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Abstract

Witt spaces are pseudomanifolds for which the middle-perversity intersection ho-

mology with rational coefficients is self-dual. We give a new construction of the sym-

metric signature for Witt spaces which is similar in spirit to the construction given by

Miscenko for manifolds. Our construction has all of the expected properties, including

invariance under stratified homotopy equivalence.
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1 Introduction

For a compact oriented m-manifold M (and more generally for a Poincaré duality space)

the symmetric signature σ∗(M) is an element of the symmetric L-group Lm(π1(M)). The

symmetric signature was introduced by Mǐsčenko in [26] as a tool for studying the Novikov

conjecture, and since then it has become an important part of surgery theory (see [29], for

example).

The basic ingredient in the construction of σ∗(M) is Poincaré duality on the universal

cover. Another situation where Poincaré duality occurs is the middle perversity intersection

homology of a certain class of pseudomanifolds, the Witt spaces ([33]), so it is natural to ask

whether there is a symmetric signature for Witt spaces. The purpose of this paper is to give

a positive answer to this question.

There are several other treatments of the symmetric signature for Witt spaces in the

literature. Cappell, Shaneson, and Weinberger [6] give a brief description of a construction

which uses the work of Quinn and Yamasaki [28, 40]. Further information is given in [36,

pages 209–210], but the complete account has not been published. Banagl [4, Section 4]

uses the Ph. D. thesis of Thorsten Eppelmann [9] to construct an L-homology fundamental

class for a Witt space and then defines the symmetric signature to be the image of this class

under the assembly map. However, there are gaps in Eppelmann’s work (Banagl and Laures

have informed us that they are working on a corrected version of [9]). Finally, an analytic

construction of the symmetric signature (for smoothly stratified Witt spaces) has been given

by Albin, Leichtnam, Mazzeo, and Piazza [1, 2].

Our approach has several advantages. It is similar in spirit to that of Mǐsčenko (and

thus answers a question in [2]). The actual construction uses only the diagonal map of the

pseudomanifold and the cross product on intersection chains, and the supporting results use

only the Künneth theorem of [13] and standard facts about intersection chains. We give a

simple proof of stratified homotopy invariance; this is proved by a rather intricate analytic

argument in [2] and it is not known how to prove it using the approach of [4]. We also give a

simple proof of the product formula; to prove this using the approach of [4] one would need

to show that Eppelmann’s map MIP → L• is a map of ring spectra up to homotopy.

Applications of the symmetric signature for Witt spaces have been given in [35, 37, 7].

Also, Shmuel Weinberger has pointed out to us that one can use the symmetric signature

for Witt spaces to extend [10, Theorem 1.3.2] to Witt spaces.

An argument due to Weinberger (see [2, Proof of Proposition 7.1]) shows that any two

definitions of the symmetric signature for Witt spaces must agree rationally if (1) they are

bordism invariant and (2) they agree with Mǐsčenko’s definition for smooth manifolds. Thus
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all of the known constructions of the symmetric signature agree rationally; it would be

interesting to know whether they agree over the integers.

Here is an outline of the paper. In Section 2 we review some background from [18]. For

our construction of the symmetric signature we need to know that the intersection homology

version of Poincaré duality for the universal cover (which is analogous to what Ranicki [31]

calls “universal Poincaré duality”) is given by a cap product; in Section 3 we construct the

cap product and in Section 4 we give the proof of universal Poincaré duality. In Section 5

we give the construction of the symmetric signature for Witt spaces and we prove that it

has the expected properties. Section 6 gives some technical facts about intersection chains

which are needed for the main proofs.

Remark 1.1. We will assume that all pseudomanifolds are oriented (see Section 2 for the

definition). In [26, 29] the symmetric signature is defined in the non-orientable case by

twisting with the orientation character, but it is not clear how to do that in our situation.

For example, the suspension of RP 2 is a non-orientable pseudomanifold which is simply-

connected and hence cannot have a non-trivial orientation character π1(X)→ Z2.

Acknowledgements. We would like to thank Paolo Piazza for suggesting this project to

us. We would also like to thank Steve Ferry and (especially) Shmuel Weinberger for helpful

conversations and emails.

2 Conventions and some background

We assume the reader to be conversant with intersection homology theory. Basic textbook

introductions to intersection homology include [5, 24, 3], and the original papers [20, 21, 23]

are well worth reading. We recommend [17] for an expository introduction to the version of

intersection homology considered here and [16] for a more technical account.

Stratified pseudomanifolds and intersection homology. We note here some of our

conventions, which sometimes differ from other authors. We continue the conventions of [18]

and refer the reader there for more details.

We will work with topological stratified pseudomanifolds X . Skeleta of X will be denoted

X i. By a stratum, we will mean a connected component of one of the spaces X i − X i−1;

a stratum Z is a singular stratum if dim(Z) < dim(X). X is allowed to have strata of

codimension one unless noted otherwise. A perversity on X is a function from the set of

strata of X to Z which takes nonsingular strata to 0. This is a much more general definition

than that in [20, 21]; on the rare occasions when we want to refer to perversities as defined

in [20, 21] we will call them “classical perversities.”

An orientation of a stratified pseudomanifold is a choice of orientations for the top strata.

In the literature, there are several non-equivalent definitions of intersection homology with

general perversities. We use the version in [17, 16] (which is equivalent to that in [32]). In

[17, 16] this version of intersection homology (with F coefficients) was denoted I p̄H∗(X ;F0)
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but (as in [18]) we will denote it simply by I p̄H∗(X ;F ). This version of intersection homology

agrees with the definition in [20, 21] when p̄ is a classical perversity and X has no strata of

codimension one.

We let Dp̄ denote the complementary perversity to p̄, i.e. Dp̄(Z) = codim(Z)−2− p̄(Z).
We direct the reader to [18, Section 4] for intersection cochains and for the chain-level

versions of intersection (co)homology cup and cap products.

Signs. We include a sign in the Poincaré duality isomorphism (see [15, Section 4.1]). Ex-

cept for this we follow the signs in [8], which means that we use the Koszul convention

everywhere except in the definition of the coboundary on cochains. Dold’s convention for

the differential of a cochain (see [8, Remark VI.10.28]) is

(δα)(x) = −(−1)|α|α(∂x).

This convention is necessary in order for the evaluation map to be a chain map.

3 The cap product for covering spaces

Let p : X̃ → X be a regular cover with group π. For any subset A of X we write Ã for

p−1(A).

Notation 3.1. 1. Given a perversity p̄ on X , the perversity on X̃ which takes a stratum

S to p̄(p(S)) will also be denoted by p̄.

2. We will write Ip̄C̄
∗(X̃ ;F ) for HomF [π](I

p̄C∗(X̃ ;F ), F [π]) and Ip̄H̄
∗(X̃ ;F ) for the co-

homology groups of this complex.

