounded. Now suppose G'were not bounded. Then Gx would be unbounded for 
some x E G, and it would be possible to find x j  E G, g j  E G such that 

lim xj = 0, lim g J x j  = y # 0. 

The characteristic polynomials of the x j  converge to XdimC. So do those of 
g j x j .  Thus all eigenvalues ofy vanish and y is nilpotent. 

On the other hand, 

lim gj  exp t x j  = lim exp t ( g j x j )  = exp ty. 

Obviously, exp t x j  E N for almost all j if t is given. Because of the Int G- 
invariance of N ,  the same is true of gj  exp t x j .  Thus exp ty E for all t. 
From 2.8 it follows that exp ty is a nonconstant polynomial in t and therefore 
unbounded. This contradicts the compactness of N .  

30.5. The Global Structure of Abelian Linear Lie Groups This 
structure becomes clear as a consequence of the ideas of Section 29. 
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Theorem I f  G E Gru Lin Lie Rea is abelian, then up to isomorphy it is 
the direct product of copies of the multiplication group of the positive 
numbers and of that of the unit  norm complex numbers; that is, it is the direct 
product of a flat abelian and a torus group (see 12.6). 

Proof C is locally isomorphic to a direct sum 6 of r copies G, of the 
addition group of the real numbers (see 12.6); e is simply connected. Theorem 
29.2 allows one to consider 6 as the universal wrapping of G, and therefore G 
as 6 mod a discrete subgroup M. It is well known that M has a finite number 
of linearly independent generators a , ,  . . ., up.  Now 6 can be rewritten as a 
direct sum of G; (i = 1,2, . . ., r )  with a ,  E G; for i = 1, . . ., p. If GI' arises from 
GI by reduction mod the multiples of a, ,  and Gy = G; for i > p ,  then G turns out 
to be isomorphic to the direct sum of the GI' which up to isomorphy are 
addition groups of the real numbers, maybe mod 1.  

30.8. Historical Note Proposition 30.4 seems to be due to H. Freudenthal, 
Arch. Math. 15, 161-165 (1964). 

31. THE CONJUGACY THEOREM FOR CENTERFREE 
UNITARILY RESTRICTED SEMISIMPLE LIE GROUPS 

31.1 
they are transferred to linear Lie groups. 

Trunks have until now mostly been considered for Lie algebras. By exp 

Definition IfH(Hc)isatrunkofG(Gc),then H = e x p  H(Hc =expHc)is 
called a trunk ofG (Gc). 

This definition is presently applied to G E Alg Lie Lin Com S S ;  C is the 
group generated by it. 

31.2. Proposition H (Hc) is a closed abelian linear Lie group. 

Proof Because H is abelian, H i s  an abelian group. The closure of H in G is 
also abelian; it has an abelian infinitesimal algebra, which by 17.6 coincides 
with H.  Thus H i s  closed. Clearly this implies the closedness of Hc. 

31.3 Until further notice the groups to be discussed are centerfree, unitarily 
restricted, and semisimple; such a group is denoted by G, one of its trunks is H, 
and the respective infinitesimal algebras are G,H. It is supposed that G is 
derived from Gc,, in ordered third dressing with respect to the trunk H,,,, 
and that GcOm, infinitesimally generated by G,,,, is centerfree (see 12.1 5.3). 
It is often convenient to represent them as adjoint groups and algebras. 
Note that such a representation is faithful. 
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Proposition A t r u n k  of a centerfree, unitarily restricted, semisimple, 
linear Lie group of rank I is an /-dimensional torus group, which after ordered 
dressing is coordinatized by the sequence of exp pi (pi the different primitive 
root forms). 

Proof On a suitable basis H consists of diagonal matrices h carrying the 
purely imaginary a(h) ( a  E W )  in the main diagonal. exp h, which is the 
general element of H ,  carries the exp a(h) (a  E W )  in the main diagonal. In 
ordered dressing one may use the exp p(h) ( p  E W++)  as coordinates in H ,  all 
other diagonal coefficients being power products of these ones with integral 
exponents. These coordinates range independently over the unit circle. This 
makes H a  direct product of 1 circles. 

31.4. Definition 
defined by 

In the trunk H of G (as before) theprincipal domain D is 

h E D if and only if h E H ,  and 0 < Im a(h) < 27r for all a E W + ;  

D means exp D .  For h E D the uniquely determined h E D with exp h = h is 
called log h. The closure of D is 6. 

A straight path in 6 is a uniform motion (0 G t G 1) of a point in 6 over a 
straight line segment. By exp this terminology is carried over to exp 6. 

Note that D depends on the chosen order. 

31.5 It is a well-known fact that on a suitable orthonormal basis a unitary 
matrix takes the diagonal form. An analogous fact for unitarily restricted 
groups is enunciated in the following theorem: 

Conjugacy Theorem for centerfree unitarily restricted semisimple G: 
All trunks of G are conjugate in G ;  all trunks of G are equivalent under G. 

Every element of G is conjugate to some element of the closed principal domain 
of a given ordered trunk of G and thus is a member of some trunk. 

Remark For complex G the first part still holds (see 17.8), but the second 
part is disproved by the existence of nonpure linear mappings; thus not all 
elements belong to trunks. For nonunitary real G both assertions can be 
refuted. In the unitary case the condition of center-freedom will be dropped 
in  32.9. 

The proof of this theorem in 31.9 rests on 31.6-8. 

31.6 Let, G,H,G,H be as before; G,,, in ordered third dressing, e, the 
branches of C,,, ; E the set of all C T, e, E G ;  and E, small balls in E around 0, 
exp Ei = Ei. 
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Proposition If Eo is small enough, then 

31.6.1 Y Tg.h  1 gh 

maps rE,,H 1 homeomorphically onto an H-neighborhood in G. 

Proof Since H n E = {0}, H + E = G, there are 1-neighborhoods E l ,  H o  in 
E,H such that 31.6.1 maps r E l ,  Hol homeomorphically onto a I-neigh- 
borhood in G. Choose E, c El  such that Ei '  Eo n H c HO. Then even 

E;' Eo n H =  {I}, 

sinceg, E E,, g;'g, E H implies thatg;'g, E HO, which shows that 'gl, g,'g,' 
and rg2, 1 l coincide since they have the same image under 31.6.1 and lie in 
rE, ,Hol;  hence g;'g, = 1. 

EoHo is still a 1-neighborhood, so E , H =  E o H o H  is an H-neighborhood. 
From 'gr,hfl E rEo, Hl and g,h,  = g,h2, it follows that g;'g, E E;'Eo n H 
= {l}, which proves that 31.6.1 maps rEo, H l  homeomorphically. 

Definition The mapping rp of a neighborhood of H is defined by 

dgh)  = 8J 
forg = expg with smallg E E and h E H. 

The gradient of rp at ho = exp Ro (R, E H), computed by putting 

g = exp t C T ,  e,, h = ho exp th (h E H )  

and differentiating on t at t = 0, maps 

C ~ , e , h o + h o R  into hoR+ [C T,e, ,ho].  

Transferring the tangent space at ho into that at  1 by right multiplication by 
hi ' ,  one gets a linear mapping that carries 

T,e, + /I into /I + (1 - R,) c T,e,. 

It is the identity on H and it multiplies 

e, by 1 - exp a@,) 

because Roea = (exp h,)e, = (exp a(ho))e,. This proves: 

Theorem det grad ip at ho = exp ho equals 

31.7. Definition F =  U,,,a"D; F* = U,,,a"(D\D). 
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Proposition F is open in G. 

Proof For ho E D, as before, det grad g, # 0 because a(h,) # 0, # 27ri. Thus 
the image of g, covers a neighborhood of h,, and every ho E D is interior point 
of F;  the same is true of its conjugates. 

31.8 In order to study the conjugation class of an arbitrary h E H, consider 
the centralizer Y(h,) of exp ho = h,. It is closed in G; the 1-component has 
an infinitesimal algebra Y(h,). From 

ii, ea = (exp k,) ea = (exp a(ho)) ear 

it follows that Y(h,) is spanned by Hand the Taea - 
27ri. 

with a(h,) = 0 mod 

In particular, Y(h,) = Hfor ho E D. 
Furthermore, consider the set E(h,) of C Tarea E G with a(h,) # 0 mod 277i. 

Then G = E(ho) + Y(h,). 
Finally, let D(ho) be the set of h E b with [a@) = 0- a@,) = 01 A 

[a@) = 27ri H a@,) = 27riI; D(h,) = exp D(ho). Then Y(h) and E(h) are con- 
stant for h E D(ho). There is a finite number of different D(ho), which together 
form D. 

In 31.6 g,(gh) was defined for g = exp g with small g E E and h E H .  
Let it now be restricted to g E E(h,) and h E D(ho). Then grad, y~ is again 
nondegenerate for h E D(ho). For any h E D(h,) there is an E(ho)-neighbor- 
hood &(/to) of 0 and a D(h,)-neighborhood A(h) of h such that y~ maps 
(exp Eh(ho))A(h) onto a Can-piece, say Q(h). 

exp Eh(h0) .exp Y(h,) contains a G-neighborhood U(h) of 1. Since a" is the 
identity on A(h) for a E exp Y(h,), it follows that Q(h) contains UgsU(h)  g"A(h) 
for a suitable G-neighborhood U(h) of 1. So, by the compactness of G, 

is co-iered by a finite number of Can-pieces, conjugates of Q(h), and 

is covered by a countable number of Can-pieces. 

that of E(h,) in E is 
There is a finite number of different D(ho). Hence: 

Now suppose that ho E D\D. Then the codimension of D(h,) in H is > 1, 
2, and consequently, that of the above Can-pieces is > 3. 

Proposition F* is acountable union of Can-pieces of codimension > 3 in G. 

Remark The constituent Can-pieces may be assumed such that their closures 
are still contained in Can-pieces of the same dimension. 
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31.9 F* is contained in the boundary E \ F o f  open F. Conversely, ifc E E \ F ,  
then c = lim c, with some c, E F, hence with c, = 6,h, (a, E G, h, E D).  
Because of the compactness of G, one may assume lim a, = a E G, lirn h, = 

h E b. Then c = Gh E F,, which proves that F \ F c  F*; thus 
F* = E \ F .  

According to dimension theory codim F* 2 3. Thus the boundary of F has 
codimension 2 3. In a manifold the complement of a closed set of codimension 
2 2 is connected. Therefore G\(E\F) = F u (G\F) is connected. Since 
both summands are open and their intersection is void, this means that G\F 
is void, hence G = F. 

This proves that every element of G is conjugate to some element of D. 
Let H '  be some other trunk of G. In H' take an element h' which generates a 

dense subgroupof H ' .  Then h' = 6h with suitable h E b, a E G ;  obviously even 
h E D. Now 6 - ' H '  is a trunk in thecentralizer of h. Since the 1-component of 
the centralizer of h E D coincides with H ,  it follows that 6 H '  = H ,  which 
proves the remainder of Theorem 3 1.5. 

31 .I 0 It is overdone to use dimension theory because F* is a rather elemen- 
tary set to which elementary methods apply. This is done by the following 

Device Let P be a finite polytope of dimension p in real s-space S, and Q a 
closed subset in a q-dimensional linear subspace R' of real r-space R, with 
p + q < r.  Let f be a continuous mapping of P into R. Then arbitrarily close 
tofthere is a continuousf* such thatf*P does not meet Q;f* may even be 
chosen to agree withfon a given closed subset Po of P such thatfP, n Q is void. 

Proof fPo and Q have a positive distance a. Choose a finite subpolytope PI 
(of a subdivision of P) ,  which does not meet Po and which contains theJ 
original of the +a-neighborhood of Q .  Choose another finite subpolytope P2 
of P, which does not meet Po either and which contains PI in its interior. 
Then f(P2\P,) has a distance > fa from Q. Choose a continuous real 
function u such that u(x) = O  for x EP\P,, u(x) = 1 for x € P I ,  and 
0 G ~ ( x )  G 1 for x E P,\P,. 

A simplicia1 mapping f o  of P2 into R is defined such that f o x  =fx in the 
vertices x ofP2\P, and such that for any set of m + 1 vertices ao, . . ., a, (m ~ p )  
of PI the plane throughfoal (i = 0, . . ., m) does not meet R' (which is q-dimen- 
sional). Thenfop, will not meet Q. 

With a fine enough subdivision of P and withfox nearfxin the vertices, one 
can make sure thatfo is an E-approximation off for a given E > 0. Finally one 
definesf*x = .fox + (1 - u)f *x  for x E P2 andf*x = fx for x EP\P,. Then 
f* is still an E-approximation ofJ Furthermore,f*P, = f o p ,  does not meet Q,  
nor doesf*(P,\P,), as soon as E < +a. 
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31.11. Proposition Let Q, ( i  - I ,2, . . .) be compact subsets of Cun-pieces 
of codimension =; 3 i n  G, andf 'a  continuous mapping of ;I finite polytope T 
of dimension :: 2 into G. Then there is ; i n  arbitr;irily close continuous approxi- 
mationf* off'such thatf'Tdoes not meet Ui Q i ;  / *  may even be required to 
agree withf'on a closed subset of TwhoseJiimiige does not meet Ui Q,. 

Proof This statement is proved first for one summand, denoted by Q. 
It is allowable to interpret Q and a suitable open neighborhood B of it as 

lying in real r-space R ,  with r = dim G, where B is an open ball, and Q is a 
subset of a linear subspace R' of R with codimension 2 3. Take a smaller 
open ball B' that still contains Q. Form a finite subpolytope P of T such that 
j P  is contained in B and P contains the )original of B'. Then, according to 
31.10,,f restricted to P is approximated by an .f* such thatf* P does not meet 
Q, and agrees with Jon thef-original of B\B', and finally f *  is extended to 
the remainder of T, where the same agreement is required. 

This proves the statement for the case of one summand. 
A metric is assumed in G. Let E > 0 be given. Suppose a ( 1  - 2-")~-approxi- 

mation f ,  off has been constructed and a closed neighborhood Si has been 
assigned to Q, (i = 1, . . ., n) such that f,T does not meet U;=, Si. Then 6 > 0 
is chosen smaller than 2-"-' E and smaller than the distance between f T  a,id 
U;,l S,; according to the first part of the proof, a 6-approximationf,,, off, iq  

constructed such thatf,+l Tdoes not meet Qn+l.  Finally, a closed neighborhood 
S,,,, of Q,,, is chosen such that S,,,, is not met by fT. 
f * = limf;, fulfills the main requirements of the statement for a given E > 0. 

The supplementary one is easily satisfied. 

Remark I f  U, Qi is closed, the induction actually stops after a finite number of 
steps. This phenomenon can easily be accounted for in the proof. 

31.1 2 What matters in the proof of 3 I .9 is the knowledge that G\F* is 
connected. This is now derived from 3 1.1 1 .  

If x ,y  E G\F*, the connectedness of G guarantees the existence of a 
continuous mapping of the unit interval T into G with f (0 )  = x, f (1)  = y. 
According to 3 I .  I I ,  applied to F* (see 3 1,8), f is changed into a continuous 
mapping f * of T with f * ( O )  = x , f * (  I )  = y such that f T  does not meet F*. 
This shows that G\F* is connected. 

Proposition Let p E F, U open in G. Then a path in G starting at p and 
finishing in U is p-U-homotopic with one in F. Two such paths contained 
in F, ifp-U-homotopic in G, are alsop-U-homotopic in F. 

Actually, as to the first part it has been proved only that in an E-neighborhood 
of a given M',, E W p u  there is a it', E Wpu such that ~'~(7) E F for all T. This, 
however, is easily turned into a homotopy, for example by putting 
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W J T )  = (exp ua,)wo(T), 

where aT, continuously depending on T ,  has been chosen such that 

exp a, = w,(T)  W ~ ( T ) - ~ ,  

which is possible for small E 

square rather than a unit interval. 

0. 
To prove the second part the former argument must be applied to a unit 

This proposition is used in the next section. 

31.13. Historical Note The methods and results in this section are 
essentially H. Weyl’s in Math. 2 .24  (1926) = Selecta, 348-352. 

32. THE FUNDAMENTAL GROUP OF CENTERFREE 
U N ITAR I LY R ESTRICTED SEM IS1 M PLE G ROU PS 

G E Gru Lie Lin S S ,  centerfree (in 32.1-6), unitarily restricted. Other 
notations as in Section 31. 

It is shown that the fundamental group is finite. The fundamental group is 
computed in all relevant cases, although a simpler method will become avail- 
able in Section 46. 

32.1 As the set of left cosets aH of H in G, G / H  bears a natural topology 
(see 4.8.1): the UH with U open in G are the open sets of GIH; by 12.12 GIH 
inherits a Can-manifold structure from G, compatible with this topology. 

The q E GIH map H by 

qh=@ if g e q .  

It is obvious that this definition is unambiguous. 

Proposition TG/H, Dl is a wrapping of F by means of y r4,hi qh. 

is proved in Proposition 32.1 1. 

Proof Since GIH is compact, 28.17.3 merits no attention (see 28.18), and it 
suffices to verify 28.17.2. According to 31.6-7, 

Actually it is the universal wrapping; that is, GIH is simply connected. This 

Y rB.h 1 gh 

is locally topological at ‘I,hol for ho E D as a mapping of rEo, Dl into G 
(it maps a neighborhood of ‘1,ho1 topologically onto one of ho). 

YsgH 

being topological at 1 as a mapping of Eo into GIH, the preceding sentence may 
be restated as follows: 
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32.1 .I 
ho E D. 

y rq.hiqh ( q  E G / H ,  h E D) is locally topological at  rH,hol  for 

The proposition states that even 

32.1.2 y r q , h i q / ~  ( 4  E G / H ,  h E D) is locally topological at  rqO,hol for qo E 
GIH, ho E D. 

This assertion follows from the fact that by left multiplication G acts tran- 
sitively as a group of homeomorphisms on G/H:  

lfqo =go H ,  then left multiplication by got i n  the first component, followed 
by y r4.h-iqh and by conjugation by means of go in G, sends 'qo,hol in this 
succession into 

rH,/?o', / I , ,  and 9ohog,' =qOho. 

All three mappings are at least locally topological i n  corresponding points; 
their composite is y rU.hiqh. 

32.2 In the metric induced on G by -$J (the opposite of the Killing form) 
every open ball is invariant under G, since the Killing form is itself invariant 
under G'. 

Now take in this metric 

32.2.1 a smooth ball U around 0 (see Definition 8.4). I n  particular, U is 
invariant under G', exp maps U homomorphically onto exp U =  U ,  and 
TU c U for any real T with 171 < 1. 

U is simply connected, and so is U. 
A slraight path on U is meant as the exp-image of a rectilinear motion 

With the notation of 32. I ,  q( D n U )  c U for q E G/H.  
I n  the sequel p is a fixed point in D. 

in U. 

32.2.2. Proposition it '  E W,," is p-U-homotopic with a path on D. 

Proof By 31.12 it may be assumed that w(7) E F. After extending w, if needed, 
one may suppose that w( 1)  E D. By 32.1 the equation 

4 4  = d.1 h ( T )  

can be solved by a path q on G / H  and a pnth h on D withq(0) = H a n d  h(0) = 

~ ( 0 )  p .  NOW put 
,C,(T) = q ( O ) h ( T ) .  

By 28.1 1 
IV is homotopic withq(0)h o qh(1); 

/?(I) is a conjugate of ~ ( 1 )  by w(l )==q( l )h ( l ) .  By 32.2.1 it follows from 
II'( I )  E U that / I (  I )  E U ,  and for the same reason q ( ~ ) h ( l )  E U .  Consequently, 
4/?( 1 )  is / I (  I)-U-homotopic with a constant path. Furthermore q(0)k = h,  
since q(0) = H. 
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This shows that 
w is p-U-homotopic with h, 

which is situated on D as required by the proposition. 

32.2.3. Proposition If wo, w1 E Wp", lying on D, are p-U-homotopic in 
G,  they are so in D.  

Proof By 31.12 thep-U-homotopy of w0,w1 is already realized within F: 

wu(7)  E F, WO(T), w1(d  E D, wu(0) =p,  w,(l) E u. 

M'u(4 = S U ( T >  h U ( 4  

By 32.1 and 28.19 the equation 

may be solved by q,,(T) E G / H ,  h , ( ~ )  E D,  depending continuously on r~,~l, 

with q,(O) = H ,  h,(O) = w,(O) = p. The solution is unique, hence 

ho = M'O, hl = w1. 

Finally h,( I )  E U as a conjugate of w,( 1). So Y, h, meets the requirements for 
the p-U-homotopy of wo, w1 within D. 

32.2.4. Definition 2 is the set of h E b with exp h = 1 ; 2 consists of the 
distinct points 0 = zo,zI, . . ., z k .  

Let Ci be a component of D n I! which accumulates at  1 (actually all of 
them do if U is small enough, but this does not matter). C, = log C, makes 
sense (see 31.4). It accumulates at some element of Z and every element of Z 
occurs in this quality once and only once. If, moreover, U is small enough, C, 
has only one accumulation point in Z.  (Actually U is small enough.) So the C, 
may be numbered such that 

z,  is the only accumulation point of C, in 2. 
Now let a path w €'?TI be given. After a homotopic change (if necessary), one 

may assume that w = w I  o w2 with w,( 1) = p. Furthermore w I  may be supposed 
to be straight in b, from 1 to p .  By p-CI-homotopy w2 is changed into w,  lying 
on D (see 32.2.2) by means of w, (2 Q u Q 3). Straight paths u, (2 G u G 3) 
within U, with u,(O) = wu(l ) ,  u,(l) = 1, are attached to w,. Then w1 o w, o u, 
(2 G u G 3) describes a homotopical change of given w into w' E%'-~ ' such that 

w'(0) = ~ ' (1 )  = 1, w'(.r) E D for 0 < T < 1 ; 

w' is defined by 
~ ' ( 7 )  = log ~ ' ( 7 )  for 0 < T < 1, 

w'(0) = 0, 

w'(1) = lim log ~ ' ( 7 ) .  
T =  1 
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~~' isap: i thot ib ,s tar t i t ig~i tOat ide~idi t ig  at soniez, E Z .  It is homotopic o n b  
to a straight path from 0 to z,, called 12,. Then I I , ' ,  and consequently I,', is 
hotnotopic with exp h,. 

So the exp h, represent the homotopy classes. It  remains to show that they 
represent cvery homotopy class once. Suppose that exphi, exp hj are homotopic 
in G. Let u be a straight path i n  6, starting at logp and finishing a t  0. Put vi = 

u '1 hi and v j  - u I h,. Then exp ) p i .  exp v j  are p-I-homotopic and therefore 
p-U-homotopic; p i ,  Y ,  can be slightly changed into w i ,  w j ,  such that wi(0 )  = 

w j ( 0 )  = log p ,  and both are completely contained i n  D .  As vi(  1) = I z i ( l )  = t i , 

v , ( l )  = h j ( l )  = z j ,  still w i ( l )  E Ci ,  w , ( l )  E C,. Now exp w i ,  exp w j  are p-  
U-homotopic i n  G. By 32.2.3 they are already so within D. The endpoints 
of exp w i ,  exp w j  are in Ci,Cj. During the homotopic transition they stay in 
U and in D. Therefore they stay in a component of D n U. Consequently 
Ci = C,, whence i = j ,  which was asserted. 

The results are stated in the following theorem: 

Theorem Let G be a centerfree unitarily restricted semisimple group. The 
fundamental group of G is finite; its universal wrapping (and any wrapping 
whatsoever) is compact. Let D be a principd domain of C, and 2 the set of 
h E fi with exp h = 1. For any zi E 2 let hi be the straight path from 0 to zi. 
The exp hi form a representative system of the %'; '-homotopy classes. 

Sitice a unitary restriction ofa  complex semisimple linear Lie group wraps a 
unitary restriction of its adjoint, it follows that the unitary restriction of any 
complex semisimple linear Lie group is compact. 

32.3 To know the fundamental group (lj of G explicitly more information 
is needed. Using hj  rather than exp h, to indicate an element of @, one is 
advised to describe the group operation as an addition rather than a multi- 
plication. By 29.1 it is known that exph, o exph, is homotopic with 
(exph,)(exph,) = exp(h, + h,). One must compute hi + h,. Unfortunately, it 
need not belong to 6. This difficulty can be overcome by the use of the reflec- 
tions S,  (see 20.10). In 33.1 it will be shown that S,  is induced by an inner 
automorphism of G .  Inner automorphisms do not change the homotopy class 
of a path 11' E w,', since i t '  and c", M' are homotopic by 'f, c",wif yoc, is a path 
from 1 to c,. 

To study the action of such an automorphism on H ,  a basis a,,  . . ., a, of H 
is chosen such that 

pr(aj)  = O  for k # j ,  

= i  for k = j ,  

where p,,  .. ., pL  are the elements of W++. 
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describes the action of S,, in H*; 

Put 

Then 
(S,,, - 1) a, = Z a p . k  a,, for k = j, 

P 

= O  for k # j. 

Let v, be the straight path from 0 to 27ra,. (The paths /I[ with i # 0 form a 
subset of the set of v,.) Then exp v, E W l l .  Since exp v, and exp S,,,v, are 
homotopic, one recognizes that exp u,, with 

' J  = Z vR, 
P 

is homotopic with the constant path. 
For Ccom E A, this produces the homotopically trivial paths exp u,, with 

u1 = -2v1 + v2, . . ., u, = vj-1 - 2v, + v,+1, . . ., u, = v1-1 - 2v,. 

A simple computation shows: 

exp v, is homotopic with exp j v l ,  

exp(l + l )vl  is homotopically trivial. 

For Ccom E D, one finds the homotopically trivial 

U I  = -2v1 + v,, u2 = -2v2 + V I ,  

u j=  Y j -1  - 2v, + V j + I , .  . ., u, = Y1 + P2 + V I - 1  - 2v , ,  

u3 = -2v3 + Y4, . . ., 

which shows that 

exp 2 v l ,  exp 2v2,  expo - 2 ) v 3 ,  exp(v, + v2 + v,) 

are homotopically equivalent. 

32.4 The fundamental group of a Cartesian product equals the direct 
product of those of the factors. To find the fundamental group of G, one may 
restrict oneself to the case of simple G. 

Then by 25.6 there is a top rootform which surpasses or equals all others in 
all coordinates. This shows: 
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Proposition I f  G is simple and p is its top rootform, a principal domain is 
given by 

Impj>O ( j = l ,  ..., I ) ,  I m p ~ 2 7 r ;  
D is bounded in H by hyperplanes and Zconsists of all points h with 

pj(h) = 0 mod 274 Im p,(h) 2 0, Im p(h) G 27r, 
that is, apart from 0, one point for each primitive rootform occurring with 
multiplicity 1 in the top rootform. 

Using the top rootforms in Table E, one gets the following list for Z, in which 
the elements of Z are indicated by their pj-values as coordinates, omitting a 
factor 2ni 

32.5 

A,: ‘0,O ,..., 0,01 
F I , O ,  .. ., 0,Ol 
‘0,1, .. .) 0,Ol 

‘O,O,  ...) l , O ’  
‘O,O,  ..., 0 , l l  

B,: ‘O,O,  ..., 0,01 
‘0, I , .  . .) 0,Ol 

c,: ‘O,O,  . . ., 0,O’ 
‘O,O,  ..., 0,l1 

D,: ‘ O , O , O ,  ..., 0,01 
‘ l , O , O ,  ..., 0,Ol 
‘0,1,0, ..., 0,Ol 
‘0,0,1, ..., 0,Ol 

E,: ‘O,O,  O , O ,  0,01 
‘1,0,0,0,0,0~ 
‘0, 0, I ,  o,o, 01 
‘O,O,  0, 0, 0, 0,O’ 
‘0, 1, 0, 0, 0, 0 , O l  

E7: 

E,: rO,O,O,O,O,O,O,O1 
F,: ‘O,0,O,O1 
G,: ‘0,Ol. 

32.6 For A, the computation in 32.3 shows that the fundamental group is 
( I  + 1)-cyclic. For D, the only nontrivial elements are exp Y,, exp v,, exp v3,  all 
of order 2 if I is even, whereas for odd I ,  exp v, is of order 4. This shows : 

Theorem Let G be a centerfree unitarily restricted simple semisimple Lie 
group. It is simply connected if Gcom E G,, F,, E,. The fundamental group of 
C is two-cyclic for Gcom E B,, Cl, E7, three-cyclic for Gcom E E,, and ( I +  1)- 
cyclic for Gcom E A,. It is four-cyclic for Gcom E D, ( I  odd) and noncyclic of 
order 4 for Gcom E D, (1  even). 

32.7. Theorem Let G be a unitarily restricted semisimple linear Lie group. 
The center of G is contained in any trunk of G. 

Proof G and G are isomorphic, and G and e are locally isomorphic. As e is 
centerfree, G wraps C by means of a homomorphism A. If H ( H )  is a trunk 
of G (C), AH (AH)  is a trunk of 

Let w be a path in C leading from I to some center element. Then Aw is a 
path in G with (Aw)(O) = (Aw)(l) = 1. By 32.2 it is homotopic with a path 

(e). 
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Y T  exp $(T)  withh(7) E A. Here y, h ( ~ )  may be assumed to be continuous. Now 
by 28.19, y, exp h ( ~ ) ,  which is mapped by h into y, exp @T) ,  is homotopic 
with w in G. It finishes at iv(1) which is contained in H .  This proves the 
assertion. 

32.8. An immediate consequence: 

Proposition 
Then under the adjoint mapping the original of a t runk  is again a trunk. 

Let G be a unitarily restricted semisimple linear Lie group. 

32.9. Another consequence: 

Conjugacy Theorem 3 1.5 remains valid for arbitrary unitarily restricted 
semisimple linear Lie groups. 

32.1 0. Proposition The one-dimensional connected locally closed sub- 
groups of a unitarily restricted semisimple linear Lie group G cover G. 

Indeed, a trunk of G is covered in this way, and by the conjugacy theorem 
this property is extended to G itself. 

32.11. Proposition 

Remark This result was announced in 32.1. It suffices to prove it for centerfree 
G, since the center is anyhow factored out according to 32.7. 

Proof Let U be as in 32.2.1, and Ci as in 32.2.4. Since U is c-invariant, 
rG/H,  D n Ul is the original of U n  F under the wrapping of F by 
rG/H,  D1. The rG/H,  Cil are the different components of rG/H,  D n U l .  
Since U\Fhas codimension 3 in U, U n F is still simply connected. Hence each 
rG/H,  Cil wraps U n  F homeomorphically. Consequently the number of 
points above a point of Fequals the number of the Ci, which is the cardinality 
of the fundamental group. So rG/H,  D1, and G/Has well, is simply connected. 

G/H is simply connected. 

32.1 2. Historical Note The preceding approach to the fundamental 
group is H. Weyl’s, Math. Z .  24 (1926)=Sefecta 348-352, though the actual 
computation of the fundamental group was performed by E. Cartan, Ann. Mat. 
4,209-256 (1927) = Euvres I ,  2,793-840. 

33. THE AUTOMORPHISMS OF SEMISIMPLE LIE GROUPS 

G is assumed to be semisimple in ordered third dressing, complex or 
unitarily restricted, and sometimes centerfree or simply connected. Other 
notations as usual. 
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33.1. Reflections as Automorphisms 

A (continuous) automorphism of G leaving the trunk H invariant, induces 
an automorphism of W*.  Conversely, any automorphism of W* is induced 
by one of G, which extends to a local one of G ,  to a global one of the universal 
wrapping, and (by factoring out the center) to a global one of the adjoint 
group. 

A special automorphism of W* is known as S,  ( a  E W * ;  see 20.10). 

Proposition 
complex), which interchanges e, and e-,. 

S ,  is induced by an iiiner automorphism of C (unitary or 

Proof For a E W* put 

Then 
P a  q a  4 2 ( a ,  a>)"2 qa, 

par,  = +(2(cr, a))112 r,, 

Pa h = 0 forall h E H with a(h) = O .  

With T = 77i(2(a, a))-*, 

TPa q a  = -niqz, 

+,r, = mr,, 

7 j j ,  h = O  for h E H with a(h)=O;  

hence 
( ~ X P  TP a) qa  = -qa 9 

(exp 7 P a )  ra = -ra, 

(exp TP,) h = h 

(exp T P , ) ~ ,  = -ha. 

for h E H with a(h) = 0. 

Since 2h, = qa + r,, 

Therefore exp TP,  maps 

which mapping in fact induces S,. It  also interchanges e, and e-,. 
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exp TP, is an inner automorphism of complex G. Because of third dressing, it 
is even an inner automorphism of unitarily restricted C, since T is purely 
imaginary. 

Definition exp(ni(2(a,a))-* (2, + E,)), as an extension of S,, is also de- 
noted by S,. 

33.2-3. The Automorphisms of W* 

33.2.1. Definition Aut W* is the group of automorphisms of W*; also if 
linearly extended to H *  or H: and if transferred to Hand  HsI. The subgroup 
generated by the reflections S, (a E W*), considered as mappings of W*, or H *, 
H:, or H ,  HsI, is called the kaleidoscope group or group of inner automor- 
phisms of W*, indicated by Int W*. The group of automorphisms of thegraph 
Wtt is denoted by Aut W++; also if linearly extended to H *  or H; or trans- 
ferred to Hand HsI. 

As a permutation group of W*, Aut W* is finite. Int W* is normal in Aut 
W*. Aut W* preserves the inner product in H:. 

33.2.2. Proposition Int W* is generated by the reflections S, with 
P E  w++. 

Proof By25.4 every a E Wt can be obtained as a Tpo, where po E Wt+ and T 
is a product of reflections S,, with p E W++. Obviously S, = TS,,T-', which 
proves the statement. 

33.2.3. Proposition Under Int W* every element of W* is equivalent to 
one of W++. 

This follows as well from 25.4. 

33.2.4. Proposition If C is simple, then Int W* acts transitively in each 
of the (at most two) sets of nonzero rootforms with equal lengths. 

Proof By 33.2.3 it suffices to show that primitive rootforms of the same 
length are Int W*-equivalent. Inspection of the graphs shows that the sub- 
graphs of primitive rootforms with the same length are connected. Now, if p ,  u 
are adjacent primitive rootforms with the same length, then S,,S,,p = u. This 
proves the proposition. 

33.3 Every A E Aut Wt+ somehow extends to complex G, say 
Ae, = v, eA,. 
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Using an /I E H with p(h) = log v, for all p E W++ and arbitrary log-values, 
one can replace A by Ah-' with h = exp h, in this way reducing all v, ( p  E W + + )  
to 1. 

33.3.1. Definition An extension of A E Aut W f +  to G is called straight if 
Ae, = eAp for all p E W++. 

Proposition A E Aut W++ possesses a straight extension to G. Because of 
25.4.2, it is unique (after ordered third dressing). It commutes with C,,, Cst, M .  
It leaves the unitary restriction invariant. 

The straight extensions of the elements of Aut W++ to G clearly form a 
group. 

33.3.2. Definition The group consisting of the straight extensions of 
Aut W++ to G is denoted by AutC(Wt+). 

It is a subgroup of Aut G. 

An automorphism of G need not be induced by one of G. 

33.3.3. Definition The subgroup of Aut G consisting of the automor- 
phisms inducing elements of AutC( W++) is denoted by AutC( W++). 

If G is centerfree or simply connected, any automorphism of G is induced by 
one of G and therefore all of AutG( W + + )  is induced by AutC( W++). Therefore 
they are isomorphic. 

33.3.4 Aut W++ interchanges the components of W++. For simple G, that is, 
connected W++, it is trivial in most cases. The exceptions are 

A, ( l  > 1) : inverting the graph, 

D,( l> 4): permutingp,,p2, 

D,: permutingp1,p,,p,, 

E,: 

Comparing these data with those on the fundamental group (32.5), one 
notes that nontrivial elements of-Aut W++ induce nontrivial automorphisms 
of the fundamental group of centerfree Gun. On the other hand, Int Gun always 
acts trivially on the fundamental group. So nontrivial elements of Aut W++ 
cannot be induced by elements of Int Gun, whereas all Int W* is induced by 
elements of Int Gun (see 33.1). This proves: 

simultaneously permutingp, and p3, p4 and ps. 

Proposition Int W *  n Aut W++ = (1). 

group. 
In 33.8 this is proved in a more elementary way by avoiding the fundamental 
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33.&5. Chambers 

33.4. Definition The open convex domains in which H: is divided by the 
orthoplanes a'- of the rootforms a # 0 are called chambers. 

Evidently Aut W* permutes the chambers. 
Any natural basis Z (see 25.2) defines a chamber C(2): 

33.4.1 5 E C(2) e, (5, p) > 0 for all p E Z. 
Indeed, any a combines from Z with all coefficients nonnegative or non- 
positive; therefore (5, a)= 0 for no a E W* as long as .$ E C ( Z ) ,  and thus no 
plane aL enters C ( Z ) .  

Definition 5 E H: is called dominant if, in the given order, it is surpassed 
by no other Int W*-equivalent element of H:. A dominant chamber is one 
with a dominant element. 

If .$ is in some chamber, then any maximal element of the set (Int W*) 4 is 
dominant and again in a chamber. Therefore there is a t  least one dominant 
chamber. 

33.4.2 (5,p) 2 0 for all p E W++ 

is necessary to make 5 dominant, for, if (5 ,p )  < 0, then S, 5 = 5 -2((5,p)/(p,p))p 
is higher than 5. 

The system of inequalities 33.4.2 describes the closure of C( W"), 
as defined by 33.4.1. Therefore every dominant element is in C(W++)  
and every dominant element that is in some chamber is in C(W++). Con- 
sequently there is only one dominant chamber, namely, C( W++). 

If C, is some chamber, then for 5 E C, any dominant equivalent of 5 is 
contained in (Int W*)E n C(W++). Therefore (Int W*)C, n C(W++) is 
nonvoid, as is C, n (Int W*)C( W"). This shows that in every chamber 
(Int W*)C( W++) has some point, and, since Int W* permutes the chambers, 
the following obtains : 

33.4.3 Int W* is transitive on the set of chambers. 

Now consider an element of Aut W* that preserves the dominant chamber 
C. It interchanges the walls, and thus the elements of W++, while preserving 
the angles, and so it preserves the structure of the graph W++. It belongs to 
Aut W++. By the proposition of 33.3.4 an element of Int W* preserving C 
must be 1. Hence : 

33.4.4 Int W* is simply transitive on the set of chambers. 
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33.4.5 A consequence: Different points of a chamber can never be 
Int W*-equivalent. In  33.8.1 this is extended to closed chambers. 

Another consequence: No element of Int W:k,  except the identity, can have 
a fixed point in a chamber. So if S E Int W* is a reflection, its reflecting plane 
cannot cross any chamber. Hence: 

Proposition Any reflection belonging to Int W* has the form S,  with some 
a €  w*. 

33.4.7 

Theorem I n t  W* is generated by the S,(p E W '  ' )and is simply transitive on 
the set of ch:imbers. A complete representative system of Aut W*/lnt W* is 
furnished by Aut W' '. Any element of Int W* is induced by some inner 
automorphism of C leaving H and C,, invariant, but no element # I  of 
Aut W ' ' is induced by an inner automorphism of G. Any element of Aut W* 
is induced by some automorphism of C leaving H a n d  G,, invariant. 

The last assertion is easily verified: if A E Aut W*, then A = A ,  A,  with 
A ,  E Aut W + ' ,  A ,  E Tnt W*, where the extensions of A , , A ,  are achieved as 
in 33.3.1 and 33. I .  

The foregoing results are expressed i n  the following theorem: 

33.5. Proposition If Z is a natural basis of W*,  the intersection of the 
halfspaces ts ( 5 , ~ )  > 0 with p E Z is a chamber. By this construction natural 
bases and chambers are one-to-one related. Under a suitable order of H$ any 
chamber may play the role of dominant chamber. The structure of the graph 
of Cdoes not depend on the choice of the order in  H:. 

Proof The first assertion was proved in 33.4.1. Int W* preserves the notions 
of natural basis and chamber. It is transitive on the set of chambers. Therefore 
every chamber is produced by a natural basis. It is evident that this relation is 
one-to-one. According to 25.2.5, any natural basis can be obtained as a W t +  
under a suitable order. In this way any chamber can appear as the dominant 
one. All chambers are congruent, and thus all possible graphs are isomorphic. 

Remark The last sentence of the proposition fills the gap indicated in 
25.3 and 26.24. 

33.6-8. An Alternative Approach 

33.6. Proposition If a,P E W* and 2 .r(a,p) = 2x/nz,,p, then S,Sp is a 
rotation of order m,.p around the intersection of mi and pl as the axis. In 
particular, S,Sp = Sp S, i f  and only if a = ip or ( a ,  p) = 0. 

I f  cz # ip, the only possible values of m,,p are 2,3,4,  and 6 .  
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The proposition is obvious. Actually, the relations 
sp* = 1 ,  ( S  P O  s )mp.o = 1 (p  # u), 

between the generators S, (T E W++) of Int W* characterize Int W* as an 
abstract group. (Without proof.) 

33.7. Proposition Let B be the intersection of the two half-spaces 
t&t ,p)  > 0, t&, u) > 0 (p,u E W++,  p # 0)  and let Kp,O be the group generated 
by Sp,S,. The interior angle of B is 7r/mp,, (see 33.6), and the Kp,,-images of 
B do not meet each other. 

Proof The first assertion follows from the fact that 3: (p,  u) = 7r( 1 - (mP,,,)-'), 
X ( p , u )  being obtuse, and the second from the first and Proposition 33.6 
because this proposition implies that the orbits of B and SPB under SpSu each 
consist of mp,O elements, all mutually disjoint. 

33.8 In the proof of the proposition of 33.3.4, on which part of Theorem 
33.4.7 rests, the fundamental group has been used. A much more elementary 
proof is possible. Eventually one has to show that different points of the 
dominant chamber Ccannot be Int W*-equivalent. Even more will beproved: 

33.8.1. Proposition Different points of c cannot be Int W*-equivalent. 
In other words, 33.4.2 is also sufficient for 5 to be dominant. 

33.8.2. Proposition If t E C, then 
equivalents. 

surpasses all its other Int W*- 

33.8.3 Derivation of 33.8.1 from 33.8.2. Suppose 33.8.2 and both t and S t  
in C(some S E Int W*); then, by 33.8.2,t 2 Sf as well as S t  2 S - ' S t ,  which 
proves 33.8.1. 

33.8.4 If 1 , ~  E H: are Int W*-equivalent, they can be joined by a chain 
t=to,tl, ..., f P = ~  suchthat foreveryj=l ,  ..., ~ : ~ , # ~ , - ~ , a n d ~ , = S ~ ~ , - ~  
for some p E W + + .  In all but one W++-coordinate and 6, agree. Only the 
coordinate corresponding to p may decrease or increase from to t,. It will 
be shown: 

Proposition If to E C, then increases can be avoided. 

Proof For the needs of the proof assume a total order on H:, extending the 
given one (see 25.2.7). 

Since ( 5 , ~ )  > 0 for all p E W++, no S,,t is higher than 5; thus t ,  is definitely 
lower than to. If the chain to, fl, . . ., 5, shows some increase, then there must 

(It is evident that this proposition implies 33.8.2.) 
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be a reversal-Ej, which means a E j  such that T j - ,  > 6, < E j + , .  Suppose that the 
chain between 5 and 7 has been chosen such that the lowest reversal-f, is as 
high as possible. This will lead to a contradiction. 

Let 6, be the lowest reversal, 

E j  = spS,-,, E j + i  1 Su E j ,  with p, 0 E W++, 

( E j ,  P)  < 0, ( E j ,  0) < 0. 
Put 

$0 = E j i  

$,+, = S,,& for even i, 

$,+, = SUBi for odd i, 
up to 

with mp.u defined as in 33.7. The intersection of f t(E,p) > 0 and t5(E,a) > 0 is 
called B as in 33.7. In the $-sequence a reversal from decrease to increase 
could take place only at ~9~ E -B. Since the K,,,-images of B do not overlap 
(see 33.7), no 9, E - B  except 6,. Thus there is no such reversal in the 
$-sequence. 

to the other way 
around the intersection of p* and ul, that is, through =a,, a,, ..., 
QZmp.o-l = f , + , .  The lowest reversal-[, has been removed, while no lower 
reversals have been created. The lowest reversal has been raised, which 
proves the proposition by contradiction. 

9 2 m p . o  = $0, 

The &sequence is now modified by traveling from 

33.8.5 A consequence of 33.2.4 and 33.8.1 is the following: 

Proposition If C is simple, then among the rootforms of the same (non- 
vanishing) length there is only one dominant one. 

This is also confirmed by Table E. 

33.9. Automorphisms of C and G 

Definition 

Aut(C, H )  is the group ofautomorphisms of Cleaving Hinvariant, 
Aut(G, H )  is the group ofautomorphisms of G leaving Hinvariant, 
Int(C, H )  is the group ofinner automorphisms of Cleaving Hinvariant, 
Int(G, H )  is the group of inner automorphisms of G leaving Hinvariant; 

A is used for both the subgroup of Aut G as well as that of Aut G 
constituted by the exp h with h E H. 
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Theorem For complex or unitarily restricted G: 

(1) Int G is transitive on the set of trunks of G, 
(2) fl equals the group of automorphisms of G, leaving H elementwise 

(3) Aut(G, H ) / A  2( Aut W* in a natural way, 
(4) Int(G, H ) / f l  21 Int W* by restriction of the preceding mapping, 
(5) Aut(G, H) = AutC( W + + )  .Int(G, H), 
(6) Aut G = AutC( W++) .Int G, 

Furthermore the following statements hold : 

(i’) ( i  = 1,2,4,5,6), obtained by replacing G,H by G, H in the statement i, 

(3’) Aut(G, H ) / A  is isomorphic to a subgroup of Aut W*, which in the case 

invariant, 

with trivial intersections of the factors. 

and 

of centerfree or simply connected G again coincides with Aut W*. 

Proof (I), (1’). See the conjugacy theorems 17.8, 31.5, 32.9. 

u E H and to find an h E Hsuch that f = exp k. Clearly, for some v, 
(2), (2’). It suffices to consider an automorphism f of G with fa = u for all 

fe, = v, e,. 

From the commutator relations it follows that 

(a) v, v-, = 1, V, vfi = va+fi (a ,  p, a + p E W*). 
F o r h E H  

he, = a(h) e,, 

(exp k) e, = (exp a(h)) e,. 

To prove the assertion one must determine h E H such that 

(b) exp a(h) = v,. 

There is an h E H that fulfills (b) for all a E W + + .  Then by (a) it fulfills (b) for 
all a E W*, since the e,, (a E W + + )  generate G (see 25.4.2). 

In the unitary case one must take care that h E iH,,, but in that case f re- 
spects the unitary restriction, which means 

v,e, = fe, = C,, fCu, e, = -Gun fe-, = -Cu, v-, e-, 

hence 

= -P-, C,, e-, = P-, e,, 

- - I  v,=v-,=v, . 
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Now, since Iv,I = 1, all a(h) are purely imaginary for h fulfilling (b). So 
h E iH,, = Hun. 

(3)(4)(3')(4'). f E Aut(G, H)  or E Aut(G,H) induces an element Of of 
Aut W*. This inducement 0 is a homomorphism. Its kernel consists of the 
f that induce the identity on W*, hence on H. By (2) this is just H .  Conversely, 
by 33.4.7 any element of Aut W* (Int W*) is induced by some of Aut(G, H) 
(Int(G, H)) (whether G is complex or unitarily restricted), and this is again 
induced by some of Aut(G, H) (Int(G, H)) if G is centerfree or simply connected 
(see 33.1). 

(5) (5 ' ) .  The image of Aut(G,H) or Aut(G,H) under the inducement O 
contains Int W* and is contained in Aut W*. By 33.4.7 the splitting Aut W* 
=Aut W++-Int W* is lifted to Aut(G,H), where, according to 33.3.2-3, 
the first factor can be assumed to be in AutCW++. By this procedure Of 
can be lifted into f' = f l  f2 with some fl E AutC( W"), fi E Int(G,H) 
or fi E AutC( W++), f2 E Int(G,H). Now Of' = Of; hence by (2) f ETA. 
Therefore f E fl  Int(G,H), respectively, E fl Int(G,H), which proves the 
assertions. 

(6)(6'). Given f E Aut G or E Aut G, there is, according to ( I ) ,  some 
g E Int G, respectively, Int G, which carries H (H) into the trunk fH (fH) 
By (5 ) (5 ' )  g-'f E AutC( W++).Int G, respectively, AutG(W++).Int G, which 
proves the statement about$ 

The statement on the intersection of the factors is obvious. 

33.1 0. Automorphisms and the Fundamental Group 

Proposition An automorphism of centerfree G is inner if, and only if it 
acts trivially on the fundamental group of G (the unitary restriction). 

Proof The automorphism f may be ,assumed to leave the trunk H invariant 
and even to preserve the dominant chamber, thus to induce an element of 
Aut W++. If it is outer, then 33.3.4 states that it acts nontrivially on the 
fundamental group. If it is inner, it acts trivially according to 32.3. 

33.1 1. Plus-Automorphism In the case of simple G (see 33.3.4), with the 
exception of D4, there is at most one nontrivial element of Aut W + + ,  which 
extends to dressed G as a straight automorphism according to 33.3. For later 
use it is convenient to have the following: 

Definition The plus-automorphism P is determined after ordered third 
dressing as the straight extension of P defined on H * by 

A, (,> 1): PP, = PL+I-,, 
Dl ( I>4) :  PPI = P 2 9 p P 2 = P l , p P , = P , ( j #  1 9 %  

€ 6 :  p p l  = p-33 pp3 = PI, pp4= PS, ppS = p4, pp2 = p23 pp6 = p6. 
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P is involutory; it commutes with the minus-automorphism M ,  with C,, and 
C,,, and, except for D,, is uniquely determined. 

33.1 2-1 3. Minus-Automorphism 

33.12. Proposition For simple G the minus-automorphism M is inner, 
except in the cases A, (I > l),  D, (I odd), E,, where it is outer. M preserves the 
simple summands of semisimple G. 

Proof M maps an element of the fundamental group of centerfree unitary G 
into its inverse. By 33.10 and 32.6 the assertion is obvious. 

33.13 As mentioned in 23.1, the given third dressing is not uniquely deter- 
mined by its trunk H .  

Assume that M' is an involutory automorphism of G acting on the trunk H 
as the scalar multiplication by -1.  Then by Theoiem 33.9 

M '  = h ,  M for some h,  E H ,  

which can also be written as 

M '  = &&-I = M ,  

where h is some (existent) square root of h, in H .  
Putting 

ei = Ae, (a E w*), 
one gets 

M ' e i  = h M k l  .he, = he-, = ei,, 

#(he,, he-,) = +(ea, e-,) = 1. 

In other words, a new third dressing on His obtained with M' as its minus- 
automorphism ; its unitary semimorphism is hC,,h-', since hC,,h-'ek = 

hC,,h-' .he, = -he-, = -e'-,, and its unitary restriction is &Gun. 
More generally, let M' be an involutory automorphism of C acting on some 

trunk H' of G as the scalar multiplication by - 1 .  Since trunks are conjugate, 
there is an a E G such that H' = a"H. Then a"-' M'a" is as in the first situation, 
and a"-'M'a"= &MA-' for some h E H .  In the same way as above it is shown 
that M' is the minus-automorphism of a third dressing on H' with branches 
Jhe, (a E W*), unitary semimorphism &C,, h-'a"-', and unitary restriction 
a"hG,,. 

It follows: 
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Theorem The unitary restrictions and unitary semimorphisms of G with 
respect to the various third dressings form a conjugacy class under Int G and 
so do the minus-automorphisms. The possible minus-automorphisms are the 
involutory automorphisms of G that act as scalar multiplications by -1 on 
some trunk . 

Remark A n  involutory automorphism and a trunk, as mentioned in the 
theorem, determine a unitary restriction, but an involutory automorphism 
alone does not. Different involutory automorphisms with the same trunk may 
yield the same unitary restriction. 

Proposition A unitary semimorphism of Cis  a unitary semimorphism with 
respect to any trunk left invariant by it. 

Proof I t  may be assumed that the unitary semimorphism is the given one C,, 
defined with respect to H .  Let H '  be another trunk, C, ,H'=  H ' .  By 32.9 
there is an element a E G,, such that H ' =  ClH. Then, if M is the minus- 
automorphism of the given third dressing, the involutory automorphism 
ClMCl-' defines a third dressing on H' with unitary semimorphism ClC,,a"-' = 

33.14. The Corner Lattice 

33.1 4.1 The notion of principal domain (3 1.4) can be generalized: 

Definition The trunk H,,  is divided into domains called fundamental, by 
means of the hyperplanes defined by CY = 0 mod 2n-i (a  E W*). 

The fundamental domains are bounded and convex, and one of them is the 
principal domain. The notion of fundamental domain is carried over to H,, 
by exp. 

33.14.2 The chambers are one-to-one related to  the fundamental domains 
with a corner 0 (namely, by multiplication by i and inclusion); Int W* is simply 
transitive on the set of chambers (33.4.4). 

33.14.3. Definition The corner lattice consists of the points /J E H,,  with 
~ ( h )  = 0 mod 27ri for all cc E W* (it suffices to require it for a E W"), 

33.14.4. Definition The group generated by Tnt W* (acting on Hun) and 
the translations of the corner lattice is denoted by Int mod W*. 
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33.14.5. Definition SU*, is the reflection in the hyperplane a = m.2ni (m 
integral, CL E W*). The group generated by the &,, is denoted by Int' mod W*. 

33.14.6 Int mod W* interchanges the fundamental domains. It contains 
the &,,; thus Int' mod W* sub Int mod W*. 

Proposition Int' mod W* acts transitively on the set of fundamental 
domains. 

Proof Let D' be a fundamental domain, h E D', and w a path from 0 to h in 
Hun. After a slight modification, it may be assumed that if w leaves a funda- 
mental domain it will pass through the interior of a face and into an adjacent 
domain. Let the faces successively crossed by w lie in the hyperplanes 
ak = mk.2qi (uk E W*, where k = 1, . .., q).Then D" = S,,,,, S,,,,, D' is a 
fundamental domain with a corner 0. By 33.14.2 there is an S E Int W* such 
that SD" = D .  This proves the assertion. 

Remark One can show that Int' mod W* is even simply transitive on the set 
of fundamental domains. 

33.14.7 The parallelepiped Q c Hun defined by 

h E Q t+ 0 < Im p(h) < 27r for all p E W++ 

is mapped one-to-one into If,, by exp; its closure is mapped onto Hun. The 
division of Q into fundamental domains is transferred to If,,,,. By exp an 
element of Int mod W* is mapped into one induced by an element of Gun, 
since this is true for the elements of Int W* and since the translations in 
Int mod W* are mapped trivially. Hence: 

Proposition Hun is divided into sets equivalent to b under G,,, such that 
two of them meet in  boundary points only. 

33.1 6. Kaleidoscope Groups 

Table C), is used. 
A,, B,, Cl, D,, The terminology on H ,  as introduced in Section 16 (see also 

A,: Sprw, = w ,  for j # i , i + l ,  

S p P I  = W l t l r  

Sp,wl t l  = 9. 
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The reflections generate the symmetric group of / + 1 permutands. 
B, S p I w i  = w l  for i # / ,  

s,, wi -w1, 

S,,, (i # I )  as Sf,-, i n  
The general element of Int W* is a permutation of wl, . . ., w ,  combined with a 
mapping w 1  -+ f w , ,  . . ., w ,  -+ +w,, the signs being independent of each 
other. 

C , :  S,, ( i f  I )  as i n  A,, 
S, ,wi  = w i  for i #  I, 
s,, w ,  = -w1* 

The same Int W" as i n  B,. 

D,: S,, ( i #  1,2) as S,,., in A,-,, 
S p , w i = S f 2 w l = w i  for i < l - 2 ,  

s,,wi-i = -w , ,  

S,,w1-1 = w , ,  

Sp2w1 = - W , - l ,  

s,, w ,  = WI-1.  

The general element of Int W* is a permutation of w I ,  . . ., wI combined with a 
mapping w I  + * w , ,  . . ., wi + ko,, with independent signs such that the 
number of minus signs is even. 

The case of the exceptional groups is more involved. Without proof: the 
orders of In t  W* are 

G,: 12, F,: 1152, E,: 72.6!, E,: 56*72*6 ! ,  E,: 24036.72 .6 !  

33.17. Historical Note Though implicitly used by E. Cartan, the 
explicit introduction of the kaleidoscope group is due to H. Weyl, Math. Z.  24 
(1926) = Selecta, 338. The kaleidoscope groups of the exceptional groups 
were more closely studied by E. Cartan, Amer. J .  Math. 18, 1-61 (1896); 
Ei/n.es I 1,293-353. Another method is expounded in: H. Freudenthal, Proc. 
Kori. Akad. Wet. A57, 487-491 (1954) = Indagatiories Math. 16. 

34. INTEGRATION IN COMPACT GROUPS 

34.1-2. Measure in Groups 

34.1 In a real linear Lie group G an infinitesimal measure (see 5.4) assigned 
to the tangent space at 1 can be transferred by multiplication on the right 
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to any point of G. Such an infinitesimal measure is invariant under multi- 
plication on the right, as is the measure arising from it by integration. 

It is important to know whether this measure is invariant under left multi- 
plication as well. This is the case if and only if Z (a E G)  preserves the in- 
finitesimal measure at 1 or, equivalently, if and only if det a" = 1 for all a E G. 

If G is semisimple, this condition is fulfilled, for then tr a' = 0 for u E C.  
It is also fulfilled if c" is compact because then det maps c" onto a bounded 

connected subgroup of the multiplication group of reals, which can consist of 
1 only. 

34.2 Without proof it may be mentioned that a one-sided invariant measure 
exists in any locally compact group (Hum measure); if the group is compact, 
it is two-sided invariant and the total measure is finite. 

A short proof is given of the existence of such a measure in compact groups 
G, or rather of the existence of an invariant average of continuous functions 
on G. 

34.3. Measure in Compact Groups 

tions of G topologized by means of the norm I.. .I defined by 
Let G be a compact group, and @ the linear space of real continuous func- 

Linear mappings 9,, Ya (a E G )  of @ onto @ are defined by 

Note that 'fa.%', and y a y #  are homomorphisms of G. 

convex envelope of BGf, ZG f is denoted by CBcf, C Z G J  
W,f, respectively 6pG f, is the set of 9,f, 9, f (a E G).  The closure of the 

Because of the uniform continuity of continuous f, 

C9,A Cdp, f are compact. 

convex 
Furthermore, they are 

and invariant under all W,, respectively 9,; 

osc = max - min 
is a continuous functional on @. 

If there exists anything like a continuous invariant average on 0, it has to be 
the same for all B,f, hence for all elements of C9,f. If a constant function 
can be found in CBcf, its value should be the average off. To find such a 
constant one looks for the function with the smallest oscillation and proves 
that its oscillation vanishes. 
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Put 
inr  o scg=  y. 

!7ECXG.f 

Because of the compactness of C.OA,f, there is a g E C.9c; f with 

osc g = y.  

Given some E > 0, because of the compactness of C%',g, there are 

a,, . . ., a,,, E G 

such that for every a E G there is a j  with 

Jg(sa) - g(xa,)l < E for all .Y E G. 

Putting 
h = ( 1 /m> c *POL g, 

osc h < osc g. 
one obtains 

On the other hand, It E C.P,fi hence 

osc h > osc g. 

Thus 
osc h = osc g. 

Further. 
min g G min h < max h < max g; 

max h = max g. 
hence 

Now take .yo such that h(so) = max h. Then 

g(soak) = max g for k = 1, . . ., m. 
For a E G there is a j with 

I d . U o  a) - d . Y o  a,) I E ,  

and t h LI s 
g(s,a) rnax g - s for every a E G. 

This is true for every E > 0. Therefore g is constant. 
The same reasoning applies to CPG.fi 
The value of a constant function in C.4'G 

Let A ,  B be right and left averages ofJ Then 

CYc;f.is called a right, re- 
spectively, a hfi, werqsy of/-: 
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Ix u,f(xa,) - '4 I < 3E, 

Ix PkB,f(b;l - B I  < 3E, 
for a suitable choice of aj,bk E G and real uI, ..., u,, PI, ..., P,, such that 
a, 2 0, P k  2 0, a, = I ,  x P k  = 1. Replacing x in the first equality by b;'x, 
multiplying by P k ,  and summing up, one obtains 

I x P k  aJf(b;l xu,) - I < jE, 

and likewise 

From this it follows that every right average offequals every left average off, 
and therefore all are equal. 

Similarly, it can be shown that the average A is a continuous linear 
functional on @. 

Obviously A is invariant under gR and -YR because C g G  f and C-YG f are 
invariant under gR and -YR, respectively. 

Furthermore, 

Ic P k  aJf(b;l  xu,) - B I  < $E* 

iff(x) > 0 for all x, then Af> 0. 

Even more can be proved : 

iff(x) 2 0 for all x andf(x) # 0 for some x, then Af> 0. 

Indeed, in this case there is an open U c G on which f(x) > 6 for some 6 >O; 
G is covered by a finite number of Uu, say Uul, . , ., Uu,. 

(gRk-, f) (x) > 6 for x E uuk 

2 0 elsewhere; 

hence, if 

then 

and 

g = ( l/m) 2 gRk-, f, 

..ug = Af, 

g(x) > (l /m) 6 for all x E G. 

Finally, 

A g  = A ( g  - ( l/m) 6) + A ( l/m) 6 
Theorem On a compact group G there exists an average d ( o r  AG) of 
continuous functions with the following properties. 

( l/m) 6 > 0. 

34.3.1 A? is linear. 
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34.3.2 A9a=AYa=A for a E G ,  

34.3.3 A1 = 1, 

34.3.4 If f ( x )  2 0 for all x E G and f ( x )  # 0 for some x E G, then d f  > 0. 

34.3.5 JY is continuous. 

The properties 34.3.1, 34.3.2, 34.3.3, 34.3.5 characterize A. So do 34.3.1, 
34.3.2,34.3.3,34.3.4, even if the last one is weakened to 

34.3.4' f ( x )  2 0 + Af > 0. 

The last remark is easily proved by observing that 34.3.4' can be generalized 
by 34.3.1 and 34.3.3 to 

-E < f ( x )  < E --f -E < A f  < E .  

Using this characterization of the average, one can easily prove an analog of 
Fubini's theorem for continuous functions f defined on TC, G l  : 

34.3.6 A 'fa A Y b f ( a ,  b> = Af = A Y b A Y a f (a, b>. 

The average A extends in an obvious way to complex functions and finite- 
dimensional linear-space-valued functions. Then, if maps the finite- 
dimensional linear spaces R into R' linearly, 

34.3.7 Mo?f 1 = qJAf 

for linear functions from G to R.  

gauged by p(G) = 1, then for continuous f 
The above characterization shows that if p is an invariant measure on G, 

conversely such an invariant measure can easily be recovered from the average. 

34.4. Historical Note The preceding construction of the average in 
compact groups is due to J. von Neumann (Compositio Math. 1, 106-114 
(1934)). Haar's measure dates from 1933 (Ann. Math. 34, 147-169). Simpler 
constructions are extant (see, e.g., S .  Banach in S .  Saks, Theory of the Integral, 
1937; A. Weil, L'intdgration duns les groupes topologiques et ses applications, 
Hermann, Paris, 1940, 1951). 
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35. THE CONDUClBlLlTY THEOREM 

35.1-2. An Invariant Inner Product 

35.1. Theorem Suppose R E Spa Lin Rea or Com, dim R < w, G 
sub Aut R. If G is compact, then R can be endowed with a definite hermitean 
inner product, invariant under G (which then becomes a group of unitary 
mappings). 

Proof Starting with some definite hermitean inner product (. . ., . . .) in R, 
define a* for a E End R by 

for all x ,  y E R ;  
a* depends continuously on a, and so does a* a. 

makes sense as an element of End R. Furthermore, s* = s, 

(ax, y )  = (x, a*y) 

s = d& yaEGa*a 

(sx, x )  = 4 3  Y ac&* ax, x) 

= -4 Y asG(aX,  ax), 
which vanishes only if (ax, ax) = 0 for all a, hence if (x, x) = 0. Therefore 
(x, y)’ = (sx, y )  may be used as a new definite hermitean inner product on R. 
Moreover, 

and, using the invariance property of A? for c E G, 

which proves the invariance of the new inner product. 

(cx, cy)’ = (SCX, cy) = (c*scx, y ) ,  

s = d G  gCyaEG a* a = d G  YaeG(aC)* (ac) = A?G c* (ya& a* a) c = c* sc, 

35.2. Proposition Suppose R E Spa Lin Rea or Corn Inp, G sub Aut R. 
Then for every complete G-invariant linear subspace S of R there is a 
G-invariant linear subspace T of R, such that R = S + T is a direct sum, 
namely the orthoplement of S in R. 

The proof is obvious. 
Note that the completeness of S implies that its orthoplement is a linear 

complement in R even if R is not complete. 

35.3-4. Conducibility 

35.3. Definition Suppose R E Spa Lin, 0 <dim R < 03 and G sub Aut 
R;  G is called conduciblet if to every G-invariant subspace S of R there 
belongs a G-invariant subspace T of R such that R = S + T as a direct sum. 

t “Conducible” is a shortening of the usual term “completely reducible.” 
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The definition is analogous for linear Lie algebras C c End R. 
Irreducible G ( G )  is clearly conducible. 
I f  G ( C )  is conducible, then R splits directly into a sum of linear subspaces on 

which G (C) acts irreducibly. 
Indeed, there is an S ,  sub R, S ,  # {0}, on which G acts irreducibly; then 

R = S ,  + T, ,  a direct sum, with TI  invariant sub R. IFTI is not acted on 
irreducibly, some S2 sub T,  is irreducibly acted on, T,  = S, + T,, a direct sum, 
with T2 invariant sub T I ,  and so on. 

35.4. Conducibility Theorem R E Spa Lin, dim R < 00, G c Aut R, 
C End R ,  G E Gru Lie Lin, G E Alg Lie Lin. Then G or G is conducible under 
any of the following conditions: 

( I )  G is compact. 
(2) G is the infinitesimal algebra of compact G. 
(3) G is complex semisimple. 
(4) G is complex semisimple. 
( 5 )  G is real semisimple, R is complex. 
(6) G is real semisimple, R is complex. 
(7) G is real semisimple, R is real. 
(8) C is real semisimple, R is real. 

Remark It is the import of the conducibility theorem that the study of linear 
representations can be reduced to that of the irreducible ones. 

An elementary converse of this theorem was proved in 19.15. 

Proof (1) By 35.1, R may be supposed to be equipped with an invariant inner 
product; by 35.2, G is conducible. 

(2) Immediate consequence of (1). 
(4) If S is C-invariant, it is Gun-invariant. By (2), R = S + T, a direct sum, 

for some Gun-invariant T sub R.  Then T is also invariant under the complex 
extension G of Gun. 

(3) Is an immediate consequence of (4). 
(6) G n iG is an ideal in G + iG. From this it follows that G’ = G + iG is 

again semisimple. If S is G-invariant, it is G’-invariant. By (4) R = S + T, 
a direct sum, with some G’-invariant T sub R ;  but then T is also invariant 
under G. 

( 5 )  Immediate consequence of (6).  
(8) G may be supposed to be extended to Rco,. To the complexification of 

R belongs involutory semilinear D,  such that Dx = x for x E R.  Then 

aDx = Dax for a E G, x E Rco,. 
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With S sub R, S,,, is invariant sub R,,,. By (6) it has an invariant linear 
complement T'. 

Now T = (1 + D)((1 - D)-I(iS) n T') is an invariant linear complement 
of S in R. The invariance and reality of T are obvious. If x E T' and (1 - 0) x E 

is, then, if (1 + D ) x  E S, x = h(1 - D ) x  + +(1 + D ) x  E S,,,, whence x = 0 
and (1 + D ) x  = 0; therefore S n T =  (0). If x E R and x = s' + t', with s' E 
S,,,, t '  E T', then (1 - D)t '  = (1 - D)(-s') E is, so (1 + D)t '  E T, from 
which x = +(1 + 0 ) s '  + +(1 + D ) t '  E S + T, as required. 

(7) Immediate consequence of (8). 

35.7-9. Compact Groups 

35.7. Proposition If G generated by Cis compact, then Cis the direct sum 
of its center and of a semisimple Lie algebra. 

Indeed, G,,,, being conducible, admits such a splitting, according to 
19.15, and the same splitting applies to G. 

35.8 A compact counterpart of Theorem 19.8 : 

Proposition Let F be a compact linear Lie group, normal in the linear Lie 
group G. Then F behaves locally as a direct factor of G and every g" (g E G) acts 
on F as an inner automorphism of F. 

Proof The f with f E F produce a compact linear Lie group acting on G, 
which leaves F invariant; as a linear space G splits as a direct sum, G = F + Fl, 
with F, invariant underf(fE F); hence [F, F,] c Fl. On the other hand, F is an 
ideal in C; thus [F, F,] = F. Consequently, [F, Fl] = (0). Now expf, with 
f, E F1 acts on F as the identity; therefore expf.expfl( f E F, fl E F,) acts as 
an inner automorphsim, as does every g" with g E G near 1, and consequently 
any g E G. 

35.9 A torus group A in G E Gru Lie Lin Com SS is compact, and thus, 
by restriction of the adjoint representation, has a conducible representation in 
G. In the terminology of Section 18, A, and consequently A, can be said to 
be ad-pure. So by 19.20 A is contained in a trunk of G. 

Proposition A maximal torus group within a complex linear semisimple 
Lie group is a unitary trunk. 

Indeed, it is contained in a trunk, the maximal torus of which is uniquely 
determined. 



36. ORTHOGONALITY RELATIONS 187 

35.10. Historical Note It seems that E. Cartan assumed conducibility of 
semisimple linear Lie groups as obvious. Integration in compact groups, first 
used by A. Hurwitz, Giitt. Nachr. 1897,71-90, and then by I. Schur, Sitzber. 
Preuss. Akad. 1924, 189-208, 297-321,346-355, was applied by F. Peter and 
H. Weyl to prove conducibility (Math. Ann. 97, 737-755 (1927) = Selecra 
H. Weyl, 387-404). The elementary converse of the conducibility theorem 
(19.15) had already been proved by E. Cartan, Ann. Ecole Norm. (3) 26, 99 
(1909). 

Conducibility is proved in Section 50 by algebraic methods. 

36. 0 RTH OG 0 N ALlTY RE LATlO N S 

36.1-6. Irreducibility and Equivalence 

36.1. Definition A linear representation of a group G (a Lie algebra C )  
in R E Spa Lin, that is, a homomorphic mapping of G (C)  into Aut R (End R), 
is called reducible, irreducible, or conducible, according to whether its image has 
the said property. 

Definition I f f ,  g are linear representations of G in R,S,  thenfis called 
enchained to g (by means of k) if k # 0 is a linear mapping of R into S such that 

kf(a) = g(a) k for all a E G. 

They are called equivalent if k can be chosen as a one-to-one mapping of R 
onto S. 

Remark Enchainment and equivalence mean the same as nontrivial homo- 
morphism and isomorphism if applied to R and S considered as G-modules. 

This equivalence notion is applied with Lie algebras as well. It is a class- 
forming notion. 

36.2. Proposition (Schur's Lemma) Enchained irreducible linear re- 
presentations of a group G are equivalent. 

Proof Letf,g in R, S be enchained by k # 0. Let N be the kernel of k. Then by 
= g ( 4  k 

kf(a) N = g(a) k N  = (0);  

thusf(a)N c N .  By irreducibility N = R or (0). The first possibility is excluded 
by k # 0. So N = {0},  that is, k is one-to-one. 
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Furthermore, 
g(a) kR = kf (a) R c k R ;  

thus kR is invariant under g(a). By irreducibility k R  = (0) or = S.  The first 
possibility is excluded by k # 0. So kR = S, that is, k is onto. 

36.3. Proposition R E Spa Lin Com, dim R < CO, c E End R .  If c com- 
mutes with every element of an irreducible subset G of End R,  then c is a scalar 
multiplication. 

Proof Let h be an eigenvalue of c and let S be the set of x E R such that 
cx = Ax. Now S is sub R and invariant under G ,  since cax = acx = hax for all 
a E G ,  x E S. Hence S =  Rand cx = Ax for all x E R.  

36.4. Proposition The mapping k providing an equivalence kf(a) = g(a) k 
between two irreducible linear representations of the group G in finite- 
dimensional complex linear spaces is unique up to a scalar factor. 

Proof If for all a E G, kf(a) = g(a)k and k ,  f(u) = g(a)k, ,  then k-I k ,  com- 
mutes with allf(a) and by 36.3 is a scalar multiplication. 

36.5. Proposition R E Spa Lin Inp, G sub Aut R, S sub R,  S complete, 
S invariant under G, k = orthogonal projection of R on S.  Then ak = ka for 
every a E G. 

Proof The orthoplement S' of Sis  also invariant (cf. 35.2). 

akx + a(l - k ) x  = ax = kax + (1  - k )  ax for a E G, x E R.  

In both splittings of ax the first summand belongs to S, the second to S'.  Such 
a splitting is unique, which proves ak = ka. 

36.6. Proposition R E Spa Lin Inp, G sub Aut R,  S sub R, and T sub R, 
both G-invariant and irreducibly acted on by G, Scomplete. If the restrictions 
of G to Sand Tare inequivalent, then Sand Tare orthogonal. 

Proof Let k be the orthogonal projection on S. By Proposition 36.5 kax = akx 
for all a E G, x E R. Indicating the two restrictions by f and g, one gets kg(a)x = 

f ( a )  kx for x E T ;  thus, by 36.2, kT = {0},  which proves the assertion. 
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36.7-9. The Universal Representation and I ts Components 

36.7. Definition In the linear space @ ofcomplexcontinuous functions on 
the compact group G with thc continuous invariant average A an inner 
product is defined by 

(% $) = Y a 944 rn 
(m being the complex conjugate of $(a)). 

The representation 9 of G in @ by right translation, 

t g c  = Y Y a dac),  

is called the universal one. 

linear space, which, however, need not be complete. 
By 34.3.4 the inner product is definite. Therefore @ becomes a unitary 

The 9?c are unitary: 
- 

( 9 c  v9 g c  $1 = 4 Y a  d a c )  $@c> 

= A Y a d a ) r n  = (% $1. 

36.8. Proposition Up to equivalence every continuous irreducible linear 
representation f of compact G in R E Spa Lin Com (dim R < w) can also be 
isolated from 9 by restricting the latter to an invariant linear subspace of @. 

Proof Choose a linear functional u # 0 on R and define Qf,,, as the set of 
Yauf(a)x. Then @f,u sub @. By 

k =  YxY.uf(a)x 

kx = Y a u f ( 4  x, 

R is mapped onto Of,,,.  Now k is linear, and # O  because u # 0. 

?gC kx = ya U ~ ( U C )  x = ' f a  u ~ ( u ) ~ ( c )  x = kf(c) X; 

thus 
.Bc k = kf(c). 

The kernel of k is invariant underf(c) for all c, hence = (0). Thus k provides an 
equivalence offand y, (.gC restricted to @f,u). 

Definition For any continuous finite-dimensional linear representation 
f o f  G call @f,u the set of Y.uf(a)x; y , (9= restricted to @f.u) is calledf,. The 
linear space spanned by Gf ,", if u ranges through all linear functionals on R, 
is called Qf; or, alternatively, Qf is the linear space spanned by the matrix 
coefficients off on some basis of R. 
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For equivalent f, @, is the same; 65, splits in  correspondence with the 
inequivalent irreducible components off: 

36.9 I n  36.8 it was shown that any finite-dimensional continuous irreducible 
linear representationfof compact G can be recovered within @, namely, asf;, 
acting on @f,u.  Now it is shown: 

Proposition Letfbe a finite-dimensional continuous linear representation 
of compact G in R. Then any S sub @ acted on by 9 equivalently to f is 
some @ f , u  (on which W acts ash) .  

Proof Let k be the given equivalence; thus 

&?a k = kf(a) for all a E G. 

Put 
u = Y X E R ( ( ~ + W ) ) .  

Then 
( k x ) ( ~ )  = (gakx)(l) = (kf(a)x) ( I )  = uf(a)x.  

Thus 
kx  = y, uf(a) x, 

k R  = 65fvu. 

36.1 0-1 1. Orthonormality 

36.10 By 36.9 the linear subspaces of @ which are acted on by 92 
equivalently to irreduciblef are contained in 65, (see Definition 36.8). Thus 
as a consequence of 36.6: 

Proposition Tffand g are inequivalent, then @, is orthogonal to Qg. 

36.1 1. Proposition R E Spa Lin Com Inp, dim R = n ;  an orthonormal 
basis of R is given; f i s  a continuous unitary irreducible representation of 
compact G in R .  Then the matrix coefficients offas elements of @ are mutually 
orthogonal, each showing the norm n-lI2. 
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defines a sesquilinear form on R, which is invariant underf(a) for all a E G. 
Now (x, y)’ = (hx, y )  for some h E End R .  

(Ax, v) = (hf(4 x, f(4 Y )  = (f(4- ’ 4 Y) ,  

h =f(a)-1 hf(a). 

By 36.3, h turns out to be a scalar multiplication, Therefore the ratio 

(x, Y) ’ l (X?  Y )  

does not depend on x , ~ ,  though it may still depend on u,u. By a symmetric 
argument: 

36.1 1 .I 

where y is a constant. 
A coordinate function is a Yx(x ,u ) ,  where u is a basis member. A matrix 

coefficient off has the form Yx(f(a)x,  u), where x, u are basis members. For 
different pairs rx,ul, ‘y,u1 of basis members 36.1 1.1 vanishes, which proves 
the orthogonality of different matrix coefficients as members of @. Summing 
up 36.1 1.1 over x = y, u = u ranging over a basis, one gets, after the d#l? Y,-sign, 
the sum of absolute squares of the matrix coefficients of a unitary matrix, 
which is n. The second member becomes yn2, which proves y = n-*. Sub- 
stituting this into 36.1 1 . 1  one confirms the assertion on the norm. 

Y II (f(4 XY 4 (f(4 Y ,  u) = Y(X9 Y )  (u, V)Y 

36.1 2-1 5. Totality 

36.12. Proposition For compact G the Qf, with f running through a 
complete set of inequivalent continuous irreducible finite-dimensional linear 
representations of G, span a linear subspace @’ of @ which is dense in @, even 
in the uniform topology. 

The proof (see 36.14) uses standard methods of the theory of integral 
equations, expounded in 36.13. 

36.13 Let R E Spa Lin Com Inp, with inner product (..., ...) and norm 
11.. .I1 defined by 

llxll = (x, x)”2. 

For a linear mapping A of R into R, 

l l 4 =  SUP IIAxll, 
I l X U < I  

as in 2.2; A is boundedif llAll < a. 
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Let L be a linear mapping of R into itself such that L is hermitean, which 
means 

(Lx, Y )  = ( x ,  0) for x ,  Y E R, 

and relatively compact, which means that L maps 

Txllxll G I onto a relatively compact set 

(i.e., with compact closure). Note that L is bounded. 

36.1 3.1 llL211 = IM2. 

36.1 3.2 There is a z E R with llzll= 1 such that 

IlLll = IILzll. 

Proof Set a = IJLlI once again. By 36.13.1 there is a sequence of x, E R with 
Ilx,ll= 1 such that 

limllL2x,ll = a2. 

Because L is relatively compact, one may even assume 

lim Lx, = some y E R. 

It may be supposed that L # 0; that is a # 0, hence y 20. Now put 

2, = IILx,ll-'Lx,. 

IIL2xjII G IWI*IILx,II < IiL211, 

The sequence of z, also converges, say to z; llzll= 1. Taking the limit in 

one finds 
limllLx,ll = llyll = a; 

hence 
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36.1 3.3 For a = I'LlI: a or -a is an eigenvalue of L.  

Proof By 36.13.2 there is a z E R with 1 1 ~ 1 1  = 1 and jlLzlj = a. For real h and 
arbitrary s E R 

(L(z + Ax), L(z + Ax)) - a2(z + Ax, z + Ax) < 0 ;  

inspection of the linear term in h with replacement of x by ix yields 

((L2 - a2) z ,  x )  = 0 for all x E R ;  

hence (L2 - a2)z  = 0, that is, ( L  - a)(L + a ) z  = 0, which shows that z is an 
eigenvector of L belonging to t~ or ( L  - a ) z  is one belonging to -a. 

36.13.4 All eigenvalues of L are real. Eigenvectors of L belonging to 
different eigenvalues are mutually orthogonal. 

This is well known. 

36.1 3.5 
Ihl > y span a finite-dimensional space R,. 

For any y > 0 the eigenvectors of L belonging to eigenvalues h with 

Proof If this were not true, there would be an infinite orthonormal sequence 
of xj with Lxj = Xjxj, lhjl 2 y. Since L is relatively compact, one may suppose 
that the sequence of Lxj converges. But 

~ I L X j  - s k , ( l  = iihjxj - h k x k l l  = (hj2 + hk2)"2 > y1/2 

f o r j  # k ,  which is a contradiction. 

36.13.6 By 36.13.5 any orthonormal set of eigenvectors belonging to non- 
vanishing eigenvalues of L is countable. Let zI, z2 ,  . . ., be a maximal one. Then 
for x E R 

m 

Lx = c (Lx, z,) z,. 
1 

Proof The restriction ofL to the orthoplement Ry' of R ,  is still hermitean and 
relatively compact. It follows from 36.13.3 that IlLuIl < yI1uII for u E Ry'. Put 
x, = x - C'/ (x,z,)z,. Now, for almost all n, x, E Ry' (which follows from 
36.13.4-5), whence liLx,ll< y/lxnll G yllxll. This is true for any y and almost all n. 
Thus lim Lx, = 0. Now 

n n 

1 1 
L X ,  = Lx - c ( x ,  z ,)  Lz, = Lx - ( x ,  Lz,) z ,  

= Lx - c (Lx, z,) z,, 
I 
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which shows 
m 

1 
Lx = (Lx, z,) 2,. 

36.13.7. Lemma Let [...I be another norm on R, with llxll Q 1x1 for all 
x E R, and assume that the image under L of the set of x with llxll Q 1 is even 
relatively compact in the norm I**.I. Then, with x E R and zI ,z2,  ..., as in 
36.13.6, 

OD 

Lx = (Lx,z,)z, with respect to [ * . * I .  
I 

This follows from: 

36.13.8. Lemma If I...) is as in 36.13.7 and lim a,, = a  in 11-..11, and the 
sequence of a, is relatively compact in I * - * I, then lim a,, = a in I * - 1 .  

Proof Every subsequence of the a,, has a convergent subsequence in I...[ 
whose limit cannot be anything else but a. If the a, did not converge to a 
(everything in the sense of 1 -  -.I), there would be a subsequence that would not 
have a as a limit point, hence a subsubsequence converging to a point different 
from a, contradictory to the first observation. 

36.14. Proof of 36.12 Lemma 36.13.7 is applied to the space @ of 
continuous functions on compact G (instead of R ) ,  with 

(v, 4) = ”4 Y II d a )  a3 
as an inner product and 1 ~ 1  = max, lv(a)l as the I-..l-norm; @is I-.-l-complete. 

6(u-1)=6(a) for u E G 

L s v =  Y.”4Ybwb-1)v(b)= YII(v,%16). 

A continuous function 6 on G is chosen with 

and Ls (instead of L) is defined by 

Obviously Lb is hermitean (see 34.3.6). Because of the uniform continuity of 6, 
there is for any given E > 0 a l-neighborhood U in G such that (9tC6 - 61 < E for 
c E U .  Now for llvll Q 1 

I(L8v)(al) - (Lbv’)(az)l = 1(%%1-1 6 - 9 I I 2 - 1  611 Ilvll- l%7,-16 - .%2-1 61 

Q p?a2111-l  6 - 9.1 < E 

as soon as a2 E Ual.  This shows that the set of functions Lav with (1vl1 Q 1 is 
equicontinuous and I...l-bounded, hence relatively I--.l-compact, since @ is 
I.-.l-complete. Therefore Ls is relatively I-..l-compact. 

(9&* L$9TCcp)(U) = ”4 yb7qUc-l  b-’)q(bc) = A  Y*6(ab-’)p7(b) = (Lgv)(a),  
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hence 

Therefore, 

Thus the A-eigenspace of Ls, is WG-invariant. 
The restriction of W to the A-eigenspace of Ls, is called W A  (A # 0). This is a 

continuous finite-dimensional unitary linear representation of G. By 36.9 the 
A-eigenspace of Ls, (A # 0) is some Q ~ A , , , ,  thus contained in @@A and therefore 
in @', which was the linear space spanned by all belonging to continuous 
finite-dimensional linear representations f of G. By the lemma La@ is con- 
tained in the I..*l-closure of the linear space spanned by the A-eigenspaces 
(A # 0). Thus Ls, @ C @. 

Now for every q E @ there is a 19 such that ILgcp - ql is arbitrarily small: 
make 8(a) > 0 for all a E G, a(a) = 0 outside a small 1-neighborhood in G, and 
,A8 = 1. Consequently, Us,Ls,@ = @ and therefore @= 0, all closures being 
taken in the (***l-sense. 

Ls, Wc = Wc La. 

if Lgq = AT, then Ls, gCq = AWcq. 

This proves Proposition 36.12. 

36.1 5 The preceding results are summarized in a theorem: 

Theorem For compact G, in the sense of the invariant average, the matrix 
coefficients of a complete set of inequivalent continuous irreducible finite- 
dimensional unitary representations, if divided by a factor n-'I2 (n = 

dimension of the representation), form an orthonormal system, which is total 
in that every continuous function on G can be uniformly approximated by 
finite linear combinations of the functions of the system. 

37. THE CHARACTERS OF COMPACT GROUPS 

37.1. Orthonormality 

Definition The trace of a finite-dimensional linear representation of a 
group is called a character of G. It is the same for equivalent representations. 
A character is called continuous, irreducible, or n-dimensional, depending on 
whether a representation from which it can be derived has this property. 

The continuous characters of compact G belong to @ (see 36.7). 

Definition The elements of @ that are constant on every inner class of G are 
called class functions. 

