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Abstract. Given a hyperbolic knot K we use the torsion corresponding to the
discrete and faithful SL(2,C)–representation to define a knot invariant TK(t) ∈
C[t±1] with no indeterminacy. We study the basic properties of the invariant TK(t).
In particular we show that it is always non-zero and we show that it gives lower
bounds on the knot genus, fibering obstructions and amphichirality obstructions.
We will furthermore show that TK detects the knot genus, fiberedness and the
chirality of all hyperbolic knots with up to twelve crossings.

1. Introduction

1.1. Definition of hyperbolic torsion and basic properties. Let K ⊂ S3 be an
oriented hyperbolic knot. The hyperbolic structure gives rise to a discrete and faithful
representation π1(S3\νK)→ PSL(2,C) which is unique up to an inner automorphism
of PSL(2,C) and up to complex conjugation, furthermore this representations lifts
to a representation πK → SL(2,C). (We refer to Section 3 for details). By fixing
one type of lift and by normalizing the corresponding torsion invariant we obtain a
well-defined invariant TK(t) with no indeterminacy, which a priori lies in C(t

1
2 ). We

refer to TK(t) as the hyperbolic torsion of K. The invariant TK(t) has the following
properties:

Theorem 1.1. Let K be an oriented hyperbolic knot K. Then TK(t) has the following
properties:

(1) TK(t) lies in C[t±1],
(2) TK(ξ) is non-zero for any root of unity ξ, in particular TK(1) and TK(−1) are

non-zero,
(3) TK(t) = TK(t−1),
(4) TK(t) is independent of the orientation of K,

(5) if K∗ denotes the mirror image of K, then TK∗(t) = TK(t),
(6) if K is amphichiral, i.e. if K = K∗, then TK(t) is a real polynomial, i.e.

TK(t) ∈ R[t±
1
2 ].

Remark. The hyperbolic torsion is surprisingly little studied. To our knowledge TK(t)
has so far only been studied for twist knots by Morifuji [Mo08], and in a slightly
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different setup, it has been studied for 2-bridge knots by Hirasawa and Murasugi
[HM08] and Silver and Williams [SW09d]. A related invariant, namely the torsion of
hyperbolic 3-manifolds corresponding to the adjoint representation, has been studied
in detail by Dubois and Yamaguchi [DY09].

Remark. The torsion of hyperbolic manifolds corresponding to the discrete and faith-
ful representation (i.e. the invariant TK(1) in our notation) has been studied by
Menal–Ferrer and Porti [MP09]. In particular Theorem 1.1 (2) follows in a straight-
forward way from their work. The invariant TK(1) is an interesting invariant in its
own right. It is conjectured that TK(1), like the hyperbolic volume, is invariant un-
der mutation.1 Note though that the invariant TK(1) is not related to the volume.
For example using a variation on [Po97, Théorème 4.17] one can show ([Po09]) that
there exists a sequence of knots Kn such that the volumes converge to a positive real
number, whereas the numbers TKn(1) converge to zero.

1.2. Topological information contained in TK(t): Fiberedness and genus.
Let K ⊂ S3 be a knot. We say that K is fibered if there exists a fibration S3 \
νK → S1. The genus of the knot K is defined to be the minimal genus among all
Seifert surfaces of K. The genus of K will be denoted by genus(K). We also write
x(K) = 2genus(K)− 1 and refer to it as the complexity of K.

Given p(t) = akt
k + · · · + alt

l ∈ C[t±1] with ak, al 6= 0 we say that p(t) is monic if
ak = 1 and al = 1. Furthermore, the degree of p(t) is defined to be deg(p(t)) = l− k.
We also define the degree of the zero polynomial to be zero. The following theorem is
an immediate consequence of the work of Goda, Kitano and Morifuji [GKM05] (see
also Cha [Ch03], Kitano and Morifuji [KM05], Pajitnov [Paj07], Kitayama [Kiy08],
[FK06] and [FV09a, Theorem 6.2]).

Theorem 1.2. Let K ⊂ S3 be a hyperbolic knot. If K is fibered, then TK(t) is monic
and

x(K) =
1

2
deg(TK(t))

holds.

The following is an immediate consequence of the definitions and of [FK06, Theo-
rem 1.1].

Theorem 1.3. Let K ⊂ S3 be a hyperbolic knot. Then

x(K) ≥ 1

2
deg(TK(t))

1[S] I am not quite sure what the status for this is. The invariants TK(±1) should be mutation
invariant and Porti and Dubois should be able to prove it. But as of Dec 14th they have not proved
it.
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The calculations in [Ch03], [GKM05] and [FK06] gave evidence that twisted torsions
corresponding to more general representations are very successful at detecting non–
fibered manifolds and at detecting the genus of a knot. In fact in [FV08b] (see also
[FV08a, FV07a, FV09a, FV09b]) it was shown that twisted torsion corresponding to
regular representations coming from epimorphisms onto finite groups detect whether
a knot is fibered or not. It is not known though whether twisted torsion always detects
genus of a knot.

Instead of considering many different representations as in the earlier papers we
now focus on one, canonical representation. We propose the following, possibly rather
optimistic conjectures.

Conjecture 1.4. Let K ⊂ S3 be a hyperbolic knot. If TK(t) is monic and if

x(K) =
1

2
deg(TK(t))

holds, then K is fibered.

Conjecture 1.5. Let K ⊂ S3 be a hyperbolic knot. Then

x(K) =
1

2
deg(TK(t)).

Note that Conjectures 1.4 and 1.5 combined give the conjecture that a knot K is
fibered if and only if TK(t) is monic. For a knot with at most twelve crossings we use
SnapPea to determine the canonical representation α : π1(XK) → SL(2,C) up to a
small error. Using Fox calculus (see Section 4) we then compute TK(t) up to about
10 digits for all knots in this range. Our calculations show that Conjectures 1.4 and
1.5 hold for all knots with up to twelve crossings. We refer to Section 6 for details.

In Section 5 we show that twisted torsion defines a C[t±1]-valued function on the
character variety of the knot exterior. We will show that the set of characters for
which the corresponding torsion detects the knot genus is a Zariski open set and that
the set of characters for which the corresponding torsion is monic is Zariski closed.

1.3. Topological information contained in TK(t): Chirality and mutation.
In Theorem 1.1 we showed that if K is an amphichiral knot, then TK(t) is a real
polynomial. This turns out to be a rather good way to detect chirality. In fact we
show, that if K is a hyperbolic knot with thirteen crossings or less, then K is chiral
if and only if the imaginary part of TK(t) is zero.

Hyperbolic invariants often do not detect mutation. For example Ruberman [Ru87]
showed that the hyperbolic volume is unchanged under mutation. It is also known that
the invariant trace field is unchanged under mutation ([MR03, Corollary 5.6.2]). Also
note that the birationality type of the component of the character variety containing
the discrete and faithful representation is unchanged under mutation (see [CL96],
[Ti00, Ti04]). We conjecture that TK(1) and TK(−1) also do not detect mutation.
We again refer to Section 6 for details.
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1.4. Examples: The Conway knot and the Kinoshita-Terasaka knot. Per-
haps the most famous pair of knots are the Conway knot 11401 and the Kinoshita-
Terasaka knot 11409. These two knots are (positive) mutants with Alexander polyno-
mial one. The genus of the Conway knot 11401 is equal to three and the genus of the
Kinoshita-Terasaka knot 11409 is equal to two.

For the Conway knot we calculate that TK401(t) equals approximately

(4.8952− 0.0992i)t5 +(−15.6857+ 0.2976i)t4 +(23.1036+ 0.0784i)t3

+(−26.9416− 4.8451i)t2 +(38.3835+ 24.4943i)t +(−43.3240− 44.0806i)
+(38.3835+ 24.4943i)t−1 +(−26.9416− 4.8451i)t−2 +(23.1036+ 0.0784i)t−3

+(−15.6857+ 0.2976i)t−4 +(4.8952− 0.0992i)t−5.

For the Kinoshita–Terasaka knot we calculate TK409(t) equals approximately

(4.4179+ 0.3760i)t3 +(−22.9416− 4.8451i)t2 +(61.9644+ 24.0974i)t
+(−82.6954− 43.4854i)+(61.9644+ 24.0974i)t−1 +(−22.9416− 4.8451i)t−2

+(4.4179+ 0.3760i)t−3.

Note that Conjectures 1.4 and 1.5 hold for both knots. Also note that the polynomials
are not real, reflecting the fact that the knots are chiral. Finally note that the
polynomials are different, which implies that TK(t) is not invariant under mutation.

Remark. It is interesting to study the evaluations of TK(t). We calculate

TK401(1) ≈ TK409(1) ≈ 4.186003− 4.228629i
TK401(−1) ≈ TK409(−1) ≈ 261.3432 + 102.1226i.

This calculation reflects our conjecture that the invariants TK(1) and TK(−1) are
unchanged under mutation. On the other hand we have

TK401(i) ≈ 33.7952− 20.8122i
TK401(i) ≈ −33.7952 + 36.8122i.

This suggests that the evaluation of TK(ξ) is not a mutation invariant if ξ 6= ±1.