Remark 3.2. If the covering p : X̃ → X is trivial (i.e., if it is isomorphic to the projection

π ×X → X) then Ip̄H̄
∗(X̃;F ) is HomF (Ip̄H∗(X,F ), F [π]).

In this section we define a cap product

Iq̄H̄
i(X̃ ;F )⊗ I r̄Hj(X ;F )→ I p̄Hj−i(X̃ ;F )

when Dr̄ ≥ Dp̄+Dq̄ and F is a field.

The construction follows the general outline of [18, Section 4], so we begin by constructing

a suitable algebraic diagonal map. For a left F [π]-module M , let M t denote the right F [π]-

module structure on M induced by the standard involution of F [π].

Let

d̃ : I r̄H∗(X ;F )→ H∗(I
p̄C∗(X̃;F )t ⊗F [π] I

q̄C∗(X̃ ;F ))

be the composition

I r̄H∗(X ;F )
∼=
←− H∗(F ⊗F [π] I

r̄C∗(X̃ ;F ))

1⊗d
−−→ H∗(F ⊗F [π] I

Qp̄,q̄C∗(X̃ × X̃ ;F ))
∼=
←− H∗(F ⊗F [π] (I

p̄C∗(X̃;F )⊗F I
q̄C∗(X̃ ;F )))

∼= H∗(I
p̄C∗(X̃ ;F )t ⊗F [π] I

q̄C∗(X̃;F )).
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Here d is the diagonal map given by [18, Proposition 4.2.1]. The first isomorphism is given

by Proposition 6.1.3 below. The second isomorphism is given by the Künneth theorem [18,

Theorem 3.1] and Proposition 6.5 below. The third isomorphism is elementary.

Suppose now that α ∈ Iq̄H̄
∗(X̃ ;F ) and that x ∈ I r̄H∗(X ;F ). We note thatH∗(I

p̄C∗(X̃ ;F )t)

is the same F -vector space as I p̄H∗(X̃;F ), and we define α a x ∈ I p̄H∗(X̃ ;F ) by

α a x = (1⊗ α)d̃(x).

Explicitly, if d̃(x) is represented by a cycle
∑

a ya ⊗ za, then α a x is represented by

(−1)|α||ya|
∑

a yaα(za) ∈ I
p̄C∗(X̃ ;F )t.

If π is trivial this construction reduces to the cap product defined in [18, Section 4.3].

Similarly, when A and B are open subsets of X , we can define the relative cap product

Iq̄H̄
i(X̃, Ã;F )⊗ I r̄Hj(X,A ∪ B;F )→ I p̄Hj−i(X̃, B̃;F ).

In the next section, we will (implicitly) use the fact that [18, Propositions 4.16 and 4.19]

have analogues for the cap product discussed in this section. We leave it to the reader to

check that the proofs in [18] go through in this situation. We will also need an analogue of

[18, Proposition 4.21], and for this we need to define the cohomology cross product

× : H∗(M ;F )⊗ Ip̄H̄
∗(X̃ ;F )→ Ip̄H̄

∗(M × X̃;F )

in the special case where the covering p : X̃ → X is trivial; we define it to be the composite

H∗(M ;F )⊗ Ip̄H̄
∗(X̃ ;F ) ∼= HomF (H∗(M ;F ), F )⊗ HomF (I

p̄H∗(X ;F ), F [π])

→ HomF (H∗(M ;F )⊗ I p̄H∗(X ;F ), F [π]) ∼= HomF (I
p̄H∗(M ×X ;F ), F [π])

∼= Ip̄H̄
∗(M × X̃ ;F ),

using Remark 3.2.

Remark 3.3. This is an isomorphism when H∗(M ;F ) is finitely generated.

4 Universal Poincaré duality

In this section, we consider “universal” Poincaré duality—the duality for regular coverings

of stratified pseudomanifolds. For manifolds, universal duality plays an important role in

surgery theory and in the definition of L-theory invariants, such as the symmetric signature;

see [31, Section 4.5] and [29].

Let F be a field, and let X be an F -oriented n-dimensional stratified pseudomanifold,

possibly noncompact. Let p : X̃ → X be a regular cover with group π. For each compact

K ⊂ X , let ΓK be the fundamental class of I 0̄Hn(X,X−K;F ) (see [18, Definition 5.8]) and

let p̄, q̄ be complementary perversities, i.e. p̄(Z) + q̄(Z) = codim(Z) − 2 for each singular

stratum Z.

Let

D : lim−→
K

Ip̄H̄
i(X̃, X̃ − K̃;F )→ I q̄Hn−i(X̃;F )
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be the map obtained by passage to the direct limit from

(−1)in· a ΓK : Ip̄H̄
i(X̃, X̃ − K̃;F )→ I q̄Hn−i(X̃;F )

(compare the discussion in [18] that comes before the statement of Theorem 6.3, and see [15,

Section 4.1] for the sign).

Theorem 4.1 (Universal Poincaré duality). Let X be an F -oriented stratified pseudoman-

ifold, possibly noncompact and possibly with codimension one strata, let p : X̃ → X be a

regular π-covering of X, and let p̄, q̄ be complementary perversities. Then D is an isomor-

phism.

The proof will occupy the remainder of this section.

The proof follows the same outline as the proof of [18, Theorem 6.2]. First we need the

following analogue of [18, Lemma 6.4].

Lemma 4.2. Let L be a compact k−1 dimensional stratified pseudomanifold. If the conclu-

sion of Theorem 4.1 holds for L with the trivial covering map π × L→ L then it also holds

for cL with the trivial covering map π × cL→ cL.

The proof of this lemma is the same as that of [18, Lemma 6.4], except that Remark 3.2

above should be used in place of [18, Remark 4.9].

Next we need the following analogue of [18, Lemma 6.6].

Lemma 4.3. Suppose that the conclusion of Theorem 4.1 holds for the compact F -oriented

stratified k− 1 pseudomanifold L with the trivial covering map π×L→ L. Let M be an F -

oriented unstratified n− k manifold, and assume that H∗(M,M −C;F ) is finitely generated

for a cofinal collection of compact subsets C. Give M × cL the product stratification and the

product orientation. Then the conclusion of Theorem 4.1 holds for M × cL with the trivial

covering map π ×M × cL→ M × cL.

The proof is the same as that of [18, Lemma 6.6], except that the relative version of

Remark 3.3 above should be used in place of the relative version of [18, Remark 4.20].