The continuous characters are special class functions. 
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Theorem The continuous irreducible characters of compact G are ortho- 
gonal if the respective representations are not equivalent, and all among them 
have unit norm. They form a total orthonormal system for the subspace of 
class functions in the sense that every class function can be uniformly approxi- 
mated by finite linear combinations of these characters. 

Proof The first assertion is an immediate consequence of the fact that a 
character is a sum of the diagonal matrix coefficients with respect to a basis. 

Let y be a class function. As an element of 0, up to a given E > 0, it equals a 
finite sum 

a j k f  Ya(f(a) XI', Xk'), 

where f means a continuous irreducible linear representation of G in some R, 
with the basis xlf, . . ., xi,. Now 

which commutes with all f(b) (b E G), is a scalar multiplication according to 
Proposition 36.3. The multiplier, found by tracing, is 

n;' tr f (a) .  

Now, since y is a class function, 

y(a) = "4 Y c v(c-' ac), 

4 Y c z Q,k,(f(c-' ac> x,f, Xkf) = c a/k/ n;' t r f ( 4  (x,', X k 3 .  

which up to E can be replaced by 

This proves the second assertion. 

3 7 . 2 4  Reduction t o  the Trunk 

37.2 G is now supposed to be a centerfree unitarily restricted semisimple 
linear Lie group. The notions and notations are those of Section 31 ; G is 
known to be compact and therefore 37.1 may be applied. The average A on G 
can be calculated by integrating with a suitably gauged infinitesimal measure 

The conjugacy theorem (31.5) states that a class function is determined by 
its behavior in the principal domain D .  One may ask how the orthogonality 
properties of characters, as formulated in 37.1, can be expressed in terms of the 
restrictions of the characters to D or to H. 

dP. 
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Theorem Every invariant infinitesimal measure dp on G is related to an 
invariant infinitesimal measure dv on H such that for any continuous class 
function 0 

lG @ dp = 1 @(h) J-J (1 - exp a(h)) dv(h), 
UEW* 

h and h being related by exp h = h. 

Proof When integrating a function 0 over G, the complement of F(see 31.9), 
which is nowhere dense, does not matter; F is  wrapped in rG/H, Dl by means 
of y r a , h ,  qh (see 32.1). This wrapping transplants 0 to rG/H, Dl . Under the 
condition that the infinitesimal measure dp on G is also transplanted from F 
to rG/H, Dl as an infinitesimal measure dj2 the integration can be performed in 
rG/H, Dl just as well; of course, the number of sheets s has to be taken into 
account. Note that if 0 is a class function its transplant 8 to rG/H, Dl in a 
point ‘q,h7 depends only on h. 

Another than the transplant measure dj2 is better adapted to integration in. 
rG/H,  Dl:  Near H one can identify I: with TG/H, Dl by means of 

37.2.1 gh + ‘4, h’ with q = g H .  

Then, heuristically, rG/H,  Dl touches G tangentially along D (identified with 
r H / H ,  Dl). Now by 37.2.1 dp is transferred from Galong Dto rG/H,  Dl along 
rH/H,  Dl . The new infinitesimal measure dp* is invariant under H applied to 
the second member within the r,l-brackets. By left multiplication on G/Hit is 
carried over all rG/H, Dl . 

dp* = dp, -dp2 is a Cartesian product measnre in rG/H, Dl with dpl as a G- 
invariant infinitesimal measure on G/H and dp2 as an H-invariant one on H, 
at present restricted to D. Along rH/H,  D l  it coincides with that in F by the 
identification 37.2.1. 

If 0 is a class function, then 

which reduces the integration to one in D. How to calculate dj2/dp* at some 
point of r H / H ,  Dl becomes clear from the diagram 

wrapping 
r q , h l -  qh 

q = g H  t II q = g H  
gh - gh 

‘p 
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The transition by the vertical arrow is that of 37.2.1 which preserves the in- 
finitesimal measure. Therefore their behavior under wrapping is described by 
the mapping called rp in 31.6. This gives 

dci 
dP* UEW* 

- (h)  = det grad,, rp = (1 - exp a@)) if h = exp h E D. 

This shows 

where y does not depend on 0. (Note that exp a(h) depends on h rather than 
on h.) 

By 33.14.7 an inner automorphism of G leaving H invariant changes b in a 
fundamental domain to which it is equivalent under Int mod W* while 
preserving the differential measure and the value of the integral. Summing up 
over all equivalent fundamental domains, one gets, essentially, the integral over 
H ;  hence 

where y’ can be made 1 by gauging dp2 suitably. 

I-dimensional torus H. In the sequel it is indicated by dv. 
Because of its H-invariance, dp2 is an invariant infinitesimal measure on the 

37.3. Definition Q is defined as a function on H(or  rather on H ) ,  by 

and for any continuous irreducible finite-dimensional linear representation 
f of G, 

= Q(h) tr f(h) if h E H ,  h = exp h. 

Since a@) is purely imaginary, one gets 
- 
Q(h) = TI (1 - ~ X P  a@)). 

U S W -  

From 37.1 it follows: 

Theorem With a suitably gauged invariant infinitesimal measure dv on H 

0 for inequivalent 
1 for equivalent 

Therefore the irreducible characters multiplied by Q form an orthonormal 
system with respect to the ordinary measure on H (total with respect to class 
functions). 

An algebraic proof for this result is given in Section 48. 
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37.4 The results of 37.3 remain valid for an arbitrary unitarily restricted 
semisimple G (not necessarily centerfree) : 

G is a wrapping of c' by means of a certain A. The measures dp and dp 
in them are related to one another by invariance up to a constant factor under 
the wrapping h as far as h is one-to-one. A class function 0 on G defines a class 
function 0 on c' by means of 

= const' &) n(1 - exp a(h))di@), 

where h = exp h. Because of 32.7-8 and a(h) = a(@, this may be replaced by 

which proves the assertion. 

37.5.t The Natural Gauge The tangent space G of compact semisimple G 
is naturally gifted with a positive inner product by the negative of the Killing 
form. In turn, this inner product in G fixes a natural elementary volume, 
namely, by assigning the value 1 to an orthonormal basis. This leads to a 
natural invariant infinitesimal measure and to a measure on G, independent of 
the choice of the basis. One might wonder how large G,, measures with this 
natural yardstick. 

37.5.1. Definition The natural measure po on compact semisimple G is 
determined by an invariant natural infinitesimal measure dpo that assigns to 
some (-$,,)-orthonormal basis the elementary volume 1. 

37.5.2. Problem To determine the total po-measure-value of G. 
It suffices to solve it for centerfree simple G. 
In H an elementary volume v', which assigns the value I to a (-#IH)-ortho- 

normal basis, is introduced. It determines an invariant infinitesimal measure 
dv in H .  With a slight deviation in terminology from Theorem 37.2 the in- 
variant measure p in C is determined such that for every class function 0 

IG 0 dp = I D  @(A) (1 - exp a(h)) du(h). 
aEW* 

t The contents of 37.5 are not used in the sequel. 
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Anticipating a formula to be verified in 47.5.3, one gets 

p(G) = k v ( D )  = kv'(D), 

where k is the order of the kaleidoscope group. 
v'(D) can easily be calculated. Let G be given in ordered second dressing, 

p l ,  . . .) pI the primitive rootforms, and 2 q r p f  the top rootform. As in 32.3, let 
a', . . ., a, in H be determined by 

Then D is the I-simplex with vertices 

0 and the 27rq;' aj ( j  = 1 ,  . . ., I). 

Its volume according to v is 

1 
~ (24'(det r- #(aI, aJ)1f . j= l )1 /2 II 4;' 
I! j 

=- (2n) ' (det r (p i ,p j )1 f , j=1)-1/2 nq;'. 
1 

I !  j 

This leads to the formula : 

k 
37.5.3 P(G) = ~ ( 2 ~ ) ' ( d e t r ( p , , p i ) ' f , J = 1 ) - 1 ' 2  l-rqj ' .  

j 

It is clear how this formula has to be modified for nonsimple G. 
pO(G) is computed by comparing po with p. Put 

37.5.4 

B, means a ball around 0 in G with radius E ,  according to the (-#un)-metricy 
and BE is its intersection with H .  The characteristic function of exp B;  is a 
class function. For small E 

where the dots represent a term of order €'+I, and r = dim G. 
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On the other hand, a well-known formula assesses the volume of B, as 

hence 

This gives 

In order to be evaluated, the integral in the denominator is replaced by 

37.5.6 

Corresponding to the 
r - I = 2 m  

elements cc of W”, independent real variables (, are assumed and 

A ( [ )  = SH c+‘”JyC E, a(h))2“dv‘(h) 
OL 

is considered. The coefficient of 4, in A ( [ ) ,  written as a polynomial, is just 

(2m) ! 1. 

To compute A(( ) ,  orthonormal coordinates ulr . . ., u1 are assumed in Hsuch 
that uI  is a fixed multiple of c ,$,a; hence 

U I  = (C 5, a,  c 5, m)-1/2 i c f ,  a. 

A ( ( )  = ( - I P ( ~  f a x ,  c ( , a ) ‘ ~ S ~ e - c J l l J ( h ) ~ U : m d U ~  ‘ .*c iu l  

Then 

=(-I>”(c c 5,cc)”’.2l- ( / :e-”2du)l-’  
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The coefficient of na in ( - l )m (C [a a, C I, a)m is 

7 = C(Qi1Y Q i J ( % Y  4 * * * (ah-1’ 

where the sum runs over all permutations i of W*. This gives 

To come back to y, put 

FA = 1,. l-r 4 ) d W .  

Then 
FA = A’ Fl 

Now by 37.5.6 

= +rFI r(+r) = F,  * r(+r + 1 ) .  

is now substituted into the denominator of 37.5.5 by using the value of I 
obtained in 37.5.7: 

r ( l12 ) r  22mm! nm 

y=- i -  = 7 

Now by 37.5.3-4: 

Theorem With the natural measure po for centerfree simple G 
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where m = $(r - I), the qi are the coefficients of the top rootform on a natural 
basis p,, . . ., pl ,  and 

7 = ( e l l r n  n a i v  aiz)(%, * * * (%m-l, %), 

with the sum running over all permutations i of W*. 
Nonsimple G requires an evident modification. 
Unfortunately, the numerical value of T does not seem to be readily access- 

ible, except for the simple groups of rank ~ 3 ,  In fact, 

1=2:  ~ = 2 ( m ! ) ~  (a, a); 
U E W t  

hence 

Furthermore, 

7 
A,: - (a,a)=288. 

m !  aEW+ 

0, : = 6!*48. 

c, : = 6!.48. 

37.6. Historical Note The Frobenius-1.Schur character theory for finite 
groups was extended to compact groups by F. Peter and H. Weyl, Math. 
Ann. 97 (1927) = Sefecta H. Weyl, 387-404. The formula for the natural 
volume of G was derived by H. Freudenthal. 
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38. SOME GLOBAL PROPERTIES OF SEMISIMPLE LINEAR 
LIE GROUPS 

G E Gru Lie Lin Com S S  in third dressing, presented by linear mappings of 

Since by 32.2.4 Gun is compact, R can be provided with a Gun-invariant inner 

For a E End R one defines a* by (ax, y )  = (x, a*y) as before. 

R E Spa Lin Com (dim R = n < m); therefore G c Aut R .  

product (. . ., . . .). 

38.1-4. The Hermitean-Unitary Split 

38.1 The hermitean elements of End R are those a with a* = a, the anti- 
hermitean those with a* = -a; End R is the direct sum of the subspace S 
of the hermitean elements and the subspace U of the antihermitean elements, 
as follows from the involutory nature of *. 

The eigenvalues of an hermitean element are real, those of an antihermitean 
purely imaginary; both kinds ofelements appear in  diagonal form on a suitable 
orthonormal basis of R.  The hermitean elements of End R with positive (non- 
negative) eigenvalues only are called positive definite (semidefinite); they are 
the a E S with (ax ,x)  > 0 ((ax,x) > 0) for x E R ,  x # O .  

Let S be the set of all positive definite hermitean elements of Aut R,  U the 
group of unitary elements of Aut R,  that is, of those a for which a* = a- l ;  U is 
the infinitesimal algebra of U, and exp S c S. 
S is closed in Aut R,  for if a is in the closure of S it is by continuity still 

positive semidefinite hermitean, but, since, a E Aut R, it has no vanishing 
eigenvalues and is even positive definite. 

If the kernel of the trace on End R is interpreted as a member of An-] (see 
16.2), its intersection with U coincides with the unitary restriction formed 
according to 24.6. 

38.2. Theorem exp maps S homeomorphically onto S, with a nowhere 
degenerate gradient, and S is a closed analytic submanifold of Aut R.  

This is a consequence of Theorem 18.1.4, and 38. I .  

38.3. Theorem As an analytic manifold Aut R is the product of its closed 
submanifolds U and S by means of the multiplication in Aut R ;  explicitly, 
every a E Aut R can be uniquely written as a = su, with s E S,  u E U depending 
analytically on a. 

Proof U is a closed submanifold because it is a compact Lie group; S is so 
by 38.2. 

If a ~ A u t  R and a = s l u l  =s2u2 with st ES, ui E U ( i =  1,2), then ua*= 
s1 uI ul*sI* = s12 = s , ~ ;  since division by 2 is unique in S, extraction of square 
roots is so in S ;  hence s1 = s2 and u1 = u2. 
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If a E Aut R, then aa* E S ;  now take s as the square root of aa* in S and 
u = s-la; then a = su as required, with s, and u as well, depending analytically 
on a. 

38.4. Theorem As an analytic manifold G is the product of its closed 
submanifolds G,, and exp iC,, by means of the multiplication in  G; exp iC,, 
= C n S, G,, = G n U ,  that is, exp iC,, consists of all positive definite 
hermitean elements of G, and Gun consists of all unitary elements of G. 

Proof Because it is a compact Lie group, G,, is a closed submanifold, as is 
exp iC,, also because it is the image of iC,, = C n S under exp, Now 
G,;exp iC,, is a closed submanifold of Aut R ,  hence also a closed sub- 
manifold of G, but with the same dimension as G;  hence G = Gun * exp Gun. 
It also follows from the uniqueness in  38.3 that G n (I = G,,, G n S = exp Gun. 

38.5. Fundamental Group, Center, Closedness 

Theorem 

and its unitary restriction are isomorphic in a natural way. 
( I )  The fundamental groups of a complex semisimple linear Lie group G 

(2) The center of a complex semisimple linear Lie group G is finite. 
(3) The center of a real semisimple linear Lie Group G is finite. 
(4) A real or complex semisimple linear Lie group acting in R E Spa Lin 

Rea or Com is closed in Aut R .  (Anticipated in 30.1 .) 

Proof 

(I) G is homeomorphic with the topological product of Gun and exp iC,, 
in a natural way (38.4), and the fundamental group of exp iC,, is trivial. 

(2) The center may be interpreted as a factor group of the fundamental 
group of the adjoint G"; by the first part of this theorem and Theorem 32.2.4 
the fundamental group of (? is finite. 

(3) The center of G is contained in that of Gc,,. 
(4) By Theorem 19.10 and Proposition 12.16 this follows from the finiteness 

of the center. 

Remark Do not draw the conclusion that every real semisimple linear Lie 
group has a finite fundamental group. The universal wrapping need not be 
realizable as a linear Lie group. The class of connected groups locally iso- 
morphic to semisimple linear Lie groups is larger than that of those isomorphic 
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to semisimple linear Lie groups. However, there is a universal linear wrapping 
for any G E Gru Lie Lin SS (see 62.9). 

38.6. Historical Note The hermitean-unitary split is due to E. Cartan. 
It has still to be viewed in a broader context (see Section 64). 



THE ALGEBRAIC APPROACH TO LINEAR REPRESENTATIONS 

39. THE ASSOCIATIVE ENVELOPE OF A LIE ALGEBRA 

In the following general theorems on a Lie algebra G, the finiteness of the 
basis X is not involved, only its existence. The scalars need not come from a 
field; a commutative ring with 1-element is sufficient. 

The aim is to embed G into an associative algebra such that: 

39.1 [a, b] = ab - ba for a, b E G, 

and to ensure that no other relations but 39.1 are introduced. 

39.2 The basis X is supposed to be ordered (0. 
The free associative algebra with unit-element 1 generated by X is called 

d ( X ) ;  G is identified in a natural way with a subset of d ( X ) .  
C is the subset of xy - yx - [x, y ]  with x, y E X (or G). 
$(C) is the ideal generated by C in d ( X ) .  

Definition &(G) = d ( X )  mod $(C) is called the associative envelope of G. 
(The dependence of &(G) on Xis inessential.) 

Clearly this is an associative algebra in which 39.1 prevails. It is not evident 
whether what corresponds to G in d ( X )  is mapped one-to-one into d(G) by 
the reduction mod $(C). However, a still stronger proposition will be proved. 

39.3 A product of elements of X (monomial) is called orderly if its factors 
appear in the correct order; these terms will also be used forthescalarmultiples. 
An element of d ( X )  is called orderly if it is a sum of orderly monomials. 

Up to first degree monomials, yx can be replaced by xy mod $(C). Con- 
sequently, up to lower degree terms every monomial can be replaced by an 
orderly monomial mod $(C). By induction on the degree one can replace any 
element of d ( X )  with an orderly one mod $(C). Therefore every class of 
d ( X )  mod $(C) contains an orderly representative. It will be proved: 

Theorem The only orderly element in $(C) is 0. In other words, the sub- 
space of orderly elements of d ( X )  is a linear complement of $(C). 

Consequence As a subset of d ( G ) ,  G is mapped one-to-one into b(G) by 
the reduction mod $(C). 

207 
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39.4 Another property is the following. 

Theorem Let y be a mapping of G into any associative algebra A such that 
y[a,b] = p * y6 - ~ b .  yu. Then q~ can be uniquely extended to a homo- 
morphism of B(G) into A. Furthermore, B(G) is characterized by this 
property. 

39.5 A linear representation of &(G) will serve to prove Theorem 39.3. 
Let Xbe a copy of X. The element of Xcorresponding to one of Xis written 

as its light face counterpart. If x < y, then x < y, by definition. 
The free commutative associative algebra with unit-element 1 generated by 

X is denoted by Y ( X ) .  The subset of elements of degree G n is denoted by 
Y n ( X ) .  The set of monomials of degree n is denoted by .Mn(X) .  

If x E Xand u E .Mn(X) ,  then x G u means x G every factor involved in u. 
The next step is to define a multiplication 

gc E Y ( X )  for g E G, c E Y(X), 

in such a way that 

39.5.1 y,gc is linear, if Y ( X )  is considered as a linear space. 

39.5.2 (a lg ,  + a 2 g 2 ) ~ = a I g l c + a 2 g 2 c f o r  scalars aI ,a2 .  

that it be extended by the use of 39.5.1-2. 
It suffices to define this product for g E X and c E U, A , ( X )  and to require 

The definition proceeds by induction on the degree. The basic assumption is 

xl = x  for X E X .  

Under the assumption that 

gu  is defined for all g E G, u E Yn-] (X), 

xu is defined for all x E X, u E .Mn(X)': 

39.5.3 x u = x u  if X G U ,  

39.5.4 xu = yxu + [x, y ]  u 

if not x G u, u =  yu, and y G v.  
Note that 

39.5.5 xw = xw mod Y , ( X )  if w E Y n ( X ) .  

It is shown by induction that 
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39.5.6 xyu - yxu = [x, y ]  u for x, y E G, u E Y ( X ) .  

The induction step consists in assuming that 39.5.6 is true for u E Yn-l( A') and 
ascertaining it for u E ,nU,(X) while restricting x, y to X. One may add the 
assumption 

39.5.7 y G x,  

which means no restriction at all. 

39.5.8 The induction step is allowed if, in addition, y G u. Indeed, then 
y Q xu, hence 

where the first equality sign is justified by 39.5.3 applied to yu instead of xu 
and the second by 39.5.4, with u instead of u.  

The induction step has still to be justified, if not y Q u. Then one can split 

xyu = xyu = yxu + [x, y ]  u, 

39.5.9 u = zv, z E x, u E .nU,-I(X), 

39.5.1 0 z G u, 

39.5.1 1 Z <Y,  

39.5.1 2 z < x  

(the last inequality because of 39.5.7, which will no longer be used explicitly 
so that the symmetry between x and y is now restored). 

Now 
yu = yzu = yzu = zyu + [y ,  z ]  u = e(yu) + z(yu - yu) + [y,  z ]  u, 

where the first and second equality signs are due to 39.5.9-10, and the third 
to the induction assumption, the fourth being trivial algebra. Multiplying by 
x, one gets for the three summands, 

(1) xz(yu) = zx(yv) + [x, zl(yv), 
where 39.5.8 has been applied withe instead ofy and yu instead of u, thanks to 
39.5.10-1 I which ensures that z Q yo; 

(2) xz(yu - yu) = zx(yu - yu) + [x, z ]  (yu - yu), 

where the induction assumption could be applied, thanks to 39.5.5, which 
ensures yu - yu E Y n - , ( X ) ;  

X[Y, zl = [Y ,  21 xu + [x, [y ,  zllo, (3) 
where the induction assumption applies because u E Y,- , (X) .  
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Together this means 

xyu = zryu + [x, zlyv + [ y ,  21 xu + [x, [ y ,  zll u. 

In yxu the second and third summand together would be the same; thus by 
Jacobi associativity, 

xyu - yxu = r[x,yl + “x,yl ,  21 

= k,yl zu = [x,yl ZfJ = [x ,y lu,  

where again the induction assumption has been used as well as 39.5.10 and 
39.5.3. 

This proves 39.5.6. 

39.6 In an obvious way the multiplication can be extended such that 
ac E 9(X) for a E d(X), c E 9 ( X )  

and 6 = y. ycac is a homomorphism of d ( X )  into End 9 ( X ) .  
Now 39.5.6 can be reworded as 

CY(J3 = (01, 
which implies 

39.6.1 $(C) 9(X) = (01. 
To prove Theorem 39.3 take an orderly a in B(C). Then, from 39.6.1 

a - 1  =o. 
a * 1 arises from the orderly a by substituting for every x E X involved in a its 
counterpart x E X. So a * 1 = 0 only if a = 0, which proves Theorem 39.3. 

39.7 Another conclusion is the following. 

Proposition As defined in 39.6,6 represents b(G) faithfully in End 9 ( X ) .  

Proof 39.6.1 shows that the kernel of 6 contains $(C). Conversely if 6a = 0, 
one can find an orderly b such that u = b mod $(C). Then 96 = 0, hence 
b = 0, hence a E $(C). 

39.8. Historical Note The first correct proof for the existence of an 
associative envelope of a Lie algebra was provided by E. Witt, J .  reine angew. 
Math. 177,152-160 (1937). The present proof was given in “SCminaire Sophus 
Lie 1954-1955.” 
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40. THE CASlMlR TOOL 

21 1 

G E Alg Lie Com SS, dim G = r .  
a,, . . ., a, and a',  . . ., a' are correlate bases of G with respect to the Killing 

form; that is, 
1 for i =  j ,  I 0 for i #  j .  

trii,iij= 

40.1. Definition The element 

z = C a ' a ,  
i 

of the associative envelope of G is called the Casimir tool of G. 

the bases, provided they are correlate. 
The definition is justified by showing that z does not depend on the choice of 

Assume b', bi ,  defined by 

b' = 2 ypi a", 2 yjq b, = aj, 
P 4 

with det y # 0; then, by passing to the adjoint elements, multiplying, and 
tracing, 

hence, 
1 for i = q ,  = I  0 for i # q .  

tr 6'8, 

Consequently, b , ,  . . ., b, and b',  . . ., 6' are also correlate bases, and clearly 
every pair of correlate bases can be obtained in this way. Moreover, 

C b'bl= 2 y p i  a" bi = C apup.  
i P.' P 

In particular, 2 a' ui = 2 a' ui. 

40.2 If E is an element of the adjoint group e, then 
Fa,, ..., Fa, and Fa', . .., E d  

again form a pair of correlate bases. Now with c = exp tc (c E G): 

2 (exp tt;) ai * (exp rt;) ui 

is constant. Differentiating at t = 0, one gets 

hence 
2 ( [c ,  a'] * a' + a' . [c, a ' ] )  = 0, 

c 2 a i d  - 2 U ' U ' C  = 0. 
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It turns out that the Casimir tool commutes with every element of G. 
Consequently : 

Theorem The Casimir tool of G is in the center of the associative envelope 
of G. 

A proof that avoids the use of the adjoint group.is more involved : 

x tr (t'I?J)aJ = a' ;  
J 

hence by linear combination, for any x E G, 

40.2.1 tr(fa',)a'=x; 
J 

in particular, for x = [c, a'], 
N x tr ([c, a'] Z J ) d  = [c, a']. 

J 

Multiplying by ai and summing up, one gets 
N x tr ( [c ,  a'] Is,) aJ a1 = x [c, a'] a, 

1.; I 

and likewise 
N 

tr (Isi[c,a,])aJai =x aJ[c,aJ]. 
1.1 

The two first members together are 0 because of the infinitesimal invariance of 
the Killing form under the adjoint Lie algebra. Thus, 

0 = [c, a'] a' + c a' [c, a'] = c (ca'a, - a, cat + a' CU' - a' a, c) 

= cz - zc. 

40.3 A remark on the use of correlate bases: From 40.2.1, one gets 

tr ( f j )  = x tr @Isi) * tr(jIs,). 
1 

If hl ,  . . ., h1 and h', . . ., hi form a pair of correlate bases of the trunk Hand  
second dressing is assumed, then 

and 
hl, ..., 4, e, (a E W*),  

h', ..., h', e-, (a E W*) 

form such a pair for G. Then 
tr kk' = 2 tr (hi,) tr (i lk');  

1 

hence if 
{h=  5, (h'= f '  
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40.4. Historical Note H. B. G. Casimir,Proc. Kon. Ned. Akad. Wet. A34, 
844-846 (1931), introduced what here has been called the Casimir tool. It has 
proved to be an important counterpart of the Killing form. The full center of 
the envelope was investigated by Harish-Chandra, Trans. Amer. Math. SOC. 
70,28-96 (1951). (See also 77.24.) 

41. WEIGHTS AND INTEGRAL FORMS 

It is the aim to investigate the finite-dimensional linear representations of 
complex semisimple G by algebraic methods. For the time being, however, the 
finite dimensionality of R E Spa Lin Com in which G is represented is not used 
unless it is explicitly mentioned. 

If dim R < m, the linear Lie group infinitesimally generated by the repre- 
sentation of G may be used. 

To simplify the notation an element of G and the linear mapping of R 
representing it are often indicated by the same letter. 

The notations are as usual, in particular, H for an ordered trunk. G is 
assumed in ordered second dressing. 

41 .l. Weights Suppose a linear representation is given. 

Definition If there is an x E R,  x # 0 such that 

hx = A(h) x (A linear on H ) ,  

A E H* is called a weight of the representation and this particular x is said to 
belong to the weight A, as a weight vector. The linear space of all x belonging to 
A, 0 included, is called the weight space? of A in the given representation. Its 
dimension is called the multiplicity? of the weight A. The order in H z  applies to 
the weights in it. 

The notion of weight is defined in the same way if Cis not semisimple but the 
direct sum of a semisimple Lie algebra and an abelian one. The subsequent 
considerations can be modified rather trivially to cover this case, provided that 
the abelian part is conducibly represented. 

H being abelian, there are weights as soon as dim R < co. (See 13.6.) 
Clearly the weights of the adjoint representation y,Z are the rootforms. 

41.1.1 
then 

Iff is a linear representation of G and T is an automorphism of G, 

g = Y of (T4  
t The terminology does not agree a priori with the usual one. It does, however, if His pure, 

and in such cases the notions will, in the main, be applied. 
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is a new linear representation of G. Take H' = T-I H as a trunk; if x is a 
h-weightvector off, then x is a p-weightvector of g ,  where 

p = Y A ~ E H ,  h(Tg), 
since 

g(h') x =f(Th') x = A(Th') x = p(h') x. 

41.1.2 Of course then the trunk may have been changed. It is important to 
know how, for a given linear representation (say identity), the system of 
weights depends on the choice of the trunk. It is shown that this dependence 
is not essential. 

Suppose that dim R c to. Any other trunk H'has the form CH, where cis in G, 
infinitesimally generated byfG. Now for h' = Ch E H' and a h-weightvector x 

h' cx = chc-1 cx = chx = h(h) cx = A(?-' Ir') cx, 

which transfers the weight system (multiplicities included) from H to H' by 
means of the linear mapping 

YE Y ~ ~ E H ' ~ ( C - ~  N). 

41.1.3 In analogy with 22.1.4 the use of G can be avoided. 
Continue to assume that dim R < to. With a continuous change of H weights 

are changing continuously; therefore some weak structure of the weight 
system will be unchanged. This weak structure includes multiplicities as well as 
the ladders introduced in the next sections. Again the weak structure suffices to 
fix the strong one. 

The foregoing may be restated as follows. 

41.1.4. Proposition For finite-dimensional representations the weight 
system does not depend essentially on the choice of the trunk. 

41.2. Ladders If x belongs to the weight A, then 

which proves : 
he, x = [h, e,] x + e, hx = a@) e, x + X(h) e, x ,  

If x belongs to the weight h then e,x = 0 or e,x belongs to the weight h + a. 
Definition A sequence xo ,x l ,  . . . E R of weight vectors is called an a-ladder 
if 

e-, xo = 0, 
e,x, is a scalar multiple of x,+~, 

it stops at  x p  iff eaxp = 0. 
If such a p exists, it is called the ladder length. 
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The weights to which the xo,x I ,  . . . belong are also said to form an a-ladder. 

Proposition a-ladders of weights have an interval a. 

41.3. Ladder Length Let xo belong to the weight A, assume that 

e-, xo = 0, 

x, = eaJxo. 
and define 

Then x, belongs to the weight A +ja or x, = 0. 
Inductively one finds scalars p, with 

41.3.1 e-ax,+1 = P J X P  

Putting p-l = 0 and taking 41.3.1 for granted, one raises the subscriptj by 

e-a Xj+2 = e-a ea XI+ I 

= [e-a,ealx,+~ +eae-ax,+~ 

=-haX,+1 +PjeaXj 

= - ( A + ( j +  1)a)(ha)x,+l + P I X ~ + I ,  

which creates the recursive relation 

pjt l  = P, - ( A  + ( j  + l>a)(ha)* 

Adding up these equations ( j  = -1,O, . . ., i - I ) ,  one finds 

1 

0 
41.3.2 PI  = -C ( A  +&)(ha) 

= -(i + 1)(A + $ia)(ha) 

= -(i + 1) ((A, a)  + +(a, a)), 

because of second dressing (see 21.1.8). 
If the a-ladder xo,x l ,  . . . is finite, say of lengthp, then pp = 0; thus, 

41.3.3 

In this case, 

41.3.4 P I  = 3(j+ 1)(P - d ( a ,  4. 
As in 21.1.8, one can state the following. 
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41.3.5. Proposition A finite a-ladder of weights starting at h has length 
-2((h, a)/(a,  a)). It is turned upside down into a (+)-ladder by S,  (see 20.10, 
21.1.8). All finite a-ladders differing by real multiples of a have the same 
midpoint. 

In particular, if h is a weight, a E W+, and j , k  are maximal and minimal 
integers such that h +ja, h + ka are weights, then S,(h +ja) = h + ka, 
and all h + p t ~  with k Q p ~j are weights. 

41.4-5. Integral Elements 

41.4 The foregoing leads to a definition. 

Definition f E H* is called integral, or 4 E Hi*,,, 

if - 2 ~  is an integer for every a E w*. 
(a ,  4 

Obviously W c  Hi*,* c H;. 
The following has been proved. 

Proposition Weights in finite a-ladders ( a  E W*) are integral elements 
of H:. 

41.5. Proposition 5 E HEg iff -2((5,p)/(p,p)) are integers for all p E W++. 

Proof “Only if” is obvious. The condition can be restated in this form: 
S,  f - f is an integral multiple of p E W + + .  If it is fulfilled, then clearly Sf - 4 is 
a linear combination from W++ with integral coefficients for any S E Int W*. 
In particular, 

is so for a = p,p,  E W+. Thus all -2( ( f ,  a)/(a,  a ) )p ,  are integers, whereas by 
25.4.1 the p j  have no common divisor. Therefore -2((f ,  &)/(a, a))  is integral 
for every ct E W + ,  which is the assertion of the proposition. 

41.6-7. The Weyl Tool 

41.6. Proposition S,  ( p  E W + + )  interchanges &p and is a permutation on 
W+\{P). 
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Proof If ct E W+\(p}, then on the basis W + +  a has a positive coefficient for 
some u E W t t  with u # p .  So has 

Hence all its nonzero coefficients are positive and Spa E W+.  

41.7. Definition 6 = 4 zuEW+ a is called the Weyl tool. 

Proposition 2((6,p)/(p,p)) = 1 for all p E W + + ;  hence 6 is dominant and 
6 E H i g .  

Proof By applying Proposition 41.6 one gets 

Sp26 = 26 - 2p for p E W++, 

thus, 
( 6 9  f )  
(P 9 P) 

2-=1 for P E  W++. 

42. SOURCE, TOP WEIGHT, AND LIMITATION OF A 
REPRESENTATION 

The notations are as before. 

42.1. Source 

Definition If every G-invariant subspace of R containing x E R coincides 
with R ,  x is called a source of the representation of G. 

If x is a source and u, ,  . . ., a, form a basis of G, then R is linearly spanned by 
the 

Actually the 

suffice, for every “wrong pair” ads, (c < d )  can be replaced by 12,414 + [ a d , ( I c ] ,  

where the second summand gives rise to shorter products, On a basis of 
G using second-dressing branches, the 

aIlu/2 * - . a1,x. 

a i l  .:’ . . . 

I I  . . , e‘rn ,]I . . . el,m,Hf~. . .)j?x 42.1.1 e-u I Urn OLI 

span R ,  where a,,  . . ., a,,, are the positive rootforms arranged in some linear 
order, preferably compatible with the partial order in H:. 
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If, moreover, x belongs to a weight A, then in 42.1.1 the factors h may be 
canceled because of hi x = h(hi).x. Then the element in 42.1.1 (if # 0) belongs to 
the weight 

and there are no other weights. 
This shows: 

Proposition I f  there is a source of weight A, then, for every weight p, the 
difference p - h is an integral linear combination from W*. If there is a source 
of integral weight, all weights are integral. 

42.2-3. Source of Top Weight 

42.2. Definition Given a representation, a weight exceeding the others, if 
it exists, is called the top weight. 

Suppose a maximal weight h and a source x belonging to h as its weight 
vector. Then e,x (ct E W + )  vanishes, since otherwise it would belong to the 
weight h + a > A. Then all terms 42.1.1 with some j ,  > 0 can be left out of 
consideration. Therefore h is even the top weight; R is already spanned by the 

42.2.1 e-p, * * e-pm x, 

where p , ,  . , ., pm stem from W++ in an arbitrary succession in which repetitions 
are allowed. This follows from the fact that every e-, (a  E W+) can be obtained 
from the e-p ( p  E W++) as a scalar multiple of compound commutators. 

The weight of 42.2.1 (if # 0) is h - 
It follows: 

p4. 

42.2.2. Proposition Suppose there is a maximal weight h and a source 
belonging to h. Then 

(1) h has the multiplicity 1. 
(2) Every weight p has a finite multiplicity. 
(3) h is the top weight. 

42.2.3 From 41.1.1 it is known what happens to weights under an auto- 
morphism T of G. If T leaves H and W++ invariant, it preserves the partial 
order on H: and thus maps the top weight into the top weight. Hence: 
Proposition If h is the top weight of the linear representationfof G and T 
is an automorphism of G leaving H a n d  W++ invariant, then 

7'-' h = y hsjy A( Th) 
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is the top weight of 
Y aE G f( m. 

42.3. Definition The representation with a top weight source vector x is 
limited if for every p E W++ almost all e!,x vanish. 

Note that in case of limitation the (-p)-ladder ( p  E W++) starting at x has 
lengthp computed by 41.3.3. 

Proposition I f  the representation is limited, then for any y E R almost all 
e i ,  y ( p  E W++) vanish. For every p E W++ every weight belongs to  a p-ladder. 

Proof One may suppose 
y = e-p, * .  - e-pnx 

(pl, . . ., pm E W++ as in 42.2.1) and then proceed by induction along m. The 
induction step is justified by the following statement: 

If e l p y  = 0 ,  then el+P3e-, y = O  for p,u E W++. 

This statement is true, since 
e::’ e-, y = e!’p2 e-, e-p y + Kel+’ P e-p-a y = 

with scalars K ,  . . ., K’ ,  K”, K” ’ ;  remember that -u - 4p cannot be a rootform. 
It follows that for every weight p and every p E W++ there is an integer 

j > 0 such that p - j p  starts a p-ladder. Let k be the maximal integer such 
that p + k p  is a weight. Then Sp(p - j p )  G p + kp, hence Sp(p + kp) G p - j p  
s p < p +  kp which shows that p belongs to the p-ladder starting at 

42.4. An Inequality Under the assumptions of Propositions 42.2.2 and 
42.3 any p-ladder of weights (p E W++) is bounded from above according to 
42.2.2 and from below by 42.3. Therefore it  is finite. 

= e - , e ~ + , ~  y + ~ ‘ e - ~ - , e ! ! + , ~  y + ~“e-~~- , ,e! !+, l  y + K ,,, e-3p-oe!!p y = o  

Spb + kp). 

A still more efficient bound is exhibited in the following proposition. 

Proposition Let the representation be limited with top weight h and a 
source belonging to A. Then 

( p  + 6, p + 6)  < (A + 6, h + 6 )  

for each other weight p (see 41.7). 

Proof For some p E W++ let v = p + j p  be the weight with maximal integralj 
if the weight p is given; 41.3.5 applied to Y instead of h and -p instead of a 
shows 
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Using 41.7, one gets 
(v + 6, v + 6) - (p + 6, p + 6) = (v + 6, v + 6) - (v + 6 - j p ,  v + 6 - j p )  

= -i2(P, P )  + 2XP, 4 + 2j(P, 6) 
2 (-j2 + j 2  + j ) ( f , P )  = j ( P , p ) -  

As long a s p  # A, there is some p E W++ such tha t j  > 0; but thenj(p,p) > 0 and 

(v + 6, v + 8) > (p + 6, p + 6) 
for some higher weight v. This inductive argument does not stop until p = A. 
This proves the assertion. 

42.5. Finite Dimensionality and Irreducibility If the representation 
is irreducible, every x E R, x # 0 is a source. If, moreover, it is finite-dimen- 
sional, the number of weights is finite, one is top weight, and the representation 
is limited. The converse is also true : 

Theorem Let the representation of G E Alg Lie Com SS in R E Spa Lin 
Com be limited with a top weight and a source belonging to it. It is then finite- 
dimensional and irreducible, 

Proof The weights as points of a lattice can nowhere accumulate. By the 
inequality 42.4 they are bounded. Thus their number is finite. By 42.2.2 their 
multiplicities are finite. By 42.2.1, R is spanned by weight vectors. Thus 
dim R < co. 

Let S be sub R and invariant, S # (0). One still has to show that S = R. 
Since dim S < m, there is a y E S belonging to a weight p, which is supposed 
to be maximal with respect to this property. Since e, S c S, 

e , y = O  for all a E W+. 
The given representation of G extends to the associative envelope, which is 

mapped into End R. The Casimir tool (40.3) is mapped into 

Now 
zy = C (e, e-, + e-, e,) y + C hJ h, y 

a c W +  J 



43. FINITE-DIMENSIONAL IRREDUCIBLE REPRESENTATIONS 22 1 

Let x be a source belonging to the top weight A. Then there is a u in the en- 
velope of G such that 

and by the same argument as above 

y = ux, 

zx = ((A + 6, A + 6) - (6,s)) x. 

(A + 6, A + 6) = (p + 6, p + S), 

p = A. 

Because of zu = uz (see 40.2), zy = zux = uzx, it follows 

thus by 42.4 

Because of Proposition 42.2.2(1) y is a scalar multiple of x; thus S = R, which 
proves the assertion. 

43. FINITE-DIMENSIONAL IRREDUCIBLE REPRESENTATIONS 

The notations are as before. 
Results are summarized and a few related ones are added. 

43.1. Theorem Let the linear representation in R E Spa Lin Com (dim 
R < a) of G E Alg Lie Com S S  be irreducible with the top weight 1 in ordered 
second dressing. Then 

43.1.1 R is spanned by weight vectors. 

43.1.2 The weights belong to HLp. 

(A 
(a, 4 

43.1.3 The length of an u-ladder of weights starting at A is -2 2) * 

43.1.4 S, turns the a-ladders upside down. 

43.1.5 Int W* maps weights into weights. 

43.1.6 The top weight is dominant and has multiplicity 1. 

43.1.7 Int W*-equivalent weights have the same multiplicity. 

43.1.8 The maximum of (A + 6, A + 6) for weights A is attained by the top 
weight 1 only. 
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43.1.9 The image of the Casimir tool under the representation is the scalar 
multiplier (2 + 6, 2 + 6) - (6,6), where 2 is the top weight. 

43.1.10 The set of weights is characterized by the following statement: it 
contains the top weight and for any p E W++,  if it contains p, also contains all 
mod p congruent elements of H: between p and Spp. 

43.1.1 1 Within the closure of the dominant chamber the (dominant) 
weights p are characterized by the following condition: 2 - p is a sum of 
members of W ++ ; otherwise stated : p G 2 in the minimal partial order. 

43.1.1 2 e,e-,x = $( j  + l)(p - j)(a,a)x if x belongs to an a-ladder, in 
which it occupies the ( j  + 1)th place and is followed up by p - j  elements. 

Proof (1) See 42.2.1; (2) see 41.4; (3) see 41.3.3; (4) see 41.3.5; (5) con- 
sequence of43.1.4; (6)  see 42.2.2 and note that by 43.1.5 the Int W *-equivalents 
of $ are weights, thus lower than or equal to 2. (8) See 42.4. (9) By 40.2, the 
image of the Casimir tool commutes with all G; by 36.3, applied to Lie 
algebras, it is a scalar multiplier; its actual value was computed in 42.5, when 
it was applied to the top weight vector. (10) Consequence of 41.3.5; (12) see 
41.3.4; (7) and (1 I )  are left to be proved. 

As to (7), S E Int W* is induced by an inner automorphism of G (see 33. I ) ,  
say c?, leaving H invariant. According to 41.1.2, c maps the weight space of X 
into that of Y h  X(C"-'h) = SX. By reversing this argument one concludes that 
this mapping is onto. Therefore both eigenspaces have the same dimension. 

Remark Any u E Aut R that normalizes G and H induces 
Yxecuxu-' E Aut G 

and 

It is still true that this kind of automorphism preserves the multiplicity of 
weights. 

As to (1  l), according to the proposition of 42.1, every weight fulfills the 
condition. 

Suppose that ( is dominant and that [ + C p , p j  ( p ,  E Wtt,pj integer 2 0) is 
a weight. One must ascertain that 5 is also a weight. 

It may be supposed that C p i p i  # 0. Since 

YfEH.,. YhEHS(UhU-') E Aut w*. 

(C pipi, C PIPI)  ' 09 

P J > O ,  ( C ~ i ~ i , p j ) > O ,  

there is a j  such that 
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Hence 
(5  + C P i P i , P j )  = (6 ,p j )  + (C PiPi,pj) > 0, 

t + c PtPl  -PI 

since 6 is dominant. Now by 43.1 .lo, 

is a weight. Repeating the argument one can descend to 6, which turns out to 
be a weight. 

This completes the proof of 43.1. 

43.2. An Alternative Approach 

Theorem Under the conditions of Theorem 43.1 the weight system does not 
depend essentially on the choice of the trunk. An automorphism T of G which 
leaves the trunk invariant turns the top weight 3 off into the top weight of 
Y,,f(T-' a) up to Int W*-equivalence. 

This follows from 41.1.4,42.2.3,33.4.3, and 33.5. If the appeal to the group 
G IS to be avoided (see41.1.3), one must rely on the weak structure of the weight 
system which has to include information on multiplicities and tell whether the 
difference between two weights is a rootform (see 41.2). These data determine 
the ladders and their lengths which, thanks to the ladder-length formula, 
locate the weights with respect to the rootforms and consequently fix the 
weight system within a linear space. 

In the proof of 43.1.7 another appeal was made to G. This proof can also be 
modified to rest on the more elementary fact that S extends to an auto- 
morphism T of G (rather than to an inner automorphism). It is still true that 
the A-weight space of the representation Y,,f(T-'1;> equals the SA-weight space 
of the originalf. In particular, by 43.1.5 both have the same set of weights and 
consequently the same top weight. In Section 44 finite-dimensional irreducible 
representations with the same top weight turn out to be equivalent by means of 
an equivalence that maps weight spaces belonging to the sa,me weight onto 
each other. This being taken for granted, it turns out that the A-weight space 
of the original representation is mapped onto that of the representation 
Y,,f(T-' a), which in turn coincides with the SA-weight space of the original one. 
So the A-weight space and the SA-weight space of the original representation 
have the same dimension, which proves the assertion.. 

43.3-6. The Value of the Casimir Tool 

43.3 If G E Alg Lie Com SSS, then the adjoint representation ad is irreduc- 
ible. The weights are the rootforms; the top weight is the top rootform b. 
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The image ad z of the Casimir tool under the adjoint mapping ad, according to 
the notation of 40.1, is 

ad z = it&. 
1 

Because of the definition of the correlate bases, one gets 

tr ad z = dim G, 

and because ad z is a scalar multiplier in G 

a d z = l .  

With 43.1.9, this leads to the following. 

Proposition The adjoint image of the Casimir tool is the identity. 
(a + 6, 8. + 8) - (6,6) = 1 for the top rootform d if G is simple. 

(If C is not simple, the proposition still holds for every simple component 
of G.) 

43.4 G E Alg Lie Lin Com SS, G c End R, R E Spa Lin Com, dim R < a. 
tr(ab) as a (symmetric) function of a,b E G is an infinitesimal invariant of 

the adjoint Lie algebra e, since 

tr ((?a) b + a(Eb)) = tr (cab - acb + acb - abc) = 0. 

If, moreover, G is simple, thus d irreducible, it has to be a constant multiple 
of the Killing form: 

43.4.1 tr (ab) = K tr (ah). 
For later use it is important to know: 

43.4.2. Proposition If G is simple, K =- 0. (Proof in 43.6.) 

43.5 Let linear simple semisimple G be acting in R and let zo and z be its 
Casimir tool considered as acting on R and G, respectively, in agreement with 
the extension of C to its associative envelope &(G). It then follows from 43.4.1 
that 

43.5.1 t r z o = K t r z N .  

Let 3 be the top weight of irreducible simple semisimple C, and d the top 
weight of the adjoint representation, that is, the top rootform. Then by 43.1.9 

43.5.2 tr zo = dim R - (0 + 6, 2 + 6) - (6, a)), 



44. CONSTRUCTION OF REPRESENTATIONS 225 

43.5.3 

because of 43.3. 

tr z N  =dim G . ( ( 8  + 6, B + 6) -(&a)) = dim G 

From 43.5.2-3 and 43.5.1 the following obtains. 

43.6. Proposition K = ((dim R)/(dim G)) ((A + 6,A + 6) - (a,&)) if simple 
semisimple G is irreducibly represented in R (dim R > 1) with top weight 2. 

Since (3,6) > 0 and (A,$ > 0, (1 + 6,A + 6) - (6,s) > 0. If this is applied 
to the irreducible components of the identical representation, one gets 
Proposition 43.4.2. 

44. THE CONSTRUCTION OF ALL FINITE-DIMENSIONAL 
REPRESENTATIONS 

The notations are as before. 

44.1 Thanks to the conducibility theorem, to know all representations of 
G E Alg Lie Lin Corn SS in R E Spa Lin Corn (dim R < co), one can restrict 
oneself to the irreducible ones. These are exhausted by the following theorem. 

Theorem Up to equivalence a finite-dimensional irreducible linear repre- 
sentation of semisimple Gin ordered second dressing is characterized by its top 
weight. Possible top weights are just the dominant integral elements of H z .  

Remark This stresses again that different integral elements of the dominant 
chamber cannot be Int W*-equivalent. The same was shown, however, in 
33.8.1 without assuming iutegrality. 

The first part of the theorem is proved in 44.6, the second in 44.2-5. 

44.2 The second part is proved by an explicit construction of a finite- 
dimensional irreducible representation from a dominant X E H& which has to 
play the role of top weight. 

all em (u E W+),  all b - X(b) (b E H), and all e!f' ( p  E W++,  p - p  = 2- 

This suggests a construction of R as a linear image of the associative en- 
velope €(G) of G; the role of the 0 in R then has to be played by the left ideal 
M of &(G) generated by the elements mentioned above. 

The construction proceeds in two steps. First one uses the left ideal M' of 
b(G) generated by 

The vector x belonging to X must be annihilated by 

t;3 

eOr (a E W+),  b-X(b) (b EH), 
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and defines 

Then for every u E G,f’(u) is a linear mapping of 
R’ = 8(G) mod M’ 

into itself andf’ is a linear representation of G in R’. 
The following conclusions seem to be obvious: 

f’ = Y a€C Y U+M’, UEQ(G) (au + MI)* 

44.2.1 x’ = 1 + M’ is a source off’, 

44.2.2 x’ belongs to the weight h since all h - h(h) E M’,  

44.2.3 A is the top weight because x‘ is annihilated by all e, (a E W+).  

The conclusion that h is a weight, however, may be drawn only if x’ # 0. 
This rests on proving that -1 4 M’, which is done in 44.3. 

44.3 Assume 

44.3.1 

where the h, are running through a basis of H and the u,,v, are taken from 
8(G). This assumption has to be refuted. 

The actual construction of b(G) in Section 39 has to be taken under con- 
sideration. One may assume that the ordered basis X of G consisted of all 

e-, (a E W+),  all e, (a E W+),  and all h, 

in this arrangement. All terms in 44.3.1 are now assumed as belonging to d ( X ) ,  
and 44.3.1 itself is considered as a congruence mod / (C ) .  Furthermore, 
u,, Y,  are assumed to be orderly. 

Thanks to Theorem 39.3, the decision whether 44.3.1 is possible is easy 
when the right-hand member of 44.3.1 is orderly. In the present form, however 
it is not. It has still to be refashioned mod /(C). This can be done as 
follows : 

u, is a sum of orderly monomials u’. In every u‘e, the e, is moved mod $(C) 
step by step to the left, first through a few hi, then through a few eS (/3 E W+) .  The 
by-product of any step is a shorter monomial with at least one branch belong- 
ing to a positive rootform as a factor. Fortunately, e, need not change 
places with any e-8. In v,(h, - A@,)) only slight rearrangements are required. 
Finally, the right-hand member of 44.3.1 will have been made orderly. With 
the original right-hand member it still shares the property that it will 
become 0 on substitution of 0 for all e, (a E W’) and A@,) for all h,. By the 
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uniqueness of the orderly element in each left coset mod f (C)  the new right- 
hand member has to be -1. This is a contradiction. 

44.4 Thoughf' fulfills 44.2.1-3, it need not be irreducible; R' has still to be 
reduced mod an &(G)-invariant subspace T. Abbreviating the notation by 
writing 

u' instead off'(a) for any a E &(G), 

one defines T as the smallest &(G)-invariant subspace of R' containing all 

44.4.1 

The representation f induced in R = R' mod Tis limited. Thanks to 44.2.1-3, 
it fulfills the supposition of Theorem 42.5. Therefore it is finite-dimensional and 
irreducible. Again, to be sure that it still has a vector of weight A, one must show 
that x' # T. 

T is spanned by the weight vectors 

44.4.2 u' eL$-P+I X I ,  

where 

may be assumed such that pI ,  . . ., p a ,  u,, . . ., a, stem from W++ in an arbitrary 
succession with possible repetitions. Here the h' can be dismissed because they 
are acting like scalars. x' can belong to T only if there are vectors 44.4.2 of the 
same weight as x ' .  This can happen only if b 2 1 .  It will be shown, however, 
that 

u ' = e L p I . .  .el_ e' pa m i  Ub 1 
. . .e '  h ' k l . .  .h;kI  

e' e'p-p+l x' = 0, 
a -P 44.4.3 

which then makes x' E Timpossible. 
To ascertain 44.4.3, e: is moved to the right. If o # p, then o - p # W, 

[e&eLp] = 0; therefore e: passes readily through the eLp and finally 
annihilates x' which is a top weight vector. If u = p, then 

e 'P-p+ 'X '  = 0 
P -P 

because of 41.3.1 and the choice ofp-,. (Note that this formula must be applied 
with p-p instead of i, and p instead of a, and that it does not depend on an 
assumption of finiteness of ladders.) 

This completes the proof of the second part of Theorem 44.1. 

44.5 Reconsidering the construction of the representation, one may state the 
following. 
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Proposition G is irreducibly represented by 

Yasc YU+M,UEB(G) (au + MI, 

with the top weight A in the linear space &(G) mod M, where M is the left ideal 
generated by the 

e, (m E W+),  h -  A@) (h E H ) ,  e!;P+' ( p  E w++,p-p = 2"'). 
(P, P I  

44.6 To prove the first part of Theorem 44.1, one has to consider another 
irreducible representation f * of G in a space R* (dim R* < w), with the same 
top weight A and the A-weight vector x*. f * extends to a homomorphism of 
b(G) into End R*. It must be brought into equivalence withfrepresented in R 
with the A-weight vector x. 

f*(e,) x* = f * ( h  - A(h)) x* = 0 for u E W+, h E H 

because x* belongs to the top weight A. Thus f *(M')x* = {0}, which implies 
that f*(M)x* is spanned by 

f *(up) f *(e!;p+')x* 

which all vanish because f * is finite-dimensional and the length of the (-p)- 
ladder starting at A is just p-p. Therefore, 

(p E W + + ) ,  

f*(M)x* = (0). 

rp(u + M) =f*(u) x* 

rp f (a)(u + M) = rp(au + M )  = (f*(au)) x* = f *(a) f *(u) x* 

Now 

defines a linear mapping rp of R into R*. 

=f *(a) rp(u + M )  ; 

hence 
p?f(a) =f*(a)rp, 

which shows f and f * to be enchained by means of rp and therefore equivalent 
according to 36.2. 

Finally, it is evident that equivalent representations actually have the same 
top weight on any ordered trunk. 

This completes the proof of Theorem 44.1. 

44.7. Proposition The set of all weights of all finite-dimensional linear 
representations of G is H&. 

Indeed, these weights belong to HEg;  on the other hand, every element of 
HEo is Int W*-equivalent to a dominant one, which by 44.1 is a weight of a 
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finite-dimensional linear representation. By 43.1.5 the same is true of the given 
element of H&. 

45. THE FUNDAMENTAL WEIGHTS 

The notations are as before. 

45.1. Definition The T, E H:, defined by 

2-=( (Ti,p,) 1 for i =  j ,  

where p,, . . ., pl form the natural basis W++ of If:, are called thefundamental 
weights. The irreducible representations with these as top weights are also 
called fundamental. They are denoted correspondingly byfJ or simply by T,. 

The T, are dominant and integral and therefore really are possible top 
weights. 

Clearly, every possible top weight X is in a unique way a sum of funda- 
mental weights, namely, 

(p,,p,) 0 for i Z j ,  

45.1.1 

Note that C r, = 6. 

45.2 Linear representations f , g  of a group G in R , S  E Spa Lin produce a 
new one, f Q g in R 6 S, by Kronecker (or tensor) multiplication. On bases 
x,,xz, . . . of R, y,,y,, . . . of 3, xi  6 y,, i, j = 1,2, . . . of R 6 S, one defines 

((f 6 g)(a)) ( X i  €3 Y,) = (f(4 X i )  €3 (g@)Y,) for a E G.  

For Lie algebras G this implies the following 

Definition ((f Q g)(a))(xi 6 Y,) = (f(a)xi) 6 Y J  + xi 6 (g(a)Y,). 
Kronecker or tensor products with more factors are analogously defined. 
f 6 g is readily seen to be a linear representation of G in R €3 S iff, g are so 

in R,S .  

45.3 For finite-dimensionalfand g,  if xI ,y ,  belong to the weights hi,p,, then 
x i  0 y ,  belongs to A, + p,, which consequently is a weight off Q g. Note, 
however, that the irreducibility offand g does not imply that off 6 g. Because 
of the conducibility, an element belonging to a top weight off €3 g is still the 
source of an irreducible linear representation with this top weight. Therefore, 
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if A is a possible top weight, its presentation as a sum x pin,  of fundamental 
weights shows that an irreducible representation with top weight A 
can be recovered in a Kronecker product ofp, factors n, (i = 1, . . ., I ) .  

Theorem The finite-dimensional irreducible linear representations of 
C E Alg Lie Com SS can be obtained from the fundamental ones by Kronecker 
multiplication (45.2) and isolating the linear subspace a source of which is a 
vector belonging to the top weight. 

45.4 The weights, top weights, and fundamental weights of a direct sum 
G = GI + G2 split according to the splitting of the trunk H = HI + H2 into 
components that are weights, top weights, and fundamental weights of the 
components. Therefore their knowledge is reduced to that for simple semi- 
simple Lie algebras. 

45.5 A linear representation of a group Gin a finite-dimensional linear space 
R admits a dual one in the dual space R* of R : 

f * = Y a e G  Yu€R*  Y x € R u f ( u - ' ) x .  

This leads to the following definition. 

Definition The dual of a linear representation f of G E Alg Lie in R is 

f* = Y O C G  Yu€R*  Y x € R  (-'f(a)x)* 

Proposition Dual representations of semisimple Lie algebras have opposite 
weight systems. 

This is easily shown with the use of a basis of weight vectors. 
In the particular case G E A,, up to equivalence effectuated by a basis choice, 

f * =f% 

where 7 is the outer automorphism of 24.6,q = Ya(-a'). 

45.6. Integral Forms, Dominant Elements, and Fundamental 
Weights and Representations for G E A,, B,, C,, D,, in the terminology 
and with the natural bases found in Section 16 (see also 25.7 and Table C). 

A, : the w, are linear functions on H subject to x w,(h) = 0. 
For 5 E H* the coefficients p ,  in 
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are determined up to a common summand. It is more convenient to suppose 
that they are “reduced,” that is, such that 

CP,=O. 
The inner product of 

5 = c P,W,Y r l=  c q,w, 

is defined by 
(5, 7) = X P j q j  

as soon as one of the factors is presented 
denotations w i  - w, are that kind. Hence 

(0, - ~ t + l r  wj - wj+l) = -1 1: 
Up to a common factor (indicated in Table 
second dressing. 

in reduced form. The rootform 

for i = j  
for l i - j l  = 1 
for li-jl > 1. 

C) this is just what is required in 

Integral respectively dominant elements 5 = C p,wj  E Hz have to make 

(Z Pi wi, w, - w,+J 

(w, - W,+IY wj - w,+J 

integral respectively 2 0 which means that 

p ,  = p ,  mod 1, respectively p ,  >p ,+ ]  ( j  = 1, . . ., I). 
The fundamental weights (now in an unreduced presentation) are 

T I =  w1 

7r2 = 0 1  + w2 

7 r , =  w1 + w* + *.. + w , .  

In its usual representation (see Section 16) by the special linear group of 
( I  + 1)-space the ith basis vector belongs to w i .  The top weight is just w1 = 7rl.  

To construct the next fundamental representation, one takes two copies of 
( I+  1)-space with bases xl, ..., xi+, and y , ,  ..., yl+,,  and acted on by 
G E A,. Their Kronecker product splits as a direct sum of two invariant sub- 
spaces, the symmetric part with basis elements x ,  @ y ,  + x, @ y ,  (i ~ j )  and 
the skew part with x i  @ y ,  - x, @ y ,  ( i  cj). For the symmetric part the weights 
are the w ,  + w, (i ~ j )  with 2w,  as the top weight; for the skew part they are 
w ,  + w, ( i  < j )  with w 1  + w2 as the top weight. Now it easily follows from 42.2.5 
that both are irreducible. 

Thus 7r2 is the representation induced by 7r,(C) in the linear space R(2)  of 
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skew 2-tensors of ( I  + 1)-space R. It is closely connected with the manifold of 
straight lines in projective I-space (Plucker coordinates; see 25.8.4’). 

Similarly, rk can be defined in the space R(k) of skew k-tensors of (I + 1)-space 
(connected with the (k - 1)-planes in projective Z-space). 

RCk) and R(l+l-k)  are in a natural way duals of each other. ?rk is easily seen to 
be equivalent to -TI+I -k .  Therefore by 45.5, up to equivalence, the represent- 
ations T k  and T,+l-k are duals of each other. In other words, the automorphism 
)‘,(-a’) interchanges T k  and Tl+I-k* 

B,: The I functions w, on Hare  given the inner product 

1 for i=j, 
0 for i # j .  (w1, = ( 

The elements of W++ in the enumeration of 25.7 are wl ,wI  - w2, ..., 
wl-l - w,, which again verify the conditions of second dressing up to a common 
factor (to be found in Table C). 

p,w, has to fulfill: 2p,,pJ -P,+~ integral. Integral 5 = 

Dominance requires : p ,  > p,+, > 0. 
Fundamental weights : 

= + - - * + w1) 

T2 = W I  

TJ = w1+ w2 

TI = w1 + w2 + ’ ’ * + w1-1. 

n2 belongs to the usual presentation of G (see Section 16) by means of the 
special orthogonal group of (21 + 1)-space. The various T k  (k > 2) are con- 
structed, as in the case of A,, with an analogous geometric interpretation 
This point will be elaborated in 70.1-2. 

The meaning of vI is given in Section 49. 
Note that here the symmetric part of the tensor product of r2 with itself is 

not irreducible. The invariant quadratic form produces a one-dimensional 
invariant linear subspace. 

C, : Inner product as for B,. 

w++ : w1 - w2, . . ., w1-1 - w,,2w,. 

Integral 5 = 2 p,w,: p j  integral. 
Dominance: p j  > p i + l  > 0. 
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Fundamental weights : 

TI = w1 

T , = w ]  + w ,  

T, = W I  + w2 + * * * + w,. 

Interpretation as for A,. 

Note, however, that here the skew part of the tensor product of n1 with 
itself is not irreducible. The invariant skew form produces a one-dimensional 
invariant linear subspace. In general, the linear space of skew k-tensors need 
not be irreducible. 

D,: Inner product as for B,. 

w++: w,-1 - a,, w1-1 + w,+1, w1 - w,, w2 - w3, . a  ., w,-2 - W , - l .  

Integral e= x p j w j :  p j  -p,+I,pl-l + p l  integral, that is, 
2p, = p i  - p ,  = 0 mod 1. 

Dominance: pI > p z  > - * -  >pI-l > lpll .  
Fundamental weights : 

TI = +(w1 + w2 + * * * + w,-1 - w,) 

q = + ( w 1 + w 2 +  " ' + d , - , + w , )  

T3 = w I  

~ 4 = ~ 1 + 0 2  

T, = w ]  + w2 + * * + 0 1 - 2 .  

The interpretation of T ~ ,  . . ., T, causes no trouble; 7rl, T, will be explained in 
Section 49. 

45.7 The fundamental weights on a natural basis for all G E Alg Lie Com 
SSS are to be found in Table F. 

45.8. Historical Note t o  Sections 41-45 The theory of irreducible 
linear representations of complex semisimple Lie algebras with notions like 
top weight goes back to E. Cartan, Bull. SOC. Math. France 41,53-96 (1913) = 

(Euures I ,  1, 355-398, though his proofs for general theorems like those 
corresponding to 44.1 are not convincing. The present method was derived from 
Harish-Chandra's Trans. Amer. Math. SOC. 70, 28-96 (1951). His approach 
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has been simplified mainly by the use of the inequality 42.4 which has proved to 
be of primordial importance (H. Freudenthal, Proc. Kon. Akad. Wet. 
Amsterdam ASI, 369-376 (1954) = Indagationes Math. 16). It should be noticed 
however, that Harish-Chandra’s method can also be used for an a priori 
construction of the complex semisimple Lie algebras themselves. 

46. THE FUNDAMENTAL GROUP OF UNITARILY 
RESTRICTED SEMISIMPLE LIE GROUPS 

G E Gru Lie Lin Coin S S ,  in ordered second dressing; LIP to 46.4 centerfree. 
The problem dealt with in Section 32 is 

46.1-4. Reenvisaged 

46.1 
the set Z c  b c Hun: 

In 32.2 the fundamental group Qj of Gun (and of C )  was described by 

h E Z t ,  h E D  A a(h) = 0 or 2r i  for every a E W + .  

The straight path from 0 to h E Z is mapped by exp into a closed path on C, a 
representative of a member of 0. The fundamental group operation could be 
performed as an addition on the elements of 2; to stay in Z or rather to bring 
the sum back into Z one had to use the operations of the kaleidoscope group 
Int W* which do not change the homotopy class of a path. 

This is an unsatisfactory description, which will now be reshaped. 
First, the set Z i s  extended to the corner lattice (33.14.3): 

h E 2- a(h) = 0 mod 27ri (a E W*). 

Again exp maps the straight paths (cf. 31.4 for terminology) from 0 to h E Z 
into closed paths on G.  How to find the homotopy equivalences among them? 
Some of them are known by the fact that inner automorphisms do not change 
the homotopy class. This information will be sufficient. 

Denote by 8 the canonical homomorphism 

YhEZ[Yt.OstsL exp fh1 

of the additive group Zonto 0, and by Y its kernel. Now, as mentioned above, 
Int W* exerts no influence on @, that is, 

S S a h = 9 h  for h E Z ,  E E  W*.  

Thus 2r i  * 2a(h)ha/(a,a) E Y, which for a E W++ and suitable h E Z implies 
2ri*2h,/(a,a) E Y for a E W++, hence by Proposition 41.5 for all E W * .  
Therefore, if Sa,,, is the reflection in the kernel of a - m 27ri for a E W *  and 
m an integer 
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is in Y because it is an integral multiple of 2h,/(a,a) .2ni, since a(h) = 

0 mod 27ri. 
By 33.14.6, any h E Z can be mapped by a composition of these reflections 

into a corner of D. On the set of corners of D 9 is one-to-one. So, if h E Y, 
it follows that h is an integral combination of the 2ha/(a,a)*277i with CL E W*. 

The result is the following. 

Theorem For centerfree Gun let Z b e  the additive subgroup ofHun consisting 
of the h with a(h) = 0 mod 277i for all a E W*, and let Y be its subgroup 
generated by the 27ri(2ha/(a, a)). Then 2 mod Y is isomorphic to the funda- 
mental group @ of Gun by the following mapping: let w be a path from 0 to 
h E Z ;  then exp w represents the element of @ that corresponds to h + Y. 

46.2 The result can be reformulated by employing duality for abelian groups. 

Definition A cliaracter mod 27ri o fa  (discrete) additive abelian group A is a 
homomorphism into the addition group of imaginary numbers mod 277i. 
The characters of A again form an abelian addition group denoted by A*, the 
dual of A ,  which, if topologized by pointwise convergence, is compact. 

If A is finite, A and A* are isomorphic. 
In  the present case the dual of 2 mod Y is made up in a natural way by the 

characters mod 2ni of Z that vanish on Y.  
Let fz be a character mod 27ri of 2. Let 2, be an integral basis of Z. tz(Z0) 

is a set of imaginary numbers mod 277i. There is a 5 E H: such that ( ( z )  = 

&(z) mod 277i in every point of 2,. Then f ( z )  = &(s) mod 27ri for any z EZ.  
Such a 5 is said to extend tz to Hun. This extension is not unique. 
Suppose now that tz vanishes on Y.  For 5 this means 

2ni * 2 ~ = 0 mod 27ri for all a E W*. 
(a, a) 

Since [(h,) = ([,a), this is equivalent to 5 E H&. 
To relate this to the dual of Zmod  Y one has to identify the elements 

6 of If,*,, that behave the same way mod 2ni on 2. 5 behaving as 0 on Z 
means that ((z) = 0 mod 27ri whenever a(z) = 0 mod 277i for all a E W*. In 
other words, 5 is an integral linear combination from W*. 

This suggests the following. 

46.3. Definition Put A = HI",, = the addition group of the set of all 
possible weights of G and, iffis a finite-dimensional linear representation of G, 
call Af the (discrete abelian) subgroup of A generated by the weights off. In  
particular, A ,  is the group generated by W * .  

The result proved now reads as follows. 
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Theorem The fundamental group @ of centerfree Gun is the dual of 
A mod A ,  in the way that for any exp w E 'p E @, where w is a path on Hun 
starting at 0, the character mod 2ni 

Y,(E(w(l>) mod 2 4  
of@has to beidentified with the element f + A ,  ofA mod A , .  

Remark Note that the identical action of Int W* on @ is reflected in the 
identical action of Int W" on A mod A , ;  the latter property is a direct 
consequence of the definitions of A ,  A%,  and Int W*. 

46.4 In computations of fundamental groups (or rather their duals) a 
convenient basis of A consists of the fundamental weights (see Table F). 

Notation Z,(n) means thep-cyclic group with the generator n + A %. 

(indicated by -) and descriptions of the 
An easy computation leads to the following list of homotopic relations 

Duals of the Fundamental Groups of Centerfree Gun of G E 

A,: r k  - knl,(I+ 1)nl -0: Z i + I ( r l ) .  

8,:  

c,: 2nl - 0, ?rk m knl for k < 1, r1 - 7,: z2(7r1). 
2nl - n2 - * * * - rl 4 0 :  Z2(n1). 

D,: nk-0  foreven k > 2 ,  T k  mh3 forodd k >  1, 

2 r 3  - 0, 2 r 1  - 2n2. Furthermore, 
277, - n3, r1 + 7r2- 0 for odd I: Z4(7rl), 
2nl - 2n2 - 0, r3 - n1 + 7r2 for even I :  Z2(nl )  + Z2(7r2). 

E6: 

E7 7T2 * r 3  

71 @ T 5 ,  T 3  - 7 4  C/r 2T1, 37Tl @ 0, T 2  TG - 0 :  Z,(n,). 

T 6 , 2 7 ,  m TI - T 4  - rs - "7 - 0 :  z2(~2). 

E, : trivial. 

F, : trivial. 

G, : trivial. 

46.5-6. Fundamental Group of a Representation 

46.5 The assumption that G is centerfree is now dropped. The infinitesimal 
algebra G of G can be considered as the image of under a linear represent- 
ation$ Then G is the linear Lie group infinitesimally generated by the linear 



46. FUNDAMENTAL GROUP OF UNITARILY RESTRICTED GROUPS 237 

Lie algebra ,fG. If Gi (i = 1, 2) are isomorphic, and their Gi are identified 
according to this isomorphism (= C), then, in general, different fi may be 
needed to generate the Gi from the linear Lie algebrasfi G. However, under 
these conditions: 

46.5.1. Proposition The set A, is the same for isomorphic Gun. 

for all B with expf(k) = I ,  
Indeed, it is characterized by 

X E A, tt X(B) = 0 mod 27ri 
since the weights offgenerating A, are just the eigenvalues on H.  

Gun wraps Gun by means of the inverse of f. Those closed paths 
yz, ,, exp tk with h E Z that are wrapped by closed paths are character- 
ized by expf(k) = 1, hence by X(B) = 0 mod 27ri for all X E A,. This leads 
to an extension of Theorem 46.1 : 

46.5.2. Theorem For Gun infinitesimally generated byf(&,) let Z, be the 
additive subgroup of Hun consisting of the B with X(h) = 0 mod 27ri for all 
A E Af. Then Z, mod Y is isomorphic with the fundamental group of Gun as in 
Theorem 46.1. 

Translated by duality this becomes the following. 

46.5.3. Theorem The fundamental group @ of a unitarily restricted semi- 
simple linear Lie group Gun is the dual of A mod A, if G is produced by fe. 
The duality has essentially the same meaning as in Theorem 46.3; that is, with 
the provision that exp fw replaces exp w and that A, replaces A - . The center 
of Gun is isomorphic to the dual of A, mod (1 -. 

The last statement is an immediate consequence of the foregoing. 

46.6. Proposition If in the foregoingfis irreducible with the top weight 1, 
then the center of the group infinitesimally generated byfcun is p-cyclic, where 
p is the least positive integer such that p 2  E A N .  

Indeed, then all weights offare contained in 1 + A (see 42.1). 

46.7-9. Wrappings Realized 

46.7 The universal wrapping of Gun has a center that is isomorphic with the 
fundamental group of Gun. Therefore it cannot be realized by an irreducible 
unitarily restricted semisimple Lie group unless the fundamental group of e 
is cyclic. 
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In the case D, (I even) it can be done by combining rl,7r2 into a reducible 
representation. 

46.8. Theorem Any wrapping of the centerfree unitarily restricted semi- 
simple Gun can be realized by a linear Lie group. 

Proof The wrapping is characterized by its fundamental group as a subgroup 
of the fundamental group of Gun; its dual is isomorphic to A’ mod A N ,  where 
A’isa subgroup of A containing A . There is a (finite) set A” of representatives 
of A’ mod A -, all of which are dominant (cf. Remark 46.3). A’ = A ”  + A -. 
The representations with top weights in A” can becbmbined to give a represent- 
ationf, for which A, = A’. 

46.9 According to 38.5 the fundamental group of complex semisimple G is 
known by that of its unitary restriction. 

46.10 Another Approach If rather than the fundamental group of Gun 
(generated by f(eun)), its center were the aim, one could proceed in a simpler 
way than that followed in the present exposition. This way can be sketched in a 
few words. 

(1) The center of Gun is contained in the trunk Hun. 
(2) Its elements exp h are characterized by exp h = 1 ; in other words, by 

(3) exp h = 1 if and only if A@) = 0 mod 27ri for all X E A,. 
(4) From this it follows that the center is isomorphic to the dual of 

a(h) = 0 mod 27ri for all a E W* ; that is by X(h) = 0 mod 237i for all A E AH , 

A, modAN.  

This method, however, sets no upper bound, as it were, for the fundamental 
group. To know that the fundamental group of Gun is finite, that the universal 
wrapping of Gun can be realized by a linear and even by a unitary Lie group, 
and so on, one must, to the present knowledge, apply more profound methods 
that is, homotopy theory, as has been done in this exposition, or homology 
theory. 

47. WEYL‘S CHARACTER AND DIMENSION FORMULA 

47.1-6. Skew Functions and Characters 

47.1 The double characterization up to equivalence of irreducible represent- 
ations of G and Gun by their top weights and characters suggests the possibility 
of expressing the one by the other. 
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Until further notice Gun is supposed simply connected. Without this sup- 
position one would not be sure whether a given linear representation f of 
G extends to G. By 46.8, this supposition is allowed. In any case G is taken in 
ordered second dressing. 

47.2 A character of Gun is known by its behavior on Hun. One can work more 
comfortably in H:n, defining x, by 

47.2.1 X,(Ch) = tr expfh 

(for the mapping 5 of H onto H* cf. 2 1 . 1 3 .  For 7 = ( h  the eigenvalues offh 
are the weight values A(h) = (A, T) ,  each of which has a multiplicity 

47.2.2 mA = dim RA, 

where RA is the A-weight space. The eigenvalues of exp fh are the exp(A,~); 
thus, 

For S E Int W* 

~, (ST)  = C mh exp(A, ST) = mA exp(S-' A, 7 )  = C msA exp(A, 7 ) ;  
h A 

thus by 43.1.7, 

47.3 In addition to these functions invariant under Int W*,  it is convenient 
to consider skew functions 0, defined by 

@(ST) = det S O(7) for all S E Int W*; 

in particular, elementary skew functions O,, defined for p E H:: 

47.3.1 0,(7) = C det S * exp(Sp, 7). 
s 6 l n t V  

Note that for S E Int W* 
Osr(7) = det S * 0,(7). 

Let p be integral and dominant. If (p,p) = 0 for some p E W++, then 

OJ7) = Os,, (7) = -0, (7). 

Thus 
0,(7) = O for all 7 E H:,, 
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unless 

But then, using the Weyl tool S, 

2 ' c Q )  2 o for all p E w++ 
( P , P )  

and p - S is still dominant. Thus: 

Proposition The only nonvanishing elementary skew functions 0, with 
integral dominant p are the Or+* with integral dominant v. 

47.4 Definition 

This definition differs slightly though inessentially from that of 37.3. 

which is interchanged with -p. Thus, 
According to 41.6, S ( E W++) permutes the elements of W+ except p, 

P p  

Q ( ~ , T )  = - Q ( T ) ,  

which means by Proposition 33.2.2 that Q is skew. 
In working out the product one gets a sum of terms +exp(t, T) .  The highest 5 

that occurs is zaGw+ $a = 6 (the Weyl tool); the others differ from S by an 
integral combination of positive rootforms. Q is a linear combination of 
elementary skew 0, with integral dominant p. The highest p that can occur is 6. 
Actually, it occurs with a unit coefficient. By 47.3 all 0, with a lower p vanish. 
Hence : 

47.4.1. Proposition Q(.) = WT). 

47.5 Guided by 37.3, one is advised to replace x, by O,, 

47.5.1 O,(T> = x,(T) Q(7). 

The Of, as defined in 37.3, fulfill orthogonality relations in H .  The new ones 
do not differ much, though there may be some doubt whether Q can still be 
transplanted to Hfor integration purposes; that is, whether Q(<h) depends on 
h = exp h rather than on h. This univalence requirement is fulfilled by 
y h  exp(a, [h), though not by Y h  exp(ja, [h). Since Gun is simply connected, 
however, any linear representation of G will extend to G and therefore any 
possible weight h will make y,, exp(h, [h) univalent. This holds for S as well 
since S is integral and dominant and thus is a possible weight. It also holds for 
all SS ( S  E Int W*). Thanks to  the sum expression for Q = 0 8  it holds for Q 
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and finally it holds for 0, i fp  is integral by the same arguments. 
Clearly, the new Of fulfill the same orthogonality relations as the old. (See 

37.1, 37.4.) 
Integrating some )', exp(p,T) over Hun with the usual measure i fp  is integral, 

one gets 0 unless p = 0, because, on the one hand, the integral should be 
invariant under the translation Y , ( T  + T ~ )  (T,, fixed E H:,,), and on the other 
the same translation causes a multiplication by exp(p, T~). 

Hence : 

47.5.2. Proposition Oh,@,, are orthogonal as functions on Hun unless 
h ,p  are equivalent under Int W*. 

A property anticipated in 37.5 can now be verified: 

47.5.3. Proposition If the measures p on Gun and v on Hun are related 
as in Theorem 37.2, and k is the order of the kaleidoscope group Int W*,  then 

p(Gun 1 = kv(Hun)- 

Indeed, by 47.4.1, 

p(Gun 1 = I,." I I dv, 

where, after substitution according to 47.3.1, under the integral sign, the only 
summands contributing effectively are k times 1. 

Note that the proposition remains valid if the assumption of Gun being simply 
connected is dropped. 

47.6. Proposition 8, = 0;+& i f4  is the top weight of$ 

Proof As a product of symmetric x, and skew Q, the left-hand side is skew, 
thus a linear combination of elementary skew terms 8, with integral dominant 
p. If the product is performed, the highest p that occurs is 1 + 8. Because 
mi = 1 (see 43.1.6), it occurs with a unit coefficient. The proposition asserts 
that no other dominant p will occur. It is inductively verified by taking the 
proposition for granted for all linear representations g with a lower top 
weight p ;  thus, 

47.6.1 9, = @;+a for $<A. 

By 47.5 0, is orthogonal to O,, hence by 47.6.1 to all 0; +& with $ < 2, which 
would be impossible if such an expression occurred in 8,. This proves the 
assertion. 
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47.7. Weyl's Character Formula On the trunk H of complex semi- 
simple G the character of the irreducible linear representation of G with top 
weight 2 is given by 47.2.1 and 

Indeed, one obtains x from 47.5.1, 47.6, and 47.4.1 as @;+,/@,, which by 
47.3.1 is just the asserted quotient. Properly stated, this was proved only for 
T E H&. It extends, however, to H* by analytic continuation. Wherever the 
denominator vanishes, the quotient is interpreted by continuity. 

47.8. Weyl's Dimension Formula The dimension of the R E Spa Lin 
in which complex semisimple G is irreducibly represented with the top weight 
3 is 

Proof The dimension equals the value of the character at T = 0, where all 
eigenvalues are 1. It is computed by continuity, taking T = t8 and letting c tend 
to zero : 

In the numerator 

C det S * exp(S0 + a), ?a) = X det S - exp(S8, to + 8)) = Q ( t 0  + 8)) 

and because of 47.4.1, 

= TIC (exp +0 + 6, a) - exp(-+t0 + 8, a))) 
aEW+ 

In the denominator, analogously 

( t (8 ,  a) + - a) .  

aEW+ 

The quotient takes the announced form iff tends to zero. 

47.9. Historical Note The formulas are the most marvelous results of 
H. Weyl's papers in Math. Z. 24 (1926) = Selectu 352-359. 

The dimension formula is quite comfortable. The character formula is less 
practicable. 

An algebraic proof of these formulas is furnished in Section 48. 
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47.10. An Elaboration It is worthwhile to elaborate on the proof in 47.8. 
There dim R was computed as the first nonvanishing coefficient in the power 
series for x i  (t6). If the next coefficient is taken into account, one gets 

47.1 0.1 

where the formula in 21.1.9 has been used. 

=dim R(l +&&+S,h+6)-(6,6)) t2+ ...), 

On the other hand, 
Xi( tS)  = z expo, st) ,  

A 

where the sum runs over the weights h according to their multiplicity in the 
representation. 

A comparison of the coefficients in 47.10.1 and in 

x i ( t 6 )  = z (1 + (A, 6) t + $(A, 6 ) Z  t Z  + * - .) 
A 

leads to 

47.1 0.2 C (A, 6)2 = j -  dim R ( o  + 6, A + 6) - (6,S)). 

In particular, for the adjoint representation of simple G, that is, A = 6, one 

A 

gets 
(6, 6) = z (a ,  = 2% dim G((6 + 6, 6 + 6) - (6,s)) = & dim G, 

aEW 

where the first equality is again justified by 21.1.9, and the third by Proposition 
43.3. 

The result is the following. 

47.11. Strange Formula dim G = 24(6,6) for G E Alg Lie Com SSS. It 
would be interesting to have a direct proof of this relation. Possibly it is related 
to Gordon Brown's formula (21.5). 

48. ALGEBRAIC PROOF OF WEYL'S FORMULAS 

The proofs in Section 47 are based on integration. The present section gives 

f is an irreducible linear representation of G E Alg Lie Com SS, in R, with 
an algebraic proof. 

top weight 3; dim R -= 00. 
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48.1 For a E W* put 

f(e-a)f(ea) = PI f(ea)f(e-a) = P2 ; 
thus 

p2 -PI =f(h.Y). 

PI RA RA, f(ea)RA = RA+a, f(e-a) RA+a = RA. 

Then, if RA is the X-weight space and h + a is again a weight, 

There are positive integers a, b such that 

PY'l RA = P I a  RA = T for all i > O ,  

for all i > 0. P;+' RA+, = P2" RA+, = U 

Then 
f (em) T = U, f (e-a) U = T, 

which shows that 
f(ea) maps T one-to-one onto U, and 
f(eJ maps U one-to-one onto T. 

Since 

one gets 

A contribution to the trace of P I  in RA is yielded by the subspace T only and, 
likewise, to that of P2 in RA+, by U only. Thus, 

trRA+, P2 = tr, P2 = tr, PI = tr,, PI = trRA (P2 - f (ha)). 
Hence, 

trR, p2 - trRA+aPz = mA(h,  

where mA is the multiplicity of the weight X i n5  Substituting X + a, h + 2a, . . ., 
instead of A, and adding, one gets 

m 

trRAf(ea)f(e-a) = Z mA+pa(h + p a ,  a). 
P - 0  

Actually, the series stops because almost all mA, belonging to X that are not 
weights, vanish. 

Summation over all a E W*, and addition of 

trR, Z f f ( Ir , )  = A) mA, 

where hl,hi form dual bases of H, delivers the trace in RA of thejrimage of the 
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Casimir tool 

where 

Thus, 
c, = (p  + 6, p + 6) - (6,6). 

m 

48.2 C C (A + pa,  a)  mA+pa + (A A) m~ = ~2 M A .  
aeW* p - 0  

Here the inner sum may be taken instead from p = 1 upward, since for p = 0 
the contributions from f a  cancel. 

Likewise C , ( p , a ) m ,  vanishes as soon as the sum runs over an entire 
a-ladder of weights p or over an a-ladder cut off symmetrically, since then 

C ( p , a ) m p = C  (Sap ,a )msap=Z ( S a p , a ) m p = - Z  (~1 ,a )mp .  

It follows that the inner sum in 48.2 vanishes as soon as integral h is no 
weight. In that case mA vanishes as well. So 48.2 is still correct, if integral h is 
not a weight. 

Combining in 48.2 the contributions from f a  by using 
m 

C (A + PQ, a)mA+pa = 0, 
p=-m 

one gets 
m 

C (hYa)mA+2 C C ( h + P ~ , ~ ) m ~ + p a + ( h , h ) m h = C ~ m ~ .  
aEW+ aEW+ u=1 

The first and third summdnd together are 

(A, h + 26) mA = ((A + 6, h + 6 )  - @,a)) mA = CA r n ~  ; 

thus 

This formula allows the recursive computation of the multiplicities descend- 
ing from m i  = 1 and mA = O  for h > 2. The first member involves multi- 
plicities of weights >A only and the coefficient c2 - cA in the second member is 
well known not to vanish (see 43.1.8). The formula is more practical than 
Weyl’s, which will be derived from it, or rather from 48.2. 

48.4 The equation system 48.2 is now subjected to the Laplace transform- 
ation that consists in multiplication by exp(h,T) and summation over all 
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X E A, or, rather, which amounts to the same, summation over all of HEp. 
This is how 

x(7) = c mA 

makes its appearance. 
If p is substituted for h +pa, the first summand contributes 

m 

Now with 5 as in 21.1.5 and canonically identifying H with its double linear 
dual, 

exp(p, 7)  s 5 - l  p = grad, Y , ex~(p ,  71, 
exp(-(a' 5-l a = grad, y, log (l-exp(-(a, T))), 

1 - exp(-(., 7))  

('9 exp(A, L= I Y T  exp(h, 

where the Laplace operator d = div grad is understood with respect to the 
inner product in H*. 