1.5. Final remarks and open problems.

Remark. (1) Let K be a hyperbolic knot and denote by α : π1(XK)→ PSL(2,C)
the canonical representation. We can also consider the adjoint representation

αadj : π1(XK) → Aut(sl(2,C))
g 7→ A 7→ α(g)Aα−1

associated to α. It is well-known that this representation is also faithful and
irreducible. The corresponding twisted torsion was studied by Dubois and
Yamaguchi [DY09], partly building on work of Porti [Po97]. We refer to
Section 6.4 for a few calculations.
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(2) If K is a knot in S3 such that the complement is a graph manifold, then K
is an iterated torus knot and it is well known that K is fibered. This is not
true in more general set ups. For example there exists a knot K in an integral
homology sphere Y such that Y \ νK is a graph manifold with the following
property: the ordinary Alexander polynomial is monic and its degree equals
twice the genus, but the knot is not fibered.

(3) For simplicity we restrict ourselves in this paper to the study of knots. We
expect that many of the results and conjectures are similarly valid for 3-
manifolds in general. For 3-manifolds the appropriate question is whether
twisted torsion detects the Thurston norm and fibered classes (cf. [FK06,
FK08] and [FV08b] for more details).

(4) Let K be a knot and α a faithful representation. It is an open question whether
the twisted invariant τ(K,α) is necessarily non–trivial, i.e. not equal to ±1
up to the indeterminacy. We refer to [Su04] and [SW09c] for more on twisted
Alexander polynomials of groups in general and faithful representations.

We conclude this paper with a few questions and open problems:

(1) Does the invariant TK(t) contain information about symmetries of the knot
besides information on chirality?

(2) Does there exist a hyperbolic knot such that TK(1) = 1?
(3) Does there exist a hyperbolic knot such that TK(t) = 1?
(4) Show that the invariants TK(1) and TK(−1) are invariant under mutation.
(5) Do we always have |TK(−1)| > |TK(1)|? 2

(6) Give examples of hyperbolic knots K1 and K2 such that TK1(t) = TK2(t). Can
such examples be found among fibered hyperbolic knots?

(7) Let K be an amphichiral hyperbolic knot. Then TK(t) is a real polynomial.
Is the top coefficient of TK(t) always positive? Is it always at least one?

(8) If K is slice, does TK(t) factor as f(t) · f(t−1)? very unlikely!
(9) If K1 and K2 are two knots such that there exists an epimorphism π1(S3 \

K1) → π1(S3 \K2). Does it follow that TK1(t) divides TK2(t)? Also unlikely,
but worth checking (cf. [KSW05] and [KS05]).

Acknowledgments. We would like to thank Jérôme Dubois, Vladimir Markovic,
Jinsung Park, Joan Porti, Dan Silver, Alexander Stoimenow, Susan Williams and
Alexandru Zaharescu for interesting conversations and helpful suggestions. We are
particularly grateful to Joan Porti for sharing his expertise and an early draft of
[MP09] with us.

2. Twisted invariants of 3–manifolds

2.1. Twisted homology groups and twisted torsion. Let X be a topological
space. We write π = π1(X). Let α : π → Aut(V ) be a representation where V is

2[S] That’s a new question
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a module over a ring R. We can thus view V as a left Z[π]–module. We sometimes
write Vα to indicate which action on V we consider.

Denote by X̃ the universal cover of X. The chain complex C∗(X̃) is a left Z[π]–
module via deck transformations. We can now consider the twisted cochain complex

C∗α(X;V ) := C∗(HomZ[π](X̃), V ),

we denote its homology groups by H∗α(X;V ). Using the natural involution g 7→ g−1

on the group ring Z[π], we can also view C∗(X̃) as a right Z[π]–module. We now
obtain the twisted chain complex

Cα
∗ (X;V ) := C∗(X̃)⊗Z[π] V,

and we denote its homology groups by Hα
∗ (X;V ). When α is understood we will drop

it from the notation.
In the following we say that two representations α : π → Aut(V ) and β : π →

Aut(W ) are equivalent if there exists an isomorphism Ψ : V → W such that α(g) =
Ψ−1 ◦ β(g) ◦ Ψ for any g ∈ π. It is well-known that the twisted cohomology and
homology groups only depend on the equivalence class of α.

Now let X be a finite CW complex and let α : π1(X)→ Aut(V ) be a representation
where V is a vector space over a field F. We denote by σi1, . . . , σiki the set of i-cells
(note that we picked a random ordering of the cells). For each cell σij we then pick a

lift σ̃ij to X̃. This endows the free Z[π]–module chain complex C∗(X̃) with an ordered
basis B. We now consider the twisted cellular chain complex

C∗(X̃)⊗Z[π] V.

Let v1, . . . , vn be any basis of V . We endow Ci(X̃)⊗Z[π] V with the ordered basis

{σ̃i1 ⊗ v1, . . . , σ̃iki ⊗ v1, . . . , σ̃i1 ⊗ vn, . . . , σ̃iki ⊗ vn}.

If this complex is not acyclic, i.e. if Hα
∗ (X; Fn) 6= 0, then we define τ(X,α,B) := 0.

Otherwise we denote by τ(X,α,B) ∈ F× := F \ {0} the torsion of this based F–
complex. We will not recall the definition of torsion, we refer instead to the many
excellent expositions, e.g. [Mi66], [Tu01, Tu02] and [Nic03]. Finally we define
τ(X,α) := τ(X,α,B). We summarize the key properties of τ(X,α,B) and τ(X,α) in
the following lemma:

Lemma 2.1. (1) The invariant τ(X,α,B) ∈ F is well-defined, i.e. independent
of the choice of the basis for V .

(2) The invariant τ(X,α) ∈ F is well–defined up to multiplication by an element
of the form εd where d ∈ det(α(π)) and ε ∈ {−1, 1}. If dim(V ) is even, then
ε = 1.

(3) The invariants τ(X,α,B) and τ(X,α) depend only on the equivalence class of
α.
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Proof. The first and the last statements can be easily verified. Now let B,B′ be bases

of C∗(X̃) corresponding to two different orderings and lifts of cells. If B′ is obtained
from B by switching the order of two cells, then it follows easily from the definitions
that

τ(X,α,B′) = (−1)dim(V )τ(X,α,B).

Furthermore, if B′ is obtained from B by acting by g ∈ π1(X) on a lift of a k-cell,
then

τ(X,α,B′) = det(α(g))(−1)kτ(X,α,B).

The second statement is now an immediate consequence of these observations, since
any two B,B′ are related by a sequence of the above moves. �

Now suppose that M is a 3-manifold with empty or toroidal boundary and let
α : π1(M) → Aut(V ) be a representation where V is a vector space over a field F.
We equip M with the structure of a finite CW complex X and we define τ(M,α) =
τ(X,α). Note that τ(M,α) is independent of the choice of the underlying CW com-
plex by Chapman’s theorem [Chp74].

2.2. Twisted torsion of a knot. Let K ⊂ S3 be an oriented knot. Throughout the
paper we write XK = S3 \ νK, πK = π1(XK) and we denote by φK : πK → Z the
homomorphism given by sending the oriented meridian to one. We will drop K from
the notation if the knot is understood from the context.

Let α : π → GL(n,R) be a representation over a commutative domain R. We can
now define a left Z[π]–module structure on Rn ⊗R R[t±1] =: R[t±1]n via α ⊗ φ as
follows:

g · (v ⊗ p) := (α(g) · v)⊗ (φ(g) · p) = (α(g) · v)⊗ (tφ(g)p)

where g ∈ π1(X), v ⊗ p ∈ Rn ⊗R R[t±1] = R[t±1]n. Put differently, we get a represen-
tation α⊗φ : π → GL(n,R[t±1]). We denote by Q(t) the quotient field of R[t±1]. The
representation α⊗φ allows us to view R[t±1]n and Q(t)n as left Z[π]–modules. By Sec-
tion 2.1 we can now consider the torsion invariant τ(XK , α⊗ φ) ∈ Q(t). Throughout
the paper we will often write τ(K,α) = τ(XK , α⊗ φ).

Remark. The study of twisted polynomial invariants of knots was introduced by Lin
[Li01]. It follows from the work of Kitano [Ki96] that our invariant τ(XK , α ⊗ φ) is
equivalent to Wada’s invariant (see [Wa94]) and closely related to Lin’s invariant. We
refer to [FV09a] for more on twisted invariants of knots and 3-manifolds.

Note that given g ∈ π we have det((α ⊗ φ)(g)) = tnφ(g) det(α(g)). The following
lemma is now a reformulation of Lemma 2.1 in our context.

Lemma 2.2. Given an oriented knot K ⊂ S3 and an n-dimensional representation
α the invariant τ(K,α) ∈ Q(t) is well–defined up to multiplication by an element of
the form εdtkn where d ∈ det(α(π)) and k ∈ Z. If n is even, then ε = 1. Finally
τ(K,α) depends only on the equivalence class of α.
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2.3. Twisted 0–th Alexander polynomials and non–trivial representations.
The twisted torsion of a knot is by definition a rational function. It is well–known
though that the twisted torsion of a knot is in fact often a polynomial, provided the
representation α is ‘sufficiently non-trivial’. We refer to [Wa94, Proposition 8] or
[KM05, Theorem 1.1] for examples of such results. The following theorem seems to
be one of the most general results of this type:

Theorem 2.3. Let K be a non-trivial oriented knot. Let α : πK → GL(n,F) be
an irreducible representation over a field F which is non–trivial when restricted to
Ker(φK). Then τ(K,α) ∈ F(t) is a polynomial, i.e. it lies in F[t±1].