The next part of the proof of [18, Theorem 6.3] is a Zorn’s lemma argument using

an induction over depth. The analogous argument works in our situation because of the

following observations:

• In order to construct the Mayer-Vietoris sequence for Ip̄H̄
∗ it suffices to know that if

A ⊂ B are open subsets of X then the inclusion I p̄C∗(Ã;F ) →֒ I p̄C∗(B̃;F ) is split as

a map of F [π]-modules. This in turn follows from the proof of [12, Proposition 2.9]

(use the construction in that proof with X taken to be B and the ordered open cover

taken to be (A,B)).

• In the situation where Lemmas 4.2 and 4.3 are needed, M × cL is contained in a

distinguished neighborhood, so in particular the restriction of the covering map p :

X̃ → X to a cover of M × cL is trivial.
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• Moreover, the M ’s that occur in the proof are open subsets of Euclidean space. Such

an M is a PL manifold, so we can take C in Lemma 4.3 to be a compact PL subspace

and then H∗(M,M − C;F ) is finitely generated by Poincaré-Lefschetz duality ([8,

Proposition VIII.7.2]).

It remains to consider the analogues of [18, Lemmas 6.8 and 6.9]. All of the steps in the

proof of [18, Lemma 6.8] go through without change in our situation. For the analogue of

[18, Lemma 6.9], we need to know that the map

λ : H∗(F ⊗F [π] lim−→
W∈C

IQp̄,q̄C∗(W̃ × W̃ , W̃ × (W̃ − K̃ ∪ L̃)))

→ H∗(F ⊗F [π] I
Qp̄,q̄C∗(Ỹ , Ỹ − (X̃ × (K̃ ∪ L̃))))

is an isomorphism; this is immediate from Proposition 6.1.2 below.

Remark 4.4. It seems likely that the proof of Poincaré duality given in this section generalizes

to local coefficient systems defined on X −Xn−1 (cf. [21]).

4.1 Lefschetz duality

Lefschetz duality also generalizes to the universal setting, yielding the following corollary

to Theorem 4.1. The proof follows from Theorem 4.1 just as [18, Theorem 7.10] follows

from [18, Theorem 6.3]. See [18, Section 7.1] for the definition of topological ∂-stratified

pseudomanifold.

Theorem 4.5 (Universal Lefschetz Duality). Let X be an n-dimensional compact ∂-stratified

pseudomanifold such that X − ∂X is F -oriented. Let p : X̃ → X be a regular π-covering,

and let p̄, q̄ be complementary perversities. Then the cap product with ΓX is an isomorphism

Ip̄H̄
i(X̃ ;F )→ I q̄Hn−i(X̃ ;F ).

5 The symmetric signature

In Section 5.1, we review the construction of the symmetric signature for compact oriented

manifolds. Section 5.2 gives a reformulation that is convenient for our purposes. In Section

5.3, we construct the symmetric signature for F -Witt spaces, and in Section 5.4 we show

that it has the expected properties.

5.1 The symmetric signature for manifolds

Given a closed oriented manifold M of dimension m, a discrete group π, and a map f :

M → Bπ, the symmetric signature σ∗(f) is an element of the symmetric L-group Lm(Z[π]).
We begin by recalling the definition of this group from [29, Section 1] (with a variation

introduced in [38]), which requires some preliminary definitions.
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Let R be a ring with involution and let C be a chain complex of left R-modules. The

involution gives a chain complex Ct of right R-modules. There is a chain map, called the

slant product

\ : HomR(C,R)⊗Z (Ct ⊗R C)→ Ct

defined by α⊗ x⊗ y → (−1)|α||x|xα(y) (cf. [8, Section VII.11]).

Definition 5.1. A chain complex C over R is finite if it is free and finitely generated over R

in each degree and nonzero only in finitely many degrees. It is homotopy finite if it is chain

homotopy equivalent over R to a finite chain complex over R.

Let W be the standard Z[Z/2]-free resolution of Z. Let ι ∈ H0(W ) be the generator.

Definition 5.2. An n-dimensional symmetric Poincaré complex over R is a pair (C, φ),

where C is a homotopy finite chain complex over R and φ is a Z/2-equivariant chain map

φ : W → Ct ⊗R C

which raises degrees by n, such that the slant product with φ∗(ι) is an isomorphism

H∗(HomR(C,R))→ Hn−∗(C
t).

(Note that H∗(C
t) = H∗(C)) as graded abelian groups.)

The concept of a symmetric Poincaré pair (which we will denote by ((D,Φ), (C, φ))) is

defined in a similar way ([29, Definition 1.7]).

Definition 5.3. 1. Given symmetric Poincaré complexes (C, φ) and (C ′, φ′) over R, the

direct sum (C, φ)⊕ (C ′, φ′) is the symmetric Poincaré complex (C ⊕C ′, ψ), where ψ is

the composite

W
diag
−−→W ⊕W

φ⊕φ′

−−−→ (Ct ⊗R C)⊕ (C ′t ⊗R C
′) →֒ (C ⊕ C ′)t ⊗R (C ⊕ C ′).

2. (C, φ) and (C ′, φ′) are bordant if there is a symmetric Poincaré pair ((D,Φ), (C, φ)⊕
(C ′,−φ′)).

3. Ln(R) is the bordism group of n-dimensional symmetric Poincaré complexes (with

addition given by direct sum).

Remark 5.4. The definition of symmetric Poincaré complex in [29, Section 1] requires C to

be a finite chain complex over R and not just homotopy finite. It’s easy to check (using the

proof of [38, Lemma 3.4]) that the L groups in Definition 5.3.3 are the same as those in [29].

Remark 5.5. A Z/2-equivariant chain mapW → Ct⊗RC that raises degrees by n represents

an element of Hn(HomZ[Z/2](W,C
t ⊗R C)). If (C, φ) is a symmetric Poincaré complex and

ψ :W → Ct⊗RC represents the same homology class as φ (i.e., if ψ is Z/2-equivariantly chain

homotopic to φ), then (C, ψ) is a symmetric Poincaré complex that is homotopy equivalent

to (C, φ) ([29, Definition 1.6(ii)]) and therefore represents the same element of Ln(R) (by

[29, Proposition 1.13]).
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Now let f :M → Bπ be a map with M compact oriented of dimension n and π discrete.

Let M̃ be the induced cover of M . The singular chain complex C∗(M̃) is homotopy finite

over Z[π] (for example, by [39, Corollary 5.3]). Choose a representative ξ ∈ Sn(M) for the

fundamental class of M , and let φM be the composite

W ∼= W ⊗ Z
1⊗ξ
−−→W ⊗ C∗(M) ∼= Z⊗Z[π] (W ⊗ C∗(M̃))

1⊗EAW
−−−−→ Z⊗Z[π] (C∗(M̃)⊗ C∗(M̃)) ∼= (C∗(M̃))t ⊗Z[π] C∗(M̃),

where EAW is the extended Alexander-Whitney map (which can be constructed by an acyclic

models argument). The symmetric signature σ∗(f) is the class in Ln(Z[π]) represented by

the symmetric Poincaré complex (C∗(M̃), φM). This is independent of the choice of ξ by

Remark 5.5.