The result is 

48.5 

which can be simplified by the use of Q (see 47.4,47.4.1): 

(grad Y, X 1% (1 - ex~(-a, TI), grad x) + Ax = ch* x, 
acW* 

= x det S exp(S8, T),  

Q(7I2 = f n (1 - (ex~(-a, 7))). 

S 

asW* 

Now 48.5 becomes 
' (2 grad log Q, grad x) + dx = c!  x. 

grad log Q = (grad QYQ, 
Because of 
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this becomes 
2(grad Q, grad x) + Q A x  = c i  Qx. 

Putting Qx = 0, as in 37.3 and 47.5. I ,  one arrives at 

48.6 (dO/Q - ( A  QlQ) = c i a  

The same presentation of Q (47.4.1) shows 

d Q  = (6,6) Q. 

Hence 

48.7 de = (h + 6 , h  + 6) 8. 

0 is a linear combination of elementary skew 

O,,(T) = C det S * exp(Sp, T ) ,  
S 

with integral dominant p, all G h + 6.  For any among them 

( A  0,) (7) = C det S (Sp, Sp) exp(Sp, 7) 
S 

= (p, p) 0,‘ (7). 

(p, p) = 0 + 6 3 3  + 6) 

p = h + + *  

The linear independence of the nonzero 0, (a consequence of their ortho- 
gonality in H )  implies that 

as soon as 0, occurs in the same expression for 0;  dominant p G h + 6 makes 

Since exp(h+6,~)  occurs with a unit coefficient in both 0 and 0;  one gets 

which proves Weyl’s formula. 

formal. 
Note that the use of series and differentiations in this proof was merely 

48.8. Historical Note The contents of this section are based on H. 
Freudenthal, Proc. Kon. Akad. Wet. Amsterdam A51, 369-376 (1954) = 

hdagationes Math. 16. Examples of the practical use of formula 48.3 were 
given by H. Freudenthal, Proc. Kon. Akad. Wet. Amsterdam A51, 487-491 
(1954); A59, 51 1-514 (1956). 
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49. CLIFFORD ALGEBRAS AND SPIN REPRESENTATIONS t 
The fundamental representations of G E B,, D, with half-integral weights 

(n,, respectively, nl and n2) are still waiting for realizations. They are called 
spin representations. Since the usual presentation of G (n2, respectively r3) 
has a center of order 2, the spin representations give I-Zimages of the special 
orthogonal groups. Clifford algebras are involved in their construction. 

49.1-3. The Infinitesimal Approach 

49.1 The special orthogonal group G of n-space is now taken with respect to 
an invariant unit form in matrix presentation. Its infinitesimal elements are the 
skew matrices. For distinct U,b,d,,, means the n-n-matrix with 1 in the place 
‘a, 61, -1 in the place %,a1, and 0 elsewhere. The d,,,b (a c b) form a basis of G. 
Note that da,b = -db,,,. 

Ida,b, dc.dl = if a # c, d ;  b # c, d, 
[da.b, db,c] = da,c if a # b, b # C, C # a. 

These relations determine the Lie algebra algebraically. Put 

1 = [n/2]; 

a’ denotes the subscript a + 1 if 0 c a Q I and a - 1 if 1 < a G 21. 
The ordered trunk His the linear space spanned by da,+ (0 < a G I )  as a basis, 

partially ordered according to the order of the subscripts a. On this basis the 
d,,,-coordinate of h is denoted by ~ , , ( h ) .  The branches and rootforms are 

da,b - da*,b, f id,,,b, f id,,*,b 
da.b + d,,,,be - id,,.b’ + id,,i,b 

belonging to 
belonging to 

f i ( W o  + Wb), 
i(W, - mb), 

and for odd n, in addition, 
da,n f belonging to +iua 

(a # b, a G 1, b G I ) ;  the signs are understood to be correspondingly dependent. 

49.2 The expression f,2 + * - * + fn2 can be factorized into 

(41 PI + * * * + fnpn)’ 

by the introduction ofp,, fulfilling 

t The contents of Section 49 are not used in the sequel. 
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These pa are considered to generate an associative algebra with I-elemellti the 
Clifford algebra C,,, with the products 

49.2.2 

constituting a basis of C,,. 

with the basis 49.2.2 and subject to 49.2.1. Suppose dashing defined by 
The existence of C,, is proved by induction. Let C,, be an associative algebra 

P a  = -Pa, 

which generates an involutory automorphism of C,,. The ordered pairs of 
elements of C,, are appointed as elements of C,,,,. Addition and scalar multi- 
plication are defined as usual in direct sums of linear spaces; moreover, 

r U], u2’ * ru1, u 2 1  = ru, u1 + uz 62, 242 dl + 241 u z 1 ,  - 
ru i= r -  - 

1 9  2 u1, i 2 ’ .  

The usual laws, especially that of associativity, are easily verified. One can also 
verify that dashing is again an involutory automorphism. The identification of 
u with ru,O1 embeds C,, in C,,,,. 

ru,,u21 * ‘0,ll = ruz, u, 1, 

r 0 , 1 1  =-ro,l’ .  

r 0 , i i .  ru 1, 2 i = r -  U 2 , a 1 1 ,  

- 

By putting ‘0,l l = pn+, and doubling the old basis by right multiplication by 
pn+,  the induction step is completed. 

49.3 The second-degree elements of C, form a Lie algebra G‘ if 

[u, u] = uu - uu 

is accepted as a definition. The linear mapping K determined by 

49.3.1 Kda.b = *pap,, (0 < a < b < n) 

is easily seen to be an isomorphism of G onto G‘. The left multiplications 

49.3.2 La = Y ” 4 U  (4 E G? 

cause a linear representation 

L = Y a s G L a  

of G’ in C,,. So LK is a linear representation of G in C,,. 
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Forq = Kdaoaf = +pop,, one gets q2 = -a; hence, 

Lg2 u = Lq2 u = d u .  

All eigenvalues of L, are h+i. So possible weights of the representation LK 
with respect to the trunk Hare  

+i(*w, f * * * h w,) ,  

for which weight vectors, depending on the signs, are chosen: 

49.3.3 (D,) u ~ u $ * * *  u f ,  (6,) U : U ~ * - - U ' U  I 0 ,  

with 

It is easily seen that left multiplication byp,(a = 1, . . ., n) permutes them up to 
factors f l ,  4. So they span a G'-invariant subspace R of C, of dimension 2', 
in which G' is represented according to rI for G E 6, and according to a 
(reducible) combination of rI and r2 for G E D,. 

It is easy to describe the action of the basic +L,,,, on R in a more explicit way 
by matrices on an eigenvector basis. This may be omitted. 

u: = p j  + ip,,, u7 = 1 + ip,p,., uo = 1 + p n .  

49.4-6. The Group Approach 

49.4 By the above device the spin representations of the Lie algebras 
G E B,, D, have been described. The result is not quite satisfactory. One would 
like to have the spin representations of the special orthogonal groups in an 
explicit form. 

To unify the exposition it is convenient to denote the universal wrapping of 
the special orthogonal group of n-space by G. This is a group locally isomor- 
phic with a linear Lie group, as in 6.4. In an obvious way Gcan be understood 
as its infinitesimal algebra. Again, 

I=[+n] and 6=n-21=0 ,1 .  
G is represented in n-space by a 2-l-homomorphism 9 and in 2I-space by a 
l-l-homomorphism u. In the case 6=0, u is reducible and splits into r, and r2. 

To avoid half-integers the meaning of the w i  is changed so that the non- 
vanishing rootforms are 

f2wl f 2 w j  (i#j) for 6 =0, 
f2wl f2w,  ( i # j ) ,  f2w, for 6 =  1. 

The weights, all with multiplicity 1, are for 
9: f2w1 for 6 = 0, supplemented by 0 for 6 = 1, 
u:  f w ,  f * . *  f wp 

If the eigenvalues of 8(x)  are e*2wr, supplemented by 1 for 6 = 1, then the 



49. CLIFFORD ALGEBRAS AND SPIN REPRESENTATIONS 25 1 

value of the character x of u for x E His the sum over all sign distributions: 

defined up to a factor f l .  
The square of this character value is 

where X ranges over all nonzero weights of 9, thus, 

= det( 1 + 9(x)) for 6 = 0, 
= f det(1 + 9(x)) for 6 = 1. 

Thus, first for x E Hand then for general x, 

49.4.1 

where the sign is to be settled by analytic continuation. 

x(x)  = +(2-* det(1 + 9 ( ~ ) ) ) ~ ' ~ ,  

49.5 In the space of continuous functions on G a subspace K, spanned by the 
functions Y x  ~ ( x a )  (a E G) or, equivalently, by the matrix coefficients of a, is 
singled out. Its dimension is (2')2 for 6 = 1 and 2(2f-')2 for 6 = 0 (see 49.3). 
Thus, 

dim K = 2"-'. 
(An explicit basis of K is indicated in 49.6.) 

49.6 As the next step the set of symbols 1, ..., n, or rather that of all its 
subsets with an even number of elements, is considered. This set of subsets is 
called N .  It has 2"-' elements. 

For any v E N let e ,  be one of the two elements of G with the property 

6(e,)  is the diagonal matrix r A l ,  . . ., An1, with 

A,= 1 for j $  v, X,=-1 for ~ E V .  

(A fixed orthonormal basis was chosen in n-space.) 
If 9(x) = 8 ( y )  for x # y ,  it is convenient to write y = -x. Then u(-x) = 

-a(x) since the quotient of a(x) and a(-x) is of the form expo@) # 1 with 
h E H ,  2w,(h) = 0 whence (* w l  f f w,)(h) all equal ni mod 2ni. 

e,e,  = fe ,  where p = (p u v)\(p n v). 



252 39-50. ALGEBRAIC APPROACH TO LINEAR REPRESENTATIONS 

By 49.4.1 
x(eJ = 0 if v is nonvoid, 

= k2' if v is void. 

The Yxx(xe,) are linearly independent because of 

X(e,ev) = 2' E, for p = v (E, = *I), 
= O  for p f  v.  

(See 49.4.1 .) They form a basis of K. Hence for a E G, 

x ( x 4  = z r u ( 4  x(xeu>, 
Y E N  

where the coefficients r,,(a) can be found by putting x = e,: 

r,(4 = 2-' E, x(e, 4. 

x ( x 4  = 2-I C E, x(ev 4 x(xeu), 

This leads to the formula 

uEN 

which remains valid if yxx(xa)  is replaced by any linear combination 

f(x) = C ma x ( x ~ )  
a 

of such functions; thus, 

f ( x )  = 2-' c &uf(ev) x (xeJ  
Y E N  

Tn particular, iffis any matrix coefficient of u, and even for u instead off, 

~ ( 4  = 2-' C E, x(xe,) 
V E N  

49.6.1 

where the square root involving the subscript v has to be interpreted as a 
continuous function on G which takes the value 2(*12)" E, at x = e,. 

49.7. Reduction of Irrationalities Up to the precise knowledge of the 
u(e,) this is an explicit spin representation of the orthogonal group. How- 
ever, it depends on 2"-' irrationalities while one square root is likely to do 
the job. This reduction is now performed. 

It is easily seen that for n-n-matrices a,b the relations 

b = (1 - a)(l +a)-' and a = (1 - b)(l + b)-I 
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imply each other (so long as they are meaningful) and that orthogonality of 
a implies skewness of 6,  and conversely. 

A square root of thedeterminant of a skew 2k-matrix b is a rational function 
of the matrix coefficients /Ii,, the so-called pfaffian of 6,  written pf(b), 

where sgn means the permutation sign. (The proof is omitted.) 

Then 
Suppose orthogonal a general enough to admit skew b = (1 - a)(l + a)-'. 

49.7.1 det(1 + a6(e,)) = det((1 + b) + (1 - b)6(eu)) det(1 + b)-' 
= det((1 + 6(e,)) + b(1 - 6(e,,)) det(1 + b)-'. 

To make the computation easier, one considers the case v = { 1, . . ., m} with 
even m. Then 1 + 6(eu) has 0 on the main diagonal places 1,2, ..., m, and 2 
on the other diagonal places, whereas in b(1 - 6(e,)) the first m columns of b 
are multiplied by 2 and the others are annihilated. Therefore the first factor in 
49.7.1 is 2" times the determinant of the matrix b, formed by the first m rows and 
columns of b. 

49.7.2 det(1 + a6(e,)) = 2" det b, det(1 + b)-'. 

To apply this to 49.6.1 one must substitute 6 ( x )  for a. Instead of b one writes 
~ ( x ) ;  that is, 

49.7.3 

~ ( x )  is skew. Its submatrix constituted by the rows and columns the numbers 
of which occur in v, is called q,(x). Then 49.6.1 becomes 

v(x) = (1 - 6(x))(1 + S,(x))-l. 

where pf(7,) means 1 for void v. 

curve Yrar on G is defined by a, = 1 and 
The doubtful signs are settled by a suitable choice of the e,. For i < j the 

7 

7 

1 
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where the cosines and sines are placed in the ith andjth rows and columns. 
Next there is defined 

e(t,,) = 4;  

furthermore, if il < iz < * * < i,, 
- 

e(1,. 12,  .... 1 m )  - e(f,, i*)e(l, , i ,)  * * * e(lm-,,im)* 

A straightforward computation gives -tan37 for the i, jth matrix coefficient of 
q(a,) and cos as a value of (det(1 + q(~~))-I)l’~. Furthermore, 

49.7.5 E, = (-l)[”’ 

if [v] is half the number of elements of v. With the substitution x = e, the 
right-hand member of 49.7.4 should become u(e,). This requires plus signs in 
49.1.4, which now reads 

49.7.6 

with a positive square root at x = 1. 
To make this an explicit formula, one has to determine the matrices u(eJ 

The representation of G induced by u is equivalent with LK restricted to R, as 
defined in 49.3. By virtue of this equivalence one may and does assume 

u(x)= LKr for x E G. 

x = e x p x = l  + 7 x + * - * ,  

U ( X )  = (det( 1 + q(x))-’)’/’ 2 (-l)c”l pf(q,(x)) u(e,), 
V € N  

Putting 

where x is an infinitesimal element of G such that 
6(x) = exp 6(x) = 1 + di,, + * * * (i ~ j )  

(see 49.1), one gets 
q(x) = t4.J + * - * , 

for v = { i , j } ,  
for other nonvoid v, 

det( 1 + q(x))-I = 1 + T’( * * .). 

This shows 
44,) = 3u(e,); 

thus, 
u(e,) = L,,,, for v = {i, j } ,  i < j .  

Putting 
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49.7.7 p , , = p 1 , p 1 2 . - - p 1 t  if v = { i l , i 2  ,..., ik},  i 1 < i 2 <  ... < i k ,  

one finally gets 

49.7.8 44 = Lrcx, 

with 
f(x) = (dew + .r(x))-')1'2 * z (-~)~"'Pf(rly(x))p,,. 

UEN 

The results are summarized in the following theorem. 

Theorem Let 9 be the usual presentation of the special n-orthogonal group 
and u its spin representation (T, in case B,; rl, 7r2 combined in case DJ. With 
the use of the Clifford algebra C,, u is infinitesimally given by the action of 
the Lie-algebra C' within C,,, which consists of the second degree elements, 
as left multipliers (49.3.1-2) in the space R described by 49.3.3. 

In group terms u is expressed in 6 by 49.7.8. Here 7 is to be understood 
according to 49.7.3, v E N is a subset v of { 1, . . ., n} with an even number of 
elements, [v] is half this number, pf(l-],,(x)) is the pfaffian of the submatrix 
formed by the rows and columns of ~ ( x )  with numbers in v, p,, is defined by 
49.7.7, and L, (u  E C,) is the action of u as a left multiplier on the space R 
(49.3.3). 

49.8. The Other Fundamental Representations G can also be 
represented by 

The elements of R of degree k, together with 0, form a linear subspace, in- 
variant under the ~(x). Under the action of 7 theq behave as the linear spaces 
of skew k-tensors; this leads to the other fundamental representations. (With- 
out proof.) 

49.9. Historical Note The spin representation of the special orthogonal 
group by means of the Clifford algebra was discovered by R. Lipschitz (Unter- 
suchungen iiber die Summen von Quadraten, Bonn, 1886) and then forgotten. 
E. Cartan [Buff. SOC. Math. France 41, 53-96 (1913) = Q?uures Z 1, 355-3981 
gave a construction of the spin representation of the'Lie algebra. R. Brauer and 
H. Weyl [Amer. f. Math. 57, 425-449 (1935)=Selecta H. Weyl 431-4541 
characterized the spin group, but did not give an explicit construction. H. 
Freudenthal, using characters [Proc. Kon. Akad. Wet. Amsterdam A59, 51 5- 
522 (1956) = Zndagationes Math. 18 (1956)], rediscovered Lipschitz' results, 
though the reduction to one square root was not achieved until he became 
acquainted with Lipschitz' work. 

7 = Y x Y .ER f (4  a f W "  

See also Ann. Math. 69,247-251 (1959). 
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50. THE CONDUClBlLlTY THEOREM (ALGEBRAICALLY 
PROVED) AND E. E. LEVI'S THEOREMt 

The conducibility of a complex semisimple linear Lie algebra C was proved 
in 35.4 by integration in the unitary restricted group Gun. Starting with the 
linear Lie algebra G, one can give a purely algebraic proof; the other forms of 
the conducibility theorem can be derived from this case. 

The same method of proof applies to E. E. Levi's theorem. Though these 
proofs could be combined, the exposition is clearer if the shorter conduc- 
ibility proof is given separately. (See 50.7 and 50.1 1 .) 

50.1. Conducibility Theorem A finite-dimensional linear represent- 
ation of C E Alg Lie Com SS is conducible. 

50.2. E. E. Levi's Theorem Let G E Alg Lie Com and let A be the radical 
of G. Then there is F sub G, F E Alg Lie Corn SS, such that G = F + A ,  
F n A = (0). 

50.3.1 
proof. It was defined (40.1) as the element 

The Casimir tool of semisimple G is an important instrument in the 

z=CaJa ,  
J 

of the associative envelope b(G) of semisimple G, where the bases a,, . . ., a,, 
a', . . ., d had to be correlated; that is, 

1 for i-j, 
for i # j ;  

tr (ala,) = (o 

z did not depend on the choice of the basis. It belongs to the center of &'(G). 
For any representationfof Gin R(extended to b(G)) zf now means the image 

of z underf. Iffis irreducible with top weight 3, then zf behaves in R as the 
scalar multiplier (43.1.9) 

which, by Proposition 43.6, is positive unless 3 = 0. Hence, as an element of 
End R, zf is nondegenerate iff is irreducible and not the null representation. 

(2 + s,3 + 6) - @,a), 

50.3.2. Proposition For any linear representation f of G E Alg Lie Corn 
SS in R 

tr zf >, 0. 

t The contents of Section 50 are not used in the sequel. 
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If 
tr zf = 0, 

thenfis a null representation. 

Proof On a suitable basis 

with irreducible representations g ,  of G in R,. Thus, 

tr zf = C tr zgJ 2 0, 

according to 50.3.1. 
zgJ is a scalar multiplier. If tr zf = 0, then tr zgJ = 0; hence zgJ = 0 for all j .  

By 50.3.1 every g,  is an irreducible null representation; thus dim R, = 1. This 
makes f ( G ) ,  which is a homomorphic image of G, solvable. Consequently 
f(G> = (01. 

50.3.3 Under the same supposition, with respect to the eigenvalues of z’, 
R is split into zf-invariant N , M  sub R, 

R = N + M ,  

such that zf is nilpotent in N and nondegenerate in M. 

Proposition fleaves M and N invariant, and acts as a null representation 
in N. 

This follows from zff(a) =f(a)zf and from 50.3.2. 

50.4 The Casimir tool is now generalized. 

Com. Then, still, 
Letf, g be linear mappings of semisimple G into End R, where R E Spa Lin 

does not depend on the choice of the correlate bases, as is readily seen by 
rewriting the proof of 40.1, and again 
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As soon as f becomes a representation, one can of course substitute 
[f(c),f(a,)] forf([c,a,]); likewise with g. 

PJ = c g(aJ)f(a,) = z g(a,)f(a’), 
J 

since the bases may be interchanged. Thus by defining zcf*81 as 

50.4.5 

50.5 To prove Theorem 50.1, consider a linear representationfof semisimple 
G in R with an invariant L sub R. 

[f(c), zcf*pll = z [f(a’), [g(a,),g(c) -f(c)ll. 
I 

There is an M sub R and a linear representation g of G in R such that 

L + M =  R, L n M = {0}, 

g(a) M c M ,  g(a) x =f(a) x for x E L, (f(a) - g(a)) M c L. 

(Iffis a matrix representation on a basis that extends a basis of L, thus 

then g arises by “cleaningl’f, that is, omitting the contribution *.) 

under the assumptions 
fL and fM irreducible. 

The easy induction that leads from this case to the general one may be omitted. 

The theorem actually states the equivalence offand g. It suffices to prove it 

50.6 The set of linear mappings 8 of R into R such that 

9 M c L ,  8L=  (0) 

is denoted by 0. It is a linear Lie algebra. Because O2 = {0}, one gets [0, O] = (0). 
Clearly 
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50.6.1 f (u) - g(u) E 0 for u E G. 

The equivalence offand g will be settled by some 1 - K ,  with K E 0 such that 

(1 - K ) f ( M  + 4 = g(4. 

(Note that (1  - K ) ( I  + K )  = 1.) This condition on K can also be written 

50.6.2 [f(u), K ]  = g(u) -f(u) for all u E C. 

50.7 In 0 a new linear representationrof Cis  defined by 

A4  9. = [f(4 791 (= k(4, 791). 
Then, because of 50.6.1, one can write 50.4.5 as 

50.7.2 

With 50.7.1 the desired result in 50.7.2 is nearly attained, but one still has to 
remove zf from the last member of 50.7.1. This will be done by solving 

f(4 K = s(4 - f (d  

50.7.3 ,f K = ZCf.81 

with respect to K E 0. Note that according to 50.3.3 

0 = 0 + 
a direct sum, where 

50.7.4 f(4 @ = {O} ,  zf@ = {O} ,  

50.7.5 f(u) c zf nondegenerate on 0,. 

Substituting z ~ ~ * ~ ~  from 50.7.3 into 50.7.1 and observing (50.3.1) 

50.7.6 r(4 zf = Z f m ,  

one gets as an equivalent condition on K 
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50.7.8 f ( a )  K - (g(a) -f(a)) E @ for all a E G. 

According to 50.7.4, 
f ( a )  9. = SEf(a) for 9 E @. 

Because of their reducibility of fL andf,, this means that 6 = 0 or 6 causes an 
(essentially unique) equivalence offM andf,, and dim @ = 1. 

In the first case @ = {0) ,  zfis nondegenerate and 50.7.3, and consequently 
50.7.2, can be solved. Tn the second case 50.7.3 can still be solved mod @. 
Because of 50.7.4, this solution fulfills 50.7.7 exactly. This gives a K such that 

3(4 K = g(a) -f(a) + ~ ( a )  a,, 

A'([% 61) K = S ( 4 m  K -3(4f(4 K ,  

[f(a),g(b) -f(b)l - [ f (b) ,g(a)  -f(a>l 
= [g(a),g(b) -m1- [ f (b) ,g(a)  -fWl 
= g([a,  bl) - f ( [ a ,  b1)9 

where 0 # 8, E @ and the scalar u(a) depends linearly on a E G. 
Computing 

while taking 50.6.1 into account, one gets for the second member 

and for the first member, 

g([a, 4) -f([a, 4) + m, bl) 9.0. 

This shows that u vanishes on the commutator algebra of G, which because of 
the semisimplicity is G itself. 

Therefore 50.7.2 is solvable, which verifies the assertion of 50.5 and therefore 
of Theorem 50.1. 

50.8 ToproveTheorem 50.2 oneconsiders G EAlg Lie Lin Com presented in 
R E Spa Lin Com with an invariant L sub R.  Again there is an M sub R and a 
linear representation g of G in R such that 

50.8.1 L + M = R ,  L n  M = { O } ,  

50.8.2 g ( a ) M c  M ,  g(a)x = ax for x E L ,  

(a - g(a)) R c L for a E G ;  

g is unique up to equivalence. 

Proposition Under these conditions, suppose that g ( C )  is semisimple and 
irreducible on both L and M. Then M and g can be modified such that 
g(G)  sub G. 
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This will be proved in 50.9-10. 

50.9 The set of linear mappings 9 of R into R such that 

9 M c L ,  BL= (0) 

[@, 01 = w, 
is again denoted by 0. Again 

and 
a - g(a) E 0 for all a E G. 

The kernel of g is denoted by A .  
If a E A ,  then g(a) = 0; thus a E 0. Hence A = 0 and A abelian. 

50.10 Take a linear subspace E of G such that 

G =  E + A ,  E n  A = (0). 

In this splitting the E-component of a E G is denoted by e(a). Thus, 

e(a) = a mod A ,  e(a) E E, a - e(a) E 0. 

Clearly e need not be a representation of G, but 

50.10.1 4[a ,  bl) = [W, e(4l + #(a, b) 

#(a, b) E A .  
where 

The desired modification of g will be obtained by replacing g(a) by 

g(a) + [g(a),w] with a suitable w E 0. 

This does not influence the second and third relations in 50.8.2. Since 

Ma) + [g(a), wl, db) + [g(b)9 wlI 

= [g(a), &?@)I + [g(a), [g(b), wl1 - [g(b), Ma), all 
= k ( 4 ,  db)l + “g(a), g(b)l, wl, 

the new g(G) will again be a Lie algebra. The only thing one has to arrange 
is that 

50.1 0.2 

Then the new M is obtained as (1 - w ) M ,  which is indeed invariant under the 
g(4  + [g(a), wl. 

g(a> + [g(a), wl E G. 
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To solve 50.10.2 one applies 50.4.4, with g,e instead off,g. Then 

C ([[g(c>, g(a’>I, e(aj>l+ [g(a’>, e([c, ajI)I> = 0 for c E G, 
J 

which by 50.10.1 becomes 

C (“g(~),g(a’)I, e(aj)I + Ma’), [e(c), e(aj>l+ ~ ( c ,  aj)l) = 0. 
I 

The Jacobi associativity law applied to the first summand leads to  

[g(c)i z [ ~ * ~ ’ I  + C ( k ( 4 ,  [e(aj>, g(C> - e(c)ll + U(C, aj>l) = 0. 
I 

Again 
= C [g(a’>, [g(a,),$Il = C [&?(a’>, [e(a,),911 

I I 

defines a linear mapping za of 0 into 0. By the same argument as in 50.7.4-5 
0 splits directly into @, where zg is nilpotent, and into @, where za is non- 
degenerate; both are g(a)-invariant. Similarly, g(a) @ = (0) and dim @ G 1. 
Again 

zi = ZCe.el mod @ 

can be solved by K E za 0 and 

Za K j  = U(C, aI) mod @ 

by K, E za 0 n A because A is za-invariant. 
Since the g(b) commute with the elements of @, this leads to 

[g(c>,z“.] + zB(g(c> - 44) + C ([g(a’),z”,I) = 0 
I 

and, since za commutes with g’(b), to 

z~([s(c>,KI + g(c) - e(c> + C Ig(a’),~jI) = 0. 
I 

Now 
e(c> - C Ma’), ~ j l =  e(c> - C [e(a’),~jl E G ;  

g(c> + [g(c),.I + 4g(c)P, E G 

I I 

hence 

for some linear function u and some fixed 9, E @. 
The commutator argument again shows that u = 0, which proves that 

g(c) + [g(C),K] E G for all c E G 

and thus proves 50.10.2. This completes the proof of Proposition 50.8. 
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50.11 
will be proved. 

dimensional Lie algebras will be taken for granted. 

Proposition 50.8 is the basis of an induction by which Theorem 50.2 

At any step in the sequel the existence of the Levi-splitting for lower 

Let G E Alg Lie Com and let A be the radical of G. 
Let B be an ideal of C within A and B # {0} ,  # A .  Then G mod Badmits a 

Levi-splitting; thus 

G =  F ,  + A ,  where F ,  n A = B c  F,, and F,  mod B is semisimple. 

Again F, admits a Levi-splitting. 

F ,  = F, + B, where F, n B = (0) and F, is semisimple. 

Thus G = F, + A and a Levi-splitting of G is obtained. 

contain an ideal of G different from A and (0). Thus A is abelian and 
irreducibly on A .  

of G, different from A ,  such that 

As a consequence, it may now be supposed that the radical A of G does not 
acts 

Now suppose that Gmod A is not simple. Then there are proper ideals GI , G, 

50.1 1.1 

There are Levi-splittings 

G = GI + G,, G ,  n G, = A .  

50.1 1.2 G, = F, + A with semisimple F,. 

YYEF, YrEc3x leaves G, and A c G ,  invariant, hence because of its con- 
ducibility, also a linear subspace K of G, such that 

50.1 1.3 G , = K + A ,  K n A = { O } .  

Because of [F, ,F,]  c A ,  one even gets 

[FI, KI = { O h  

K generates a Lie algebra K‘ ,  which still fulfills 

50.1 1.5 K c  K ’  c G, = K +  A ,  

K n A = {0},  

thus there is a linear subspace A’ of A such that 

50.1 1.6 K ‘  = K +  A’.  
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Now 

This shows that A’ is the radical of K‘. There is a Levi-splitting 

[A’, A’] c A n K’ c A’. 

50.1 1.7 K’ = L + A’ with semisimple L. 

Now, because of 50.1 1.1-7, 

G= G, + C2 = PI + G2 = PI + K +  A = Fl + K ’  + A = Fl + L -, A 

and, because of 50.1 1.4, 7, F = P, + L semisimple and 

G = F + A ,  

a Levi-splitting. 
Therefore G mod A may be assumed to be simple. Consequently G may be 

supposed irreducible on both A and G mod A. If G and G are isomorphic, 
Proposition 50.8 can be applied to G acting in G. The role of the “clean” 
representation is then played by the reduction mod A. Proposition 50.8 
guarantees the existence of a subalgebra P isomorphic with G mod A. If, 
however, G has a nontrivial center, the center is in A and therefore equals A. 
Then Gis semisimple and the conducibility theorem applies to the effect that A 
possesses a G-invariant linear complement, which is even an ideal. 

This proves Theorem 50.2. 

50.12. Historical Note H. B. Casimir and B. L. van der Waerden 
[Math. Ann. 111, 1-12 (1935)l proved the conducibility theorem with the use 
of the Casimir tool and weight theory. J. H. C. Whitehead [Proc. Cambridge 
Phil. SOC. 32,229-237 (1936); Quart. J .  Math. 8,220-237 (1937)l gave a more 
elementary proof in which no appeal was made to weight theory, and by the 
same method he proved E. E. Levi’s theorem. It  seems that this was the first 
correct proof of this theorem. The present proofs, based on the same ideas as 
Whitehead’s, were first published by H. Freudenthal [J. Madras Univer. B27, 
225-236 (1957)l. They could be simplified by the use of cohomology language. 
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REALITY IN LIE GROUPS AND ALGEBRAS AND 
TH E I R LI N EAR R E P R ES EN TAT I 0 N S 

51. MAXIMALLY COMPACT DRESSING 

Of any complex semisimple Lie algebra only two real types have been 
explicitly dealt with, the unitary and the standard ones. The goal is now a 
complete classification of real types, as given in Section 26 for the complex case. 
It is expressed as a classification of involutory semimorphisms. Its theory is 
developed in the present section. 

51.1-3 contain general remarks. 
From 51.4 onward G is supposed to be a complex semisimple Lie algebra 

with the involutory semimorphism C .  Also, G is supposed to be linear, the 
infinitesimal algebra of a linear Lie group G ;  however, i n  assertions and proofs 
concerning C alone, this is only a matter of notational convenience. 

51 .I-3. Preliminaries 

51 .I. Proposition 
Lie (G E Gru Lie Lin), then 

If @ is an automorphism or semimorphism of G E Alg 

N N 

@a = @Z @ - I  (@a = @Z @ I ) ,  

Remark The second statement can also be derived from the first, e.g. by 
using exp. This shows that the second statement also holds for local auto- 
morphisms and semimorphisms. Thus, even local automorphisms and 
semimorphisms normalize In t  G. 

N 

Proof @ax = [@a, x] = @[a, @ - I  x] = @Z 0 - I  x. 
N 

@ax = (@a) x(@u)-l = @(a(@-] x) u-,)  = @Z @ - I  x. 

51.2 Any real Lie algebra can be obtained by real restriction from a complex 
one, namely, from its complex extension. 

Two isomorphic real Lie algebras GI, G2 possess isomorphic complex exten- 
sions. Then the question is, when do two involutory semimorphisms C,, C, of 
complex Glead to isomorphic real C, ,G2? Such an isomorphism of GI onto G, 
extends to G a s  an automorphism A of G with the special feature that x = C, x 
implies A x  = C, Ax,  hence AC, = C, A ,  first on GI,  then on G. 

This suggests the following definition. 
265 
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Definition The involutory semimorphisms C1,C2 of G E Alg Lie Com are 
called isotypic if there is an automorphism A of G such that 

C2 = ACl A-’, 

and inner isotypic if A can be chosen as an inner automorphism. 

Proposition Two involutory semimorphisms of G E Alg Lie Com lead to 
isomorphic real restrictions iff they are isotypic. 

“Only if” has been proved; the proof of “if” is the same argument reversed. 
Classification of the real types of G up to isomorphism comes to the same 

thing as that of the semimorphisms of G up to isotypism. 

51.3 If G E Alg Lie Com SS has the semimorphic image G’ by means of C, 
then G and G’ are isomorphic, for example by means of CC,,, where C,,, is 
some unitary semimorphism of G. 

The equivalence of the following conditions was proved in 1.12. 

Definition I: E Alg Lie Rea SSS is described as a twin type if it derives 
from G E Alg Lie Com S S S  by waiving, or, equivalently, if its complex ex- 
tension is not simple, or, equivalently, if it is the C-restriction of a direct sum 
G + CG, where CG is a copy of G E Alg Lie Com SSS. 

If L E Alg Lie Com, the result of waiving in L is denoted by L**. 

Proposition F E Alg Lie Rea SS is a direct sum of twin-type algebras and 
algebras with a simple complex extension. 

Proof P is the C-restriction of some G E Alg Lie Com SS, which splits into 
simple direct summands G,. The splitting is C-invariant. Summands G, # CG, 
account for a twin summand of F, whereas G, = CG, produces a summand 
with simple complex extension. 

51.4. The Class of CC,, 

Proposition Let C be an involutory semimorphism of G E Alg Lie Com SS, 
and C,, a unitary one. Then (CCu,)2 E Int G. 

Proof 33.9(6) and 33.3.1 grant the existence of an A E Aut G such that 
CC,, E A * Int G, and AC,, = C,,A. Thus, using Proposition 51.1, 

C,, C = C,,(CC,,) C,, E C,, A * Int G * C,, = C,, AC,, Int G = A Int G, 
1 = C,, C * CC,, E A2.1nt G, 

hence, A 2  E Int G, which proves the assertion. 
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51.5.1-10. C-Third Dressing and the Hermitean-Unitary Split 

In further investigations it proves convenient to have C commute with C,,. 

51.5.1. Definition For an involutory semimorphism C with C H =  H a 
third dressing with respect to Hi s  called a C-third dressing if the C,, belonging 
to the dressing fulfills 

cc,, = c,, c. 
The existence of such a dressing will be shown in 51.6. Meanwhile a few 
properties of a C-third dressing are derived. First a few definitions elaborating 
on the notions of Section 38. 

51.5.2. Definition u E Gun t) Cu,u = u, 

s E Gh, t) C,,s = -s - s E Sun. 
Gun infinitesimally generated by C,,, Ghe = exp Ghe. 

The elements of Ghe and Ghe are called hermitean. For a C,,-invariant trunk H 
(cf. 33.13), 

H h e  = H,, = H n c h , ,  

Hhe = H,, = H n Ghe infinitesimally generated by Hhe. 

51.5.4 For an involutory semimorphism C and a C-invariant trunk H :  

Definition Gc = toeC(Cu = a), 

G, infinitesimally generated by Gc. 

Hc infinitesimally generated by Hc. 
Hc = tosdCh = h), 

Note that C need not be extendible to an automorphism of (real) G, though it is 
if, for example, G is simply connected or centerfree. Even if C is extendible to 
G, then still G, is only the 1-component of the group of C-invariant elements 
of G .  

51.5.5. Proposition If CC,, = C,,C, then CG,, = Gun, c c h ,  = the. 

51.5.6. Proposition If CC,, = C,, C,  CH = C,, H = H, then CH,,= H,,, 
CHh, = Hhe. 
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51 3.7.  Definition If CC,, = C,,C, then set 

GC.un  = GC Gun, GC.he = G C  the, 
Gc,Un infinitesimally generated by G,,,,, Gc,he = exp GC,he. 

Furthermore, if C H  = C,, H = H, then set 

H c , u n  = HC n Hun, HC,he = HC Hhe, 
H,,,, infinitesimally generated by HcVun, 
& h e  infinitesimally generated by HCehe. 

Finally, Hc,,n,comand Hc,h,,,o,willdenote thecomplexifications of Hc,,,and 
HC,he in H respectively, and HZ,,, H&n,com, H2he,  H~he ,Comr the I;-images of 
H c , u n ,  Hc.un.com, HC.her HC.he.Com in H*, respectively. 

51 5 8 .  Proposition Suppose that CC,, = C,,C. Then 

(1) G = G,, + G,, direct as linear spaces, 
(2) Gc = G,,,, + GC.he direct as linear spaces, 
(3) Gun = Gc,,, + iGc,he direct as linear spaces, 
(4) #C(GC,uni  GC.he) = O .  

Proof (1) was proved in Section 38. (2) The splitting u = s  + u  (s E Ghe, 
u E C,,) is unique; Cs E Ghe, Cu E C,, (see 51.5.5), Cu = Cs + Cu, therefore, if 
Cu = u, then Cs = s, Cu = u. (3) u E G,, is the sum of +(1 + C ) u  E C,,,, and 
-$(l + C)iu E iCc,,,; (4) follows from 51.5.3. 

Remark C = C,, iff GC,he = (0). 

51.5.9 As soon as the existence of C-third dressings has been ascertained, 
Proposition 51.5.8(1-2) may be stated as follows: 

Theorem 
arise from G,, by splitting G,, directly into subspaces K ,  L such that 

Up to isomorphism the real restrictions Gc of C E Alg Lie Com SS 

[K,  KI c K, [K ,  LI = L, [L ,  LI = K,  

and putting Gc = K + iL. 

Proof Given G,, split Gun into K = C,,,,, L = iGC,her and verify the above 
relations. Conversely, given the splitting with the above properties, one can 
easily show that [ K +  iL,K+ iL] c K + iL, hence that K + iL is a real re- 
striction of G. 

51.5.10. Theorem As a n  analytic manifold, C, is the product of its closed 
submanifolds Gc,,, and GC,he  by means of the multiplication in C; GC,he = 

Gc n Ghe, and CC,,,, = Gc n Gun. 
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The proof runs along the same lines a s  that of Theorem 38.4. Note that G, 
is closed, as shown i n  38.5(4). 

51.5.1 1-1 2. The Maximal Compact Subgroup 

51 -5.1 1. Theorem G,,,,, is a maximal compact subgroup of G,. 

Proof The compactness is evident. According to Theorem 51.5.10, any 
subgroup of G, larger than G,,,, would contain an element # 1 of Ghe, which 
cannot generate a relatively compact subgroup. 

Remarks ( I )  In fact, every maximal compact subgroup of G, can be obtained 
i n  this way; all are conjugate within G,. This, however, is a rather profound 
fact, which will be proved in 65.4. 

(2) If ,  instead of G,, one considers a group 6, which is a wrapping of G,, then 
the subgroup c,,,,, corresponding to G,.,, (generated by G,,,,) may cease to 
be compact. I n  fact, if 6, is the universal wrapping of G,, then 6,,,, is some 
wrapping of G,,,, (actunlly, it is the universal one; see 62.3); it may happen 
that C,,,,, is not semisimple but has an abelian direct factor; then 6,-,,,, is 
not compact. 

51.5.1 2. Theorem C,,,,, is its own normalizer in G,. 

Proof so normalizing G,,,, may be assumed i n  GCShe, hence of the form 
so = exp so with some so E CCShe. For u E G,.,,: sousot = u I  E G,,,,. Thus 
u-IuI so = ii-Is0u E GC,he. Because of the uniqueness of the heriiiitean-unitary 
split, this shows u-Isou =so for all id E G,.,,,; hence [u,s,] = 0 for a11 u E G,,,,,. 
In 

#(.?ou,s) + #(u,3,s) = 0 

the first summand vanishes for all u E G , ~ , ,  and all s E Ghe. Therefore Fos 
belongs to the orthoplement G,-he of G,,,,,. On the other hand, i0s E G,,,,,. 
Hence ios = 0 apart from i o u  = 0, which shows that Yo = 0; hence so = 0, 
so= 1. 

51.6. C-Third Redressing 

Definition I f  C H :  H ,  then define C* by 

(c* ()(/I) = m, for all /I E H ,  8 E H*. 

Clearly C* is linear and belongs to Aut W * .  
If H is a C-invariant trunk and C,, is based on H ,  then C and C,, commute 

if restricted to H ,  since C permutes W* and consequently leaves HE, and H,,  
invariant. 
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By a suitable choice more can be attained. 

Theorem A given third dressing on a trunk H = CH can be changed into a 
C-third dressing on the same trunk. 

Proof A provisional C,,, based on H has to be changed into gC,, g-' with 
some g = exp g, g E H,,, such that 

cgc,, 2-1 = gc,, 2-1 c, 
equivalently, 

51.6.1 

With some scalars K,, 

From C2 = 1 it follows that 

51.6.2 

from [e,,e-,] = h,, 

51 -6.3 

(pc,,C)2= 1. 

Ce, = K, +,. 

from [e,,ep] = N,,pe,+B and INa,Sl = iNc*a,c*pl (cf. 23.21, 

51.6.4 K, ' K B  I?p = Ka+p t? ,+p .  

This shows the existence of h E If,, with 

exp a(h) = K, iz for all a E W*. 

From 51.6.2 it follows that 

51.6.5 

thus, because of h E Hst ,  

exp(a + C* ct)(h) = 1 ; 

51.6.6 

To satisfy 51.6.1 its first member with g = exp g is applied to e,, which gives 

( a  + C* a)(h)  = 0. 

kc,, I?, exp 2(a - C* a)(g). e, = K ,  I?, exp 2(a - C* a)(g).e, 

because of 51.6.2-3. To fulfill 51.6.1 one must solveg from 

51.6.7 2(C* - a)@) = a(h). 

For this one need only take -ah for g, as follows immediately from 51.6.6. 
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51.7. Kinds of Trunks The conjugacy theorem for trunks is a particular 
feature of unitary and complex semisimple Lie algebras (thus also of the twin 
type). In all other cases different kinds of trunks have to be distinguished. A 
first orientation of the variety of possibilities is furnished by the following 

Proposition Let the trunk H be C-invariant. Then up to conjugacy within 
G, every C-invariant trunk H' is  of the form QH, where u belongs to the unitary 
restriction determined by a C-third dressing on H. 

Remark Of course, not every iiH provides a C-invariant trunk. 

Proof With C-third dressings on H a n d  H',  one obtains C,, and C;,, both 
commuting with C. By 33.13 they are conjugate, 

N 

C:, = EC,, a"-' = &(C,, a-l)  C,,, 
such that 

c?H = H'. 
N 

Now E(Cu,a-') also commutes with C. With the hermitean-unitary splitting 
a = su, C,, s = s-l, C,, u = u, 

one finds CS2 = S2 C .  If s = exp s for some (unique) s E Ghe, then, by the C- 
invariance of Ghe, Cs = s also, whence s E GC,hc by 51.5.10. Now F 'H'  = QH 
is a C-invariant trunk of the kind wanted. 

51.8. Maximally Compact Trunks H ,  of 'a C-invariant trunk H splits 
directly into a torus group H,,,, and a flat abelian group called, re- 
spectively, the torus part of H ,  and the flat, hermitean, or standard part of 
H,  (and correspondingly for H,). (See 30.5.) 

Note that the flat part would not be uniquely determined if H ,  were con- 
sidered as a real group, disregarding the complex structure ofthe H i n  which it 
is embedded; in the present case, however, it is uniquely determined. 

Definition A C-invariant trunk H of G is called maximally (minimally) 
compact (with respect to C) if H ,  contains a maximal torus of G, (if no proper 
subset of the torus of H ,  can be the torus of H i  for another C-invariant trunk 

Maximally compact trunks are studied here, minimally compact ones 

The existence of maximally compact trunks is granted by the following 

H'). 

in Section 60. 

Proposition Every torus of G, is in  a maximally compact trunk. 

Proof Take a maximal torus T in C,. Then 35.9 embeds T into a trunk 
H of G. Take h regular in H. Then Ch is also regular. Among the ~h + TCh is a 
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regular one, say, h‘. Now h’ is C-invariant and determines a C-invariant trunk 
H ‘ ;  hcommutes with every element of Tand so does Ch, since T is C-invariant. 
Therefore h’ commutes with every element of T, and consequently T = H‘ = 

CH‘ .  Since T was taken as a maximal torus of G,, H’ is a maximally compact 
trunk. 

51.9. Criteria on Maximally Compact Trunks 

Theorem The following assertions on G E Alg Lie Corn S S  in third dressing 
and the semimorphism C are equivalent: 

(1) H i s  a maximally compact trunk (with respect to C). 
(2) No a E W* vanishes identically on the torus part H,,,, of H,. 
(3) The torus part H,,,, of H,  contains a regular element of G. 
(4) CC,,a # -a if a E W* and if C,, is defined by a C-third dressing on H .  
(5) CC,, (as in 4) leaves some chamber invariant. 

Proof One may suppose that CC,, = C,, C anyhow (51 -6). 
1 2  + 1 4  (with the same a):  Suppose a(h) = 0 for h E H, n Hun. Then 

a(h + CC,, h) = 0 for all h E H,, and, since a is linear, for all h E H .  Thus 
((1 + CCun)a) (h) = 0 for all R E H which falsifies 4 with the same a. 

Put B = H,.,,,. Suppose that a(B) = (0) for some 
a E W*. Then [B,et ,]  = (0). From 1 4 it follows that C*a = -C;,a, hence 
Ce, = v,e, with Iv,I = 1. Putting v;l2e, = u, one gets Cu = u. Putting b = u + 
Cunu, one gets b = C,,b = Cb # 0, and [B,b] = (0). Now exp 76 (T real) E 
G,,,, and commutes with every element of B. Therefore B and exp ~b (real T )  

generate a torus, which proves the existence of a torus subgroup of G, larger 
than B. 

1 2 + 1 1 (using 1 4): 

2 --f 3 is trivial. 
3 + 1 : Let h E H,.,, be regular and let B c G,, 2 H,,,,, and B maximal 

compact abelian. Then [h,B] = {0), and, since h is regular, B c H.  Since B is 
compact, B c Hun n G, = H,,,,,. Thus H,.,, is maximal compact abelian 
within G,, which proves that H is a maximally compact trunk. 

4 + 5 :  h’ = (1 + CC,,)h for R E H,, is CC,,-invariant; a(h’) = 

((1 + CC,,)a)(h). Therefore h can be chosen such that a(h’) = 0 for no a E W*.  
lh’ is in some chamber, which is also CC,,-invariant. 

5 + 4 is obvious. Then 

1 4  + 1 2: Suppose that CC,,a = -a for some a E W * .  For h E H,,,, 
one gets 

a(h) = a(CC,, h) = (CC,, a)(h) = -a(h); 

therefore 
a(h) = 0. 
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51 .lo. Conjugacy of Maximally Compact Trunks 

Theorem Two maximally compact trunks of G (with respect to C) are 
coiijugate by means of elements of G,. 

Proof C-third dressing with respect to the trunk H is supposed. 51.7 
allows one to restrict the proof to the trunks H and H ‘  = 11H = CGH, where 
14 E Gun. Let B be the torus part of H, and B’ that of HL. Then 

B c G , , , n G , = F ;  

G-IB’ is compact and contained i n  H, hence in H,, c G,,,; thus i i - l  B‘ c Gun, 

B’ c C,,, 

as well as B’ c C,. Therefore B,B‘ are both in F. Now F is the infinitesimal 
algebra of the compact linear Lie group F =  G,,,,,, which according to 19.15 
splits directly: 

F = F o + F ,  

with abeliun F,  and semisimple F, .  Furthermore, B,B‘,  as maximal abelian 
subclgebras of F, split directly: 

B =  Fo + B , ,  B ‘ =  F,+ B ; ,  

where 
BI=Fl n B, Bi=FI n B ’ ;  

B, and B ;  are necessarily trunks of F. By virtue of the conjugacy theorem in F , ,  
there is an a E F c G, such that B; = GB, and consequently B’ = GB. Now both 
GHand H’ are trunks containing B‘, which possesses a regular element: hence 
GH = H ’  as desired. 

51 .I 1. Maximally Compact Dressing 

Definition A C-third dressing on C H =  H is called a maxiinally compact 
dressi/ig if H is maximally compact. The term ordered masim7/ /~  coriipact 
tlressirig is reserved for a choice of the partial order which makes a 
CC,,-invariant chamber of H: dominant. 

In 51.6 and 51.8-9 the possibility of ordered maximally compact dressing 
was proved. 

Theorem Under ordered maximally compact dressing on H 

51 .I 1 .I C = I;AC,,, 

where A is the straight extension of an automorphism of W + +  (see 33.3.1), 
11 E H,,,, 
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51.11.2 A2=1 ,  

N 

51.11.4 Ah = & - I .  

Proof CC,, leaves W++ invariant and induces an automorphism A of W + +  
with A2 = 1, according to 51.4. A extends according to 33.3.1 to C, and to H; 
CC,, A leaves H elementwise invariant and preserves Gun. By 33.9(2) it is in- 
duced by some h-' E Hun. Finally 1 = C2 = hAC,,KAC,, = KAh. 

N 

51 -12-1 5. Reductions toward Classification 

51.1 2 With a view to isotypism the presentation of C according to Theorem 
51.11 can still be simplified. This will be done in 51.12-14. 

Proposition Up to inner isotypism of 

C = KAC,,, 

as presented in 51.1 1, h = exp h,h E Hun may be supposed to fulfill 

P W  = 0 if p # Ap, 
p(h) =0,7ri if p = Ap, 

for p E W++; hence 
Ah = h. 

Proof In the given C = KAC,,, because of 5 1.1 1.4, 

h = exp h, h E Hun, 

51.1 2.1 p(h + Ah) = 0 mod 27ri for p E W++. 

By means of 

C should be replaced by inner isotypic 
ho = exp ho, ho E Hun,  

N 

C' = K O  CK,' = KO Ah;' C.  

Putting 
exp h' = h' = h ho(Ahil) ,  
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one gets the new C' in the form 
N 

C' = h' AC,,. 

As to h', one can take it as 
h' = h + ho - Ah,; 

ho is chosen such that for each two elements of W++ interchanged by A ,  

p(ho) = -p(h) for one element p among them 
P (A,) = 0 for the other one. 

Then with a view to 51.12.1 

p(h') = 0 mod 7ri for Ap = p, 

p(h') = 0 mod 27ri for Ap# p ,  

Without changing h', one can modify h' such that 

p(h') = O  or 7ri for Ap=p,  

p(h') = 0 for Ap # p .  

This proves the assertion. 

51.1 3 If A = 1, the reduction of 
N 

c = LC,, = exp h C,, 

can be continued by the use of some S E Int W*, which extends to some ii with 
u E Gun; C is replaced by inner isotypic 

N 

C' = iICD-' = iihii-' C,, = exp Sh C,,, 

For h this means that it may be submitted to the action of Int W* as well as 
replaced by h' such that p(h) = p(h') mod 27ri for p E W++. 

In the terminology of 33.14.4 this says the following. 

Proposition In c = LC,, (h = exp h, h E H,,) up to inner isotypy of c one 
can change h into any Int mod W*-equivalent. In C = LAC,, (see Proposition 
51.12) the same change is allowed with respect to the subgraph of A-invariant 
elements of W++. 

51.14 Thus h may be assumed in the closure of the principal domain b (or in 
that belonging to the A-invariant part of the graph). Whence: 
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Theorem After ordered maximally compact dressing of C E Alg Lie Com 
SS with respect to the involutory semimorphism C, up to inner isotypy by 
nieans of an element of Gun, C can be assumed to be such that 

51 .I 4.1 C = KAC,,, 

where A is the straight extension of an  automorphism of W+' ,  

51 .I 4.2 AW" = CY", 

51 .I 4.4 A'= 1, 

51.14.5 h = exp 2 ~ i h ,  h E Hher 

51 .I 4.6 p(h) = O  for p E W + + ,  p # A p ,  

51 .I 4.7 p ( h ) = O , t  for P E W + + ,  p=Ap,  

51 .I 4.8 a(h) G 1 for every o! E W' which is a sum of 
A-invariant elements of W' '. 

51.1 5 Further simplifications are possible for simple G. 

A = l  

Proposition If, under the conditions of 51.14, C is simple, 51.14.8 can be 
replaced by 

51 .I 5.1 &(h) Q I for the top rootform G.  

This is a consequence of 25.6. 
Table E of top rootforms shows that to satisfy 51.1 5.1 p(h) = + is allowed 

for two primitive rootforms p at most and that such a pair of nonvanishing 
p(h) is only possible for 

A,, D, ( P I 9 P 2 . P A  E6 (Pl9P3) .  

However, even in these cases, the number of nonvanishing p(h) will be reduced 
to 1 by the use of Proposition 51.13; then 

51 .I 5.2 p(h) # 0 for at most one p E W++. 

A,: Suppose that i < j ,  p i (B)  = pj(h) = 4, pk(h) = 0 for k # i , j .  Put a = 
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pi + p i + l  + . . . + pj-l. Thus a E W+. Applying S,, one gets 

PdSa h) = (Sa PA (h) 
= (pi-,  + a)@) = + for k = i -  1 
= (pi - a)(h) = 0 for k =  i 
= ( p j - , - n ) ( h ) = - )  for k = j - l # i  

= ( a  + p,)(h) = 1 for k = j  

= 0 otherwise. 

The unit appearing for k = j  can be replaced by 0 without changing h. By 
applying S, the pair of primitive roots for which h does not vanish moves to the 
left. Repeating this procedure one finally arrives at the announced result. 

Let p(h), u(h) # 0 for some distinct p,u E W++. Then both are end- 
points of the graph, and at least one of them, say p ,  is the endpoint of a short 
branch. Let ct be the sum of the elements of W++ different from p, and let T 
be the third endpoint. Then Sap = p + a, S,u = u - a, S,T = T - a. Thus 

D,: 

p(S,h) = u(S,h) = 0 mod 1, 

T ( S , ~ )  = + mod I ,  

the other primitive rootforms being 0 in  S,h. So application of S,  yields the 
required result. 
E,: Here the only troublesome case is with pl (h )  = p3(h) = 3. Then one 

can for instance apply consecutively 

A f l  

In  any event, the subgraph of A-invariant elements of W++ is of the kind A. 
By 51.14.6-8, p(h) # 0 only happens for a p of the subgraph and then at most 
twice. One can again attain 5 1.15.2 by the same procedure as in the case A = 1. 

A as required in 51.14.2-4 is uniquely defined except for D,. Even in this 
case, up to outer automorphisms, it may be supposed to be the plus-auto- 
morphism of33.11 (interchanging p I , p 2  in D4). Then admissible h, according 
to 51.14.5-7, 51.15.1-2, may be supposed to fulfill 

A,(I=. l ) :  p j ( h ) = O  forall j # + ( I +  l) ,  

D, : 

pj(h) = 0, + for j = $(/ $- I), if I is odd. 

. P l(h) = p m  = 0, 
pj(h) = 0, f for j # 1,2, yet at most one 3 only. 
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E,: p,(h) = O  for j Z 2 ,  

p,(h) =O,-) for j =  2 .  

(By use of the kaleidoscope group this comprises the case p,(h) = 0 for j # 6 ,  
Pdh) = 3.) 
51.1 6. The Twin Case The twin case is conveniently fitted into the same 
frame. 

Let F E Alg Lie Rea SSS of twin type; then its complex extension FCom is the 
direct sum G + CG with simple G and the involutory semimorphism C. If H 
is an ordered trunk of G, then CH, with transfer of the order, is one of CG. 
The ordered third dressing of G is mapped into one of CG by C. 

Definition In ordered third dressing of G + CG the choice of the trunk is 
H + CH and C* is assumed to interchange H: and CH; in orderly fashion 
(hence to interchange the dominant chambers); if the partial order is extended 
to a total one, H: is assumed to precede CH:. The third dressing is C-invariant. 
The plus-automorphism of FCom is defined to interchange G and CG in an 
obvious way, that is by P,, = CC,, M ,  where M is the minus-automorphism. 

C = AC,, with A = P,w M ;  
Then again 

F appears as the C-restriction of G + CG. 

51.17. Classification Dressing 

Definition L E Alg Lie Com SSS in ordered third dressing. Let C be 
identical to L or to the direct sum of two copies of L (with the ordered third 
dressing defined as in 51.16). Let C,, be based on the trunk H of G. Let A be 1 
or the plus-automorphismP (in the case G # L: P,,M). Let W++ be enumerated 
as in 25.7 and 26.23. Let h = exp 27rih with 

p(h) = 0 for all p E W++(G) 

or 
P , ( 4  = 3, P(h) = 0 for PI, p E W++(G), p # p j ,  

where 
ApJ = PJ 

and p, occurs with a coefficient 9 2  in the top rootform of L.i 

classes. 
t This condition could be omitted when defining the L,. It would not, however, lead to new 
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If 
c = hAC,,, 

then the C-restriction of G is called of 

inner type if G = L and A = 1, 
outer type if G = L and A # 1 ,  

twin type if G # L (and A # 1). 
Inner types are indicated by L,, 
outer types are indicated by L,,*, 
twin types are indicated by L**, 

where j will be taken as 0 if p(h) = 0 for all p E W++. 

denoted by L,, L,,*, L**. 

L,, is called L,, L,,*, L**. 

If L E L, then the class of real Lie algebras isomorphic with L,, L,,,,, L,, is 

The class of real linear Lie groups with an infinitesimal algebra in L,, L,,*, 

The discussion led to the following theorem: 

Theorem Every G E Alg Lie Rea SSS belongs to at least one of the classes 
L,, L,,,, L**. It appears in ordered maximally compact dressing. 

51.1 8-20. Isomorphisms 

51.1 8 Different subscripts j with the same L may indicate isomorphic Lie 
algebras. The following is a method of finding such isomorphisms. 

Suppose a graph W++ with simple bonds only. Then by 33.2.4 all elements of 
W* are equivalent under Int W*. Let the top rootform d be a fundamental 
weight and let p, E W++ be such that ( $ , p i )  # 0. Let p j  be some endpoint of the 
graph and P k  its neighbor. Then 

pk(h) = f, p(h) = o mod 1 for p E W++, p # p k ,  

is solved by (p,,p,)-Ihp,; this, under Int W*, is equivalent to h’ = (6, &)-‘/I; * 

Since 6 is a fundamental weight, 
p,(h’) = 3, p(h’) = 0 mod 1 for p E W++, p # p,; 

hence 
L, = L,. 

51 .I 9 Still a consequence of 51 ,511 : 

Theorem If G E Alg Lie Com SS and Gc is compact, then up to isotypy 
c = c,,. 
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The compact ones in the classification of 51.17 are characterized by the lack 
of an asterisk and the subscript 0. 

51.20 In the detailed classification that follows in Sections 52-53 the various 
real C, EAlg Lie Rea SSS will be described by specifying their G,.,,, that is, the 
infinitesimal algebra of a maximalcompact subgroup G,,,,  of G,. The structure 
of G,.,, can be used as a criterion of nonisomorphy of the indicated types, 
though in almost all cases simpler criteria like the signature of the restricted 
Killing form are available. 

C,,,, = +I-eigenspace of CC,, in C,,, 
= -1-eigenspace of CC,, in G,,, 

signature Gc = -tr CC,, = dim GC,he - dim C,,,, = dim C, - 2 dim CC,,". 

51.21. The Description of the Graph of C,,,, C,,,, always will be 
either semisimple or the direct sum of a semisimple algebra and a 1 -dimensional 
abelian algebra, mutually orthogonal under I,&. The intersection of H with the 
semisimple part of Gc,un,com (interpreted within C )  is a trunk, and the dual of 
this trunk is interpreted within c H *  by means of 5. In particular, 
the rootforms of the semisimple part of Gc,un,com, the rootforms of Gc,un for 
short, are now elements of H ~ ~ u n ~ c o m  and even of iH&,. 

The restriction of $G to Gc,un.com is invariant under the adjoint of G,,,,, and 
therefore if Gc,un,com is simple semisimple (and consequently ~ c , u n , C o m  is 
irreducible) ~ , ! J ~ J ~ ~ , ~ ~ , ~ ~ ~  equals #Cc,ua,com up to a constant factor # 0. In 
general, the same is still true on every simple semisimple direct summand of 
CC,un,Comr whereas the summands themselves are orthogonal to each other 
according to both quadratic forms. 

This property, if restricted to the trunk and transferred to the dual trunk by 
means of 5, leads to the following 

Proposition The inner product in the graph of C,,,, is, up to factors 
constant in every component, the restriction of the inner product in H*. 

51.22. Further Notations and Conventions C,,,, will often split into 
two or even more summands. If they belong to the compact types of L, M, . . ., 
the isomorphism class of the sum is indicated by L + M + * - a .  To account for 
one-dimensional summands, one makes the convention : 

D, = the class of 1-dimensional complex Lie algebras. 

This convention supplements the known equalities (see 25.8 and Table G): 

A1 = 81 = C, ,  6 2  = C2, D2 = A1 +A,,  D3 = A,. 
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Any A,, B,, C,, Do, if it occurs, means 

0 = the class of the null-algebras. 

Cc,,,, causes a linear representation 6 in GC,he. In  Sections 62-63 it will be 
shown that 9. determines the global structure of G,,,, and consequently the 
fundamental group of G,. For this later use 6 is indicated here by the top 
weight(s) of its canonical complexification. In  this context a notation like 
7Tk.L) + rrn(M) or n-k,rn(L + M) means that the first summand is represented 
according to rk and the second according to rrn; then rk and T,,, are the 
restrictions of the top weight of 6 to the trunks of L and M, respectively. It so 
happens that 6 is reducible iff  G,,,, is not semisimple, in which case C,,,, 
contains just one summand of the class D,. Such a summand is always 
represented with two opposite weights, which fact will not explicitly be 
mentioned in the subscripts of T .  

A few more conventions: 

51.23. Historical Note E. Cartan’s method of real classification [Ann. 
Ecole Norm. (3) 31,263-355 (1914) = Euures Z 1, 339-4911 was rather casual. 
F. Gantmakher [Mar. Sbornik 5 (47), 217-249 (1938)l built a theory of real 
classification on H. Weyl’s approach to semisimple Lie groups and Cartan’s 
further developments. His theory has here been refined and greatly simplified 
by the use of primitive roots and the notion of maximally compact dressing. 
The most elementary proof of 51.6 has been found by H. de Vries. The actual 
classification will now require a minimum of casual distinctions and comput- 
ations. The notation 51.17, which shows great systematic advantages, was 
proposed and used long since by H. Freudenthal. 

52. CLASSIFICATION OF INNER TYPES 

52.1 
inner type. 

G E Alg Lie Com S S S  in ordered maximally compact dressing, G, of 

If G, E L, ( j  # 0), then 

C,,,, = real linear span of Hun and the T,e, - ?,e-,, where p, occurs in o! 
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with an even coefficient, and 

GC,hc = real linear span of the i(T,e, - r,e-,), where p, occurs in o! 

with an odd coefficient. 
The compact types Lo are omitted. 

52.2 A,,, (I > 1): The outer automorphism P (for I > 1) shows that A,,, and 
A,,,+,-, are identical. The same, however, can be established by an inner 
isotypism, which can be constructed by the method used in 51.15.2. 

The graph of G,,,, is 

p1-pz- - - * -pJ-IY f,+1-P,+2- * -p1. 

C,,,, belongs to A,-I + A,-, + D,. 
Signature: 1 - (I + 1 - 2j)2. 
Top weights of (reducible) 6: d and -p,; that is 

~IJ-,(A,-l + A,-, + D1) and ~,-l , l(A,-l  + A,-, + DI). 

52.3 D,,, ( I >  4) ; j  # 0,1,2: A procedure like that of 51.15.2 shows that D,,, 
and D,,,+,-, coincide. Thereforej will be restricted: 3 G j G *(I+ 4). 

The graph of G,,,, is 
/ f J - l  

P3-P4- * * * -PJ-2 

\P,-l+ 2P, + - * * + 2P,+ PI + P2 

\P* 
P,+1-P,+2- - * * --PI 

F o r j  = 3 the first component of the graph is nonexistent; fo r j  = 4 it reduces to 
the last two dots; fo r j  = 5 it reduces to the last three dots. 

C,,,, belongs to DIP, + D,-J+2 (for j = 3,4,5 because of the conventions 
made in 51.22). 

Signature: I - 2(1+ 4 - 2j)2. 
Top weight of 6 arising from p3 + * * + p ,  + 2p,+, + + 2p, + p ,  + p2 is 

T3,3(D,-2 -k 'l-,+2)* 

For j = 3, however, 6 becomes reducible with top weight 

T~(DI + D,-l) twice 
arising from d and - p 3 .  

F o r j  = 4,5, 7r3 must be interpreted according to the conventions 51.22. 
F o r j  = 1,2, the types coincide by means of P. The isotypy can be established 

by an inner automorphism for odd I. 
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D,,, : The graph of C,,,, is 

P3-P4- * * * -Pt-P2* 

C,.,, belongs to At-, + D,. 
Signature : -1. 
Top weights of 9: p3 + 2p4 + * * * + 2p, + p1 + p2, -p, ; that is 

772(At-, + DI), 7 7 1 - 2 ( 4 - 1  + D1). 

Note that for 1=4 the types Dl,l Dt,2,  Dl,3 coincide by outer automorphisms. 

52.4 E6,,: Because of the coefficient 3 of p6 in d ,  j =  6 may be dropped. 
According to 51.18, j = 4,5 lead to the same type as j = 2, and, thanks to the 
plus-automorphism, j = 1,3 are the same, though this can also be established 
by an inner automorphism, using the method of 51.15.2. In addition to the 
compact type, j = 1,2 are left. 

E6, , : The graph of G,,,, is 

/p2 

‘P4 
P3-PS-P6 * 

C,,,, belongs to D, + D,. 
Signature: -14. 
Top weights of 9: d and -p, ; that is, 

4 h  + DI), 4D , ,+  D,). 

E6.2 : The graph of G,,,, is 

P3-PSP6-p4-pl, 

C,,,, belongs to A, + A,. 
Signature: 2. 
Top weight of 9: d - p2; that is, 

T3,1(A5 + 
52.5 E7,,: Because of the coefficients > 2 of pi in 6, j =  5,6,7 may be 
dropped. By 51.18, j =  4gives the same a s j =  1 .  In addition toj=O, j =  1,2,3 
are left. 

E,, I : The graph of G,,,, is 
/” A 

P2-P4-p6-P7 3 CX* 

‘PI 
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Cc,,, belongs to D6 i Al. 
Signature: -5. 
Top weight of 9: d - p1 ; that is, 

E7.2: The graph of C,,,, is 
P3 
I 

P4-P6-P7-PS-P 1. 

Cc,,, belongs to E6+ D,. 
Signature: -25. 
Top weights of 6: d, and -p2; that is, 

nl (E6  + Dl>i T3(E6 + DI>* 

E7,3  : The graph of C,,,, is 

PI-PS-P7-p6-p4-p2-(p4 + 2p6 + 3p7 + 2p5 + + 2p3). 

C,,,, belongs to A , .  
Signature: 7. 
Top weight of 9: p2 + 2p4 + 3p6 + 3p, + pl + 2p, + p,  ; that is, 

52.6 E8,,:  After an inspection of thecoefficients in the top rootform,j= 1 ,2  
in addition to j = 0 are left. 

E8, I : The graph Of Cc,,n is 
P4 

C,,,, belongs to E ,  + A,. 
Signature : -24. 
Top weight of 9.: d - p ;  that is, 

b . 2 :  The graph of C,,,, is 

/ p 6  (P3 + 2Ps + 3P7 + 4PE + 3P6 + 2P2 + 2P4k-PI-Pl-P5-P7-P8 
‘P4 
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G,,,, belongs to D,. 
Signature: 8. 
Top weight of 8: pI + 2p3 + 3 p ,  + 4p, + 5p8  + 3p ,  + 3 p ,  + p2; that is, 

TI(D8). 

52.7 B l , j ( / > 3 ) :  ForjfO,l,thegraphofG,~,,is 

/ P j -  1 

p2-p3- * ' ' -pj-2 
'pj-, + 2pj + . . . + 2p, + 2p, 

Pj-1 I -  ' ' ' -PI * P I .  

F o r j =  2 the first component is nonexistent; f o r j  = 3 it reduces to the last two 
dots; for j = / the second component consists of the dot pI .  
C,,,, belongs to Dj-, + BIpj, , with the usual conventions. 
Signature: I - 2(/ + 3 - 2j)(/ + 2 - 2j). 
Top weight of 19.: p 2  + . . . + p j  + 2pj+l + . . . + 2p, + 2p, ; that is, 

773.2(Dj-1 + B1-j+l> 

with the usual conventions, i n  particular, for j = I, to interpret ~ ~ ( 6 , )  as 
2TI(B,). 

F o r j =  2, however, D becomes reducible with top weights Band - p z ;  that is 

r2(D, + Bl-l)  twice, 

B l , l  : The graph of C,,,, is 
/ P I  -t 2Pl 

'PI 
p2-p3- ' * * -pI-l 

C,,,,, belongs to D,. 
Signature: /(3 ~ 21). 
Top weight of 8: p 2  + p 3  + . . . i- pl  ; that is, 

4%). 

Remark B l + l  can also be interpreted by admittingj = / + 1 in Bl,, and putting 
6, = 0. 

52.8 C l , j ( / > 2 ) :  Forj#O,I,thegraphofC,,,,is 

p i -  . . . :pj-l <= 2pj + 2pj+1 + * .  + 2p1-1 + p t  

P j + l -  ' ' '  -PI-I PI. 
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Again by the method of 51.15.2 one proves 

C,,,=C,,,-j for j = 1 , 2 ,  ..., 1-1. 

G,,,, belongs to C, + C,-,. 
Signature: -1 - 2(1- 2j)2. 
Top weight of 9: p1 + * * * + p, + 2p,+, + * * * + 2p,-, + p l ;  that is, 

7rI,l(C, + Cl-,). 

C,,,: The graph of G,,,, is 

G,,,, belongs to AI-l + D,. 
Signature : 1. 
Top weights of 9: Si, and -p l ;  that is, 

52.9 F4,,: After an inspection of the coefficients in the toprootformj = 0,1,2 
are left. 

F4, : The graph of G,,,, is 

(2pl + 2p3 + f4)-p2-f4 * p3* 

G,,,, belongs to B4. 
Signature: -20. 
Top weight of 9: p1 + p2 + 3p3 + 2p,. 

n1(B4)- 

F4,2 : The graph of G,,,, is 

G,,,, belongs to C3 + A,. 
Signature: 4. 
Top weight of 9: Si - p2;  that is, 

52.10 G2,,: j  = 1 is excluded. 

G2,2 : The graph of G,,,, is 

P I ,  2 ~ 2  +  PI. 
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G,,,, belongs to A, + A,. 
Signature: 2. 
Top weight of 9.: p2 + 3 p l ;  that is 

53. CLASSIFICATION OF OUTER TYPES 

53.1 Part of the general remarks of 52.1 apply here as well. For the outer 
types the reduced form of C was RPC,,. If h # 0, then C, E L,,* is really 
spanned by 

h' E Hun with Ph' = h', 
h' E Hhe with Ph' = -h', 

e, - Pe-,, i(e, + Pe-,), where p, occurs evenly in a, 
e, + Pe-,, i(e, - Pe-,), where p, occurs oddly in or; 

if h = 0, the case of an oddly occurring p, is always considered void. 
Note that Pea = *epa always. 
The infinitesimal algebra C,,,, of the maximal compact subgroup is 

spanned by 
h' E Hun with Ph' = h', 

where p, occurs evenly in a, 

where p, occurs oddly in a. 

I 
I 

(e, - e-,) + (Pea - Pe-,) 
i(e, + e-,) + i(Pe, + Pe-,) 
(e, - e-,) - (Pea - Pe-,) 

i(e, + e-,) - i(Pe, + Pe-,) 

The complex extension of G,,,, is spanned by 

h' E Hun with Ph' = h', 

ear +Pea, where p, occurs evenly in a, 
e, -Pea, where p, occurs oddly in a. 

The complex extension of GC,hc is spanned by 

h' E Hhe with Ph' = -h', 

e, -Pea, where p, occurs oddly in a, 
e, +Pea, where p, occurs evenly in a. 

It appears that the rootforms of C,,,, are the restrictions to its trunk of the 
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rootforms of G; these restrictions coincide with those of 
*(a + P a )  with a E W* 

under the condition that for admitting u = P a  it is required that 

either Pea = e, and PJ evenly in u, 

or Pea = -e, and pJ oddly in u. 

The rootforms of C,,,, are restrictions of rootforms of G symmetrized with 
respect to P and, by the conventions of 51.21, presented as these symmetrized 
rootforms themselves. Proposition 51.21 allows one tocornpute the essentials of 
the inner product in the graph of G,,,, from the inner product of H*. Neverthe- 
less, the same result will also be obtained in every particular case by an explicit 
construction of ladders of branches. 

To facilitate the computations the branches of the rootforms u # P a  of G 
are supposed to be norrned such that 

Pe, = epK.  

It will be noted later that this norming is possible for u = Pa as well, except in 
the case of Azm, where necessarily Pea = -ea for a = P a .  

53.2 I odd = 2m - 1 : The rootforms of G,,,,, 

P m  = H P m  + P P m ) ,  

P m  + 3 @ m - 1 +  P m + l )  = H ( P m - I +  P m )  + P ( ~ m - l +  P m ) ) ,  

Pm + ( P ~ - I +  P m + l )  = 3 ( ( P m - I  + Pm + P m + h  + P(Pm-l+ P m  + P m + l ) ) ,  

form a 2-ladder, with the branches 

epm' epm-l+prn + epm-l+ epm' 'eprn-l+pnt+prn+l 
(norrning disregarded). 

Note that in G E A2m-l the branches can be normed such that Pe, = epK. 
For those of rootforms a # Pu this is assumed ; for those of the rootforms 
a = p l +  * a *  + p2m-l if follows from 

[epi, [epr+l+ ' ' +p2m- t - I ,  epam-rll= [epzrn-tr [ept+l+ . ' .  +p2m-i-19 epill. 

The graph of G,,,, is 

+(PI + PJ+(PZ + ~ 1 - 1 1 -  * * * + ( P m - I +  P m + l )  P m .  

G,,,, belongs to C,. 
Signature: -(I + 2). 
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The top weight of 19 results from symmetrizing the highest non-P-invariant 
rootform; thus 

N f l +  * * *  + p r - l ) + ( P 2 +  . . .  + p 1 ) ) = ~ - + ( p ,  + P J .  

772(Cm)*  

The representation is given by 

53.4 Al,,,*, 1 = 2m - 1 2 3:  Though pm and P,,,-~ + pm + P,,,+~ do not yield 
rootforms of G,,,,, +((P,-~ + p , )  + (pm+l + p,)) does. Its inner product with 
+(P,-~ + p,) vanishes, though not that with +(P , -~  + P,+~). 

The graph of G,,,, is 

/ t ( p m - l +  P m + l )  

‘ + ( p m - , +  P m + l )  + prn 
+(PI + ~ 1 ) 3 ( ~ 2  + ~ 1 - 1 ) -  * * - 4 p m - 2  + p m + 2 )  

G,,,, belongs to D,. 
For m = 2,3, the graph reduces to the last two or three dots, respectively. 

It is interpreted as usual. 
Signature: 1. 
Top weight of 9: p1 + + pI ,  with the eigenvector ep,+. , that is, 

2 ~ 3  ( Dm), 
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which for m=2 must be interpreted as 277,(A1) + 2nl(A,) and for m = 3 as 
2r2(A3)* 

53.5-6 D,,,,* (I > 4): Here PpI = p2, Ppl = pl (i > 2). 

53.5 Dl,o,* (I > 4): One observes a ladder of length 2, 

P I ,  P I + t ( P I  + P 2 ) ,  P l + ( P l  +P2), 
belonging to epl ,  eP l tPr  + ep2+pI, 2epl+P2+PI. The branches can again be normed 
with Pe, = ePa. 

The graph of G,,,, is 

P 3 - 7 3 4 -  - * *  --PI * H P ,  +p2). 
G,,,, belongs to BI-]. 
Signature: I - 2(1 - / ) 2 .  

Top weight of 9: 

+((PI + f 3  + * * * + P I )  + (p2 + p3 + * * * +PI>> =+(PI  + p2) + p3 + * * * + P I ;  

772(BI-l)* 
that is, 

It can also be interpreted by admitting j =  I + 1 in the next one and putting 
B, = 0. 

53.6 Dl,j,* ( I  > 4) , j  > 2, isomorphic with DI.I-j+3,*: The restriction of pj is 
not a rootform of C,,,, but that of 

PJ + P j + l +  . * + P I  + Hf L + P 2 )  

is available as a primitive rootform. 
The graph of G,,,, is 

~ 3 - ~ 4 -  . * -pj - l  pj + pj+I + * * * + + $ ( P I +  ~21, 
~ j + 1 - ~ j + 2 -  * * +(PI + ~ 2 ) -  

C,,,, belongs to Bj-2 + Bf--J+I, with the usual conventions on degeneracy 

Signature : I - 2(1+ 3 - 2j)*. 
Top weight of 8 is the highest P-invariant rootform containing p ,  oddly: 

(see 51.22). 

p3 + * * + pJ + 2pj+] + * * * + 2pl + p I  + p2; that is 

772,2(B.i-2 + Bl-j+A 
with the usual conventions (51.22). 

53.7-8 E6.j .*:  Here P maps pI - p3, p4 - p5, p2 ++ p2, p6 --f p6. The 
branches can be normed with Pe, = eP,. 
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53.7 E6.0,*: The graph of G,,,, is 

where the double bond is explained by the ladder 

P 6 7 %  + 4 b 4  + f 5 h 6  + p4 + f 5 .  

C,,,, belongs to F4. 
Signature: -26. 
Top weight of 8: p2 + 2p6 + $(p4 + ps) + p1 + p3 ; that is, 

7T 1 (F4). 

53.8 E6,2,*: p2 is not a rootform of GC,,,,. Instead 

f ( ( P 2  + f 4  + p6) + (p2 + f S  + f 6 ) )  = 3(f4 f PSI + (p2 + f 6 )  

is available. The graph of C,,,, is 

G,,,, belongs to C4. 
Signature : 6. 
Top weight of 8: d - p2 ; that is, 

54. FURTHER REMARKS ON REAL CLASSIFICATION 

54.1. Examples of the various nontwin real types of A,, B,, C,, D,. 
A group belonging to such an algebra is presented as the l-component Go 

of the group G of volume-preserving automorphisms of a linear space R over 

(1) some skew field (Rea, Com, or Qio), 
(2) of some dimension, 

in some cases endowed with a nondegenerate sesquilinear (bilinear if the field 
is Rea) form Q which can be 

(3) symmetric or skew, 
and which is of some 

(4) signature. 

In the case in which R is over Qio, “volume preserving” means “volume 
preserving for R regarded over Rea”. 
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- 
21 - 4j  t 5 
21+ 1 
21- 1 
I - 2j  

21 - 4j  -t 8 
21 

21 - 4 j +  6 
21 - 2 

- 

- 

Those cases among these descriptions that are not evident will be verified in 
59.7. 

Actually, the automorphism groups G are connected, except for the sixth, 
eighth, eleventh, fourteenth, and fifteenth cases, that is, if the first column bears 
the indication Rea, the third bears the indication sym, and the fourth column 
differs from the second. 

This can be shown by an induction step from a subgroup F of G to G. To 
define F one must distinguish the 

(a) second, third, fourth, and fifth cases, 
(b) first, seventh, ninth, twelfth, and thirteenth cases, 
(c) tenth case; 

F i s  defined by its leaving invariant 

(a) an xo E R with xo # 0, 
(b) an xo E R with Q(xo, xo) # 0, 
(c) some xo, yo E R with Q(xo, yo) # 0. 

The connectedness of F is the induction assumption, except for case (a), 
where it is easily derived from the assumed connectedness of a lower rank 
group of the table. To show the connectedness of G, one must prove that the 
set of 

(a) x E R with x # 0, 
(b) x E R with Q(x,x) = Q(xo,  xo). 
(c) ‘x, Y’ E r R,  IZ1 with Q<x, Y )  = Q<xo, Y O )  

is connected and that G acts transitively on it. This transitivity is easily verified 
for (a) and (c). For (b) it suffices to verify the transitivity on nondegenerate, 
two-dimensional linear subspaces. This is easily done in the first case; it is 
slightly more difficult in the ninth, and somewhat tedious in the thirteenth. 
The connectedness of the orbits under consideration poses no problems. 
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A more comfortable proof of the whole statement rests 01; the fact to be 
proved in 65.4 that the niaximal compact subgroups ofa  semisimple linear Lie 
group are conjugate. From this fact it follows that the normalizer J ’  of a 
maximal connected compact subgroup J i n  G intersects every component of 
G. An inspection shows that J ’  coincides with J ,  except i n  the sixth, eighth, 
eleventh, fourteenth and fifteenth cases. Now J is connected, and then so 
are J ‘  and G. 

In the excluded cases R splits into linear subspaces R,  and R- on which Q is 
positive and negative definite, respectively, and J leaves both invariant; G has 
two components. Indeed J’\J consists of the elements of G with negative 
determinant on R ,  as well as on R-. 

54.2. Maximal Signatures, Standard and Near Standard In every 
complex class the miiiitnal signature of the real Killing form is attained by the 
unitary type and by no other. According to Sections 52-53, the masimal 
signatures in the simple classes, separately for inner and outer types, are 
attained by : 

signatures 

for j =  

0 if I is (odd even 
( + ( I +  1) 

I for j =  

1 for j =  + ( I +  2) or +(I+ 3) 
I for j = 1  

1-2  for j = + ( 1 + 3 )  
I for j = + ( l  f4 )  
I for j =  + ( I +  3) 
I -  2 for j =  +(I+4) 
2 

6 
7 

8 
4 

2 

The standard types, characterized by the signature I ,  duly appear in this list 
although in a strange disguise. As to the others, it is striking that their sig- 
nature always equals the number of primitive rootforms that are invariant 
under P. To cover them one might try the following 
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Definition For G E Alg Lie Com SSS in ordered third dressing on H, the 
near standard semimorphism C,,, is defined by 

c,,, = c,, P = c,, PM, 

where P is the plus-automorphism according to H.  Near standard restrictions 
are defined correspondingly. 

Proposition The signature of the near standard restriction equals the 
number of P-invariant elements of W++. 

Indeed, only the trunk contributes effectively here to the signature and with 
just this amount. 

Note that all near standard types are inner except for D,, 1 even. 

54.3. Central and Near Central It  remains unsatisfactory that in the 
classification according to the pattern of 51.17 standard and near standard 
types appear in an utterly chaotic distribution. This can be corrected as 
follows. 

54.3.1. Definition For G E Alg Lie Com S S S  in ordered third dressing 
let b be such that p(b) = Ti for all p E W++ and h = exp b. The central and the 
near central semimorphisms are defined by 

where P is the plus-automorphism. The central and near central restrictions are 
defined correspondingly. 

54.3.2. Definition The altitude a(a) of a E W +  is defined as the sum of its 
coefficients on the basis Wf+. (See Tables C and D of altitudes.) 

54.3.3 With h as defined in 54.3.1, 

he,=-e, for p E w++; 
thus, 

hefa = ( - ly(a)e*a for a E w+. 
To get the signature of G,, one must compute -tr(CcI Cun) = -tr h. 
The list of altitudes in most cases shows an equal number of rootforms at  

altitudes 2b, 26 + 1 ; for the altitude 1 there are 1 of them. In these cases 
the branches contribute -21 to tr h, whereas the contribution of the trunk is 1; 
together they contribute -1, which indicates the standard type. 

The exceptions are A,, D, (I odd), E,; these are just the cases in which 
the minus-automorphism M is outer. From the list of altitudes it becomes 
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clear that the loss of contributions from the branches just equals the loss of 
signature in the step from the standard to the near standard type. 

So much for the central types. The near central semimorphisms arise from 
the central ones by a factor P ,  which in classification terminology means the 
adding of an asterisk. According to the list of 54.2 this process just changes 
standard into near standard types and vice versa. 

54.4-5. Coincidences 

54.4. Proposition For G E Alg Lie Com SSS, if M is inner, the standard 
type coincides with the central, and the near standard with the near central. 
If M is outer, it is the opposite; the standard type coincides with the near 
central, the near standard with the central. 

It is quite unsatisfactory that one has to rely on verifications to prove 
Propositions 54.2 and 54.4. 

54.5 C,,, C,,,, on the one hand, and Ccl, Cncl on the other are isotypically 
identical. They differ in that they presuppose different dressings on the under- 
lying trunk. The trunk is clearly maximally compact for C,, and C,,,; in 
Section 60 it will appear to be minimally compact for C,,, C,,,. 

55. CONTRAVALENCE AND VIRTUAL REALITY OF 
LINEAR REPRESENTATIONS 

55.1 
Then set 

@: 

@(C): the class of linear representations of G, in R. 

where R ranges over Spa Lin Com and Spa Lin Rea, respectively (dim R < to 
everywhere). 