The proof of this theorem will require the remainder of this section. We find it
convenient to rephrase the theorem in the language of twisted Alexander polyno-
mials, the definition of which we now recall. Let X be a topological space, φ ∈
H1(X; Z) = Hom(π1(X),Z) non-trivial and α : π1(X) → GL(n,R) a representation
over a Noetherian UFD R. Recall that we can now define a tensor representation
α ⊗ φ : π1(X) → GL(n,R[t±1]). We obtain a twisted module Hα⊗φ

i (X;R[t±1]n) over
the ring R[t±1]. Note that R[t±1] is a Noetherian UFD and that Hα

i (X;R[t±1]n) is
therefore a finitely generated module over R[t±1]. We now denote by ∆α

X,φ,i ∈ R[t±1]

the order of Hα⊗φ
i (X;R[t±1]n) and refer to it as the i–th twisted Alexander polynomial

of (X,φ, α). We refer to [Tu01] or [FV09a, Section 2] for the precise definitions. Note
that the twisted Alexander polynomials are well–defined up to multiplication by a
unit in the ring R[t±1].

We adopt the following naming conventions. If π is finitely presented group, then
we define ∆α

π,φ,i = ∆α
K(π,1),φ,i. If K is an oriented knot in S3, then we write ∆α

K,i =
∆α
XK ,φK ,i

.
Twisted torsion and twisted Alexander polynomials are closely related invariants

as the following well–known proposition shows:

Proposition 2.4. [KL99] [Tu01, Theorem 4.7] Let K ⊂ S3 be an oriented knot and
let α : πK → GL(n,R) be a representation where R is a Noetherian UFD. Then
∆α
K,φ,0 6= 0 and

τ(XK , α⊗ φ) =
∆α
K,φ,1

∆α
K,φ,0

∈ R[t±1]

up to multiplication by a unit in R[t±1].

Our main technical result of this section is now the following lemma, which we
phrased in a slightly more general language than strictly necessary, hoping that the
lemma will be of independent interest.

Lemma 2.5. Let X be a topological space. We write π = π1(X). Suppose φ : π → Z
is a non-trivial homomorphism such that Ker(φ) is non–trivial and let α : π →
GL(n,F) be an irreducible representation over a field F which is non–trivial when
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restricted to Ker(φ). Then
∆α
X,φ,0 = 1 ∈ F[t±1].

Note that Theorem 2.3 is now an immediate consequence of Proposition 2.4 and
Lemma 2.5.

Proof of Lemma 2.5. Suppose that α : π → GL(n,F) is a representation over a field
F which is non–trivial when restricted to Ker(φ) and such that ∆α

X,φ,0 6= 1 ∈ F[t±1].
We will show that α is not irreducible. We write Γ = Ker(φ) and we pick µ ∈ π with
φ(µ) = 1. We denote by α ⊗ φ : π → Aut(Fn[t±1]) the tensor representation. First

recall that ∆α
K,0 = 1 if and only if Hα⊗φ

0 (π; Fn[t±1]) = 0 (cf. e.g. [FK06, Lemma 2.2]).
Also recall (cf. [HS97, Section VI]) that

Hα⊗φ
0 (π; Fn[t±1]) = Fn[t±1]/((α⊗ φ)(g)(v)− v | v ∈ Fn[t±1], g ∈ π).

By our assumption we have Hα⊗φ
0 (π; Fn[t±1]) 6= 0. It is straightforward to see that

this implies that Hα
0 (Γ; Fn) = Fn/(α(g)(v)−v | v ∈ Fn, g ∈ Γ) is also non–trivial. Now

pick a non–singular form 〈 , 〉 on Fn and denote by α∗ : π → GL(n,F) the unique
representation which satisfies 〈α∗(g)v, α(g)w〉 = 〈v, w〉 for all g ∈ π, v, w ∈ Fn. We

now let Y = K(Γ, 1) and we denote by Ỹ the universal cover of Y . We write (Fn)α
to denote Fn with the Γ–action given by α, and similarly we write (Fn)α∗ . Using the
inner product we then get an isomorphism of F–module chain complexes:

HomZ[Γ](C∗(Ỹ ), (Fn)α∗) → HomF
(
C∗(Ỹ ; (Fn)α),F

)
= HomF

(
C∗(Ỹ ⊗Z[Γ] (Fn)α,F

)
f 7→ ((c⊗ w) 7→ 〈f(c), w〉) .

Note that this map is well–defined since 〈β(g−1)v, w〉 = 〈v, β(g)w〉. It is now easy
to see that this defines in fact an isomorphism of F–module chain complexes. It now
follows that

H i
α∗(Γ; Fn) = Hi(HomZ[Γ](C∗(Ỹ ), (Fn)α∗))

∼= Hi(HomF
(
C∗(Ỹ ; (Fn)α),F

)
)

∼= Hi(C∗(Ỹ ; (Fn)α
)
)

= Hα
i (Γ; Fn).

Note that the second to last isomorphism is given by the universal coefficient theorem.
Recall (cf. again [HS97, Section VI]) that

H0
α∗(Γ; Fn) = {v ∈ Fn |α∗(g)(v) = v for all g ∈ Γ, v ∈ Fn}.

We now write V := {v ∈ Fn |α∗(g)(v) = v for all g ∈ Γ, v ∈ Fn} and we let W ⊂ Fn
be the orthogonal complement of V . In particular V ⊕W = Fn. Note that V is non–
trivial by assumption and note that W is non–trivial since Γ = Ker(φ) is non–trivial
and since α (and hence α∗) is non–trivial when restricted to Γ by our assumption.

Note that with respect to the decomposition Fn = V ⊕W we have

α∗(g) =

(
id ∗
0 ∗

)
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for any g ∈ Γ. In particular there exist maps A : π → Hom(W,V ) and B : π →
End(W ) such that

α∗(g) =

(
id A(g)
0 B(g)

)
for any g ∈ Γ. We now write

α∗(µ) =

(
C D
E F

)
with C ∈ End(V ), D ∈ Hom(W,V ), E ∈ Hom(V,W ), F ∈ End(W ). For any g ∈ Γ
we have gµ = µ(µ−1gµ) with µ−1gµ ∈ Γ. In particular we have(

id A(g)
0 B(g)

)
·
(
C D
E F

)
=

(
C D
E F

)
·
(

id A(µ−1gµ)
0 B(µ−1gµ)

)
for any g ∈ Γ. Considering the first block column we see that(

A(g)E
B(g)E

)
=

(
0
E

)
.

If E : V → W was non–trivial, then there would exist v ∈ V such that w = E(v) is
non–trivial. Given any g ∈ Γ we then have

α∗(g)(w) =

(
id A(g)
0 B(g)

)(
0
w

)
=

(
id A(g)
0 B(g)

)(
0
Ev

)
=

(
id A(g)E
0 B(g)E

)(
0
v

)
=

(
id 0
0 E

)(
0
v

)
=

(
0
Ev

)
= w.

But this is not possible by the definition of V . We therefore conclude that E is the
zero homomorphism, hence the representation α∗ restricts to a representation of V .
It is now straightforward to see that α preserves W . Since W is neither zero nor all
of Fn this shows that α is reducible. �

2.4. Twisted torsion of cyclic covers. Let K ⊂ S3 be an oriented knot. We
write X = XK and φ = φK . Given m we denote by Xm the m-fold cyclic cover
of X. Throughout this section let α : π1(XK) → SL(k,C) be an even-dimensional

representation. 3 We denote by αm the representation π1(Xm)→ π1(X)
α−→ SL(k,C).

3[S] We have to decide at some point whether we only want to consider the 2-dimensional case,
or whether we want to consider all the representations of SL(2,C), (for each m ≥ 2 there exists one
irreducible representation of SL(2,C), for example the adjoint representation is the 3-dimensional).
Let me explain the pros and cons of doing the general case, as I see it:
Several of the results we use (most importantly Menal-Ferrer-Porti) have been proved for the general
case, in particular we would be able to define a sequence of canonical twisted polynomials T m

K (t)
which are all non-zero. The case of the adjoint representation has been studied in detail by Dubois-
Yamaguchi. The result of Müller (regarding torsion for closed 3-manifolds) suggests that the values
T m

K (1) determine the hyperbolic volume.



TWISTED ALEXANDER POLYNOMIALS OF HYPERBOLIC KNOTS 11

In this section we will relate the C(t)-valued torsion τ(K,α) = τ(X,α⊗ φ) to the C-
valued torsions τ(Xm, αm). Note that the assumption that α is an even-dimensional
representation implies that τ(K,α) is well-defined up to multiplication by an even
power of t and that τ(Xm, αm) ∈ C is well-defined without any indeterminacy.

We now have the following theorem. (We refer to [DY09, Corollary 27] for a related
result.)