5.2 Reformulation

In this section we give an equivalent definition of the symmetric signature that does not

use the extended Alexander-Whitney map (see Corollary 5.8). We use the notation of the

previous section.

Our first result shows that EAW can be replaced, for our purposes, by the diagram

W ⊗ C∗(M̃)
ε⊗1
−−→ C∗(M̃)

d
−→ C∗(M̃ × M̃)

×
←− C∗(M̃)⊗ C∗(M̃),

where ε is the augmentation and d is induced by the diagonal map.

Proposition 5.6. The diagram

W ⊗ C∗(M̃)
EAW //

ε⊗1
��

C∗(M̃)⊗ C∗(M̃)

×
��

C∗(M̃)
d // C∗(M̃ × M̃)

commutes up to (Z/2 × π1M)-equivariant chain homotopy (where π1M acts diagonally on

C∗(M̃)⊗ C∗(M̃) and C∗(M̃ × M̃)).

We defer the proof to the end of the section.

The map

C∗(M̃)⊗ C∗(M̃)
×
−→ C∗(M̃ × M̃)

is a quasi-isomorphism whose domain and target are free over Z[π], hence it is a chain

homotopy equivalence over Z[π] (see, for example, [22, Exercise IV.4.2]), and we obtain a

quasi-isomorphism

Z⊗Z[π] (C∗(M̃)⊗ C∗(M̃))
1⊗×
−−→ Z⊗Z[π] C∗(M̃ × M̃).
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This in turn induces an isomorphism

H∗(HomZ[Z/2](W, (C∗(M̃))t ⊗Z[π] C∗(M̃))) ∼= H∗(HomZ[Z/2](W,Z⊗Z[π] (C∗(M̃)⊗ C∗(M̃))))

→ H∗(HomZ[Z/2](W,Z⊗Z[π] C∗(M̃ × M̃))),

which we denote by Υ. Let

cf ∈ Hn(HomZ[Z/2](W,Z⊗Z[π] C∗(M̃ × M̃)))

be the class represented by the composite

W
ε
−→ Z

ξ
−→ C∗(M) ∼= Z⊗Z[π] C∗(M̃)

1⊗d
−−→ Z⊗Z[π] C∗(M̃ × M̃).

Our next result is an easy consequence of Proposition 5.6.

Proposition 5.7. Υ takes the homology class of φM to cf .

Combining this with Remark 5.5 gives:

Corollary 5.8. If ψ : W → (C∗M̃)t ⊗Z[π] C∗(M̃) is any Z/2-equivariant chain map whose

homology class is Υ−1(cf) then (C∗(M̃), ψ) is a representative for σ∗(f).

Proof of Proposition 5.6. We use the formula for EAW given in [25, Definition 2.10(a) and

Remark 2.11(a)]. A similar formula gives a natural transformation

W ⊗ C∗(X × Y )→ C∗(X)⊗ C∗(Y )

which we denote by EZ. EAW factors as

W ⊗ C∗(X)
1⊗d
−−→W ⊗ C∗(X ×X)

EZ
−→ C∗(X)⊗ C∗(X),

so to prove the proposition it suffices to show that the diagram

W ⊗ C∗(M̃ × M̃)
EZ //

ε⊗1 ))S

S

S

S

S

S

S

S

S

S

S

S

S

S

C∗(M̃)⊗ C∗(M̃)

×
��

C∗(M̃ × M̃)

commutes up to (Z/2× π1M)-equivariant chain homotopy. Since the map

W ⊗ C∗(M̃)⊗ C∗(M̃)
1⊗×
−−→W ⊗ C∗(M̃ × M̃)

is a (Z/2× π1M)-equivariant chain homotopy equivalence, it suffices to show that the com-

posites

W ⊗ C∗(M̃)⊗ C∗(M̃)
1⊗×
−−→W ⊗ C∗(M̃ × M̃)

EZ
−→ C∗(M̃)⊗ C∗(M̃)

×
−→ C∗(M̃ × M̃)
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and

W ⊗ C∗(M̃)⊗ C∗(M̃)
1⊗×
−−→W ⊗ C∗(M̃ × M̃)

ε⊗1
−−→ C∗(M̃ × M̃)

are equal. As (ǫ⊗ 1)(1⊗×) = ǫ⊗× = (1⊗×)(ǫ⊗ 1), this in turn follows from the fact that

the diagram

W ⊗ C∗(X)⊗ C∗(Y )
1⊗× //

ε⊗1 **T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

W ⊗ C∗(X × Y )

EZ
��

C∗(X)⊗ C∗(Y )

commutes (which is easily checked from the definitions of EZ and ×).

5.3 Definition of the symmetric signature for F -Witt spaces

In this section we use coefficients in a field F .

We will use the definition of F -Witt space from [14, page 1271]; in particular F -Witt

spaces are PL, compact, oriented have no codimension one strata. In fact everything we

do would go through without change for topological F -Witt spaces, except for the proofs of

Proposition 5.12 (which is probably still true in the topological setting) and Theorem 5.17.1

(see Remark 5.18).

Let X be an F -Witt space, let f : X → Bπ be a map, and let X̃ be the induced cover

of X . Recall that the upper middle perversity n̄ is defined by

n̄(Z) =

{
0, if codim(Z) ≤ 1,

⌈ codim(Z)−2
2

⌉, if codim(Z) ≥ 2.

In order to define the symmetric signature of f we follow the pattern of the previous

section.

By Proposition 6.5, the map

F ⊗F [π] (I
n̄C∗(X̃ ;F )⊗F I

n̄C∗(X̃ ;F ))
1⊗×
−−→ F ⊗F [π] I

Qn̄,n̄C∗(X̃ × X̃ ;F )

is a quasi-isomorphism, which is evidently Z/2-equivariant. Combining this with the iso-

morphism

(I n̄C∗(X̃ ;F ))t ⊗F [π] I
n̄C∗(X̃ ;F ) ∼= F ⊗F [π] (I

n̄C∗(X̃ ;F )⊗F I
n̄C∗(X̃;F )),

we obtain an isomorphism

Υ : H∗(HomZ[Z/2](W, (I
n̄C∗(X̃ ;F ))t ⊗F [π] I

n̄C∗(X̃ ;F )))
∼=
−→ H∗(HomZ[Z/2](W,F ⊗F [π] I

Qn̄,n̄C∗(X̃ × X̃;F ))).