Let G E A I ~  LieCom and its involutory semimorphism C be fixed. 

the class of linear representations of G i n  R, 

The subscript irr denotes the subclass of irreducible representations. 

55.2. Contravalence WithfE @ acting on R and Q mapping Ronto S 
semilinearly, 0 is defined by 

<&><a> = Qf(Ca>Q-'. 

Definition 
Iffis contravalent to itself, it is called self-contraralent. 

Qf is conlrat'alent to f with respect to C, or C-contracalent. 

It is evident that o f i s  again in @. 
The relation of contravalence clearly preserves equivalence classes. 
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55.3. Extension and Restriction For g E @(C) acting on the real 
restriction RD of R E Spa Lin Com by means of the involutory semilinear 
mapping D, put 

e,g = complex extension of g from G, to G and from R, to R. 

55.3.1 Complex extensions preserve equivalence. 
I f f  = eDg, then 

55.3.2 Df(Cu) Dx  = f ( u ) x  for u E G, and x E R D .  

u E G, x E R.  Hence 
Since both members are linear in u as well as in x ,  the relation subsists for all 

55.3.3 f = eDg -+ f self-contravalent. 
(It will be seen that the converse is not true even for semisimple G.) 

fas a representation to G, and RD. If this is fulfilled, then put 
Iff E athen 55.3.2 is necessary and sufficient for the possibility of restricting 

q, f = C-D-restriction off. 
Clearly, 

55.3.4 rD respects irreducibility, 

55.3.5 e D r D f  =f, 

55.4. Virtual Reality 

55.4.1. Definition f E @ is virtually real (with respect to C) if there is an 
involutory semilinear D such that rDfE @(C) or, equivalently, such that 
55.3.2 is true, 

55.4.2 The property of virtual reality is preserved under equivalence and 
contravalence. 

55.4.3. Proposition I f f  E Qlrr is virtually real, then, up to equivalence, 
rD f does not depend on D. 

Proof Since f is irreducible, D, f ( C a )  D ,  = f ( u )  = D, f (Cu)  D, implies that 
0, D ,  is a scalar multiplier y ;  hence D, = yD,. Now 

1 = DZz = Y D ,  yD1= f i D l 2  = 77. 
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Take a such that ct2 = y.  Then aii = 1, a = iiy. For x E R,,, 

ax = aD, x = EyD, x = ED2 x = D, ax,  

which shows that )‘,ax maps R,, onto R,, linearly. Since this mapping 
commutes with allf(a), it constitutes an equivalence of r,, f and rD2$ 

55.4.4 Direct consequences of this proposition are the following. 

Proposition If forfi E @(C) (i = 1, 2), the e,,fi are irreducible and equiv- 
alent, then thefi are equivalent. 

Proposition If, forfi = r,g,, the gi are irreducible and equivalent, then the 
fi are equivalent by means of a D-real linear mapping. 

55.5-8. Waiving and Twinning 

55.5.1 ForfE @ define 
w f ~  @(C) as the result of restricting G to Gc and waiving in R ,  

t, f E @ as the result of twinning of R, 

where D is the semilinear mapping belonging to the particular twinning 
which arises as in Proposition 1.9, so that R is the D-restriction of the twinning 
result. 

In the last case one has t D f ( a ) w ,  =w+ f(a) if w+ and w- belong to the twin- 
ning, first for a E G,, then for general a E C. Twinning respects equivalence. 

55.5.2 t D f =  e,w$ (See 1.9.) 

55.5.3. Proposition Forf,,f, E Qlrrr wf,,wf2 are equivalent ifff,,f, are 
equivalent or contravalent. 

Proof “If” is obvious, since by waiving semilinear mappings become linear. 
“Only if”: from theequivalenceofwf,,w~, that OftDf, = e , W f l , t ~ f i = e , W f 2  

follows by 55.5.2. Now, by the definition of twinning and because of the 
irreducibility off, it appears that t D f i  breaks into two parts, one equivalent to 
f,, the other contravalent tofi. This proves the proposition. 

55.6. Proposition I f f€  Glrrr then wfq? @,rr(C) i f f f= e, g for some g and 
D. 

Proof “If”: Put f = e, g with g E @(C) acting on S E Spa Lin Rea. Then 
w f =  me, g acts on S + is ,  which splits into invariant S and is. “Only if”: 
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Let f act on R. Then mfacts on Sarising from R by waiving. If mf is reducible, 
there is a true T sub S, invariant under m$ Now iT is of the same kind, and so 
are T n iT and T + iT, which, however, are even sub R andf-invariant. Since 
f E Qlrr, one gets T n iT = {0}, T + iT = R, which means that R is a complex 
extension of T and f is a complex extension of its restriction to T and Gc. This 
proves the assertion. 

A counterpart of this proposition is the following. 

55.7. Proposition If g E Qlrr(C), then e, g 4 QLrr for any D iff g E 

Proof “If” is evident because e, g = e,mf = t D  f splits. “Only if”: let S 
true sub R be invariant under f = e, g. Then D S  is invariant under Df(Ca) D 
which equals f(a) by 55.3.2. Now S n DS and S + D S  are also invariant; 
they are complex extensions of (S n DS), and ( S +  DS),. The latter are 
g(a)-invariant, and since g E aIrr(C) they equal (0) and R,. Therefore 
S n D S =  {0}, S + DS= R, and R D  = (1 + D)S. Now, by 55.3.2, if ft is the 
restriction off to S, then 1 + D restricted to S provides an equivalence between 
aft and g. This proves the assertion. 

55.8 Summarizing, one has the following: 

Theorem Real restriction gives a one-to-one correspondence between the 
equivalence classes of virtually real elements of Qirr and the equivalence 
classes of those elements of Qlrr(C) whose complex extensions are still irre- 
ducible. Waiving provides a one-to-one correspondence between the classes 
of equi- and contravalence of not virtually real elements of Qlrr and the equi- 
valence classes of those elements of Q,rr(C) whose complex extensions are 
reducible. 

56. CONTRAVALENCE OF WEIGHTS 

G E Alg Lie Com S S  in ordered third dressing on a trunk H, f a n  irredu- 
cible linear representation in R E Spa Lin Com (dim R < a), and C an 
involutory semimorphism of G with CH = H.  

- 
56.1, Definition (C*[) (h)  = [(Ch) for all 6 E H* and h E H defines C*. 
(Repetition of 51.6.) 

Proposition (1) C* is linear. (2) C: = 1. (3) C,*ss, = P. (4) C:, = M.  (5) 
C* E Aut W*. (6) If Gc is simple and under maximally compact dressing, then 
C* = 1 for inner types, C* = P for outer types, C* = P,, for twin types. 
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Proof (l), (2), (3), and (4) are trivial, (5) C* C: E Aut W* ; (6) follows from 
Definitions 51.16-17. 

56.2. Definition Elements of H: are called contraualenr (with respect to 
C) if they are equivalent under C* Int W*.  

The terms C-contravalent and C-self-contravalent in H: are self-explanatory. 

56.2.1 . Proposition Irreducible representations of G are contravalent iff 
their top weights are contravalent. 

Proof Let Q be semilinear, thus &contravalent to f (see 55.2). Let x be a 
A-weight vector of irreduciblef; thus, 

f(h) x = A(h) x for h E H ,  
- 

Qf(Ch) Q-' 9 QX = QA(Ch)x = A(Ch) QX = (C* A)(h) Qx; 

hence C*A is a weight of QJ Therefore C* maps the weights offinto thoseof 
ofwhich therefore is equivalent to yoEcf(CCs,a). By Theorem 43.2 C* maps 
the top weight offonto that of o fup  to Int W*-equivalence. 

The converse reasoning is now obvious. 

56.2.2 An immediate consequence is the following: 

Proposition An irreducible linear representation is self-contravalent iff its 
top weight is self-contravalent. 

56.3 To check contravalence for weights one can restrict oneself to simple 
G,. Furthermore, it is convenient to assume Gc in maximally compact dressing. 
Then for 

inner types: c = KC,,, C* = M ,  

outer types : c = KPC,,,  C* = MP, 

twin types: C = MP,, C,,, C* = PI,. 

According to 33.12, if M $ Int * W*,  then M E P . Int W*.  Hence, according 
to the definition of 56.2, the following applies: 

Proposition Dominant A is self-contravalent if G, and Mare both inner or 
both outer. Dominant A and PA are contravalent if for G, and M one is inner 
and the other outer. For the twin type A and P,,A are contravalent. 

More explicity, one gets a basis for the self-contravalent dominant weights as 
follows: 



300 51-62. REALITY IN LIE GROUPS AND ALGEBRAS 

Outer Type The fundamental weights except for 

D, (leven): r1  + 7r2, n k  (k  # 1,2). 

Twin Type + n-i2); (l) ,  (2) refer to the two summands. 

57. SELF-CONTRAVALENCE 

Self-contravalence is not sufficient for virtual reality. 
Suppose that Gc E Alg Lie Rea SS, G in ordered third dressing. 

57.1-7. Toward a Criterion on Virtual Reality 

57.1. Definition An irreducible linear representationfof G is called areal 
if it is not self-contravalent. It is called antireal if it is self-contravalent but not 
virtually real. 

57.2 Suppose G E  Alg Lie Com SS in ordered C-third dressing on the 
trunk H and f an irreducible linear representation of G in R with the top 
weight A. Suppose that h is self-contravalent, hence equivalent to C*h. Let x,y 
be (essentially unique) vectors of weight X and C*h;  if A = C*h, take x = y .  
Then, because of the irreducibility off,  there is an element 

57.2.1 u = e-pr * * * e-p, 

of the associative envelope of G such that 

(py E W++; Wt+ unnumbered) 

57.2.2 

thus in any case, 

f(u) x # 0 is a multiple of y ; 

k 

I 
57.2.3 x - c* h = c py. 

Again, 
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57.2.4 ~ ( C U )  y is a multiple of x ;  

hence 

57.2.5 f( C U  ' U )  X = K X .  

Later on it will be seen that K is always real # O ,  though this fact could 
easily be proved now. 

57.2.6 E = sign of K if K is real. 

57.3. Theorem Under the assumption in 57.2 f is virtually real if and only 
if E = 1. There is a semilinear D on R with 

Df(Cu) D-' =f(~) (U E C) 

and 
D 2  = E. 

Proof Suppose that for some semilinear D with D 2  = E = f l  

57.3.1 Df(Cu)  D-' =f(~). 

With x of the top weight A, Dx is of the weight C*A; therefore, with the 
notations of 57.2, 

57.3.2 f(u) x = y D x  with y # 0. 

Applying D and using 57.3.1, one gets 

f( CU U) x = f( CU) f(~) x = f( CU) DX 

= ~ D ~ ( u ) x  = Y D Y D X  = H D ' x  = E ~ X ;  

thus, 
sgn K = E. 

In particular, iffis virtually real, and correspondingly D is chosen such that 

Conversely, still supposing K real, assume a provisional involutory semilinear 
D2 = 1, then K > 0 (which in turn implies D2 = 1 for the chosen 0 ) .  

Do on R such that 

57.3.3 DOX = y,  D ~ J J  = X. 

It exists, since x ,  y ,  if linearly dependent, have been assumed equal. 
Remember that 
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57.3.4 f ( u )  x = y y  for some y # 0. 

Now 
g = Y (I Do f (C4 Do 

is again a linear representation of G, which in the partial order transformed by 
C* has the top weight C*X equivalent to A. Thereforefand g are equivalent, 
and there is a linear mapping Tof R onto itself with 

T g(a) T-I = f ( a )  for all a E G. 

Since x is also a weight vector of g, one may even suppose that T-' maps x 
into a given multiple of x ,  say 

57.3.5 

Substituting the definition of g ,  one gets 

57.3.6 TDOf(Ca) DOT-' =f(a) ,  

and, substituting Ca instead of a, 

TDOf(a) Do 7'-' =f(Ca).  

Combining these equations and putting 

57.3.7 D =  TDO, 

one notes that 
D2 commutes with allf(a). 

Thus, 

57.3.8 D 2  = TDo TDo is a scalar multiplier. 

When applying 57.3.6 to TDo yy and replacing a by u, one gets 

TDOf(C4 w =fW TDO ??v. 

Replacing yy in the first member according to 57.3.4 and 57.2.5, one gets 

KTDOX, 

whereas in the second member, by 57.3.3, 57.3.5, and 57.3.4, 
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Hence 

E d l K I  TDox = lYl Y ,  

 dm TD0)’x = dm TDO ( Y ( Y  = d(3 ( y (  TX = ( K (  x 

by 57.3.3, 57.3.5; hence by 57.3.7 

D’x = EX 

and, thanks to 57.3.8, 

57.3.6 gives 
Dz = E; 

@ ~ ( C U )  D-’ = f ( a ) .  

I f  E = I ,  this shows thatfis virtually real. It also proves the other assertion 
of the theorem. 

57.3.9. Remark It is easily seen from the irreducibility offthat D as asserted 
in the theorem is determined up to an arbitrary constant with absolute value 1. 

From the theorem and the first part of its proof it follows also that the 
reality of K and its sign are independent of the particular C-third dressing. 

57.4. Theorem Every irreducible linear representationfof a standard type 
C, and the self-contravalent irreducible representations of near standard or 
twin Gc are virtually real. 

Proof By 56.1, if C = C,,, 
C * h = h ;  

but this is still true of near standard and twin C iffis self-contravalent because 
then by 56.2.2 and 56.1 C*h is equivalent to h and still dominant; thus 
C*X=h.  

To show that the irreducible representation with top weight h is virtually 
real, one considers its construction (44.5) with a view to reality. The semi- 
rnorphism C extends from G to the associative envelope b(G). But now the 
left-hand ideal annihilating the vector of top weight (denoted by -1 f M in 
44.5) is C-invariant because of the following: 

(1) C* maps W +  onto W + ,  and C interchanges the eOr (a E W’) up to real 
factors (kl). 

(2) c maps h - ~ ( h )  into ~h - h(h) = ch - (c* A) ( ~ h )  = ~h - A(c~). 
(3) C interchanges the expressions e!;P+l up to signs. 

Therefore C extends to b(G) mod M as a semilinear involution which is 
compatible with C. This proves the theorem. 
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57.5 Since the self-contravalence of an irreducible linear representation is 
preserved under isotypism and is not influenced by the choice of the trunk, one 
can apply the foregoing result to linear representations of any central or near 
central restriction, according to Proposition 54.4. 

Observe now that in ordered maximally compact dressing 

C C l  e P =e-,, Cnclep=e-pp for p E W i  ', 
and substitute these data into 57.2.1 and 57.2.5 for C = C,, and C = Cnc, : 

f(e,, - - - epl e-pk * * * 

f (ePpk ' . . ePpl e-pk * * * e-,,J x = K' x 

x = K X  

and 

with positive K and K' because of the virtual reality of self-contravalentf. 

following: 
One can now forget about central and near central restrictions and state the 

Proposition If G E Alg Lie Com SS in ordered maximally compact 
dressing with respect to some C, iff is a self-contravalent irreducible linear 
representation of G, x a vector of top weight A, y a vector of weight C* A, and 
f(e-pu * * - e-Jx is a multiple # 0 of y (py E W++),  

then for inner Gc 

57.5.1 

and for outer C, 

57.5.2 

are positive multiples of x.  
Though proved only for simple G, the proposition applies in general. Twin 

factors do not contribute, and all simple factors behave independently, since 
their branches commute and every branch acts only on the component of the 
trunk to which it belongs. In any real simple factor where it occurs P is to be 
interpreted as the plus-automorphism. 

57.6 To compute E for any self-contravalent irreducible linear representation 
fwith top weight h one must compare 57.5.1-2 with 

57.6.1 f(Ce_,, * * - Ce-,, cpr - * * e-pl)x = K X .  

Now in ordered maximally compact dressing (see 51.1 1 ; by Remark 57.3.9 it 
does not matter which one) 

C = KAC,,, 
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with the conditions 51 . I  I .2-4. Since 

A - C * h = h +  Ah, 

Ap, appears in  h - C*h as often as p,. If p # Ap, 

ce-p xz -(exp (Ap) (h ) )  eAp,  

and 
ce-Ap = -(exp dh)) ep 

together do not contribute to K in 57.6.1 if compared with 57.5.2, since 
h * Ah = I (51.1 1.4). Ifp = Ap, thecontribution compared with that in 57.5.1-2 
is 

-exp p(h) = * I .  

Since 57.5.1-2 were positive multiples of x, K is always real and its sign is 
determined by these contributions. Whence: 

Theorem 
dressing with respect to 

where 

Let G E Alg Lie Com S S  be given in ordered maximally compact 

C = hAC,,, 

h = exp 27rih, h E H,,, 

p(h) = O , +  for Ap = p E W++,  

A W+’= W”, 

A * =  1, 

AC,, = C,, A .  

Let A be the top weight of self-contravalentf, 

c *  A - = c 4,p” (p, E W++),  

with integral 4,. Put 

if p, = Ap,. I E, = -1 for p,(h) = O  
E” = 1 for p,(h) =+ 

Then the E in Theorem 57.3 is computed as 

E = JJ E?. 

f is  virtually real if E = 1 and antireal if E = -1. 

Remark Actually, one may dropall twin factors and,using the classification of 
51.17 for every simple summand L, or L,,*, put E, = -1 except for E, = 1. 
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57.7 It is unfortunate that by the identification of standard and near standard 
with central and near central types the proof of 57.6 finally rests on the 
verification in 54.3. Another approach would be to show that up to  a positive 
factor ePpk * * e-pI x does not depend on the choice of p, ,  . . , , p k  E W + +  as long 
as x, ePpl x ,  . . . , ePPk * * e-p, x is a descent by complete ladders. This has been 
shown by H. de Vries (unpublished). D.-N. Verma in his Yale thesis of 1966 
(Theorem 4.1, and Remark 4.3) even proved that under the same condition 
e-Pk * * e-p, is uniquely determined within the associative envelope. 

57.8. Antireality and Quaternion Space 

Theorem An antireal linear representation of real semisimple C, in complex 
R can be interpreted as a representation by quaternion linear mappings of a 
quaternion linear space of half the dimension of R. 

Proof In the antireal case the expressions 

a + P D  

(a,/3 complex, D the semilinear mapping of Theorem 57.3 with D2 = -1) 
may be considered as left-hand operators on R. They form a skew field in 
which 

D a  = CrD. 

A conjugation can be defined in this field, 

a +  P D =  8 -  /3D 

- such that 
uu = on. 

Thus the skew field is that of quaternions (Qio). R can be interpreted as a 

Thef(a) with a E C, are endomorphisms of Q :  
linear space Q over Qio. Its dimension is half that of R.  

f(a) (a  + /3 D) x = a f(a) x + /3 f(a) Dx = a f(a) x + /3Df(a) x = (a + /3D)f(a) x. 

57.9. Historical Note E. Cartan classified the real representations of 
semisimple Lie algebras [J .  Math. Pures Appl. 10, (6) 149-186 (1914) = Oeuvres 
I 1, 493-5301, mainly by verifications. The explicit formula for E, and the 
relation between E = -1 and quaternionic representations, was found by 
H. Freudenthal. 

58. COMPUTING E FOR SIMPLE LIE ALGEBRAS 

A basis of self-contravalent dominant integral elements of H* was given in 
56.3. All possible self-contravalent top weights can be combined from them 
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with nonnegative integral coefficients. In such combinations E behaves 
multiplicatively. Therefore it suffices to compute E for the members of that list. 
The list of fundamental weights of Table F is used also. 

A,,,: r k  + r [ + ] - k  (k G * I )  expressed in the primitive rootforms has the 
coefficients 

1,2 ,..., k ,..., k ,..., k ,..., 2, l .  

C * ( T k  + r i + ] - k ) = - r k - r [ + l - k ;  thus in 

rk + rl+l-k - c*(rk + r l + l - k )  

all coefficients are even: 
E = +l. 

For I odd, I = 2m - 1, rm has the coefficients 

1 2  m 2 1 .  
- - j’ 2 ’  * ’ ., ¶ * * * 9  

Y j ’  

C*n, = -r,,,; thus 
E = (-1)””. 

A,,,,*: For 1 odd, 2m - 1: c * r k  = -rl+l-k. - c * r k  has the CO- 

efficen t s 

Therefore 

1,2 ,..., k ,..., k ,..., k, ..., 2, l .  

A unified formula is possible if the signature u ( = 21 - 4j + 5 for j > 0, = 

21 + 1 for j = 0) of the quadratic form is used by which real r2 was presented 
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(see 54.1 and 59.7; do not confuse it with that of the Killing form). An easy 
computation shows 

f o r k = ! :  E=+I  if o = f l  mod8, 

€ = - I  if a=*3mod8 .  

Dt,,: For k # 1,2,  

c* r k  = v k ,  

“k  - c * T k  = (k - 2)(pl f p2) mod 2. 

Thus 
fo r j#  1,2: ~ = + 1 ,  

f o r j  = 1 : E = (-1)”. 

For the other basic self-contravalent top weights one must distinguish 

For I even : 
between “1 odd” and “1 even.” 

C*?7,=-77k (k=1,2),  

77, - C*Tl = 31p, + t(l- 2)p,  + p3 + 2p4 + * * + (1- 2)p,, 
772 - C*772 = + ( I -  2)p,  + 34% + p3 + 2p4 + * *  * + ( I -  2)p,, 

Thus 
fo r j f  1,2: c=(- l@+’ if k =  1,2; 

f o r j = l :  ~ = + 1  if k = l ,  

E=-1  if k = 2 .  

For 1 odd: only 
C*(7r, + 772) = -771 - 77, 

(rl + TJ - C*(T, + n2) = 0 mod 2. 
is left, for which 

Thus 
~ = + 1  if k = I , 2 .  
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In the case of even 1, using the signature (T = 21 - 4 j  + 8 as in B,,j, one gets: 
if k = 1,2 a n d j #  1,2, 

~ = + 1  if u=Omod8 ,  

E = - 1  if u = 4 m o d 8 .  

Remark The result E = +1, if k = 1, E = -I, if k = 2, for j = 1 and 1 even is 
unexpected.f 7rI and 7r2 are reduced to each other by an outer automorphism of 
the complex Lie algebra. Clearly, this symmetry is destroyed by urgingj = 1. 

D,.j,* ( j #  42): For k # 1,2 

c* 7rk = -nk, 

T k  - c* T k  = (k  - 2)(pl + p2) mod 2. 

Thus for all cases 
& = +l .  

For the other basic element one must distinguish between “1 even” and 

For I even 
“1 odd.” 

C*(7rl + 7.5) = -7r2 -TI ,  

7 1  + 7r2 - C*(7r1 + 7r2 )  = p1 + p2 mod 2. 

Thus, for all cases, 
E = + 1 .  

For I odd 

c* 3Tl = -xz, 

~ ~ - C * ~ ~ = ~ ( I - l ) ( p l + p 2 ) + p 3 + 2 p 4 +  +(l-2)pl .  

Thus for k = 1 (k = 2 is the same case), 

& = (-1)(9+j. 

Using again the signature u = 21 - 4 j  + 6 ( j  > 2), one can write this as 

f o r k =  1: &=+I if u=Omod8 ,  

&=-I if o = 4 m o d 8 .  

E6,j ( j =  0,1,2): All coefficients in (7rl + 7r3) - C*(v,  + r3), 7r2 - C*7r2, 
(x4 + 7rJ - C*(7r4 + 7rTTS), x6 - c*?76 are even. Thus 

E = + I .  

t It differs from Cartan’s. 
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E6,,,* ( j  = 0,2): 
coefficients is even: 

In every n k  - C*Tk the coefficient of p2 and the sum of all 

E = +l. 

E,,, ( j  = 0,1,2,3): For T,, r4, 7rS, n7: E = +I 

for n2, rr3, 7r6: E = +1 if j = 2,3, 

E=-1  if j = O , l .  

E, : E = +l. 

F, : 

G, : 

E = fl. 

E = +l. 

59. INVARIANT BILINEAR AND SESQUILINEAR FORMS 

59.1. Unitary Representations In 35.1 it was shown that every finite- 
dimensional linear representationf of a compact group is essentially unitary. 
For the infinitesimal algebra Gun of a compact semisimple group this means the 
existence of a definite hermitean inner product (. . ., . . .) in R such that 

( f ( a ) x , y >  + (x, f(a)r> = 0 for a 6 Gun. 

Expressed in G this reads 

59.1.1 (f(4 X , Y >  + (x,f(Cuna)Y) = 0 for a G. 

With li in the trunk instead of a and vectors xA,x,, belonging to the weights 
A,p, this becomes 

A ( W h  XJ + <c:n P ) ( W X A ,  Xr> = 0, 

and because of C:,, = -1, 

59.1.2 (xA,x,,) = O  for X f p .  

Putting a = ear, one gets from 59.1.1 

( f (ea)  X ,  Y> = (x, f(e-a) Y>. 

Consider products of branches and put u* = era if u = e,, and (uv)* = v*u*. 
Then 

In particular, 

( f ( 4 X , Y >  = (x, f ( U * ) V > .  
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59.1.3 

Thus, if the weight h has multiplicity 1, thenf(u*u)xA is a nonnegative multiple 
of XA. 

The existence of invariant (. . ., . . .) was proved by integration, but an 
algebraic construction is still lacking. For irreduciblef one should proceed by 
postulating 59.1.2, taking x A  for the top weight h arbitrarily, and x,, of lower 
weights p, which can be put into the formf(u)xA, by postulating 59.1.3. A 
crucial point is to prove that f (u*u)xA is a nonnegative multiple of xA. It is 
rather easy to show that the coefficient is real. The difficulty to ascertain its 
positiveness algebraically seems still greater than the analogous problem in 

(f(4 X A , f W  xn) = (f@* u) XA, XA>. 

57.5.1-2. 

59.2-8 G ~ A l g  Lie ComSS in C-third dressing and f an irreducible 
representation of G in R.  Iff is not areal with respect to C,C,,,, then semi- 
linear D, Dun, and E, €,,,, = f l  are determined according to Theorem 57.3 by 

Df(cU) D-’ =f(a), D2 = E, 

o u n f ( C u n  a) Did =f(a), Din = €un* 

Invariant (i.e., infinitesimally invariant) bilinear and sesquilinear forms will 
be investigated. Note that they are nondegenerate as soon as they are nontrivial 
(nonzero) since their radicals are invariant. 

(. . ., . . . .) always means a f(Gu,,)-invariant positive definite inner product 
on R.  

59.2. Uniqueness of Invariants Invariant bilinearorsesquilineart forms, 
if they exist, are unique up to a scalar factor. Indeed, if, for instance, (. . ., . . .) 
is bilinear and nondegenerate, then some other (. . ., . . .)’ can be expressed in 
terms of (. . ., . . .) by (x, y)’ = (Kx, y )  with some linear mapping K; if they are 
both invariant, 

(f(u) x, y )  + (x, f(u) y )  = 0 

(Kf(u) x, y )  + (Kx, f(u) y) = 0 

for all u E G, 

for all a E G, 

then, by substituting K x  instead of x in the first line, one gets 

for all u E G, (Kf(u) x, y) = (f(u) K x , ~ )  

which shows that 
Kf(u) =f(u) K for all a E G ;  

hence, because of the irreducibility off, K is a scalar multiplier. 

t Linear in the first and semilinear in the second variable. 



312 51-62. REALITY I N  LIE GROUPS AND ALGEBRAS 

Any invariant bilinear form can be split into an invariant symmetric and an 
invariant skew part: 

(X9.Y) = 3((x-,Y) + ( Y , X ) )  + f ( ( X , Y )  - ( Y , X ) ) .  

Therefore it is either symmetric or skew. 
For sesquilinear forms analogous remarks are valid. Skew sesquilinear 

forms become symmetric by multiplication with i. 
An immediate consequence is the following: 

Proposition If (. . ,, . . .) is the f(G,,)-invariant (positive definite) inner 
product andfis not areal with respect to C, then 

(DY, D x )  = < x , y > ;  

hence, 
( x ,  DY> = E ( Y ,  D x ) .  

Proof The new inner product (. . ., . . .)‘ defined by 

(X,Y)’ = (DY ,  D x )  

is stillf(G,,,,) invariant, since 

( f ( a ) x , ~ > ’  + (x, f ( c u n a ) Y > ’ =  (DY,  Df(a)x> + <Df(Cuna)y, D x )  

= (DY, f (Ca)  D x )  + (f(C,,, Ca) Dy,  D x )  = 0. 

Because of the irreducibility off(see 59.2), for some y, 

( D Y ,  Dx) = Y(X,Y).  

Substituting Dx, Dy instead of x , y  and taking the positive definiteness of 
(. .., ...) into account, one indeed gets 

( D Y ,  D x )  = ( X , Y > .  

59.3. G-Invariant Forms 

Theorem G possesses a nondegenerate bilinear symmetric (skew) invariant 
under f iff f is virtually real (antireal) with respect to C,,,,. The invariant can 
be taken as y rx,y- ( x ,  D,,,y) where (. . ., . . .) is the f(G,,,,)-invariant inner 
product. 

Proof The invariance formula 

(.m x, Y )  + (x, f(4 r) = 0 
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applied to weight vectors xA,x,, and h E H yields 

(f(h) X h  x,,) + (XA, f(h) x,,) = 0, 

(W + Ah)) ( X A ,  x,,) = 0; 

thus, 
(xA ,  x,,) = 0 unless h = -p, 

(xA ,  x,,) = 0 unless p = C,*, A. 

In order for (. . ., . . .) to be nondegenerate, C,*,h must be a weight off if h is 
so, and have the same multiplicity. Therefore C:n maps weights into weights 
while preserving multiplicities. Thus Y,f(C, ,a)  andfare equivalent andfmust 
be C,,-self-contravalent ; that is, it cannot be C,,-areal. 

in other words, 

Conversely, letfbe not areal with respect to C,,. Then 

(x, Y )  1 (x, D u n  Y >  

defines a bilinear form on R which isf(G)-invariant, since 

(f(a> X, Y )  + (x, f(a> Y )  = (f(a) X, D u n  Y> + (x, D u n  f ( a ) ~ >  

= Ma) X, D u n  Y> + (x, f ( C u n I 0  Dun Y> = 0. 

It is evident that (. . ., . . .) is nontrivial; it may be symmetric or skew. 
Now, according to 59.2, 

(x, D u n Y )  = Eun(Y, D u n  X), 

which proves the last assertion, and the one about symmetry. 

59.4. G,-Invariant Forms 

Theorem Gc possesses a nondegenerate sesquilinear form invariant underf 
iff its top weight X is equivalent to CC,,h. For simple Gthis means thatfhas to 
be areal with respect to both C and C,, or with respect to neither C nor Gun. 

Proof Again using thef(G,,)-invariant inner product (. . ., . . .), one can write 
any nondegenerate sesquilinear form as 

Y ‘x,yl(KX, Y>  

with nondegenerate K .  
Its G,-invariance means 

<Kf(a> X , Y >  + (KX, f ( C 4 Y )  = 0. 
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59.4.1 Kf(CCun a) K-' =f(a), 

hence thatfand Y.f(CC,,a) are equivalent and by 44.1 that h and CC,,h are 
equivalent. All arguments can be turned the other way round. 

For simple G the equivalence of the other conditions follows by inspection 
(56.3). 

Note that a bilinear form invariant underf(Gc) is also invariant underf(G); 
therefore Theorem 59.3 applies then. 

59.5. GJnvariants in Real and Quaternion Space I f  f is areal 
with respect to neither C nor C,,, then more information is available via the 
semilinear D, Dun. 

Theorem If (. . ., . . .) is thef(G,,)-invariant inner product, then 

59.5.1 Y rx ,y i (X1  Dun DY) 

is an f(Gc)-invariant sesquilinear form, which can be made hermitean by a 
suitable norming of D ;  it is hermitean iff  (D, ,D)2  = 1. 

I f  E = 1, its restriction to R ,  coincides with that of the bilinear form of 59.3; 
it is real and symmetric if E,, = 1 ; it is imaginary and skew if E,, = -1. 

If E = -1, then considering R a s  the quaternion linear space Q (see 57.8), one 
gets an f(Gc)-invariant quaternion sesquilinear form (. . ., . . .), 

59.5.2 

with p =  -~,,,f? (e.g., 
hermitean, if E,, = 1, it is skew hermitean. 

(x ,Y)  = P<X. DD,,y> + , f ?D(D, ,x , y>  

= 1 for E,, = -1, ,f? = i for E,, = 1). If E,, = - I ,  it is 

Proof Thef(G,)-invariance of 59.5.1 follows from 

f(CC,,a) = D-' D;Af(a) Dun D. 

Furthermore, because of (CCJ2 = 1 and the irreducibility off, 

(Dun D)2  = scalar y ,  
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hence 
(DDun)2 G ( D u n  D)’Dun=y, 

and by multiplying both equations 

w =  1. 

By Remark 57.3.9 one may use /3D instead of D, with /?’ = y-’. This allows 
one to suppose 

Thus, because of 59.2, 

(Dun D ) 2  = 1. 

(X,DunDY) =~un<Dy,Dunx> = ~ u n ~ ( D D u n x , y )  =<Dun Dx,Y),  

which calculation proves the equivalence of the hermitean symmetry of 59.5.1 
with the equality (Dun 0)’ = 1. 

The remark about the case E = 1 is obvious from 59.2. 
Suppose that E = -1. The invariance of 59.5.2 follows from that of the 

summands. (. . ., . . .) is sesquilinear : For complex a 

(ax, Y )  = 4x9 Y ) ,  (x, my) = ( X , Y )  d. 

Further 
(Dx,Y)  = /?<Dx, DDuny) + BD<Dun Dx,Y)  

= /?<Dun Y ,  X >  - B E u n  D<DDunx, Y>, 

and 
D ~ Y )  = ~ D < x ,  D&Y> - b<DUnx,y>, 

which by the assumption p =  -tun /3 leads to 

D(x,Y)  = (Dx,Y).  

This proves the linearity of (. . ., . . .) in the first variable. 
Moreover, 

( Y ,  X) = /?<Y, DDun X> + /?WDunY, x>, 

( Y , x )  =!<x, DDuny) - P u n  D(DunX,Y) 
- 

= -Eun(X, Y).  

This reveals the symmetry character of (. . ., . . .) as dependent on 
finally it completes the proof that (. . ., . . .) is sesquilinear. 

and 

59.5.3. Remark With the normings of Theorems 57.3 and 59.5 D and Dun 
determine each other up to a sign. 
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59.6. Toward Computation To compute the invariants in particular 
cases, maximally compact dressing is assumed : 

CC,, = C,, C = &A. 

The invariants are expressed in terms of the inner product (. . ., . . .> by 

Y r x . y 1  ( K x ,  Y>, 

which should be calculated for weight vectors x ,  y.  According to 59.4.1, if x, 
belongs to the weight p, then Kx, does to the weight Ap.  By 59.1.2 
( K x , , ~ , )  vanishes unless A p  = v. Therefore one can restrict the computation 
to (Kx,, x;,). (The prime on x;, accounts for the circumstance that by 
chance Ap may equal p, though there might be several independent p-weight 
vectors.) 

Starting from the top weight A, one has 

p = A - c P V P V  

x, = f(u) XA. 

and a linear combination u of products of e-p (p E W++) such that 

Applying 59.4.1 and taking 

CC,, e-pv = AAe-,, = -E, e-Apv 

into account (see 57.6), one gets 

-&v Kf(e-Ap~) K-’ = f ( e - p v ) ;  

therefore 
(-E”)’” Kf(Au) K-’ =f(u). 

If AX = A, then, after having replaced K by a suitable multiple (real if the 
sesquilinear form was already hermitean), 

KxA = xA, 

x,  =f@) XA 

= n(-&,)” Kf(Au) X A  

= n(-~,)”’ Kx,, 

for a suitable choice of x,,, which, however, coincides with x,  if A = 1 .  
Therefore 

Kx, = n ( - E , , ) ~ ~ X ,  for A = 1. 

This then completely determines the nondegenerate hermitean form 

Y r,. ,*lWX, u>. 
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lffis areal with respect to neither C nor C,, and D,  Dun are normalized as in 
Remark 59.5.3, then in the case Ah = h 

K = f D D , , ,  

and, if necessary by replacing D by -D,  even 

K = DD,,. 

59.7. Examples For the lowest dimensional linear representations of 
G E Alg Lie Corn S S S  one gets the following results by which the assertions of 
54.1 come true. 

r l (Al , , ) :  In the notation of Section 16, w I ,  .. ., w l + ,  are the weights, with 
orthonormal weight vectors x I ,  . . ., Kx, = x ,  for u G j ,  Kx,  = -x, for 
u > j .  The invariant hermitean form has the signature 2 j  - (I + 1). By com- 
paring the dimensions, one verifies that the group consists ofalllinear mappings 
with unit determinants that leave this form invariant. 

By 59.3 no invariant form exists. Comparison 
of dimensions shows that the group consists of all real linear mappings of R, 
with unit determinants. 

n,(A2m-l,o,*): Since E = -1, the representation takes place in quaternion 
m-space. All its automorphisms form a 4rn2-dimensional group; those with 
unit determinants produce the correct dimension. (The determinant is defined 
as a real number after waiving the quaternion structure.) 

r2(Bl , , ) :  E,, = E = 1. Weights *w,,, 0 with vectors x+,,,xO.t Because of 
Proposition 59.2, one may suppose that Dunxu = x-,, since Dun permutes the 
eigenvectors as C:, permutes the weights. Then, in the normalization of 59.6, 

F o r j > l :  K x + , = x t u  if l , t u < j ,  

K x + , = - x t ,  if j G u < l ,  

r I ( A 2 m , O , * ) ,  rl(AZm-l.m.*): 

D = KD,,. 

KxO = -xO. 

R D  is spanned by ix,, T X ,  + ?x-, (1 < u < j), TX, - Tx-, ( j  G u G I), which make 
( K x , ~ )  < 0, > 0, < 0. The invariant quadratic form has the signature -1 + 
(2j - 2) - 2(1- j + 1) = 4j  - 21 - 5. 

F o r j = l :  K x + , = x t ,  if ~ G U G I ,  

KxO = -xO.  

RD is spanned by ixo, T X ,  + f x - ,  (1  G u G I ) .  Signature 21 - 1. 

t Here, and in the remainder of this section, the signs in the subscripts are used dependently. 
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Comparing dimensions, one verifies that the groups are the 1-components of 

rl (Cl, , ) ,  j < I: E,, = E = -1. Weights fw,, with vectors x+,. One may 

the full invariance groups of these forms. 

suppose that Dunxu = x-,,, Dunx-, = -xu. 

Kx, ,=x , ,  for 1 Q v ~ j ,  
Kx,,  = -x,, for j < v Q 1. 

The x,  (v > 0) form an orthogonal basis over the quaternions. The invariant 
quaternion hermitean form has the signature j - (I - j). Comparing dimensions, 
one verifies that it is the full invariance group. 

T ~ ( C ~ , ~ ) :  E,, = -1, E = 1. By 59.3 an invariant real skew form on R,,. The 
full real symplectic group. 

r3(Di , , ) , j#  1,2: E,, = E = 1. Weights fw, with vectors xi,,. One may 
suppose that Dunx, = x-,,. 

Kx+, = x*,, for 1 Q v Q j - 2,  

Kx,, = --xi,, for j - 1 Q v Q 1. 

Computations as in n2(B1,,) lead to a quadratic form with signature 
2(j- 2) - 2(1- j + 2) = -21 + 4j- 8. 

~3(Dl,l): E,, = 1, E = -1. An invariant skew hermitean quaternion form. 
Comparing dimensions shows that the form characterizes the group. 

With x,, and D,, as before, the form as indicated in Theorem 59.5 becomes 
( x , , ~ , )  = i for v < 1, ( x , , x , )  = -i. As a matter of fact, all nondegenerate skew- 
hermitean forms on quaternion n-space are equivalent under automorphisms 
of quaternion n-space. This is an elementary fact,t but it can also be derived 
from the equivalence of the linear Lie groups leaving such forms invariant. 

7r3(Dl,,,*): E,, = E = 1. A basis as in Dl,, shows 
i f j 2 3 :  K x * y = x i v  for l ~ v ~ j - 2 ,  

Kxkv = -x+, for j - l < v < f ,  

K X , ~  = -xTi; 

i f j = O :  
Kx, , ,=x+,  for 1 g v ~ l -  1, 

K x , ~  = xTI. 

RD is spanned by rx ,  + ?xu (1 Q v Q j - 2), rx,, - ~ x - , ,  ( j  - 1 Q v < I), 
i (x ,+x- , ) for j>3;  b y ~ x , + ? x - , ( l  ~ v < I ) , x , + x - , , x l - x x _ , f o r j = O .  

t J. Dieudonnk, Trans. Amer. Math. Soc. 72,383 (1952). 
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The signature of the quadratic form is 

f o r j > 3 :  ( 2 ( j - 2 ) +  1 ) - (2 (1 - j+2 ) -  1)=4j-21-6; 

for j = 0: 21 - 2. 

Again, the quadratic form characterizes the group. 

7](E6,1): dim R = 27. Areal both with respect to C,, and C. There are, 
respectively, 1,16,10 weights of the form 7rI - 0 - p, - * - *, 7rI - 1 * p1 - * a ,  

7r1 - 2p1 - * * * . Signature of the invariant hermitean form 11 - 16 = -5. 

Tl(E6.2): dim R = 27. Areal both with respect to C,, and C. There are, 
respectively, 6,15,6 weights of the form 7r1 - 0 p2 - - - -, 7rI - 1 * p2 - - - ., 
7rI - 2 * p2 - * * .  Signature of the invariant hermitean form 12 - 15 = -3. 

7r,(E6,0,*), T1(E6,2,*): By 59.3 no invariant bilinear form. 

~ 2 ( E 7 , 0 ) ,  ~ 2 ( E 7 , 1 ) :  dim R = 56. E,, = E = -1. There are quaternion hermi- 
tean forms. The opposite of a weight is a weight; all are simple. As a quaternion 
orthogonal basis one may choose vectors of weights in which p2 has a positive 
coefficient. For 

7r2(E7,J the signature equals the quaternion dimension 28. For 

~ 2 ( E 7 , 1 )  there are 11,16,1 weights of the form 7 r 2 - 0 . p 1 -  . . a ,  

7rz - 1 - p I ,  * -, 7r2 - 2p1 - - * * in which pI has a positive coefficient. The 
signature of the form is -4. 

m2(E7,2), ~ z ( E 7 , 3 ) :  dim R = 56. E,, = -1, E = 1. Skew real bilinear forms. 

7rl(E8,,): E,, = E = 1. The invariant quadratic form is the Killing form, 
since the representation is adjoint; for signatures, see 52.6. 

T ~ ~ ( F ~ , ~ ) ,  ~l(F4.2): dim R = 26. E,, = E = 1. The invariant quadratic form 
has the signature 1 - 8 + 8 - 8 + 1 = -6,5 - 14 + 7 = -2. (The weight 0 has 
the multiplicity 2.) 

T ~ ( G ~ , ~ ) :  dim R = 7. E,, = E = 1. The invariant quadratic form has the 
signature 2 - 3 + 2 = 1. 

59.8. Real Invariants in the Areal Case Iff  is not virtually real with 
respect to C, one may still ask for invariants under mf(GC). However, this 
opens no new views. 

wfis obtained fromfby waiving the complex structure of R. This procedure 
transforms a bilinear or sesquilinearf(Gc)-invariant form into a bilinear one, 
invariant under rof(Gc); by separating the real and imaginary parts, one 
obtains real invariant forms. 
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Conversely, if (. . ., , . .) is a real bilinear invariant of mf(G,), then 
y rx,,.i(ix, y), y rx,yi(x,iy), y rx,,.i(ix,iy) are also invariant, and so is 

Y rx.,.-4x, Y )  k Ox, iy) - i(ix, Y )  k i(x, iv)). 

It is bilinear for the lower signs and sesquilinear for the upper. It is impossible 
for both to vanish unless (. . ., . . .) does. 

Theorem All bilinear invariants of mf(GC) in the not virtually real case can 
be obtained from bilinear and sesquilinear invariants off(G,) by waiving. 

In the antireal case, however, they exist only iffis not areal with respect to 
C,,, and then all real bilinear invariants are assembled in the quaternion 
sesquilinear form 59.5.2. 

59.9. Historical Note Though many particular results were obtained by 
E. Cartan, the general methods and theorems of this section are new. 

60. MINIMALLY COMPACT DRESSING 

G E Alg Lie Com SS in ordered C-third dressing on H; thus CH = H = 

C,, H. For notational convenience G is assumed to be the infinitesimal algebra 
of a linear Lie group G. Sometimes C-third dressing occurs on a trunk H'; 
then C:, plays the role of C,,, and he is replaced by he'. 

60.1 -8. he- Notions 

60.1. Definition A maximal abelian subset of GCWhe is called a he-trunk. 
The notion depends on the choice of C,,. 
Since the elements of GC,he = iG,,,, are ad-pure, any he-trunk is ad-pure, 

hence contained in a trunk. 

Proposition Let A be a he-trunk. 

(1) The centralizer in G, of A is contained in A + G,,,,,. 
(2) Any maximal abelian subset D between A and Gc is a trunk of G,. 
(3) Any abelian subspace between A and Gc has the form A + B with 

(4) If there is a he-trunk in H, it is 
(5) Every C-invariant trunk containing A is C,,-invariant. 
(6) Two C-invariant trunks containing A are conjugate by means of some 

B c Gc,un- 

u E Gc,,, centralizing A. 
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Proof 

(1) Splitting a E Gc in a = s + u with s E GC,he, u E G,,,, (see 51.5.8-9), one 
gets 

GC,un, GC.he, 

and if [a ,A]  = (0) 
[s + u,A]  = (0); 

hence, 
[s, A ]  = [u, A ]  = (0). 

The maximality of A causes s E A, which proves (1). 
(2) Because of (l), D =  A + B with some B c Gc,,,; A and Bare ad-pure, and 

so are D and its complex extension DCom in G; D,,, is C-invariant. If x 
centralizes DCom, then Cx, +(x + Cx), and (1/2i)(x - Cx) do likewise. The 
latter are C-invariant, and because of the maximality of D they belong to D. 
Thus x E DCom, which proves ad-pure Dcom to be a trunk of C and D to be a 
trunk of Gc. 

(3) Follows from (1). 
(4) Follows from (l), if A is assumed in H. 
(5) Follows from (3). 
(6) According to (l), the centralizer of A in Gc takes the form A + 2 with 

Z c  GCmun. Z generates a compact group, namely, the 1-component of the 
centralizer of A in Gc,,,. Therefore by 35.7, 2 = 2, + Z ,  directl-y, where 2, is 
central and 2, is semisimple. 2, generates compact 2,. 

Let Hi (i= 1,2) be two C-invariant trunks of G around A. Since they 
centralize A, their C-restrictions Hi,c are in A + 2; hence they are centralized 
by 2, which is in the center of A + 2. Being trunks they must contain 2,. 
Therefore 

Hi, ,  = A + 2, + Hi,c n 2,. 

The (Hi n Z1),,, are still ad-pure with respect to semisimple Z,,Com. Clearly, 
they are maximal in this respect and consequently are trunks of 2, as are 
the Hi n 2, of 2,. Since ZI generates a compact semisimple group Z,, accord- 
ing to the conjugacy theorem they are conjugate by means of some u €2,. 
So are the HiPC and finally the Hi.  

60.2. Definition An abelian subset A of Gc is called i-compact if exp iA is 
relatively compact. 

Clearly, a he-trunk is i-compact, and because of 60.1 it is even maximally so. 
The converse is also valid : 
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Proposition A is maximal i-compact if and only if A is a he'-trunk for a 
suitable unitary semimorphism C:,-in fact, for any C-third dressing semi- 
morphism on any C-invariant trunk containing A .  

Proof By 35.9 compact exp iA, hence iA, is contained in a trunk. Thus A is 
centralized by some regular x E G and also by Cx and T X  + TCx, which is 
C-invariant and, for suitable T, regular. A is contained in its trunk, which again 
is C-invariant. 

Let H' be any C-invariant trunk around A .  With respect to this H' a C-third- 
dressing C;, is chosen. It serves to define Ghe,.  Since A c Ghe,, there is a he'- 
trunk B 3 A .  Now B is i-compact, and A is maximally so. Thus A = Band A is 
itself a he'-trunk. 

60.6. Definition a E GC,he is called he-regular if rank f for x E GC,he takes 
its maximum at a, equivalently, if rank 3 is constant in some neighborhood of a 
within GC,he. 

Proposition Every element of GC,he is in some he-trunk. A he-regular 
element of GC,he is in one he-trunk only. 

Proof The first assertion is obvious. Let h be he-regular and A its centralizer 
within GC,he. Then %A = (0) and 6 A  c A for a E A .  Now he-regularity of h 
prevents 61A for a in A near h from having nonvanishing eigenvalues. On the 
other hand, because of A c GC,he, any a E A is ad-pure. Hence 6 A  = (0) for 
a E A .  This shows that A is a he-trunk, and the only one containing h. 

Remark If A is a he-trunk and rank (x E A )  takes its maximum at a, then 
the centralizer B of a in GC,he coincides with A .  

Indeed, A c B, and by the previous argument, B centralizes a neighborhood 
of a in A ,  whence A itself, which however was chosen maximal abelian in 
GC.he* 

In 60.12 even the regularity of such an a will be proved. 

60.7. Definition u E W* is called a he-nil-rootform if a(Hc,J = (0). 

Proposition a E W* is a he-nil-rootform iff a = CC,,a. 

Proof If a is a he-nil-rootform, then for all h E Hhe 

(( 1 - CC,,) .)(a) = a(( 1 - CC,,) R) = a(( 1 + C )  1) = 0, 

and conversely. Since (1 - CC,,) a is linear, vanishing on Hhe and on H imply 
each other. 
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60.8. Proposi t ion I f  h E H C , h e  is he-regular, then a(h) # 0 for every 
a E W* that is not a he-nil-rootform. 

Indeed, if h is regular, then rank 1 is also constant in a neighborhood of h 
within HC,he. 

The converse is true if HC.he is a he-trunk. It will be verified in the course of 
the proof of 60.10. Meanwhile, h E is called he-semiregular if a(h) # 0 
for all non-he-nil-rootforms a. 

60.9. Criterion o n  Trunks Containing a he-Trunk If a is a he-nil- 
rootform, then CCune, = *e,, since (CC,,J2 = 1 .  

Proposit ion H (= CH = C,,H) contains a he-trunk iff CCunea = e,  for 
every he-nil-rootform a. 

Proof H containing a he-trunk means that 

mod H C , h e  the sum of expressions 

is maximal abelian in 
GC,he ,  thus that U E G C , h e  and [ U , H c , h , ]  = (0) implies U E H C , h e .  Any U E C C , h e  iS 

60.9.1 (1 - CCun)(Taea + ~ae-or) 

with T,  # 0. For h E HC,he, [h,a] becomes a sum of expressions 

60.9.2 a(h) (1 + CC,,) (7, e,  - 5, e-,). 

Thus H C , h e  is a he-trunk iff the vanishing of 60.9.2 implies that of 60.9.1. This 
implication can be broken into the conjunction of two implications: 

a a he-nil-rootform --f (1 - CC,,)(T, e, + T,e-,) = 0, 

and 
[a non-he-nil-rootform A (1 + ~C,, , ) (T,  e, - C, e-,) = 01 --f 

( I  - CCun)(7, e, + Q, e-,) = 0. 

Now the second implication is valid anyhow, since if the antecedens were true, 
then by linear combination (1 + CCun)TOea = 0, hence CC,,a = a which by 
60.7 contradicts the first part of the antecedens. 

Therefore H being a he-trunk is equivalent to.the validity of the first implic- 
ation for all T ,  # 0, which is just the condition to be proved. 

60.1 0. G,,,,-Conjugacy of Trunks Containing a he-Trunk Clearly the 
property that H contains a he-trunk is G,-,,-invariant. The converse is also 
true : 

Proposit ion If H contains a he-trunk, then every C-invariant trunk con- 
taining a he-trunk is a G,,,,-conjugate of If. 
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Proof By 60.1.4 HC,he can be assumed to be a he-trunk. By 60.1.6 the C- 
invariant trunks around HC,he are Gc,,,-conjugate. Therefore it suffices to 
prove that #Hc,he runs through all he-trunks if u runs through Gc,,,. 

If for a non-he-nil-rootform CL one applies d with 
a = exp( I + CC,,) (7, e, - TK e-,I E G c , u n  

to b E HCahe, then one obtains 
d b = h -  a(b)(l -CC,,)(~,e,+?,e-,)+ 

Suppose that bo E H C , h e  is he-semiregular. Then a(ho) # 0 and according to 
60.9.1 the 

span GC,he  mod & h e .  This means that the &/I cover an b,-neighborhood in 
CC,he  if b runs through an b,-neighborhood in & h e  and a runs through a 
l-neighborhood in Gc.,,. Hence rank f (which is a Gc,,,-invariant) is constant 
in a neighborhood of Lo within GC,he ,  which shows that Lo is he-regular and 
confirms the announced converse of Proposition 60.8. 

- ccUll)(7K eK + 'a 

y= U a ~ G ~ . U a  dHC.he 

is closed in (&,he because of the compactness of Gc,,,. Every he-regular point 
of &,he, and therefore any Gc,,,-conjugate of such a point, was proved to be an 
interior point of Y with respect to GC,he. Therefore the boundary points of Y 
are images of such b E in which at least one non-he-nil-rootform vanishes. 
An argument as in 31.9 shows that the boundary of Yhas codimension > 3. So it 
does not decompose GC,he,  and Y coincides with GC,he. 

This proves that every element of G C , h e  is a G,,,,-conjugate of an element of 
H C , h e .  Now let A be an arbitrary he-trunk and 6 E A such that rank .f for 
x E A will reach its maximum a t  6. For some u E G,,,, it happens that #-I6 E 

&,he. Now #-'A is again a he-trunk and, according to Remark 60.6, the 
centralizer of #-'b in Hence &.he c t i - ' A ,  thus H C , h e  = #-'A,  thus 
A = n f f c , h e .  

60.1 3. Gc-Conjugacy of Trunks Containing a Maximal i-Compact 
Subset Clearly, the property of Hcontaining a maximal i-compact subset is 
&--invariant. The converse is also true: 

Proposition cc acts transitively on the set of C-invariant trunks of Cc 
containing a maximal i-compact subset. 

Proof Let H, H' be such trunks. C,, is chosen as a C-third dressing unitary 
semimorphism with respect to H. Then by 60.2 Hcontains a he-trunk. By 51.7 
there is a Gc-conjugate H" of H' such that ZH= H" for some u E Gun. H" is 
still C-, and C,,-invariant and contains a maximal i-compact subset. By 
Proposition 33.13 C,, counts as a C-third dressing unitary semimorphism for 
H"; hence by 60.2 H" also contains a he-trunk. Therefore 60.10 can be applied 
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to the effect that H,H" are G,,,,-conjugate. This proves that H,H' are G,- 
conjugate. 

60.14. Real Rank 

Definition The dimension of a maximal i-compact subset of C,  is called 
the real rank I,,, or I ' ,  of C,. 

By 60.1 and 60.13 it does not depend on the choice of the set. 
Evidently : 

Proposition The real rank of Gun is 0, that of G,, equals the rank 1 of C.  

60.1 5. A Procedure For a trunk H = CH = C,, H (CC,, = C,, C )  that 
does not contain a maximal i-compact subset of C, the condition of 
Proposition 60.9 is not fulfilled. Therefore for some he-nil-rootform a 

CC,, e, = -ea, 
hence, 

CC,, e-, = -e-,, because of CC,, ha = ha. 

On the evidence of such an a there is a 

Procedure of changing H into a trunk H' = CH' = C,,H' such that 
H n H' is the kernel of u (which contains HC,he) and ih, E H,,,, is replaced by 
some h' E GC,he .  

By this step the dimension of the i-compact part HC,he of H,  is raised and 
that of the torus part is lowered by one. 

U ,  = exp ~ ( 0 ,  + 0-,), T = 377(2(cr, a))-'I2i, 

leaves the kernel of a invariant. According to 33.1, 

where 
u,2 = s,, 

S, u = -a, S, ha = -ha, S,  e, = e-,, S, e-, = e,. 

Moreover, 
Cun u a  Gin' = ua, 

cu, c-' = u,' = u, s;', 
since Cunea = -e-, and T is imaginary; 

since Ce, = e-,; thus 

C u ,  ha = U, S,' Ch, = U, h,, 

since Ch, = h-,. On the other hand, 

C,, U, ha = -U, ha. 
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Therefore 
uu hm GC.he 

Moreover, since U ,  leaves the kernel of a invariant, H ’  = U ,  H is a new trunk 
with the required properties. 

60.16-17. Minimally Compact Trunks 

60.16 The time has come to recall the definition of minimally compact 
trunk (51.8). The procedure in  60.15 shows that if a C-invariant trunk does 
not contain a maximal i-compact subset of C,, its torus part can be diminished 
so it was not minimally compact. If it does contain such a subset, the dimen- 
sion of its torus is 1 - l,,, which is a lower bound for any torus in G,, thus the 
trunk is minimally compact. 

60.1 7. Some of the preceding results are summarized. 

Proposition The trunks containing a maximal i-compact trunk are just the 
minimally compact trunks. 

Conjugacy Theorem of Minimally Compact Trunks The C-mini- 
mally compact trunks are G,-conjugate. 

Definition A C-thjrd dressing on minimally compact H = C H  is called a 
minimally compact dressing. 

60.18. Real Ordered Dressing A special ordered dressing is adapted to 
the study of nonmaximally compact trunks. 

Definition An ordered dressing is called real (with respect to C) if 

60.1 8.1 a E  W + A  C*a<O+C*a=-a.  

Rememberthat C*actsas+l on HZ,,,andas-I oniHZ,,,.Itisnotrequired 
that C and C,, commute, though their restrictions to the trunk H = C H  = 

C,, H necessarily do. 
The existence of a real order is seen as follows. Take ho E H,, such that 

a(hJ # 0 for all a E W*, and for every a E W*\iH&,, 

Iadho)l > Ia*(ho)l 

if u = u I  + u2, aI E HZ,he, a2 E iH:,,,,; now take the minimal partial order 
contained in the partial order as constructed in Proposition 25.2.2. 
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Proposition In a real order CC,, acts on (suitably numbered) Wt+ as 
follows : 

CCun p j  = p j  for j =  1,. . ., k, 
CCunpj=-pj  mod * * pk for j = k + l ,  ..., m, 
CC,,p, = - p f + n , + l - j  mod p l ,  . . ., p k  for j =  m + 1, . . ., I ;  

or, eliminating C,,, 

c *  p . = -p . for j =  1, . . ., k, 
c* p j  = p j  mod p l ,  . . ., p k  for j =  k + 1, . . ., m, 
C*pj=pft , t l - jmodp, ,  ..., pk for j = m +  1, ..., 1. 

Proof CC,, behaves as -1 on HC*,he and as +1 on iH:,,,,. 
On the given order let p l ,  . . ., Pk be the primitive rootforms invariant under 

CC,, and p k + l r  ..., pi the others; CC,,p,<O by 60.18.1 for j > k .  Let N 
be the linear mapping CC,, reduced mod P I ,  .. ., p k ,  Then N 2  = 1 and all 
matrix coefficients of N on the basis p k + l ,  . . ., p i  are nonpositive integers. This 
can only happen if i n  every row and column of -N there is not more than one 
nonvanishing coefficient, which has to be 1. Consequently, -N is a permut- 
ation matrix and the matrix of CC,, on the basis W++ can be put into the form 

60.1 8.2 -; 0 -v with V = (  :. I ) .  

This proves the assertion. 

0 

1 0 

60.19. How Far Is C Determined by Its Behavior on H 

Theorem If H =  CH, then C is determined up to inner isotypy by its 
behavior on H and on the branches (in third dressing with respect to H )  
e, with C* a = -a. 

Remark For maximally compact trunks the proposition carries no new 
information. (See 51.12.) For minimally compact trunks it states that C is 
completely determined by its behavior on the trunk alone. 

Proof C, C' are taken to coincide on H and on the branches e, with C* a = 

-a; C,, has been taken with respect to H and with CC,, = C,,C. If used, 
G is supposed to be centerfree. The first step is to replace C' by inner isotypic 
C" such that C"C,,, = C,,C" is also valid. 
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Since C, C’  are the same on H, there is an h E H ,  h = exp h such that 

60.1 9.1 C’ = hc, 
N 

and because of C’* = 1 ,  hCh = 1 ; hence 

60.1 9.2 a(h + Ch) = 0 mod 27ri for a E W*. 

One tries 
C”=h0C’h, l  with ho=expho,  h 0 € H .  

To have 
C ”  c,, = c,, C“ 

means 
hOhCh,~ c,, = c,, Kohch,l 

or, equivalently, 

in other words, 

This can be satisfied by putting ho = -+h. Indeed, then 

C,,(h, h(Ch,’)) = ho h(Ch,’), 

a(ho - Cho + h) imaginary for all a E W*. 

a(h0 - Cho + h) = $a(h + Ch) 

which by 60.19.2 is even = 0 mod Ti. 
Henceforth it is supposed that 

cc,, = c,, c, C’ c,, = c,, C’ ,  

thus, 
hC,, = C,,h, C,, h = h, h E Hun. 

So 60.19.2 can be written as 

60.1 9.2’ a(h + CC,, h) = 0 mod 2r i  for a E W*. 

Now the identical behavior of C, C‘ on eOr with a = CC,,a is used. This means 
that he, = e, for such a;  thus 

a(h) = 0 mod 27ri for a = CC,, a. 

On a real order (60.18) this amounts to 

p,(h) = 0 mod 27ri for j = 1 ,  . . ., k. 
Without impairing the relation h = exp h, one may even change h such that 

60.1 9.3 p , (h )=O for j =  1,  ..., k. 
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In H,, a basisp,, . . . ,p l  is taken, correlated with that ofp, ,  . . ., pI: 

On that basis the action of CC,, is described by the transpose of the matrix 
60.18.2. Then, with imaginary coefficients cj, 

m 1 

j = k + l  m+l  
h = c C j P j +  c CjP,. 

Further, 

60.1 9.4 CC,,pj = -pj for j = k + l ,  ..., m, 
for j =  m + 1, . . ., 1, CC.,pj = - P ~ + ~ + , - ~  

and using 60.19.2' 

60.1 9.5 c j  = c ~ + ~ + , - ~  mod 27i 

withg = exp g is required. This means thatg has to fulfill 

for j = m + 1, . . ., 1. 

To prove that C' and C are isotypic, a g E Hun such that g'CC,,g'-' = hCC,, 

60.1 9.6 a(g - CC,,g) = a(h) mod 2xi for a E W*. 
m & ( I - m )  

g = +  C cjPj+ C C j P j  
j = k + l  j = m + l  

satisfies this, since (60.19.4) 
m 1(I-mJ 

-CCung=3 C cjPj+ C cjPt+m+l-j 
j = k + l  j = m + l  

substituted into 60.19.6, if 60.19.5 is taken into account, verifies 60.19.6. 

60.21, A Procedure The contents of the present section is a procedure for 
changing an arbitrary trunk H in C-third dressing into a minimally compact 
trunk. 

C,, is defined on H ,  H = CH = C,, H ,  CC,, = C,, C. 
Let B be the subset of W* defined by 

a E B t) CC,, ea = -ea. 

Then for u E B, also CC,, a = a, CCune-a = -e-,. 
Let B' be a maximal subset of B such that 
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When using the Ua and Sa from 60.15, one notes that the Ua with a E B' com- 
mute with each other because of 60.21.1. One defines 

u = n u a ,  UEB' s=nsa .  a 

Then from 60.15 

c,, uc;,' = u, CUC-' = u-' = us-' 
For the actual computation it is more convenient to change the semi- 

morphism up to isotypy than to change the trunk. Thus 

60.21.2 

is an isotypic semimorphism with still C'H = Hand  C' C,, = C,, C'. 

C' = u-' cu = s-' c 

Since Sa = -a, Sea = e-a for a E B', one gets 

C' C,, u = -a, C' C,, ea = -e-a. 

Under some additional assumptions H will come out as a minimally com- 

To prove this one must consider any 
pact trunk with respect to C' (as will UH with respect to C). 

Y E  w*, y=C'C,,y 

and ascertain that 

60.21.3 

which will show the minimal compactness of H, thanks to 60.9. 
C' C,, e,, = e,,, 

By 60.21.2 

thus, 

CC,, maps the first member into its opposite while leaving the second invariant; 
hence 

60.21.4 

Since the members of B' are mutually orthogonal and consequently linearly 
independent, it follows from the last equation that 

(Y,B') = (0). 
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If Wpossesses no ladder of length 2 except those passing through 0, one may 
continue with the conclusion that 

60.21.5 a E B' -+ [e,, e?,] = 0, 

hence 

60.21.6 Se, = e,. 

60.21.4-5, together with the maximality of B', show that 

CC,, e, = e, 

from which by 60.21.2 and 60.21.6 

C'Cuney = S-' CC,,e, = S-le,, = e,. 

If, however, Wdoes possess nontrivial ladders of length 2, it can happen that 

[ear, e*,l f 0 though (y ,  a) = 0, 

namely, if a is the midpoint of its y-ladder. Nevertheless, the former con- 
clusion holds good as long as 

60.21.7 for y E W*, (y,  B') = {0}, the midpoint of no y-ladder belongs to 
B'. 

60.22-23. Toward Computing Minimally Compact Trunks 

60.22 What matters according to 60.19, is to know the behavior of C' as ob- 
tained in 60.21 on H.H: splits under C' C,,, into HZ,+ and H:,-, which belong 
to the eigenvalues +1 and -1 of C'C,,,. (Also H:,+ = iH$,,,,, H:,- = H:,,hc.) 
In the subspace spanned by B', C' C,,, behaves as -CC,,, in its orthoplement as 
CC,,,. If maximally compact C-dressing was the point of departure, then on H 
the splitting of Hst under CC,, is into the +I-eigenspace (1 + CC,,,)H,, 
and the -1-eigenspace (1 - CC,,,)H,, (for inner types = 0); B belongs to 
(1 + CC,,,)H:, as does B', whence: 

Proposition If H is a maximally compact trunk with respect to C, and 
isotypic C' has arisen by the method in 60.21 such that H is minimally 
compact with respect to C', then, under C-third dressing and with the notation 
of 60.21, the (-1)-eigenspace of C'C,,, on H: is spanned by B' and 
(1 - CC,,,) H:, which are linearly independent. Its dimension is the real rank of 
Gc. 

60.23 The procedure of 60.21 will actually be performed on all types 
of G E Alg Lie Rea SSS, starting from the classification dressing of Sections 



332 51-62. REALITY IN LIE GROUPS AND ALGEBRAS 

52-53. Since, according to 60.19, it is enough to know C'C,, in H:, 
a basis of the (-1)-eigenspace of C'C,, is indicated. Twin and compact types 
may be disregarded. 

Basis of the (-1)-Eigenspace of CC,, in H* under Minimally Com- 
pact Dressing 

(See a somewhat different form in Section 75.) 

AIJ, j <  t(l+ 1): pj ,  pj-1 +p,  +p,+1,. . ., P I +  * * - +pj + * * * +p2,-1, 

Or, otherwise: o, - w ~ + ~ ,  w,-~ - w,+~,  ..., w1 - w2,. 
Real rank : j .  

B1,j, 1 < j <  #l+ 1: p j , p J - l  + p j + p j t l , .  . .,p2+ * + p j +  . . . +p2j-2, 
pj +2p,t 1 + * * . + + 2 ~ 1 ,  pj- 1 + p, + pj+l+ 2pj+2 + * * * + 2 ~ 1 ,  - * * 9 

2p2,-1 for 1 #  2 j -  2, 
for I =  2 j -  2. ( 2 P I  

P2 + * * * + P2,-2 + 
Or, otherwise: w,-~ & wJ, wj-2 f o,+~ ,  .. ., w I  f w2j-2.  
Note that no intermediate rootforms show up. 
Real rank: 2 ( j  - 1). 

Bl, j , j>-31+1: f I , P I - l + p j + p i + l , . . . , P 2 1 - 1 +  + p j +  * * a  +pI,pzj- t - l+ 
' * + p1 + pt ,  pj + 2pj+1 + * * ' +2p, +2p1, * .., p2j-l+ * * * +p1+2p1. 

Or, otherwise: wj - l  * w , , ~ , - ~ i w ~ + ~ ,  ..., w2J-I-I f wl,w2j-l-2.Thereisone 
intermediate rootform, p2j- l+l  + . * * + p I ,  namely, in the y-ladders with 
y = k(pk + * * * + p1 + p l ) ( k  > 2 j  - 1 + 1); however, this y is orthogonal neither 

for k > j .  

B l , l  : pl  or, otherwise, wI.  

topk+ *"+&j-k+2&j-k+l+ * ' *  f 2 p ~ f O r k ~ j n O r t o p z j - l f  " ' + p l + 2 p l  

Real rank: 21 - 2 j  + 3. 

Real rank: 1 .  

C l , j , j < i l :  p j , p ~ - l + p j + p j + l ,  . . . , P I +  * * ' + p j +  * + * + p 2 j - l ( 2 J - I < l -  I ) ,  
respectively, 2pl + - * * -t 2p2j-l + pl (2 j  - 1 = 1 - 1). 

Or, otherwise: o, - w,+~, . . ,, w I  - wz,. 
No intermediate rootforms show up. 
Real rank:j. 

Or, otherwise: 2w,, . .., 2w,. 
No intermediate rootforms show up. 
Real rank: I .  

%: p1, 2 P l - l  + PI, 2 p  1-2 + 2p1-, + pi, .*, 2 p ,  + * . * + 2p1-1 + pi.  

Dl, j ,  3 < j < t l + 2 :  pj,pj-l + p j + p j + l ,  ..., p3 + . . . +pZj-3,pj + 2pjtl + . . . + 
2pl f p1 + p2, . *, p3 f ' * ' + p2j-3 + 2p2j-2 + ' ' ' + 2p1 $- + p2. 

Or, otherwise: oj-2 k oj- l ,  
Real rank: 2 j  - 4. 

f w,, ..., w 1  f w2j-4.  
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‘,,I : PI’ PI +p2 +2pl + p l - l ,  PI +p2 +2pl + 2pl-2 + p 1 - 3 9  

P I  + p2 + 2pl+ * * * + 2p4 + p3 

PI + p2 + 2pl+ - * . + 2p5 + p4 

for I even, 

for I odd. 

Or, otherwise: w l - ,  - w l ,  w , - ~  + wl-2, . ... 
Real rank: [+f]. 
The notation of rootforms in the exceptional types indicates the coefficient 

of a primitive rootform at its place in the graph. 

E 6 . l :  

Real rank: 2. 

E 6 , 2  : 

Real rank: 4. 

E7.I : 

Real rank: 4. 

EL2 : 

Real rank: 3. 

E7.3 : 

Real rank: 7. 

E8, I 

Real rank: 4. 

El7,*: 

0 1 
00001 ’ 01221 * 

1 1 1 1 
00000’ 01210’ 11211’ 12221‘ 

0 1 1 2 
OOOOO1’ 001221 ’ 122221 ’ 123421 * 

0 1 2 
100000 ’ 1222 10 ’ 123432 ‘ 

1 1 1 1 
o m o ’  001210’ 011211’ 112211’ 

1 1 1 
11 1221 ’ 122210’ 012221 * 

0 1 2 
1000000’ 1222210’ 1223432’ 

3 
1245642 

0 1 1 
0000001 ’ 0001221 ’ 0122221 ’ 

1 2 1 
1122321 ’ 1123321 ’ 1223321 ’ 

2 2 
1222321 ’ 0123421 

Real rank: 8. 
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‘4,l: 00 =. 01. 

No intermediate one. 
Real rank: 1. 

‘4J : 10 *OO, 12 *20, 12 *22, 12 *42. 

No intermediate one. 
Real rank: 4. 

G2.2: 1 3 0 ,  1 3 2 -  

At,o,*, /odd: pt -pl+t-[ ( i=  L 2 ,  ...,%I- 1)). 

Real rank: 2. 

Or, otherwise: wi + wt+2-1 (i = 1,2, ...,+( 1 - 1)). 
Real rank: +(1- 1). 

At,o.*, I =  2m: 
Pm+2, . * *, PI + * * * + P2m. 

w1- W [ .  

pt - PZm+l-t ( i  = 192, * a . 9  m>, Pm + pm+1, Pm-1 + Pm + pm+l  + 

Or, otherwise: w1 + w ~ ~ + ~ - ~  ( i  = 1, 2, . . ., m), w, - 

Real rank: 1. 

Or, otherwise: oi - w2m+l-t ( i  = 1,2, ..., m - l), w, - am+[, 

Real rank: 2m - 1. 

- . . ., 

A z m - l , m , * :  Pi-p2mn-r (i=1,2, **-,m- 11, pm, pm-1 +Pm +Pm+l, * s - 3  PI +... + Pt. 
- 

. . ., w1 - w1. 

D1,0,*: P I  - P2. 
Or, otherwise: wl .  
Real rank: 1. 

Dt.,.*, 3 G j  G 3r + 2: PI, PI-1 + PJ + P,+I, * - - 7  p3 + * + P2,-3, P, + +,+I + 
* * ‘ +2pt +PI +p2, * * * ?  p3 + * * ’ +pZ,-3 +2p2,-2 + * ’ ’  +2pl +PI + p2, PI -pZ. 

Or, otherwise: w , - ~  f w , - ~ ,  
Real rank: 2 j  - 3. 

Real rank: 2. 

f w,, .. ., w I  f w2j-4, w I .  

Eb.O.*:  

E6*2. * :  

PI - P39 P4 - Ps. 

1 1 1 1 
00000’ 01210’ 1121 1 ’ 12221 ’ - p3i p4 - ps. 

Real rank: 6. 

60.24. Historical Note Minimally compact trunks for the different real 
types were found by E. Cartan [Ann. Ecole Norm. 44, 345-467 (1927) = 

G?%ures I 2, 867-9891. He also stated their conjugacy. The criterion of 60.9 
seems to have been formulated first by H. Freudenthal, though it was prepared 
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by investigations to be dealt with in the next section. The theorem in 60.19 was 
proved by H. de Vries. The procedure of constructing minimally compact 
trunks (60.21) is possibly the same as that by which E. Cartan obtained his 
minimally compact trunks. 

61. REAL SEMISIMPLE LINEAR LIE GROUPS AS PRODUCTS 
OF MAXIMAL COMPACT AND SOLVABLE GROUPS 

61 .l. Theorem G E Gru Lie Lin Com SS; C is an involutory semi- 
morphism, C,, is a unitary one, and CC,, = C,,C. Then there is a closed 
solvable Lie subgroup X of Gc such that every g E Gc splits uniquely as g = ux 
with u E Gcnun, x E X .  

61.2 The splitting is first performed on the infinitesimal algebras. 
The trunk H of G is chosen minimally compact, H = CH = C,,H, in real 

order; this means that if a E W,u > 0, CC,,a # a, then CC,,a < 0. 
Let E+,E- be the linear spaces spanned by the e, with a # CCuna, and 

a > 0, respectively, a < 0; in other words by the e, with a > 0 and CC,, a < 0, 
respectively, with a < 0 and CCuna > 0. Then 

CC,, E+ = E-.  

Put 
E i = ( l  + C ) E + ,  E ; = ( 1  + C ) E - .  

Then CE; = E l ,  CE;  = E l ;  hence 

61.2.1 C,, E $  = E,. 

By means of CC,,( 1 + C,,) (1 + C )  = ( 1  + Gun) (1 + C) one shows the element- 
wise invariance of (1 + C,,) E:  under CC,,, hence under C and C,,. Therefore 

(1 + cun>E,+ c G c . u n ,  

and by 61.2.1 

61.2.2 E ;  = (1 + C,,) E: + EZ = G,,,, + E:. 

Furthermore, 

because the e, with a = CC,, a vanish under application of (1 - C,,) (1 + C ) .  

GC.he = (1 - Cun)(l + C ) ( E +  + E -  + H )  

GC.hc  = (1 - Cun)(E: + E ,  + HC) 
by 61.2.1 

E: E ;  + &.he, 
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by 61.2.2 
C G c , u n  + E &  + H ~ , h c *  

Now put 
X =  EZ + H C , h e .  

Then Xis a solvable Lie algebra sub Gc, and 

Gc = GC.," + Gc.he = GC,," + x = Gc, 

hence, 

No element # 0 of X is CC,,-invariant; hence, 

Gc = Gc,,, + X. 

Gc,un n X =  (01, 

which proves the splitting for algebras. 

61.3 The argument is extended to the groups by means of a general pro- 
position : 

Proposition Suppose that G E Gru Top Con, A compact sub G, Bconnected 
sub G, U,, UB 1-neighborhoods in A,  respectively, B such that 1 is an interior 
point of U, UB . Then AB = G and GIB is compact. 

Proof The compactness of A guarantees the existence of a I-neighborhood 
V, in B such that 

u-' V B a c  U, UB for all Q E A .  

Then 

and so on. The connected group B is generated by Vs; hence 

V B  A C A UA U, C AB, V B  V B  A C V B  A B  C AB, 

BA c AB.  

Now 
A(AB)  = AB, 

(AB)(AB)  c AB, 

B(AB)  = (BA) B C AB,  

(AB)-' = BA C AB. 

Therefore AB is an open subgroup of the connected group G, hence AB equals 
G.  

Moreover, G / B  is compact as a continuous image of compact A .  

61.4 By 61.2 Proposition 61.3 applies to G = Gc, A = Gc,,,, B generated by 
X, which is solvable. The splitting is unique, since ux = 1 (u E Gc,,,, x E X) 
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implies that on a suitable basis x is triangular as well as unitary, thus diagonal, 
whereas its eigenvalues are the exponentials of those of an element of 
thus positive, whence x = I .  

and that X i s  closed in Gc. (See 4.13.) 
It follows from 18.1.5 that exp is in fact a homeomorphism of X onto X 

61.5. Historical Note The preceding theorem is not found in the places 
to which it is usually ascribed. It probably originated in a paper by K.  
Iwasawa, Ann. Math. 50, 507-558 (1949) (Lemma 3.1 I ) .  

62. THE FUNDAMENTAL GROUPS OF THE REAL TYPES 

62.1 Before being used in the computation of the fundamental groups of real 
semisimple groups, the terminology on the operations with fundamental 
groups of compact groups has to be slightly extended. 

Consider a G E Alg Lie Com (dim G < m),  

G = G“’ + G‘2’, a direct sum, 

where G“’ is semisimple and C‘2’ is the center of G. In G(2’ real subspaces 
Ci:’ and Cli) = iC6:’ are marked such that after waiving in G‘2’ 

G ‘ 2 ’ ~  G‘2’ + G‘2’ un, a direct sum. CI 

Furthermore, it is agreed that 

7 H L:’ = G “,‘ . H‘2’ = (-3‘2’ H6;’ ~ (-3‘2’ * I  3 

If H ( ’ )  is a trunk of G “ ) ,  then H = H “ )  + H ( 2 )  is a trunk of G. For a unitary 
semimorphism C,, of C “ ) ,  one defines 

G,, = G::) + Ct’n’, H un = H “ ’  un + H‘2’ u n ,  H,, = H::’ + H y ,  

As noted in 41.1, the notion of weight with respect to the trunk H makes 
good sense for a linear representation f of G as long as G‘2’ is conducibly 
represented by .f. 

Only such linear representations .f of G are admitted such that the group 
generated by ,f(G,,n) is compact. Then the group generated by f(Cl’,’) is the 
I-component of the center of that generated by f(C,,), thus compact; hence 
G ‘ 2 )  is surely conducibly represented. The restriction of a weight h o f f t o  
H ( 2 ’  is even a linear representation of G t 2 ) ;  exp maps the addition group of 
H!,:,) homeomorphically with a compact image. So A(2’ is imaginary-valued 
on Hit) and real-valued on Hi:’ .  Any real-valued linear function on HI:’ 
can be obtained this way by starting with a suitablef. 

In  46.3 A = Hi*,g was defined as the addition group of integral elements of 
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H;, that is, of possible weights of linear representations of a semisimple com- 
plex Lie algebra. It is now called A(C("). 

The foregoing leads to the following definition : 

Definition A(G(z)) is the addition group of linear functions of H C 2 )  that are 
real-valued on H::).  Furthermore 

A(G) = A(G(')) + A(G(2)). 

(More correctly, the G%estriction of an element of A(G) is in A(G(J)).) 
Again Af(G)  means the addition group generated by the weights off. 

The fundamental group of the group generated byf(G,,) need no longer be 
finite, though it is still finitely generated and thus a direct sum of cyclic groups. 
The dual (46.2) of an infinite cyclic group is isomorphic to the addition group of 
imaginary numbers mod 27ri. Its isomorphism type is denoted by Z,. The dual of 
the fundamental group is a direct sum of groups Z, (rn = 0, 1,2, . . .). 

One can easily verify an extension of Theorem 46.5.3: 

Theorem The dual of the fundamental group of the group generated by 
f(G,,,) is isomorphic with A(G) mod Af(G). 

The duality takes the same sense as in Theorems 46.3 and 46.5.3. 

62.2 Gc E Alg Lie Rea SS; G is supposed to be the adjoint of a Lie algebra 
isomorphic with G, thus certainly Gc is centerfree. 

Problem Compute the fundamental group of Gc. 

62.3. Proposition The fundamental group of Gc is the same as that of 
Gc,un* 

Proof The proof follows from 51.5.10 and the fact that GC,hc is homeomorphic 
with the vector space GC,hc. 

62.4 Gc,,, need not be semisimple; according to the classification, it might 
have a nondiscrete center. For this reason the terminology for the computation 
of the fundamental group has been extended in 62.1. 

The notions of 62.1 are now applied to 

GC,un,Com = G,,,, + iGC,,,, instead of G. 

Gc,,, is faithfully represented as a subgroup of the adjoint of Gc because Gc is 
centerfree. Therefore the role off will be played by 

Y.EGc.."YxecCI.X. 
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62.5 To use weights, G is assumed in ordered maximally compact dressing 
with respect to C and the trunk H.  As in 51.14, 

C = LAC,,. 

In addition to C one considers 
Co = AC,,. 

Clearly 
Gco,un.com = G,, 

which means the subalgebra of A-invariant elements. 
As a trunk of GC,un.Com and Gco,un,com one uses (1 + A)H.  Now, according to 

the definition off, the weights offare  the rootforms of G on H restricted to 
in H * .  

Then one arrives at the following: 
( 1  + A)H. As in 51.21, one rather interprets H:.un,com and Hco.un.com * 

Proposition The dual of the fundamental group of G,,,, (or G,) in the 
sense of Theorem 62.1 is isomorphic to 

4 G c , u n , c o m )  mod A 4 G c o , u n , c o m ) ,  

that is, 
4 G c , u n , , o m )  mod (1 + A)A-(G)* 

Here, of course, one again uses the fact that restriction to ( I  + A)His trans- 

I t  suffices to compute the fundamental group for simple G,. 
For the compact case it is known, in the twin case it is the same as in the 

complex case, thus as in the compact case; these cases are now disregarded. 
In 62.6-7 the fundamental group will be computed for the inner types and in 

62.8 for the outer types, according to the classification in Sections 52-53. The 
results are expressed in terms of the fundamental weights of GA. 

lated in symmetrization with respect to A. 

62.6 G E Lj ,  inner type; hence A = 1. 
The fundamental group is isomorphic to 

A(G,,un.,om) mod Am(G)* 

First the rootforms of Gc.un,com are expressed in terms of those of G. Two 
cases must be distinguished with respect to the subscript j (compare 
Section 52): 

62.6.1 
efficient. 

p j  appears in no positive rootform of CC.,n.Com with an even co- 

62.6.2 
Gc,u,,com, which is the lowest positive one with this property. 

p j  appears with an even coefficient in the rootform C cup, of 
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In the case 62.6.1 Gc,un,com has a one-dimensional direct summand; p j  
simply drops out as a rootform. In both cases a natural basis of W*(Gc,,n,com) 
is furnished by 

p; = pi for i # j ,  p; = 2 c,p, if existent, 
that is, in the case 62.6.1 there is no p;. 

In the case 62.6.1 a basis of A(Gc,,,,,,,) is thus furnished by 
..; = T i ,  

where integralcoefficients are admitted at  ni with i #jand  real coefficients at  rl. 
In the case 62.6.2 an integral basis of /1(GC,,,,,,,) is available. One can use 

the fundamental weights r; of Gc.un,com which have to satisfy (cf. 51.21) 

(n; ,pJ - (" for i # k ,  
2 T -  ( p k ~  P k )  1 for i = k .  

The T' can be expressed in the rr by 

In Table F the 7~ are given in terms of the p. To find generators of the 
fundamental group one must compute the n' mod the p. This is done for the 
different types in 62.7. 

Notation The -sign is used for congruence modp,, . . ., pl.  

Notation Z,(a) for m = 1, 2, 3, . . . indicates the type of the m-cyclic group 
with the generator a mod A-(G,); Z,(a) indicates the addition group of TU 

with real T mod 1 ; here a, but no nonintegral multiple of a, is congruent to 0. 

62.7. The Duals of the Fundamental Groups of Noncompact 
Centerfreet Simple Groups of Inner Type 

Al,j: No p;. 7; = ri ( i  # j )  with integral coefficients, T; = rrj  with real 
and vj  as generators. For 1 cj < coefficients. Since T k  - k r , ,  one can take 

1 + 1 put d= greatest common divisor of 1 + 1 andj, 

Then 
d = u j + w ( l +  1). 

dnI  = ujv1 + w(l+  1) - u r j .  

Though being centerfree is implied by simplicity, it is explicitly mentioned because Lie 
theory suggests a wider notion of simplicity, namely local simplicity. 



62. THE FUNDAMENTAL GROUPS OF THE REAL TYPES 34 1 

Put 
1’ 

$ = T I  - - 7 r j .  
d 

Then 
d9. - 0. 