Theorem 2.6. Let α : π → SL(k,C) be an even-dimensional representation. We
write f(t) = τ(K,α). Let m ∈ N. Suppose that Hαm

0 (Xm; Ck) = 0. Then f(e2πij/m)
is defined for j = 1, . . . ,m and

m∏
j=1

f(e2πij/m) = τ(Xm, αm).

Note that the left hand side of Theorem 2.6 is a well-defined complex number since
τ(K,α) is well-defined up to multiplication by an even power of t.

Proof. 4 Before we delve into the proof we first introduce several definitions which will
be of use later. Given two representations β : π → GL(k,C) and γ : π → GL(l,C) we
denote by β ⊗ γ the resulting tensor representation π → Aut(Ck ⊗ Cl) = GL(kl,C).
Given ζ ∈ C∗ we denote by γζ the representation π1(X)→ GL(1,C) given by sending
the meridian to ζ. We denote by γm the representation π1(X) → Aut(C[Z/m]) ∼=
GL(m,C) where the first map is the regular representation corresponding to the
epimorphism π → Z/m. Denote by ξ1, . . . , ξm the m-th roots of unity. Note that⊕m

i=1 ζξi and ζm are equivalent representations of π.
We write π = π1(X). We pick a CW-structure for X with one 0-cell a, 1-cells

b1, . . . , bl+1 and 2-cells c1, . . . , cl. We then pick lifts ã, b̃1, . . . , b̃l+1, c̃1, . . . , c̃l to the

universal cover X̃. These form an ordered basis B for C∗(X̃) as a free Z[π]-module
chain complex.

We now consider Xm. We write πm := π1(Xm). We can identify the universal cover

of Xm with X̃. Now pick an element µ ∈ π which represents the oriented meridian.

Then µj ã, µj b̃1, . . . , µ
j b̃l+1, µ

j c̃1, . . . , µ
j c̃l, j = 0, . . . ,m − 1 form a basis for C∗(X̃) as

a free Z[πm]-module chain complex.

So what’s not to like? The problem is that Theorem 2.6 and Theorem 2.7 get tricky. More precisely,
in the case of an odd-dimensional representation the torsion is well-defined only up to sign. To deal
with this one has to work with sign-refined torsion (this involves the orientation of the knot). To
get a precise (i.e. not just up to sign) equality in Theorem 2.6 gets rather tricky. Note for example
that τ(K,α), even in the best of all cases, is only well-defined up to multiplication by a power of t,
but the left hand side is not invariant under multiplication of τ(K,α) by t. Presumably all this can
be dealt with, but the proofs would be significantly more delicate and less readable

4In principle the lemma is straightforward, what turns it into a delicate dance is that we want to
get the signs right, and that we want to make sure we never divide by zero!
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Given i = 0, . . . ,m− 1 we now denote by gi the element of Z/m represented by i.
In the following v stands for a vector in Ck. The maps

µj ã⊗ v 7→ ã⊗ gj ⊗ v
µj b̃i ⊗ v 7→ b̃i ⊗ gj ⊗ v
µj c̃i ⊗ v 7→ c̃i ⊗ gj ⊗ v

give raise to an isomorphism of based chain complexes

C∗(X̃)⊗Z[πm] Ck → C∗(X̃)⊗Z[π] C[Z/m]⊗ Ck.

In particular we conclude that τ(Xm, αm) = τ(X,α⊗ γm). (Note that both are well-
defined, independent of the ordering of the cells and independent of the choice of lifts
of the cells.)

Since
⊕m

i=1 ζξi and ζm are equivalent representations of π we obtain that

(1) τ(X,α⊗ γm,B) = τ(X,α⊗⊕mi=1ζξi ,B) =
m∏
i=1

τ(X,α⊗ γξi ,B).

(Note that the terms on the left hand side are independent of the choice of B, but
each of the m terms on the right hand side does depend on the choice of B since
α ⊗ γξi is no longer a special linear representation.) Note that arguments similar to
the above also show that

(2)
m⊕
i=1

H
α⊗γξi
0 (X; Ck) ∼= Hα⊗γm

0 (X; Ck ⊗ Cm) ∼= Hαm
0 (Xm; Ck).

We now write g(t) = τ(X,α ⊗ φ,B). Note that g(t) is a representative of g(t).
By (1) it suffices to show that τ(X,α ⊗ γξ,B) = g(ξ) for any m-th root of unity.

Note that by (2) we have H
α⊗γξ
0 (X; Ck) ⊂ Hαm

0 (Xm; Ck), but the latter is zero by
assumption. Now consider the chain complex C∗(X)⊗Z[π] Ck⊗C(t). Using the above
basis B and using any basis for Ck we can view this as a based C(t)-chain complex.
We denote by B2(t) and B1(t) the matrices corresponding to the boundary maps ∂2

and ∂1. Note that B2(t) and B1(t) are in fact defined over C[t±1]. Also note that
B2(ξ) and B1(ξ) denote the matrices corresponding to the boundary maps of the
based chain complex C∗(X)⊗Z[π] (Ck⊗C)α⊗γξ . Now consider the m×(l+1)m-matrix

B1(ξ). Since H
α⊗γξ
0 (X; Ck) = 0 it follows that B1(ξ) has rank m. We can thus find

m columns of B1(ξ) such that the corresponding m×m-matrix is invertible. We now
denote by A1(t) the m×m-matrix given by picking out these m columns from B1(t),
and we denote by A2(t) the ml×ml-matrix given by deleting the corresponding rows
of B2(t).

It now follows from [Tu01, Theorem 2.2] that

τ(X,α⊗ φ,B) = det(A2(t)) det(A1(t))−1 ∈ C(t), and
τ(X,α⊗ γξ,B) = det(A2(ξ)) det(A1(ξ))−1 ∈ C.
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(Note that both denominators are non-zero.) It follows that

τ(X,α⊗ φ,B)(ξ) = τ(X,α⊗ γξ,B).

This concludes the proof of the theorem. �

Given an even-dimensional representation the theorem in particular says that the
C(t)-valued torsion τ(K,α) = τ(X,α⊗φ) determines the C-valued torsions τ(Xm, αm)
for any m. In order to state and prove a partial converse to the previous lemma we
need to introduce a few more definitions. We say that p(t), q(t) ∈ C[t±1] are equivalent,
written p(t) ∼ q(t), if p(t) = tnq(t) for some n ∈ Z. We say that p(t) ∈ C[t±1] is
palindromic if p(t) ∼ p(t−1).

Theorem 2.7. Let K be a knot and α : π1(X) → SL(k,C) an even-dimensional
representation such that τ(X,α) is a palindromic polynomial. If τ(Xm, αm) is non-
zero for any m, then the torsions τ(Xm, αm) determine τ(X,α) ∈ C[t±1].

This theorem is a consequence of Theorem 2.6 and a theorem of Fried. In order to
state the theorem of Fried we will need the following definition. Let p = a

∏d
j=1(t−

λi) ∈ C[t±1] be a polynomial. Given n we denote by rn(p) the resultant of tn− 1 and
p, i.e.

rn(p) = ad
d∏
l=1

(λnl − 1) = ad
n∏
j=1

d∏
l=1

(λl − e2πij/n) = (−1)dn
n∏
j=1

p(e2πij/n).

Note that rn(p) is non-zero for any n if and only if no root of unity is a zero of p.
The following theorem was stated and proved by Fried for real polynomials.

Theorem 2.8. Let p = p(t), p′ = p′(t) ∈ C[t±1] be palindromic Laurent polynomials.
Suppose that rn(p) = rn(p′) for all n and suppose that rn(p) = rn(p′) is non-zero for
any n. Then p ∼ p′.

We provide a proof of the theorem which for the most part follows closely Fried’s
argument. We chose to include the proof for the convenience of the reader and to
verify that the proof carries over to complex polynomials.

Note that if τ(Xm, αm) is non-zero, then in particular Hαm
0 (Xm;Ck) = 0. We now

see that Theorem 2.8 together with Theorem 2.6 implies Theorem 2.7.

Proof. We write p = a
∏d

i=1(t − λi) and p′ = a′
∏d′

i=1(t − λ′i). Note that p, p′ being
palindromic implies that if z is a zero, then z−1 is also a zero. We can thus without
loss of generality assume that λi = λ−1

d−i and λ′i = (λ′d′−i)
−1 for any i. We denote by

H ⊂ C× the group generated by λ1, . . . , λd, λ
′
1, . . . , λ

′
d.

We write rn = rn(p) = rn(p′). We also write V = (Z/2)d and given v =
(v1, . . . , vd) ∈ V we define

µv := a · (−1)#{i | vi=1} ·
∏

i with vi=0

λi.
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Note that

rn = an
d∏
i=1

(λni − 1) = an(λn1 − 1) · · · · · (λnd − 1) =
∑
v∈V

µnv .

We now see that

B(t) := exp

(
∞∑
n=1

rn
tn

n

)
= exp

(
∞∑
n=1

∑
v∈V

µnv
tn

n

)
= exp

(∑
v∈V

∞∑
n=1

µnv
tn

n

)
=

∏
v∈V

exp

(
∞∑
n=1

µvtn

n

)
=

∏
v∈V

(1− µvt).