Next we construct a class

cf ∈ Hn(HomZ[Z/2](W,F ⊗F [π] I
Qn̄,n̄C∗(X̃ × X̃ ;F ))).
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Notation 5.9. Let bX ∈ Hn(F ⊗F [π] I
0̄C∗(X̃ ;F )) map to the fundamental class ΓX under

the isomorphism

H∗(F ⊗F [π] I
0̄C∗(X̃ ;F ))→ I 0̄H∗(X ;F )

given by Proposition 6.1.3.

Let ζ be a cycle representing bX and let cf be the class represented by the composite

W
ε
−→ Z

ζ
−→ F ⊗F [π] I

0̄C∗(X̃;F )
1⊗d
−−→ F ⊗F [π] I

Qn̄,n̄C∗(X̃ × X̃;F ).

Proposition 5.10. Let

ψ : W → (I n̄C∗(X̃;F ))t ⊗F [π] I
n̄C∗(X̃ ;F )

be a Z/2-equivariant chain map that represents Υ−1(cf ). Then

(I n̄C∗(X̃ ;F ), ψ)

is a symmetric Poincaré complex.

Before proving this we give

Definition 5.11. The symmetric signature of f : X → Bπ, denoted σ∗
Witt(f), is the class in

Ln(F [π]) represented by (I n̄C∗(X̃ ;F ), ψ), with ψ as in Proposition 5.10.

The first step in proving Proposition 5.10 is the following result, which will be proved in

Section 6.3.

Proposition 5.12. Let X be a compact PL ∂-stratified pseudomanifold. Let X̃ be a regular

covering of X with group π. For any perversity p̄, the chain complex I p̄C∗(X̃ ;F ) is homotopy

finite over F [π].

According to Definition 5.2, to complete the proof of Proposition 5.10 we need to show

that the slant product with ψ∗(ι) induces an isomorphism

H∗(HomF [π](I
n̄C∗(X̃ ;F ), F [π]))→ Hn−∗(I

n̄C∗(X̃ ;F )).

Consider the diagram

H∗(HomF [π](I
n̄C∗(X̃ ;F ), F [π]))

\d̃(ΓX )//

\ψ∗(ι) ++V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

Hn−∗(I
m̄C∗(X̃;F ))

��

Hn−∗(I
n̄C∗(X̃ ;F )).

The map d̃ was defined in Section 3 and m̄ denotes Dn̄ (the lower middle perversity). The

vertical arrow is an isomorphism because X is an F -Witt space (see [21, Section 5.6.1])

and the horizontal arrow is an isomorphism by Theorem 4.1, so it suffices to show that the

diagram commutes.
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For this it suffices to show that the lower horizontal arrow in the following commutative

diagram takes d̃(ΓX) to ψ∗(ι).

H∗(F ⊗F [π] I
0̄C∗(X̃ ;F ))

1⊗d
��

= // H∗(F ⊗F [π] I
0̄C∗(X̃ ;F ))

1⊗d
��

H∗(F ⊗F [π] I
Qn̄,m̄C∗(X̃ × X̃;F )) // H∗(F ⊗F [π] I

Qn̄,n̄C∗(X̃ × X̃ ;F ))

H∗(F ⊗F [π] (I
n̄C∗(X̃ ;F )⊗F I

m̄C∗(X̃ ;F )))

∼= 1⊗×

OO

∼=
��

// H∗(F ⊗F [π] (I
n̄C∗(X̃;F )⊗F I

n̄C∗(X̃ ;F )))

∼= 1⊗×

OO

∼=
��

H∗((I
n̄C∗(X̃;F ))t ⊗F [π] I

m̄C∗(X̃ ;F )) // H∗((I
n̄C∗(X̃ ;F ))t ⊗F [π] I

n̄C∗(X̃ ;F ))

The definition of d̃ shows that d̃(ΓX) is the image of bX (see Notation 5.9) under the left

vertical composite, and the definition of ψ shows that ψ∗(ι) is the image of bX under the

right vertical composite, which completes the proof.

5.4 Properties of the symmetric signature for F -Witt spaces

We begin by showing (Proposition 5.13) that σ∗
Witt is consistent with the usual symmetric

signature σ∗ when X is a manifold and (Proposition 5.14) that σ∗
Witt is consistent with the

Witt class w of X , as defined in [33, Section I.4] and [14, Section 4.1]. We then show

that σ∗
Witt is additive with respect to disjoint union (Proposition 5.15) and multiplicative

with respect to Cartesian product (Theorem 5.16). Next we show that σ∗
Witt is invariant

under oriented PL homeomorphism and oriented stratified homotopy equivalence (Theorem

5.17) and Witt bordism (Theorem 5.19). Finally, we note that σ∗
Witt agrees rationally with

the signature index class constructed in [1, Theorem 1.1]; it would be interesting to know

whether they also agree integrally.

Proposition 5.13. If X is a compact oriented manifold and f : X → Bπ is a map then

σ∗
Witt(f) is equal to the usual symmetric signature σ∗(f).

Proof. This is immediate from Corollary 5.8.

For our next result, we recall that there is a map Ln(F [π]) → Ln(F ) which takes the

class of

(C,W
φ
−→ Ct ⊗F [π] C)

to the class of1

(C/π,W
φ
−→ Ct ⊗F [π] C → C/π ⊗F C/π).

Moreover, if n ≡ 0 mod 4, or if char(F ) = 2 and n ≡ 0 mod 2, we can construct a map

Ln(F )→W (F ) (where W (F ) is the Witt group) as follows: a symmetric Poincaré complex

1Here C/π is a convenient shorthand for F ⊗F [π] C, where F is given the trivial π action.

13



(D,ψ) over F determines an inner product

Hn/2(HomF (D,F ))⊗F Hn/2(HomF (D,F ))→ F

which takes α ⊗ β to (α ⊗ β)(ψ∗(ι)), and the proof of [8, Proposition VIII.9.6] shows that

the element of W (F ) represented by this inner product depends only on the bordism class

of (D,ψ).

Proposition 5.14. Let X be an F -Witt space of dimension n, where n ≡ 0 mod 4 or

char(F ) = 2 and n ≡ 0 mod 2. The composite

Ln(F [π])→ Ln(F )→W (F )

takes σ∗
Witt(f : X → Bπ) to the Witt class w(X) (that is, the class of the intersection form

on I n̄Hn/2(X ;F )).

Proof. Let (I n̄C∗(X̃;F ), ψ) be a representative for σ∗
Witt(f : X → Bπ), where ψ satisfies the

condition of Proposition 5.10. The image of σ∗
Witt(f : X → Bπ) in Ln(F ) is represented by

(I n̄C∗(X̃ ;F )/π, ω), where ω is the composite

W
ψ
−→ I n̄C∗(X̃ ;F )t ⊗F [π] I

n̄C∗(X̃ ;F )→ I n̄C∗(X̃ ;F )/π ⊗F I
n̄C∗(X̃ ;F )/π.