Touse Q,rj as a basis onemust show that no smaller integralmultipleofikan 
be congruent with a real multiple of 7r j  in, other words, that 

62.7.1 x7r1 VI y7rj 

can be solved with integral x only by multiples of d. 

mod I +  1 :  
Comparing the coefficients of p I ,  p j ,  p j+ ,  in 62.7.1, one gets congruences 

X I  = y(1 + 1 - j ) ,  x(l - j  + 1) = y( l  - j  + I ) j ,  x(l - j )  = y( l  - j ) j .  

The last two give ?I =yjmod 1 + 1 ; if substituted in the first, this gives 
y( l+ l ) j =  y(1+ 1) mod 1+ 1, and since y j  (=x mod I +  1) is integral, y ( f +  1) = 

0 mod I + 1, hence y integral. Therefore mod I + 1, x is an integral multiple of 
j ,  thus d is a divisor of x. The result is 

Forj  = 1 this holds as well. 
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B i , 2 :  No p i .  
Comparing the coefficients of pz and p3 (for 1 = 2 those of pI and pz )  in 

T I  = f(h + p2 + 2p3 + * . * + (1 - 1) pi) 

772 = P I  + p2 + * * * + P I ,  

one verifies that 7rI is congruent with no real multiple of 7rz. 

Z2(",) + Z(7r2). 

and 

Cl,l: No pi .  
Comparing 

7rl = p1 + 2p2 + * * * + (1 - 1) pi-1 + g p i ,  

771 = PI + p2 + * * - + PI-1 + 3p1, 

and 

one notes that a multiple of 7r1 cannot be congruent with 7rI unless I is odd. 

Zo(27rI) for odd 1, Z2(7r1) + Zo(7rl) for even 1. 

D i , j ,  j >  3 :  p; =pj-l  + 2p, + * * .  + 2p1 + p1 + p2. 

7 r i . 2  = 771.2 - h j ,  

= 7rj-1 - +T,, 

7r;=ni for 3 < i < j - l ,  

n; = h j ,  

rr; =r1  - 7 r j  for i>j. 

7r1,7r2,+7r, may serve as generators; 7r j  belongs to the group generated by 
7r1,7r2 but $7r, does not. Indeed, if +rj YI u7rl + u7r2 were true for some integral 
u,u, then the coefficieni, of pI ,p2  would yield u = vmod2, whereas the 
coefficient of p 3  would require u + u = 1 mod2. The order of +7rj is 2 for 
even j ,  4 for odd j .  
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1 even : Z2(x1) + Z2(n2) + Z2(+7rj) for even j ,  

z2(x4) + z4(+xj) for oddj ,  

I odd : Z4(~1)  + Zz(+~j )  for even j ,  

for odd j .  Z,(nl) + Z2(771- h j )  

Note that 7r2 - -xl for odd 1 and x2 * xI + irj for even 1 and odd j .  

Dl,3: NO P;.  
773 = + ( P I  + P2) + P3 + P4 + . . + PI.  

For even I: x ,  + x2 -n3;  for odd I: 2n, * x 3 .  In either case xI is congruent 
with no real multiple of 7r3. 

1 even: Z2(nl) + Z0(2~3), 

1 odd : Z2(x1 - 3x3) + Zo(2x3). 

Note that x2 * -xl for odd 1. 

D1,,: No p i .  

the coefficients. 
For even I: 7r2 is congruent with no real multiple of xI as is seen by comparing 

1 even : Z2(x2) + Z0(2nl), 

1 odd : zo(47rl). 
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Generators 7rl,  47r2 of orders 3, 2. 

z6(7r, + i T 2 ) *  

Note that 7r3 - -T,. 
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E8.2  : P; = 2 P 2  + P3 + 2P4 + 2P, + 3P6 + 3p, + 4/38. 

F4.2: P i  = 2 P l  + 2 P 2  + 4P3 + 3P4, 

n; = 711 - +nz, 

n; = fn, + 0, 

n; = 773 - 7r2, 

77; = n4 - 3 r 2 .  
Z2(3772> .  

G 2 . 2  : p; = 3 ~ 1  + 2 ~ 2 ,  

X ;  = n, - 3772,  

7r; = 3 n 2  +o. 

Z2(+7r * ) .  

(Pi9 P i )  = (P29 P 2 ) .  

(PA P;)  = (PZ, ~ 2 ) .  

62.8. The Duals of the Fundamental Groups of Centerfreet 
Simple Groups of Outer Type It is a matter of convenience to write the 
symmetrized rootforms as 

The primitive rootforms of Gc,un,com are indicated by p;. The fundamental 
weights 7r’ corresponding to the p’ are those of Gco,un,com. They happen to 
coincide with the symmetrized 7rl except in A 2 m , 0 , * ,  where 

p ;  = +(Pi + 44. 

+(n, i- PX,) = 2n;; 

this is precisely the case in which not all symmetrized rootforms are rootforms 
of Gco.un.com. (See 53.1.) 

Cf. footnote in 62.7. 
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Forj # 0 one needs the fundamental weightsdcorrespondingto thep", which 
are derived from TT' by the method used in 62.6 to derive d from n. Now v, 
denotes congruent mod the p'. 

A2m-l.0,*: p; = +(pi + pzm-i). The fundamental group is the same as in C,. 

ZZ(4). 

I I A2m-l.m,*: p;=p; ( i = l ,  ..., rn-11,  P m = P m - l  +p:,. 
n t  

ri = ri ( i <  m - I), 

4 - 1  = d - 1  - MI, 
7r; = +n;. 

Now 47; = +(p' + 2p; + * * + (m - l ) ~ k - ~  + trnp;) comes up, whereas in 
C, one could do it with T; alone; in; $. n;. 

For even m : Z2(7r;) + Z2(4r;). 

For odd m: Z4(+m;). 

DL~.*: p;=pi  for i # l , 2 ,  p;=+(pI+p2) .AsinBi- l ,o .  

Z2(773 

In addition to 7; one gets +T; as a generator. Comparing the coefficients of p; 
and pi in 

7r; = $((I - 1)p; + p; + 2p; + * * * + (I- 2)p;), 

+7r; = + ( ( j -  2)p; + p; + 2p; + ' ' * + ( j  - 2)(p; + * * * +pi)), 

one verifies rr; + +r;. 
Z 2 ( 4 )  + Zl(f-7;). 
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ir; = ir; - +n;, 

62.9. The Duals of the Fundamental Groups of the Universal 
Linear Wrappings In the compact case any wrapping (being compact 
again) can be realized as a linear group (see 46.8). This is true of the twin type 
as well, but in many other real types such a linear realization need not exist. 
The linear wrappings of centerfree G, are real restrictions of the linear wrapp- 
ings of G and are the I-components of the originals of G, under the projection 
mappings. It follows that the 1-component of the original of G, in the universal 
wrapping of G is the universal linear wrapping of G,. 

The splitting of G, into connected G,,,, and simply connected GCShe is 
lifted to such a splitting of any wrapping of G,. Hence the fundamental group 
of the universal linear wrapping of G, is the same as that of the induced 
wrapping of G,,,,. The addition group generated by the weights of the 
complexification of this representation of G,,,, is that generated by the 
fundamental weights of G, symmetrized in the outer case. 

Hence by 62.1 : 

Theorem The dual of the fundamental group of the universal linear 
wrapping of G, is A(G,-,,n,co,,,) mod the group generated by the fundamental 
weights of G, symmetrized in the outer case. 

The particular cases are: 

G, compact or twin: Trivial. 
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62.10. Historical Note E. Cartan found the fundamental groups of 
centerfree semisimple Lie groups by rather casual methods [Ann. Ecole Norm. 
44, 345-467 (1927) = Q3uures I 2, 867-9901. Current folklore says that E. 
Cartan dealt with the compact case only, though the authors who claim to have 
solved the noncompact case first and others who are supporting this claim do 
not fail to quote the paper in which Cartan published his results. Since there is 
some danger that modern research will eclipse Cartan's, it is useful to add the 
warning that those modern results are partly mistaken, even on primordial 
points, whereas Cartan's are completely correct. 
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SYMMETRIC SPACES 

63. HOMOGENEOUS SPACES AND RIEMANNIAN 
MANIFOLDS-A SKETCH 

63.1-3. Homogeneous Spaces 

63.1 .l. Definition The pair ‘G,J1, in which G is a topological group and 
J a closed subgroup of G, determines the homogeneous space 

R = G/J 

that is, the left coset space ofJin G, which is acted on by G by left multiplication 
in a transitive manner. 

For any group G acting on a space R the stability group o fp  E R consists of 
the elements of C leavingp invariant. 

63.1.2 For the just-defined homogeneous space the stability group of 
xo = J is J itself; generally that of a point g, xo (gl  E G) is g,Jg;’. 

63.1.3 How doesJact on R ?  By left multiplication byj  E J ,  xJis mapped into 

jxJ = jxj-l J 

so that J acts on R as a subgroup of the group of inner automorphisms of G. 

63.1.4 It goes without saying how the homogeneous space G/Jis to be under- 
stood as a direct product of homogeneous spaces G,/J, if G, respectively, J ,  is 
the direct product of G,, respectively, 5,. 

63.1.5 The representation of G in R = G/Jis faithful iff Jcontains no normal 
subgroup # { l }  of G. Generally this will be assumed in the sequel. 

63.1.6 G I  sub G acts transitively on G/J iff GI J =  G; in other words, if 
every left coset of J intersects GI or, equivalently, if every right coset of G I  
intersects J. 

Then Gl/GI n J is one-to-one continuously mapped onto G/J by assigning 
a J  to a (GI n J )  for all a E GI.  This mapping becomes homeomorphic as soon as 
G and G I  are locally compact, second countability Hausdorff spaces such that 
4.8.4 applies. 

349 
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63.1.7 A homogeneous space G/J is called reduced if there is no G I  sub G 
acting transitively on G/J except G itself. 

63.1.8 G may have several components. Its 1-component will usually be 
denoted by Go. In the examples to be considered Go is isolated, that is, open, in 
G. Then Go/Go n J is open in GIGo n J, and if Go/Go n J is mapped into G/J by 
mapping a (Go n J) (a E Go) into aJ, then the image is open and connected, 
hence equals Go/J. Applying 63.1.6 and remembering that the cosets of Go in G 
are the components of G, one gets the following: 

R = G/J is connected iff every component of G has a nonvoid intersection 
with Jor ,  in other words, iff every left coset ofJhas a nonvoid intersection with 
GO. 

63.1.9 A homomorphism of G onto G’ which takes J into a closed subgroup 
J ’  of G’  and is locally topological on G extends to the homogeneous spaces 
GIJand G’IJ‘ as a locally topological mapping. 

On the other hand, leaving G unchanged, but replacing J by a larger, 
closed subgroup J ‘  in which J is open, induces a locally topological mapping of 
G/J  onto G’IJ’. 

These remarks may be summarized by stating that the local structure of R 
depends on the local structures of G and J only. 

63.2 In the sequel attention must be paid to groups locally isomorphic to 
linear Lie groups. Their components are Can-manifolds and their l-compon- 
ents are Can-groups (see 6.4). 

Let G ,  be such a group and x the given local isomorphism from the linear 
Lie group G to G I .  If no confusion is possible, in all local investigations 
near 1 G and GI will simply be identified. Among others, the infinitesimal 
algebra G of G will also be called infinitesimal algebra of GI.  Any a E G induces 
an automorphism in G, to be denoted by 5, since the inner automorphism 
induced by a near 1 is analytic by Theorem 1 1.4. 

63.3.1 Let G be a group locally isomorphic to a linear Lie group, J a closed 
subgroup, G, J the corresponding Lie algebras, and N a linear subspace of G 
such that 

If U is a small 0-neighborhood in N, then exp U intersects x J  for x near 1 in 
exactly one point. The mapping rpa, which assigns to XJ for x near a in G the 
only member of a-’xJ n exp U, is an analytic mapping of an a-neighborhood 
in R = G/J onto a 1-neighborhood in exp U. In the sequel R is supposed to be 
connected. Then with the rpa as local presentations of R (see 5.6), R becomes an 
analytic manifold on which G acts as an analytic (nonlinear) Lie group. 

G = J + N,  a direct sum. 
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Near xo = J ,  respectively 1, R can be identified with exp U by tpl or, for 
short, tp. 

63.3.2 The behavior o f Ja t  xo and, more particularly, in the tangent space at 
x,,, is worth studying. Of course, Jwill act in the tangent space as a linear group. 

The inner automorphisms G of G as acting on Gform a linear group acting on 
G. Take n E U. Then n is the tangent vector for T = 0 of the curve y, exp 
in exp U. N o w j ( j  E J) maps exp TII  for small T into 

jexp  = exp ~ j n  = nl (r ) j1 (~ ) ,  

wheren,(~) E exp U,j1(7) E J,nl  andj, beinganalyticfunctions. Differentiation 
at T = 0 shows 

j n  = n ]  +i], 
where 

Relating exp U to an xo-neighborhood in R by one may consider nl(.) 
in R, and nI as thej-image of n in the tangent space. It as thej-image of exp 

has been shown that 
nI = j n  mod J. 

Therefore the action of the stability group J in the tangent space of R at xo is 
described by that of the representation of J as a subgroup of Int G, induced in 
G mod J. 

Note, however, that this description of J need not be exhaustive. Nontrivial 
j ( j  E J) may be trivial on the tangent space. An example: the projective group 
on the straight line-the translations, that is, the projectivities with a double 
fixpoint at infinity, induce the identity mapping in the tangent space at 
infinity. 

In such cases the behavior of J can be fully described with tangent spaces of 
higher differential order. 

63.3.3 Suppose now that N in 63.3.1 can be chosen to be invariant under the 
i ( j  E J). This is possible when J is compact or semisimple and connected; then 
the representation of J in G as a subgroup of Int G is conducible, and J, being 
invariant under j ( j  E J), has a linear complement that is also invariant. 

In this case the behavior o f j  in R is fully described by that of j in  Nbecausej, 
considered as acting on R, is determined by its action on any nonvoid open set 
of R (which, with its inverse, is analytic). The representation of J in N by y , j  
is faithful because it is so on R. Identifying R locally with N, one may say 
that J behaves as a linear group near xo. 
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63.3.4 In terms of fiber spaces, exp U, as introduced in 63.3.2, is a local 
cross section near 1 of the fibering of G by theJ-cosets, as is U,, = a exp U near 
a for every a E G. These cross sections can be used to relate the fundamental 
groups @ ( J ) ,  @(G), and @(R) .  

Theorem Let C be connected and locally isomorphic to a linear Lie group, 
let J be connected closed sub G, l e t j  be the embedding o f J  in G, and k = 'fad. 
Then the sequence of (additively written) fundamental groups 

k 

@ ( J )  : @(G) + @(R) + (0) 

is exact. 

Proof Let U,, be as before. Then klua is homeomorphic and its inverse lifts a 
neighborhood of ka onto U,,. It can first be used for piecewise and then for total 
lifting of any given path I V  E wka(R) into a path id E wa(G). Then kid = i tJ.  

Let )(lrkl(R) and yf1(G) be topologized in an obvious way; k (more precisely 
left multiplication by k )  maps yfl(G) continuously onto w k l ( R ) .  For any 
iv E 9fl(G) let V,  be the set of w' E "w;(G) with "'(7) E Uw(r)  for all T .  Then 
kl,, is homeomorphic, and its inverse lifts a neighborhood of kw onto V,. 
Again any path in w k l ( R )  starting at kiv can be lifted into a path in wl(G) 
starting at  IV. 

To return to the statements of the theorem, it is evident that for the funda- 
mental groups kj is the null-homomorphism. One must still prove first that k is 
onto and second, that the kernel of k is contained in @ ( J ) .  

Let a closed path iv E W l l ( R )  be given. It is lifted intoa path w' E "Wl(G), 
which necessarily finishes in J .  Since J is connected, id can be lengthened by a 
path withinJto get a closed path w" E Wll(G) such that kw" IS homotopic with 
the given w. This proves the first part. 

Now let iv; E 7Y11(G) be given such that kwh is homotopically trivial. This 
means the existence of a path )'owo on 'W:f(R) such that wo = kw; and 
I V ~ ( T )  = kl for all T.  This path is lifted into a path Y,wA on Wl(G). Then 
W ; ( T ) ,  iisA(1) E J  for all T , U .  By 28.11 w; is homotopic with w ;  o 'f,,~vA(l), 
which lies in J.  This proves the second part. 

63.4-6. Geodesics 

63.4. Definition A differential metric on a real C2-manifold R assigns to 
the tangent space of R at any point p of R an inner product, depending twice 
continuously differentiably on p .  

The inner product is supposed to possess the usual properties, positive 
definiteness included. 
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A C2-manifold with a differential metric is called a Riemannian space. 
By integration the notion of vector length in the tangent spaces extends to a 

notion of curve length for C1-curves, invariant under weakly monotonic 
parameter change. After such a change any C ‘-curve may be supposed to have a 
vanishing tangent vector at its beginning and end. Two such curves, the second 
starting where the first ends, can be put together to form a C1-curve, with 
additivity of the curve length. 

The distance S ( p ,  q )  of two points p ,  q of R is defined as the lower bound of 
the lengths of C1-curves joining p and q. Obviously it is nonnegative sym- 
metric, and from the foregoing remarks it follows that it fulfills the triangle 
inequality. It will soon become clear that even 6 fulfillsthe positiveness require- 
ment of a metric and that the topology induced in R by the metric 6 coincides 
with the original topology of R as a manifold. 

Definition A geodesic p is a C1-mapping of an interval I of real numbers 
into R with the following property: for any T E I there is an E > 0 such that 
T’ E I and I T  - 7’1 < E imply S ( ~ ( T ) ,  p(~’))  = I T  - 7’1. 

Geodesics arising from a given one by a monotonic parameter change or 
by extending or restricting the interval of definition are often considered 
essentially equal. 

The classical way of finding geodesics is to look for shortest curves. Indeed, 
compared with other C’-curves, any partial curve of a shortest curve is still a 
shortest curve between its endpoints, and, as will be seen, any shortest curve 
arises from a geodesic by a suitable reparametrization. On the other hand, it is 
evident that a sufficiently small arc of geodesic around a given parameter value 
is a shortest curve. 

The variational approach to shortest curves will be sketched briefly. 
The differential metric is transferred from an open neighborhood Ro ofp, in 

R to a 0-neighborhood Eo in real Cartesian n-space E by a C2-homeomorphism 
f with nondegenerate gradient and fpo  = 0. The discussion takes place in Eo. 
At a point x of E, the inner product of two tangent vectors 

is given by 

where rg,,(x)ly,,= I is a positive definite symmetric matrix, depending twice 
continuously differentiably on x .  The length of a C’-curve p in Eo from 0 to y is 
given by 
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63.4.1 

(Generally q' now denotes the derivative of 9.) 
The curve length is invariant under weakly monotonic C1-changes of the 

parameter of q ~ .  
To compare curve lengths, a family of C2-curves v0 is studied; it is defined by 

a C2-mapping @ of a rectangle t rT,,,l (0 Q T Q CL A 1u1 G /3) of the Cartesian 
2-space into Eo such that 

@(O, 0)  = 0, 

63.4.2 ( c ~ ' ( T ) ,  c ~ ' ( T ) ) ~ ( ~ )  = 1 for 0 < Q a, 

where it is understood that 

v' = Y T  @(', 

lp = TO. 

Furthermore 8 is defined by 

63.4.3 

and the coordinates of the introduced functions are indicated by subscripts in 
the usual way. 

An easy calculation that involves a partial integration leads to the formula 

whereg,J,k is the partial derivative ofg,, in the kth coordinate and where, under 
the integration sign, the arguments T ,  respectively, (p(~), have to be read in 
(pi,(p;,8k? respectively, gik, g I J . k -  

The coefticient o t ~ k  under the integration sign can also be written as 

63.4.5 Dk(T) = -7 g i k  v; f (gIJ,k - gik.i - gkI.J) v;, 
IJ  

where lp: is the second derivative of (p,. 

of curves with the same endpoint is chosen; that is, 
To find a necessary condition on )'04TGrq(~) being a shortest curve, a family 

@(t ,  u) independent of u for some fixed t .  

Then 8(t)  = 0, which causes the first summand in 63.4.4 to vanish. 
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For the length of ‘fOcsBty.0() to be minimal, one must have 

By suitable choices of that family 8 k  can be prescribed with such a degree of 
freedom that, as a necessary condition for rp to be a shortest curve, one gets 

63.4.6 &(v) = 0 for all k. 

to be solved with respect to cp under the initial condition 
This is now considered as a second-order system of differential equations 

940) = 0, T’(0) = a, 
where a is a given vector. Its (unique) solution is va. Clearly 

~ f i a ( 7 )  = r ~ a ( 8 7 )  

for real 8 as far as the expressions make sense; the qn will turn out to be shortest 
curves. 

One can easily verify that 

because of the differential equations 63.4.6 (see also 63.4.5); hence 

(VX719 V:(.Dcp.(.r) = (a, a>,. 
Therefore, if (a, a)o = 1, then 

63.4.7 Lt(qa) = t .  

If Eo has been chosen small enough, it will be smoothly covered by the 
solutions va of 63.4.6 in the following sense, Near 0 

0 = Y (t Va(1) 

is Cz with gradoa = 1, hence Cz-homeomorphic near 0. Since, for a # 0, 

Ya‘lal, IaI-la’ 

is analytically invertible, it follows that for Eo small enough and x E E,,\{O} 
there is one positive number S(x) and one vector c(x) with (c(x),c(x)),, = 1 
such that 

63.4.8 V C ( Z ) ( W )  = x 

and ‘S,cl is a Cz-homeomorphic mapping with a nondegenerate gradient. 
In the sequel Eo is assumed to fulfill this requirement. 
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Note that tx (six) = p )  may then be considered a C2-manifold (for p > 0). 
The previously introduced family of curves is now specialized to consist of 

curves y,, : 

63.4.9 @(T, u) = vrr(,,)(7) for 0 G 7 G t ,  

where (a(o), U ( U ) ) ~  = 1 for all CT (1.1 G some /3) and a(u) is a C2-function of u. 
Then 

63.4.1 0 M q a ( o J  = 

The derivative with respect to u vanishes, and in 63.4.4 the second summand on 
the right side vanishes as well, since ya fulfills 63.4.6 if substituted for y .  This 
shows that 

This means that every curve vn with = 1 meets the surface tx(8(x) = I )  

The time has come to compare an arbitrary C1-curve q in Eo, starting at 0, 
at ?,(t) orthogonally in the sense of the inner product (. . ., . . .). 

with the curves yo.  Such a curve 7 may be assumed in the form 

7(7) = 9)a(7)(47)) for 7 > 0, 

where the a(.) are vectors with (u(T), ~ ( 7 ) ) ~  = I ,  E(T) 2 0, and ‘u(T), ~ ( 7 ) ’  is a 
Cl-function Of T. Since shortest curves are wanted, one may even suppose that 

E(T)  > O  for T > O .  

Now 

According to 63.4.11, the two summands are orthogonal to each other in  the 
sense of the inner product (. . ., . . .) at q(t). Hence 

with the equality sign only if 
a’(r) = 0. 
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Integrating this inequality, one gets 

with equality signs only if -q is such that U(T)  is constant and E is weakly mono- 
tonic, that is, if 7 has arisen from some cpo by a weakly monotonic parameter 
change. 

This shows that for CI-curves T with ~ ( 0 )  = 0, q( t )  = cpa(t), where 
(a,a), = 1 : 

63.4.1 2 inf, L,(q) = t = Lt(cpa). 

The C’-curves used in the definition of distance on R were allowed to leave 
the neighborhood R ,  ofp,. It is easily seen that this does not lower the infimum. 
Then by 63.4.12 it follows that thef-originals of the cpa are geodesics on R. 
From the remark on the equality signs it follows that any shortest CI-curve in 
E, starting at 0 coincides with some reparametrized cpp. 

The notation cpo, or, more completely, cp,,., is now used on R to indicate a 
geodesic starting at p, with the tangent vector a of unit length. The result is 
summarized in the following: 

63.4.1 3. Proposition Geodesics are C2-curves. Givenapointp of R and a 
vector a of unit length in the tangent space of R at p ,  there is an essentially 
unique geodesic cp,,,,, with cp,..(O) = p ,  &JO) = a. There is an E, > 0 such that 
there is a unique geodesic starting from p and finishing at x of length 6(p ,x )  as 
long as 6 ( p , x )  < E,. On a compact set of p such an E, may be chosen as a 
constant. Then cp,,,,(~) depends on the datap, a, and T in a C2-fashion. 

From this it is clear that the topology of R as a manifold coincides with that 
induced by the metric. 

63.4.14. Proposition The mapping 

u = Y a  q p . a ( l )  

of a sufficiently small 0-neighborhood of the tangent space at p into R is a 
C2-homeomorphism whose gradient at 0 is the identity. 

This mapping is closely akin to the exponential mapping of infinitesimal Lie 
algebras into their groups. Its inverse is called the geodesic mapping (at p ) .  
It can be used to identify near p the Riemannian space with its tangent space 
at p in a canonical way. 

63.4.1 5 If, for a moment, u is used to identify R nearp with its tangent space, 
the geodesics through p (=O) are rectilinear. The C2-data of the differential 
equation for geodesics lead to a C2-family of solutions. Let the geodesic of 
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length IcI starting at a with a tangent vector c/lcl have its endpoint at 6(a,c); 
then 6 is C2, a(0,c) = c, 6(a,O) = a;  hence 

#(a, c )  = a + c + * * ., 
where the dots mean something of an order higher than la1 + IcI. Putting 
a’ = 6(u,c) and solving with respect to c, one gets 

c = a ’ - a +  *.., 

where the dots mean something 
IcI = S(a,a’), one gets 

of an order higher than la1 + la’[. Since 

if lim a = lim a’ = 0. 

Therefore up to higher order terms the Riemannian metric in Rand the metric 
induced by the inner product in the tangent space at p are identified by (T. 

63.5.1 If a metric space ‘R,Sl is known to have arisen from an unknown 
differential metric, as defined in the beginning, the C2-structure of R and its 
differential metric are (uniquely) recovered as follows : 

Forp E R choose y > 0 such that unique geodesic joining prevails for pairs of 
points in the closed y-ball U around p. In U the midpoint z of a pair x ,  y (i.e., 
S(x, z) = S(y,z) = + S(x, y)) is uniquely determined by 6. Given q E R with 
S(p, q) = y, define a continuous mapping Qrp of t7 (0 G T Q y )  into R by the 
requirements “~(0)  = p, %p(y) = q ;  ‘+p($(~, + T J )  = midpoint of %p(~,) and 
% p ( ~ ~ )  (its existence is clear). The Y,“rp(aT) (as far as defined), with q E R, 
S(p, q) = y ,  a 2 0, form a set Q p .  The meaning of Q p  becomes clear if one maps 
a E OP into its tangent vector at  T = 0, denoted by KU, according to the C2- 
structure from which ‘R, S1 has been derived. The existence of the metric S’ in 
QD, defined by 

S’(a, b) = lim T-’ S(U(T), b ( ~ ) ) ,  
7-0 

then becomes clear, as does its identification by K with the metric in the 
tangent space atp,  from which ‘R,6’ has arisen (see 63.4.15). In a linear space 
with a metric derived from an inner product the linear structure is determined 
by the metric and the origin, as is the inner product. In this way djP is uniquely 
provided with a structure of linear space with inner product, which by K is 
identified with that in the tangent space a t p  of ‘R,S1. Finally the C2-structure 
of R is recovered by yvE@,,rp(l) (as far as defined) as a local presentation of R 
near p ;  the differential metric at  p is recovered as the metric of aP. 

The foregoing leads to a proposition and a remark: 
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Proposition The differential metric of a Riemannian space is uniquely 
determined by its metric. 

Remark In the definition of geodesic "C'-mapping" can be weakened to 
"continuous mapping." 

63.5.2 The direct product of Riemannian spaces R") ( i  = 1,2) is easily defined 
as the direct product of the underlying C2-manifolds, where the tangent space 
at rp(l), p(2)1 and the inner product in it are the direct sum of those at 
p") E R") ( i  = 1,2). 

On the other hand, a metric product ' R , 6 l  of the resulting metric spaces 
rR( i ) ,  

a( r p ( l ) ,  p ( 2 ) 1 ,  r q ( l ) ,  pi) = ( g c l ) ( p ( l ) ,  q ( 1 ) ) 2  + g(2)(p(2), 42))2)1 /2 .  

As a matter of fact, 'R ,6 l  is just the metric space resulting from the direct 
product of the R"). 

Indeed, this easily follows from the differential equation for shortest lines 
in R.  It splits in those with respect to the R") such that if v") is a solution for 
A(') ( i  = 1,2), then y t  rq+l ) ( r ) ,  q ~ ( ~ ) ( t ) l  is one for R. 

( i  = 1,2) is formed by putting for p( ' ) ,  q") E R") 

63.6 An important tool in global research on Riemannian spaces is the 
postulate of 

Geodesic Latitude Any geodesic can be extended to one defined on the 
whole set of reals. 

This property will now be assumed. 

Proposition Under geodesic latitude, any pairp, q of points of R can be 
joined by a geodesic of length 6 ( p ,  q), and any bounded closed subset of R is 
compact. 

Proof Let R ,  be the set of x E R such that there is a geodesic of length 
6(p ,x )  from p to x. 

The first step is to show the following: 

63.6.1 
equivalently, 

R, is closed and every bounded closed subset of R, is compact or, 

63.6.2 a bounded sequence x,, x2, ... from R, accumulates somewhere 
in R,. 
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Such a sequence may be supposed to give the yi = 6(p,x,) a limit y. There is a 
geodesic vi such that ~ ~ ( 0 )  = p, vi(yi) = x l .  Now the sequence of ( ( d / d ~ )  rpi(7)>0 

may also be supposed to converge. The limit is the tangent vector at 0 of a 
geodesic rp with rp(0) = p. By geodesic latitude the geodesic rp may be extended 
for all T > 0. Proposition 63.4.13 implies that lim xi = lirn v i (y i )  = rp(y) = X, 
say. Further, 6(p,x) = lim S(p,x,) = lirn yi = y. This proves the assertion 
lim x1 = x E R,. 

The next step is to show that 
63.6.3 R, = R. 

Let S, be the set of x with 6(p, x) Q 0: and let y be maximal such that S, c R,. 
If R, # R, then y < co. Sy is a closed bounded subset of R, and thus compact. 
According to Proposition 63.4.13, let E > 0 be chosen such that for z E S, and 
6(z,x) G E there is a geodesic of length S(z,x) from z to x. 

If R,, # R, then there is an x $ R, with S(p,x) < y + +E. Let q~ be a curve of 
length < y + E that joinsp to x. It leaves Sy at some pointy. Its length fromp 
toy is> y ;  therefore, fromytoxit is< E. Let z E S, beclosest tox. Still 6(x,z)<~.  
The defining property of E guarantees a geodesic rp" of length 6(x, z) from z to 
x ;  it follows that 6(p,z) = y. The definition of R, gives a geodesic rp' of length 
S(p,z) from p to z. When put together they produce a curve of length 
y + 6(z,x)joiningp to x. A shorter connection would leave S, at a point closer 
to x than z was. Therefore the length of the constructed curve is just 6(p ,x) .  
It is a geodesic of length 6(p,x) that contradicts the assumption x $ R,. 

This proves 63.6.3 and, together with 63.6.1, the proposition. 

63.7-9. lsometries 

63.7 Let R, R' be Riemannian spaces and f an isometry of R into R', which 
according to 63.5.1, is C2. Forp E R,p' = fp, let up, up,. be the local mappings u 
(see 63.4.14) of the tangent spaces at p ,p '  into R, R', respectively. Then the 
mapping of tangent spaces grad,f, induced byf ,  is isometric according to 
63.5.1. Furthermore, 

fu, = up, grad, f. 

Moreover, near p the isometry of R into R' is determined by the induced 
mapping of the tangent space at  p. 

Let f be an autometry of R, leaving invariant p and the vectors of a basis of 
the tangent space at p. Thenfis the identity over all R. 

Indeed, grad, f is the identity on the tangent space at p ;  hence f is so in a 
neighborhood of p. Let U be the maximal open subset of R, where f is the 
identity. Then f is the identity on 0. Let q E 0. Then grad, f is the identity on an 
open subset of the tangent space at q, hence over all this tangent space. There- 
fore f is so in a neighborhood ofq. So q E U, 0 c U, hence U = R. 
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Let f be an autometry of R leaving invariant the points p,q between which 
the shortest geodesic is essentially unique. Thenf leaves invariant every point 
of this geodesic as well as its tangent vector at p.  

From this the proposition follows easily: 

Proposition Let I be the set of isometries of the Riemannian spaces R into 
R'. There is a finite subset N of R such that 

any element of I is determined by its behavior on N ,  

if R, R' enjoy geodesic latitude, the convergence on N of a sequence 
from I implies its uniform convergence on every compact subset of R. 

Definition Aut R is the group of autometries of R topologized by the 
topology of uniform convergence on every compact subset of R or, equiv- 
alently, if R is a Riemannian space enjoying geodesic latitude, by the topology 
of convergence on a suitably chosen finite set N .  

A C2-structure of Aut R ,  i f  existent, is understood to be induced by the C2- 
structure of R in the same way as the topology of Aut R is by that of R. 

63.8.1 . Proposition Geodesic latitude supposed, the group of autometries 
of R leaving p invariant is compact, as is the group induced in the tangent 
space at p ;  Aut R is locally compact and fulfills second countability. 

This follows easily from the local compactness and second countability of R 
and the compactness of distance spheres of R if, in the terminology of Pro- 
position 63.7, Aut R is interpreted as a closed subset of RN. 

63.8.2 If, moreover, Aut R is transitive and J is its stability group at p, then 
4.8.4 can be applied. Then: 

Proposition If R enjoys geodesic latitude and Aut R is transitive, then 
Aut R/J as a homogeneous space can be identified with R by identifying gJ 
with gp (g E Aut R ) .  

63.9 If R enjoys geodesic latitude, then Aut R is locally C2-isomorphic 
with a linear Lie group, the C2-structure of Aut R being according to 
Definition 63.7. 

This fact will not be proved. When it is needed, it will be postulated. 

63.10. Historical Note Homogeneous spaces go back to H. von 
Helmholtz, F. Klein, and S. Lie. Proposition 63.6 was proved by H. Hopf and 
W. Rinow [Comment. Helllet. 3, 209-225 (1931)l. The present proof is some- 
what simpler. The local Lie character of Aut R was proved by S. B. Myer and 
N. Steenrod [Ann.  Math. 40,400-416 (1939)l. 
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64. SYMMETRIC SPACES 

64.1 -1. Definition A reflection s, in p in a Riemannian space R is an 
autometric mapping by which the geodesics throughp are inverted (v goes into 
Y,cp(-~) if 9) is a geodesic with ~(0) =p. 

Int R is the topological group of even products of reflections s, (p  E R), 
considered as a subgroup of Aut R. 

Note that possibly Int R = (1). 

Proposition For any g E Aut R, gs, g-* is a reflection in gp. Int R is 
normal in Aut R. 

64.1.2 Suppose that R enjoys a reflection s, in each of its points p. Then a 
geodesic in R can be extended again and again by reflecting it in one of its 
points near a supposed endpoint. Therefore geodesic latitude is guaranteed. 
p, q have a midpoint m on a joining geodesic of length 6(p, q).  Now s,s, maps 
p into q. So Int R is transitive. It is connected since s,,s,, . . . s,,, moves to the 
identity if all p i  move to some fixed p .  In the C2-structure of Aut R, as meant 
by Definition 63.7, Int R is even C2-connected. 

In a small closed a-ball U in R around p take for every q the uniquely 
determined midpoint m of the geodesic of length 6(p, q )  fromp to q and define 
t ( q )  = s,s,. Then t maps U C2-homeomorphically. Let J be the stability group 
of Int R at p. Then t ( U )  is a local cross section of the set of J-cosets in Int R. 
Locally Int R and the topological product of U and J are homeomorphic. So 
local compactness may be transferred from J to Int R. 

In any case, by 63.9 (if taken for granted) and 11.7, Int R, which is C2- 
connected, becomes in its natural topology locally isomorphic with a linear 
Lie group. As soon as Int R is known to be locally compact in the topology 
inherited from Aut R, it follows from Propositions 4.8.7 and 4.13 that the 
natural topology of Int R is that induced by Aut R and that Int R is closed in 
Aut R. In 64.8 it will be shown that J is compact; hence Int R will be locally 
compact. Meanwhile, Int R, provided with its natural topology, will be 
denoted by IntoR instead. 

The foregoing suggests the following definition. 

Definition A symmetric space (Spa Sym) is a Riemannian space R with 
reflections sp in all points p E R and such that Int R is the continuous image 
by means of the identity mapping of a connected group IntOR which is locally 
isomorphic with a linear Lie group. 

It is the aim of the present section to classify symmetric spaces, a t  least 
locally. With a view to this task, it is useful to note that: 

the direct product of symmetric spaces Ri is again a symmetric space R 
and then IntOR may be considered as the direct product of the Int'R,. 

The following has been proved : 
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Proposition A symmetric space R possesses geodesic latitude. Any pair of 
points p, q in R can be joined by a geodesic of length 6(p, 4). For any p, s, is 
unique. Any closed bounded set in R is compact. The stability group J of 
IntoR at p is bounded (as acting in R as well as in the tangent space at p). 
IntORIJcan be identified with R by identifying g J  with gp after the choice of a 
point p E R. 

64.1.3 Wrappings of Riemannian spaces can obviously be performed by 
means of local isometries. The geodesics are wrapped by geodesics, and in 
universal wrappings autometries and reflections are wrapped by autometries 
and reflections, respectively. Universal wrappings of symmetric spaces are 
again symmetric spaces. 

64.2 Let R E Spa Sym. Put, for short, IntOR = F. 
Let F, J be the infinitesimal algebras of F, J (see the conventions in 63.2). 
2, induces an automorphism T of F and P. 

js,  j-' = s,, = s, for j E J. 

So T = 3, leaves J and J elementwise invariant. 
The closure J o f J ,  taken in Int R, is compact; any linear representation o f l  

is conducible. The adjoint action of J on F extends to 9; it is also conducible, 
with J as an invariant subspace. Therefore there is a linear complement N 
such that 

F = J + N ,  J n N = { O } ,  [ J , N ] c N .  

By identifying fp with fJ(  f E F), R is known to be identified with FIJand the 
tangent space a t p  with N(see63.3). So Tbehaves as the identity on Jand  as the 
scalar multiplier -1 on N. Furthermore, the adjoint action of J on N is again 
bounded. 

exp N generates a group F', which will be shown to coincide with F. Any 
f E F near 1 is in (exp N) J. Because of the invariance of exp N underj  ( j  E J ) ,  
one gets 

(exp N) J * (exp N) J c (exp N) (exp N) J. 

Continuing in this way, one establishes 
F c F J .  

Thus any f E F can be written as f ' j  with f' E F', j E J. Now Tf-I = 

j-' Tf'-' where Tf'-' E F because of TF' c F'. Therefore f(Tf-I) = 

F is generated by the fs,f-' .I;s,f;' =f(3,f-').(2,I;)fi1 = 

f(Tf-') (Tfi * f7') E F' (for f, f, E F). So F c  F' c F, which proves the 
assertion. 

f'j . j-1 TY-1 E F'. 

The foregoing is summarized in the following theorem. 
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Theorem Up to isomorphism R E Spa Sym can be obtained from a group G 
by means of an involutoryt automorphism T as a homogeneous space G / J ,  
where G, J ,  T fulfill the following conditions: 

64.2.1 
the infinitesimal algebra G. 

G is connected and locally isomorphic with a linear Lie group, with 

64.2.2 J is closed sub G, with the infinitesimal algebra J. It contains no 
normal subgroup of G except { l}. 

64.2.3 T leaves J and Jelementwise invariant. 

64.2.4 G = J i- N, where Tj = j for j E J and Tn = -n for n E N. 

64.2.5 The adjoint action of J on N is bounded. 

64.2.6 G is generated by exp N. 

64.2.7 G = Int'R. 

One should note, as the reader may already have done, that a situation 
as in 64.2.2-6 is obtained by starting from G, C, C,,, as in the classification 
dressings in 51.17 with C # C,,, and taking CC,, for T, Gc,,, for J,  G, or Gun 
for G, with, for instance, G, as in 51.17, either simple or the direct sum of two 
simple summands interchanged by T, and G,, centerfree. 

64.3 Conversely, it will be shown how symmetric spaces can be constructed 
from these data. 

64.3.1. Proposition Under the conditions in 64.2.1-2, if G =  JS N, a 
direct sum as linear spaces, [ J,N] c N, and 64.2.5 is fulfilled, then a G-invariant 
differential metric can be imposed on R = G/J.  

Proof By 63.3.3 the tangent space of R at p = J can be identified with N on 
which j E J acts as j .  

Let E E Spa Lin, L sub Aut E, L bounded. Then the closure L of L in End E 
is compact. There is a y such that ldet a1 G y for all a E L. Then ldet a1 > y-' 
as well, thus t sub Aut E. Therefore the closure of L is a compact linear group. 
This is applied to 31 N, N instead of L, E. 

From an arbitrarily assumed inner product (..., ...) in N a &invariant 
product is obtained by averaging Y k y  rn,,n2i(kn,, kn,), with k running in the 
(compact) closure ofJIN. (See also 35.1.) By left multiplication it is carried to 

t As a useful convention, the mapping of a one-point set onto itself is considered 
involutory. 
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the other tangent spaces of R. This transfer is unambiguous, since ifgp =g, p ,  
then g, = gj with a j E J leaving the inner product invariant. So R becomes 
Riemannian with G c Aut R.  

Remark Under the conditions 64.2.1-5 a G-invariant differential metric 
can be imposed on R. Indeed, i f j  E J,  n E N ,  then T [ j , n ]  = [Tj,Tn] = -[j,n]; 
so [ J , N ]  c N .  Therefore the proposition applies. 

64.3.2. Theorem Under the conditions in 64.2.1-5 any G-invariant 
differential metric turns R = G/J into a symmetric space. The reflection 
s, in p = J is determined by 

s,(uJ) = T(uJ) = (Tu) J .  

Furthermore, 
spsgp = (Tg) g-I as acting in G/J, 

Int R c G c Aut R, 

with G considered as acting on GIJ. 

(corresponding top)  are then the Y T  exp 
Locally R can be identified with exp N .  The geodesics through 1 = exp 0 

(n of unit length in N ) .  

Proof R is supposed Riemannian with the G-invariant metric 6 ;  J being 
T-invariant, T induces an involutory mapping s, of R onto itself: 

sp(gJ) = T(gJ) = (Tg) J for g E G. 

Since Tn = -n for n E N ,  the tangent vectors at p are reversed by sp. This 
reversal, however, does not change their inner products. s, transforms 6 into 
another metric 6’: 

J ,  g2 J )  = w%,) J ,  Vg2) J > *  

J ,  gg2 J )  = 6((Tg)(Tg,) J ,  (Tg)(Tg,) J >  

Now from the fact that 6(gg, J ,  gg2 J )  does not depend on g it follows that 

does not depend on g. The differential metrics belonging to 6,6’ are G-invariant 
and coincide at p ,  hence are equal. Therefore s, is an autometry of ‘R,S’. 

Sgp = gs, g-’ (g E G) 
also preserves the metric and the point gp =gJ, and reverses the tangent 
vectors in gp,  whence is the reflection in gp. 

The equality 
SPS,, = (Tg) g-’ 

is easily verified. It implies s,s,, E G and, more generally, 

lnt  R c G. 
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Furthermore, by the same argument as in 64.1.2, lnt R as a C2-connected 
subgroup of C is the continuous image of IntOR, locally isomorphic to a linear 
Lie group, which is the last condition to be fulfilled in order to make R a 
symmetric space. 

If s,, with 
g = exp 7011, 7 0  real, n EN, In1 = 1, 

is applied to (exp 7n) J ,  one gets 

s,,((ex~ 7 4  4 = ( ~ X P  7 0  4 sP((exp(7 - 7 0 )  J )  

= exp 7 0  n( T exp(7 - 7 0 )  n) J 

= (exp(27, - 7)  n)J. 

Therefore, if g = exp Ton, then sEp behaves on the set of the (exp 7n)J as the 
reflection of the parameter 7 in T ~ .  

For any g E G,  gJ is an isolated fixpoint of s,,, since s,, reverses the tangent 
vectors at gJ. Choose y > 0 such that at a distance < y there is no other fixed 
point of sEp and such that any twopointsq,q' with 6(q, q') < y are joined by an 
essentially unique geodesic of length 6(q, 4'). 

Let 
' , , * 7 *  = Y7,<7<72(eXP 4J 

have a diameter <+y and let q ~ ~ ~ , ~ ~  be the (unique) shortest geodesic with the 
same endpoints, 

where /I chosen such that 

Since the reflection s,, with 

PI = ' 7 1 . 7 ~ ( ~ 1 )  = v ) 1 1 . 7 2 ( 8 ~ d 9  

%PI,  ~ 2 )  = B ( 7 2  - 71). 

PO = ' 7 1 . 7 2 ( 3 ( ~ 1  + 72)) 
interchanges p1,p2, it reverses the geodesic q ~ ~ ~ , ~ ~  and it preserves its midpoint 

Ph = 9)7i.72(+8(71 + 72)). 
According to the choice of y, if p o # p h ,  then 6 ( p o , p & ) >  y. However, 
~ ( P o , P ~ )  G  PO, PI)  + 6(pI, ph) G 26(p2, pI) < y, whence it follows thatPo = P A .  
Hence 

' T l . T 2 ( + ( ' 1  + 72)) = ? 7 1 , ~ 2 ( 3 8 ( ~ 1  + 72))'  

This result can be used anew with +(TI + 72) instead of 71 or instead of 72. 

Repeated dichotomies and a continuity argument lead to the conclusion 

Q7, .72 (7 )  = ~ 7 1 . 7 2 W )  if 7 1  G 7 Q 7 2 .  

Since the tangent vector of 6,,.,, as well as of 
that t3 = 1. This shows thaty7(exp 7n) J i s  a geodesic. 

has unit length, it follows 
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64.3.3. Remarks 

(1) As a symmetric space, R is not uniquely determined by the data of the 
theorem. Its metric can be changed at least by a constant factor. 

(2) On the other hand symmetric spaces R which are essentially the same can 
often be obtained from essentially different pairs 'G, J ' .  Putting G' = 1- 
component of Aut R and J' = stability group of p in C', one gets the same R 
from 'G', J'' and from any pair rG", J'", where G"  is a closed connected 
group between G and G' and J" = J' n G". 

However, if for example G has no nontrivial proper T-invariant, connected 
normal subgroup, then Int R which is normal in Aut R must coincide with G. 

(3) Wrapping G or replacing J by a closed open subgroup of J induces a 
(locally isometric) wrapping of the symmetric space G/J constructed above. 
(See 63.1.9.) 

(4) Since IntOR is transitive and T-invariant, its infinitesimal algebra 
contains N; so IntOR is generated by exp N, as has been shown in 64.2. Hence 
the conditions in 64.2.6 and 64.2.7, in the presence of the others, imply each 
other. 

64.4 The preceding analysis suggests studying the following problem : 

Problem To classify the real linear Lie algebras G with an involutory 
automorphism T such that: 

the subset of T-invariant elements is a subalgebra J with a conducible 
representation in Gas  a subalgebra of G, 

Jcontains no nonzero ideal of G, and 
the set of n = -Tn generates G. 
Note that the boundedness of J has been weakened to the conducibility of 

This problem is dealt with in 64.5-6. 
adcJ. 

64.5 The set of x = -Tx is denoted by N. 

G = J + N ,  [J, J ]  c J, [J, N] c N, [N, N] c J. 

Note that the last two requirements in 64.4 imply that J is faithfully 

Let A be a maximal abelian T-invariant ideal and suppose that A # (0). 
represented in N as adcJIN. 

Because of a + Ta E A for (I E A ,  

A = JI f N, with JI c J ,  N, c N. 

Since A ,  J1,  and NI are invariant under j ( j  E J ) ,  there are invariant linear 
complements J2,  N2: 

J =  JI + J2,  N =  N, + N2, J ,  n J2 = N, n N2 = {0} ,  

J, J2l C J 2 ,  [J,N21 c N2. 
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Since J1 = J n A is an ideal of J, one even gets [ J l ,  J2] c J1 ; hence 

[ J , ,  J21 = { O ) .  

[ J 1 , N 2 + A I = [ A , N 2 + 4  n ( [Jl ,N21+[Jl>AI)  
Further, 

= ( A  3- [A ,  AD n W 2  + [A ,  4) 
= A  n N2 = (0). 

Thus J ,  is an ideal of G contained in J. Hence 

J1 = { O ) ,  J2= J, Nl = A .  

Since 
[J, [N, Nll = “J, NI, NI + [N, [J, NIL 

[ N , N ]  spans an ideal J’ of J. Therefore J’ + Nis a subalgebra of G which has to 
coincide with G, since N is supposed to generate G. Consequently, [ N , N ]  
spans J. This shows that J #  (0) unless G is abelian. 

Put 
GI = J +  N2. 

Then G1 is a T-invariant subalgebra. Since 

[ A , N 2 ] = A n  [ N , N ] = A n J = { O ) ,  

and [A, J ]  has the same span as 

[A,  “9 Nl1= [A, “2,  N211c “A,N2I, N*1+ “ 2 ,  [A ,  N211 = {O), 

[A ,  Gll = (0); 
one gets 

thus 
G = GI + A ,  a direct sum of algebras. 

G1 is semisimple, since otherwise the last but one member of the commutator 
sequence of its radical could be added to A in spite of its maximality. 

Being semisimple, G1 may possess a proper simple direct summand G;. 
Then G; + TG; equals GI or is a direct summand of GI. This procedure can be 
continued. 

Definition A solution rG,T1 with G #  (0) of Problem 64.4 is called 
sirnp!e if G has no nontrivial proper T-invariant ideal. 

The following has been proved: 

Theorem Any solution of Problem 64.4 splits directly into simple solutions, 
some semisimple and some abelian. For an abelian solution J =  (0). 
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64.6 The investigation now turns to the semisimple simple solutions. 

Theorem Let ‘G, T 1  be semisimple simple and let J, N be as before. There 
are then three possibilities: 

(1) G,T have arisen from complex semisimple G with an involutory auto- 
morphism by waiving. 

(2) Under the representation of J in G as a subalgebra of 6 the subspace N 
is irreducible over Com and J i s  semisimple. 

(3) Instead, N,,, splits into two nonequivalent irreducible linear subspaces, 
both of which are abelian subalgebras; the group infinitesimally generated by 
adc J J N  contains the 1-component of its centralizer within the group of all 
volume-preserving linear mappings of N ,  and if Nis  irreducible over the reals, 
this centralizer itself; and J is the direct sum of a semisimple and a one- 
dimensional Lie algebra. 

Proof Complexify G (with the conjugation Co), extend T to G,,, as an 
automorphism such that Co T = TC,, and suppose that 

N C o m  = N ,  + N27 NI n N2 = { O } ,  [J,  Nt] C Ni* 

If n, E N,,  n; E N,,  then by Jacobi-associativity 

“n,,n;I,n,l+ “n;,n2l,n,l+ “n,,n,l,n;l =o, 

“N, ,  NIL N2l = (0) 

“N2, N21, N11 = { O } .  

[ J , ,  N21 = {OI. 

“,,N,I= J I .  

where the first summand is in N2 and the others are in N , ,  which shows 

and likewise 

Let JI be the maximal subalgebra of Jcom with 

Then by the foregoing 

Jacobi-associativity shows that J ,  is an ideal in Jcom. Let N ;  be the linear space 
spanned by [J1,N,]. Then J ,  + N ;  is a T-invariant ideal of G,,,. The same is 
true of its complex conjugate CoJl + CON;.  Their sum and intersection, if 
Co-restricted, must be G or (0). If the C,-restriction of the intersection is G, 
then J ,  + N ;  = G,,, and N2 = (0). If it is (0) and J ,  + N ;  # {0}, then the Co- 
restriction of the sum is G, and Gmay be supposed to be obtained from JI + N ;  
by waiving, which is the first kind of solution indicated in the assertion. 

Therefore, disregarding the first and second kinds, one may suppose that 
N2 # (0) and J ,  + N ;  = {0} ,  hence J ,  = (01, [N,,N,I = (0). 
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This shows the following: 

64.6.1 If N ,  # {0},  N2 # {0},  then [N, ,N,]  = {0},  and for each i the only 
element of J,,, commuting with all elements of N1 is 0. 

Suppose N1,N2  as before; adc,,,N, is nilpotent: it maps N ,  into {0},  its 
square maps Jcom into {0}, and its third power maps N2 into (0); of course, N2 
is also ad-nilpotent in C,,,. 

t,b is nondegenerate on N,,,, since #(.I, Ncom) = (0). However, t,b(Ni,N,) = 

{0}, since N,  is ad-nilpotent. Thus 

64.6.2 dim N1 = 3 dim N,,,. 

Since every J,,,-invariant linear subspace of N,,, has an invariant linear 
complement, the following applies : 

64.6.3 The N,  are irreducibly acted on by Jcom. 

I t  will now be shown that these actions cannot be equivalent. Equivalence 
would mean the existence of linear mappings 6, (i = 1,  2), respectively, of 
N ,  onto N2 and of N2 onto N ,  such that 

64.6.4 j8, n, = 8, jn ,  for all j E Jcom, "1 E N , ,  

64.6.4a j62n,  = 8, jn,  for all j E Jcom, n2 E N2. 

By 55.4.4, if the Ni are real (i-e., C,-invariant), 6, and 6, may be taken to be 
real; if the N,  are nonreal, they may be taken as each other's conjugate and so 
may 6, and 6, ; hence 

Then the linear subspace of the nl  + 8 , n ,  (n ,  E N , )  is still invariant under 
j ( j  E .Icom) because of 64.6.4. So it is again abelian; hence 

[n, + 8, n,,  n; + 9, n ; ]  = 0 

6 2  = Co8, c,. 

for n, ,n ;  E N , ,  

64.6.5 

Likewise 
[a, n,,n;1 + b,,4 4 1  = 0. 

S4.6.5a [6, n,, n;] + [n,,19~ n;] = 0 for n2, n; E N,. 

Now define the linear mapping 6 of G,,, into itself as 0 on J,,, and coinciding 
with 6, on N,. This 6 appears to be an infinitesimal automorphism of C,,, 
because of 64.6.441, rewritten as 

W, nl = [ j ,  94 + 4, 
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and because of 64.6.5-5a. (Note that the other commutator relations are 
trivial.) Because of the reality requirements, 8 may even be considered as an 
infinitesimal automorphism of C.  Now because G is semisimple, 8 is inner and 
9 : i for some u E C, but, since 8T = T8, u belongs to J.  This is contradictory 
because u' (u E J )  preserves Ni, whereas 19 does not. Therefore the represent- 
ations of Jcom on N ,  and N2 cannot be equivalent. 

Finally the centralizer, as mentioned in the statement, consists of the 
restrictions u, to N of linear T ,  defined on N,,, by 

~ , n ,  = mini for ni 

for a =  ru I ,u21 with ( ~ , C L ~ ) ~ ' " " ~  = 1, and 

alru2 real for real N I , N 2 ,  
- 
aI = u2 for complex conjugate N , ,  N2.  

u, extends to an automorphism of G with u,j = j  f o r j  E J a s  soon as aI u2 1. 
In  the case of conjugate Ni this is fulfilled by all u with T ,  in the centralizer, 
which is connected; for real NL it is still true for u with T ,  in the I-component 
of the centralizer. Therefore the I-component of the centralizer, as acting on 
G, is within Int C and, since 0, T =  Tu,, even within the group infinitesimally 
generated by ad,& However, by restriction to N this group is homomorphi- 
cally mapped onto the group infinitesimally generated by adGJ(  N, and by this 
homomorphism 0, is mapped into urrlN. 

For the structure of J in the second part of the statement, that is, if J acts 
complex irreducibly on N, then up to a direct summand of scalar multi- 
plications, spanned by some z ,  J i s  semisimple. However, because o f t j  = 0 for 
j E J,  t n  = un for n E Nand some u E Rea, one gets on the one hand Z[n, n'] = 

2u[n, n'] for n, n' E N ,  and on the other [n, n'] E J ;  thus t [ n ,  n'] = 0, whereas 
[n, n' ]  # 0 for some choice of n,n'; hence u = 0. Then z would be a center 
element of G belonging to J, which is not allowed. Therefore Jis semisimple. 

I n  the third case of the statement it was proved that the center of J i s  at least 
one-dimensional, and it follows from 64.6.1 that it is at most one-dimensional. 

This completes the proof of the theorem. 

64.7 In 64.2 the point of departure was a symmetric space R .  From this 
datum a group IntOR of autometries with an involutory automorphism T was 
derived. In 64.3 the procedure was reversed: Starting from a group G (say 
IntOR) with an involutory automorphism T (with certain properties), a 
symmetric space was constructed. To know all symmetric spaces it is useful to 
classify all Lie algebras G with such an involutory automorphism. A more 
general problem has been tickled in 64.4. As a first step, 64.5 made the restric- 
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tion to simple semisimple solutions advisable. These solutions have been 
thoroughly analyzed in 64.6. 

To take up the thread where it was left after 64.3, one has to turn back to 
groups instead of Lie algebras and, in particular, urge that J,, infinitesimally 
generated by J, has a bounded adjoint action on N. 

Theorem 64.5 suggests the following: 

64.7.1. Definition Let R €Spa Sym, C=IntoR, J b e  the stability group of 
p E R in G, and let T be the automorphism of C determined by s,. Then R is 
called abelian, semisimple, or simple,? depending on whether such an attribute 
applies to ‘G, T1. 

Proposition A symmetric space R is locally the product of simple sym- 
metric spaces R,. 

Proof It may be supposed that R is simply connected (see 64.1.3). G = J + N 
as in 64.2. G splits directly into Gi ( i  = 1, . . ., rn) such that the rG,, TI are 
simple (see 64.5) and J, Nsplit correspondingly into J,, N, .  The Gi, J, may be 
considered as generating G I ,  .I,, which are locally isomorphic with linear Lie 
groups, Ji being closed in Ci. Homogeneous spaces R, are defined as GJJ,  ; their 
product is denoted by R*; Ri is considered as a subspace of R* in a natural 
way. A mapping h of R* is defined by 

R* wraps R by means of h;  since R is simply connected, h is homeomorphic; 
it is now used to identify R* with R 3s homogeneous spaces. 

N considered as a tangent space of the Riemannian space R = C / J  is endowed 
with an inner product (. . ., . . .). The splitting may be refashioned so that the 
tangent spaces Ni of abelian R, at J,  are orthogonal to each other. Then the 
tangent spaces N,  of all R, at .Ii are orthogonal to one another. Indeed, let R, be 
nonabelian, thus simple semisimple; then one obtains fork # i :  (Nkr N J  c 
(Nk, [J, ,  N,]) = ([Ji, Nk], N,)  = (0) because of infinitesimal invariance and of 

Therefore at  J the tangent space of R is the direct sum of those of the R,, 
even with due regard to the inner product. This property is transferred by the 
action of G to any point of R. Thus the Riemannian space R is the direct product 
Riemannian subspaces R,. 

Geodesics in R, are also geodesic in R (see 63.5.2). Therefore, if s, is the 

t It would be more appropriate to call these spaces locally simple and to reserve the term 

[Ji, Nkl  = 

“simple” for those that do not split globally. 
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reflection of R in p E R,, then splR, is the reflection of R, in p. R, possesses a 
reflection in  each of its points. 

The even products of the s, with p E R, form a closed subgroup (even a 
direct factor) (IntOR), of IntOR, which leaves R, (k # i )  pointwise invariant. 
By restriction to R, it is identified with IntOR, which in this way is locally 
isomorphic to a linear Lie group. This proves the R, to be (simple) symmetric 
spaces, the product of which is isometric to R. 

Remark The proof shows that in a splitting of a symmetric space as a 
Riemannian space, the factors are again symmetric. A simple symmetric 
space is also “simple” as a Riemannian space. 

64.8 Since simple abelian symmetric spaces are of a trivial nature, the 
preceding justifies restricting to simple semisimple symmetric spaces R = G/J 
(G = IntOR), thus with simple semisimple rC,T1. They will also be studied 
globally; therefore J and its 1-component Jo must be distinguished. 

The fact that the adjoint action of Jo on N is bounded allows one to exclude 
the first possibility of Theorem 64.6, since a group generated by twin type 
J (  # (0)) cannot fulfill this condition. From the third possibility reducibility 
over the reals can be canceled, for in that case, if Jo is considered as acting in 
N,  the real multiplications in the N, belonging to the 1-component of the 
centralizer of Jo, thus to Jo itself, would form an unbounded subgroup of Jo. 

It is easily seen that a noncompact semisimple group has no faithful bounded 
linear representation. Therefore in the second and third cases the semisimple 
factor of Jo acts on N as a compact group; moreover, in the third case the 
central factor has the same property. So Jo itself is compact. J normalizes Jo 
and thus in the third case coincides with Jo; in the second case, if J‘ is the 
centralizer of Jo in J,  then J/J’ is finite because the number of automorphism 
classes of semisimpleJo is finite; and J’, being bounded, consists, up toJo, of the 
scalar multipliers +I a t  most. ThereforeJ/Jo is finite, and J i s  again compact. 

This shows that the distinction made in 64.1.2 between Int R and IntOR 
may be dropped. Int R is closed in Aut R. (This is true for general symmetric 
spaces as well.) 

Therefore it may be supposed that: 
J is compact, and Jo as represented on N by j ( j  E Jo) is real irreducible. 
Note then that J has the same property. 
By Theorem 64.3.1 N can be given a J-invariant real positive definite inner 

product (. . ., . . .), but now it is unique up to a constant factor, even if indefinite 
ones were allowed. This is evident if the representation of J in N is complex 
irreducible, but it extends even to the third case of Theorem 64.6. Any other 
J-invariant inner product could be written Y,,,,(Kn, n’) with K E End N, 
symmetric with respect to (..., ...), and commuting with all j (j E J ) ;  after 
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subtracting some scalar multiplier on N, K may even be supposed to have zero 
trace. K, however, belongs to the centralizer of J as stated in Theorem 64.6. 
Thus K is an element of adGJIN. Now 

(Kn, n’) + (n, Kn’) = 0, 

since any j ( j  E J )  leaves the inner product infinitesimally invariant. From the 
symmetry of K it follows that K = 0, which proves the assertion. 

Such an inner product on N is closely connected to the Killing form on G :  
J and N are mutually orthogonal in the sense of the Killing form I,!J of G 

because 
jiij’ EN, jiin‘ E J for j, j ’  E J, n,n’ EN;  

splits into its restrictions $ J ,  $N to J, N. 
Since G is semisimple, $ is nondegenerate, as are $ and $ N .  The latter is an 

invariant under J as represented in Nand  as such it is a multiple of the given 
inner product on N: 

On the other hand, 

since Jo is compact and therefore all eigenvalues o f j ( j  E J )  are imaginary. 

$ N ( 4  n’) = y(n, 4, y # 0. 

$J( j ,  j ) < O  for j E J, 

Now two cases are possible with the sign of y :  

Elliptic: $ N  is negative definite. 
Hyperbolic: $ N  is positive definite. 

Again let Co be the semimorphism that defines G within G,,,. In the elliptic 
case $ is negative definite so c‘, being closed (see 38.5), is compact; then by 
32.2.4 G is also compact and Co is some unitary semimorphism. In the 
hyperbolic case, with T extended to G,,, as an automorphism, 

is again an involutory semimorphism. The real algebra defined by C ,  is GI = 

J +  iN, on which the Killing form of G,,, breaks into $J  and $,N. both nega- 
tive definite. Therefore in the hyperbolic case C1 may be taken t o  be C,,,. By 
momentarily writing G instead of G,,, and putting 

Co = C,,, 

CI = C,,, 

C = Co T = TCo 

C = C1 T = TC, 

in the elliptic case, 
in the hyperbolic case, 

it appears that 
J =  G,,,, in either case, 
N = 

N = G,-,he 

in the elliptic case, 
in the hyperbolic case. 

Note that C # C,, since N # (0). 
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The requirement that ‘Cun,T1, or ‘CC,T1, be simple is equivalent to the 
requirement that ‘G, T’ be simple (which means C without a nontrivial proper 
T-invariant ideal) : 

In any case, C,, leaves every direct summand of G invariant. If C ,  is a 
T-invariant direct summand of G, then GI ,un is a T-invariant direct summand 
of Gun; moreover, GI is C-invariant as well, and GI,, is a direct summand of 
G,. Thus a T-splitting of G induces T-splittings of Gun and G,. Therefore 
simplicity of rCun, T I or ‘GC, T l implies simplicity of ‘G, TI .  The converse is 
obvious. 

64.9 The foregoing completely characterizes the infinitesimal structure of a 
simple semisimple space R,  that is, G (infinitesimal algebra of Int R) ,  J ,  N ,  and 
Tacting on G. Its possible global structures are now analyzed. 

The Hyperbolic Case G may be supposed to generate a centerfree linear Lie 
group GI (e.g., take G instead of G and GI  = Int C). Then GI  is the homo- 
morphic image of (connected) G by means of a local isomorphism x. According 
to 51.5.1 I ,  J generates in GI a maximal compact subgroup J ,  ; because of 
51.5.10, any wrapping of G, can already be performed, as it were, within 
J , ;  thus the X-original of J ,  is connected and contains the center of G. 
ThereforeJ, is the X-original ofJ,, whereas it  should not contain any nontrivial 
center elements of G. Hence x is a global isomorphism. The admission of 
groups that are only locally isomorphic with linear Lie groups has not been 
an essential extension. 

Thus G is centerfree and may be supposed linear; J has to be compact and 
contain Jo ,  generated by J .  SinceJ, is maximal compact, it turns out thatJ  = Jo. 

Therefore in the hyperbolic case G is centerfree and J is connected. 
Note that by 51.5.12 J is even its own normalizer in G .  

The Elliptic Case G may be considered as a wrapping of a compact semisimple 
linear Lie group, which by 32.2.4 is again compact and by 46.8 may be assumed 
to be linear. So the admission of groups that are only locally isomorphic with 
linear t i e  groups again proves to be inessential. 

Therefore G is supposed to be a compact semisimple linear Lie group. J may 
exceed Jo. Its elements are T-invariants. The subset of T-invariants is a closed 
subgroup of G and its 1-component clearly coincides with Jo. Now J is not 
allowed to contain a nontrivial normal subgroup of G; since ‘G, T’ is simple, 
this amounts to saying that J should not contain nontrivial central elements of 
G. This is certainly required for Jo. Then the possible J’s are the subgroups 
betweenJ, and the subgroup of all T-invariants, and intersecting the center of G 
trivially. 

If G is centerfree, the set of T-invariants coincides with the normalizer of Jo 
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in G: first, it is evident that every T-invariant normalizes Jo. Second, if Z leaves 
J invariant, it leaves its orthoplement N invariant; thus ETZ-' determines the 
same J and N as T did; consequently, a"TE-' = T, Ta = 6, and, since G is 
centerfree, Ta = a. 

N 

The Abelian Case has still to be mentioned in  this context. It is clear, 
however, that the admission of groups only locally isomorphic to linear Lie 
groups does not cause an essential extension. 

64.10. This analysis leads to the following: 

Definition If A is an abelian real linear Lie group, then A endowed with an 
A-invariant Riemannian metric belongs to the class of abelian symmetric 
spaces, Sy(A). 

For G E Alg Lie Lin Com SS, G # {0}, infinitesimally generating G, with 
different but commuting semimorphisms C, C,, (unitary), and T = CC,,, 
suppose the following: 

64.1 0.1 Gc,un,com contains no proper ideal of C except (0). 

64.1 0.2 T extends to an automorphism of G. 

64.10.3 Gcsun contains no center element # 1 of G. 

Then with a group 

64.10.4 G,*,,, between GC.,, and its normalizer in Gun, consisting of 
T-invariant elements and containing no center element # 1 of Gun, 

Gun/ GI un respectively Gc/Gc, u n 

endowed with a G,,-invariant, respectively, Gc-invariant, Riemannian metric 
are called 

elliptic, respectively, hyperbolic, 

(symmetric) spaces. These collections of spaces are indicated by 

Sye(Gc, Gun) respectively, Syh(G,-, Gun). 

SY(GC, Gun) = SY~(GC, Cud u SY~(GC, Gun). 

Their elements are often supposed to be provided with the metric induced by 
the Killing form, as will be clear from the context. The reflection in the point 
p = G&,,, respectively, GC,,,, is also denoted by T (= CC,,). 

Theindication Cun will be often omitted, since the structure of the space does 
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not depend on the choice of C,,. Neither does it depend on the choice of C in its 
isotypic class. 

The attributes twin, inner, outer, and so on, are attached to these symmetric 
spaces according to the properties of the underlying G,. 

Remarks 

( I )  Thanks to 64.10.1, 64.10.3, 64.10.4, Gun and G,, respectively, act 
faithfully on the defined spaces; 64.10.1 states that C, C,, do not coincide on 
any ideal # (0) of G ;  64.10.3 is equivalent to G, being centerfree. 

(2) The extendibility of Tneeds to be required for Gc only in  the hyperbolic 
case and for C,,  only in  the elliptic case; for the latter this makes no difference; 
for the hyperbolic case it might a priori but in fact it does not, since if T is 
extendible to G, it can be made extendible to G by factoring out a central 
subgroup of C intersecting G, trivially. This needs to be verified only in the 
troubldsome cases of outer type D, with I even. 

Things proved can be summarized as follows: 

Theorem Symmetric spaces are locally isometric with products of abelian, 
elliptic, and hyperbolic spaces. Abelian, elliptic, and hyperbolic spaces are 
locally isometric with products of simple spaces of the same kind. Simple 
spaces are isometric with simple abelian, elliptic, or hyperbolic spaces. 
Elliptic spaces are compact; hyperbolic spaces are not. Up to a negative, 
respectively, positive, factor the differential metric at  p = J of an elliptic, 
respectively, hyperbolic, simple space is the restriction of the Killing form. 

Hyperbolic spaces are globally determined by their local structure. 
For abelian, elliptic, and hyperbolic spaces R as before, Int R equals A,G,,, 

and G, respectively. 
In a simple elliptic or hyperbolic space the I-component Jo (=G,,",,) of the 

stability groupJ(=G*,,,,, respectively, G,,,,) at p acts irreducibly and faithfully 
in  the tangent space a tp  which can be identified with iGC,he, respectively, GC,he. 
If in this representation Jo stays irreducible over Com, Jo is semisimple; if it 
becomes reducible, there are two irreducible components, which are non- 
equivalent, and Jo is locally the direct product of a semisimple and a one- 
dimensional linear Lie group and contains its centralizer within the group of 
all volume-preserving linear mappings in the tangent space. 

The last-mentioned facts could have been read in the classification of simple 
semisimple real Lie algebras (Sections 52-53). As a matter of fact, the repre- 
sentation 8 becomes reducible if and only if a summand of type D, appears 
in the algebra of the maximal compact subgroup (which corresponds to Jo), 
and this happens with nonequivalent components. 
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64.11 
analysis. 

The case of simple rGcom,T' with nonsimple Gcom merits a special 

The Elliptic Case G is unitary and G = GI + C2, a direct sum, where G,,G,  
must be isomorphic by T. Locally G is the direct product of the locally simple 
G,,Gz. 

Jo is the set of g .  Tg, with g E GI .  Now assume that G I  and C2 intersect 
trivially, for example, G adjoint or simply connected. Every coset 
g, g2  Jo  (gi E Gi) intersects GI  i n  one point g, Tg;,. This cross section G ,  of 
cosets can be used as a model of G/Jo if g, g,Jo  is identified with g, Tgzl. On 
this model a .  Tb (a,b E GI)  acts as 

G,  itself appears as an elliptic symmetric space with a metric induced by the 
Killing form. 

Note that here, as a homogeneous space, G/Jo is not reduced in the sense of 
63.1.7. 

The Hyperbolic Case It may be supposed that G,, which is of the twin type, 
arose from some complex G' by waiving. Therefore the hyperbolic space can be 
obtained as G'/G'"", where G' is to be taken as a real group. 

64.12. Historical Note The symmetric spaces are a beautiful discovery of 
E. Cartan. The greater part of the results in this section and the next ones are 
his, though the present methods widely differ from his. Cartan's path to 
symmetric spaces was all but straightforward. He scrutinized a statement he 
found in  the literature, which said that Riemannian spaces in which the curva- 
ture tensor is preserved under parallel transport have a constant curvature 
tensor, and proved it to be wrong. He then analyzed that class of spaces by 
sophisticated techniques of differential geometry [Bull. Soc. Math. France 54, 
214-264 (1926); 55, 114-134 (1927) = Eurres I 2, 587-6601 and found that 
each such space bore a structure of homogeneous space. Actually, they are the 
symmetric spaces introduced in the present report; but this was an a posteriori 
discovery of Cartan. Later [ A m .  Ecole Norm. 44, 345-367 (1927) = (Eurres I 
2, 867-9901 Cartan approached symmetric spaces from this point of view, 
though on several issues he relied on the results or presumed results of his 
former approach. Despite the fragmentary character and the many gaps in  the 
general theory, all particular results are surprisingly correct. 

E. Cartan devoted many more papers to symmetric spaces. M. Berger 
[Ann. Ecofe Norm. 74, 85-177 (1957)] recently dropped the assumption of 
definiteness of the Riemannian metric. Though this more general case has been 
taken into account in the preparation of Theorem 64.6, Berger's classification 
has not been reported, since it is extremely involved. 
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Modern tale says that E. Cartan knew only compact symmetric spaces. 
This statement probably owes its origin to a misreading of a remark by 
Berger. 

S. Helgason wrote a monograph on symmetric spaces (Differential Geometry 
and Symmetric Spaces, Academic Press, New York, 1962). 

65. MINIMAL AND MAXIMAL SYMMETRIC SPACES 

65.1 By 64.10 a space in Syh(G,) is determined globally by its local structure. 
I n  contrast, members of Sye(C,) depend globally on the choice of J .  The 

smallest J is G,,,,,; the corresponding symmetric space is the only one with a 
connected stability group and it wraps all others of the same class. If Gun is 
centerfree, the largest J is the normalizer of G,.,, in Gun. Note that to get G 
faithfully represented in G/J one must bar nontrivial center elements of G 
from J .  

Definition A space in Syh(G,), Sye(G,) is maximal (Syma) or minimal 
(Symi) depending on whether its stability group is minimal or maximal. 

The elements of Syh(G,) are both maximal and minimal. 

65.2 Syh(G,); G,,, ,= J,  GC,,==N, e x p N =  N .  

As a model of an element of Syh(G,) one can use GC,hc and even N=G,,,, 
because of 51.5.10 and the one-to-one character of exp on N .  There the 
geodesics through 0 appear as straight lines (see 64.3.2). So in the case of 
Syh(G,) geodesic connection is unique. 

Splitting g E G, into nj (n  E N = exp N , j  E J )  can be performed by taking 
the square root in N of 

g(Tg-l) = nj(n-'j)-'  = t i2 .  

For a moment call 7j(g) the action of g on N as a model of G,/J. To study 71 
one must find 171 E N that satisfies 

g n J = n , J ;  

in other words, one must split 

gn = nl  j (somej E J ) .  

With the aforementioned procedure, 
n,2 = gn2 Tg-I, 

thus 

65.2.1 ( q ( g ) n ) 2  = gn2 Tg-l. 
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This suggests another use of the model N of GJJ. The new action is the 
transform 0 of the action 77 by means of the square mapping Q ,  

Qn=n2 for n E N ;  

W = Qrlk) Q-'.  

Q(rl(g) n) = g(Qn)(Tg-'); 

9(g)n = gn(Tg-'). 

and then 8, is defined by 

Therefore by 65.2.1 

hence 

In particular, 
9 ( j ) n  =jnj-' for j E J, 

6(n')n = n'nn' for n' E N. 

The reflection in 1 again carries n into n-'. Applying 8(n'), one notes that: 

the reflection in n' carries n into n'n-' n'. 

65.3 Sye(Gc); G,,,, = J, Jo generated by J, N = iGC,he, N = exp N. 
By 32.10 the one-dimensional subgroups of G,, cover G,,, whence the geo- 

desics Yl(exp7n) Jo (n E D )  cover G,,/Jo because of 64.3 and the possibility of 
geodesic connection. Splitting g E G,, as g = nj, with n E N ,  j E Jo, is still 
possible, though no longer unique. The set ofg(Tg-')  = njj-'n is still contained 
in N ,  and since every element of N has a square root in N the set coincides 
with N .  

One can still define 
a(g)  n = gn(Tg-'). 

Writing n E N asf(Tf-') withf E G,,, one gets 

%) n = g f V ( g f ) - ' ) ,  

which is again in N. This shows that B(g) maps N onto N and makes 6 a 
transitive representation of G,, in N. The stability group Js of 6 at 1 consists of 
all g E G,, with g = Tg. Therefore it is as large as it can be as soon as G,, is 
centerfree. 

The results of 65.2-3 are summarized : 

Theorem A minimal model in the case of Syh(G,), respectively, Sye(C,), 
with centerfree G,, is furnished by N = exp N with N = GC.her respectively, 
iCCghe, acted on by Gc, respectively, G,,, by means of 6 with 8(g)n = gn(Tg-I). 
In the hyperbolic case the model is also maximal; those symmetric spaces are 
determined by their local shape. 
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65.4. Maximal Compact Subgroups The time has come to prove a 
previously announced theorem (51.5. I I ) :  

Theorem 
conjugate. 

In real linear semisimple G, all maximal compact subgroups are 

The theorem is a consequence of the following proposition: 

Proposition In a symmetric space R in which geodesic joining is unique, the 
intersection of two balls with equal radii and different centers is contained in a 
ball of smaller radius. 

Proof The uniqueness of geodesic joining in R implies that S(a,x) + S(b,x) > 
S(a,b) unless x lies on the geodesic between a and 6 .  Let m be the midpoint of 
a,b.  The reflections, in  m shows 

2S(m, x) = S(x, s, x) G &(a, x )  + S(a, s, x )  

= S(U, X )  + S(S, b, S, X) = S(U, X )  + S(b, x) .  

Supposing that S ( a , x ) ~ y ,  S(b,x)<y,  one gets S ( m , x ) c y  unless a is between 
x and s,x and S(a,x) = S(b,x) = y ;  but then S(a,s,x) = S(b,x) = y = S(a,x), 
which makes a the midpoint of x ,  s,x; hence a = m = b. 

Therefore S(m, x) < y on the compact set of x with S(a, x )  Q y, S(b, x) < y. 
This shows the existence of y‘ < y with S(m, x )  Q y’ on that set. The inter- 
section of the y-balls around a,b is contained in the 7’-ball around m. 

Proof of the Theorem Take C,,, commuting with C, form G,,,,, and the 
intersection Y of its G,-conjugates, which is maximal normal sub G, within 
G,,,,,. Factorization with respect to Y transfers G, into G&, G,,,,, into 
GL.,,,,. Now GL,,,,, contains no nontrivial normal subgroup of G;,. Note that 
GL. is also centerfree. 

R = Gt.~/G~~,un,  is a symmetric space with uniqueness of geodesic joining. 
Let K be a compact subgroup of G,, and K‘ its image in GL,. In R the set 
P = K ’ G ~ ~ , , , ~ / G ~ ~ , , , ~  is K’-invariant and compact, thus bounded. According 
to the proposition, the ball with minimal radius containing P is unique and 
still K’hvariant, as is its center m=g’Gl.,,,,,, (for some g’ E GA,); K’g’ G~,,,,, = 

g’GL,,,,f, translated in terms of G,, becomes KgG,,,,, c gG,,,, with some 
g E G,. In other words, g-’Kg c GE,un. If K is maximal, this means that it is 
conjugate to G,,,, by means of g. 

Remark If one passes to nonlinear wrappings of G,, the maximal compact 
subgroups may undergo essential modification (see 51.5.1 I ,  second Remark ; 
62.9). The theorem, however, can be shown to remain valid. 
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65.5 An analogous statement in the elliptic case would not be true, though in 
most subcases it is. 

The statement would mean that isotypic C, C' (commuting with C,,,,) are 
inner isotypic. This is true of all simple inner and outer types except D, (leven). 
In  this case, from the viewpoint of inner isotypism D,,, and D,,* must be 
distinguished. For I = 4 the variety is still greater; D,,,, D4,*, D4,3 must be 
distinguished. Furthermore, there are three inner different D 4 , o . *  and three 
inner different D4.,.*, D,.,,,, D4+3,*. 

For twin types things can be still more involved. 
These examples provide isometric elliptic symmetric spaces, the stability 

groups of which are not conjugate in Gun. 

65.6. Historical Note The proof of 65.4 is a simplified version of E. 
Cartan's [J .  Marh. pures et uppl. (9) 8, 1-33 (1929), particularly p. 19 = Euures 
12,10291. 

66. AUTOMETRISMS OF SYMMETRIC SPACES, 
AUTOMORPHISMS OF REAL SEMISIMPLE LIE GROUPS 

66.1 The group of autometrisms of abelian symmetric spaces depends 
widely on the global structure of the space and of the (not unique) choice of the 
metric. For nonabelian spaces, however, one has the following: 

Theorem In a simple space R of Sye(G,) or Syh(Gc) the 1-component of 
Aut R is Gun and Gc, respectively. 

Remark This statement is true for all symmetric spaces with no abelian factor. 

Proof Int R, which is Gun or G,, is closed normal in Aut R.  The stability 
group 3 of Aut R at p normalizes the stability group J of Int R at p and its 
1-componentJ,. As represented in the tangent space atp,]preserves the metric 
and consequently the absolute value of the volume. Therefore, according to the 
argument used in 64.8 to prove the compactness of J ,  it can be seen that j / J o ,  
hence j / J ,  is finite. Since Aut R = 3 Int R, it follows that Aut R/Int R is finite. 
Hence Int R,  being closed in Aut R, is also open. 

66.2 In a simple semisimple symmetric space C/J every automorphism of G 
that leaves J invariant gives rise to an autometrism, since it preserves the 
Killing form on which the metric rests. 

Even inner automorphisms of G may effect autometrisms that do not belong 
to the 1-component. An example is k if k belongs to the normalizer of J.  The 
autometrism 

Y,J k - ' ( k ) J =  Y,J gJk-' 
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in the same component as K has the noteworthy property that it commutes 
with every element of G. An easy calculation shows that it coincides with an 
element of G as acting on R if and only if kJ contains a central element of G;  
thus, if for example G is centerfree and k $ J,  then the autometrism induced 
by k will not belong to the I-component of the autometrism group. 

The next task is the determination of the full group of autometrisms. 

66.3 Let R E Sy(G,) be simple, F= Aut R,  Fo = Int R, J be the stability 
group of F at p ,  J ,  the 1-component ofJ,  and F, J the infinitesimal algebras of 
F and J,. Thus Fo = G, or G,,,, and F = G, or G,,,, under a natural 
identification. 

Let Aut(F,J) be the group of automorphisms of F leaving J invariant and 
Aut(F, J ;  J,) its subgroup consisting of the j withj E J,. 

Proposition Under the foregoing assumptions, if R E Syma(G,), then FIFO 
is isomorphically related to a subgroup of Aut(F, J)/Aut(F, J ;  Jo) by assigning 
to f E Fsome j withj E J n fF,; if Fo is centerfree, the assignment is “onto.” 

Proof Since R is maximal, its stability group within Fo is connected; thus 
J n  Fo=Jo. 

Since R is connected, J intersects the component fFo  of F (see 63.1.8). 
Therefore there is some j E J n Po. A different choice j ,  E J n f F o  means that 
j-I j ,  E J  n Fo = J o ;  thus j ,  EjAut(F, J ;  J o )  and the assignment is unique. 

Clearly the assignment is a homomorphism. 
It is one-to-one, since i f j E J n  f F ,  has the propertyj=j,for somej, EJ,, then 

jf = j ,  f for f E F, hence jf = j, f for f E F,; thus z = ji’j centralizes Fo and 
consequently leaves invariant allfJ ( f  EF,), which are all points of R. Therefore 
z =  1 a n d j E J O c F o .  

If F, is centerfree, any u E Aut(F, J )  extends to an automorphism of F,, 
leaving J ,  invariant and acting autometrically on R.  Therefore the assignment 
is “onto.” 

A consequence of the foregoing proposition and of 65.4 and 51.5.1 1-12 is 
the following: 

Theorem The group of automorphism classes of nonunitary G, (E Alg Lie 
Lin Rea SSS) and G, (centerfree), that is, Aut Gc/Int G,, or Aut G,/Int G,, 
is in a natural way isomorphic to the group of autometrism classes of R E 

Syma (G,), that is Aut R/Int R with R = Gc/Gc,,,. 

66.4 I n  addition to the notations in 66.3 the following will be used: 

F =  J +  N a s  usual. 
9. = the representation y j j  of J in N. 
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J =  J' + A ,  with semisimple J',  where A is one- or zero-dimensional, 

J;, A are the corresponding linear Lie groups. 
M the minus-automorphism under some ordered maximal compact 

H,,,,, as usual, the intersection of the aforesaid trunk H with J, which is a 

Z the group of linear mappings of HE,,,, into itself, leaving A elementwise 

according to whether or not 6 is reducible over Com. 

dressing on some trunk H. 

trunk of J and  contains A .  

invariant, and of which the induced mappings in ill:,,,, leave invariant 

W++(J'), 

the top weight(s) of 6, and 
the inner product on iHC,,,,, 

as induced by Jco, (or by G, which for Z will make no difference). 

Proposition A representative system of Aut(F, J)/Aut(F, J;J , )  is furnished 
by the following construction: 

Take one automorphic extension of F for every cr E Z (its existence will be 
proved). Add the products with MIF if 9 is complex reducible and those with 
TI F if R is outer or twin type. 

Proof w E Aut(F, J )  will be gradually modified within w Aut(F, J ;  J,) and 
possibly multiplied by MI to push its H,,,,-restriction into Z. 
OH,.,, is another trunk of J. By means of somej  ( j  E J,) it is brought back 

to HC,,,,. This allows one to suppose that wHC,,, = H,,,, and likewise that the 
dominant chamber of J',  that is, W++(J'),  is invariant under w. 