(Here the last equality follows from the power series expansion of the logarithm.) We
thus see that the rn determine B(t) =

∏
v∈V (1− µvt). In particular the rn determine

the set µv (with multiplicities). Note that in the group ring Z[H] we have the following
equality: ∑

v∈V

[µv] = a
d∏
i=1

([λi]− 1).

(Here, and in the remainder of the proof, given z ∈ H we denote by [z] the corre-
sponding element 1 · z in the group ring Z[H]).

We can do a similar discussion as above for p′. We then see that the assumption
that rn(p) = rn(p′) for any n implies that

a
d∏
i=1

([λi]− 1) = a′
d′∏
i=1

([λ′i]− 1) ∈ C[H].

It follows immediately that a = a′.
Note that the assumption that rn(p) = rn(p′) is non-zero for any n implies that no

λi and no λ′i is a root of unity. The following claim thus implies the theorem.

Claim. Let λ1, . . . , λd ∈ C× and λ′1, . . . , λd′ ∈ C× which are not zeros of unity. Sup-
pose that λi = λ−1

d−i and λ′i = (λ′d′−i)
−1 for any i. If

d∏
i=1

([λi]− 1) =
d′∏
i=1

([λ′i]− 1) ∈ C[H],

then {λ1, . . . , λd} = {λ′1, . . . , λ′d′} as sets (with multiplicities).

We refer to [Fr88, p. 126] for a detailed proof. In the following we just give an
outline of a proof. First note that since H is a finitely generated abelian group we
can find a splitting H = F ×T where T is a torsion group and F a free abelian group.
We now write λi = fici where fi ∈ F, ci ∈ T and λ′i = f ′ic

′
i where f ′i ∈ F, c′i ∈ T . Note
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that the assumption that λ1, . . . , λd ∈ C× and λ′1, . . . , λ
′
d ∈ C× are not zeros of unity

implies that the fi, f
′
i are non-trivial. We thus obtain the following equality

d∏
i=1

(ci[fi]− 1) =
d∏
i=1

(c′i[f
′
i ]− 1) ∈ C[F ].

Note that C[F ] is a UFD. It now follows (fairly) easily that the set {λi} agrees with
the set {λ′i}. This concludes the proof. �

Question 2.9. We just saw that under mild assumptions the torsions of the cyclic
covers determine the C(t)-valued torsion. This process is rather indirect though, and
it would be very interesting if one could ‘directly’ read off the degree and the top
coefficient of τ(K,α) from the torsions of the cyclic covers.

3. Torsion of hyperbolic knots

3.1. The discrete and faithful SL(2,C) representations. Let K ⊂ S3 be an
oriented knot. Throughout this section we write π = πK := π1(XK) and take the
base point on the boundary torus ∂XK . Let µ = µK ∈ πK be meridian, i.e. a simple
closed curve in ∂XK which is null-homologous in νK and lk(µ,K) = +1. Recall that
φK : πK → Z is the map that sends µK to one; when K is understood, we just write
φ = φK .

Now assume that M = S3 \ K ∼= int(XK) has a complete hyperbolic structure.

The manifold M inherits an orientation from S3, and so its universal cover M̃ can be
identified with H3 by an orientation preserving isometry. This identification is unique

up to the action of Isom+(H3) = PSL(2,C), and the action of πK on M̃ = H3 gives
the holonomy representation α : πK → PSL(2,C), which is unique up to conjugation.

Remark. By Mostow-Prasad rigidity, the complete hyperbolic structure on M is
unique. Thus α is determined, up to conjugacy, solely by the knot K (sans ori-
entation). A subtle point is that there are actually two conjugacy classes of discrete
faithful representations πK → PSL(2,C); the other one corresponds to reversing the
orientation of S3 (not K) or equivalently complex-conjugating the entries of the image
matrices.

To define the torsion, we want a representation into SL(2,C) rather than PSL(2,C).
Thurston proved that α always lifts to a representation α : πK → SL(2,C), see [Th97]
and [Sh02, Section 1.6] for details. In fact, there are exactly two such lifts, the other
being g 7→ (−1)φ(g)α(g); the point being that any other lift has the form g 7→ ε(g)α(g)
for some homomorphism ε : πK → {±1}, i.e. some element of H1(M ; Z/2Z) = Z/2Z.
Now α(µ) is parabolic, and so tr(α(µ)) = ±2; arbitrarily, we focus on the lift where
the trace is 2 and call it the distinguished representation. This representation is
determined, up conjugacy, solely by K (sans orientation). (We explain below the
simple change that results if we instead required the trace to −2.)
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3.2. The hyperbolic torsion. Consider an oriented hyperbolic knot K, and let
αK : πK → SL(2,C) be a distinguished representation. As an initial definition, the
hyperbolic torsion of K is TK(t) = τ(XK , αK⊗φK). This is a polynomial in C[t±1] by
Theorem 2.3 (cf. also [KM05, Theorem 3.1]) which is well–defined up to multiplication
by an element of the form tk for k ∈ Z by Lemma 2.2. (Below we refine things so that
TK(t) becomes simply an element of C[t±1].) We begin with a key basic property.

Proposition 3.1. For an oriented hyperbolic knot K, the hyperbolic torsion TK(ξ) is
non-zero for any root of unity ξ.

For 2-bridge knots and ξ = ±1 this proposition is also a consequence of the work
of Hirasawa-Murasugi [HM08] and Silver-Williams [SW09d].

Proof. We write α = αK , X = XK and φ = φK . Suppose that ξ is an m-th root
of unity. We denote by Xm the m-fold cyclic cover of X. We denote by αm the
representation π1(Xm) → π1(X)

α−→ SL(2,C). Note that αm : π1(Xm) → SL(2,C) is
a lift of the discrete and faithful representation of the hyperbolic 3-manifold Xm.

By the work of Menal–Ferrer and Porti [MP09, Theorem 0.4] (which builds on work
of Raghunathan [Ra65]) we have that Hαm

∗ (Xm,C2) = 0, or equivalently, τ(Xm, αm)
is non-zero. It now follows from Theorem 2.6 that

m∏
k=1

T (e2πij/m) = τ(Xm, αm).

�

We now have the following proposition:

Proposition 3.2. For an oriented hyperbolic knot K, the invariant TK(t) is a non-
zero palindromic polynomial of even degree, which is well-defined up to multiplication
by elements of the form tk for k ∈ Z.

Proof. First, TK(t) is non-zero as Proposition 3.1 implies that TK(1) 6= 0 . By
[HSW09, Corollary 3.4] there exists % ∈ {−1, 1} and k ∈ Z such that

TK(t−1) = %tkTK(t).

Since TK(1) 6= 0, it follows that % = 1, i.e. TK(t) is palindromic.
To see that TK(t) has even degree d, fix a representative p(t) = adt

d+· · ·+a1t+a0 for
TK(t), where ak and a0 are non-zero. As p(t) is palindromic, we have p(t−1) = tkp(t)
for some k; since p(t−1) = a0 + a1t

−1 + · · ·+ adt
−d, this forces k = d. Taking t = −1

then gives p(−1) = (−1)dp(−1). Since p(−1) 6= 0 by Proposition 3.1, this forces
(−1)d = 1, i.e. d is even. �

In light of Proposition 3.2, we henceforth resolve the ambiguity of the hyperbolic
torsion by insisting that it be symmetric, i.e. TK(t) = TK(t−1). Thus TK is now a
well-defined element of C[t±1]. We now prove Theorem 1.1 from the introduction
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which summarizes some of the properties of TK(t).

Theorem 1.1. Let K be an oriented hyperbolic knot in S3. Then TK(t) has the
following properties:

(1) TK(t) lies in C[t±1],
(2) TK(ξ) is non-zero for any root of unity ξ,
(3) TK(t) = TK(t−1),
(4) TK(t) is independent of the orientation of K,

(5) if K∗ denotes the mirror image of K, then TK∗(t) = TK(t), where the coeffi-
cients of the latter polynomial are the complex conjugates of those of TK.

(6) if K is amphichiral, i.e. if K = K∗, then TK(t) is a real polynomial.

Proof. Assertions (1–3) are immediate from Propositions 3.1 and 3.2 and our choice
of normalization for TK(t). For (4), we noted above that the distinguished represen-
tation α does not depend on the orientation of K. Thus changing the orientation
simply reverses the orientation of the meridian µ, which replaces φ with −φ, and cor-
respondingly replaces t by t−1 when computing the torsion. By (3), this substitution
does not change TK(t), proving (4). For (5), taking the mirror image replaces α with
α where α(g) is the matrix which is the complex conjugate of α(g). It also reverses
the meridian, but that is negligible by (4), and so we can regard φ as unchanged.

Thus TK∗(t) = τ(XK , α ⊗ φ) = τ(Xk, α⊗ φ) = TK(t) as claimed. Finally, claim (6)
follows immediately from (5). �

Remark. When choosing our distinguished representation, we arbitrarily chose the
lift α : π → SL(2,C) where tr(α(µ)) = 2. As discussed, the other lift β is given by
g 7→ (−1)φ(g)α(g). Note that given g ∈ π we have(
(β⊗φ)(g)

)
(t) = β(g)·tφ(g) = α(g)·(−1)φ(g) ·tφ(g) = α(g)·(−t)φ(g) =

(
(α⊗φ)(g)

)
(−t).