Let ω′ be the composite

W
ω
−→ I n̄C∗(X̃;F )/π ⊗F I

n̄C∗(X̃ ;F )/π→ I n̄C∗(X ;F )⊗F I
n̄C∗(X ;F ).

The map I n̄C∗(X̃ ;F )/π → I n̄C∗(X ;F ) is a chain homotopy equivalence by Proposition

6.1.3, and so (I n̄C∗(X ;F ), ω′) is bordant to (I n̄C∗(X̃ ;F )/π, ω) by [29, Proposition 1.13 and

Definition 1.6(ii)]. It is straightforward to check that ω′
∗(ι) is the element d̄(ΓX), where d̄ is

the algebraic diagonal defined in [18, Section 4.1]. Thus the image of σ∗
Witt(f : X → Bπ) in

W (F ) is represented by the inner product

In̄H
n/2(X ;F )⊗F In̄H

n/2(X ;F )→ F

which takes α ⊗ β to (α ⊗ β)d̄(ΓX) = (α ∪ β)(ΓX). By [18, Proposition 4.19] and [19,

Corollary 5.3] we see that the Poincaré duality isomorphism In̄H
n/2(X ;F )→ Im̄Hn/2(X ;F )

takes this inner product to the intersection form.

Proposition 5.15. If X and Y are F -Witt spaces of the same dimension and f : X → Bπ,

g : Y → Bπ are maps, then

σ∗
Witt(f

∐
g : X

∐
Y → Bπ) = σ∗

Witt(f) + σ∗
Witt(g).

Proof. The proof is a straightforward diagram chase using Definitions 5.3 and 5.11.

For our next result we need the multiplication map

Lm(F [π])⊗ Ln(F [ρ])→ Lm+n(F [π × ρ])

(see [30, Proposition 8.1]).
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Proposition 5.16. If X and Y are F -Witt spaces and f : X → Bπ, g : Y → Bρ are maps,

then

σ∗
Witt(f × g) = σ∗

Witt(f) · σ
∗
Witt(g).

Proof. Let (I n̄C∗(X̃ ;F ), ψX) and (I n̄C∗(Ỹ ;F ), ψY ) be representatives for σ
∗
Witt(f) and σ

∗
Witt(g).

Recall the map

∆ : W →W ⊗W

defined on page 174 of [30]. The product σ∗
Witt(f) · σ

∗
Witt(g) is (by definition) represented by

(I n̄C∗(X̃ ;F )⊗F I
n̄C∗(Ỹ ;F ), ω),

where ω is the composite

W
∆
−→ W ⊗W

φ⊗ψ
−−→ (I n̄C∗(X̃ ;F )t ⊗F [π] I

n̄C∗(X̃;F ))⊗ (I n̄C∗(Ỹ ;F )t ⊗F [ρ] I
n̄C∗(Ỹ ;F ))

∼= (I n̄C∗(X̃;F )⊗ I n̄C∗(Ỹ ;F ))
t ⊗F [π×ρ] (I

n̄C∗(X̃ ;F )⊗ I n̄C∗(Ỹ ;F )).

By [13, page 382], the cross product induces a map

I n̄C∗(X̃ ;F )⊗F I
n̄C∗(Ỹ ;F )→ I n̄C∗(X̃ × Ỹ ;F )

and by [29, Proposition 1.13] it suffices to show that this map is a homotopy equivalence ([29,

Definition 1.6(ii)]) from (I n̄C∗(X̃;F )⊗F I
n̄C∗(Ỹ ;F ), ω) to a representative for σ∗

Witt(f × g).
For this in turn it suffices to show that the composite

W
ω
−→ (I n̄C∗(X̃ ;F )⊗F I

n̄C∗(Ỹ ;F ))
t ⊗F [π×ρ] (I

n̄C∗(X̃ ;F )⊗F I
n̄C∗(Ỹ ;F ))

→ I n̄C∗(X̃ × Ỹ ;F )
t ⊗F [π×ρ] I

n̄C∗(X̃ × Ỹ ;F )

represents the homology class cf×g defined in Section 5.3, and this can be verified by a

straightforward diagram chase.

For part 1 of the following theorem, we use the definition of oriented homeomorphism of

stratified pseudomanifolds [18, Definition 5.21]. For part 2, we use the definition of stratified

homotopy equivalence given in [18, Appendix A], and we also use the fact [18, Corollary

5.16] that if g : Y → X is a stratified homotopy equivalence between compact stratified

pseudomanifolds then an orientation of X determines an orientation of Y .

Theorem 5.17. Let X and Y be F -Witt spaces with maps f : X → Bπ and g : Y → X.

1. If g is an oriented PL homeomorphism then σ∗
Witt(f ◦ g) = σ∗

Witt(f).

2. Suppose that g is a stratified homotopy equivalence, and give Y the orientation deter-

mined by that of X. Then σ∗
Witt(f ◦ g) = σ∗

Witt(f).
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Proof. For part 1, let |X| denote the underlying PL space ofX and letX ′ be the stratification

of |X| determined by g. It suffices to show that

σ∗
Witt(f : X ′ → Bπ) = σ∗

Witt(f : X → Bπ).

Choose a triangulation T of |X| which is compatible with both stratifications. By the proof

of [5, Proposition I.1.4], we can define a third stratified pseudomanifold structure X ′′ for |X|
by letting (X ′′)i be the i-skeleton of T for i ≤ n − 2 and |X| for i = n, n − 1. This is a

refinement of both X and X ′, so we have inclusions

i1 : I
n̄C∗(X̃

′′;F ) →֒ I n̄C∗(X̃ ;F )

and

i2 : I
n̄C∗(X̃

′′;F ) →֒ I n̄C∗(X̃
′;F )

which are quasi-isomorphisms (by [20, page 148]) and hence chain homotopy equivalences

over F [π] (by Proposition 6.4.1 and [22, Exercise IV.4.2]). Choose a representative (I n̄C∗(X̃
′′;F ), ψ)

for σ∗
Witt(f : X ′′ → Bπ). By [18, Corollary 5.21], (I n̄C∗(X̃ ;F ), (i1⊗i1)ψ) and (I n̄C∗(X̃

′;F ), (i2⊗
i2)ψ) are representatives for σ∗

Witt(f : X → Bπ) and σ∗
Witt(f : X ′ → Bπ); moreover, i1 and

i2 are homotopy equivalences of symmetric Poincaré complexes, so by [29, Proposition 1.13]

we have

σ∗
Witt(f : X → Bπ) = σ∗

Witt(f : X ′′ → Bπ) = σ∗
Witt(f : X ′ → Bπ).