On A the action of w is 1 or -1. By multiplication by M I F ,  if needed, it 
can be made 1. The action of w in N transforms 6 into equivalent w6w-I .  
Thus w effects a permutation of the weights of 6. Because of the invariance 
of the dominant chamber and of A elementwise, this permutation leaves the 
top weight(s) invariant. (This is also true if there are two, for then they take 
opposite values on A ,  as can be seen by calculating the 0-trace of an element (1, 
with u E A ,  as acting on G.) The new w has its H,,,,-restriction in Z. 

This procedure is unambiguous: if the H,,,,-restrictions of wI ,w2  are in Z 
and w2 E w1 Aut(F, J ;  J,), then w;'w2 =jo withj, E Jo hasits H,,,,-restriction 
in Z. Thereforej,, acting trivially on the dominant chamber of J' and on A ,  
acts trivially on H,.,,,. Therefore the H,,,,-restrictions of wl, w2 coincide. If 
6 is complex reducible, one should note that the minus-automorphism Mis not 
induced by any element of J,. 

Clearly the procedure is homomorphic. Up ta  Aut(F,J; J,) its kernel con- 
sists of 1 and T at most: Let the H,,,,-restriction of w be trivial; up to 
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Aut(F, J ;  J,) it may be assumed trivial on J’ (see 33.9), thus on J ;  then 
w acting in N centralizes 6(Jo) .  If 6 is complex reducible, it belongs to 
Aut(F, J ;  J,) (see 64.10 or the third case of Theorem 64.6); if 6 is complex 
irreducible, w behaves as -+1 on N, in other words, as 1 or T o n  F. For inner 
types T = h (some h E H,,,,  c Jo) and therefore can be disregarded. 

The last thing to be done is to extend u E Z to F as an element of Aut(F, J ) .  
First of all u extends as an automorphism to J‘ and J.  By P ( j )  = 9.(uj) a new 

linear representation 6’ of J in N arises. It shares its top weight(s) (invariant 
under u) with 9.. Therefore there is a (real) linear mapping of N onto itself, 
again called u, such that 9.‘(j) = u6(j)u-’. Since D ( j )  equalsj on N, this means 
that ujn = uju-ln; in other words 

N 

66.4.1 [uj, an] = u[ j ,  n] for j E J, n E N .  

The b(J)-invariant metric on N is changed by (T into a 6’(J)-invariant metric, 
which is again 9.(J)-invariant. The uniqueness-argument shows that the 
metrics are equal up to a positive constant factor. Renorming of (T makes them 
exactly equal. Then u preserves the inner product on N .  On J, where u is 
autornorphic, it did so before. Extended linearly to  F, it preserves the Killing 
form on F =  J +  N :  

66.4.2 

Now 66.4.1 shows that 
+(.f,i, 4 2 )  = +(fb f2). 

u [ j , f l =  [uj, ufl for j E J, f~ F. 

+(j ,  [on,, .n21) = +([j,unll,un2) = + ( ~ [ ~ - ~ j , n , 3 , 0 n ~ )  
Further, 

= + W j ,  n,I, n2) = $((T-Ii [nl, n2l) 

= +(j3 4 n l ,  43). 

Thus u[n, ,n,]  - [un,,un2], which belongs to J, is orthogonal to all of J .  
Thanks to the nondegeneracy of + on J, it vanishes. This proves that u extends 
the given one automorphically. 

66.5 The foregoing proposition allows one to compute Aut R/lnt R for 
R E Syma(G,) of centerfree simple G,. Spaces other than Syma spaces are 
covered by the following: 

Proposition Let R ,  R’ E Sye(G,) with simple? centerfree G arise from 
G,JJo, G,,/J,, respectively, where J ,  is connected and J 1  3 J,.  Then 

Cf. footnocc in 62.7. 
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Aut R'/Int R' arises from the subgroup consisting of those elements of 
Aut R/Int R that contain an element IeavingJ, (as identified with a subgroup of 
Aut R)  invariant (by means of conjugation), by reduction modulo the subgroup 
of those that contain a j (considered as an element of Aut R) with j E J , .  Of 
course, if R' E Syemi(G,), that is, if J ,  is the normalizer of Jo in Gun, the first- 
mentioned subgroup is the whole of Aut R/Int R. 

66.6 To find the system Z in any particular case one uses the weights of the 
representations 6 from the classification list of Sections 52-53. Note that the 
presence of an A restricts C enormously; nontrivial elements can then exist 

The following list includes the autometrism classes of Syema and Syhma for 
(noncompact) inner and outer G,, hence the automorphism classes of G, as well. 
The autometrism classes of twin G, simply build up from outer automorphisms 
and T. 

Though the theorem in 66.3 grants the extendibility of elements of Z, one 
particular extension has been specified in each case. 

The symbols /3,/3', . . . and y, y', . . . will indicate inner and outer automor- 
phisms of G, respectively. 

The groups Aut R/Int R, if abelian, are written additively. 

only in Az,,+,., and Dl.3.  

66.7. The Autometrism Classes, Aut R/Int R, for Syma(G,), 
G Centerfree, Simp1e.t Inner Type. The Automorphism 
Classes of C, 

A l . j :  J E Aj- l  + + D,.  

For I # 2 j  - 1 the automorphisms of the graph of J do not extend to  F. 
For I = 2 j  - 1 one gets the symmetry of the graph of A,, called y. Thus 

1 # 2 j  - 1 : 

I = 2 j  - 1 : Z,(M) + Z2(y) with y + M inner. 
Z 2 ( M ) ,  

For I = 1 the summand Z,(y) does not occur. 

B l + j , j >  3 :  

Dj-I admits pj-l - p j - l  + 2p j  + . . + 2p, + 2p,, induced by an element 
of the kaleidoscope group of FCom, namely Sp,+. . . +P,+P,, hence inner. For 
j =  5 the other symmetries of D, cannot be extended without violating the 
invariance of the top weight of 6. Thus 

J E Dj-, + Bl-j+l .  

t Cf. footnote in 62.7. 
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BI,l: J E D ~ .  

1=4.  
The mappingp, tt p, + 2p l ,  induced by SPl. Here, also, this covers the case 

U P ) .  

C I , I :  J E A,-, + D,. 

The symmetry of A,-, does not extend. 

&(M).  

C1 , , , j  # I # 2 j :  

Rigid graph. 
J E C, + C,-,. 

Trivial. 

CI, , ,  1 = 2j. 

The graph of J admits the interchange of the summands, induced by 
'PI+. ' ' + p J  ' p 2 +  ' ' '+PJ+l . * * ' P J , '  ' '+pl-l '  Thus 

ZZ(rs>. 

D I , , ,  1 > 4: J E AI-, + D,. 

The symmetry of the graph of A,-, does not extend. 

Z z ( M ) . t  

D4.1. See D, ,3  for 1 = 4. 

D,,3: J E D, + DI-,. 

The graph symmetry is admitted. 

Z 2 ( M )  + Z z ( y )  with inner y + M for odd 1. 

Note that for even I ,  M itself is inner. 

D4,4: J E A, + A, + A, + A,, the summands belonging to pl ,p2 ,p3 ,p3  + 
2p4 + p, + pz. These four rootforms are orthogonal to one another. Half their 
sum is a rootform p, + p z  +p3 +p4 (the top weight of 8). S,,, Sp2, Sp3, 

t This result deviates from Cartan's. 
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s,,3+2,,4+,, I t f 2 9  and S,, I+p2+,,3+,,4 produce all rootforms from them. Therefore 
the full permutation group of p I ,  p 2 ,  p 3 ,  p 3  + 2p4 + pI + p 2  is admitted. 

The symmetric group of four permutands; the inner automorph- 
isms produce the four-group. 

The symmetries of both summands extend. y :  pI  t p  p 2  (symmetry of DJ and 
ySpJt.. . t,,l+,,l Sp,+. . .+ , , I+P2.  No more for I # 2 ( j  - 2) ,  even if j = 6 or I - 2. 
For I = 2 ( j  - 2) the aforesaid group increases by p ' :  

I # 2 ( j  - 2) : Z,(y) + Z2(y + p>; 
I = 2 ( j  - 2) : extension of the foregoing by means of p' which 

interchanges the summands. Inner part: Z2(/?) + Z2(p'). 

E6,1: J E DI + D,. 

The symmetry of D, does not extend. 

Z*(M). 

E6,2 :  J E A ,  +A,. 

The symmetry y of E,. 

Z,(Y). 

The symmetry of D, does not extend (confront it with d).  

Trivial. 

E7,*:  J E  Dl + E.5. 

I f  the first summand is fixed, then p4 is fixed, and so on. 

Z2(M).  

Note that M is inner. 
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€7.3: J E A,. 

The symmetry of A, extends, since the system of rootforms contains the 
configuration 

P2 - P3 - 2P4 - p5 - 2P6 - 2p7 
.-.- ._.-._.-. i p 3  i- 

PI PS P7 P6 P4 P2 P1 +2p3+p4+2p5+2p6+3p7 

the symmetry of which produces an automorphism, necessarily inner in E,. 

Z,(P)* 

E8, , :  J E E , + A , .  

Rigid graph. 

Trivial. 

€ 8 , 2 :  JE  D,. 

The symmetry p4 f-) p6 does not extend. 

Trivial. 

F4,j: J E  8, or C, + A ,  

A rigid graph in all cases. 

Trivial. 

G,,,: J E A ,  +A, .  

The permutation p, tt 3p, + 2p, does not extend. 

Trivial. 

66.8. The Autometrism Classes, Aut R/Int R, for Syma(G,), 
G Centerfree, Simple, t Outer Type. The Automorphism 
Classes of G,  

A,,o.*: Jdoes not admit outer automorphisms. 

z m .  
t Cf. footnote in 62.7. 
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A 2 m - l . m . * :  J E  D m .  

Here D, admits of a symmetry. If extendible, it must be inner up to T. 

T = hP, Pp, = p,+,-,, Pep = epp,  h = exp h, 

pk(h) = 0 (k  # m), pm(h) = Ti. 
One tries 

s = exp ~ ( 2 , ~  -t- z-,,), T = 7ri/d2(pm, p,). 

Then 
Se,, = e-,,, Se-,, = epm, Sh,, = hpm, 

SP = PS. 

p d s h )  = (Spm)(h) = --mi, 

pm-l(Sh) = (Sprn-l)(h) = @ , - I +  prn)(h) = = pm+l(Sh), 

pi(Sh) = 0 (i # rn - 1, m, m + 1). 

However, S does not commute with T as it should. It has to be changed to 
satisfy this condition. Put 

ho = h - Sh, ho = exp h,. 

Then 

p m ( h 0 )  = 27% p,-,(ho) = pm+,(ho) = 4 ,  otherwise = 0; 
N -- 

STS-' = ShS-'P = ShP = Shh-' T =  A,-' T, 

TS = T exp ~ ( 2 , ~  + t-,,,) 
= exp T(T(ep, + e-,,))"T 

= exp(-T@,, + 2-,,,,)) T ;  

thus 
STS = T, S2 = STS-I STS = Lo-'. 

Now S is going to be replaced by some 

S'=L,S 

which commutes with T. This means that h, has to fulfill 
N 

L,ho-'ThT1 = 1 

or, with hl = exp h,, 

h, - Th, = Lo mod 27ri for the rootforms. 
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From this hl can be solved with 

p,&) = 0, ~ , , , - ~ ( h ~ )  = -irk ~ ~ + ~ ( h , )  =+Ti, otherwise 0. 

Now S' commuting with T leaves Jinvariant and produces the automorphism 
wanted. Thus 

Z2(T) + z2m 

D l P j , * ,  I #  2j  - 3 .  

No automorphism of the graph of J .  

ZZ(T)* 

D,.j,*, I = 2 j -  3 :  J E Bj-2 + Bj-2. 

The graph admits the interchange of the summands. Put 
... 

s = s p , + . . . + p j  ~P,-Ii-...+pl-l s p j + . . . + p l *  

The rootforms are permuted in the correct way by S. Moreover, SP = PS, but 
Sdoes notcommute withT= t?P.Thecorrectingfactorisfoundas inA2,n-lvm,*: 

PpI = p2, Pp2 = pI, ppk = pk (k  # 1,2), Pep = epp, 

Pj (h)  = Ti, Pk(h) = 0 (k  #h 
pj(Sh) =-Ti, pl(Sh) = p2(Sh) = r i ,  otherwise 0, 

and so on: 
TS = S - I  T, 

and so on. 

Z2(T) + ZAP). 

E6.0,* and '6,?.,** 

No graph automorphism. 

Z*(T). 

67. FUNDAMENTAL GROUPS OF SYMMETRIC SPACES 

67.1 Hyperbolic symmetric spaces are topologically euclidean, with a trivial 
fundamental group. For elliptic symmetric spaces of the twin type the fun- 
damental group is that of the unitary type. The case R E Syema(G,) is settled 
by Theorem 6 3 . 3 . 4 .  Indeed, R = GUn/Cc,,,, where Gc,,, is the maximal 
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connected subgroup of Gun consisting of T-invariants. I f j ,  as in 63.3.4, means 
the embedding of G,,,, into Gun, then the a E~@(G,,,.) are characterized by 
containing a T-invariant path. Now for centerfree Gun the system of straight 
paths defined by 2 in 32.2.4 intersects every element a of @(Gc,un) at most 
once, and this system is T-invariant. Therefore for centerfree G,,, hence, in 
general, every CL = Ta contains a path w = Tw. Whence: 

Proposition For R = Gun/Gc,un, @(R)  is isomorphic to @(Gun) mod kernel 
(1 - T) .  Its dual @*(I?) is isomorphic to (1 - T )  @*(Gun). 

67.2. Dual of the Fundamental Group of R E Syema(G,), G Simple. 
Centerf ree 

For all inner types: Trivial. 

Dlv*: Elements rl + r2 and xk (k  > 2). 

I odd : Z 2 ( 2 ~ , )  = Z 2 ( ~ 3 ) ,  

1 even: Z2(r1 + r2) = Z2(~3). 

67.3. Proposition Let G be simple centerfree, R E SyemXG,), Fo = Gun, 
Jo = Gc,,,,, and J the normalizer of J o  in Fo. Then (P(R)/@(Fo/Jo) is iso- 
morphic with J/Jo. 

This is evident since Fo/Jo is a wrapping of R = Fo/J. 
J/Jo is found in 66.7-8; the normalizer classes produce the isometrisms 

If J /Jo  or @(Fo/Jo) is trivial, the proposition gives full information on @(R). 
indicated by p, p’, and M (if it is inner). 

Otherwise some additional arguments are needed. 

67.4. Fundamental Group of R E Syemi(G,), G Simple, Centerfree 

AlS j ,  I # 2 j -  I :  
1 = 2 j -  1 :  

Bl,j, j > 3 :  
B1.1: 

B L 2 :  

c1.1: 
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Proof for A2,,-, ,,,,.* : The notations of 66.8 are used. The fundamental group 
can be considered as an extension of Zm(n2) by Z2(P). A path from 1 to I?, S i n  
the normalizer ofJ, is found as the adjoint image of a path 

Y, exp th, exp tT(e,, + e-,,) (0 G t G 1) 
in the universal wrapping of Fo = Int R. The square of the path is 

Y, exp rh, exp tT(e,, + e-,,) 

Y, exp +tho exp tT(e,," + e-,,) 

(0 G t G 2). 

(0 G t G 2) 
The path 

has its adjoint within J,. Therefore in Fo/Jo it is trivial. Multiplication of the 
last but one by the inverse of the last gives 

Y, exp t ( h ,  - $ho) (0 G t G 2). 
Now 

pm(2h, - h,) = -27ri, pm-,(2h1 - ho) = 0, pm+,(2hl - h,) = 2ni, 
and - 0 otherwise, which shows 

x2  is a generator of order m of the dual fundamental group of Fo/J,. Thus, 

Y, exp r(h, - tho)  (0 G t G 2) 
. I  This restilt deviates from Cartan's. 
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turns out to be an element of order m; 

is of order 2m in the fundamental group of Fo/J. 
y, exp th, exp t+,, + e-,,,,) (0 G t G 1) 

For Dl,,,* ( I  = 2 j  - 3) the proof is much the same. 

67.5 In the inner case all wrappings of R E Syemi(G,) (G simple, centerfree) 
are realized by elements of Sye(G,). An element of Syema(G,) is simply 
connected. So wrapping Fo = G,, does not affect R, since the arising center 
dives into the stability group. 

In the outer types R E Syema(G,) is not simply connected (67.2). Therefore 
wrappings of G may cause true wrappings of R. Let e be the universal wrapping 
of G and e,, = Po, e,, e,,,,,, = Jo the induced wrappings of G,,, G,, G,,,,, 
respectively, within e. The new symmetric space k = Po/Jo will wrap R in any 
case; however, Jo may have a nontrivial intersection with the center of Gun. 
This intersection 2 can be found by comparing the results of 62.8 and 62.9. 
The 1-component of Aut k is isomorphic to f o / Z .  

Proposition 4 is simply connected. 

Proof It suffices to show that the index of Z in the center of go equals the 
order of the fundamental group of R. This is shown in the list in 67.6, obtained 
from 46.4, 67.2,62.8, and 62.9. 

67.6 A,: center of Po: 
@(R) : 
2: 

D,: center of Po: 
(@R) : 
2: 

E, : center of go : 

Z :  
@( R) : 

z,+ *(TI). 

Ztcl+, , (27r1)  for odd Z, Z,+,(7r1) for even 1. 
Z2(7ri) for Al,o,*,  odd Z, 0 for even 1. 
Z2(7rJ for A2m-l.m.*, odd my Z2(7r3, even m. 
Z2(7rl) + Z2(7r2) for even Z, Z4(7r1) for odd 1. 
z2(r3). 

Z2(74* 

Z3(7rJ 

Z3(77,)* 

0. 

Remark The validity of the proposition is also an easy consequence of 64.1.3 
and the considerations in 64.9. 

67.7 Aut R/Int R can sometimes be smaller than that of the maximal space. 
One must check the action of Aut R/Int R on the fundamental group of 
R E Syema, in other words, on J/Jo as far as the inner types are concerned. In 
the outer case there is still the a priori condition that T be an autometrism. 
It turns out that only for D2(,-2),, and the outer types of D, can it happen that 
Aut R/Int R is smaller than for the maximal type. 
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68. A LIST OF FUNDAMENTAL THEOREMS 

The aim of this section is to list a series of closely related theorems, a few 
known to the reader, one to be proved here, and the greater part in the next 
sect ion. 

68.1-14 G E Alg Lie Com, and if needed E Alg Lie Lin Corn; then G is 
generated by G. 

Notation IfX sub G,thenInt(G, X)isthesubgroupofinnerautomorphisms 
of G leaving X invariant and f is the group generated by the exp X with 
x E X as acting on G. 

68.1. Trunks 

A regular element of G was defined as one in which rank 2 (x E G )  attains 
its maximum. The trunk H of a regular element h was the set of x belonging 
to the 0-root of h, that is, hPx  = 0 for large p .  The following is well known 
from 17.8 and 33.9: 

68.1 .l. Theorem All trunks of G are Int G-equivalent. 

68.1.2 If Cis semisimple and His  some trunk of G, then His  the subgroup of 
Int G leaving H elementwise invariant and Int(G,H)/A is isomorphic with 
In t W *(G, H ) .  

68.2-3. Maximal Solvable Subalgebras 

68.2 The maximal solvable subalgebras of G are of particular importance. 
They are also called Borel algebras (after A. Borel). 

Theorems 

68.2.1 A maximal solvable B sub G contains a trunk of G. 

68.2.2 The maximal solvable subalgebras of G are Int G-equivalent. 
395 
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68.2.3 If B is maximal solvable sub G, then Int(G, B )  = B. 

68.2.4 For semisimple G an element of Int(C, B )  leaving B elementwise 
invariant is the identity. 

68.2.5 The groups infinitesimally generated by maximal solvable sub- 
algebras of G are closed and characterized by being maximal solvable Lie or 
maximal solvable connected. They are Tnt G-equivalent and their own 
normalizers. 

68.3 If G E Alg Lie Com S S  and H i s  an ordered trunk of C, then clearly H ,  
together with the branches e, ( a  > 0), spans a maximal solvable subalgebra. 
The next theorem asserts that this construction exhausts all of them. 

Theorem If G E Alg Lie Corn S S ,  then any maximal solvable subalgebra 
B of G is spanned by an arbitrary trunk H of G within B and the branches e, 
with a > 0 under a suitable order on H:. The maximal solvable subalgebras of 
Garound a trunk Hare  Int(G, H)-equivalent and in a one-to-one relation with 
the chambers on H .  

68.4-6. Nonsemisimple Maximal Proper Subalgebras 

68.4. Theorem G E Alg Lie Corn S S .  

trunk of G. 

maximal proper subalgebras with no regular element. 

Any maximal proper subalgebra of G, which is not semisimple, contains a 

The case of Bl-l in D, shows that a semisimple G can have semisimple 

68.5. Definition Let G E Alg Lie Corn S S  be dressed on an ordered trunk 
H.  For p E W++ the set of CL E W +  with a vanishing p-coordinate on the basis 
W++ is denoted by W'(p). The linear space spanned by H, all e, with cc > 0, 
and all e-, with cc E W+(p) is denoted by G(p ,H)  or C(p), for short. 

68.6. Theorem G E Alg Lie Com S S .  

68.6.1 
semisimple. 

C(p), as defined in 68.5, is a maximal proper subalgebra of Cand non- 

68.6.2 Any nonsemisimple maximal proper subalgebra M of G on any 
suitably ordered trunk H of G within M gets the form G ( p , H )  for some 
p E W++(G,H).  
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68.7. Parabolic Subalgebras 

68.7.1. Definition The proper subalgebras of G containing a maximal 
solvable one and the groups generated by them are called parabolic. 

Note that a parabolic subalgebra of G must contain rad G. 

68.7.2. Theorem If M is parabolic sub G, then Int (G,M) = a. 
Parabolic subgroups are closed and their own normalizers. 

68.7.3. Theorem Parabolic M sub Cis  the intersection of (a finite number 
of) maximal parabolic subalgebras of C around the same trunk, and likewise 
for parabolic subgroups of G. 

68.7.4. Theorem For semisimple G the notions of maximal parabolic and 
of nonsemisimple maximal proper subalgebra coincide. 

68.7.5. Theorem For any ordered trunk H every maximal parabolic 
subalgebra of semisimple G is Int G-equivalent with some C(p). 

For any ordered trunk H ,  C(p, H )  and G(o, H )  are Int G-equivalent only if 
p = u. 

68.8. Nilpotents, and Semisimple Subalgebras of Rank 1 

68.8.1. Theorem To any ad-nilpotent e E G E Alg Lie Com SS an ad-pure 
h E G can be found such that he = e. 

68.8.3. Theorem Any ad-nilpotent e E G E Alg Lie Com S S  is contained in 
a semisimple subalgebra of G of rank 1. 

68.9. Bruhat’s Lemma The intersection of two maximal solvable sub- 
algebras of C E Alg Lie Com S S  contains a trunk of G. 

68.1 0-1 1. Some Homogeneous Spaces 

68.1 0 Int Gacts transitively on the set of maximal solvable subalgebras of G. 
There is even double transitivity in a weak sense: 

Theorem Let G t Alg Lie Corn S S .  Then the (ordered) pairs of maximal 
solvable subalgebras of C which have no more than just a trunk in common 
are Int G-equivalent and form an open everywhere dense subset in the manifold 
of all (ordered) pairs of maximal solvable subalgebras of C.  
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68.11. Theorem 
sub-group. Then the manifold G/A is compact. 

68.12-14. A Proof 

68.12 Only the theorems of 68.2 are proved this section. The proof 
rests on the rather elementary fact (to be proved in 69.25 and 69.37) that: 

the maximal solvable subalgebras of G with a regular element are equivalent 
under Int G and form a compact manifold, 

and on a proposition that for the sake of convenience is formulated in 
projective terms. 

A group acting on the linear space R can also be interpreted as acting on the 
projective space R ,  derived from R. Lie’s theorem (13.9) then means that a 
solvable Lie group possesses a fixed point. 

Let G E Gru Lie Lin Com, A a maximal solvable Lie 

Proposition Suppose that G E Gru Lie Lin Com, solvable, acting on 
R E Spa Lin Com, interpreted as acting on R,. Then any minimal closed G- 
invariant subset of R ,  consists of one point. 

Proof by induction on dim R,. The truth for dim R ,  = 1 is a matter of 
inspecting the solvable linear Lie groups acting on two-dimensional space. 
From a triangular form of G it is seen that either every point of R ,  is a fixed 
point or that only one point of R ,  is left fixed and all others form one orbit, 
from which the validity of the proposition is obvious. Therefore suppose that 
dim R ,  > 1 and let M c  R ,  be such a minimal closed invariant subset. Its 
projective span is again invariant and may therefore be supposed to coincide 
with R,. As acting on R,, solvable G possesses a fixed point p. Ifp E M ,  then 
because of its minimality Mcoincides with {p}, which agrees with the assertion. 
If p $ M, then in Rk = R ,  modp (i.e., the projective space of straight lines 
through p) M reappears as a closed subset M’. It is again minimal invariant 
under the solvable group induced by Gin R>. By induction M’may be supposed 
to consist of one point only. This means that M lies on a straight line through 
p, and finally that dim R, = 1, which is just the induction basis. 

68.13. Proof of 68.2.1. Let9lbethesetofmaximalsolvablesubalgebrasof 
G with a regular element and let A be any solvable subalgebra of G. The 
ii (a E A )  generate a solvable linear Lie group A’acting on the linear space Gand 
consequently on 93. Now 93 and the action of A’ on 9l can be interpreted in a 
linear space R (and in the related projective space R,) as follows: 

Let dim B = k for B E 9l and take R as the linear space of skew k-tensors on 
G. (Using a basis of G, the k-dimensional linear subspaces L of G are described 
by their Plucker coordinates in R ;  take a basis of L and form the k-deter- 
minants from the coordinates of the basis elements.) Now A’ induces a solvable 
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linear Lie group A" acting on R and consequently on R,. The image of93 in R ,  
is again closed and A"-invariant. By 68.12 it contains some element of 93 fixed 
under A". This means the existence of a solvable subalgebra B with a regular 
element such that a"B = B for a" E A', hence a'B c B for a E A .  Now the linear 
span of B and any a E A is again solvable; therefore a E B for any a E A ,  hence 
A = B. If, moreover, A is maximal, then A = B which proves that every 
maximal solvable subalgebra has a regular element. The remainder of the 
theorem is an easy consequence verified in a later context. 

68.14 The facts proved in 68.12-13 are not used in the discussion of the 
theorems stated in 68.1-11. The fact (68.2.1) that a maximal solvable sub- 
algebra of Gcontains a regular element is related to  Lie algebras rather than to 
groups. For this reason it will be proved algebraically in Section 69, together 
with the analogous assertion on maximal nonsemisimple subalgebras of 
semisimple Lie algebras (68.4). From this the conjugacy assertions will be 
derived by using the conjugacy of trunks. 

68.15. Historical Note The statements on the existence of regular 
elements in maximal solvable and nonsemisimple maximal subalgebras and 
some others, such as 68.8.1 and 68.8.3, are being credited to V. V. Morozov on 
account of his unpublished Kazan thesis of 1943, which seems to have been 
lost. Without doubt it is a great merit to have proposed these theorems and to 
have initiated this new chapter of the theory of Lie algebras. On the other hand, 
it is a fact that Morozov's published work on these points contains nothing 
that by any standard whatsoever could be called a mathematical proof [Dokl. 
Akad. Nauk. SSSR 36,83-86 (1942)l. 

F. I. KarpeleviE [Dokl. Akad. Nauk SSSR 76, 775-778 (1951)l is sometimes 
quoted as having simplified Morozov's proofs, though rather KarpeleviE 
used Morozov's full results to derive statements that in Morozov's strategy 
must have appeared as lemmas from which his final results were derived. 

It is distressing that until now no serious proof for a series of primordial 
theorems, though often quoted and used, has been available in the literature. 
Exceptions are Morozov's rather weak statements 68.8.1 and 68.8.3, which 
were first proved by N. Jacobson [Proc. Amer. Math. Soc. 2, 105-133 (1951)l. 
The proof of 68.2 in 68.12-13 has been fashioned after one for algebraic 
groups, thanks to an oral indication by J. Tits; 68.10-1 1 likewise go back to 
J. Tits [Mem. Acad. Bruxelles in 8", 29, No. 3,94(1955)]. Bruhat's lemma (68.9) 
seems to have been diffused by oral tradition. Its usual formulation and 
proofs have concealed the fact that it is almost trivial, at least for linear Lie 
groups and algebras. 

For an axiomatic and more detailed description of the situation as in 68.7 
see J. Tits [Compt. Rend., Paris 254,2910-2912 (1963)l. 
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The theorems announced in the present section are proved in the next, 
together with other statements. The proofs, except those mentioned before, are 
due to H. Freudenthal, though simplified by H. de Vries. 

69. PROOFS OF THE STATEMENTS OF SECTION 68 

G E Alg Lie Corn. 

69.1. Proposition If G E Alg Lie Lin Com S S ,  then tr(ab) is a linear 
combination of the Killing forms of the simple summands of C, with positive 
coefficients. 

Proof According to 43.4.1, this is true of simple C, even if reducible. Assume 
G = GI + G2 (direct sum) and the proposition true for every nonzero linear 
representation of GI and G,. It is sufficient to prove the proposition for 
irreducible G. From 45.3 it is easily seen that up to equivalence any irreducible 
representation of G, as well as the identical one, originates as follows: let Gi act 
on Ri E Spa Lin Com, i = 1 , 2, and let G act on R = R1 Q R2 in such a way that 
for ai E Gi, xi E Ri 

(a1 + a2)(x1 Q ~ 2 )  = (aixi) Q ~2 + X I  Q ( a 2 ~ 2 ) .  

c1 E End R ,  induces c E End R, where 
tr c = (dim R,) tr cl. 

a l , b ,  E GI induce a,b E G acting on R, 

trR Ub = (dim R2) trR, bl. 

a1 E GI, b2 E G2 induce a,b E Gacting on R, 

trR ab = tr aI  * tr b, = 0. 
Hence 

This proves the assertion. 
tr(a, + a2)(b1 + 6,) = dim R,  tr a1 b1 + dim R, tr a2 b,. 

69.2. Generalization of the Second Criterion on Solvability (1 7.1 7) 

Proposition For G E A I ~  Lie Com Lin the following conditions are 
equivalent: (i) G is solvable, (ii) tr ab = 0 for a E G, b E C(G) ,  (iii) tr ab = 0 
for a,b E C(C).  

Proof (i) --f (ii) and (ii) + (iii) are clear. Now suppose that G is not solvable. 
G acts on R which can be written directly as R I  + - * - + R, such that for every i 
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R,  + * * - + R, is G-invariant and 
R, + * * * + R,,, mod R ,  + - + Ri is irreducibly acted on by G. 

Since G is not solvable, dim R, > 1 at least once. Let t ,  be the projection onto 
R,, thus x i  t , x  = x .  If a’ E End R for a E Cis  defined by 

u ’ x  = f l a x  for x E Ri and all i ,  

then You’  maps G homomorphically onto some C’ and C(G)  onto C(C’) .  
Since G’ is irreducible on every Ri and dim R, > 1 at least once, it appears that 
C(G’)  is simisimple and # (0). Thus tr a‘b‘ does not vanish identically on 
C(C’)  according to 69.1. The same is true of tr ab, which equals tr a’b’. This 
proves the assertion. 

69.3. Proposition If G E Alg Lie Corn Lin and N is the subalgebra of 
nilpotent elements of rad C, then N is an ideal of G, and rad(Cmod N )  = 

(rad G )  mod N is the center of G mod N .  

Proof From a triangular form of rad G it is clear that N is an ideal of rad C, 
containing the commutator algebra of rad C.  Let g E G. Then g and rad G 
span a solvable subalgebra whose commutator algebra consists of nilpotent 
elements and is contained in rad G. Therefore 2 rad G c N,  for all g E C, 
from which the proposition follows. 

69.4. Proposition If G E Alg Lie Com Lin and R is the subspace con- 
sisting of all elements r such that tr ar  = 0 for all a E C,  then (i) R = rad C, 
(ii) R contains the nilpotent elements within rad G, (iii) R is an ideal of C, (iv) 
(rad C )  mod R is the center of C mod R.  

Proof R is an ideal since tr(a[b, r]) = tr([a,b]r) = 0 for a,b E C, r E R.  The 
solvability of R follows from 69.2; hence R c rad C. If a E G, than a and 
rad G span a solvable subalgebra, from a triangular form of which it follows 
that tr an = 0 if n is a nilpotent element of rad G. Hence R contains the ideal N 
of nilpotent elements within rad C. From 69.3 it follows that (rad G )  mod R is 
central in G mod R ;  therefore (rad G )  mod R = rad(G mod R) is the center of 
Cmod R. 

69.5. Proposition For A sub G, the following conditions are equivalent: 
(i) A is solvable, (ii) #(a, 6) = 0 for a E A, b E C ( A ) ,  (iii) #(a, b) = 0 for a, b E 
C ( A ) .  

Proof Apply 69.2 to the image of A under Y a e A  YgcG ig ,  that is, to ad,A; 
note that the kernel of this representation is A n Z, where Z i s  the center of G 
and A n Z c  rad A. 



402 68-75. TITS GEOMETRIES 

69.6. Notation If M sub G and z,h is the Killing form of G, then 

M I  = the orthoplement of M with respect to I,L and 
M O = M L  n M  

Proposition If M sub G, then (i) M o  c rad M, (ii) M u  contains the ad- 
nilpotent elements within rad M ,  (iii) M n  is an ideal of M, and (iv) (rad M )  
mod M u  is the center of M mod Mu. 

Proof Apply 69.4 to the image of Munder the representation YmEM YgeC &g; 
note that its kernel lies within Mu. 

69.7. Proposition I f M  sub G E Alg Lie Com and adGMadmits cleaving, 
then a d G M o  also admits cleaving. 

Proof Since M n  is an ideal of M ,  f M  c M u  for x E Mu. By the last assertion 
of 18.1. I the cleaving components o f f  also map Minto M u ;  let them be pure 
ii and nilpotent E (some u,e E M ) .  This shows that e + M u  is in the center of 
M mod M u ;  hence by 69.6 (iv) in (rad M )  mod M u ,  thus e E Mu by 69.6 (ii), 
which proves the assertion. 

69.1 1 . Proposition Suppose G E Alg Lie Com Lin, G solvable, and let G 
admit cleaving. Let N be the ideal of nilpotent elements of G. Then, if A is a 
maximal pure subspace of G, G = A + N, a direct sum, of subspaces. 

Proof By 19.20 the idealizer of A is contained in A + N. Therefore, if G # A + 
N, then by the fact that the elements of A are ad-pure there would be a g E G, 
g 4 A + N, and u E A such that iig is a nonzero multiple of g; this contradicts 
the fact that Ncontains the commutator algebra of G. 

69.14. Proposition If G E Alg Lie Com S S ,  H a  trunk of G, and A c H, 
then the centralizer of A is the direct sum of a subalgebra of H and a semisimple 
one of G. 

This follows from 20.15. 

69.1 5. Proposition Let G E Alg Lie Com S S ,  M sub G its own idealizer, 
and A a maximal ad-pure linear subspace of M. Then z,h is nondegenerate on A .  

Proof According to 19.22, A lies in a trunk H of G. For a E W the 
restriction to A of a is denoted by a’. The class of 6 E Wwith 6’ = a‘ is denoted 
by [a].  

G splits with respect to /I E H into eigenspaces G, (a E W). 
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G splits with respect to a E A into eigenspaces G,, (a  E W).  
Put 

M n C,. = Ma,. 

M =  Ma,, 
at 

all sums being direct. 

A c B. It will be shown that A = B. 
Let B be the set of h E Hsuch that a(h) = p(h) for all a,p with a' = p'. Thus 

Every x E C,, has the form 
x =  x, with x, E C,. 

Y E [ = ]  

F o r h E B  
hx = c y(h) X, = a(h) c X, = a(h) X. 

y a a l  

Thus 
BM,, c Ma,,  BM c M, 

and since M is its own idealizer, B c M. Hence B c M n H =  A ,  and thus 
A = B. 

Now A can be singled out of H a s  the set of h fulfilling a(h) = P(h) for certain 
pairs a,p E W. Thus A is spanned by rational linear combinations of nodes 
and # is nondegenerate on A by 21.2. 

69.1 6. Proposition If G E Alg Lie Com SS and M sub C is its own 
idealizer, then Mu consists of the ad-nilpotents within rad M. 

Remark This is a stronger version of 69.6 (ii) in this special situation. 

Proof Since M is its own idealizer, it follows from 18.1.1 that the cleaving 
components of elements of adcM are again in ad,M; therefore cleaving is 
possible in ad&. By 69.7 cleaving is possible in adcMn. Hence by 69.1 1 
M u  = A l  + N is a direct sum of subspaces, in which A ,  is ad-pure and N 
consists of the ad-nilpotents in MU. Let A be a maximal ad-pure subspace 
contained in M and containing A ,. By 69.15 I) is nondegenerate on A .  But 
#(A,  A , )  C #(M, Mu) = {0} ,  whence A l  = (0). This proves the assertion. 

69.1 7. Proposition Suppose that Nsub F sub G E Alg Lie Com, N is ad- 
nilpotent in C, F is not ad-nilpotent in G, and ad-cleaving with respect to G is 
possible in F. Then some ad-pure x f O  from F fulfills #(x, N) = (0). 
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Proof N may be supposed to be maximal ad-nilpotent contained in F. When 
looking for an eigenvector of the representation induced by m in F mod N,  one 
finds an x E F\N with mx c N. Because of the maximality of N,  such an x is 
not ad-nilpotent and after cleaving it may even be taken ad-pure. It clearly 
fulfills $(x, N )  = (0). 

69.18. Proposition Suppose that G E Alg Lie Corn S S ,  M sub G is its 
own idealizer, M’ c M ,  and A is a maximal ad-pure subset of M. Then A is 
a trunk of G. 

Proof The notation of the proof of 69.15 is used, in particular a trunk Hof 
G with A c H c  Go’. Then by 19.20 applied to :,dcM 

69.1 8.1 

By 69.14 

Mo, = A + N, a direct sum, with ad-nilpotent N. 

69.1 8.2 

One must now show 

Go, = A ,  + G’, a direct sum, with A c A ,  c Hand semisimple G: 

A ,  = A,  G’ = (0). 

(Then indeed A = H.) 
Suppose G‘ # (0). Since (69.18.1), N c  Mo, c Go,, and N is ad-nilpotent, 

N c  G’ (see 69.18.2). By 69.17 there is an ad-pure x # 0, x E G‘, such that 

$<x, N )  = (0). 

x may even be supposed to be in H, although H may have to be modified, with- 
out impairing A , .  

because of 69.18.1. Thus 
$(A ,N)  = (0) 

$(x + A , N )  = (0). 

Since $ is nondegenerate on A (see 69.19, x may be replaced mod A by x’ 
such that moreover 

$(x’, 4 = (0). 

$W, N )  = (01. 

$b’, MO!) = (01 

Since x’ E x + A ,  

Thus 

for some x’ E Go,\Mo, thus for some x’ I$ M. 
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Now #(G,,,,Ga,) = (0) for a’ # 0’, and Ma, c Gm,; thus 

#(x’, Ma,)  = (0) for OL’ # Of, 

#(x‘, M )  = (01, 

but x’ E M I  contradicts x’ # M because of the supposition that M I  c M. 
This proves 

G’ = (0). 

Now suppose that A is a proper subset of A , .  Then, since # is nondegenerate 
on A (see 69.19, 

#(x‘, A )  = (0) for some x‘ E A,\A. 

By the same reasoning this leads to  a contradiction, which proves the state- 
ment. 

69.19. Proposition If G E Alg Lie Com S S  and M is maximal solvable, 
then M I  c M. 

Proof Suppose that it is not so. Then the f (x E M )  have a simultaneous 
eigenvector in M I  mod Mu. Thus for some c E M’-\Mand some X 

(2 - X(x)) c E M u  for all x E M. 

+(c, (a - X(X)) c )  E +(MI,  MU) = (0). 

#(c, ac) = -#(c, Ex) = #(Ec, x) = 0. 

h(x)  +(c, c) = 0. 
Thus 

A = 0 would mean .?c E M for all x E M, thus EM c M, which contradicts the 
maximality of M .  Therefore 

Let Kbe the algebra spanned by Mand c, L that spanned by M u  and c. Then L 
is ideal in K, and K mod L is solvable. So L must not be solvable. However, 

#(c, c)  = 0. 

#(Mn,  M u )  = #(Mu, c)  = (0) and #(c, c)  = 0, 

which makes L solvable. The assertion is proved. 

69.20. Proposition If C E Alg Lie Com S S ,  M a maximal proper sub- 
algebra of C, and Mnonsemisimple, then M I  ,= M .  

Proof M is its own idealizer and M I  is invariant under A, therefore, in 

particular, under M u .  
N 
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Suppose that M u  # (0). By 69.16 M u  is ad-nilpotent. If the proposition 
were not true, then for somep zz 0 

$ P M I +  M,  f i ” + ’ M l C  M. 

ji&/fl c n;lMl c M I  

On the other hand, 

and by induction 
N 

Mnp+l M I  c M I .  

MOp+l MJ- c M U ,  

M q M o p M * )  c MU, 

Thus 
N 

N N  

N 

hence M o P M L  in the idealizer of Mu.  Now the idealizer of M u  is nonsemi- 
simple and proper sub Csince M u  was ad-nilpotent and supposed to be # (0). 
Because of its maximality, Mcoincides with the idealizer of MU and therefore 
MOPMl c M, which contradicts the definition ofp. 
N 

To complete the proof that M I  c M, one must exclude 

69.20.1 MU = (0). 

Here the semisimplicity of G must be used. 
If 69.20.1 were true, then by 69.6 (ii, iv) rad M would be the center of Mand 

no ad-nilpotent # 0 would be in rad M. Since M is maximal, it is its own 
idealizer; hence ad-cleaving subsists in M a n d  in its center (see 18.1.1), that 
is, in rad M. Therefore rad M is ad-pure. Under rad M, in the adjoint action, 
G splits into eigenspaces G, with M = Go. Since rad M #  {0}, one can choose 
CL # 0 such that G, exists and G2, does not. Then Go + G, is larger sub G than 
M, but it does not yet exhaust G, since rad(Go + G,) = (rad M )  + G, so that 
Go + G, is not semisimple. This contradicts the maximality of M and 
disproves 69.20.1. 

69.21 . l .  Proposition A maximal solvable subalgebra ofC E Alg Lie Corn 
contains a trunk of G. 

69.21 -2. Proposition A maximal proper subalgebra of G E Alg Lie Com 
SS which is not semisimple contains a trunk of G. 

69.21.3. Proofs Proposition 69.21.2 follows from 69.18 and 69.20. Like- 
wise 69.21.1 follows from 69.18-19 with respect to G’ = G mod rad G and 
from 17.12. 
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69.21.4. Remark Propositions 69.21 .l-2 contain Theorems 68.2.1 and 68.4. 

69.23. Definition If G E Alg Lie Com SS, H a trunk of G, M s u b  G 
spanned by a subset of H and a set of branches belonging to H ,  then a E W* is 
calledfvee (with respect to M )  if 

e , E M  and e - , $ M .  

Proposition Under a suitable order on H,T all free rootforms are positive. 

Proof Instead it will be shown that a suitable element of the kaleidoscope 
group maps all free rootforms into positive rootforms. For a proof by induction 
on the number of positive free rootforms and along the order in H: it is 
sufficient to show that by means of the kaleidoscope group every maximal 
negative free rootform can be raised without changing the signs of the positive 
free rootforms. 

First remember that for p E Wti .  all rootforms except k p  preserve their 
signs under S,. Let -a be a maximal negative free rootform. There is a p E W + +  
such that Sp(-a) > -a. If p is not free, then Sp also maps the positive free 
rootforms into positive rootforms. So p may be assumed to be free; but then, 
withe-,,e, E Malsoe,-, E M(note that ofnecessity a # p). This contradicts the 
maximality of -a, since if p - a were not free, then with ea-p and e, also e, 
would be in M ,  in contradiction to the fact that -a is free. 

69.24.1. Proposition Any maximal solvable subalgebra M of G E Alg 
Lie Com SS is spanned by an arbitrary trunk H c Mand  the branches e,, with 
a > 0 under a suitable order of H;. 

Proof By 69.21.1 Mcontains a trunk, say H .  By 20.15 it fulfills the conditions 
of 69.23. Since e,, e-, generate a semisimple subalgebra, it is not allowed that 
both of them belong to M .  Therefore, if e, E M, then a is free. By 69.23 an 
order exists such that a > 0 for each e, E M. The subalgebra spanned by H 
and all e, with a > 0 is still solvable. Therefore it coincides with M, which 
proves the assertion. 

69.24.2. Proposition Among the algebras M s u b  G E Alg Lie Com SS 
around H the maximal solvable ones are characterized by the following 
property : for every a E W* exactly one of the branches e,,e-, belongs to M .  

This is a consequence of 69.24. I or proved in the same way. 

69.25 The maximal solvable subalgebras around H are thus one-to-one 
related to the chambers in H:. By 33.4.3 and 33.9(4) they are equivalent to 
one another under Int(G, H ) .  Further, since two trunks are equivalent under 
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Int G, one gets the Int G-equivalence of maximal solvable subalgebras and, as 
in 69.21.3, the following more general proposition. 

Proposition All maximal solvable subalgebras of G E Alg Lie Com are 
equivalent under Int G. 

Remark This is Theorem 68.2.2. 

69.26 Again suppose first that G is semisimple. An element a" of Int G 
leaving maximal solvable M invariant changes a trunk H within M into a 
trunk. The same is achieved by some 6 E A. Then 6-'a" E Int G leaves Mand H 
invariant, thus the chamber in H: corresponding to M, thus every element of 
H. Hence &-Id E R, a" E A?. 

If, moreover, d leaves M elementwise invariant, then a" = exp h for some 
h E H, and finally it is the identity. 

If the method in 69.21.3 is used again,? the following is obtained: 

Proposition If C E Alg Lie Com, then any element of Int G leaving the 
maximal solvable M invariant belongs to I@. Moreover, for semisimple G, if 
it leaves Melementwise invariant, it is the identity on G. 

Theorems 6 8 . 2 . 4  are completely proved by 69.21.1-2 and 69.24-26; 68.2.5 
is an immediate consequence (see 13.3). 

69.27. Proposition If G E Alg Lie Com SS, then G ( p ) ,  as defined in 68.5, 
is a maximal proper subalgebra and nonsemisimple. 

Proof The orthoplement of C(p) is spanned by the e, such that p appears in a 
with a positive coefficient. It is an ad-nilpotent ideal of C ( p ) ;  therefore G(p) is 
not semisimple. To show that it is a maximal proper subalgebra, consider the 
algebra G' generated by G(p) and one e-,, where p appears in a with a positive 
coefficient, and prove that G' = G. For GI = p this is obvious. For CL > p there is a 
/3 E W +  such that a - B E  W k  and a - @ > p .  Then Ege-,, whence also eg-,, in 
G', and by an obvious induction G' = C.  (One notes that by 20.15 any sub- 
algebra containing C(p) is spanned by H and branches.) 

69.28.1. Proposition If G E Alg Lie Corn SS, M is nonsemisimple 
maximal proper sub G, His a trunk of G contained in M, and the order on H: 
is such that every free a (e, E M) is positive, then M i s  some G ( p )  and thus 
maximal parabolic. 

In particular, every maximal parabolic subalgebra of G around H is 
Int (G,H)-equivalent with some C(p). 

t Observe that the kernel of the homomorphism from Int G to Int (G mod rad G) 
may be disconnected. See 69.29.3. 
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Proof According to 20.15, M is spanned by H and a set of branches. If 
a E W* and e-u $ M, then ea E M I  c M by 69.20; therefore the set V of 
a E W* with ea E M has the property a E V or -a E V for a E W*. By the fact 
that all free rootforms are positive one even has W +  c V. Because M f  G, 
there is a p E W++ such that e-,, 4 M, that is, p is free. Suppose there were a 
nonfree positive a 2 p ;  assume a minimal. As remarked in the preceding proof, 
there is a /? > 0 such that a - p E W* and a - 2 p. Then EPe-,, hence also 
eP-., in M, so a - p is still nonfree with a - /3 > p ;  this contradicts the 
minimality of a. It follows that M c C(p); hence M = C(p). 

69.28.2 If in the foregoing M is just a parabolic subalgebra, then by Pro- 
position 69.24 one can still assume that W +  c V, where V is as above. The rest 
of the proof shows that M is the intersection of the C(p) with p free and 
primitive. Hence: 

Proposition Every parabolic subalgebra is an intersection of maximal 
parabolic subalgebras around one and the same trunk. 

This remains true for arbitrary G E Alg Lie Com by the principle applied in 
69.21.3.f 

69.28.3. Proposition Among the algebras M proper sub C E Alg Lie 
Com SS around n trunk H the parabolic ones are characterized by the 
following property : for every a E W*, eu E M or e-a E M. 

This is a consequence of 69.24.2. 

69.29.1. Proposition If G E Alg Lie Com SS and His  an ordered trunk of 
G, then any nonsemisimple maximal proper subalgebra M of G is Int G- 
equivalent to some C(p). Every element of Int G that leaves M invariant 
belongs to A?; an element of Int G that leaves M elementwise invariant is the 
identity. No C(p), G(a) with p # a are Int G-equivalent. 

Proof By 69.21.2, M contains a trunk H' of G. Under the action of Int G one 
may assume that H ' = H .  By 69.23 under a suitable order on H: all free 
rootforms (with respect to M) are positive. By some s' E Int G this order on HZ 
is transformed into the given one on H:. By the same change M may be 
supposed to fulfill the condition in 69.28.1 on the free rootforms. There- 
fore by 69.28.1 it is some C(p). 

The next assertion is proved the same way as that of 69.26 or derived from 
it. 

As to the last assertion, suppose that ZG(p) = G(a) for some Z E Int G. 
Let B be the maximal solvable subalgebra spanned by H and the ea with 

t See footnote, p. 408. 
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N 

a > 0. B c G(p), B c C(u), a"B c G(u). Now a"B = 6B with some 6 E G(u). 
Therefore a", if replaced with 6-'6, may be supposed to preserve B. Then 
a" E B c G(p), hence G(u) = a"G(p) = G(p). 

N 

69.29.2 If M is parabolic subGEAlg Lie Com, then every element of 
Int Cleaving M invariant belongs to a. 
Proof For semisimple G this is proved in the same way as the analogous 
statement in 69.29.1 for maximal M. By the principle used in 69.21.3 it is 
extended to arbitrary G.7 

69.29.3 If M is a parabolic subgroup of G E Gru Lie Lin Com S S  and a is 
in the normalizer of M ,  then Z M c  M ;  thus a" E A? by 69.29.2 and a E M ,  
since the center of G is in any trunk, thus in M .  Therefore M is its own normal- 
izer. Since any Lie subgroup of G is normal in its closure, it follows that M is 
closed. I f  M is presented as the intersection of maximal parabolic M,,  generat- 
ing M,,  then any a E ni Mi normalizes all M,,  hence M ;  thus it belongs to M .  

In the general case the statement is reduced to that about M/rad G in 
G/rad G, which is essentially in Gru Lie Lin Com S S .  

69.29.4 The following have been proved 

68.2.1 in 69.21.3. 
68.2.2 in 69.25. 
68.2.3 in 69.26. 
68.2.4 in 69.26. 
68.2.5 in 69.26 and 69.29.3. 
68.4 in 69.21.3. 
68.6.1 in 69.27. 
68.6.2 in 69.28.1. 
68.7.2 in 69.29.2-3. 
68.7.3 in 69.28.2 and 69.29.3. 
68.7.4 in 69.27 and 69.28.1. 
68.7.5 in 69.29.1. 

69.30. Bruhat's Lemma The intersection of two maximal solvable sub- 
algebras of G E Alg Lie Corn S S  contains a trunk of G. 

Proof Let M , , M ,  be maximal solvable. Since M I  and M, are their own 
idealizers, ad-cleaving with respect to G is possible in both M I  and M,, and by 

t See footnote, p. 408. 
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its uniqueness also in M I  n M2.  By 69.11 

M , n M , = A + E  
with A maximal ad-pure in M I  n M2,  and E the subalgebra of ad-nilpotents in 
M I  n M2.  Now $ ( E M i )  = (0); thus $(E,Ml + M2) = {0}, hence 

dim(M, + M2) G dim G - dim E. 
Further 

dim(M, n M2) = dim A + dim E, 

dim(M, + M2) + dim(M, n M2) = dim M I  + dim M2 = dim G + rank G, 

which follows from 69.24.1. Hence 
d i m G + r a n k G G d i m G + d i m A .  

Therefore 
dim A 2 rank G 

which proves A to be a trunk of G. 

69.31 Bruhat's lemma is usually formulated as follows: 

Proposition If G E Alg Lie Lin Com S S ,  M is maximal solvable sub G, 
His a trunk of G in M ,  and S is the normalizer of H in G,  then 

G = M S M .  

Proof One may assume that G is centerfree. Suppose g E G. Then by 69.30 
M n g M  contains a trunk of G, which by 68.1.1 can be written as niiH with 
m E M. Thus K1 gM 1 H. Now both M and ni-' gM are maximal solvable 
subalgebras around H. By 68.3 there is some s E S with n i - I  g M =  SM 
Therefore S- ln i - '  g = ni I for some ml E M ,  g'= niSnil, which proves the assertion. 

69.32. Proposition If G E Alg Lie Com S S ,  then any ad-nilpotent of G is 
contained in some semisimple subalgebra of G of rank 1 .  

This is the content of Theorem 68.8.3. In the subalgebra F of rank 1 any 
ad-pure h#O spans a trunk. The representation of F by adjoint in the linear 
space G is conducible. Every irreducible component is spanned by weight 
vectors (43.1.1), on the basis of which h is diagonaljzed. Therefore h is ad- 
pure. This shows that 68.8.1 follows from 68.8.3 and from the special case of 
rank 1 which is obvious from 69.24.1. 

Proof of the Proposition. Let e # 0 be the ad-nilpotent. One may assume 
that C is the smallest semisimple subalgebra of G containing e. 

Let N be the centralizer of e. Then ad-cleaving is possible in N. If N has a 
non-ad-nilpotent element, it has an ad-pure element h # 0. By 69.14 its central- 
izer would contain a smaller semisimple algebra containing e. 
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Thus N is ad-nilpotent. Since $(EG, N )  = -$(G, I N )  = (0) and dim N L  = 

codim N = dim 2G, 

69.32.1 EG= N l .  

Further e E N L .  Thus there is some b E G with E(-h) = e,  

69.32.2 he = e. 

After ad-cleaving h may be taken ad-pure. From 69.32.2 it follows that 

 AN^ N. 

Therefore h,N span a solvable algebra, $(h,N) = {0}, h E NL, and by 69.32.1 

Zf=h forsome f EG. 

Now f will be replaced by somef’ such that still 

I f  = h, 

and moreover 
kf’ = -f. 

(k + 1)u = (h + l ) J  

zg = 2(k + 1) f = (k  + 1)Zf - 2f = 0. 

Puttingf-f’ = u E N, one must solve 

About the second member g = (h + l)f, one knows that 

Thus to find the wantedf’, one must solve 

(k + 1)u = g E N 

with respect to u EN. This can be done as soon as there is no v # 0, v E N with 

69.32.3 (k + 1)v = 0. 

Suppose there were such a v. One easily proves by induction that 

[k, E”]  = PI”, 

[I”,  $1 = p h ~ - ~  - (9 I”-’. 

Now 

69.32.4 I ’ f ’ v  = t,v 
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with scalars t ,  as can be shown inductively: 

= f C t p v  + ( p  + l)Rtpv - i"; ' ) t p v .  

The first summand vanishes because of v E N ;  thus Cv = 0, and by 69.32.3 the 
others are together 

which proves that recursively 
P + 2  

1,  = - I ,  t p + ,  =-( ) t p ;  

thus t ,  # 0 for p > 1 .  Because of the nilpotency of C, this contradicts 69.32.4 
and proves the assertion. 

69.33. Proposition Let G E Alg Lie Com SS and H a  trunk of G. Then 
for every maximal solvable B around H there is one maximal solvable B' 
around H such that B n B' equals H. 

Proof If H: is suitably ordered, B is spanned by H and the eOr with u > 0. 
Then B' meeting B exactly in H must be spanned by Hand  the em with u -= 0. 
This indeed leads to a maximal solvable subalgebra. 

69.34. Proposition Let GE Alg Lie Com SS, A? the manifold of all 
maximal solvable subalgebras of G, B+  E g, and go the subset of g, consisting 
of those B that intersect B t  in more than just a trunk. Then go is nowhere 
dense and closed in g. 

Proof Let H be a trunk within B+, and B- E 93 meeting B+ exactly in H .  
Let E be the set of ad-nilpotents in B-. In the direct sum splitting G = B t  + E 
let p be the projection onto E. For a" E Int G let ~ ( a " )  be the determinant of the 
restriction ofpa" to E. Then g~ is analytic and y(1) = 1 ,  and therefore the set in 
which q~ vanishes is nowhere dense in Int G. Nonvanishing ~ ( a " )  means that 
pCiE = E, hence B t  + a"B- = G and consequently dim(Bt n CB-) = rank G, 
thus a"B- 6 go. 

Any B, E g has the form COB- with suitable lo E Int G. Near a", there is 
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some a" E Int G such that y ( i )  # 0; hence i B -  $ go. Now B = CB- is near 
Bo = io B-, which shows that -go is dense in g. 
On the other hand, it is obvious that -go is open in 9. 
This proves the assertion. 

69.35. Proposition Let G E Alg Lie Com SS, the manifold of 
ordered pairs of maximal solvable subalgebras of G, and9102 the subset of those 
that intersect one another in more than a trunk. Theng,2 is nowhere dense and 
closed in g2 and Int G acts transitively on g2\gO2. 

Remark This is Theorem 68.10. 

Proof It is again obvious that @2\9902 is open in g2. It is dense because by 
69.34, for every fixed B2 E g, the set [-go, {B2}1 is dense in r@, {B2}1. This 
proves the first statement. If two elements rB,, BZ1 and rB;, Bi1 of go2 are 
given, then by transitivity under Int G one may suppose that B, = B;.  By 68.1.1 
applied in B, = B; the trunks B,  n B,, B; n B; may be supposed identical. 
But then by 69.33, B2 = B; as well. 

69.37. Proposition If B is a maximal solvable subalgebra of G E Alg Lie 
Lin Com SS, then G/B is compact. 

Proof B is closed by 13.3. Let G be in ordered third dressing on some trunk 
H c B such that B is spanned by Hand the eOr with a > 0. Let D be the unitary 
restriction of G on the given dressing. Then G is the sum of B and D (as a 
real vector space), and one derives the assertion from Proposition 61.3. 

Remark Of course the proposition remains valid if G E Alg Lie Lin Com 
only. 

70. INTRODUCTION OF INCIDENCE GEOMETRIES OF 
SEMISIMPLE LIE GROUPS 

70.1 G E A, that was presented in linear (I + 1)-space R with an ordered 
basis, also admits of a projective interpretation. I-projective space R ,  is 
usually defined as the set of linear subspaces of R, provided with the relation- 
ship of symmetrized inclusion. In this terminology a linear i-subspace S of R 
determines a projective ( i  - 1)-subspace S, of R,. As acting in R,, G is called 
the projective group of R,. It acts separately in the manifold of the linear 
i-subspaces of R (projective ( i  - 1)-subspaces of R#); however, for i = 0 and 
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i = I + I this action is trivial, for then these manifolds consist of one point only. 
For this reason in the sequel the smallest and largest elements of R ,  will be 
disregarded. 

Let R, be the subspace of R spanned by the first i basis vectors (1 < i < I ) .  
The trunk H of G is chosen as consisting of the diagonal matrices with co- 
efficients w l ,  . . ., w , + ~  (C W f  = o). 

The stability algebra (infinitesimal algebra of the stability group) of R,  is 
spanned by Hand the ewp-wcl, withp G i or q > i. Therefore just the ewP-,,,, with 
q < i c p  are lacking, in other words, the e, with a = m j p j  and m, < 0. 
This identifies the stability algebra of R,  (or R f + )  as G(p,). The identification 
extends to the belonging groups. Note that the stability group of R,  cannot be 
larger that G(p,), since G(p,) is not in a larger proper subgroup of Int Cand the 
center of G is in If, thus in G(pf). Note, further, that from the projective point of 
view the center of G is eliminated, since it leaves all elements of R ,  fixed. 

G is transitive over the manifold F, of linear i-spaces sub R (projective 
(i - 1)-spaces sub R,). F, is a homogeneous space acted on by G. Its stabi- 
lity groups are the conjugates of G(p,). Disregarding its origin in R ,  one can 
consider F, as the manifold of conjugates of G(pJ or of C(p,), on which G acts 
by means of conjugation. 

By their realization as subspaces of R,  the elements of F, and r, are related 
in some way that admits of an interpretation in group theoretical terms. 

First consider the triangular matrices of G (zeros below the diagonal), 
which form a maximal solvable subalgebra B of G. The R,  are all nontrivial 
linear subspaces of R invariant under B, and B can be characterized by its 
property of leaving each Ri invariant. Two nontrivial linear subspaces of R 
one of which contains the other, are called incident, and any system of mutually 
incident elements is called a j a g .  The system R I ,  R1, . . ., R, is a maximal flag. 
G acts transitively on the manifold of maximal flags. The stability group 
of the maximal flag { R l ,  . . ., R,}  is just B, which is maximal solvable, and 
since I? again acts transitively on the manifold of maximal solvable Lie sub- 
groups of G one can identify the manifold of maximal flags with that of the 
maximal solvable Lie subgroups, G/B. 

A pair of linear subspaces of R can be extended to a maximal flag if and only 
ifthey are incident. In group theory terms the criterion of incidence states that 
elements of F,, Fj are incident if and only if their intersection contains a 
maximal solvable Lie subgroup of G, in other words, if and only if it is a 
parabolic subgroup of G. 

70.2 G E D, can be discussed in an analogous way. Take G as presented in 
Section 16.ThentakeR,+zspanned by thefirsti-basisvectors (i= 1,2, . . ., I -  2 ) ,  
R2 by the first /-basis vectors, and R ,  by the first I - 1 and the 21th. (In the 
projective interpretation all of these spaces are lying on the invariant quadric 

N 
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f , f l + i  = 0.) They are tota//y isotropic. TI ( i  2 3) is now the homogeneous 
space of (i - 2)-dimensional totally isotropic subspaces (i.e., lying on the 
quadric), and TI and T2 are the two manifolds of /-dimensional totally iso- 
tropic subspaces. The ( I  - I)-dimensional spaces do not appear in this image 
as primordial elements; each is contained in exactly one of each of the sorts 
TI and r, and is their intersection. 

To establish that the Ti are indeed orbits under G one must use Witt’s 
theorem? which says that any two isometric subspaces of R can be mapped 
onto each other by an orthogonal transformation of the whole of R. 

For I >  i >  3, TI consists of all totally isotropic subspaces of the same 
dimension i - 2 and each of them is conjugate with R,+, under G,  that is, by a 
special orthogonal transformation, because the stability group of R i i 2  in the 
full orthogonal group contains orthogonal transformations with determinant 
-1. For TI and T2 one should note that R,  is conjugate with R2 by the inter- 
change of the /th and 21th basis vectors, which has determinant -1, and that 
the stability group of R ,  in the ful l  orthogonal group consists of volume- 
preserving transformations only. 

The stability group of Ri  is again G(p,), which leads to the same group 
theory interpretation ofT,asinA,.Allotherthingsalso go thesame way as in A, 
assoon asone takes thelibertyof interpretingthe system R , ,  R 2 , .  . ., R, as a flag. 
This agrees with the naive notion of incidence of two elements except for the 
pair R,, R,. Now none of two /-dimensional totally isotropic subspaces of 
different kind can contain the other. The best they can do is to intersect in a n  
( I -  I)-dimensional subspace, and this is just what happens to R , , R 2 .  
Generally, incidence of elements of PI and r, has to  be understood as 
intersecting ( I  - 1)-dimensionally. After this interpretation, incidence i n  
group theory terms again means having a parabolic intersection. 

G E B, and C, can be dealt with in an analogous way. 
In both cases the sorts are constituted of totally isotropic subspaces of the 

same dimension, and incidence is the symmetrized inclusion relation, as in the 
case of A,. 

70.3 For any G E Alg Lie Com S S  by definition G(pi) was spanned by 
ordered Hand the branches e, with a = zcp,p,, such that p ,  2 0. In terms of the 
fundamental weights, this condition on a can be re-expressed as 

70.3.1 (T i ,  a )  > 0. 

Now consider the irreducible linear representation of G in some space R‘, 
with the fundamental weight 7, as top weight and the 7,-weightvector s, Then 
G(p,) is just the subalgebra of g E G leaving .Y invariant up to a scalar factor; 

t See, for instance, 0. T. O’Meara, fntrodiictioti to Qiicrrlrcitic F o r m ,  Springer, Berlin, 1963, 
pp. 97-99, or the more general proof in N. Bourbaki, AIgPbre, Chapter 9, S4, No. 3. Th. I .  



70. INTRODUCTION OF INCIDENCE GEOMETRIES 417 

in other words, leaving x fixed if it is considered as a point x# of projective 
RL. This means that r, in the earlier examples can also be interpreted as the 
manifold Gx, in RL. 

For A, the representation ri is that in the space R 1  of skew i-tensors on R.  
The manifold corresponding to in R' is that of i-vectors, that is, skew 
products of i vectors, which on the other hand just describe the i-dimensional 
subspaces of R. The case of D, is again somewhat different; the representations 
7r, ,7r2 act on the spinor spaces (see Section 49). 

70.4 The foregoing exploration leads to a general definition: 

Definition For G E Alg Lie Lin Com S S ,  

r, the set of maximal parabolic subgroups of G (infinitesimally generated 
by the maximal parabolic sub-algebras of C), endowed with the incidence 
relation 

ea,b E r incident iff a n b is parabolic>, 

r i s  considered to be acted on by G by conjugation. 
Its transitivity classes are the sorts of the incidence geometry. 

is called the incidence geometry of G. 

70.5.1. Definition 

H c a .  

containing G(p). 

Let H be an ordered trunk of the above G. 
r o ( H ) ,  or To for short, is the restriction of r t o  the subset of a E r s u c h  that 

r(H,p), or r ( p )  for short, for p E W + + ( G , H ) ,  is the transitivity class of r 
Its intersection with r0 is denoted by ro(H,p) or r O ( p ) .  

70.5.2. Proposition Int G-equivalent a, b E r O ( p )  are Int(G,H)-equiv- 
alent. 

Proof iia = b for some u E G .  Both H and H' = iiH are trunks of b. The 
conjugacy of trunks provides a uo E b with iioH' = H. Then C0C E Int(G,H) 
and iioiia = frob = b. 

Remark The proposition follows also from 69.28. I and 69.29.1. 

70.5.3. Proposition r= U p E W + + r ( p ) ,  where r ( p )  # r, for p # u. On Fo 
the action of Int G is like Int(G,H)/A, isomorphic with Int W * .  Its trans- 
itivity classes in T o  are the Y0(p). 

This is only a reinterpretation of known facts. 
Information on incidence properties in r c a n  already be obtained to a high 

degree in  To, which is finite. This explains the importance of ro in the study of 
r. As an example: 
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70.5.4. Proposition If a,b E r ( p )  are incident, they are equal. 

Proof By the action of Int G it may be assumed that a n b contains the 
maximal solvable subgroup generated by H and the e, with a>0. Then 
a = G(p), b = G(p);  hence a = b. 

70.6 Any a E ro equals SG(p) for some p E Wtt and S E Int(G, H).  As 
usual, Swill also be considered as an element of Int W*. 

Henceforth write n, instead of n1 if p = pi .  According to 70.3.1, 

G(p) is spanned by Hand the e, with (n,, a) 2 0. 

Therefore, 

SG(p) is spanned by Hand the eSa with (n,, a)  2 0, 

in other words, 

by Hand  the e, with (Sn,, a)  2 0. 

This correspondence suggests the following : 

70.6.1. Definition n(p) = (Int W*)xp for p E W++, 

n = u, n(p). 
w(SG(p)) = Sn, if S E Int(G,H); 

so w maps YO(p) one-to-one onto I7 (p) .  
A, p E I7 are called incident if 

(A, a)&, a )  > 0 for all a E W*. 

Obviously I7 consists of all integral elements that are equivalent to funda- 
mental weights. Clearly: 

70.6.2. Proposition If a E r0, then the infinitesimal algebra of a is 
spanned by Hand the e, with 

(wa, a)  2 0. 

The last part of the definition above is justified by the following: 

70.6.3. Proposition a,b E To are incident if and only if wa, wb are so. 

Proof Mcontaining a maximal solvable subalgebra around Hmeans that for 
any CL E W* either e,, or e-y E M .  Therefore, a n b to be parabolic means that 

either (wa,y) > 0 A (wb,y) 2 0 or (wa, y )  G O  A (wb, y )  Q 0. 
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In other words, (wa,y)(wb,y) 2 0, which proves the assertion. 
Evidently : 

70.6.4. Proposition By w the action of Int(G,H) in To is translated into 
that of Int W* in 17. 

70.7. Proposition If F c r consists of mutually incident elements, then 
naGFa is parabolic. 

Proof By Proposition 70.5.4 F is finite. The proof is inductive on the number 
of elements of F. Take the statement for granted for F' = F\{c} (some c E F).  
There are maximal solvable subgroups B, B' with B c flasF,a, and B' c c. 
Bruhat's lemma provides a trunk H' c B n B';  thus H' c flaEFa. 

So one may suppose F c ro. The mutual incidence in F then means 

( A ,  a)&, a )  > 0 for all a E W* and A, p E wF; 

thus, if a E W* is given, either (A,a) 0 for all A E wF or (&a) G 0 for all of 
them. Consequently, for any a, either e, or ePor is an infinitesimal element of all 
a E F, which shows by 69.28.3 the existence of a maximal solvable Lie 
subgroup in their intersection. 

70.8. Definition The intersections of closed halfspaces bounded by aL  
( a  E W*) are called parts (of H:). If V C  W* such that V u ( - V )  = W*, then 
the intersection of the halfspaces ?&$,a) > 0 with a E V is called a cell. An 
edge is a one-dimensional cell. 

Clearly every closed chamber is a cell, and any cell is the intersection of 
closed chambers. Parts are convex. An i-dimensional part is unambiguously 
built up from i-dimensional cells, which are minimal i-dimensional parts. 

By the definition of fundamental weight, the edges contained in the closed 
dominant chamber are theimagesof yT20(T.rrp) (p  E W++). Thanks totheaction 
of Int W*, it follows that the edges are the sets of weakly positive multiples of 
elements of 17. 

Proposition For A,p E 17the following statements are equivalent: A,p are 
incident; h , p  are in a common closed chamber; A,p are in a common cell. 

70.9. Definition For a,b E r t h e  corariant r(a,b) of a,b denotes the set of 
all c E F that are G-fixed when a and b are G-fixed. 

The stability groups of a,b,c are just their adjoint images (see 68.7.2). 
a,b are simultaneously invariant under precisely those P for which x E a n b ;  
the invariance of c under the same 2 means that c =I a n b. So: 
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Proposition r (a ,b)  is the set of c = a n b, c E r. 
Clearly, if a, b E ro, then r (a ,  6)  c ro. 

70.10. Definition The smallest part containing A,p is denoted by P(A,p). 
If A,p E n, then 17(A,p) means P(A,p) n n. 
Proposition n(wa ,wb)  = wr(a,b)  if a ,b E ro. 

Proof Translated by w,  c 2 a n b states that 

AYEw*{[(wa, y) 2 0 A (wb, y) > 01 + (w, y )  2 01. 
In other words, wc is found in every part that contains wa and wb. 

70.1 1. Proposition If G E Alg Lie Corn SSS and C1,t2 E Zf:\{O}, then 
there is an a E W* with ( f l ,u )  # 0 for i = 1,2. 

Proof The set of a E W* with (gi,a) = 0 is called W, (= - W,). Suppose the 
statement is wrong. Then 

W, # W* because the inner product is nondegenerate on H*. Take 

WI u w, = w*. 

If 

then 
+ a, E w ;  

thus either 

a ,  + a, = 0 

a I  + a, E W, 

(hence a I  E W,, which is impossible) 

or 

Thus 

(hence aI E W,, which is impossible). 

aI  + a2 E W1\W2. 

For V c W*'the linear span of the ea with a E V is denoted by 8( V ) .  Then it 
has been proved that 

[6( Wl\ W2h a( W,)l= Wl\ W2). 
The space 6( W,\ W,) is idealized by H + a( W,), and so is the Lie algebra D 
generated by 6( W,\ W,). Since D c H +  8( W,) # G, it is a nontrivial proper 
ideal of G, which contradicts the simplicity of G. 
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70.1 2. Proposition If X,p E 17 are incident, then (h ,p)  > 0. In the case of 
simple G this inequality is strengthened to (X,p) >O. 

Proof According to 21. I .9, 

(A, p) = ,,f;,* (k 4 ( p ,  4 9  

where all summands are >, 0 if X,p are incident. (h ,p)  = 0 is possible only if all 
summands vanish, but according to 70.1 1 this is forbidden by simplicity. 

70.13. Definition For x E r t h e  set of elements incident with x is called 
J ( x ) .  

Theorem Suppose that G is simple. If J(a)  n J(b) # 0, then there is a 

c E J (a )  n J(b)  with J ( a )  n J(b)  = J ( c ) .  

Proof By Bruhat’slemma,a n bcontainsatrunk.Thusa,bmaybesupposedin 
ro. 

70.1 3.1 

fulfilling 

c E J ( u )  n J(b)  n To, 

70.1 3.2 J ( U )  n J(b) n To  = J(c) ,  

also fulfills 

70.1 3.3 J (a )  n J(b) = J ( c ) .  

Indeed, if d E J ( a )  n J(b) ,  then both a n c and b n d are parabolic and 
therefore a n b n c n dcontains a trunk H’.  Now H = XH’ by means of some 
.Y E a n b n c; thus 

Xu = a, Xb = 6 ,  Xc = c, Xd = d‘ E To, 

and again 

hence by 70.13.2 d‘ E J ( c ) ,  thus 

d’ E J ( u )  n J (b ) ;  

d E JW, 
which proves 70.13.3. 

At the same time the following has been proved : 
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70.1 3.4 If a, b E To, J(u) n J(b) # 0, then J(u) n J(b)  n To # 0. 

Then 
A c that fulfills 70.13.1?2 will now be constructed. Put A = wa, p = wb. 

w(J(a) n J(b)  n To) 

is the set N of elements v of 17 such that 

(A, a)(v, a)  2 0 A (p, a)(v, a) 2 0 for all a E W* 

Note that for v E N,  
(A, a)&, a) < 0 -+ (v, a)  = 0. 

Let F be the subgroup of Int W* generated by the reflections 

S,  with (A, a) = (p, a) = 0. 

Then A, p are invariant under F, as is N .  
For v E N put 

v' = c sv. 
SEF 

Then Sv' = v' for S E F, particularly for S, with (A, a)  = (JL, a)  = 0; thus 

(A, q )  = (p, a )  = 0 -+ (v', a)  = 0 for a E W*. 

Further 
(A, a )  > 0 v (p, a)  > 0 -+ (v', a)  2 0, 

for under this condition (v,a) 2 0 for all v E N and N is invariant under F. 
Finally 

(A, 4 (p, 4 < 0 -+ (v', 4 = 0, 

since this is true with all v E N instead of v'. 

A, p, also (A, v') > 0, (p, v') > 0. 
According to 70.12, (A,v) > 0, (p,v) > 0, and, because of the F-invariance of 

Thus v' # 0. 
Now define D as the set of 5 E H: such that for all a E W* 

(A, 4 = (p, a) = 0 -+ (5,  a) = 0, 

(A, a) 2 0 A (p, a)  2 0 -+ (5, a)  2 0, 

(A,4(p, 4 < 0 + (5, a)  = 0. 

(D) 
and 

Then D has been proved to contain an element v' # 0. D is a positive-dimen- 
sional cell. It contains an edge and thus some 

~ ~ D n l 7 c N .  
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To use IC-I  K as c, one must verify the conditions on K corresponding to 
70.13.1-2; that is, 

K incident with A,p and with every v E N .  

The first two assertions are evident, since K E N .  The third means 

( K ,  a)(v ,  a )  2 0 for all a E W * ,  v E N ,  

which needs verifying only for ( ~ , a )  > 0. Now in this case, by the definition of 
D, (A,  a)  > 0 or (p, a )  > 0; hence, according to the definition of N ,  (v, a)  > 0 and 
therefore ( K , Q )  (v,a) 2 0. By this result the existence of c is granted. 

70.14 Every maximal solvable Lie subgroup of G@) contains the radical 
rad G(p) of G(p), which is generated by rad G@).  The radical of C @ )  is spanned 
by some h E H with h#O and u(h) = 0 for all u E W i  '-\{p} and by all err that 
involve p with a positive coefficient. rad G(p) can be used to decide whether 
some b E T o  is incident with C(p). More specifically: 

70.14.1. Proposition b E T is incident with a E riff b contains rad a. 
The necessity of this condition is evident. Its sufficiency need be proved only 

for H c a n b and a = G(p). It is then an immediate consequence of the 
following: 

70.14.2. Proposition 
some G(a) by means of an 2 E Int(G,H) with x E G(p). 

If b E To contains rad C(p), then b is equivalent to 

Note that'G(p), G(o)  are always incident. 

Proof By 20.15 the e, and h, in which a does not involve p span a semisimple 
subalgebra GI, with the span ofthe h,(=kernel of r,,) asatrunkH,.  Obviously 
GI c C(p). If C ,  c 6, then obviously b = C@) .  If GI b, then b n GI is a 
parabolic subalgebra of G , ;  under an  element of Int(G,,H,) every free 
rootform (see 69.23) of b n GI may be assumed positive. However, Int(G,,H,) 
is naturally included in Int(G,H) and its elements leave rad C(p)  invariant. 
Therefore the assumption entails b = G(a) for some (3 E W.++,  u # p. 

70.14.3 Another immediateconsequence of 70.14.2 is stated i n  the following: 

Proposition 
G ( o )  by means of an element of Int(G,H) that does not change G ( p ) .  

form G(p), G(o).  

If b E T o  is incident with G(p), then b is equivalent to some 

This proposition allows one to assume incident a,b in the more convenient 
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70.14.4 By the same method the foregoing can be strengthened to obtain the 
following: 

Proposition If a = G(p), b E Fo(u), c E Yo(,), p between u and T in W++ 
and a incident with both b and c, then by an element of a leaving H invariant 
b and c can be carried over into G(u) and G(T). 

It follows from the fact that rootforms that do not involve p cannot involve 
both u and T .  

70.1 5. Definition A chain of lengthp in r i s  a sequence ofp + 1 elements of 
r in which every element is incident with its successor. A chain is called 
irreducible if all its elements are different. 

Theorem If a, b E r a n d  a pair ofdifferent p, u E W t t  are given, then a chain 
cO,clr . .., ck,cktl can be found with co = a, cktl = b, c j  E r ( p )  u r(u)  for 
j =  1, ..., k. 

Proof I t  may be assumed that a, b are in ro. Then in 17 a sequence Ao, A l ,  . . ., 
&,Ak+ ,  must be found such that A, = wa, A,,, = ti.6, and A j  is incident with 
h j + I .  In any case there is a sequence of closed chambers Co, . . ., ck+l such that 
dim(Cj n Cj+l) = I- 1, wa E Co, and wb E ck+l. Now, since C j  n cjil 
contains one element of each sort but one of n (see 70.6.3 and 70.8), 
Cj n Cj+l n (17(p) u n(u)) # 0, and the only thing one has to do is to choose 
A j + ,  in this set. 

70.16. Definition r m o d  a =J(a)\,{a} for a E r, with the notions of r 
and J as defined in 70.4 and 70.13. r mod a is endowed with the incidence 
structure that it bears as a subset of r. 
Theorem If a E r ( p ) ,  then r mod a is isomorphic to the incidence geometry 
of G(p)/rad G(p), the graph of which arises from that of G bydeletingpand its 
bonds with other elements. 

More precisely, if, for the sake of convenience, a = G ( p )  is assumed: Let 
CJI be the canonical mapping of G(p) onto G(p)/rad G(p). Then 9 =  
YbErmodo~(b  n G(p)) maps r mod a isomorphically onto the incidence geometry 

Proof Since y(G(p)) is semisimple, d exists. By 70.14. I r m o d  a is the set of 
maximal parabolic subgroups of G around rad G(p). The elements of r mod 
a contain maximal solvable Lie subgroups G ( p )  (necessarily containing rad 
G(p)). Since CJI maps the maximal solvable Lie subgroups of G(p) onto those of 
G/rad G(p), 9 preserves the parabolicity of the elements of r mod a ;  clearly 
it maps r mod a onto d (to show that 0 is onto, put an element of d in its 

ofdG(p)).  
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canonical form). The mapping 6 preserves incidence, for cp maps maximal 
solvable subgroups onto maximal solvable subgroups. Similarly, it is evident 
that the incidence of 6b,& implies that of b,c. Finally, let 66 = 6c. Then by 
the foregoing a,b,c are mutually incident, so by 70.7 a n b n c is parabolic 
and may be assumed to contain H and all em with ct E W+. This, however, 
means that a,b,c are some G(p), G(u), G(T). But it is then evident that 6b  = 6c  
implies b = c, which completes the proof that 6 is isomorphic. The remainder 
of the statement is evident. 

70.1 7 If G splits directly into GI,  G,, then the maximal solvable Lie subgroups 
of G split correspondingly into maximal solvable Lie subgroups of GI and G2, 
and a maximal parabolic subgroup of G contains GI or G,. Those containing 
G, form a subset r, of r (i # j ;  i = 1 , 2 ; j  = 1,2). Clearly every element of r, is 
incident with every element of r,. Moreover, Ti, endowed with the incidence 
structure induced by r, is isomorphic to the incidence geometry of G i .  

This suggests a definition of direct sum of incidence geometries which will 
be substantiated later. Meanwhile r is called simpre if G is simple. 

70.18 As an immediate consequence of 70.1647, one gets the following: 

Theorem If, in the graph of G, p lies between u and T,  then every element of 
r ( u )  n J(G@))  is incident with every element of r(T) n J(G@)) .  

70.1 9 The following is a refinement of the statement of 70.13. 

Theorem Let I' be simple, let a, b E r be nonincident, and 

J(a)  n J(b)  n r@) # 0. 

Then there is d E J ( a )  n J(b) such that 

70.1 9.1 J ( d )  n r ( p )  = J ( u )  n J(b) n Q). 

Remark To illustrate this statement take G E A,. Then r may be identified 
with projective I-space and a,b with elements of it. Foranyp onecan takefor d 
either the intersection or the span of a, b (if it exists in r, i.e., has linear dimen- 
sion#O, # / +  1). 

Proof Suppose that a E r(u),  b E r(7). Since a, b are nonincident, and 
because of 70.18, p does not separate u and T in the graph of G. According to 
70.13, there is a c E J(a) n J(b) with 

70.1 9.2 J(a)  n J(b) c J(c).  

Suppose that c E r ( K ) .  Again K does not separate U,T.  Moreover, K # u, K # T.  
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If K = p or K separates p and u (and thus p and T),  then by 70.18 every 
element of J ( c )  n r(p) is incident with a and b. Therefore 

70.1 9.3 

By combining 70.19.2-3 one can satisfy 70.19.1 by putting d = c. 
If not, W++\{K} has a component containing p, U,T. Using the terminology 

of Theorem 70.16 with K instead of p, one considers r mod c which by 6 is 
mapped onto d. Now corresponding to the breach K in W++\{K}, d breaks 
into d and d2, where d belongs to the component containing p, u, T ;  therefore 
6 maps F(p) n J(c),  a, b into d ; furthermore, d , A ,  are elementwise incident. 
Now by induction the theorem may be taken for granted with respect to A , .  
This means the existence of d' E d I with 

J(c)  n F(p) = J(u) n J(b). 

d' E .I(&)) n J(6(b)) and J(d') n d ,@) = J(6(a)) n J(6(b)) n d 

The contribution of d2 being trivial because of the elementwise incidence of 
d ,, A,, one may replace d , by d in this equation. Finally, by applying 6-' one 
gets a d which fulfills 70.19.1 (again using 70.19.2). 

70.20. The Special Case of rank 2 Gis supposed to be of rank 2. The 
primitive rootforms on the ordered trunk H are p,a. 

(sps2 = 1, 
where for 

70.20.1 

The number of chambers is 2m. According to adjacency, they are put into a 
cyclic order that also applies to the elements of I7 as vectors in the plane. In 
this cyclic order elements of l7@) and n(u) alternate with one another. 
Neighbors are incident. 

If A, p, v E 17 and h + p # 0, then v is called between h and p if v = sh + rp for 
suitable positive s, t .  

By w-l the cyclic order and the betweenness are transferred to ro. 
In an irreducible chain within ro the members follow each other according 

to the cyclic order (or its inverse); if the length of the chain is < m, then its 
intermediate members are between the extremities. 

70.20.2. Proposition If c is between a and b in ro, then a n b c c. 

Proof Let ea E u n b. Then (wa, a) 2 0, (wb, a) > 0. Thus, if c between a and b, 
(wc, a) 2 0, thus ea E c. 
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70.20.3. Proposition If the extremities of an irreducible chain of length 
< m are in To, then the entire chain is in To. 