The definition of torsion gives

τ(XK , β ⊗ φK)(t) = τ(XK , α⊗ φK)(−t) = TK(−t)

and thus using β instead of α would simply replace t by −t.

Proposition 3.3. Let K be an oriented hyperbolic knot in S3. Denote by α : πK →
SL(2,C) the preferred lift of the canonical representation. Then TK(t) is determined
by the torsions τ(Xm, αm) ∈ C.

Proof. This proposition is an immediate consequence of the definitions, of the fact
that TK(t) is palindromic, and of Theorem 2.7, once we convinced ourselves that
Hαm

0 (Xm; C2) = 0 for any m. But the vanishing of these twisted homology groups is
an easy consequence of the fact that the αm are irreducible non-trivial representations.

�
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4. Calculation of twisted torsion using Fox calculus

Let K ⊂ S3 be an oriented knot. Let α : πK → SL(2,C) be a representation. We
write π := π1(XK) and φ = φK . Recall that given g ∈ π we define (α ⊗ φ)(g) :=
α(g) · tφ(g) ∈ GL(2,C[t±1]) and we now extend the group homomorphism α⊗φ : π →
GL(2,C[t±1]) to a ring homomorphism Z[π]→M(2,C[t±1]) which we also denote by
α ⊗ φ. Finally given an k × l–matrix A = (aij) over Z[π] we denote by (α ⊗ φ)(A)
the 2k × 2l–matrix obtained from A by replacing each entry aij by the 2× 2–matrix
(α⊗ φ)(aij).

Let F = 〈x1, . . . , xk〉 be the free group on k generators. By Fox (cf. [Fo53, Fo54,
CF63] and see also [Ha05, Section 6]) there exists for each i = 1, . . . , k a unique map,
called Fox derivative,

∂

∂xi
: F → Z[F ]

with the following two properties:
∂xj
∂xi

= δij,
∂(uv)
∂xi

= ∂u
∂xi

+ u ∂v
∂xi
, for any u, v ∈ F .

The following proposition now allows for efficient calculation of the hyperbolic
torsion of a knot.

Proposition 4.1. Let K be a hyperbolic knot. Let

π = 〈x1, . . . , xk | r1, . . . , rk−1〉
be a presentation of deficiency one (e.g. a Wirtinger presentation). We denote by
A = (aij) the (k−1)×k–matrix given by aij = ∂ri

∂xj
. Let i ∈ {1, . . . , k} with φ(xi) 6= 0.

Denote by Ai the matrix obtained from A by deleting the i–th column. Let

(3) p(t) =
det((α⊗ φ)(Ai))

det((α⊗ φ)(xi − 1))
.

Then p(t) = τ(K,α) ∈ C[t±1] (up to multiplication by a power of t).

If α : πK → SL(2,C) is a distinguished representation of type (1, 1), then we obtain
TK(t) from symmetrizing the polynomial p(t).

Remark. Note that if φ(xi) 6= 0, then det((α⊗φ)(xi−1)) 6= 0, in fact det((α⊗φ)(xi−
1)) = det((α⊗ φ)(xi)− id2) is a polynomial of degree 2. In particular the right hand
side of (3) is defined. The right hand side of (3) is also known as Wada’s invariant
[Wa94]. Note that in the literature Wada’s invariant is often referred to as twisted
Alexander polynomial.

Proof. Kitano [Ki96] proved that p(t) = τ(K,α) in the case that the presentation of
π is a Wirtinger presentation. The general case of any deficiency one presentation
can be proved as in the proof of Theorem 3.1 of [GKM05]. �
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5. Twisted torsion and the character variety of a knot

Let K ⊂ S3 be an oriented knot. We write π = πK and we fix a Wirtinger
presentation

π = 〈x1, . . . , xk | r1, . . . , rk−1〉.
We write

R(K) := Hom(π, SL(2,C)).

It is well-known that R(K) can be equipped canonically with the structure of a
complex variety, and we refer to it as the representation variety ofK. Given α ∈ R(K)
we consider the map

χα : π → C
g 7→ tr(α(g)).

We refer to χα as the character of α. We denote by X(K) ⊂ Maps(π,C) the set of
all characters. The set X(K) can also be endowed with the structure of a variety in
such a way that the natural map

p : R(K) → X(K)
α 7→ χα

is an algebraic map with the property that U ∈ R(K) is open if and only if p(U) ∈
X(K) is open. We refer to the classic paper of Culler and Shalen [CS83] and to the
survey article of Shalen [Sh02] for more information and full details.

Recall that given α ∈ R(K) we defined a twisted torsion invariant τ(K,α) ∈ C(t)
which by Lemma 2.2 is well-defined up to multiplication by an element of the form
tk, k ∈ Z. Given p(t), q(t) ∈ C[t±1] we write p(t)

.
= q(t) if there exists k ∈ Z with

p(t) = tkq(t). We can now formulate the following lemma.

Lemma 5.1. Let α, β ∈ R(K) be representations which represent the same point in
the character variety. Then τ(K,α)

.
= τ(K, β).

Proof. Let α, β ∈ R(K) be representations which represent the same point in the
character variety. First assume that α or β is an irreducible representation. It follows
from [CS83, Proposition 1.5.2] that α and β are equivalent representations. It now
follows from Lemma 2.2 that τ(K,α)

.
= τ(K, β).

Now suppose that α and β are reducible representations. We can thus find matrices
P and Q and homomorphisms α1, α2, β1, β2 : π → GL(1,C) such that

α(g) = P

(
α1(g) ∗

0 α2(g)

)
P−1 and β(g) = Q

(
β1(g) ∗

0 β2(g)

)
Q−1

for any g ∈ π. It now follows from standard arguments and from Lemma 2.2 that

τ(K,α)
.
= τ(K,α1) · τ(K,α2) and τ(K, β)

.
= τ(K, β1) · τ(K, β2).

On the other hand standard arguments show that χα = χβ implies that {α1, α2} =
{β1, β2} ⊂ Hom(π,GL(1,C)). Combining these results it now follows immediately
that τ(K,α)

.
= τ(K, β). �
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Given χ ∈ X(K) we now define

τ(K,χ) = τ(K,α) ∈ C(t)

where α is any representation with χα = χ. By Lemmas 2.2 and 5.1 τ(K,χ) is
well-defined up to multiplication by an element of the form tk, k ∈ Z.

Given f(t) ∈ C(t) with f(t) = p(t)
q(t)

where p(t), q(t) ∈ C[t±1] we now define

deg(f(t)) = deg(p(t)) − deg(q(t)). Furthermore we say that f(t) is monic if we

can find monic polynomials p(t), q(t) ∈ C[t±1] with f(t) = p(t)
q(t)

. The following is the

main result of this section:

Theorem 5.2. Let K ⊂ S3 be an oriented knot.

(1) The set

M := {χ ∈ X(K) | τ(K,χ) is monic } ⊂ X(K)

is Zariski closed.
(2) The set

D := {χ ∈ X(K) | deg τ(K,χ) = 2x(K)} ⊂ X(K)

is Zariski open.

Proof. Let K ⊂ S3 be an oriented knot. We define

M̂ := {α ∈ R(K) | τ(K,α) is monic } ⊂ R(K)

D̂ := {α ∈ R(K) | deg τ(K,α) = 2x(K)} ⊂ R(K).

By the discussion of the map p : R(K) → X(K) it suffices to show that M̂ ⊂ R(K)

is closed and that D̂ ⊂ R(K) is open.
We denote by A = (aij) the (k−1)×k–matrix given by aij = ∂ri

∂xj
. Let i ∈ {1, . . . , k}.

Note that φ(xi) = 1 since we picked a Wirtinger presentation. Denote by Ai the
matrix obtained from A by deleting the i–th column. Given α ∈ R(K) we now define

pα(t) := det((α⊗ φ)(Ai))
qα(t) := det((α⊗ φ)(xi − 1)) = det(α(xi)t− id2).

By Proposition 4.1 we have

τ(K,α)
.
=
pα(t)

qα(t)
.

Note that qα(t) is monic and of degree two for any α. It therefore follows that

M̂ = {α ∈ R(K) | pα(t) is monic }
D̂ = {α ∈ R(K) | deg pα(t) = 2x(K) + 2}.

Claim. There exists an N ∈ N such that

qα(t) ∈
N⊕

i=−N

C · ti.



TWISTED ALEXANDER POLYNOMIALS OF HYPERBOLIC KNOTS 21

Indeed, a straightforward argument using the definition of Fox derivatives shows
that such an N is given by

2(k − 1)max{`(ri), . . . , `(rk−1)}
where `(ri) denotes the length of the word ri in the generators x1, . . . , xk.

We now denote by q the map

R(K) →
N⊕

i=−N
C · ti = C2N+1

α 7→ qα(t).

It is clear that q is an algebraic map.
Given i ∈ {1, . . . , 2N − 1} and j ∈ {1, . . . , 2N − 1− i} we write

Vi,j = {(0, . . . , 0︸ ︷︷ ︸
i

, 1, a1, . . . , aj, 1, 0, . . . , 0︸ ︷︷ ︸
2N−1−i−j

| a1, . . . , aj ∈ C} ⊂ C2N+1.