For part 2, let (I n̄C∗(Ỹ ;F ), ψ) be a representative for σ
∗
Witt(f◦g). Then (I n̄C∗(X̃;F ), (g∗⊗

g∗)ψ) is a representative for σ∗
Witt(f) and (by [11, Proposition 2.1]) g∗ is a homotopy equiv-

alence of symmetric Poincaré complexes.

Remark 5.18. It seems likely that part 1 is true for all homeomorphisms, not just PL home-

omorphisms. The natural way to try to prove this would be to use results of [23]. The

obstacle is that the intrinsic coarsest stratification X∗ defined by King is a CS space but not

a stratified pseudomanifold, and we have not been able to extend the Künneth theorem of

[13] to CS spaces.

For our next result, we recall the definition of F -Witt space with boundary ([14, Sec-

tion 4.1]) and the fact that the orientation of an F -Witt space with boundary induces an

orientation of the boundary ([18, Section 7.2]).

Theorem 5.19. Let X be an F -Witt space with boundary, and let f : X → Bπ be a map.

Let Y be the boundary of X with the induced orientation. Then σ∗
Witt(f |Y ) = 0.

Proof. The idea of the proof is to use the method of Section 5.3 to construct a symmetric

Poincaré pair ([29, Definition 1.7]) from the pair (X, Y ).

It’s convenient to introduce some notation: given chain complexes C and D and a chain

map f : C → D, we write H∗(D,C) for the homology of the mapping cone Cf (this agrees

with the usual meaning of H∗(D,C) when f is a monomorphism). An element of H∗(D,C)

is represented by a pair (d, c) with ∂c = 0 and ∂d = −f(c).
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By Proposition 6.1.3 and the five lemma, the map

Hn(F ⊗F [π] I
0̄C∗(X̃), F ⊗F [π] I

0̄C∗(Ỹ ))→ I 0̄Hn(X, Y ;F )

is an isomorphism. Let b map to the fundamental class of X ([18, Section 7.2]) under this

isomorphism, and let (η, θ) be a cycle representing b. Let

c ∈ Hn(HomZ[Z/2](W,F ⊗F [π] I
0̄C∗(X̃ × X̃)),HomZ[Z/2](W,F ⊗F [π] I

0̄C∗(Ỹ × Ỹ )))

be the class represented by the pair of maps

W
ε
−→ Z

η
−→ F ⊗F [π] I

0̄C∗(X̃)
1⊗d
−−→ F ⊗F [π] I

Qn̄,n̄C∗(X̃ × X̃)

and

W
ε
−→ Z

θ
−→ F ⊗F [π] I

0̄C∗(Ỹ )
1⊗d
−−→ F ⊗F [π] I

Qn̄,n̄C∗(Ỹ × Ỹ ).

As in Section 5.3, there is an isomorphism

Υ : H∗(HomZ[Z/2](W, (I
n̄C∗(X̃ ;F ))t ⊗F [π] I

n̄C∗(X̃ ;F )),

HomZ[Z/2](W, (I
n̄C∗(Ỹ ;F ))

t ⊗F [π] I
n̄C∗(Ỹ ;F )))

∼=
−→ H∗(HomZ[Z/2](W,F ⊗F [π] I

Qn̄,n̄C∗(X̃ × X̃ ;F )),

HomZ[Z/2](W,F ⊗F [π] I
Qn̄,n̄C∗(Ỹ × Ỹ ;F ))).

Let

ψ : W → (I n̄C∗(X̃;F ))t ⊗F [π] I
n̄C∗(X̃ ;F )

be a Z/2-equivariant chain map that represents Υ−1(c). The proof of Proposition 5.10 adapts

(using Theorem 4.5) to show that

((I n̄C∗(X̃ ;F ), ψ), (I n̄C∗(Ỹ ;F ), ∂ψ))

is a symmetric Poincaré pair, and since (I n̄C∗(Ỹ ;F ), ∂ψ) is a representative for σ∗
Witt(f |Y )

(by [18, Proposition 7.9]), we see that σ∗
Witt(f |Y ) = 0.

Finally, recall from [1, Theorem 1.1] the signature index class

Ind(ð̃sign) ∈ K∗(C
∗
fπ)

associated to a smoothly stratified Q-Witt space X with a map f : X → Bπ. Also recall

from [2, Section 7.2] the map

νβQ : L∗(Qπ)→ K∗(C
∗
fπ).

Proposition 5.20. Ind(ð̃sign) and νβQ(σ
∗
Witt(f)) are equal in K∗(C

∗
fπ)⊗Q.

Proof. This follows from Proposition 5.13, Proposition 5.15, Theorem 5.19, and the proof of

[2, Proposition 7.1].
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6 Technical facts about intersection chains

In this section, we prove some results that were needed in previous sections and in [18].

Throughout this section we fix an n-dimensional ∂-stratified pseudomanifold X and a

regular cover p : X̃ → X . We write π for the group of covering translations. For any subset

S of X we write S̃ for p−1(S).

Recall that an open set U in X is called evenly covered if the restriction of the covering

map p to U is trivial.

We also fix a perversity p̄.

6.1 A colimit formula for intersection chains

Let U be a covering of X by open sets. Let C be the category of all finite intersections of

sets in U , with inclusions as the morphisms. Let A be an open subset of X . Fix a ring R

and an R-module M .

Our main result in this subsection is

Proposition 6.1. 1. The canonical map

lim−→
V ∈C

I p̄C∗(V, V ∩ A;M)→ I p̄C∗(X,A;M)

is a chain homotopy equivalence.

2. The canonical map

lim−→
V ∈C

I p̄C∗(Ṽ , Ṽ ∩ Ã;M)→ I p̄C∗(X̃, Ã;M)

is a chain homotopy equivalence over R[π].

3. The projection

R⊗R[π] I
p̄C∗(X̃, Ã;M)→ I p̄C∗(X,A;M)

is a chain homotopy equivalence over R.

Remark 6.2. It’s possible that the projection in part 3 is actually an isomorphism, as it is

for ordinary singular chains.

For the proof of Proposition 6.1 we need a preliminary result which may be of interest

in its own right. Let I p̄UC∗(X,A;M) denote the submodule
∑

U∈U

I p̄C∗(U, U ∩A;M)

of I p̄C∗(X,A;M).

Proposition 6.3. The canonical map

lim
−→
V ∈C

I p̄C∗(V, V ∩A;M)→ I p̄UC∗(X,A;M)

is an isomorphism.
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The proof of Proposition 6.3 will be given in Subsection 6.4.

Proof of Proposition 6.1. Proposition 2.9 of [12] states that the inclusion

I p̄UC∗(X ;M) →֒ I p̄C∗(X ;M)

is a chain homotopy equivalence. The same proof shows that the inclusion

I p̄UC∗(X,A;M) →֒ I p̄C∗(X,A;M)

is a chain homotopy equivalence, and part 1 follows from this and Proposition 6.3.