Proof Let a,, . . ., a, constitute an irreducible chain, ao,ap E ro, p < m. The 
proof proceeds by induction on p .  Both a, and up-,  n up contain a maximal 
solvable Lie subgroup of G. Therefore by Bruhat's lemma there is a trunk H' c 
a, n ap- ,  n ap. Both H and H' are in a, n a,. Thus XH' = H by means of 
some x E a, n a,. Since Xu,-, E To, the inductive argument can be applied to 
the chain ofRa, ( i =  0, . . . , p  - 1) to the effect that Xu, E To for i =  0, . . . , p  - 1. 
Since x E a,, this extends to 2a, E ro for i = 0, . . ., p .  The supposition p < m 
guarantees that Xul is between Za, = a, and Zap = a, for 0 < i < p ;  thus 
by 70.20.2, x E a, n up c Xu,, hence x E a,, a, = 2a, E To, which proves the 
assertion. 

70.20.4. Proposition The intersection of an irreducible chain of length 
G rn contains a trunk of G. 

Proof Let ao,a,, . . ., a, be the chain. Then there is a trunk H' in a, n up-,  n up. 
Nowp - 1 < m ;  thus by applying 70.20.3 with H' instead of Hone gets H' c a, 
f o r O < i < p - l  aswell. 

70.20.5. Theorem If G is of rank 2, then any pair of elements of r c a n  be 
joined by a chain of length Q m (see 70.20.1). If, moreover, there is a chain of 
length < m to join distinct a, b E r, then there is exactly one irreducible chain of 
length < m to join them. 

Proof The first assertion follows from the fact that any pair a, b E T may be 
supposed within To. Let a, b be joined by an irreducible chain C of length Gm. 
Then by 70.20.4 the entire chain C may be supposed within ro. 

Let a, b (now E To) be joined once again by a chain C' of length < m. Then by 
thinning out, C' may be assumed irreducible, hence by 70.20.3 contained in To. 
Then either C and C' are equal or C u C' = To. The alternative, however, 
leads to a contradiction, for the lengths of C and C' are Q m and < m, whereas 
To has 2m elements. This proves the theorem. 

71. AN AXIOMATIC APPROACH TO INCIDENCE 
GEOMETRIES OF SEMISIMPLE LIE GROUPS 

71 . l .  Definitions 

71.1.1 
binary relation called incidence. 

An incidence geometry consists of a set and a reflexive symmetric 
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71.1.2 An incidence geometry r is called the direct sum of the incidence 
geometries rl, . . ., r, if 

as a set I' is the disjoint union of TI, . . ., r,, 
the incidence relation on r, is the restriction of that on r, 
r,, r, are elementwise incident for i # j .  

In this situation the r, are called direct summands of r. 
71.1.3 If F i s  an incidence geometry and a is an element of r, then r mod a 
is the incidence geometry consisting of the set of elements incident with a, 
except a itself, and of the restriction of the incidence relation on F. 

71.1.4 Any graph to be mentioned is supposed to consist of a nonnegative 
finite number of dots and a finite number of mutual bonds which may be 
multiple and directed. A splitting of a graph into disjoint unconnected sub- 
graphs is called direct. A graph gets reduced with respect to one of its dots 
by omitting that dot and its bonds with other dots. 

71.1.5 An incidencegeometry on agraph consists of an incidence geometry r, 
a graph K ,  and a mapping of the set of dots of K onto a set of subsets of r such 
that 

the images of the dots are pairwise disjoint, 
the union of the images of the dots is r, 
incident elements of the image of a dot coincide. 

The notion of isomorphism of incidence geometries on graphs is understood 
in the obvious way. 

The number of dots is called the rank of the geometry. 

71.1.6 An incidence geometry r on a graph is called the direct sum of the 
incidence geometries on graphs rl, . . ., I', if, as an incidence geometry, rspli ts  
directly into the incidence geometries rl, . . ., r,, and this splitting is induced by 
one of the underlying graph into subgraphs belonging canonically to the r,. 

In this situation the r, are called direct summands of r. 
If I' has no nontrivial proper direct summands, it is called simple. 

71.1.7 If r is an incidence geometry on a graph and a is an element of r, 
then r mod a is interpreted in a canonical way as an incidence geometry on the 
reduction of the graph of r with respect to the dot to which a belongs. More 
precisely, I' mod a is, by restriction of the incidence relation and intersection 
of the images of the dots, an incidence geometry on the reduction of the graph 
of r with respect to the dot to whose image a belongs. 

71.2. Definition A system Z o f  incidence geometries on graphs is called a 
Tits geometry if it fulfills the following conditions: 
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71.2.0 In every element of Z the image of each dot is nonvoid. 

71.2.1 
one of r itself. 

For every r E Zany direct splitting of the underlying graph induces 

71.2.2 Every direct summand of F E Z belongs to Z. 

71.2.3 If r,, r, E Zare disjoint, then there is a r E Z, which is the direct sum 
of r,, r,. 

71.2.4 If r E Zand a is an element of r, then r mod a E Z. 

71 -2.5 For any I ‘ E  Z,ifa,bareelementsofr,and ifr(p),r(o)aretheimages 
of different dots p, u of r, then there is a number k and a sequence co, . . ., ck of 
elements of r such that a = co, c, = b, c,-, incident with c, ( i = 1, . . ., k) ,  and 
C, E F(p) u r(o) for i = 1, . .., k - I .  

71.2.6 For any simple F E Z, if J(x )  means the set of elements of F incident 
with the element x of r, and if a, b are nonincident elements and r ( p )  is the 
image of a dot of r, then 

if 

then 

J ( a )  n J(b )  n r ( p )  # 0, 

J ( c )  n r ( p )  = J ( a )  n J(b) n r ( p )  

for some 
c E J (a )  n J(b). 

71.2.7 r E Zand r’ isomorphic to r implies r’ E Z. 

71.3 An incidence geometry of a complex semisimple Lie group can in an 
obvious way be interpreted as an incidence geometry on a graph. Then some 
major results of Section 70 can be summarized in the following theorem: 

Theorem The system of geometries isomorphic to the incidence geometries 
of complex semisimple Lie groups is a Tits geometry. 

In particular, the validity of 71.2.1-3 is granted by 70.17, the validity of 
71.2.4, 71.2.5, 71.2.6 by 70.16, 70.15, 70.19. 

71.4 A Tits geometry is to a high degree determined by its members of rank 2 
If these members are prescribed, then a great many properties of any member 
of the system can be derived from its graph. This will be illustrated in 71.6 
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In particular the Tits geometry of Theorem 71.3 is essentially obtained if 
only graphs of semisimple groups are admitted and if the former correspond- 
ence between graphs of Lie groups and incidence geometries for the case of 
those of rank 2 only is postulated. However, this will not be proved here. 

71.5 The property of incidence geometries of Lie groups of rank 2 stated in 
Theorem 70.20.5 is generalized by the following definition. 

Definition of generalized polygons: A generalized m-gon I' is an inci- 
dence geometry on a graph of rank 2 such that 

any pair of elements of r can be joined by a chain of length Gm, 
if two elements of r can be joined by a chain of length cm, then there is 

(The notions of chain and irreducible chain are understood as in 70.15.) 
The most convenient kind of graph for a generalized m-gon is a pair of dots 

with a (m - 2)fold bond. Then, however, to keep in line with the results of 70.2 
one must indicate G2 not by a threefold but rather by a fourfold bond. 

exactly one irreducible chain of length <m to join them. 

71.6 In the remainder of this section incidence geometries to be analyzed are 
supposed to have been taken from a fixed Tits geometry with the special 
property that 

all graphs involved are graphs of semisimple groups, 
the geometries of rank 2 are generalized polygons (2-gons, 3-gons, 4-gons, 

and 6-gons for the graph of A, + A,, A,, B2, and G2). 
A few examples will be discussed. In a given geometry I' between given 

elements a shortest chain is constructed, starting with some chain granted by 
71.2.5 and shortening it by the use of the other postulates : If in a chain 

...bat . . .  

b,a,c belong to r(u), r ( p ) ,  T(T), respectively, then in r mod a, which by 
induction may be supposed to be better known than 1', there is a chain from 
b to c that can be inserted instead of bac. If u , ~  are separated by p in the graph 
of I', then by 71.2.1-4 there is incidence between b and c, so that a may be 
simply omitted. By such operations one may succeed in shortening the 
original chain. 

The dots of the graph will be numbered 1, . . ., 1 in the usual way if 1 is the 
rank of r. The elements of the ith sort will be indicated by i, i', i", and the like. 
However, to avoid distinguishing marks the same sign i will be used even for 
different elements of the sort i occurring in the same chain when no confusion 
is likely to occur. 
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Exam p I es 

71.6.1 A,. Between any pair of elements there is a chain of length ~ 3 .  
Therefore if 1 , l '  are given: 121', which is unique. In the same way if 2,2' are 
given, 212'. Interpreting the dots 1,2 respectively as the sets of points or lines, 
the incidence axioms of the projective plane are fulfilled. Pis a plane projective 
geometry. 

71.6.2 A,. The elements of sort 1,2,3, . . . are called points, lines, planes, . . . . 
By induction on I it will be shown that two points can be joined by a line. In 
any case, there is a chain 

121'2'12 * * 1. 

One considers I" = r m o d l '  with the graph of A,-,. In r' the roles ofpoints, 
lines, . . . are played by elements of sort 2,3, . . .. Therefore the neighbors 2,2' 
of 1' can be joined by 232'. Substitution changes the given chain into 

1232'12 * - * 1 ,  

in which the 2,2' between 1 and 3 may be omitted by 71.2.4 and 71.2.1. The 
resulting chain is 

1312 * * *  1. 

In r mod 3 one considers the "lower" direct summand, which is a projective 
plane, in which points can be joined by a line. This allows one to replace 3 
with 2. The new chain 

1212 ... 1 

is two links shorter than the original. This reduction can be repeated until 

121, 

which shows the existence of a line joining two given points. 
Its uniqueness for distinct points is shown as follows: Let 

I21 '2'1 

be a (closed) chain. By 71 -2.6 applied to 1 , l '  instead of a,b, there is an i incident 
with 1,2,1', 2'. In r mod i this argument can be repeated until one arrives at a 
geometry of rank 2 in which such a chain is excluded by assumption. This 
proves the uniqueness ofjoining points in r. 

Another property is that a line and a plane, if incident with two different 
points, are incident with each other. Indeed, if line 2'and plane 3 are not 
incident, by 71.2.6 there is an i incident with 2,3, and the two points. Again, 
arguing by r mod i, one arrives at a 2' or 3', incident with the given 2 and 3. 
Then 2 = 2' or 3 = 3', both of which are contradictory. 
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Three different lines intersecting in three different points are in a plane: one 
is given the closed chain 

where the stroke is used to denote incidence. As before, one may replace some 
1 by 3, 

2 
/3\ 

h 
1-2-1 

and thus omit the two upper 2’s, 

3 
1’ ‘1 
‘2’ 

From the property already proved, it follows that 2,3 are also incident, which 
shows that 3 is incident with all given 2’s. 

Continuing this procedure, one can prove that F fulfills all incidence axioms 
of projective space. 

71.6.3 B,(C,). Given nonincident 1,2, there is a chain of length G 4 joining 
them; therefore 1212, which is even unique. Given that 1,1 may by chance be 
incident or possess a unique chain 121 (joinable by a line). In any case, there is a 
chain 12121 between them. 

This is the geometry on a 3-quadric in projective 4-space or, equivalently, the 
symplectic geometry of projective 3-space. 

71.6.4 B&). 
and planes: 

In the symplectic interpretation 1,2,3 are the points, lines, 

._.-. - 
1 2 3  

(1) For any 1,2 there is a chain 

1212, 

which is unique if there is no chain 132. 
(2) A chain 132 is unique for nonincident 1,2. 
(3) For any 1,3 there is a chain 

1323, 
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which is unique for nonincident 1,3. 
(4) For any 2,3  there is a chain 

2313, 

which is unique if there is no chain 213. 
(5) A chain 213 can be completed to 

2-1-3 

3-2 
\ / \ /  

within the geometry reduced with respect to 1 .  The chain 213 is unique if 2,3  
are nonincident and so is the completion. 

(6) A chain 121 is unique if 1 , l  are different. 
(7) A chain 2312 can be completed to 

3-1 
/ \  / \  

2 

1-3 

If there is no chain 212, it is unique and so is the completion. 
(8) A chain 212 can be completed to 

2-1-2 

3-2-3 
\ / I \ /  

It is unique if there is no chain 232; its completion is not. 
(9) A chain 232 is unique if 2,2 are different. 
(10) A chain 313 can be completed to 

3-1-3 
\/I\/ 
2-3-2 

It is unique if there is no chain 323; its completion is not. 
(1 1) A chain 323 is unique if 3,3 are different. 
(12) For any 1 , l  there are chains 12121 which are never unique; likewise 

for 2,2 and 3,3. 

The facts from (5) onward, and (2), areeasilyproved. The existence of chains 
(l) ,  (3), and (4) will be proved by an explicit construction; in this procedure 
elements with respect to which mod-reduction took place are underlined. 
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(3) One starts with a chain 132323 * 23 of unknown length: 

1323232 * * - 3 
1321232 - * * 3 
13132 * . *  3 
12132 * - 3 
123232 - * * 3 
13232 3 

- 
- -  
- 
- 

- 

by which the chain has become two links shorter. 
This shows the existence of 1323 for given 1,3. 
(1) One starts with 13232 - - * 2 which by (3) can be shortened to 13232; 

hence, 
13232 
13212 
1312 
1212 

- 

Thisshows theexistenceof 1212. 
2313131 - * 3 
2312131 - - * 3 
23232131 * * 3 
2323131 * * * 3 
2123131 * * * 3 
213131 * * 3 
212131 3 
2123231 * * .  3 
213231 * * * 3 
2323231 * * * 3 
2321231 * * * 3 
23131 * a - 3 

(4) - 
- 
- 

- 
- 
- 
- 

- 

- 
- 

- -  

which shows the existence of 2313. 
As an example of a uniqueness proof, that for 1323 is given : 
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(In the last step 71.2.6 is used.) Reduction mod the lower 1 shows two chains 
2323 in a B,-geometry, which is forbidden. 

71.6.5 F,: ._.-._. - 
abed 

Given a,d, there is a chain adad. In the proof the properties of B, are in- 

One may start with 
volved if reducing mod a or mod d. 

adcdcd * d 

and suppose that at least two pairs cd are present (if there is only one, it 
may be doubled). 

adcdcd . . d 

acbcdcd - d 

acbdcd - . d 

acbcacd - - * d 

acbcad * - - d 

acdcad - * * d 

adad - a 9 d 

- 

- 

- 
- 

- -  

If t h m  are still pairs cd present, one continues as follows: 

adadcd . . d 

adacbcd * * d 

adacbd - * * - d 

adcdcbd * - - d 

adcdbd - * - d 

adcdcd - . . d 

- 

- 

- 
- 

which by the first procedure and by induction leads to adad. 
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71.7 Although interesting in itself, this haphazard search for shortest chains 
and uniqueness proofs is not satisfactory. A more algorithmic method 
would be desirable, though in the general case its existence might be doubted. 
If, however, one restricts oneself to incidence geometries of semisimple groups, 
group theory methods are available to solve these kinds of problems. They 
will be developed in the next sections. 

72. COVARIANTS OF PAIRS OF ELEMENTS IN 
INCIDENCE GEOMETRIES OF SEMISIMPLE GROUPS 

G is supposed to be semisimple complex. Other notations are taken from 
Section 70. 

72.1 F(a,b), as defined in 70.9, is the covariant of a,b E I‘. By choosing the 
trunk H within a n 6, F(a, b) has been related to ~ ( w u ,  wb) =P(wa, wb) n I7 by 
70.10. P(h,p) is the smallest part of H: containing X and p. 

Since two trunks of Q n b are equivalent under inner automorphisms of G 
leaving a and b invariant, the metric properties of 17(wa, wb) are covariant 
properties of Q and b. 

U(X,p) will be discussed for any A,p E 17. 

72.2 For a E W* the set of 4 E H: with (5, a) = 0 is the hyperplane a l .  The 
line-interval [A,p] is contained in the intersection N of all hyperplanes a’- 
passing through X and p. 

Definition dim N - 1 is called the rank ofthepair h,p E 17. 

Proposition If the cell C contains several points of [h,p] ,  then dim C >  
dim N = rank ‘X,pl + 1. 

Indeed, such a cell contains a subinterval of [A,,]; its linear span contains 
h and p, is the intersection of some hyperplanes aL containing h and p, and 
therefore contains N .  

72.3 Let (,, . . ., .fp-l E [A,p] be the consecutive intersection points distinct 
from X,p of [X,p] with cells of dimension G rank rX,pl, counted from h to p. 
In addition, put lo = A, 5, = p. Let Ci be the smallest cell containing 5, and put 

D i = C i  n17 ( i = O ! l ,  . . . , p ) .  
Note that 

Do = 01, Dp = {PI.  

Every part containing h,p contains [A,p], thus ti ,  and therefore the smallest 
cell in which El lies. Hence: 

Proposition D, c 1 7 ( A , p )  for i = 0, 1, . . ., p .  
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Note that some D, may be void. Then 4, = 0 and [A,,] contains the origin; 
thus -p is a positive multiple of A. For  some S E Int W*,  SA is a fundamental 
weight 7r. Now S(-p) is also dominant, hence a fundamental weight, hence 
S(-p) = Sh. Thus p = -A. Moreover, rank ‘A,,’ = 0, p = 2, DI = 0. 

72.4 The elements of (5,) u Di are not separated by a hyperplane a’ 
( a  E W * ) .  The same is true of the elements ti.., and ti and of the elements of 
( f i - 1 )  u Di-1. 

Proposition The elements of Di-, u D, are mutually incident. 

72.5. Proposition 

Proof Let v E D ,  n Dk. Thus for all a E W* 

For 0 Q i < j <  k G p :  D ,  n Dk c D j .  

(v, a)(5i, a )  0, ( ~ 9  c O ( t k ,  a )  0. 

I f  ( v , ~ )  # 0, then ( f i , a ) ,  ( f k r a )  have the same sign in the weak sense, thus 
( f j ,a )  between them still has the same sign. Hence 

( v ,  a ) ( t j ,  a )  2 0 for all a E W*,  

which proves the assertion. 

72.6. Notation E, = N - I  D i .  E =  ‘E0,  ..., Epl. 
Notethatifrank ‘ A ,  p1 = O  then 

E = ‘{H-’ A} ,  0, (1i*-’p}’. 

Clearly the elements of u El are mutually incident. 

E, = {a}, E,, = {b}. 

Definition A sequence ‘E,,  . . ., Epl of finite subsets of F i s  called a chain if 
the elements of u Ei are mutually incident. Two chains ‘E0,  ..., E p l ,  
‘E:, . . ., E;I are called isomorphic by means of g, if g, maps U Ei one-to-one 
onto U ET, such that Ei is mapped onto ET, and for any p, if x E r ( p ) ,  
then y x  E T(p). 

Clearly, according to 72.4, the €defined before is a chain, which up  to Int G- 
equivalence does not depend on the choice of the trunk in a n b. 

72.7. Theorem The pairs ‘a,bl and ‘a*,b*l are equivalent under Int G if 
and on ly  if Edetermined by ‘a,bl and E* determined by ‘a*,b*l (both with 
respect to some trunks) are isomorphic. 

Proof “Only if” being obvious, one supposes that E, E* are isomorphic; hence 
p == q. Since a,u* belong to the same sort, they are equivalent under Int G; thus 
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they may be supposed equal. Both a n b and a n b* contain trunks of G, which 
areconjugatein a. Therefore, withoutchanging a = a*, one may arrange to have 
a common trunk Hof G within a n band a n b*. This trunk is used in the sequel, 
E, E* may be supposed to be constructed on I€. 

Eo = {a}  = {a*} = E,*. 

Since the elements of Eo u El as well as those of E,* u ET = Eo u ET are 
mutually incident, there are maximal solvable Lie subgroups B, B* of G in 
f lEEEOVE,  c and flcoEEo E I o ~ * .  Both Band B* are in a. Without changing a and 
H, by conjugation in a one may again arrange things so that H c B = B*. Thus 
the elements of Eo u El u E :  are mutually incident. Since q~ relates elements of 
the same sort to one another, and qE,  = E:, it follows that 

El = ET 

After these preliminary transformations it will appear that 

72.7.1 Ei = E: 

for all i ;  hence 
b = b*, 

which is the assertion to be proved. 
Instead of 72.7.1, one may prove 

72.7.2 D, = D: 

where D, = wEi, D: = WE:. Now suppose that this is true for all i cj with 
somej > 1. Then the line intervals [wa, wb] and [wa, wb*] meet the cell C,-l = 

CJ*-l belonging to D,-, = D;-l in  interior points The points of 
u [t;-l,f;] are not separated by a hyperplane aL because such a 

hyperplane would have to contain one of the points hence both, 
hence either it contains to, which contradicts its separation property, or it is 
pierced by both line intervals. Thus this set is contained in some closed 
chamber that consequently contains D, as well as 0;. Since any closed chamber 
contains exactly one w-image of every sort, it follows that they are equal, which 
proves 72.7.2 for i = j .  

and 

72.8 The preceding theory is a practical tool for. classifying the pairs of 
elements of r up to Int C. This is shown by a rather involved example in 
Section 73. 
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73. THE CLASSES OF PAIRS OF ELEMENTS IN AN 
F4-G EOM ETRY 

G E F4. Ordered second dressing supposed on H. Instead of a natural basis, 
an orthogonal one w I , ~ 2 , ~ 3 , ~ 4  is chosen in H; to make things look 
more symmetric, that is, such that 

W*: f w i  ( i  = 1,2,3,4), *wi f W, ( i  # j ;  1,2,3,4), 

3(*Wl w2 f w3 f w4). 

P I  = 3(Ul - w2 - w3 - U413 W++ : 

p2 = - w 3 ,  

PI = 0 4 9  

p4 = w3 - w4. 

Fundamental weights : 

r l  = w1, 

772 = w1+ w2, 

7 3  = j ( 3 W l  + W2 + w3 -k w4), 

r 4 = 2 w l  +wZ+w3.  

On the basis rwI,w2,w3,w41 theelements of n a r e  
1 7 ( p l ) :  rl,O,O,O1 ,... ; * r l , l , l , l l  ,...; 24elements. 

17(p2):  r1,1,0,01, ... ; 24 elements. 

17(p3):  + ‘3,1,1,1’, . . .; ‘I, I ,  1,01, . . .; 96 elements. 

17(p4) :  ‘2,1,1,01, . . .; 96 elements. 

The dots indicate that all permutations of the coordinates and sign changes 
in the coordinates have to be applied. 

Ddescribes the geometry of the so-called 24-ceI1, a regular solid of 4-space. 
17(p2), 17(p4), D(p3), 17(p l ) ,  respectively, gives the vertices, midpoints of edges, 
midpoints of 2-faces, and midpoints of 3-faces of this solid up to scalar factors. 

By geometric reasons the elements of 

T(P2)? Q4), T ( P 3 h  

are called 

for which the letters 
points, lines, planes, symplecta, 

a, 6,  C, d, 
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respectively, are reserved. 
d c b a  

PI P3 P4 P2 

.-.=.-. 
3 

The equivalence classes of pairs A, p E I7 with the corresponding 17(X,p) and 
U ( h ,  p) = U;,oD1 are exhibited. Incidence is indicated by a dash. 

There is a hierarchy of such incidence figures. If CP and CP’ are incidence 
figures for the same kind of pairs, the CP’ is called at least as weak as CP if the 
existence of CP‘ can be derived from that of CP by the axiomatic rules of 71.6.4. 
In 73.1-4 the classes of ‘X,pl are arranged from the weakest to the strongest 
figure. 

A subfigure of17(X,p) which is as strong as 17(h,p) itself is said to determine 
17(X,p). Minimal determining subfigures are indicated in most cases. 

To simplify the figures “trivial” incidence consequences are sometimes left 
out. (A point and a plane are “trivially” incident if there is a line incident with 
both; a line and a symplecton are “trivially” incident if there is a plane incident 
with both.) 

Note the duality caused by the exchange of rays through 7r1 and n2, r3 and 
n4. This reduces the task set. 

73.1 x E r ( p 2 ) ,  y E r ( p l ) .  (Point-symplecton.) 

73.1.1 h = -1 100, p = 1000. 

el =+A + +p = f.0100, e2 =*A  + Sp = 3 a 1100. 

-1 100-0100-1 100-1000. 

a-d-a-d. 

73.1.2 

73.1.3 

h = 01 10, p = 1000. 

= fh + fp = 3 1110, e2 =*A ++p = 3 -21 10. 

01 10-1 110-21 10-1000. 

a-c-b-d. 

h=1100, p=lOOa 

1 100- 1000. 

a-d. 



73. THE CLASSES OF PAIRS OF ELEMENTS IN AN F,-GEOMETRY 441 

73.2 x E r ( p 2 ) ,  y E F(p3). (Point-plane.) 

73.2.1 h = -1-100, p = 1 1  10. 

( I  = +A + 3p = 3 * -1-1 10, 

& = +A + $1. = 3 * 0010, 

( 2  = +A + +p = + * -1-120, 

t4 = + A  + +p = 3  * 1120. 

- 1 - 1 0 0 - - 1 - 1  10--1-120--0010-112&-1110 

a-c-b-d-b-c. 

73.2.2 X=-lOol, p =  1110. 

51 = +A + +p = 3 * (-3333 + -34+$), 5 2  = + *P = 

f 3  = fh + +p = 3 -01 1 1 ,  5 4  = +A + +P = 

See Figs. 8 and 9. 
1 1 1 1  

+ (01 12 + 2 * -3+4+), 
+ * (01 10 + 2 - +if+). 

FIG. 8. 

The figure is determined 
be uniquely extended to 

FIG. 9. 

by a-d-a-c. Indeed, by 71.6.4( I ) ,  d-a-c can 

ATd\ 
d - a - c  
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and a-d-cl to 
cz-bz 
/ \ / \  ; 

a-d-c,  

the hidence bz-d is a trivial consequence. 

73.2.3 A =  1-100, p =  1110. 

f 1  = +A + +p = + * (lo00 + 2-110), f z  = + A  + +p = + * (1010 + lOOo), 

f 3  = +A + +p = 3 - (1010 + 21 10). 

See Figs. 10 and 1 1 .  

FIQ. 10. 

\ . . . . . .  c 

FIG. 11. 
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The figure is determined by 
a-d-b-c 

a-b-a-c, 
as well as by 

since the lacking elements can be added by virtue of 71.6.4(1) or (4). 

73.2.4 A =  1001, p =  1110. 

5 ,  = + 3p = 3 *(3333 + W), 5 2  = + A  + 3p = 4 * (21 10 + 2 *3M). 
See Figs. 12 and 13. 

FIG. 12. 

FIG. 13. 

The figure is determined by 
a-d-c. 
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73.2.5 A =  1100, p =  1110. 
1100-1 110. 

u-c. 

73.3 x E r ( p 2 ) ,  y E T(p4). (Point-line.) 

73.3.1 A = -1-100, p = 21 10. 

[, = $A + $p = t * -1-2-10, 

& = +A + 3p = 4 - 1-120, 

f 2  = $A + +p = 3 * 0-1 10, 

t4 = fh + $p= $ * 1010. 

-1-100- -1-2-10--0-110-1-120-1010-2110. 

a-b-a-b-a-b. 

73.3.2 h = 0-1-10, p = 21 10. 

f - *A + $p = f * 1-1-10, 5 2  = +A + +p = 3 - 2-1- 10, I -  

(] = -)A + +p = 1000. 

0- 1 - 10-1 - 1-1 0-2-1-10-1000-2 1 10. 

a-c-b-d-b. 

73.3.3 h=0-101, p=2110. 

4, = ~ h + $ p = t . ( l - 1 0 2 + 2 . + - 3 3 f ) ,  

(2 =+A + +p = + * (1001 + 2 .-) -ff+), 

[] = + A  + fp -3 *2011, 

[ 4 = 3 h + ~ p = 3 ' ( 1 0 1 0 + 2 . ~ 3 + f ) .  

See Figs. 14 and 15. 

FIG. 14. 
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FIG. 15. 

The figure is determined by 
a-d-a-b, 

as well as by 
a--6-a-c-b. 

I n  the first case 
d-a-b 

is filled up to 
d - a - b  
\A/  

b-C 

by means of 71.6.4(3) and then 

to 

a-d--6 

a-d--6 

b-a 
/ / \ /  

by means of 71.6.4( 1). In the second case 

is filled up to 
-6-a-c 

and then, according to 71.6.1, 
b-c--6 

to 
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73.3.4 x = 0-1 10, p = 21 10. 

6, = ;3h + gp = 4 * 1-120, 6* = +A + 4p = 1010. 

0-1 10-1-120-1010-21 10. 

a-b-a-b. 

73.3.5 x = 1-100, p = 21 10. 

6, = gx + +p = + * (2 * lo00 + 2-1 lo), 62 = +h + 3p = f * (2 * lo00 + 1010). 

See Figs. 16 and 17. 

2-1 10 \ . 

FIG. 16. 

FIG. 17. 
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The figure is determined by 

a-d-b. 

73.3.6 

73.3.7 

73.4 

73.4.1 

73.4.2 

73.4.3 

73.4.4 

x = 01 10, 

5, = * A + + =  1110. 

p = 2110. 

01 10-1 110-21 10. 

a-c-b. 

A =  1100, p=2110. 

1100-21 10. 

a-b. 

x E r ( p z ) ,  y E Q2). (Point-point.) 

h = 1 100, 

Rank 0. 

p = -1-100. 

a, a. 

x = 1100, p = -1010. 

= jx++p=+*1210, f * = * x + f p = 3 . 0 1 1 0 .  

[, = j-x + jp = j- --1120. 

1100-1210-01 10- -1 120- -1010. 

a-b-a-b-a. 

A = 1100, p = 1-100. 

f ,  = +A + +p = 1000. 

1 loo-looo-1-100. 

a-d-a. 

h = 1100, p = 1010. 

8, = $4 + $1. = 3.21 10. 

1100-21 10--1010. 

a-b--a. 
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73.4.5 A =  1100, p =  1100. 

1100-1 100. 

a-a. 

73.5 x E I'(p4), y E r (p3 ) .  (Line-plane.) 

73.5.1 x = -2-1-10, p = 11 10. 

4, = $4 + +p = -1000, 

f 3  =+A + + = + .-i 1 lo, 

-2-1-10- -1ooo- -21 lo- -11 10-01  10-1 110. 

f 2  =$A + +p = + .-2110, 

f4 =+A + 3p = + .OllO. 

b-d-b-c-a-c. 

73.5.2 x = -2-101, p = 11 10. 

4, = +A + +p = + - (-1001 + 4 -!& + -+ -#), 

4 2  =+A ++p =+ -(-loo1 + 2 .+ +tf. + -2011), 

& =+A + $p = + .(0011 + 2 *++# + -1021), 

4 5  = 3x + +p = 4 *(0011+ t333 + -3+$4), 
&, = +A + +p = + 0121, 

f 7  = f h  + & = t * (01 10 + 3333 + 43+!z), 
& = j-x +qp = j- .(0110 + 2 * - ) &  + 1120). 

f 3  = +A + -& = 3 - -101 1, 

See Figs. 18 and 19. 
This is the first case in which IT@,,) is larger than nl(A,p), namely, by eight 

elements. This occasion will be used to build up l7(A,p) formally, starting with a 
chain which, by virtue of the construction, proves to determine the whole 
figure. 

From Fig. 18 one draws the chain 

-2-101- - p&- -2011- -1011- -1021- 4+3+4121-4+$+  

-1 120-1 110, 

for short, 
b - ~ - b - ~ - - b - ~ - b - ~ - b - ~ .  
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This chain is filled up by means of the algorithm in Section 71. (See Fig. 20.) 
One extends 

b--b to /y'\b ( i=  1,2,3,4), 

c-b-c  
c-b-c to \ 1 / ( i=  1,2,3,4), 

dl 

b-c- 

and after adding some trivial consequences 

b, 
a-c-a to / I  \ ( i =  1,2), 

a-c-a 

d-b--d 

c1 

d-b-d to \ I /  ( i =  1,2); 

finally, by virtue of 71.6.4(5), again after having added some trivial con- 
sequences, one adds to 

the chain bl-c3--b3-c, whose elements are incident with both a3 and d2. 

Fig. 20. 
All other incidences are trivial consequences and have been omitted in 

The figure is determined by 

b-c-b-c-b-c-b-c-b-c, 
but also by 

and by 
b-d-a-d-C, 

6-a-d-a-c. 

73.5.3 h = -21-10, p = 1 1  10, 
c1 = + A  + 3p = 3 ' (2  *-1100 + -11-lo), 
f 2  = +A + +p = 4 ' (3 * -1 100 + -12-lo), 
t3 =-)A + -)JL = 3.  (-1 100 + OlOO), 
(4 = + A  + +p = 3 * ( 3  *0100 + -1210), 
f 5  =+A ++/A = 3 '(2 *0100 +0110), 
& = + A  + +p = 3 .(0110+ 2.1210). 

See Figs. 21 and 22. 
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FIG. 21. 

FIG. 22. 

The figure is determined by 

b-a-d-b-c. 

73.5.3' x = -1-102, p = 11 10. 

5, =+A + 3p = 3 * (0001 + 2 .-+ -3++), 
~ 2 = ~ h + ~ p = ~ * ( 0 0 0 1  +OOll), 

t3 = +A + $/.L = + * (2 * #+ + 3 * 001 l), 

5 4  = +A + +p = 3 .  (2 -3333 + 001 I), 

6 5  = ax + sp = a * (3 * 3333 + 33+4>1 
56 = f h  + +p = 4 . (4 . 3333 + 1 120). 

See Figs. 23 and 24. 
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- 1  

FIG. 23. 

FIG. 24. 

The figure is determined by 

b-c-a-d-c. 

It is the dual of 73.5.3. 

73.5.4 A=-2101, p =  1110. 

6, = + A  + +p = + *(-1101 + -1100 + 2 *-++++>, 

6 3  = 9 + 31. = 3 * (-3333 + -+3+3), 
t4 = + A  + +p = 3 * (0110 + 021 I ) ,  

5 s  = + A  + QP = a  ' (2  *0110 + 3333 + +$+f), 
(a = + A  + 4p = 4 ' (2.01 10 + 2 *3+++ + 1210). 

f2 = +A + 31. = + * (-1201 + -1 100 + 4 * -++++), 

See Figs. 25 and 26. 
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Again n ( h , p )  is larger than f l (A ,p ) ,  namely, by four elements. 
To find a chain that determines the total number one can start with 

-2101- -f-f-++-0110-1110. 

It is denoted by b-d--a-c. 
From b-d--a and d-a--c one obtains b-a,-b,-a and d-cl-dl-c, 

respectively, together with the obvious incidences, and from b-d-c, and 
b,-a-c likewise c2,u2 and dZ,b2, respectively (see Fig. 27). After adding 
some trivial consequences one completes al-c2--a2, dl-b2-d2, and 
a-c1-a2 with elements b,, c,, and b4, respectively. Now one notes that d is 
incident with 

-a2 

\ 
- a , - - b , - - a  

which implies the existence of 

by 71.6.4( 1); from this b3-c4 and b4-c4 follow easily. Similarly, if c' is defined 
by 

d-bl-dz 

C' 
\ I /  9 

one finds b' with 
c1 --a-d, 

b' 
\ I /  9 

whence by reduction with respect to d, apart from 

b,--a-c 6 , - a - c ,  
\ / \ /  and \ / \ , /  , 

c4-b4 c'- b 

whence b'-c,, b'-c,; therefore c' = c4, 6' = b4, by 71.6.4(5). This shows 
the crucial incidences d2-c4, b4-c,. The remaining incidences are trivial 
consequences. 
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The figure is determined by 
b-d-a-c. 

73.5.5 x = 1-102, p = 11 10. 
5, = 3h + +p = 3 ' (2 * 1001 + t -+3+ +++-I$>, 
~ z = + x + + p = + - ( 3 * 1 0 0 1  + 2 . + - & +  1012), 
5, = +A + +p = + - (1001 + 101 l), 
t4 =+A + +p = 3 ' (2 -+J& + 201 l), 
4 s  = *A + $p = * * (3 * +ti+ -I- 1010 + ++++), 
& = f-h + $1. = + '(4 *++# + 1010 + 2110). 

See Figs. 28 and 29. 
1 1 1 1  

FIG. 28. 

FIG. 29. 
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Building up from 
I-l02--1001-;~~~--I 110, 

(see Fig. 28), or, for short, 

one gets, in Fig. 30, consecutively, the following elements, with incidences as 
shown: 

b--n--cl-c, 

FIG. 30. 

by 71.6.4(3) h--cl--bI--rl in the reduction result of a and a-cz-bz-c in 

by 7 1.6.4( 5) 
the reduction result of (I, 

in the reduction result of d, and furthermore dl and a l  by means of 71.6.4(6). 
The incidences not shown in Fig. 30 are trivial consequences. 

The figure is determined by 
b-a-d- -c . 

73.5.6 A=-2110, p =  1110. 

e l  = +A + +p = - 1  110, [* = *A + ;p  = 01 10. 

-21 10- - 1  I10-0110--1110. 

6-c-a-c. 
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73.5.6 ' h = 2-1-10, p = 1 1  10. 
4, = +A + +p = 3 * 1oO0, 5 2  = *A + 4p = 3 * 21 10. 

2-1-10-1000-21 1 0 - 1  110. 
b-d-b-c. 

This is the dual of 73.5.6. 

73.5.7 x=2-101, p =  1110. 
5, = +A + +p = 3 * (1000 + 1001 + 2 -3 -+++), 
t2 = +A + +p = + - (1000 + 201 l), 
5 3  = +A + +p = 3 * (1010 + 2 *$+++), 
~ 4 = ~ h + ~ p = * ' ( 1 0 1 0 + 2 * + + + + + 2 ~ 2 1 1 0 ) .  

See Figs. 31 and 32. 
2110 

2- 

\ \ \  / 0 '  
3 1 1 1  0 
2 2 2 2  
----- 

FIG. 31. 

10 

FIG. 32. 
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The figure is determined by 
b-c-b-c--b-C. 

73.5.8 A =  1102, p= 1110. 

5 ,  = 3h + 31. = 3(1101 + 2 333t ), 
5 2  = + +p = 3 * (1 100 + 4 * ++++) 

See Figs. 33 and 34. 

1101 

\ \ 

. 
1100 

FIG. 33. 

a 
FIG. 34. 
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The figure is determined by 
b-d-C. 

73.5.8' x=21-10, p =  1110. 
4, = j x  + jp = j * (2 lo00 + 1 loo), 
t2 = +A + +p = + . (21 10 + 2 * 1 loo). 

See Figs. 35 and 36. 

FIG. 35. 

. . . . . . . . . .  c 

I b '  

FIG. 36. 
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The figure is determined by 

b-a-c, 

This is the dual of 73.5.8. 

73.5.9 x=2101, p =  1110. 

(, =+h++p=+*(333)+ llOo+;fi+)? 

t2 = + A  + +p = 3. (2  .a++ + 1100 + 21 10). 

See Figs. 37 and 38. 

Fro. 37. 

FIG. 38. 

The figure is determined by 
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as well as by 
b-C-b-C. 

73.5.1 0 x=2110, p =  1110. 
21 10-1 110. 

b-c. 

73.5.1-10 From the weakest to the strongest relation on pairs rb,cl the 
hierarchy runs: 

73.6 x E r(p4), y E r ( p 4 ) .  (Line-line.) 

73.6.1 x = 21 10, p = -2-1-10. 
Rank 0 

b, 6. 

73.6.2 h = 21 10, p = -2-101. 
5, = +A + 3p = 3 - (2 * 3333 + lolo), 
52 = 3h + 3p = 4 * (2 ’ 3333 + 1021), 
t3 = +A + 3p = 3 -001 1, 
54  = +A + 3p = + * (2 * -3 -33-5 + -1012), 
t5 = +A + +p = 3 * (2 a -3 -4& + -1001). 

See Figs. 39 and 40. 

-1001 

21 

. .  

1010 ’ 
FIG. 39. 
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FIG. 40. 

L!(A,p) is four elements larger than f l (A,p).  

a2 

. .  

a1 

FIG. 41. 

Figure 41 shows that the figure is determined by 
b-d-a-d-b. 

73.6.3 A=2110, p=-2-110. 

5 ,  = $A + )p = f * (1010 + 11 1% 
E* = +A + +p = + - (1010 + 1 120), 
5 ,  = +A + +p = 0010, 
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0110 

FIG. 42. 
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17(h,p) is four elements larger than nl(h,p) .  

/ 
b3 

/ ’ \  
\ 4 

/ 

FIG. 44. 

Figure 44 shows that the figure is determined by 

b-a-d-a-b. 

As a matter of fact, this is equivalent to 

b-a-c-b-c-a-b - 

because of 

b-a-c-d-c-a-b, - - 

b-a-d-a-b, 

b-a-c-d-a-b, - 

b-a-c-b-c-a-b 

/ 
/ ’  

/ ’  

Note, however, that this chain cannot be realized in I‘O. 
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73.6.4 h=2110, p=--2101. 

5, =$A +*p = * * (2 .++++ + 2 1110 + lloo), 

E* = $4 + +p = + * (2 * ++g + 1210), 

5 3  = qx + 31. = + * (2 a t $ + +  + 2 * +f++ + OllO), 

t4 = fh + +p = f ,0211, 

tS = +A + *p = + (2 -p& + 2 .-+f++ + OlOl), 

66 = +A + 3p = + ' (2 * ++++ + -1201), 

5, = f h  + $p = * * (2 *++ + 2 * -1101 + -1100). 

See Figs. 45 and 46. 

FIG. 45. 

FIG. 46 
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nl(A,p) falls short of n(A,p) by four elements. The total figure is also 
determined by 

b-C-b-C--b-C-b-C-b 

as well as by 
6-d-C-d-b. 

From the latter figure, the complete figure is reconstructed in Fig. 47, in 
which the chains b-cl-al-c, c-a2-c2-b, al-bl-a2, cl-b2-c,-bl, 
b,-c3-b3-c2 and b--a3-b2, b3-a4-b, c2-dl-c3, and finally a3-b,-a2, 
al-b5-a4 are retrieved consecutively with the incidences shown. The remain- 
ing incidences are trivial consequences. 

FIG. 41. 

73.6.5 

73.6.6 

x = 21 10, 

[I =+A + +p = 1010, 

5 2  = + A  + +p = * 1-120, 

6 3  = +A + +p = 0-1 10. 

p = -1-2 10. 

21 10-1010-1-120-0-1 1 0 -  -1-210. 

b-a-b-a-b. 

x = 21 10, p = -12-10. 

el = $A + i p  = * (3 * 1 100 + 2 * 1 1 lo), 

t2 = + A  + +p = 3 ' (2 * 1100 + 1210), 
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f 3  = + A  +*p = f * (1100 + 2.0100), 

t4 = +A + 3p = 4 * (12-10 + 6 .  OlOO), 

t5 = + A  + +p = + *(01-10 + 4 *OlOO). 

See Figs. 48 and 49. 

2 1  1 0  / l  . . . . . . . 

\ 1 

l::\\\ / 12-10 'O1-:\ . . . . . . - 1 2 - 1 0  

/ 
/0100 

1 1 0  / , , lo 

\ 
C 

1 1 0  I /  
FIG. 48. 

a 

/ 
FIG. 49. 

-1 0 

The figure is determined by 

b-a-d-b. 
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73.6.6’ A = 21 10, p = 1-2-10. 

(, = +A + +p = + * (4.1000 + lolo), 

f 3  = + A  + +p = 3 * (2 1000 + 1-loo), 

t4 = +A + +p = + * (2-1-10 + 2 - 1-loo), 

& = +A + +p = * ( 6  * lo00 + 2-1 10)s 

t5 = ) A +  $p = 4 -(2.1-1-10 + 3.1-100). 

b / . . . . . . .  

\ 

FIG. 50. 

\ 
/ b  

FIG. 51. 
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The figure is determined by 

b-d-a-b. 

73.6.7 h = 21 10, p = -21 10. 

5, = j h  + &..L = 1110, 5 2  = fh + fp =0110, 6 3  = f h  + *p  = -1110. 

21 10-1 110-41 lo- -1 1 lo-- -21 10. 

b-c-a-c-b. 

73.6.8 h = 21 10, p = -1201. 

[, = $A + *p  = 3 - (p& + 1100 + 1 1  lo), 

5 2  =+A + +p = + * (2 .+f$f + 1100 + 1210), 

5 3  = tx + 31. = ft3f. 

t4 = +A + +p = 3 . (2 * 0100 + 0101 + 021 l), 

tS = ah + $p = +. (0100 + 0101 + -+&>. 
See Figs. 52 and 5 3 .  
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F I ~ .  53. 

The figure is determined by 

b-C-b--C-b-C-b, 

as well as by the conjunction of 

b-d-a-b and b-a-d-b. 

73.6.9 A = 21 10, p = -1210. 

(, = $A + i p  = 4 '(4.1110 + 1100), 

f 2  = +A + +p = 3 * (2 11 10 + 12101, 

g3 = +A + +p = + ' (01 10 + 1210), 

& =+A + +p = + * (3.0110 + 2 *OlOO>.  

See Figs. 54 and 55. 
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2 1  

FIG. 55 .  

The figure is determined by 
b-c-a-b. 

73.6.9’ h = 21 10, p = 1-210. 

,$, = +A + +p = 3 * (3 * 1010 + 2 * lOOO), 

t2 = +A + +p = + * (1010 + 2-1 lo), 

c3 = + A  ++p = 3*(2.1-110 + 2-1 lo), 

f4 = $A + $p = 4 .  (4 * 1-1 10 + 1-100). 

See Figs. 56 and 57. 
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FIG. 51  

The figure is determined by 
b-a--c--b 

73.6.1 0 x=2110, p=2-1--10 

5 ,  = + 31. = 2 * 1000. 
21 10-1000-2-1-10. 

b-d-b. 



73. THE CLASSES OF PAIRS OF ELEMENTS IN AN F 4 - ~ ~ ~ ~ ~ ~ ~ ~  477 

73.6.1 1 h = 21 10, p = 2-101. 

[, = j h  + +p = 3 - (2 * 1000 + 10 10 + 2 * +#), 

[* = +A + fp = 3 * (2 * 1000 + 201 l), 

& = + A +  j p = 3 3 ( 2 ’ 1 0 0 0 + 1 0 0 1 + 2 * ~ t 3 ~ ) .  

See Figs. 58 and 59. 

21 10 

1010 - 2011 -1001 

FIG. 58. 

FIG. 59. 

This is a special pair of lines in a symplecton. The figure is determined by 

h-c-a-b  A\ 9 

as well as by 
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73.6.1 2 

73.6.1 3 

A-2110, p=  12-10 

5,  = +A + +p = 3 * (3 - 1  100) 

21 10-1 100-12-10. 

b-a--6. 

x = 21 10, p = 21-10. 

~ ,= - )x+~p=1000+1100 .  

See Figs. 60 and 61. 

1000 d 

FIG. 60. FIG. 61. 

73.6.1 4 x=2110, p=2101. 

5 ,  = +A + 3p = 3 * (1 100 + 2 * %-H). 
See Figs. 62 and 63. 

FIG. 62. FIG. 63. 
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73.6.1 5 h=2110, p=2110. 

2110-2110. 

b-b. 

73.6.1-1 5 From the weakest to the strongest relation on pairs of lines the 
hierarchy runs 

7 10 
/ \ / \  

2-4-6-8-9-11 

'3-5-6' 9'-12 

74. THE INCIDENCE GEOMETRIES OF REAL SEMISIMPLE 
LIE GROUPS 

The theory developed in Sections 70 and 71 for complex semisimple Lie 

G E Gru Lie Lin Com SS, G its infinitesimal algebra, C an involutory 

Gd sub Gc is the C-restriction of C-invariant G' sub G. 

groups can be adapted to the real case. 

semimorphism, and Gc, Gc the C-restrictions; other notations as usual. 

74.1. Definition Gd sub G, is called parabolic if C' sub G is parabolic. 
The same for GL. 

Note that parabolic GL need not comprise a maximal connected solvable 
subgroup of Gc, though G' does so with respect to G. 

Proposition If GL is maximal parabolic sub G,, then G' = M n CM for 
some maximal parabolic M sub G. 

Proof For Mtake a maximal parabolic subalgebra of Garound C'. Then CM 
is of the same kind, and M n CMis C-invariant and thus equals G'. 

74.2. Theorem If Gd and Gi are parabolic sub G,, then G' n G" contains 
a minimally compact C-invariant trunk of G. 

Proof Let B',B" be maximal solvable sub C',G", respectively. Bruhat's 
lemma provides a trunk contained in B' n B" c G' n G", thus a G-regular 
element /to of G' n G". Then 7h0 + X h o  is still regular for suitable T and 
lying in G' n C". Moreover, it is C-invariant. Therefore it defines a C-invariant 
trunk H of G within G' n G". 



480 68-75. TITS GEOMETRIES 

Take C,, on the same trunk after C-third dressing, that is, with CC,, = 

C,,C (see 51.6). Suppose H is not yet minimally compact. Then for some 
a = CC,,a the condition of 60.9 is not satisfied, Therefore there is some 

a = CC,,u E W* with CCunea = -e,; thus Ce, = e-,. 

e,  E G', for otherwise both e,  and e-, 4. G',  which contradicts parabolicity. 
The same is true of G". Therefore e,,e-, E G' n G". This shows that U,, as 
used in 60.15 to transform the trunk H, can be formed within Int(C' n C").  
The procedure in 60.15 produces a C-invariant trunk of G within G' n G", 
though now with a larger multiplicity of the eigenvalue -1 of CC,, on the 
trunk. This proves the assertion. 

74.3 In the sequel the trunk H is supposed to be C-minimally compact. 
By 60.17 it does not matter which one is chosen. C,, is taken with respect to H ,  
and with CC,, = C,, C. 

Under the aspect of reality the incidence geometry of Gc should be defined as 
consisting of the maximal parabolic subgroups of Gc. An equivalent and more 
convenient approach is to use their complex extensions. This explains the 
following: 

Definition rc is the set of C-invariant Lie subgroups of G whose C-restric- 
tions are maximal parabolic sub Gc. The set rc is endowed with the following 
incidence relation : 

a,b are incident if a n b contains a maximal connected solvable subgroup 
of G. 
rc, the incidence geometry of Gc, is considered as acted on by Gc through its 

adjoint action. 
Its transitivity classes are the sorts of the geometry. 
r,O is the set of elements of rc containing the (C-minimally compact) trunk 

Note that by 74.2a given pair of elements of rc may be supposed to be in r,O, 
H.  

thanks to the action of Gc on r,. 

74.4 To continue as in 70.6 one must redefine wand l7. 
By 74.1 any a E F: can be obtained as x n CX with x E To. By 70.6.2 the 

infinitesimal algebra of x is spanned by Hand  the ear, with (wx,  a )  > 0. Clearly 
wCx = C* wx..Thus the infinitesimal algebra of a is spanned by Hand  the e,  
with 

74.4.1 (wx ,  a) 2 0 and (C* wx, a)  > 0. 
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Now x and Cx are incident as elements of r, for their intersection is still 
parabolic. Therefore by 70.6.1 

(wx, a)(C* wx, a )  2 0 for all a E W*. 

In a more compact way the condition 74.4. I can now be written 

(wx + C* IYX, a)  2 0 

or, equivalently, 
(( 1 - CC,,,) WX, a )  2 0. 

This suggests the following: 

Definition 17, is the set of (1 + C*)X with X E I7 (i.e., in the set of equiv- 
alents of fundamental weights) such that X is incident with C*X. 

wc is defined by 
w,a = (1 - CC,,)wx 

for a E r,O with a = x n Cxand x E To. 

proved : 
The last part of this definition is still to be justified. A little more will be 

Proposition If x,y E ro, x incident with Cx, y incident with Cy, and 
x n C x c y n  C y , t h e n x = y o r x = C y .  

Proof By 70.10, since y 1 x n Cx, all parts containing wx and wCx also 
contain wy. The smallest part, that is, the cell, containing wx and wCx is one- 
or two-dimensional and its only members of I7 are wx and wCx. Therefore 
wy = wx or = WCX, which proves the assertion. 

74.5 The following was proved in 74.4: 

Proposition wc maps F,O one-to-one onto nC such that the infinitesimal 
algebra of a is spanned by Hand thee,,, with 

(Wca, y )  2 0. 

Indeed wC maps onto 17, : Given some X E 17 incident with C* A, there is 
an x E To incident with Cx and such that X = wx. Now x n Cx is contained in 
the complex extension y n Cy of some maximal parabolic subgroup of Gc so 
that x n Cx = y n Cy E I',O with y E ro. But then by Proposition 74.4, 
x n Cx = y n Cy, which proves the assertion. 

74.6. Proposition ( 1  + CC,,)a E W* for no a E W * .  
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Proof CC,, multiplies [e,, CC,,e,] by -1 ; thus by 60.9 and the minimal 
compactness of H this expression cannot be a branch and consequently 
(1 + CC,,) a cannot be a nonzero rootform. 

74.7. Definition The intersections of parts and cells of H A  with H,* are 
called C-parts and C-cells. A C-cell of maximal dimension (=real rank) is a 
closed C-chamber, its interior in Hg,he a C-chamber. A C-edge is a one- 
dimensional C-cell. 

Jnt, W* is the maximal subgroup of Int W* leaving H z , h e  invariant, and 
restricted to H z , h e .  

Theorem Int, W* is simply transitive on the set of C-chambers. Its 
elements are induced by inner automorphisms of C, preserving H. 

Proof Take two C-chambers with a common wall of codimension 1 in 
H:,he. The wall is determined by some a E W*. Then a # CC,, a, for otherwise 
a(H,-he) = (0). For the transitivity assertion it suffices to show that the 
reflection in this wall is in Int, W*. There are three cases with respect to a: 

74.7.1 
thus Sa itself induces an element S of Int, W* as required. 

CC,,a = -a. Then with S, defined by 20.9, C*Sa C* = S,,, = S,; 

74.7.2 (1 - CC,,)a E W*. Then C*S~I-ccu.)aC* = S(I-ccun)a. Since the 
orthoplanes of a and (1 - CC,,)a have the same intersection with f?z ,he ,  an 
element Sof Int, W* as required is furnished by S(,-ccu,,)a. 

74.7.3 CC,,a # -a, (1 - CC,,)a 4 W*. Then, as implied by 74.6, 
(a ,  CCun a) = 0, 

sa SCCYna = &c..a sa, 

C(Sa SCCuna) C = &Cuna sa = sa &c..a* 

Since S, SCCuna a = -a, S, SCCuna induces an element S of Int, W* as required. 
To show that Int, W* is simply transitive, take an S E Int W*, leaving 

Hz,he and a closed C-chamber Kinvariant. Scauses a permutation in the set D 
of the closed chambers that contain K. The reflections in the common walls of 
elements of D produce a subgroup F of Int W*; the elements of F leave K, 
hence elementwise invariant, and Facts transitively on D. Thus there is 
an S‘ E F such that S-I S’ leaves a certain element of D invariant. Since 
Int W *  is simply transitive on the set of all chambers, S- ’S’  = 1 ; thus S = S’, 
and S restricted to H z , h e  is the identity. 

To prove the remainder of the theorem, one must extend S as obtained in 
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74.7.1-3 to the whole of C according to 33.1, and then replace it by some 
S' = h S k '  such that h = exp h, h E H ,  and S' E Int G,: 

74.7.1 ' S = exp .(Pa + 2-,) with a certain imaginary T. 

S' = Ash-' = exp(Th(2, + P-,) h-1) 

= exp(.r(exp a(h) C, + exp(-ot(h)) P-,)). 

Ce, = Ke,, Ce-, = ie- ,  with KI? = 1, 

because of CC,, = C,, C. For S' to be real, one gets the condition on h: 
- 

exp(a(h) - a@)) = -K, 

which can easily be fulfilled. 

74.7.2' The same argument applies to (1 - CC,, a) instead of a. 

74.7.3' Neither (1 + CC,,)a nor (1 - CC,,)a are rootforms, not even 0. 
Hence S' is the product of 

exp .r(exp a(h)l, + exp(C* a)(h)Pc.,) 

and 
exp T(exp -a@) P-, + exp(-C* a)@) iLC.,), 

with a certain imaginary 7. If Ce, = ~ e ~ . ~ ,  then Ce,., = K-' e,, and Ce-, = 

Ce-c.ar = K-' e-,. Furthermore, ~i = 1. 
The reality required boils down to 

- 
exp(( C * a) (h) - a(h)) = -K, 

which can be fulfilled, since a and C* a are linearly independent. 

74.8 If A E I7 and C* A are incident, there is an at  most two-dimensional cell 
that contains both. This cell intersects HZ,he in a C-cell which is one-dimen- 
sional, that is, a C-edge. (1 - CC,,)A lies on this C-edge. The converse is also 
true: 

Proposition The C-edges are the sets of nonnegative multiples of elements 
of 17,. 

Proof Let d be a C-edge and D the smallest cell that contains d. The C- 
invariance of d implies that of D.  Choose A E 17 on D .  Then C*h on D ,  
h +  C*h#O, and h + C*h on D as well as in HZhe. This shows that d is 
spanned by h + C*h = (1 - CC,,)h. 
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74.9. Proposition The following statements are equivalent: 

1. a, b E I'g are incident. 
2. There is a C-cell containing w,a and wcb. 
3. (wca,y) (wcb,y)  2 0 for all y E W*. 

Proof If a = x n Cx, b = y n Cy with x, y E ro, then incidence of a, b means 
that x n Cx n y n Cy contains a maximal solvable Lie subgroup, thus that 
x, C X , ~ ,  Cy are mutually incident, and that their w-images are contained in a 
common cell; this, however, is equivalent to wca, wcb being contained in a 
common C-cell, This proves the equivalence of 1 and 2. The equivalence of 2 
and 3 is obvious. 

Definition Ac,pc E 17, are called incident if 
(A,, a)(pc, a) 2 0 for all tl E W*. 

74.10. Theorem Every sort of r, intersects r,O and even has a member 
whose w,-image is in a given closed C-chamber. Two elements of r,O belong to 
the same sort iff they are equivalent under a C-real element of Int(G,H). The 
number of sorts equals the real rank of Gc. 

Proof The infinitesimal algebra of a E r, contains a C-minimally compact 
trunk H' of G (see 74.2). By 60.17 H' is carried into H by the action of Int C,. 
The same action carries a into an element of I'$. This shows the truth of the 
first sentence. The second follows from theorem 74.7. If a, b E r,O are equivalent 
under Int C,, one must show that they are also equivalent under an 
element of Int Gc that leaves H invariant. By the foregoing w,a, w,b may be 
taken in the same closed C-chamber, that is, incident. Now a = x n Cx, 
b = y n Cy with x,y E ro, x incident with Cx, y with Cy. By Proposition 74.4 
and the G,-equivalence of a, b one may suppose that x,y are equivalent under 
Int G. Thus wx, wy are equivalent under Int W*. They are also incident, hence 
equal. This shows that a, b are equal. 

Finally, two distinct C-edges of a closed C-chamber cannot be 
Int, W*-equivalent, since otherwise two distinct edges of a closed chamber 
would be Int W*-equivalent. This shows that there are exactly as many sorts 
as there are C-edges of a closed C-chamber. 

74.1 1 A C-chamber can be represented by a graph with dots corresponding 
to the walls and multiple bonds corresponding to the angles of the walls in the 
usual way. With due regard to the lengths of the related combinations of root- 
forms, one can even put arrows in the bonds. It will appear that no new graphs 
occur except those found in the complex case. 

Definition By C-graph of Gc one means that of a C-chamber of G,. 
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74.12 After this successive reduction of incidence problems in rc to those in 
T': and ITc and finally to problems on the C-graph of Gc, one can repeat the 
analysis of Sections 71-73 with slight changes. The most notable deviation is 
that arbitrary trunks are restricted to the minimally compact ones. The 
incidence geometries belonging to real semisimple groups provide a new 
example of a Tits geometry. In particular, those of real rank 2 give new gener- 
alized m-gons (m = 2,3,4,6). 

75. C-GRAPHS OF INCIDENCE GEOMETRIES OF SIMPLE 
SEMISIMPLE LIE GROUPS 

When studying the incidence geometries of particular real semisimple Lie 
groups, one can restrict oneself to the simple case. The compact types can be 
dismissed because then C* = -1 and X E 17can never be incident with C*X = 

-A, which causes II,, hence r,, to be void. Standard type geometries behave 
as the corresponding complex ones. In the twin case Gc E L,, there is a trivial 
isomorphism between r ( o f  G E L) and r, (of Gc E L**). This justifies the 
supposition : 

Gc noncompact, nonstandard, nontwin, simple. 

75.1 
C-third dressing on H .  Thus, 

H is a minimally compact trunk with a real order (see 60.18). G is in 

c* PJ = -PJ 

c*Pj = P j  mod PI, . . .) pk 

C*pj = P ~ + , , , + ~ - ~  mod P I ,  . . ., pr 

for j = 1, . . ., k, 

for j = k + l ,  ..., m, 
for j = m + 1, . . ., 1. 

For the fundamental weights this yields 

C * r j  = -rj mod r k + l ,  . . ., rl 

C*?Tj==77 J for j = k + l ,  ..., m, 

C * r j  = r i + m + l - j  for j = m +  1, ..., 1. 

for j =  1, . . ., k, 

The nonnegative multiples of the 

r j + C * r j  with j = k +  1, ...,+( f + m )  

are elements of the constituting edges of a C-chamber. Its C-graph is con- 
structed in any particular case. At any dot a primitive rootform p is placed, 
together with C*p if they are different. Note that the corresponding wall is 
P l  " HC*.lle= (C*P) l  " f c h c .  

The real rank I' of G, is t ( f  + m) - k. 
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75.2 To get more insight into the details by which incidence geometries with 
the same graph are distinguished from one another more data are added: 

Take I' mutually incident elements a,, ..., a,. of r,, a, from the sort 
F,,,; for example, those mapped by wc into n k + j  + C * ' r r k + , , j  = 1, . . ., I'. Then 
for p E { 1, . . ., 1'} consider the manifold V, of all 

x E rC,,, x incident with all a, (j  # p) .  

For j = 1, . . ., I' let Gc,, be the normalizer in Gc of a,,, (a,,, is the group 
infinitesimally generated by the C-restriction of the infinitesimal algebra of 
a,); that is, Gc,, is the stabilizer of a, in Gc as acting on r,. Then a,,, is the 
I-component of Gc,,. Let x E F,,,. Then both a, n n,#,a, andx n nJspa,are 
parabolic because of Proposition 70.7; hence by Theorem 74.2 their inter- 
section contains a minimally compact C-invariant trunk H' of G. By the 
G,-conjugacy of those trunks and by Theorems 74.10 and 74.7 there is an 
element g E G, such that 

g 'H'=H,  &,=a, for j = 1 ,  ..., 1'; 

therefore g E fly=l G,,,. Now wcgx is incident with all w,a, = T k + j  + C*nk+, 
with j fp ,  thus either coincides with w,ap = 'rrk+p + c * ' r r k + p ,  from which 
follows, gx = a, and x = a,, or is the image of nk+, + C * n k + p  under the 
reflection in the wall in HZ,hc determined by P f + p ;  now the element of Gc 
constructed in the proof of Theorem 74.7 effectuating this reflection is easily 
seen to lie in the 1-component of n,#pa,,c. 

Hence V, is transitively acted on by n,+,GC,,, even by its 1-component. 
Therefore V, is connected and, as acted on by Gc, isomorphic with the homo- 
geneous space 

n G c , , / ~  Gc. j .  
i # P  I 

This quotient can be reduced by the maximal normal Lie subgroup of the 
numerator contained in the denominator. In the complex case this is the radical 
of the numerator. After this reduction a semisimple group of rank 1 is left 
in the numerator with a maximal solvable Lie subgroup in the denominator. 
This means that all V,  in the complex case are essentially complex projective 
lines. 

In  the real case, after factoring out the radical of the numerator, the numer- 
ator and the denominator may still contain a nontrivial common direct factor, 
part of the isomorphic image of the C-restriction of the group infinitesimally 
generated by the ekp, ,  . . ., ekpr. This common factor is factored out also. 
Since V, is connected, all that finally matters is the I-component of the 
numerator, denoted by G,*,,. It is indicated in all particular cases. It is, of 
course, of real rank 1. V p  is a homogeneous space of C;,, with respect to a 
maximal solvable Lie subgroup. 
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75.3 The real groups of real rank 1 occurring in this connection and the 
related manifolds are (cf. also 75.19) : 

complex projective line (or quadric in real projective 3-space). 
quaternion-projective line (or quadric in real projective 5-space) 
real projective line. 
hermitean quadric in complex projective k-space. 
quadric in real projective 2k-space. 
hermitean quadric in quaternion-projective (k - 1)-space. 
quadric in real projective (2k - 1)-space. 
octavian projective line. 

(The last statement will not be explained.) 
All quadrics are of the type tc- * .+ -. 

75.4 Note that because of the choice of a real order the basis of the (-1)- 
eigenspace of CC,, will be a bit different from that in 60.23. The deviations 
are : 

Al,j, l ' = j < + ( l +  1): ~ , - w , + ~ - , ( i =  1, ..., 1'), 

Ai,o,*, lodd , I '=f ( l - l ) :  ~ 2 1 - 1  + w Z i ( i = l ,  ..., 1'), 

BiJY 1 '=2( j -  1) for 1 c j < f ( l +  1) 
=21-2 j+3  for j>3( /+1)  
= 1  for j =  I :  

w,(i  = 1, . . ., 1'). 

I' = j <  fl: 

3 < j <  tl+ 2, I' = 2j- 4 and 

j = O ,  1' = 1 and3 <j< 31 + 2, I' = 2j- 3: 
w,(i = 1, . . ., 1'). 

1' = [fl]: wZi-  I + w2, ( i=  1, . . ., 1') ;  however, for 1 even, w , - ~  - w1 
instead of wl- ]  + wI .  

Cl, j ,  

Di.,, 

Dl, j , * ,  

w21-l + w21 (i= I ,  .. ., 1'). 

Dl,l, 

E6,1:  0 

E6.0,*: 1 

12321 11111 

01222 22210 
(which are not rootforms). 

F4.1: 12 * 32. 
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By use of the kaleidoscope group it is easy to derive from 60.23 that C* can 
be assumed to act as above (of course, since C* is involutory and orthogonal 
on H&, it is now uniquely determined). In 75.5-18 it will be seen that the 
established order is indeed real with respect to C*, though the old enumeration 
of W++ is used. 

75.5 Al,,, I' = j  < +(l+ I ) .  

C * maps : 

w ,  += - w ~ + ~ - ~  

0, -+ - 0 1  

for i = 1, .. ., 1 ' ;  1 + 2 - l ' ,  .. ., 1 + I ,  

for i = I' + 1, . . ., 1 + 1 - 1'; 

or: 
pi + P , + ~ - ~  for i =  1, ..., 1 ' -  I ;  1 + 2 - 1 ' ,  ..., I, 

PI ,  + PI'+I + Pr+2 + * ' * + Pl+ l - l , ,  

Pi -+ -pi for i = I' + 1, . . ., 1 - l ' ,  

P i + l - I '  + Pi,  + Pr+1 + * * * + PI - I , .  

-A1**--A1**- . . -  --A,** * AI+2-21'.1. 

C-edges : 
rI  + T ~ + ~ - ,  for i =  I ,  ..., 1'. 

75.6 A2,-l .o,* ,  I' = m. 

C * maps : 

or : 
0 2 1 - l - w 2 1  for i =  1, ..., 1 ' +  I ,  

p2i- I  + -p21-1 for i = I ,  . . ., 1' + 1, 

for i = 1, . . ., 1'. ~ 2 1  + P ~ I - I  + p2t + P ~ ~ + ~  

C-graph : 
P2 P4 - . . . _  P2v 

P I  + P2 + P 3 P 3  + P4 + Ps P21'-l + P2V + P2I  + I  

C-edges : 
2 r 2 ,  for i =  1,.  . ., I '  
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75.7 Bl,,, I ' =  1 f o r j =  1, 1 ' = 2 j - 2  for 1 c j < + l +  1, l t = 2 1 - 2 j + 3  for 
j >  + I +  1. 

C * maps : 
wi -+ wf 

w f  3 -wf 

for i = 1, . . ., I ' ,  

for i = I' + 1, . . ., I ;  

or: 
P I + P ~  for i = 2 , 3  ,..., I ' ,  

Pl '+ l  +- P l P t l  + 2p,,+2 + * * * + 2pi + 2p1,  

pi +-pi for i =  I ' +  2 ,  . . ., I ,  1. 

C-grap h : 

Al,l-Al*l- . * - + , I  * B l - l ~ + l , l .  

C-edges : 
27rf for i = 2, . . ., I'  + 1. 

75.8 Cl , j ,  I' = j G $1. 

C* maps: 

P 2 f - I  -+ -PZf-l for i =  I ,  . . ., I ' ,  

P2r -+ P Z I - I  + pzt + pzfi. l 

PZ I ,  -+ ~ 2 1 f - 1  + ~ 2 1 5  + 2~213~1  + * * . + 2p1- ,  + p1 

for i = 1, . . ., I' - 1, 

for 21' < I ,  

2Pl - ,  + PI for 21'= I ;  

or : 
w 2 f - ,  t t  w2f  for i = 1, . . ., I', 

w,--f-wi for i = 2 1 ' +  1 ,..., 1. 

C-graph : 

5 p2 - P4 - .. .  - P21'-2 

P I  + P2 + P3 P3 + P4 + p s  p21'-3 + P21'-2 f P,?l'-l 
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for 21’ = I :  

C-edges : 
27r2, for i =  1 ,  ..., 1’. 

75.9 DI,,, 3 Q j < 31 + 2, I’ = 2j - 4, and 

D1,o,*, I‘ = 1 ,  and 

DI,,,*,3<j<+f+ l , l ’ = 2 j - 3 .  

C * maps : 

w, + w ,  for i =  1, ..., l’, 

wt --t -wt for i = I ’  + 1, . . ., I; 

p , + = p i  for i = 3 ,  ..., l ’ + l ,  
or : 

P r + t  + PI’+? + 2PI,,3 + * ’ ’ + 2P,+ P I  + P23 

p,+=-pI for i = l ’ + 3  ,..., 1,1,2, 

for I‘ = 1 - 1, however, 
P I  4-P P2. 

C-graph : 

F o r l ’ = l -  1 :  

p3-p4 - - * * -PI => P I .  

P2 

where D3,0,*, DzSo,* are understood as A3.0,*, A,,**. 

C-edges : 

27r1+2 for i = 1, . , ., I ’  , with 7rI + 7r2 for l’= I -  1 
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75.10 D,,,, Zodd, Z ' = + ( Z -  1). 

C* maps 

or: 

C-graph : 

w21-l -+ w21 for i = 1, . . ., I ' ,  

w1 + -cot; 

P21+1 + -P21t I for i = 1 ,  . , ., Z', 
for i = 2, . . ., Z', ~ z t  + ~ 2 t - I  + ~ 2 t +  p2t+1 

P I  --f P2 + P I ,  

P2 -+P I  + PI. 

PI-1  PI - .. .  - P4 - P6 

P3 f P4 f f ' 5  P5 + P6 + P7 Pt-2 + Pt- l  + PI P2 + P I  

A3.0,*-A3,0,*- * * *  -A3.0,* * A 3 v l  

C-edges : 
( i  = 2, . . ., Z'), n1 + n2. 

75.1 1 

C* maps: 

Dl, I ,  Z even, I' = +Z. 

or: 

C-graph : 

P21+1 + -P21+1 for i = l ,  ..., 1 ' - I ,  

~ 2 t  + ~ 2 1 - I  + 
PI -+ PI-l + PI + P2, 

P I  - + P I ,  

P2 -+ -P2. 

+ P ~ ~ + ~  for i = 2, . . ., I'  - 1, 

49 1 

C-edges : 
2m1 for i =  2. . . .. 1'. and 2n,. 
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75.12 E6,1, 1' = 2. 

C* maps: 
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C-edges : 

75.1 3 Eb.2, I' = 4. 

C* maps: 

C-graph : 

C-edges : 

75.14 E6,0,*, I' = 2. 

C * maps : 
PI - + P I  + 2p4 + 2P6 + p2 + ps, 

f 3  + P3 + 2P5 + 2P6 + p2 + p4, 

f 2  -+ -I329 p4 + -p4, p5 -+ 7 3 5 ,  p6 + -p6. 
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C-graph 
P l  P3 

P I  + 2p4 + 2P6 + P2 + P S P 3  + 2p5 + 2p6 + p2 + p4' 

D5,0,*-D5,0,*. 

C-edges : 
2T,, 2773. 

75.15 E 7 , 1 ,  1 ' = 4 .  

C* maps: 

75.1 6 E7,2, I '  = 3.  

C* maps: 

C-graph : 

C-edges : 
279, 27r.4, 2r1. 
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75.1 7 Ea,l, 1' = 4. 

C* maps: 
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C-graph : 

C-edges : 
2771, 2773, 2775, 2 T 2 .  

75.18 F 4 , 1 ,  l ' =  1. 
P1 + P 1  + 3P3 + 2 P 4  + p29 

P 2  -+ -P27 p3 --f -p33 p 4  + -p4 .  

C-graph : 
P I  

P I  + P 2  + 3 P 3  + 2 f 4 .  

F4 ,1 .  

C-edge : 
2 r , .  

75.1 9. The Geometric Interpretation of the incidence geometries of 
G E A,, B,, C,, DI, as dealt with in 70.1-3, can be extended to the real case. 
Again the lowest dimensional linear representations of these groups are used. 
Compare the discussion with that in 59.7, but note that there the trunk was 
taken maximally compact. 

Gc E B , , j ,  D1.j (i> 21, Dl, j ,*:  

The representation with weights fw, and possibly 0 is used. The correspond- 
ing weight vectors x+, and possibly xo are orthonormal in the unitary inner 
product. C*o, = wi ,  DD,,x, is a multiple of x-,, Dx, a multiple yixr of xi, 



75. C-GRAPHS OF INCIDENCE GEOMETRIES 495 

for i =  1, ..., 1'. Since xi may be replaced by p i x i ,  with p i 2  = yi, one may 
suppose that D s i  = x i ,  i = 1, . . ., 1'. Now (si ,  D D , , x j )  = 0,  i, j = 1,2, . . ., I ' ,  
and the x i  are real. Therefore the si. i = 1, ..., p ,  with 1 ~p < l ' ,  span a 
totally isotropic subspace of RD with respect to the invariant quadratic form; 
its stability group is the C-restriction of G(p,). By verifying that its stability 
group in the full orthogonal group of the quadratic form contains elements in 
each component (cf. 54.1 and note that I' < 1 is supposed) and by applying 
Witt's theorem (cf. 70.2) one sees that its sort consists of the totally isotropic 
p-dimensional subspaces. In projective terms its sort consists of the projective 
( p  - 1)-dimensional subspaces on the invariant quadric. 

Gc E A*JZ 

are correspondingly mutually orthogonal xl, . , ., xI+]  ; C*wi = -w 1+2-19 

The reprcsentation with weights wi (2 w, = 0) is used. The weight vectors 

i =  1, ..., 1'. Hence by 59.4.1 Kxi  is a multiple of x1+2-i for i =  1, ..., 1'. 
Therefore the span of x I ,  . . ., x, is a totally isotropic subspace for the invariant 
hermitean form, for p = 1, . . ., 1'. As in the preceding case, one finds that the 
sorts are the projective ( p  - 1)-dimensional subspaces on the hermitean 
quadric, for p = 1,2, . . ., 1'. 

Gc E A,,o,*, 1 odd: 

The representation with the weights wi (2 wi  = 0) is used; corresponding 
weight vectors are xI, . . ., xI+l ; C * W , ~ - ~  = wZ1,  so Dx2i-l  is a multiple of x2 i .  
Now G(pza) is characterized by leaving the subspace spanned by xI,  . . ., x2p 
invariant, p = 1,2, . . ., (I - 1)/2. The C-restriction of G(p2,) consists of the 
volume-preserving quaternion linear mappings in G that leave the p -  
dimensional quaternion-linear subspace spanned by xI,  . . ., xZp,  with complex 
scalars, invariant. The sorts consist of the quaternion-projective ( p  - 1)-sub- 
spaces of the quaternion-projective ( I  - 1)-space, for p = 1, . . ., ( l -  1)/2. 

Gc E C L , ~  Di.1: 

The representation with weights iw, is used; weight vectors are x k i ;  
C*w2i- l  = w21 for i = 1, . . ., 1'. Therefore the situation is similar to that in 
Al,o,*.  There is now, however, an invariant quaternion-hermitean or -anti- 
hermitean form; xI, . . ., x2p span a p-dimensional totally isotropic subspace 
The pth sort consists of the totally isotropic p-dimensional quaternion-linear 
subspaces with respect to the invariant form. 

75.20. Historical Note The splendid theory dealt with in Sections 70-75 
is due to J. Tits. It was gradually developed between 1955-1962. Almost all 
results were published without proof. The present reconstruction of the proof 
was made easier by occasional private communications by Tits. The 
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methods are probably not very different from those intended by him. In the 
present exposition neither the largest generality nor the greatest economy in 
suppositions was aimed at. 

Tits' geometries are particularly important for the understanding of the 
exceptional groups, which have been extensively studied in the last 10 to 15 
years. This theory, which has not been tackled in this book, will be the 
subject of a monograph. 

Tits' most important results on the subject of Sections 70-75 are found in 
Mkm. Acad. Bruxelles in 8", 29 (1955); Bull. SOC. Math. Belg. 8, 48-81 (1955- 
1957); Colloque AIgPbre Superieure C.B.R.M. (1956) Bruxelles 261-289, and 
particularly in Algebraic and Topological Foundations of Geometry, Colloquium 
1959,175-192. 
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BETTI NUMBERS OF SEMISIMPLE LIE GROUPS AND 
REGULAR SUBALGEBRAS OF SEMISIMPLE LIE ALGEBRAS 

76. AD-NILPOTENTS AND SEMISIMPLE SUBALGEBRAS OF 
RANK 1 

Part of the results will be used in Section 77. 

76.1-2 F E A,. 

76.1 If a E F, a # 0, then 
aad-nilpotent tt $(a, a) = 0, 
a ad-pure tt a regular tt #(ay a) # 0. 

Ifa,b E F, a # 0, b # 0, then 

a, b Int F-equivalent tt $(a, a) = $(b, b). 

This is most easily proved by assuming that F is the infinitesimal algebra of 
the special linear group of 2-space and applying 19.19 and 69.1. 

76.2 The triple rh,eyfl of elements # O  of F is called a hef-triple iff 

[h,e] = e, [h,fl = -f, [e , f l  = h. 

h is the first member of some hef-triple of F iff $(h,h) = 2. 
e is the second (or third) member of some hef-triple iff it is ad-nilpotent #O. 
Given such an h, the set of its positive multiples is taken as a positive trunk of 

F. Then the (only) positive rootform is called A. Thus A(h) = 1. 
The weights of any linear representation of F with respect to this trunk are 

integral multiples of +A. If the representation is irreducible with topweight +PA, 
then its weights are the (+p  - q)A, with 0 G q G p (q integral); all are simple; 0 
is a weight iff p is even. 

76.3-9 G E Alg Lie Com SS, A,(G) is the set of semisimple subalgebras of 
G of rank 1 ; 1 = rank G. 
F E A,(G); 9 is the representation of F in G by adjoint action, which is 

conducible; 9, are the irreducible components of a direct splitting of 8, acting 
on linear sub-spaces R, (i = I ,  . . ., m); dim R, = p i  + 1. 

491 
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76.3 A hef-triple rh,e, f 1  and an ordered trunk of F are chosen as in 76.2. 
Then e is also a G-ad-nilpotent. In particular, E takes a vector of weight 
(+pi - q)X of R,  into one of weight ($pi - q + l)X, or into 0 iff q = 0. Therefore 
the top-weight vectors of the 8, span the kernel of E. The O-weight vectors span 
the kernel of k. 

Proposition dim kernel E = m(F)  = number of the Ri .  

dim kernel k = numberofthe Ri with evenp,. 

m(F) 2 1, 

with the equality sign iff h is G-regular and all p, are even. 

equality sign iff h is regular. 
The last assertion follows from the fact that dim kernel k 2 1, with the 

76.4.1. Definition Fo E A,(G) is called regular if the number m(F) of Ri 
reaches its minimum for F = FW An ad-nilpotent e of G is called a regular 
ad-nilpotent, if in the set of ad-nilpotents a E G dim kernel a' reaches its mini- 
mum for u = e. 

Clearly, since every ad-nilpotent is in some F E A,(G) (see 68.8.3), the 
following applies : 

Proposition An ad-nilpotent e # 0 of G is contained in some regular 
F E A,(G) iff it is regular. 

76.4.2 Let H be an ordered trunk of C and u E H such that 

p(u) = 1 for all p E W++(G). 

Clearly, u is regular and u E &. Putting 

e =  CI e,, f= T e-,, 
EW++ pew++ 

one can manage that 
[ G f l  = z Tph, = u, 

since the nodes h, span Hs,. Then Fo spanned by u,e, f belongs to A,(G) and 
ru,e,fl is a hef-triple of Fo. 

Furthermore, for any a E W*(C)  

a(u) = a(.) = altitude of a 

(see 54.3.2). Therefore all weights of 8(Fo) are integral multiples of X and all p i  
are even. Hence m(Fo) = 1, and Fo is regular. 

This shows: 
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Theorem For any F the number of Ri is > I ;  for the regular ones it equals 1. 
For any ad-nilpotent e, dim kernel B 2 I ,  with the equality sign for the regular 
ones. 

76.5 Let rh,e,fl be a hef-triple of F. Then h is ad-pure and therefore con- 
tained in a trunk H of G (see 17.6). An ordered dressing is assumed on H such 
that a(h) > 0 + a > 0 for every a E W*(G). The branch e, (with respect to H )  
is a weight vector o f 6  belonging to the weight aIHnF. 

Proposition p(h) = 0, 3, 1 for p E W++(C).  

Proof The p(h) are integral multiples of 3. Since p > 0, they are nonnegative. 
Suppose that p(h) > 1 for some p E W++(G).  Then ep is for 6 a vector ofweight 
ph with some p > 1. Hence V;e,] is a vector of weight ( p  - 1)h > 0. f can be 
written as 

c r,e-, with a(h) = 1, hence with a > 0. 

0 # Bepl = c 7,[e-,,ep1 
aswf 

shows that for some a E W +  there is a rootform p - a with (p  - a)(h) > 0, 
hence with p - a > 0, which contradicts the primitivity of p. 

This disproves p(h) > 1 and proves the assertion. 
An immediate consequence of the foregoing (see 76.3) is the following 

proposition: 

76.6. Proposition For regular F E A,(G) and h E F, witht,h,(L,h) = 2, with 
respect to any suitably ordered trunk H of G containing h:p(L) = 1 for all 

All h E F of all regular F E A,(G) with t,hF(h,h) = 2 are Int G-equivalent. 
p E W++(C) .  

76.7. Proposition If rh,e, fl, rh,e, f’l are hef-triples of F, respectively, 
F‘ E A,(G), thenf=f’. 

Proof If # 0 , f - f ’  would be a weight vector of 8 of weight -A, belonging to 
the kernel of 2, which, according to 76.3, should be spanned by vectors of 
positive weight. This showsf-f’ = 0. 

76.8. Theorem F, F’ E A(G) are Int G-equivalent 
iff the ad-nilpotents #O of the one and the other are Int G-equivalent, 
iff h E F, h’ E F’,  with t,hF(h,h) = t,hF,(h’,h’) = 2, are Int C-equivalent. 
In both cases the “only if” statement is trivial. The first and second “if” 

statements are proved in 76.8.1 and 76.8.2. 
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76.8.1 
hef-triples r h , e , f l ,  rh’,e,f” of F and F’ may be assumed. Clearly, 

F,F’ may be supposed to have an ad-nilpotent e # 0 in common. 

n = h’ - h E kernel 2, n = [e , f ’  -fl E BG. 

With respect to the splitting G = x R, under 9 (associated with F), 

n = C n,, with n, top-weight vector in R,, or = 0. 

Ifp, = 0, then n, = 0, since n E BC. Put 

Then 

n‘ = -2 x p;’ n,. 

(exp Z ) h  = h + n = h’, 

(exp i ’ ) e  = e. 

(exp i ‘ ) f  =f’, 
Thus by 76.7 

which proves the assertion. 

76.8.2 One may suppose h = h’ and rh,e,fl, rh,e’,f’l hef-triples of F and 
F‘. Let Go, GI be the 0-, respectively, l-eigenspace of k. Then 

EGO = B’ Go = GI. 

In general, 
iGo c GI for all a E GI. 

The a E GI, with rank i(Go < dim GI, form a true algebraic subvariety of GI. 
Consequently the set el of 

a E GI with dGo = GI 

is open and connected. Take a E el. Then 

grad0 Y PEG&XP i) a = -4 Go 

maps Go onto GI. Therefore a is an interior point in GI of (exp Go)a (note also 
that exp Go fixes h and leaves GI and Ifl invariant). Consequently (exp Go)a, 
contained in GI, is open in GI and because of the connectedness of el equals 
el, of which e,e’ are members. Together with 76.7 this proves the assertion. 

76.9. Theorem Two regular members of Al(G) are Int G-equivalent. Two 
regular ad-nilpotents of G are Int G-equivalent. 

The first statement follows from the second statement of 76.6 and the 
second of 76.8, though it could easily have been proved in a more direct way. 
By 76.4.1 the second statement is a consequence of the first. 



77. KILLING-COXETER TOOLS, BETTI NUMBERS 50 1 

76.10. Historical Note The results of this section belong to B. Kostant 
[Amer. J .  Math. 81, 973-1032 (1959)], though the present proofs are much 
simpler than his. 

77. KILLING-COXETER TOOLS, BETTI NUMBERS 

77.1. Introduction In the sequel cohomology is taken over the field of 
real numbers. 

Let G be a compact Cm-manifold. Its cohomology algebra is denoted by 
9(G) .  As a linear space it is the direct sum of the cohomology groups g‘ 
belonging to the dimension i .  It is graded according to the 9‘. To any graded 
linear space 9%’ = xi?-, 9‘ belongs a so-called Poincart series 

P ( t )  = 2 (dim a‘) t I ,  

a formal power series in the indeterminate t .  The coefficient of t ‘ in the PoincarC 
series of the cohomology algebra of G (or, for short, of G) is the ith Betri 
number of G. 