Note that
M̂ =

⋃
i,j

q−1(Vi,j)

Since q is an algebraic map and since Vi,j ⊂ C2N+1 is Zariski closed for any i, j it

follows that M̂ ⊂ R(K) is Zariski closed.
Given i ∈ {1, . . . , 2N − 1− 2x(K)} we now write

Wi = {(a1, . . . , a2N+1 | ai 6= 0 and ai+2x(K)+2 6= 0} ⊂ C2N+1.

Note that qα lies in some Wi if and only if deg(qα(t)) > 2x(K) + 2. Now note that
by [FK06, Theorem 1.1] we always have deg(τ(K,α)) ≤ 2x(K), in particular for any
α we have deg(qα(t)) ≤ 2x(K) + 2. It now follows that

M̂ =
⋃
i

q−1(Wi)

Since q is an algebraic map and since Wi ⊂ C2N+1 is Zariski open for any i it follows
that M̂ ⊂ R(K) is Zariski closed.

�

6. Calculations

In this section we will study the hyperbolic torsion of hyperbolic knots with up to
twelve crossings. Note that considering only hyperbolic knots is not very restrictive,
indeed, by [HTW98] any knot with up to twelve crossings is either a torus knot or a
hyperbolic knot. In fact the only torus knots with at most twelve crossings are the
following:

31, 51, 71, 819, 91, 10124, 11367.

Also note that torus knots are well-understood, it is well-known that they are fibered
and chiral. The next torus knots are T (13, 2) = 134878? and T (7, 3) = 14???. There
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are two 13 crossing knots which are satellite knots, namely the (2, 1) cables of the
left hand trefoil and the right hand trefoil. In the knot census these knots are 139465

and 139517. There are two 14 crossing knots which are satellite knots, namely the
Whitehead doubles of the left hand trefoil and the right hand trefoil.

In this section we will first give a detailed calculation of the hyperbolic torsion
for the Conway knot and the Kinoshita-Terasaka knot. We will then show that the
hyperbolic torsion detects the genus, fiberedness and chirality for all hyperbolic knots
up to twelve crossings.

Regarding the calculations we have to make a disclaimer: We believe that all
calculations are precise up to at least eight digits. We did not make a serious error
analysis though, and the results should therefore be taken with a (hopefully very
small) grain of salt.

6.1. Calculations: Conway knot and Kinoshita–Terasaka knot. We now con-
sider the Conway knot 11401 and the Kinoshita-Terasaka knot 11409 in details. These
two knots are mutants and the Alexander polynomial in both cases is trivial, i.e.
equal to one. On the other hand, the genus of the Conway knot 11401 is equal to
three and the genus of the Kinoshita-Terasaka knot 11409 is equal to two.

For the Conway knot we calculate

TK401(t) ≈ (4.8952− 0.0992i)t5 +(−15.6857+ 0.2976i)t4 +(23.1036+ 0.0784i)t3

+(−26.9416− 4.8451i)t2 +(38.3835+ 24.4943i)t +(−43.3240− 44.0806i)
+(38.3835+ 24.4943i)t−1 +(−26.9416− 4.8451i)t−2 +(23.1036+ 0.0784i)t−3

+(−15.6857+ 0.2976i)t−4 +(4.8952− 0.0992i)t−5.

For the Kinoshita–Terasaka knot we calculate

TK409(t) ≈ (4.4179+ 0.3760i)t3 +(−22.9416− 4.8451i)t2 +(61.9644+ 24.0974i)t
+(−82.6954− 43.4854i)+(61.9644+ 24.0974i)t−1 +(−22.9416− 4.8451i)t−2

+(4.4179+ 0.3760i)t−3.

Note that Conjectures 1.4 and 1.5 hold for both knots. Also note that the polynomials
are not real, reflecting the fact that they are chiral. Finally note that the polynomials
are different, which implies that TK(t) is not invariant under mutation.

Remark. It is interesting to study the evaluations at t = 1 and t = −1. We calculate

TK401(1) ≈ TK409(1) ≈ 4.186003− 4.228629i
TK401(−1) ≈ TK409(−1) ≈ 261.3432 + 102.1226i.

This calculation reflects our conjecture that the invariants TK(1) and TK(−1) are
unchanged under mutation. On the other hand we have

TK401(i) ≈ 33.7952− 20.8122i
TK401(i) ≈ −33.7952 + 36.8122i.

This suggests that the evaluation of TK(ξ) is not a mutation invariant if ξ 6= ±1. As
a curiosity we point out that among all hyperbolic eleven crossing knots the Conway
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knot and the Kinoshita–Terasaka knot have the largest value for the invariant |TK(1)|.
This does not hold though for the evaluation at t = −1.

Remark. It was shown in [FK06, Section 5] that twisted Alexander polynomials cor-
responding to representations over finite fields detect the genus of all knots with up to
twelve crossings. For example we found in [FK06] a representation α : π1(XK401) →
GL(4,F13) such that the corresponding torsion τ(K401, α) ∈ F13[t±1] has degree 14.
From Theorem 1.3 we then obtain the inequality

genus(K401) ≥ 1

8
deg(τ(K401, α)) +

1

2
= 2.25.

In particular this representation showed that genus(K401) ≥ 3 since the genus is of
course an integer. The calculations using the discrete and faithful SL(2,C) represen-
tations are in some sense more satisfactory since they give the equality genus(K401) =
1
4
(deg(TK401(t))) + 1

2
on the nose, and not just after rounding up to integers.

6.2. Calculations: Genus and fiberedness for knots with up to twelve cross-
ings. There exist 36 knots with twelve crossings or less for which the ordinary Alexan-
der polynomial does not detect the genus, i.e. for which genus(K) > 1

2
deg∆K(t) (cf.

e.g. [CL09] or [St10]):

11401 11409 11412 11434 11440 11464 11519 121311 121316 121319

121339 121344 121351 121375 121412 121417 121420 121509 121519 121544

121545 121552 121555 121556 121581 121601 121609 121699 121718 121745

121807 121953 122038 122096 122100 122118.

Among the hyperbolic knots there exist thirteen knots with up to 12 crossings
which are not fibered but which are algebraically fibered, i.e. deg(∆K) = 2genus(K)
and ∆K is monic:

121345 121498 121502 121546 121567 121670 121682 121752 121771 121823

121938 122089 122103.

We computed TK(t) for all hyperbolic knots with up to twelve crossings. For any
knot K with at most thirteen crossings the absolute value of the tx(K) coefficient of
TK(t) is at least 0.00556. (The minimum value is attained by the chiral and alternating
knot 121287.) This shows that even with an error term ±10−8 the absolute value of
the tx(K) coefficient of TK(t) is non-zero for any knot with at most thirteen crossings.
This shows that Conjecture 1.5 holds for all these knots.

A similar argument shows that Conjecture 1.4 holds for all these knots with at
most thirteen crossings.

The genera for the 13 crossing knots were also independently determined by Alexan-
der Stoimenow (see [St10]).

Finally, note that our calculations suggest that many fibered hyperbolic knots have
the property that the second highest coefficient of TK(t) is a real number. What is
a good explanation for this phenomenon? Of course the second highest coefficient
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is just the sum of the eigenvalues of the monodromy of the twisted homology of the
fiber.

6.3. Calculations: Chirality. There are 78 knots with at most thirteen crossings
which are amphichiral (cf. [CL09], [HTW98] and [St10]):

41 63 83 89 812 817 818 1017 1033 1037

1043 1045 1079 1081 1088 1099 10109 10115 10118 10123

124 1258 12125 12268 12273 12341 12427 12435 12458 12462

12465 12471 12477 12499 12506 12510 12627 12819 12821 12868

12887 12890 12906 12960 12990 121008 121019 121039 121102 121105

121123 121124 121127 121152 121167 121188 121202 121209 121211 121218

121225 121229 121249 121251 121254 121260 121267 121269 121273 121275

121280 121281 121287 121288 121644 121750 121994 122161.

It is well-known that the Jones polynomial, the HOMFLY polynomial and the Kauff-
man polynomial can detect chirality. Among the knots with up to 10 crossings only
the chirality of the knots 942 and 1071 can not be detected this way (cf. [RGK94]).
Our calculations show that if K is a hyperbolic knot with at most thirteen crossings,
then K is amphichiral if and only if TK(t) is a real polynomial.

Note that our calculations suggest that the evaluations at t = 1 or t = −1 do not
always detect chirality. For example the knot 10153 has the property that TK(1) equals
4 up to about 10 digits, and the knot 10157 has the property that TK(−1) equals 576
up to about 10 digits. In both cases though the chirality gets detected by evaluating
T10153(−1) respectively T10157(1). We have not yet found a chiral knot where TK(1)
and TK(−1) are real.

Finally we point out that for any amphichiral hyperbolic knot with at most thirteen
crossings the top coefficient is always at least one. This begs the question whether
this is the case in general.

6.4. Calculations: The adjoint representation. Let K be an oriented hyperbolic
knot and let α : π1(XK)→ SL(2,C) be a distinguished representation of type (1, 1).
We now consider the adjoint representation

αadj : π1(XK) → Aut(sl(2,C))
g 7→ A 7→ α(g)Aα−1

associated to α. It is well-known that this representation is also faithful and irre-
ducible. The corresponding twisted torsion τ(K,αadj) ∈ C[t±1] is well-defined up to
multiplication by an element of the form ±tl. In fact using sign-refined torsion and us-
ing the orientation of the knot K we obtain an invariant T adjK (t) which is well-defined
up to multiplication by an element of the form tl. We refer to [DY09] for details on

this construction and for further information on T adjK (t).
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For the Conway knot we calculate that T adjK401
(t) equals approximately

(−0.2788 + 16.4072i)t13 +(−3.9858− 20.1706i)t12 +(−4.2204− 60.5497i)t11

+(52.0953 + 134.5013i)t10 +(−147.7856− 46.07448i)t9 +(897.2087 + 62.3265i)t8

+(−2465.8556− 1308.0110i)t7 +(2465.8556 + 1308.0110i)t6 +(−897.2087− 62.3265i)t5

+(147.7856 + 46.0745i)t4 +(−52.0953− 134.5013i)t3 +(4.2204 + 60.5498i)t2

+(3.9858 + 20.1706i)t +(0.2788− 16.4072i)

and for the Kinoshita-Terasaka knot we calculate that T adjK409
(t) equals approximately

(−0.7378 + 12.4047i)t7 +(29.9408− 56.5548i)t6 +(−655.7823− 173.0400i)t5

+(2056.7509 + 1678.4875i)t4 +(−2056.7509− 1678.4875i)t3 +(655.7823 + 173.0400i)t2

+(−29.9408 + 56.5548i)t +(0.7378− 12.4047i).

Note dimsl(2,C) = 3, it now follows from Theorem [FK06, Theorem 1.1] that

x(K) ≥ 1

3
deg(T adjK (t)).

Note that in the case of the Conway knot and the Kinoshita-Terasaka knot equality
does not hold. This shows that in general the twisted torsion corresponding to an
irreducible and faithful representation does not detect the genus of a knot.

Dubois and Yamaguchi [DY09] have shown that T adjK (t)
.
= −T adjK (t−1). It follows

that T adjK (1) = 0 and that T adjK (t) has odd degree. It is also shown that (T adjK )′(1) 6= 0
and it is conjectured that this number is invariant under mutation.

Question 6.1. Does T adjK (t) detect fibered knots?

6.5. Computations which we should still do. Here is my (S) wish list:

(1) compute TK(t) for all knots up to 16 crossings
(2) check for fiberedness and genus for all knots up to 14 crossings (more would

be nice but perhaps too much work)
(3) check for all these knots whether TK(t) detects chirality (i.e. compare with

Stoimenow’s list [St10]). I think we so far did it up to 14 crossings
(4) check whether two knots have the same TK(t) implies that they are mutants

(again see [St10])
(5) check whether |TK(−1)| is always larger than |TK(1)|.
(6) Check whether the top coefficient of a non-fibered chiral knot is always at

least one.
(7) find out how many/which fibered knots have the property that the second

highest coefficient is a real number (it seems like a non-trivial percentage has
this property)

(8) it would be nice to do one precise calculation, e.g. find the representation of
the Kinoshita-Terasaka knot and the Conway knot over the number field, and
then do the calculations for TK(t) and T adjK (t).
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(9) compute T adjK (t) for enough examples to see whether it detects fiberedness (we
know it does not detect the genus, at least, unless you are allowed to round
up)

(10) Are there amphichiral knots such that TK(1) and TK(−1) are real numbers?
(11) compute the torsion for the canonical 4-dimensional representation of SL(2,C)

for the Conway knot and the Kinoshita-Terasaka knot. Do we get the genus?
(i.e. the 2-dimensional representation gave the genus, the 3-dimensional one
didn’t, so do higher representations get worse or is it an even/odd thing?)

I also have an elementary mathematics question: Let f(t), g(t) be complex poly-
nomials such that for any n we have

n∏
k=1

f(e2πik/n) =
n∏
k=1

g(e2πik/n).

Does this imply that f(t) = g(t)?
The question arises in our context as follows: is the invariant TK(t) determined by

the C-valued torsions of the finite cyclic covers.

7. Appendix A: Connection to zeta functions

The goal is to write up a few facts about the relationship between our torsion and
the analytic torsion. Right now that section is just a mess.

7.1. Analytic torsion. Let X be a compact oriented Riemannian manifold and let
α : π1(X) → O(n) be an orthogonal representation. Then Ray and Singer [RS71]
defined the analytic torsion τan(X,α) ∈ R. Cheeger [Che77, Che79] and Müller
[Mü78] showed independently that analytic torsion equals Reidemeister torsion.

Let X be a hyperbolic 3-manifold X which is either closed or has cusps. Given
a geodesic γ we denote by `(γ) its length. Recall that a closed geodesic is called
prime if it can not be expressed as the multiple of a shorter closed geodesic. Let
ρ : π1(X)→ SL(n,C) be a representation let and s ∈ C. The Ruelle zeta function of
(X, ρ) is now defined as

Rρ(s) :=
∏

det
(
id− ρ(γ)e−s`(γ)

)−1
,

where γ runs over the set of all closed prime geodesics.
If X is closed and ρ an orthogonal representation ρ : π1(X) → O(n) such that

H∗(X; Rn) = 0, then Fried [Fr86] showed that Rρ(s) extends meromorphically to C
and

|Rρ(0)| = τan(X, ρ)2,

where τan(X, ρ) denotes the analytic torsion introduced by Ray and Singer [RS71].

|Rρ(0)| = τ(X, ρ)2.
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(i.e. the Ruelle zeta function can be extended such that Rρ(0) is defined) and

Rρ(0) = τan(X, ρ) = τ(X, ρ).

Here τan(X, ρ) is the analytic torsion of the pair (X, ρ) and τ(X, ρ) is the algebraic
torsion defined earlier. Furthermore,

d

ds
‖s=0 lnRρ(s) = C · volume(X)

for a fixed constant C.
In [Par09] Jinsung Park extended some of Fried’s results to the non-compact case.

More precisely, if X is a complete hyperbolic 3-manifold which is non-compact, then
Park showed that Rρ(s) has a meromorphic extension to the whole complex plane
and that

Rρ(0) = τan(X, ρ).

It is conjectured that the following equality also holds:

τan(X, ρ) = τ(X, ρ).

Remark. Let K be a hyperbolic knot. Denote by Xn the n-fold cover of X(K). Recall
that the proof of Proposition 3.1 shows that the evaluation

∏n
k=1 TK(e2πik/n) equals

τ(Xn, αcan). Does that imply that the invariants τ(Xn, αcan) determine TK(t)?

Remark. Franks [Fra81] gave a dynamical interpretation of the untwisted Alexander
polynomial of a knot. The results of Franks, Fried and Park suggest that there should
also exist a dynamical reinterpretation of twisted Alexander polynomials, in particular
of the invariant TK(t).

Can we show the mutation invariance using these geometric definitions?

7.2. Representations of hyperbolic knots. Throughout this section all hyper-
bolic 3-manifolds are understood to be topology finite, i.e. homeomorphic to the
interior of a compact 3-manifold with empty or toroidal boundary.

Let Vm denote the vector space of symmetric tensors of rank m over C2. Put
differently, Vm is the quotient of V ⊗m by the subspace generated by vectors of the
form

a1 ⊗ · · · ⊗ ai ⊗ · · · ⊗ aj ⊗ · · · ⊗ am − a1 ⊗ · · · ⊗ aj ⊗ · · · ⊗ ai ⊗ · · · ⊗ am.

Note that Vm is a vector space of dimension m + 1, in fact a basis is given by the
vectors e1 ⊗ · · · ⊗ e1 ⊗ e2 ⊗ · · · ⊗ e2 where the number of e1-terms ranges from 0 to
m. We equip C2 with the non-singular form (v, w) := det(v w) and we extend it to a
form on Vm by defining

(v1 ⊗ · · · ⊗ vm, w1 ⊗ · · · ⊗ wm) :=
m∏
i=1

(vi, wj).
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Then there exists a canonical representation ρm : SL(2,C) → Aut(Vm) which is
well-known to be the unique (up to isomorphism) irreducible m+1-dimensional repre-
sentation of SL(2,C). It is also well-known that det(ρm(A)) = 1 for any A ∈ SL(2,C).
Finally note that ρ1 is just the identity, and note that ρ2 is isomorphic to the adjoint
representation ρadj : SL(2,C)→ sl(2,C), A 7→ (B 7→ ABA−1).

Given an oriented hyperbolic 3-manifold together with a lift α : π1(X)→ SL(2,C)
of the canonical representation π1(X) → PSL(2,C) we denote by αm the represen-
tation

π1(X)→ SL(2,C)
ρm−→ SAutC(Vm) ∼= SL(m+ 1,C).

The proof of the following theorem for the closed case can be found in [BW00,
Theorem 6.7, Chapt. VII]

Theorem 7.1. Let X be an oriented hyperbolic 3-manifold. Then Hαm
∗ (X; Cm+1) =

0.

So what non-degenerate form does this representation preserve?
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