The degree-graded algebra of exterior direrentid forms on G, denoted by 
9 ( G ) ,  also gives rise to a cohomology algebra, denoted by g(B(G)) as soon 
as the exterior derivation is interpreted as coboundary operator. 

77.1 .l. Theorem 9 ( G )  and 9(B(G)) are graded-isomorphic inacanonical 
way. 

This fact was the background of PoincarC’s introduction of homology 
notions and Betti numbers, though no proof was available until G. de Rham’s 
[J .  Math. Pures Appl. (9) 10, 1 15-200 (193 l)]. See also J. Leray [J .  Math. Pures 
Appl.  (9) 24,95-248 (1945)l. 

Now let G be a compact C”-group. Then: 

77.1.2. Theorem Every cohomology class of 9 ( G )  contains one and only 
one left and right invariant element. 

This is easily proved by invariant-measure-integration over G, as was done 
by E. Cartan [Ann. SOC. Polonaise Math. 8, 181-225 (1929) = CEuvres I*, 1081- 
11251. See also C. Chevalley and S .  Eilenberg [Trans. Amer. Math. SOC. 63, 

Letd (G)  be the degree-graded exterior algebra over the real numbers in the 
tangent space G of G at 1 .  Clearly the restriction mapping of 9 ( G )  o n t o d ( C )  
maps the algebra of left and right invariants of 9 ( G )  graded-isomorphically 
onto the algebra of ad-invariants in d ( C ) ,  denoted by d,”, (G) .  

85-124 (1948)l. 
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77.1.3. Theorem W(G) is canonically graded-isomorphic to the algebra of 
exterior ad-invariants dIn , (G) .  

A classical method in finite groups was adopted by E. Cartan (loc. cit.) to 
obtain an integral expression for the PoincarC series of G: 

77.1.4. Theorem With an invariant measure p such that the total measure 
of G is 1, 

P ( t )  = sc det( 1 + ta") dp(a). 

Proof Let G['I be the i-fold skew tensor product of the linear space G with 
itself. The action of a E G on G['l according to c i  is called ad['l(a). If the a,@) 
are the eigenvalues of a" with due frequencies, then those of ad['](a) are the 

a,,(a) * * .,,(a) with Y, < * * * < ul.  

The character of ad['] takes at a the value 

tr(ad['](a)) = C mVl(a) - * * or,,,(a). 
, I<"'<, ,  

(*) 

The homogeneous exterior invariants of of degree i are the ad['lG- 
invariant vectors. The restriction of ad[']G to the linear subspace spanned by 
such a vector has a constant character 1. The coefficient o f t  ' in P ( t )  equals the 
multiplicity of this character within the character of adci1. By the ortho- 
normality relation for characters (37.1) it is 

jc tr(ad['](a)) +(a). 

P ( t )  = IG C tr ad['](a) t 'dp(a) .  

Therefore, 

1 

Together with (*) this leads to the formula stated in the theorem. 

Unfortunately, no direct evaluation of this formula is known. 
The cohomology algebra of the compact groups in A,, B,, C,, D, had 

been computed by R. Brauer, who used the algebra of exterior invariants 
[Compt. Rend. Acad. Sci. Paris 201, 419-421 (1935)], and by L. Pontrjagin 
[Compt. Rend. Acad. Sci. Paris 200, 1277-1280 (1935)], and C .  Ehresmann 
[Compt. Rend. Acad. Sci. Paris 208, 321-323, 1263-1265 (1939)l with 
topological means, when H. Hopf [Ann. Math. (2) 42, 22-52 (1941)], with 
topological methods, proved the following general theorem : 

77.1.5. Theorem W(G) is graded-isomorphic with thecohomology algebra 
of a Cartesian product of odd-dimensional spheres, that is, an exterior algebra 
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generated by odd-dimensional homogeneous elements. Hence its Poincart 
series is a product of factors 

with nonnegative integral ki. 

1 + t Z k t + I  , 

The k, are arranged in a weakly increasing sequence denoted by k. 
The number of factors equals the rank of G if G is semisimple (plus the 

dimension of the abelian factor in the general case). 
Hopf's result has been complemented by H. Samelson [Ann. Math. (2) 42, 

1091-1 137 (1941)l. Its proof has been refashioned by J. Leray (luc. cir.) and 
translated into the language of exterior algebras over Lie algebras by J.-L. 
Koszul [Bull. SOC. Math. France 78,65-127 (1950)l. 

Yen Chi-Tah [Compt. Rend. Acad. Sci. Paris 228, 628-630 (1949)l deter- 
mined the sequence k for some exceptional groups by incidental methods 
before C. Chevalley [Proc. Int. Congr. Math. Cambridge, Mass., 1950, IT, 
21-24 (1952)l obtained the full result by a more general approach. Chevalley 
linked the algebra ,pLIIn,(C) of exterior invariants on G to the degree-graded 
algebra of (symmetric) polynomial invariants on G, denoted by 9jInl(G). 

77.1.6. Theorem For semisimple G there is a linear mapping aof  YInI(G) 
onto the linear span of the generators of ,pLIl,,(C) such that for p E 9j,,,(C) 

degree up = 2 degreep - 1 

and the kernel of u is spanned by 1 and the products ofelements of 9jInl(G) with 
more than one factor of positive degree. 

This theorem is quoted by Chevalley as a discovery by A. Weil, whereas 
H. Cartan [Colloque de Topologie, Bruxelles 1950, 15-27, 57-71] speaks of a 
conjecture by Weil. According to H. Cartan, it has been proved by his own 
and Chevalley's joint efforts, but as far as is known neither Chevalley nor 
H. Cartan published more than superficial indications of its proof. There 
can be no doubt, however, of the truth of this theorem, for it follows indirectly 
from more profound results obtained by A. Bore1 by topological means [Ann. 
Math. (2) 57, 1 1  5-207 (1953)l. 

An immediate consequence of 77.1.5-6 is the following theorem: 

77.1.7. Theorem 9jIn,(C) has an algebraically independent system of 
homogeneous generators of degree kl  + 1 .  The PoincarC series of W(G)  is 

n(1 + t Z k t + l )  

and that of P,,,(C) is 
H ( 1  - tk '+ ' ) - ' .  

In  the same way as in 77.1.4 one proves the following theorem: 
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77.1.8. Theorem The PoincarC series of BInl(G) is 

IG det(1 - tG)-' dp(a).  

However, neither the evaluation of this integral nor its connection with that 
of 77.1.5, as stated in 77.1.7, seems accessible by a direct approach. 

Let G again be semisimple and r the restriction of an element ofB,,,(G) to  a 
trunk H of G. The image of r consists of Int W*-invariants. The graded 
algebra of all Int W*-invariant polynomial .functions on H is denoted by 
91ndH)* 

In Chevalley's analysis (loc. cit.) the next step is the following theorem: 

77.1.9. Theorem r is an isomorphism of BIn,(G) onto BInt(H). 
This theorem will be proved in 77.20 and 77.23. 
By this step the determination of the symmetric, and finally of the exterior 

invariants of and its cohomology, is reduced to  those of a finite group. A 
classical result of Hilbert states that the algebra of invariant polynomials of a 
finite group of linear mappings of an I-dimensional linear space has a finite 
generator system. A proof by C. Chevalley [Amer. J .  Math. 77, 778-790 
(1955)] shows that in the case of a group generated by reflections (as is 
Int W * )  the (I) generators can be chosen algebraically independent. (See also 
H. S. M. Coxeter [Duke Math. J. 18, 765-782 (1951)l and G. C. Shephard 
and J. A. Todd [Canad. J. Math. 6 ,  274-304 (1954)l). 

The method in 77.1.5 also yields the following: 

77.1 .lo. Theorem The PoincarC series of BInI(H) is 

where g is the cardinality of Int W * .  

Theorems like this go back at least as far as Th. Molien [Sitzber. Preuss. 
Akad. Wiss. 1 152-1 156 (1 898)]. 

Again, there is no direct way ofevaluating this formula or ofconnecting it to 
the others. 

It seems that Chevalley obtained his result on the sequence k for compact 
simple semisimple groups (Ioc. cit.) by evaluating the k, + 1 of Theorem 77.1.7 
in the particular cases of the classification (see also A. Bore1 and C. Chevalley 
[Mem. Amer. Math. SOC. 14, 1-9 (1955)l). 

Confronted wiih Chevalley's ki + 1, H. S. M. Coxeter (loc. cit.) discovered 
a similarity to the eigenvalues of a particular element of Int W*, henceforth 
called a Killing-Coxeter fool. Indeed, its eigenvalues are the wkf ,  where w is 
a primitive nth root of unity and n is the order of the Killing-Coxeter tool. 
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On the other hand, using Morse theory, R. Bott [Bull. Soc. Math. France 
84,251-281 (1956)] succeeded in linking the cohomology of G to the structure 
of W* itself. Then A. Shapiro (unpublished) and R. Steinberg [Trans. Amer. 
Math. SOC. 91,493-504 (1959)l discovered empirically another way of reading 
off the sequence k from the structure of W*, which will be explained in 77.11 
and 77.14. Coxeter's and Shapiro-Steinberg's empirical procedures have been 
justified theoretically and linked to each other by B. Kostant [Amer. Mark J .  
81, 973--1032 (1959)l. Greatly simplified as a whole and in many details, 
Kostant's theory is the subject of the remainder of this section. 

In the sequel : 
G E Alg Lie Lin Com SSS, G is centerfree, r = dim G, and I = rank G. 
G is in ordered second dressing with respect to the trunk H, pl, . . . ., p1 the 

primitive rootforms in a fixed order, nl, . . ., nl the corresponding fundamental 
weights, and q the altitude of the top rootform. 

77.2-6. Killing-Coxeter Tools 

77.2. Definition T =  SpI - - - SJE Int W*) is called a Killing-Coxeter 
tool. Its order is denoted by n. The minimal nonvoid T-invariant subsets of W* 
are called the orbits. 

It will become clear that the inner class of T does not depend on the order on 
Hand on the arrangement of the p,, . . ., pl. 

Theorem 1 is not an eigenvalue of T. There are precisely I orbits. 

Proof 

77.2.1. Definition of r: y E r t b  (7 E W +  A Ty E W-). 
For y E r there is a k such that 

s?k_l . ' * > O, sp, sp,-l * ' spl y < O* 
Then 

and 

Conversely, any element of this form clearly belongs to I'. Therefore r 
consists of the 

spk-l ' * ' spl y = P k  

y = sp, ' ' 'pk-1 Pk. 

3/k = s p 1  * * ' sPk-, Pk (k  = 1, . . ., I )  

Now with integral P k i  

yk = Pk + Pkl Pi, 

which shows that the yk are linearly independent. Thus, 
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77.2.3 (1 - T-') T k  = yk. 

Now, from the linear independence of the yk it follows that 1 - T-I is non- 
degenerate ; hence 

77.2.4 1 is not an eigenvalue of T. 

orbit contains positive as well as negative rootforms. Consequently : 
The sum of an orbit is T-invariant; therefore by 77.2.4 it is 0, and every 

77.2.5 every orbit intersects r a n d  there are at  most 1 orbits. 
If there were less, some yt  and y j  ( i  # j )  would belong to the same. Then by 

77.2.3 rl and rj  would be equivalent under some power of T. This, however, is 
not possible, since both are dominant (see 33.8.1). Hence: 

77.2.6 There are exactly 1 orbits. 

77.3. Definition w is the eigenvalue of T with minimal positive argument 
and 5, is an eigenvector belonging to w.  

Theorem w is a primitive nth root of unity (n= order of T).  5, is 
regular, that is, (&,,,a) # 0 for all a E W*. All orbits have the same length, 
n = ( r  - 1)/1. All primitive nth roots of unity occur as eigenvalues of T with a 
regular eigenvector. 

This theorem rests on the following: 

Proposition No coordinate of 5, on the basis W++ vanishes. 
This proposition will be proved in 77.6. 

Proof of the Theorem Suppose that (&,,,a) = 0 for some a E W*.  Then 
(t,, Ta) = (T-I &,,,a) = w-'(&,,, a) = 0. 

5, is orthogonal to the orbit of a, hence to some Yk.  Thus by 77.2.3, 

-T-')Tk,tw)=(Tk,(l -T)'!u)=(Tk,(l -w>tu); 



7 7 .  KILLING-COXETER TOOLS, BETTI NUMBERS 507 

hence (rkr f,) = 0. This shows that the p,-coordinate of 4, vanishes, which 
contradicts the preceding proposition. Therefore 4, is regular. 

For some m that divides n, w is some mth primitive root of unity. 5, is Tm- 
invariant, as are Ref,IHBtandImf,IHst. For some real T, Re&,,;,IHat+~Im&,,:,IHst 
is still regular, thus situated in the interior of a chamber. It is T"-invariant, 
but any element of Int W* leaving an inner point of a chamber invariant is the 
identity (see 33.8.1). Therefore T" = 1 and, since T" = 1 and m divides n, 
m = n. 

Since on a natural basis the coefficients of any S,, hence of T, are integral, the 
eigenvalues of Toccur in full systems of algebraic conjugates. So any primitive 
nth root of unity A, as a conjugate of w ,  is an eigenvalue. Under the same 
conjugation f ,  passes into an eigenvector f h  belonging to A, which is again 
regular. 

Suppose that the orbit of a E W* has length k .  Then T k a =  a, k divides n, and 

( a ,  5,) = (Tk a,  5,) = (a, T-k 5,) = ~ - ~ ( a ,  4,). 

Since 5, has been proved to be regular, it follows that wk = 1. So k is a multiple 
of n and, since k divides n, k = n. Now n = ( r  - l) / l  by 7 7 . 2 . 6 .  

77.4. Theorem n = q + I ,  where q is the altitude of the top rootform (see 
Table D). 

Proof ( I )  Define the operator Z on H* by 

Z commutes with every element of Int W * ,  which acts irreducibly on H * .  
Therefore Z is a scalar multiplication. 

From 
= +m1 - 

t r Z = + C  tr(1 - S C ( ) = + C , 2 = r - I ,  

it follows that 

( 2 )  Let p be the top rootform. Then for a E W+, 
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Now every p-ladder except r-p,O,p' has length 1 ; thus 

( 3 )  Choose A E H,, such that p(A) = 1 for all p E W++. Then 

4 = 4-4 = P(4. 
A =  (a,a)-'Aa 

easily follows by the argument used in 41.6. Now 
aeW+ 

which proves the assertion. 

77.5 Since Tq+' = 1 ,  all eigenvalues of Tare powers of w .  

Definition k is the weakly increasing sequence of I positive integers kl G q 
such that the wk' provide the eigenvalues of the Killing-Coxeter tool Twith due 
multiplicities. 

The multiplicity with which a positive integer x ~ q  occurs in k is called 

As noted in 77.3, the eigenvalues of T occur in full systems of algebraic 
dx). 

conjugates. Hence : 

Theorem k l  = 1 and, i f j  occurs in k,  then with the same frequency so does 
every positive integer Q q that has the same greatest common divisor with 
q + 1 as j ;  if j occurs in k, then so does q + 1 -j. 

In some cases this settles the structure of k.  

E,: q + 1 = 30. There are just eight relative prime numbers mod 30; 
namely, 

This is the sequence k. 

1,7,11,13,17,19,23,29. 
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E, : q + 1 = 18. The relative primes mod 18 are 

1, 5, 7,  

The element lacking can only be 9. 

, 11, 13, 17. 

E,: q + 1 = 12. The relative primes mod 12 are 

1, , 5, 3 7 ,  9 11. 

Here the two lacking elements might be 3,9, or 4,8, or 6,6. 

F,: q +  1 = 12. 
1, 5,7,  11. 

1, 5. 
G2: q+1=6. 

To this list one easily adds: 

A,: q S 1  = I + l .  
1 ,2  )..., 1. 

77.6. Proof of Proposition 77.3 A matrix presentation of T is derived by 
expressing the pi and T - l p ,  in the ' y k :  

Y j  = S P I  * . * SP,., P i ,  

Further. 

By 77.6.1-2 Tcan be written on the ordered basis p l ,  . . ., pI as the product of 
an upper and a lower triangular matrix. Replacing p j ,  y j  by 

p; = (pji pj)-''* p j ,  7; = (p j ,  pj)-1'2 y j ,  

one gets a more symmetric expression : 
I -  I 
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where the 

are the cosines of the angles of the rootforms. They form a maxtrix A = 

ajk = ( p j ,  P J ) - ’ ’ ~  ( f k ,  p k ) - ” 2  (p j ,  f k )  

‘Ujk’: ,k ,  1 with 

ajj = 1, 

a j k  9 0  for j # k ,  

a,k # 0 iff p,, p k  are connected in the graph. 

Let B be the lower triangular matrix arising from A by putting 

bjk = k j k  for j >  k ,  

= 1  for j =  k ,  

= O  for j c  k .  

Then, on the ordered basis p;, . . ., pi, the matrix of T-’ is 

-Bf- l  B 

(where B‘ is B transposed), that of Tis 

-B-’B‘ .  

Note that 
A = t ( B  + B‘).  

The eigenvalues X of Tare determined by the equation 

det $(B’ + AB) = 0. 

The matrix 
CA = $(B’ + hB) 

is real, symmetric, and positive definite for h = I (since the inner product is 
so on HZ). For any h with Ihl = 1 the reality and symmetry will now be 
restored by multiplying 

the ith row byfi g, 

the ith column byf;’, 

such that one gets 
f h b j k ( f j g ) f L 1  = a.lk for < j ,  

3 b k j ( f J g ) f ; ’  = a j k  for k > j ,  

+ wh)f;l real. 
To reach this goal one must fulfill the conditions 



77. KILLING-COXETER TOOLS, BETTI NUMBERS 51 1 

77.6.3 fjf? g = 1 for j < k  

=A- '  for j>  k 

for every pair j ,  k such that pj,pk are connected in the graph, and 

77.6.4 +(l + A) g real. 

Instead of 77.6.3 one can write 

77.6.5 f i  fi' g = A-', & f;' g = 1 for j > k and p,, pk connected. 

Thus one must postulate g2 = A-'. Indicating the square root of X with a non- 
negative real part by 

= A-"2 

and its inverse by A-I12, one puts 

Thus 

fulfills 77.6.4. Now 77.6.5 takes the form 

+( 1 + A) g = +(A112 + A-112) 

77.6.6 S, = X-1/2& for j > k and p j ,  Pk connected. 

This can be fulfilled with nonzero numbers, since the graph is a tree. 
By this modification a matrix D, has arisen from CA. It agrees with A out- 

side the main diagonal, whereas in the main diagonal it bears the value 
The condition det(T - A) = 0 is equivalent to det C, = 0, 

which is equivalent to det DA = 0, that is, 
+ 

det(A - (1 - +(All2 + = 0. 

The eigenvalues a of A correspond to eigenvalues A of T by means of 
cr = 1 - +(A112 + A-'/2), 

and the corresponding eigenvectors differ in every coordinate by a factor # 0. 
For this one need only look at the construction of DA and observe that the 
kernels ofthe linear transformations with matrices X + B-I B' and C, = B' + XB 
all coincide. The minimal eigenvalue of A ,  called ao, corresponds to the 
eigenvalue of T with a minimal positive argument. Since A is positive definite, 
A - ct0 is still positive semidefinite, which implies that the corresponding 
eigenvector has no vanishing coordinate, thanks to the following : 

Lemma Let Q be a real positive semidefinite quadratic form, b, ,  ..., b, a 
basis that does not admit any proper partition in mutually orthogonal subsets, 
and ufj G 0 for i # j i f  rufjlf,j,I is the matrix of Q on the ordered basis b , ,  . . ., b,. 
Then no coefficient on this basis of an arbitrary nonzero isotropic element 
vanishes. 
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Proof After a rearrangement of the indices it is sufficient to refute the 
existence of numbers x l ,  . . ., xi and a positive integer m less than I with 

c U , , X J  = 0, XI - * * x, # 0, X,+l = * * * = 0. 
J 

Such a system, if it existed, would imply 

0 = x U t J X i X ,  2 c 4, l X i l  * Ix,I 2 0, 
I J  

where the first 2 sign is justified by ul, G 0 for i # j  and the second because of 
the positive semidefiniteness. Thus, 

c UiJ IXiI * IXJI = 0 ;  

c 4 1  IXJl = 0 

i .J  

hence, again because of the semidefiniteness, 

J 

and 

For i > m all summands are G 0, thus = 0. Hence u,, = 0 for i > m, j G m.  
But this means that the quadratic form breaks in a way that is excluded by 
assumption. 

It is easily seen from the connectedness of the graph that the lemma applies 
to the proof of the proposition. 

77.7-1 4. Killing-Coxeter Elements 

77.7 According to 33.1 T transferred to H i s  the restriction on H of some I 
with t E G. If G is given in third dressing on H, t may even be supposed to 
belong to the corresponding Gun, Such a t is called a Killing-Coxeter element. 
More precisely : 

Definition For any ordered third dressing of G on any ordered trunk H 
with, moreover, any ordering of the primitive rootforms, t is called a Killing- 
Coxeter element if t E Gun and I I ,  = T. 

Remember that I is pure. 

Definition For any Gun, a is called regular if a E C,, and the nullity of 
a" - 1 is minimal (hence l ) .  

Theorem Let t be a Killing-Coxeter element inducing T and let L, be the 
span of the ear with u. in the orbit of yi, i = 1, . . ., 1 (see 77.2.1). Then 
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77.7.1 
multiplicity 1, 

the eigenvalues of fl,, are the q + 1 different powers of w ,  each with 

77.7.2 the eigenvalues of f are the components of the sequence k,  and the 
q + 1 different powers of w, each with multiplicity I ,  

77.7.3 f has order q + 1, 

77.7.4 t is regular, 

77.7.5 the Killing-Coxeter elements corresponding to the same T are 
conjugate. 

In 77.10, all Killing-Coxeter elements will be shown to be conjugate. 

Proof 77.7.4 is an immediate consequence of 77.7.1 and the fact that fhas no 
eigenvalue 1 on H. 

77.7.2 follows from 77.7.1. 
Let F be the 1-eigenspace of f acting on G and FI = F n L,. Since fe,  is a 

scalar multiple of era, the branches can be supposed renormed (in first 
dressing) such that 

f p  ey, = eTPyl for 0 < p < q. 

Then Fl, if # {0}, is spanned by 
4 z e T p y ~ ,  

p = o  

hence 

Clearly 

and 

Since by 77.2 the number of orbits is 1, 

dim FI s 1. 

F E Z  Fi, 

dim F 2 1. 

dim Fl = 1, 

dim F = I ,  

fa+' eyl = e,,,, 

so the order of f is q + 1, which proves 77.7.3. 

which implies 

and 
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The eigenvectors of I in Li are the 
e 

p = o  
w - ~ P  T p  ey, 

belonging to the eigenvalues wk (k  = 0, 1, . . ., q), respectively. This proves 
77.7.1. 

If t ’  is another Killing-Coxeter element, then f’ = exp k.I  with some h E H. 
One must look for an hl E H such that exp h,  I .  exp(-h,) = exp h *I, This 
condition is fulfilled by an hl with h, - ThI = h, which, according to 77.2, 
exists. This proves 77.7.5. 

77.8 In the sequel ordered second dressing on another trunk H’ will be 
needed. One adopts the following convention : 

Notation Rootforms, second dressing branches, and so on, with respect to 
H’, are distinguished from those with respect to H by a prime. 

77.9 Elements of G of finite order belong to some maximal compact sub- 
group, hence to some Gun with a suitable Cun. Up to conjugacy they may be 
supposed to be in Gun. 

Theorem All regular elements of G of order q + 1 are conjugate. No 
regular element of G has order G q. 

Proof The given regular element is of the form exp u with u in the principal 
domain (see 31.4) of some suitable suitably ordered trunk HLn. 

Thus, if 
P‘ = c 41 P; 

is the top rootform, 
Im p;(u) > 0, Im ~ ’ ( u )  -= 27r. 

If exp u has order q + 1, all a’(u) (a’ E W*’) are integral multiples of 
2ni/(q + 1); 

lm p;(u) =pi * 27r/(q + 1) withpositiveintegersp,. 

Jm P ’ W  = c 4i Im p ; w  = x Pi41 ’ W q  + 1). 

This must be <27r, hence 
P i > O ,  c P i % < 4 + 1 ;  

therefore 
all p, = 1. 
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Up to conjugacy uis unique, as is exp u. 
The second statement is now obvious. 

77.10 A Killing-Coxeter element t is regular and of order q + 1. Therefore 
77.9 applies. The infinitesimal trunk o f t ,  called H', is spanned by the F, (of 
Theorem 77.7). 

Definition u E H' is defined by p;(u) = 1 for all i = 1, . . ., 1. It is called the 
altimeter (with respect to H') .  

This terminology derives from the formula 

a'(u) = a(a') 

(altitude of a'). From 77.9 it follows: 

Theorem A Killing-Coxeter element t can be written as exp(2~ri/(q + 1))u 
with respect to its infinitesimal trunk H ' .  

The inner class of a Killing-Coxeter element depends neither on the arrange- 
ment of the pt nor on the choice of H .  

The inner class of a Killing-Coxeter tool does not depend on the arrange- 
ment of the pi. 

77.1 1. Definition C, is spanned by the e&,, with u(a') = j (-4 G j G 4). 
For ljl > q, C, is defined as (0); furthermore Go = H ' .  

u' acts on C, as the multiplication by j .  G = Z C,. 
Clearly 

dim Cj is the number of rootforms of altitudej. 

As the respective multiplicities of the eigenvalues j of u', the dim Cj are 
closely connected to the multiplicities of the eigenvalues of T =  exp(2~ri/(q + 1))u'. 
The latter are known from Theorem 77.7. This leads to the 

Theorem After reduction mod q + 1 and with due account to multiplicities 
the eigenvalues of u' are the components of the sequence k and 1 times each 
of the numbers 0, 1, . . ., q. In other words, 

d i m G j + d i m G j ~ , ~ , = d i m G , + d i m G , , , ~ , = 1 + ~ ( j )  ( j = O  ,..., q ) ,  

Since the dim C j  can be read from Table D, this establishes the sequence k .  
if ~ ( j )  is the multiplicity o f j  in the sequence k .  

77.12 The Sequence k 

A, : 1,2, . . ., I 
B, : 1 ,3 ,  . . ,, 21 - 1 (the odd numbers) 
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c1: 
D, (I even) : 

D, (I odd): 

E, : 
E,: 
Es : 
F, : 
G2 : 

1,3, . . ., 21 - 1 (the odd numbers) 
1,3, . . ., I - 1,  I - 1,  . . ,, 21 - 5,21- 3 (the odd numbers, 
with the multiplicity 2 for I - 1) 
1,3, , . ,, I - 2 , l -  1, I, . . ., 21 - $21 - 3 (the odd numbers 
and the number I - 1 )  
1,4,5,7,8,11 
1,5,7,9,11,13,17 
1,7,11,13,17,19,23,29 
1,5,7,11 
195 

An inspection of this table shows: 

77.1 3 

Compared with 77.1 1 ,  this yields the following: 

dim G, + dim G,+,-, = 1 for j = 0, . . ., q + 2. 

77.14. Theorem qJ(j)=dimG,-dimG,+, for j = O ,  ...., q ;  in other 
words, ~ ( j )  is the drop in the number of rootforms of a given altitude x when 
passing from x = j  to x = j  + 1 .  

For this formula, which makes the computation of k much easier, one can 
provide an interesting general proof: 

Proof H, = H n (G, + G,-,,-,) is the eigenspace in H of exp(2ri/(q + 1))u' 
belonging to UJ' = u J - 4 - I .  Thus, 

(1) dim H, = 

and 

by 77.2. 
Corresponding to the former 4, in H* there is a regular x E H I .  
Put 

Ho = (01 

and define Gaol G,o, and GSo analogously. Call u+ and u- the projections onto 
G,, and G<o, respectively, in the direct splitting 

G = G,, + Go + G,". 

x=u+x+u-x ,  U+X€GI, U-XEG-,. 

Then 

Therefore, with suitable T ~ , ,  T ,  

u+x=C, ~ ~ , e b , ,  u-x=~eI_,,, 
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where p’ is again the top rootform. All T, # 0, for otherwise there would be 
some (ad-nilpotent) e:,, in the centralizer of x, which is H. So there is some 
C T:, e?,, such that 

[C T,, eg,, C ~ p * ,  el_,,] 

is a given element of Go = H’. 
Put e = a+x (E G , )  and takefe G-, such that 

[Gfl = u;  
obvi o us1 y 

[u, el = e, [u, fl = -J: 

Then u,e,fform a hef-triple (see 76.2) spanning an element of A,(G), which by 
the arguments of 76.4.2 is regular. 

Under the adjoint action of this element of A,(C) the linear space G splits 
into irreducible linear subspaces, denoted by R, in 76.3.9; all dim R, are odd 
and u is regular; by 76.3 

(2) dim kernel E = I 

and e is a regular ad-nilpotent. 

of x, 

with the last three summands belonging to GGo and the first to G>o, thus 
vanishing; hence 

Take a E H. Then the Go-component of a vanishes. Since Hi s  the centralizer 

0 = [x, a] = [.+ x, a+ a] + [at x, .-a] + [a-x, .+a] + [a-x, a-a], 

(3) a+H c kernel C. 

Now o+a # 0 if a # 0, for otherwise a = a-a would be an ad-nilpotent # 0 
in H. Thus 

(4) a+IH nondegenerate, 

dim atH = dim H = 1, 

and because of (2) and (3) 

( 5 )  a+H = kernel C. 

Now by (11, (4), ( 5 )  

( 6 )  ~ ( j )  = dim Hj = dim a+Hj = dim(a+H n G,) = dim((kernel8) n G,). 

Further, from (2) and 
G o  = G>O, 

dim G,o -dim G,, = 1, 
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it follows that 
2 G,o = c>o; 

thus 
dim((kerne1 2) n C,) = dim Cj - dim C,, 

which compared with (6) shows 

&) = dim C, - dim C,, 

77.1 5-1 8. Int W*-Invariants 

77.15. Definition B, , , (H)  is the algebra of polynomial functions on H 
invariant under Int W*. 

It is taken for granted that BIn,(H) possesses 1 algebraically independent 
homogeneous generators [C. Chevalley, Amer. J .  Math. 77, 778-790 (1955)l. 
Then the following will be proved in 77.18. 

Theorem The PoincarC series of gInt(H) is 

rJ(1 - t k ' + l ) - I ,  

the k ,  being the components of k (see 77.5) with due multiplicities. 

are known from 77.12. 
In other words, the degrees of the generators of B,, , (H) are the k, + 1. They 

Since B, , , (H)  is known to have 1 algebraically independent homogeneous 
generators, with degrees m,, say, the PoincarC series of BInl(H) has the form 

fr  (1 - t m y .  
1 = 1  

77.1 6. Proposition r]l m, = g (= cardinality of Int W*). 

C (ml - 1) = +(r - 1). 

Proof By 77.1.10 

r]l(l - tm')-l = (l/g) ,det(l - tS) - l .  
1 S E l n l W  
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Both members are considered to be developed according to powers of 1 - t .  

= (1 - t)+(l/g)(l + (1 - t)' 2 det(1 - tS) - l ) .  
S #  1 

In the last sum 1 - t occurs in the denominator at most with the exponent I - 1, 
and this happens only if S is a reflection in an (1- 1)-hyperplane, which, 
necessarily, is the orthoplane of a rootform, since no interior point of a 
chamber is invariant under S (see 33.4.5). 

Multiplying by (1 - t)' and putting t = 1, one gets 

r I m i = g -  

The coefficient of (1 - t)-'+' in the left member is the negative of the derivative 
of n (1 + t + . + r r n i - l ) - l  

1 

at t = 1, namely, 

In the right member it is 1/2g times the number of reflections in orthoplanes of 
rootforms, namely, 

1 r - 1  
-~ 

2g 2 

2 (mi - 1) = +(r - I ) .  
Thus 

77.17. Definition I , ,  ..., II is a system of homogeneous generators of 
9 , n t ( H )  of degrees m l ,  . . ., mi, respectively. J is the functional determinant of 

o=Yhr l l ( h ) ,  **- ,Id4' ,  

according to an ordered basis of H .  

Proposition J(h) = const *naeW+m(h), 

In the proof of this proposition a particular consequence of Hilbert's zeros 
theorem will be used : 

Lemma For polynomials P, Q # 0 over Com: if Q vanishes in all zeros of P, 
then every irreducible factor of P is a factor of Q. 
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Proof of the Proposition J is a polynomial function on H of degree 
x ( m l  - 1) = +(r - 1). The mapping ocannot be homeomorphic in the neighbor- 
hood of any 6 in which some nonzero rootform vanishes, for it takes the same 
value in points symmetrically situated with respect to the orthoplane of a 
rootform. Therefore 

JJ a(6) = 0 -+ J(6)  = 0. 
f f € W +  

Since all a E W +  are different and both polynomial functions have the same 
degree, they agree up to a constant factor. 

77.18. Proof of Theorem 77.15 After a basis h, ,  . . ., h, in H has been 
chosen, the 1, determine polynomials 1, in 1 variables, say XI, . . ., X, ,  by means 
Of 

The basis is assumed to consist of the eigenvectors of the Killing-Coxeter tool 
T such that 

T6, = uki hi, 

with k l  = 1 and regular 6 ,  ; thus, 

1h1, * * - 9  71) = Zdx 7, h,). 

77.1 8.1 J(h1) # 0. 

Because of the particular choice of the basis, each monomial in 1, is T-invariant ; 
that is, if Xl;' 

x u , k , = O m o d q +  1. 
XYi occurs in 1, with nonzero coefficient, then 

Because of 77.18.1, there is a permutationfof (1, . . ., 1} such that 

(a,,,, 1XhI) # 0. 

Because of the homogeneity of I ,  of degree m,, this means that XYi-l X,,,, 
occurs in 1, with nonzero coefficent. Therefore 

Wmr- l  &f(o = 1 

m , - l+kf ( , ,=Omodq+  1 for i = 1 , 2 ,  ..., 1. 

By applying the last part of Theorem 77.5 one finds a rearrangement of the mi 
such that 

Now by Theorem 77.14 and Proposition 77.16 
m, - 1 = k, mod q + 1 for all i = 1, . . ., 1. 

9 x k, = x ~ ( j )  = dim GzO = +(r - 1 )  = C (m, - l), 
I =  1 

which proves that 
m l = k , + l .  
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77.1 9-23. Int G-Invariants 

77.1 9. Definitions 
P(C), B ( H )  are the algebras of polynomial functions on G, H .  
Plnt(G), B,, , (H) are the subalgebras of those invariant under Int G, 

Int W*.  
P A u t ( G ) ,  PAut(H) are the subalgebras of those invariant under Aut G, 

Aut W * .  
Pfnt(G), Bfn,(H) are the subalgebras generated by the coefficients of all 

y. det(f(a) - A), where f runs through the linear representations of G, and 
a E G,H. 

Piul(G), B:,,(H) are the subalgebras generated by the coefficients of 
det(6 - A), a E G,H. 

q is the operation of forming the quotient field of such an algebra. 
r is the operation of restricting elements of B(C) to H. 
Clearly r is an epimorphism. 

77.20. Theorem r is an isomorphism of P,,,(G) onto Plnt(H) and of 
PAut(c) Onto PAut(H). 

This contains a statement made in 77.1.9. 
It is evident that r maps Plnt(G), YAu,(G) into Ylnt(H), YAul(H), 

respectively. Since the trunks are Int G-equivalent and their union is dense 
in C, any element of Plnt(G) is determined by its restriction to H.  Therefore 
r maps Blnl(G), PAut(G) one-to-one. It remains to show that it maps onto 
Plnl(H), PAut(H), respectively. This will be done in 77.23. 

Remark The statement about Plnl(G) could also be proved by means of the 
monodromy theorem of algebraic functions: an element p of B, , , (H)  can be 
expressed in the rootforms; by extending the rootforms to roots one gets an 
algebraic function on G that extends p and behaves in univalued fashion 
under analytic continuation; therefore it is a rational invariant and actually 
a polynomial function. 

77.21. Theorem qP*. .( . . .)=qP.. . ( a * - ) .  

N 

If cr E Aut G, then ua = udo-'; thus, 
N 

det(oa - A) = det(cr&-' - A) = det(6 - A), 
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Generally, 

The remainder is proved in 77.22 and 77.23. 

Proof It suffices to prove the inclusion 3. 

Note that q B ( H )  is the splitting field over q B:,,(H) of the &polynomial 
y,, det(Z - A); indeed, its zeros are the rootforms, which generate q B ( H )  as a 
field. Therefore q B(H) is a Galois extension of finite degree of q B:ut(H), 
as it is of q g?nt(H), q 9 A u t ( H ) ,  and B*nt(H)* 

Let u be an automorphism of q B ( H )  that fixes B:,,(H) elementwise. 
Then u leaves y,, det(Z - A) invariant. Consequently u permutes the root- 
forms while preserving the linear relations among them. Therefore u is 
induced by an element of Aut W*. Thus the Galois group of q B ( H )  over 
q P:,,(H) is contained in that over q BAut(H). This proves 

Let u be an automorphism of q B ( H )  that fixes B,*,,(H) elementwise. 
Then u also fixes B:,,(H) elementwise and thus is induced by an element of 
Aut W*. Letfbe any irreducible linear representation of G and x its charac- 
ter, both of which restricted to H. Then 

x(N = c exp 44 = c (1 Is !> c @Y, 
S v 

where u ranges over the weights offwith due multiplicities. In a well-known 
way the c, v(hy can be expressed in the coefficients of Y h  det(f(h) - A). 
Therefore x is invariant under u. An outer automorphism causes a nontrival 
interchange of some fundamental representations and so does not leave all x 
invariant. This shows that u is induced by an element of Int W*. Thus the 
Galois group of q B(H) over q B f n , ( H )  is contained in that over q Blnt(H), 
which proves 

q B?nt(H) 3 q gInt(H)* 

77.23.1 

is obvious. To complete the proof of 77.20 one must show 

r p : .  .(GI = g*. .(HI 

77.23.2 rB. . . (C)  3 9. . .(El). 
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Proof Let p E PInl(H). By 77.22 and 77.23.1 p is the quotient of restrictions 
of elements of 9'fnl(G); thus, 

By 77.21 one can suppose that pi E P ~ , , ~ ( C ) .  Let d be a greatest common 
divisor of p , ,  p 2 .  Then so is iid; therefore M = K(a)d for a E G, where .(a) is 
scalar and K a linear representation of G; hence K(U) = 1 and d E P,,,,(G). 
After canceling d, one may assume that 

r (p2)p  = r(p,) with p i  E YInI(G), relatively prime in 9 ( G ) .  

Since p is a polynomial function on H, p1 must vanish in all zeros of p21w 
and even in all zeros of p 2 ( z H  (a E G) ,  since p I ,  p 2  E PInI(G). Because of 
the conjugacy of trunks and the density in G of their union, p 1  now vanishes 
in all zeros of p 2 .  But this indicates a common divisor of p , ,  p 2  unless p 2  is 
a constant polynomial function. This shows 

rglnt(G) = 9 1 n t ( W *  

Now suppose that p E PAu1(H). By the foregoing 

p = rp' with some p' E S,,,,(G) 

as well as 
p = up = rap' for any cr E Aut(G, H ) .  

Since r maps PAul(C) injectively, it follows that 

up' =p '  for u E Aut(G, H ) ;  

but this also holds for u E Int(G), hence for u E Aut G, which proves that 

r@Aul(G) = 9'AUI(H) 

and completes the proof of Theorem 77.20. 

Theorem 77.20. 
Now the remainder of Theorem 77.21 is a consequence of 77.22 and 

77.24. Relating P,",(G) to t h e  Center of &(G) 

Theorem There is a degree-preserving one-to-one linear mapping of the 
space of G-invariant polynomial functions onto the center of the associative 
envelope of G. 
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Proof The adjoint action of G induced in B(C) is a linear representation of 
G calledf. The adjoint action of G extended to d(G) (the associative envelope) 
is a representation of G called g (so ga acts as an inner derivation on the ring 

B(G) splits under f into invariant linear subspaces P"(G), consisting of 
0 and the homogeneous polynomial functions of degree n. 

Under g, which is conducible, d(G) splits into invariant linear subspaces 
&'"(G), such that C;=,, @(C) consists of all elements of degree G n. 

Obviously f in P ( C )  and g in d"(G) are equivalent (see 39.3), and under 
this equivalence invariants and center elements correspond to one another as 
expressed in the statement. 

4 G ) ) .  

77.25-27. A Characterization of Killing-Coxeter Elements 

77.25. Proposition The classes of Int W*-equivalent elements of H are 
separated by the set B,, , (H) and thus even by its homogeneous generators 
I,, . . ., I I .  

Proof Let {/I,,. . . , / Ia} ,  {ha+,, . . . , / Ib}  be two different equivalence classes. For 
every i < b take a first-degree function on H with B,(h,) = 0, P,(hb) = 1, 
form their product p, 

B(h) = l-I Sdh), 
i 

and jl*, defined by 

/I* separates the two classes. 

Corollary The homogeneous invariants I,, . . . , I ,  extended to homogeneous 
invariants in B(G)  separate the inner classes of elements belonging to the 
same trunk, hence those of ad-pure elements. 

77.26. Proposition a E G ad-nilpotent iff I,(a) = . . - = Zl(a) = 0. 

Proof If I,(u) = * . - = Il(a) = 0, then, in particular, all coefficients of 
Yo det(a'- A) except the highest vanish, as do all roots of a. Then a is ad- 
nilpotent. If a is ad-nilpotent, then by 69.32 there is an /I E G with [/I, a] = a. 
Thus (exp&)a = eTa for scalar 7, and I,(a) = I,((expd)a) = I,(eTa), from 
which Zj(u) = 0 follows. 
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77.27 According to Theorem 77.3, the adjoint of a Killing-Coxeter element 
has in H a regular, hence non-ad-nilpotent, eigenvector belonging to a 
primitive (q  + 1)th root of unity. 

Theorem Let a E G be such that 

with an x # 0 that is non-ad-nilpotent (equivalently, because of cleaving, 
ad-pure). Then 

XkJfl = 1 for somej. 
If, moreover, h is a primitive (q + 1)th root of unity, then a is a Killing- 
Coxeter element. 

fix = Ax, 

Proof By 77.26, since x is not ad-nilpotent, I,(x) # O  for some j .  Now 
Ij(x) = Ij(6x) = XkJ+lZj(x); thus Xk'+' = 1 .  

Now suppose X is a primitive (q  + 1)th root of unity. Then, of necessity, 

By Corollary 77.25 all such x are conjugate up to a scalar factor. If t is a 
Killing-Coxeter element, then by Theorem 77.3 (last statement) there is a 
regular eigenvector y such that fj = Xy. By the foregoing x and y are conjugate 
up to a scalar factor. Therefore t may even be chosen such that, in addition 
to E x = h x ,  also f x = h x ;  moreover, x has turned out to be regular. Let H 
be its trunk. Then Z- 'a" leaves x invariant, thus H elementwise invariant. So 
by the argument in the proof of Theorem 77.7, a is conjugate to t and thus 
a Killing-Coxeter element itself. 

I&) = * * . = Z*-,(X) = 0, I,(x) # 0. 

77.28. Historical Note A few remarks are added to the exposition of 
77.1. 

The proofs in 77.15-18 have been borrowed from A. J.  Coleman [Canad. J .  
Math. 10, 349-356 (1958)] who in turn owed some of these ideas to G .  C. 
Shephard and J. A. Todd (loc. cit.). 

Some ideas in 77.2-6 also come from Coleman, though the framework and 
details have been simplified, particularly by a direct proof of the empirically 
discovered formula 77.4; this proof is due to R. Steinberg (loc. cit.). The 
matrix method in the proof of 77.6 is due to Coxeter (foc. cit.). It is the least 
satisfactory link in the whole procedure. An alternative method is found in 
Steinberg's paper. 

The Killing-Coxeter tool goes back to R. Killing [Math. Ann. 33, 1-48 
(1889)l; it was excavated by Coxeter (foc. cit.). The Killing-Coxeter element 
was introduced by Kostant (foc. cit.). 

The main ideas of 77.9-1 1 and 77.13-14, as well as the contents of 77.24-26 
have come from Kostant (foc. cir.). 
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Theorem 77.24 is usually found in the literature with extremely complicated 
proofs. 

R. Steinberg's proof of rPInt(G) = P,"@I), found in D.-N. Verma's Yale 
thesis, 1966, Structure of Certain Induced Representations of Complex 
Semisimple Lie Algebras, A.5, is shorter than the present one, which, however, 
shows other interesting perspectives. 
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TABLE A 

THF GRAPH A N D  DIMENSIONOFG E Alg Lie Con1 SSS; THE LENGTH SQUARE 
OF THE SHORTEST NONZERO ROOTFORM 

( I +  I )*  - 1 ( I +  l ) - l  A,: 0-0--0 . . .o-o-o 

B,: o-o-o"' o---o=+=o I(2I + I )  (41 - 2)-1 

c,:  0 - 0 - O ' . '  o-o*o I ( 2 I +  I )  (21 + 21-1 

PI p2 p3 P I - 2  PI-l PI 

p2 p3 P4 P I - 1  PI PI 

Pl p2 P3 PI-2 PI-l PI 

D,: 0-0-0 ' . 0-0 /" 
p3 p4 P S  PI-l P I  l o p 2  

l (Y-  I )  (21 - 2)-1 

9 P2 

E6: o-0-0-0-0 

p3 PS P6 P4 PI 

OP3 

I 
E,: 0-0-0-A-0-0 

p2 p4 P6 P7 P5 PI 

O P4 

78 

133 

-1 
1 2  

1 
E, : o-o--o-o-o-o-o 248 3 0  

PI P3 P S  P7 P S  P6 P I  
1- F4: o-o+o---o 52 1 8  

G2: OSEO 14 1 2  

P2 P4 P3 PI 
1 __ 

P2 PI 

521 
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TABLE B 

THE POSITIVE ROOTFORMS ON A NATURAL BASIS 

Indicated by the distribution of the relative coefficients on the graph. 
Obligatory fillings are underlined. 
In the case of the exceptional Lie algebras the rootfornis arc arranged according to their 

altitudes (sum of coefficients). 

Af:  0 4 - .  . . 4-l- l - .  . . - l q 4 - .  . . 4 - 

E,: 0 
10000 

0 
1 lo00 

0 
1 1  100 

I 
1 1 1 0 0  

1 
11110 

1 
1 1 1 1 1  

1 
I121 I 

1 
12211 

1 
12221 

1 
I2321 
2 

12321 

0 
01000 
0 

01100 
1 

01 100 
0 

11110 
0 

1 1 1 1 1  
I 

11210 
1 

l22lO 
1 

11221 

0 1 0 0 
00100 00000 00010 ooool 

I 0 0 
00100 00110 00011 

0 1 0 
01110 00110 00111 

I 0 I 
01110 01111 00111 

I I 
01111 01210 

1 
01211 

1 
Ol22l 
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TABLE B-continued 

E,: 0 0 0 0 1 0 0 
100000 OIOOoo 001000 000100 000000 000010 ooo001 

0 0 0 1 0 0 
I10000 011Ooo 001100 000100 o00110 000011 

0 0 1 0 1 0 
111000 011100 001100 001110 000110 000111 

0 1 0 1 0 1 
111100 011100 011110 001110 001111 000111 

I 0 1 0 1 1 
111100 111110 011110 011111 001111 001210 

1 0 1 1 1 
111110 1 1 1 1 1 1  011210 011111 001211 

1 1 1 1 1 
111210 1 1 1 1 1 1  012210 011211 001221 

1 1 1 1 
112210 111211 012211 011221 

I 1 1 1 
122210 112211 111221 012221 

I 1 1 
l222ll 112221 012321 

1 I 2 
122221 112321 012321 

I 2 
122321 112321 

1 2 
123321 122321 

2 
123321 

L 

12342 I 

12343 I 
2 

I23432 

7 - 

E, : 0 0 0 
1000000 0100000 0010000 

0 0 0 
1100000 0110000 0011000 

0 0 0 
1110000 0111000 0011100 

0 0 1 
1111000 0111100 0011100 

0 1 0 
1111100 0111100 0111110 

I 0 1 
1111100 1111110 0111110 

1 0 1 
1111110 1 1 1 1 1 1 1  Olll2lO 

0 

0 

1 

0 

I 

0 

I 

000 1 000 

0001 100 

0001 100 

0011110 

0011110 

0111111 

011 1 1 1  I 

0 1 0 0 

1 0 0 

0 1 0 

1 1 0 

0 1 1 

1 1 1 

1 1 1 

0000100 0000000 0000010 0000001 

m 1 0 0  0000110 0000011 

0001110 oo00110 oo00111 

0001110 oooo111 0001111 

0011111 0001210 0001111 

OOll2lO 0011111 0001211 

0012210 0011211 0001221 
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TABLE B-continued 
~~ ~ 

E continued: 

1 I 1  1210 

1112210 

1122210 

1222210 

122221 1 

1222221 

1 

I 

1 

1 

1 

1 

1 

I 
1 1 1 1 1 1  

1 
111211 

I 
11221 1 

I 
12221 1 

I 
122221 

1 
122321 

I 
1222321 1123321 

1 2 

1 2 

2 2 

1223321 1222321 

1233321 1223321 

1233321 1223421 

I 1 
01 12210 01 1121 I 

1 1 
0122210 01 1221 I 

1 1 
1111221 0122211 

I 1 
1112221 0122221 

1 1 
1112321 0122321 

2 1 
1112321 0123321 

2 2 
122321 0123321 

2 2 
123321 0123421 

2 2 
123421 0123431 

2 2 
123431 0123432 

2 
1233421 

L 

1234421 

I23443 1 

123453 1 

I23453 I 

I234532 

I234542 

1234642 

1235642 

1245642 

1345642 

2345642 

2 

2 

3 

3 

3 

3 

3 

3 

3 

3 

2 L 

2 2 
1223431 1123432 

1233431 1223432 
L 

1233432 
L 

I234432 

1234532 

1234542 

2 

2 

1 1 

1 1 

1 1 

1 2 

2 

2 

0012211 0011221 

0111221 OOl222l 

0112221 0012321 

01 12321 0012321 

0112321 

0122321 
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TABLE B-continued 

F,: IO+OO 01*00 OO+=IO OO+=Ol 
11+00 01-10 oo-ll 
01-20 11==-10 01*1l 
l l + 2 0  I I - 1 1  01=+=21 
12-20 01=.=22 11*21 
11-22 12*21 
12*22 12+=31 
12- 32 
12*42 
13+42 
23 =+= 42 
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TABLE C 

THE POSITIVE ROOTFORMS ON A SYMMETRIC BASIS AND THEIR ALTITUDES 

Orthonormality is always meant up to a common factor. The norming factor is indicated. 
In some cases a redundant orthonormal basis is used, that is, an orthonormal basis of a 
linear extension of H*. 

A!: A redundant orthonormal basis w l , .  . . , w i f l  with Z w i  = 0. 
Norming factor: (21 -1- 2)-'i2. 
All rootforms # 0: w i  - w,, i# j. 
Positive rootfornis: for 
Altitude wi - wJ - . I  - 1 .  

Primitive rootfornis: w i  - wl+l for i = 1 , .  , ., 1. 

An orthonormal basis w I ,  . . ., wl. 
Norming factor: (4/ - 2)-'12. 
All rootform # 0: 
Positive rootfornis: 

w i  - wJ = p i  + ... i- 1 G i < j G / + 1. . .  

8,:  

i w i ,  + wi f w, (i # j, f independent). 

wi = p i i  I + pi+2 + ... + p i  + P I ,  
w i  -- wi = p , t l  + . . .  + pi ,  
w i + w J = p i + l  t . . . + p J + 2 p i + l + . . . i ~ 2 p i  t 2 p l ,  icj. 

i c j, 

Altitude wi = 1 - i + 1. 
Altitude wi - wJ = j - i. 
Altitude wi + wi = ( I  - i + 1) + (/ ~ j + I ) .  
Primitive rootforms: w I  - wi+ I for i = I ,  . . ., 1 - I ,  and w I .  

C , :  An orthonormal basis w l r  . . ., wi .  
Norming factor: (41 + 4)-lI2, 
All rootforms # 0: f 2wi, f wi i wj (i# j, i independent). 
Positive rootforms : 

w .  - w . :  p .  + ... , , , -+ P , - ~ ,  i < j .  
2WJ = 2pi + . . . + 2p,+ + pi, 

wi + w j =  p i  + '.. + pJ-I + 2 p J +  * "  + 2 p r - I  + p i ,  icj. . .  Altitude wi - wJ = J - I .  

Altitude 2wJ = 2(/ - j) + 1. 
Altitude wi + wJ = 21 - i - j + I .  
Primitive rootforms: w i  - wi+] 

An orthonormal basis w I ,  . . ., w I .  
Norming factor: (41 - 4)-Il2. 
All rootforms # 0: + wi i wJ 
Positive rootfornis: 

for i = 1, . . .. 1 - I ,  and 2wi. 

D,: 

( i  # j ,  f independent). 

w i - ~ J = p i + 2 + " ' + p , - l ,  i<j</, 
w l  - wi = p i t 2  + ... + p i  t p l ,  i <  I, 
w i + w i  = ~ ~ + ~ + . " + p ~ + p ~ ,  i < / ,  
wi + W J  = p , t 2  + ' "  + p ~ + l  + 2p,+2 + . . .  + 2 p i  + p I  + p 2 ,  i < j i  I. 

Altitude wi - w J  =.i - i. 
Altitude OJi 4 wJ = (1 - i )  + (I - j ) .  
Primitive rootform: w1 - w i ~ l  for i = 1, . . ., / - I ,  and w , - ~  + w l .  
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TABLE c-continued 

E6: A basis w l r  ..., w6 with ( w i , w i )  = $, ( w i , w j )  = -1% (i# j )  up to norniing. 
Norming factor: I2 - l I2 .  

Rootformsf 0: r l , - l , O , O , O , O l  and all permutation results, 
k r l ,  I ,  1,0,0,01 and all permutation results, 
* r l ,  l , l , l , l , l ’ .  

Primitive rootfornis: wi - wif l  (i = I , .  . ., 6 )  and w4 + w5 + w6. 

A basis w I ,  ..., w7 with (wi,wi) = :, ( w i , w j )  - -if (i#j) LIP to norniing. 
Norniing factor: 18 
Rootformsf 0: 

E,: 

r l . - l , O , O , O , O , O ~ ~  and all permutation results, 
‘ 1 ,  I ,  I ,  0,0,0,01 and all permutation results, 
r l ,  I ,  I .  I .  I ,  I ,  01 and all permutation results. 

Primitive rootfornis: wi  - wi+l  for 
Anothcr: \ redundant orthonormal basis w l r  ..., W ,  with ?: wi = 0. 
Norniing .actor: 36-’ / ’ .  
Rootforms # 0 :  r1,-1,0,0,0,0,0,01 and all permutation results, 

~ ~ l , l , l , l , - l , - l , - l , - l ~  andall  permutationresults. 
Prin1itit.c rootforms: (oi  - w i + r  for i =  1 ,  ..., 6 ,  and 

i = I ,  . . ., 6 ,  and w5 + w6 + w7 

f ( < U l  d W2 1 -  w ]  w4 - - w6 - w7 - U S ) .  

E,: A basis ( u l r  ..., W ,  with ( w i , w i ) :  $, (wi ,wj)  = -iLg (i#j) up to norniing. 
Norrning factor: 30-’12. 
Rootforms # 0: r l , -1 ,0 ,0 ,0 ,0 ,0 ,0~ and all pernilitation results, 

+ I ,  I ,  I , O , O , O , O , O ~  and all permutation results, 
t r l ,  I ,  I ,  I ,  I ,  1,0,01 and all permutation results, 
-t ‘2, I ,  I ,  I ,  I ,  I ,  1,11 and all permutation results. 

Priniitivc rootfornis: wi - w i C l  

Anothcr: An orthonormal basis w l r  ..., wg.  

Norming factor: 60-’/’. 
Rootforms # 0: 

for i = I ,  ..., 7, and w6 + w7 -1 WE. 

rt ~1,1,0,0,0,0,0,0~ and all permutation results, 
r l ,  -1,0,0,0,0,0,01 and all permutation results, 
t + r l ,  I ,  I ,  I ,  I .  I ,  l , - - l l  and all permutation results, 
+ + r l , l , l ,  l , l , - l , - ~ l , - l l  andall  permutation results. 

Primitive rootfornis: wi - w i t l  for i = 1, ..., 7, and 
- f(wl -1 w2 t w ]  t w4 1 w5 w6 0 7  W E ) .  

F,: An orthonormal basis w I ,  w 2 ,  w 3 ,  (0,. 

Norming factor: 18-’12. 
Rootforms # 0: k wi 4 wI ( i  # j ) ,  

-t wi, 

t i w l  f Iw2 I lw3 f Qw4, with independent signs. 
Primitive rootfornis: 

GI: A redundant basis cur, w2,  wJ with w I  + w2 + WJ = 0. 
Norming factor: 12-I’’. 
(w i ,  wi) = I ,  (wi. w,) = - t (i #.i). 
Rootforms # 0: 1. wi ,  wi - wJ 

Primitive rootforms: w I  - WI, -uI. 

w 2  - w,, wJ - w,, wq, :(w1 - w 2  - m3 - w4). 

(i # i). 
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TABLE D 

NUMBER OF ROOTFORMS OF GIVEN POSITIVE ALTITUDE a 

A, : 

BI : 

C, :  

D, : 

E, : 

E, : 

E, : 

F, : 

G* : 

I - a + l  for l < a < I .  
Altitude of the top rootform: I. 

1 of type W, for a < I, 
max (I - a, 0) of type w1 - w,, 

min(r+l] , [T])of typewi+w, 2 / + 1 - a  for a G 2 1 - 1 ;  

2 1 - a +  1 together [T] 
Altitude of the top rootform: 21 - 1 .  

for a <  21- 1 

max(I- a,O) of type w1 - w,, 
I ,  0, respectively, of type 2 ~ ,  for odd, even a i 21 - 1, 

min ([;I, [y] j of type W, i- w, for a s 21 - I ; 

2 1 - a +  1 together for a d -  1 

Altitude of the top rootform: 21 - 1. 

max (I - a, 0) of type w1 - w,, 

min (r+], r-1 j of type w I  + W, for a 2/ - 3 ; 

together for 1 < a <  I -  1, 

21-a -  1 
for I < a < 2 / - 3 .  

Altitude of the top rootform: 21 - 3. 

a =  l ,2,3,4,5,6,7,8,9,10,11,12 
#=6 ,5 ,5 ,5 ,4 ,3 ,3 ,2 , l ,  1, 1 ,  0 

a = 1,2,3,4,5,6,7,8,9,10,1 I ,  12,l3,14,15,l6,  
#=7 ,6 ,6 ,6 ,6 ,5 ,5 ,4 ,4 ,  3, 3, 2, 2, I ,  I ,  I ,  

a =  1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,l8,19,20,2l,22,23 
# = 8,7,7,7,7,7,7,6,6,  6, 6, 5. 5 ,  4, 4, 4, 4, 3 ,  3 ,  2, 2, 2, 2 

a = 24,25,26,27,28,29,30 
# =  1, 1, 1, 1, I ,  I ,  0 

a =  1,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,1O, l l , l2  
# = 4 , 3 , 3 , 3 , 3 , 2 , 2 , l , l ,  1 ,  1, 0 

a =  1,2,3,4,5,6 
# = 2, I ,  I ,  I ,  l,o 
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TABLE E 

DOMINANT ROOTFORMS (THE TOP ONE FIRST) 

3 
En: 2345642 

F,: 23-42, 12-32 

G,:  2 * 3 ,  l e 2  
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TABLE F 

FUNDAMENTAL WEIGHTS 

2 
1 2 3 2 1  

1 3  
= 3'4 5 6 4 2 

1 6  
n4 = 3'4 8 12 10 5 

1 6  

H Z  = 

n5 = 3'5 10 12 8 4 
3 

2 4 6 4 2  Z'6 = 

2 
E7: ni = 1 2 3 4 3 2  

1 3  
H Z  =2'3 4 5 6 4 2 

1 7 
H 3  = 2'3 6 9 12 8 4 

3 

4 
2 4 5 6 4 2  

2 4 6 8 6 3  
1 9 

n6=2'5101518126 

n 7 =  3 6 9 1 2 8 4  

8 4  = 

ns = 

6 
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TABLE F-continued 

3 
2 3 4 5 6 4 2  

2 4 6 8  I 0 7 4  

3 6 8  10 I2 8 4  

3 6 9 1 2 1 5 1 0 5  

4 8  I2 15 18 126 

4 8 12 I6 20 14 7 

5 I0152024168  

6 12 18 24 30 20 10 

5 

6 

8 

9 

10 

12 

15 
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TABLE G 

ISOMORPHISMS AND EQUIVALENCES FOR LOW-RANK SEMISIMPLE LIE ALGEBRAS 
(PARTLY CONVENTIONAL) 

A. = Bo = Co = Do = 0 = class of null algebras. 

DI = class of the one-dimensional Lie algebras. 
nz(Bi) = 2vi(Ai). 
B2 = c2. 
~ri(Bz)  = rdcz). 
nz(B2) = ~ri(Cz). 
DZ = At + Ai. 
~rr(Dz) = ri,i(Ai t AIL 

real quadratic form 

Al = Bi = CI. 

Type of the n3(D2)-invariant: 

+ + + + Dz,o A1.o + A1.a 
+ + + - D2.0.* &.** 
+ + - - D2.3 A1.t + Al.1 

Dz,i AI,O + Ai.1 

quaternion hermitean form 

D3 = Al. 
ni(D3) = nz(A3). 
Type of the v3(D3)-invariant: 

real quadratic form 
+ + + + + + D3.0 A3.0 

+ t + + + - D3,0.* A3,0.* 

+ + + + - - D 3 , 3  A3.2 

+ + + - - D3,3.* A 3 s 2 . *  

quaternion hermitean form 
D3,1 & , I  
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Characters with a meaning that remains constant in some substantial part of the book 

For terms that are not included here, refer to the lists of symbols (0.1 -5) and logograms 
are contained in the present list. 

(0.6). 

A ,  33.3.1, 51.11.1 

A,(G), 76.3-9 
xi', 39.2 
dP(G), "IindG), 77.1.2 
abelian Lie algebra, 12.6 
abelian symmetric space, 64.7.1, 64.10 
adc ,  9.8 
ad-cleaving, 18.3 
ad-closed, 9.12 
ad-nilpotent, 17.1 

regular, 76.4. I 
ad-pure, 18.3 
adjoint (algebra), 9.8 
adjoint (group), 9.6 
Alg Lie. 7.3 

Rea, 7.3 
Corn, 7.3 

A,, A,, 16.1 

Alg Lie Lin, 7.4 
Alg Lie Lin SS, 19.1 
Alg Lie Lin SSS, 19. I 
algebra 

abelian Lie, 12.6 
adjoint, 9.8 
Borel, 68.2 
Clifford, 49.2 
commutator, 12.8 
exceptional Lie, 26.24 
exterior, 77.1 .2 
Lie, 7.3 
linear Lie, 7.4 
maximal solvable Lie, 68.2 
of exterior differential forms, 77.1 
seniisiniple Lie, 13.4, 19.1 
simple Lie, 12.10 
solvable Lie, 13.2 

altimeter, 77.10 
altitude, 54.3.2 
analytic manifold, 5.3, 5.6 
ant icomniu t a t ive, 7.2 
antireal, 57.1 
areal, 57.1 
associative, Jacobi-, 7.2 
associative envelope, 39.2 
Aut, 0.6 
Aut G, 9.2 

Aut W*,  33.2.1 
Aut W++, 33.2.1 
Atit'( W ++), AutC(W ++), 33.3.2-3 
Aut(G, H ) ,  Aut(G, H ) ,  33.9 
Aut(F, J ) ,  66.3 

Aut R, 63.7 
autonietrisni class, 66.3 
autometry group, 63.7 
automorphism, infinitesimal, 9.2 

inner, 9.5, 33.2.1 
minus-, 23.1 

Aut(F, J ;  Jo), 66.3 

PIUS-, 33.1 1 
automorphism classes, 66.3 
automorphisms 

average, left, right, 34.3 

ball, smooth, 8.4 
basis, natural . .. of W*,  25.2.1 
Bctti number, 77.1 
between, 70.20 
boldface type, 7.4 
bond, 7 I. 1.4 
Borel subalgebra, 68.2 
bounded, 36.13 
branch, 16.2, 20.7 

C,  1.11 
C-cell, 74.7 
C-chamber, 74.7 
C-contravalent, 55.2, 56.2 
C-edge, 74.7 
C-graph, 74.1 1 
C-part, 74.7 
C-restriction, 1.1 1 
C-third dressing, 51.5.1 
C-trunk, 24.2 
C( ...), 13.1.3 
C(. . .), 33.4 
C*, 5 I .6, 56.1 
Ck-curve, 2.3, 5.1 
P,  Cm, C"", 5.1 
CA, semi-, 5.1 
C,'-group, 5.5 
C,'-manifold, 5.3. 5.6 

group of (inner) . . . of W*,  33.2.1 

61, B,, 16. I 

539 
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C:-piece, 5.3 
C*-connected, I I .7 
C2-homomorphism, local, 9. I 

local semi-, 9.1 
Cj, Cj, 16.1 
Cci, 54.3.1 
Cncl,  54.3.1 
c n s t ,  54.2 
C,,, 24. I 
Cum, 24.1 
cl (as a subscript), 54.3. I 
X I .  47.2 
Casimir tool, 40.1 
cell, 70.8 

center, 9.5, 12.5 
centerfree Lie algebra, 12.15.1 

group, 12.15.1 
central restriction, 54.3.1 

near, 54.3. I 
central semimorphism, 54.3.1 

near, 54.3.1 
chain, 70.15 

irreducible, 70. I5 
chain of subsets of Z', 72.6 
chamber, 33.4 

c-, 74.7 
dominant, 33.4 

character, 37. I 
character of an  abelian group, 46.2 
Chevalley dressing, 27.3.2 
class function, 37. I 
cleaving, 18. I 

ad-, 18.3 
Clifford algebra, 49.2 
closed local subgroup, 4.10 
cohomology algebra, 77.1 
Com, as a subscript, 1 . 1 ,  1.10 

c-, 74.7 

Gcomr 1.10 
&om* I . I  

commutator, 7.2 

commutator algebra, 12.8 
commutator group 12.8 
Commutator sequence, 13.2 
compact dressing, maximally, 51. I I 

compact (operator), relatively, 36.13 
compact trunk, maximally, 5 I .8 

infinitesimal, 7.2 

minimally, 60.1 7 

minimally, 51.8 

compact, i-, 60.2 
complexextension, 1 . 1 ,  1.10, 10.6 
conducible, 35.3, 36.1 
connected, C2-, 1 I .7 

locally pathwise, 28.8 
locally simply, 28.13 
pathwise, 28.7 
simply, 28.7 

contravalent, 55.2, 56.1, 

corner lattice, 33.14.3 
coset space, 4.8. I ,  12.12 

local, 4. I4 
covariant, 70.9 
curve, 2.3 

C-, 55.2, 56.2 

D, D, 3 I .4 
D, 57.3, 59.2-8 
9 ( G ) .  77, I 
Dj, Dj, 16.1 
Dun, 59.2-8 
6( ..., ... ), 63.4 
D-restriction, 1.6 
derivation, 9.3 

inner, 9.8 
differential metric, 63.4 
dircct product, 12.7 

of homogeneous spaces, 63.1.4 
of Riemannian spaces, 63.5.2 

direct splitting, of W*, W++, 25.5 
o f a  graph, 71.1.4 

direct sum ofgeonictries, 71.1.2, 71.1.6 
directsummandofageometry, 71.1.2,71.1.6 
distance, 63.4 
domain, fundamental, 33.14.1 

dominant, 33.4 
dominant chamber, 33.4 
dot, 71.1.4 
dressing, Chevalley, 27.3.2 

principal, 31.4 

first, 20. I3 
maximally compact, 51.1 1 
minimally compact, 60.17 
ordered, 25.2.8 

for twin type, 51.16 
real ordered, 60.18 
second, 2 I .4 
third, 23.1 

C-, 51.5.1 
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dual of an abelian group, 46.2 
dual of a linear representation, 45.5 

e,, 20.7 
eo, 55.3 
E, 57.2.6 

edge, 70.8 

element, Killing-Coxeter, 77.7 
elliptic symmetric space, 64.10.4 
enchained, 36.1 
End, 2.2 

envelope, associative, 39.2 
equivalent representations, 36.1 
essentially equal, 63.4 
exceptional Lie algebras, 26.24 
exp, 2.2 
exponential, 2.2 
exponential presentation, 8.3 

extending a topology, 4.12 
extension, complex, 1.1, 1.10, 10.6 

~ u n ,  59.2-8 

C-, 14.7 

(End ... )o, 19.19 

generalized, 8.8 

straight, 33.3.1 

F, F*, 31.7 
F, 64.2 

fu, 36.8 
first dressing, 20.13 
first Weyl norming, 21.4 
flag, 70.1 
flat abelian, 12.6 
flat part, 51.8 
flow, 2.6 

stationary, 2.6 
free rootform, 69.23 
fundamental domain, 33.14.1 
fundamental group, 28.7 
fundamental representation, 45.1 
fundamental weight, 45.1 

F4, F,, 26.23 

r(a, b), 70.9 
generalized exponential presentation, 8.8 
generalized polygon, 71.5 
generalized m-gon, 71.5 
geodesic, 63.4 
geodesic latitude, 63.6 
geodesic mapping, 63.4.14 
geometry, incidence, 70.4, 71.1.1 

Tits, 71.2 
gon, generalized m-, 71.5 
grad, 5.1 
gradient, 5.1 
graph, 25.3, 71.1.4 

c-, 74.1 1 
group, adjoint, 9.8 

c:-, 5.5 
commutator, 12.8 
complex linear Lie, 6.1 
flat abelian, 12.6 
fundamental, 28.7 
irreducible linear, 13.5 
kaleidoscope, 33.2.1 
linear Lie, 6.1 
local linear Lie, 6.1 
locally simple linear Lie, 12.10 
of inner automorphisms of W*, 33.2.1 
real linear Lie, 6.1 
reducible linear, 13.5 
semisimple linear Lie, 13.4 
simple linear Lie, 12.10 
solvable, 13.2 
stability, 4.8.3, 63.1.1 
topological, 4.1 
torus, 12.6 

Gru CIS LOC Lin, I I .  I 
Gru Lie Lin, 6.1 
Gru Lie Lin SS, 19. I 
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Gru Lie Lin SSS, 19.1 
Gru Lie LOC Lin, 6. I 
Gru Top, 4.1 

H, H,  16.2-5, 17.6,20.1, 31.1 
Hc, Hc, 5 I .5.4 
HC.he,  HC.hc,  HC.hc.Comr Hc*.hc ,  HC*.hc . com.  

Hc.un. Hc.u.9 Hc.un.com, H,* ,un,  Hc*,un.com 

Hhcr Hher 51.5.2 
Hst, Hs,, 24.2, 21.2 
ffun? Hun, 24.2 

51.5.7 

51.5.7 

H*, 20.10 
inner product on, 21.1.7 
integral elements of, 41.4 

HZ,, 41.4 
H$, 21.2 

minimal partial order on, 25.2.2 
partial order on, 25.2.2 
total order on, 25.2.2 

h,, 20.13 
Haar measure, 34.2 
he (as a subscript), 51.5.2 
he-nil-rootform, 60.7 
he-regular, 60.6 
he-semiregular, 60.8 
he-trunk, 60.1 
he’, 60 
hef-triple, 76.2 
hermitean, 51.5.2 
hermitean part, 51.8 
homogeneous space, 63.1. I 

reduced, 63.1.7 
homomorphism, local, 9.1 

local C*-, 9.1 
local semi-C*-, 9.1 

honiotopic, 28.2 
hyperbolic symmetric space, 64.10.4 

i-compact, 60.2 
ideal, 12.4 
incidence geometry, 70.4,7 I . I .  1 

incident, 70.1, 70.6, 71.1.1, 74.3, 74.9 
infinitesimal algebra, 7.2 
infinitesimal automorphism, 9.2 
infinitesimal commutator, -7.2 
infinitesimal element, 7.1 
infinitesimal measure, 5.4 

on a graph, 71.1.5, 74.3 

infinitesimal rotation, 7.6 
infinitesimally invariant, 14.1 
inner automorphism. 9.5 
inner class, 30.4 
inner derivation, 9.8 
inner isotypic, 51.2 
inner product on H*, 21.1.7 
inner product on @, 36.7 
inner type, 51.1 7 

Int C, 9.5 
Int G, 9.9 
Int (G, H ) ,  Int(C, H ) ,  33.9 
Int(G, X), 68.1-14 
Int R, 64.1.1 
IntOR, 64.1.2 
Int W*, 33.2.1 
Int mod W*, 33.14.4 
Int’ mod W*, 33.14.5 
integral elements of H*, 41.4 
invariant function, 14.1 
invariant, infinitesimally, 14.1 
involutory, 64.2, fn 
irreducible, 13.5, 36.1 
irreducible chain, 70.15 
isometry, 63.7 
isomorphy of chains, 72.6 
isotropic, totally, 70.2 
isotypic, 51.2 

J, 64.2 
f ,  39.2 
J ( x ) ,  70.13 
Jacobi-associative, 7.2 

of symmetric space, 64.10.4 

k, 10.2 
k, k, ,  77.1.5, 77.5 
kaleidoscope group, 33.2.1, 33.16 
Killing form, 14.4 
Killing-Coxeter element, 77.7 
Killing-Coxeter tool, 77.2 
Kronecker product of representations, 45.2 

pa, 34.3 
Ire, I ‘ ,  60. I4 

ladder, 20.5, 20.8.41.2 
ladder length, 41.2 
latitude, geodesic, 63.6 
lattice, corner, 33.14.3 

A, A,, A,,46.3, 62.1 
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length, ladder, 41.2 
Lie algebra, 7.3 

abelian, 12.6 
exceptional, 26.24 
linear, 7.4 
semisimple, 13.4, 19. I 
simple, 12.10 
solvable, 13.2 

Lie group, linear, 6. I 
local linear, 6.1 
locally simple linear, 12.10 
semisimple linear, 13.4 
simple linear, 12.10 

local, 12.1 
Lie subgroup, 12. I 

limited representation, 42.3 
linear Lie group, 6.1 
linear wrapping, universal, 62.9 
local coset space, 4.14 
local C*-homomorphism, 9.1 
local homomorphism, 9.1 
local linear Lie group, 6.1 
local presentation, 5.3, 5.6.4 
local semi-C2-homomorphism, 9.1 
local subgroup, 4.10, 

closed, 4.10 
normal, 12.4 

locally identical, 4.9 
locally pathwise connected, 28.8 
locally simple, 12.10 
locally simply connected, 28.13 
logarithm, 2.2 

M, 23.1 
JH, 34.3 
-An, 39.5 
M I ,  69.6 
M u ,  69.6 
manifold, C:-, 5.3, 5.6 
maximal solvable subalgebra, 68.2 
maximal symmetric space, 65.1 
maximally compact dressing, 51.11 
maximally compact t runk,  5 I .8 
measure, Haar, 34.2 

infinitesimal, 5.4 
natural, 37.5. I 

metric, differential, 63.4 
minimal partial order on H:,  25.2.2 
minimal symmetric space 65.1 
minimally compact dressing, 60.17 

minimally compact trunk, 51.8 
minus-automorphism, 23.1 
mod, 70.16,71.1.3, 71.1.7 
monomial, 39.3 
multiplicity of a weight, 41.1 

N, 64.2 
N,, 20.13 
N,.p, 20.13 
ncl (as a subscript), 54.3.1 
nst (as a subscript), 54.2 
natural basis of W*, 25.2.1 
natural measure, 37.5.1 
near central restriction, 54.3.1 
near central semimorphism, 54.3.1 
near standard restriction, 54.2 
near standard semimorphism, 54.2 
nilpotent, 17.1 

ad-, 17.1 
node, 16.2, 17.15 
normal local subgroup, 12.4 
norming, Chevalley, 27.3 

first Weyl, 21.4 
second Weyl, 23. I 

nullify, 15.4, 15.6 

w ,  77.3 
w,, 16.1-5 
orbit, 77.2 
order on HZ, 25.2.8 

minimal partial, 25.2.2 
partial, 25.2.2 
total, 25.2.2 

ordered . . . dressing, 25.2.8 
ordered third dressing for twin type, 51.16 
orderly, 39.3 
orthoplement, 0.4 
osc, 34.3 
outer type, 51.57 

of symmetric space, 64.10.4 
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ql, 77.5 
@, QP, 28.7 
@, 34.3 
@ j . Y ,  @,, 36.8 
$, 14.4 
$so $un, 24.2 
$c, 24.2 
II, II(p), I I C ,  70.6.1, 74.4 
n( ..., ...), 70.10 
parabolic subalgebra, 68.7.1, 74.1 
part, C- of Hh:, 74.7 

hermitean, 51.8 
of H:, 70.8 
standard, 5 I .8 
torus, 5 1.8 

minimal, 25.2.2 
partial order on HZ, 25.2.2 

path, 28.1 
pathwise connected, 28.7 

locally, 28.8 
piece, C,"-, 5.3 
polygon, generalized, 71.5 
plus-automorphism, 33.1 I 
Poincare series, 77.1 
presentation, exponential, 8.3 

generalized exponential, 8.8 
of a C,*-piece, 5.3 

presentation, local, 5.3, 5.6.4 
primitive rootforms, 25.2.2 
principal domain, 31.4 
product, direct, 12.7 

of homogeneous spaces, 63.1.4 
of Riemannian spaces, 63.4 
inner,, .on H*, 21 . I  .7 

product, Kronecker, 45.2 
in @, 36.7 

metric, 63.5.2 
tensor.. .of representations, 45.2 

projection, 28.9 
pure, 18.1 

ad-, 18.3 

Q, 37.3,47.4 
Qio, 0.6 
q, 77.4 
q, 77.19 

R, 64.1.1 
R#, 70.1 
w,, 34.3 
w(C) ,  w(a(G)), 77.1 
r, 77.1.8, 77.19 

TO, 55.3 
rad, 13.3 
radical, 13.3 
rank, 15.3, 15.6 

real, 60.14 
of the pair A, p E 11, 72.2 

real, virtually, 55.4 
real ordered dressing, 60.18 
real rank, 60.14 
real restriction, 1.6, I .  I I, 6.1 
reduced homogeneous space, 63.1.7 
reducible, 13.5, 36.1 
reflection, 20.10,21.3,64.1.1 
regular, 15.4 

he-, 60.6 
he-semi-, 60.8 

regular, 77.7 
regular ad-nilpotent, 76.4.1 
regular A,-subalgebra, 76.4. I 
relatively compact operator, 36.13 
representation, 4.8.3 

areal, 57.1 
antireal, 57.1 
contravalent, 55.2 
fundamental, 45.1 
limited, 42.3 
linear, 36.1 
self-contravalent, 55.2 
universal, 36.7 

representations, Kronecker product of, 45.2 
tensor product of, 45.2 

restriction, C-, I . I  I 
central, 54.3.1 

near central, 54.3.1 
near standard, 54.2 
real, 1.6, 1.11,  6.1 
standard, 24.2 
unitary, 24.2 

D-, 1.6 

Riemannian space, 63.4 
root, 15.1 
rootform, 16.2, 17.13.1 

free, 69.23 
he-nil-, 60.7 
primitive, 25.2.2 
top, 25.6 

rotation, infinitesimal, 7.6 

sp, 64.1.1 
S,, 20.10, 21.3, 33.1 
S,,,, 33.14.5 
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9, Y,, 39.5 
sgsa-relation, i 2. I 
st (as a subscript), 21.2, 24.2 
?;, 66.4 
IT, 63.4.14 
Sya, Sye, Syh, 64.10.4 
Syenia, Syemi, 65. I 
Syhma, Syhmi, 65.1 
Synia, Symi, 65.1 
second dressing, 21.4 
second Weyl norniing, 23. I 
self-contravalent, 55.2, 56.2 
semi-C*, 5.1 
semilinear, 1.2 
semimorphism, 1 . I  I 

central, 54.3.1 
near central, 54.3.1 
near standard, 54.2 
standard, 24.2 
unitary, 24.2 

semiregular, he-, 60.8 
semisimple, 13.4 
semisimple symmetric space, 64.7.1 
sequence, commutator, 13.2 
sheet, 28.8 
signature of a real seniisiniple Lie algebra, 

simple ‘G, T1, 64.5 
simple Lie group, 12.10 , 

simple symmetric space, 64.7.1 
simply connected, 28.7 

locally, 28.13 
skew functions, 47.3 

elementary, 47.3 
smooth ball, 8.4 
solvable group, 13.2 
solvable subalgebra, maximal, 68.2 
sort, 70.4, 74.3 
source, 42.1 
space, coset, 4.8.1, 12.12 

local, 4.14 
homogeneous, 63. I .  I 

reduced, 63.1.7 
quotient,4.8.1,4.14, 12.2 
Riemannian, 63.4 
symmetric, 64.1.2 

abelian, 64.7.1, 64.10 
elliptic, 64.10.4 
hyperbolic, 64.10.4 

24.2 

locally, 12.10 

space, symmetric-Conr. 
inner, 64.10.4 
maximal, 65.1 
minimal, 65. I 
outer, 64.10.4 
semisimple, 64.7. I 
simple, 64.7.1 
twin, 64.10.4 

tangent, 5. I 
weight, 41.1 

spin representations, 49 
splitting of W*, W++,  direct, 25.5 
stability group, 4.8.3, 63.1.1 
standard part, 51.8 
standard restriction, 24.2 

standard semimorphism, 24.2 

standard trunk, 21.2, 24.2 
stationary flow, 2.6 
straight extension, 33.3.1 
stretching, 28.14 
strong structure of w*, 22.1 
subalgebra, Borel, 68.2 

near, 54.2 

near, 54.2 

maximal solvable, 68.2 
parabolic, 68.7.1, 74.1 

subgroup, closed local, 4.10 
local, 4.10 
normal local, 12.4 
Lie, 12.1 
local Lie, 12.1 

sum, direct ... of geometries, 71.1.2, 71.1.6 
symmetric space, 64.1.2 

abelian, 64.7.1, 64.10 
elliptic, 64.10.4 
hyperbolic, 64.10.4 
inner, 64.10.4 
maximal, 65.1 
minimal, 65.1 
outer, 64.10.4 
seniishiple, 64.7.1 
simple, 64.7.1 
twin. 64.10.4 

T, 64.2 
T, 77.2 
t ,  17.7 
8, 8,, 47.3 
e,, 37.3,47.s.i 
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to, 55.5.1 
tangent vector, 2.3 
tangent space, 5.1 
tensor product of representations, 45.2 
third dressing, 23.1 

C-, 51.5.1 
ordered . . . for twin type, 51.16 

Tits geometry, 71.2 
tool, Casimir, 40.1 

Killing-Coxeter, 77.2 
Weyl, 41.7 

top rootform, 25.6 
top weight, 42.2 
topological group, 4.1 
topology, extending a,  4.12 
torus group, 12.6 
torus part, 51.8 
total order on H:, 25.2.2 
totally isotropic, 70.2 
transitive, 4.8.3 
trunk, 16.2, 17.6,24.2,31.1 

C-, 24.2 
he-, 60. I 
maximally compact, 51.8 
niininially compact, 51.8 
ordered, 25.2.8 
standard, 21.1, 24.2 
unitary, 24.2 

twin (type) symmetric space, 64.10.4 
twin type, 51.3, 51.17 
twinning, 1.9, I . I  I 
type, inner, 51.17 

outer, 51.17 
twin, 51.17 

u, 77.10 
un (as a subscript), 24.2 
unitary restriction, 24.2 
unitary seminiorphism, 24.2 
unitary trunk, 24.2 
universal representation, 36.7 
universal wrapping, 28.8 
universal linear wrapping, 62.9 

vector, weight, 41.1 
virtually real, 55.4.1 

W, W(G, H), 17.13.1 
w*, 22.1 
W ,  W A ~ ,  28.1 
W ,  wC, 70.6. I ,  74.4 
m, 55.5.1 

w*, 22.1 
Aut, 33.2.1 
Int, 33.2.1 
direct splitting of, 25.5 
group of automorphisms of, 33.2.1 
group of inner automorphisms of, 33.2.1 
natural basis of, 25.2.1 
strong structure of, 22.1 
weak structure of, 22.1 

W+, W - ,  25.2.2 
W++, 25.2.2 

Aut, 33.2.1 
waiving, 1.8, 1.11, 6.1 
weak structure of W*, 22.1 
weight, 41.1 

fundamental, 45.1 
top, 42.2 

weight space, 4 1.1 
weight vector, 41.1 
weight vectors, ladder of, 41.2 
weights, ladder of, 41.2 
Weyl norming, first, 21.4 

second, 23.1 
Weyl tool, 41.7 
wrapping, 28.17 

universal, 28.8 
universal linear, 62.9 

su, 77.3 

z, 40.1 

l, 21.1.5 
Z,, Z p ,  46.4, 62.6.2 

Y, 0.2 
.Z, 9.5, 9.6 
.?, 9.8 
*, 38 
fi, 4.12, 28.8 
0, 28.1 
@, 45.2 
m, 46.4, 62.6 
boldface type, 7.4 
t y p e  Lj,  L j , * ,  L**, 51.17 

L,, LA*, L**, 51.17 
(...,... ), 21.1.7, 59.2, 59.5.2 
< ...,... >, 59.1 
[ . . . I ,  0.4, 2.1 
Il...ll, 36.13 
[ ...,... 1, 72, 7.3 
[ . . . , . . . I ,  72.2 
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