A minor modification of the proof in [12] shows that the inclusion

I p̄UC∗(X̃, Ã;M) →֒ I p̄C∗(X̃, Ã;M)

is a chain homotopy equivalence over R[π], and part 2 follows from this and Proposition 6.3

(applied to the pair (X̃, Ã)).

For part 3 we assume that the open sets in U are evenly covered. With this assumption

the projection

R⊗R[π]

(
lim−→
V ∈C

I p̄C∗(Ṽ , Ṽ ∩ Ã;M)

)
= lim−→

V ∈C

R⊗R[π] I
p̄C∗(Ṽ , Ṽ ∩ Ã;M)

→ lim
−→
V ∈C

I p̄C∗(V, V ∩A;M)

is an isomorphism. Now consider the diagram

R⊗R[π]
(
lim
−→V ∈C

I p̄C∗(Ṽ , Ṽ ∩ Ã;M)
) ∼= //

��

lim−→V ∈C
I p̄C∗(V, V ∩ A;M)

��
R⊗R[π] I

p̄C∗(X̃, Ã;M) // I p̄C∗(X,A;M)

The right vertical arrow is a chain homotopy equivalence over R by part 1. The left vertical

arrow is a chain homotopy equivalence over R by part 2. Hence the lower horizontal arrow

is a chain homotopy equivalence over R as required.

6.2 Freeness and flatness

In this section we prove two results. Let A be an open subset of X and let F be a field.

First we have

Proposition 6.4. 1. If X has a finite covering by evenly covered open sets (in particular,

if X is compact) then I p̄C∗(X̃, Ã;F ) is chain homotopy equivalent over F [π] to a

nonnegatively-graded chain complex of free F [π]-modules.

2. For all X, I p̄C∗(X̃, Ã;F ) is chain homotopy equivalent over F [π] to a nonnegatively-

graded chain complex of flat F [π]-modules.
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For the second result we let π act by the diagonal action on I p̄C∗(X̃, Ã;F )⊗F I
q̄C∗(X̃, Ã;F )

and on IQp̄,q̄C∗(X̃ × X̃, Ã× X̃ ∪ X̃ × Ã;F ).

Proposition 6.5. The cross product

I p̄C∗(X̃, Ã;F )⊗F I
q̄C∗(X̃, Ã;F )→ IQp̄,q̄C∗(X̃ × X̃, Ã× X̃ ∪ X̃ × Ã;F )

induces a quasi-isomorphism

F ⊗F [π] (I
p̄C∗(X̃, Ã;F )⊗F I

q̄C∗(X̃, Ã;F ))→ F ⊗F [π] I
Qp̄,q̄C∗(X̃× X̃, Ã× X̃ ∪ X̃× Ã;F ).

For both results we will give the proofs when A = ∅; the same proofs work for the general

cases.

For the proof of Proposition 6.4 we need a lemma.

Lemma 6.6. Let V be a finite collection of evenly covered open sets in X. Let D be the

category of intersections of sets of V, with inclusions as the morphisms. Then

lim
−→
V ∈D

I p̄C∗(Ṽ ;F )

is free over F [π].

Proof. For each W in D let A(W ) be the image of the map

lim−→ I p̄C∗(Ṽ ;F )→ I p̄C∗(W̃ ;F ),

where the colimit is taken over V ∈ D with V ( W , and let B(W ) be the cokernel of

A(W )→ I p̄C∗(W̃ ;F ). B(W ) is free over F [π] because W is evenly covered and F is a field.

It follows that the short exact sequence

0→ A(W )→ I p̄C∗(W̃ ;F )→ B(W )→ 0

is split, and from this it follows that lim
−→V ∈D

I p̄C∗(Ṽ ;F ) is isomorphic to ⊕W∈DB(W ) (ob-

serve inductively that A(W ) is the direct sum ⊕V (WB(V ) and that the colimit identifies the

various copies of B(V ) in the obvious way).

Proof of Proposition 6.4. Part 1 is immediate from Lemma 6.6 and Proposition 6.1.2.

For part 2, let U be a collection of evenly covered open sets whose union is X , and let C
be the category of finite intersections of sets in U . For each finite subset V of U let D(V) be
the category of intersections of sets in V. Then

lim−→
V ∈C

I p̄C∗(Ṽ ;F ) = lim−→
V

lim−→
V ∈D(V)

I p̄C∗(Ṽ ;F )

and the result follows from Proposition 6.1.2, Lemma 6.6, and the fact that a directed colimit

of flat modules is flat.
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Proof of Proposition 6.5. Let C and D denote I p̄C∗(X̃ ;F )⊗F I
q̄C∗(X̃ ;F ) and IQp̄,q̄C∗(X̃ ×

X̃ ;F ) respectively. Let R denote F [π×π], which is isomorphic to F [π]⊗F [π]. By Proposition
6.4.2, we have chain homotopy equivalences C → C ′ and D → D′ over R (and hence over

F [π]), where C ′ and D′ are nonnegatively-graded and flat over R. But R is flat (in fact

free) over F [π], and hence C ′ and D′ are flat over F [π] (because the functor C ′ ⊗F [π] − is

naturally isomorphic to C ′ ⊗R R⊗F [π] −, and similarly for D′). Now the map

C
×
−→ D

is a quasi-isomorphism by the Künneth theorem of [13], and hence the composite

C ′ → C → D → D′

induces a quasi-isomorphism

F ⊗F [π] C
′ → F ⊗F [π] D

′

by [34, Theorem 5.6.4]. The maps F ⊗F [π] C
′ → F ⊗F [π] C and F ⊗F [π] D → F ⊗F [π] D

′ are

quasi-isomorphisms because F⊗F [π] preserves chain homotopy equivalences over F [π], so we

conclude that F ⊗F [π] C → F ⊗F [π] D is a quasi-isomorphism as required.

6.3 Proof of Proposition 5.12

Recall (for example from [22, Exercise IV.4.2]) that if two bounded-below chain complexes

are free over F [π] and quasi-isomorphic over F [π] then they are chain homotopy equivalent

over F [π]. Combining this with Proposition 6.4.1, it suffices to show that I p̄C∗(X̃;F ) is

quasi-isomorphic over F [π] to a finite F [π] chain complex.

This in turn is immediate from the following lemma. Let X ′ denote X − ∂X .

Lemma 6.7. 1. The map

I p̄H∗(X̃ ′;F )→ I p̄H∗(X̃;F )

induced by the inclusion is an isomorphism.

2. I p̄C∗(X̃ ′;F ) is quasi-isomorphic over F [π] to a finite F [π] chain complex.

Remark 6.8. The reason that X ′ plays a special role is that we will need to use the relation

between intersection homology and the Deligne sheaf, and this relation is not known for

∂-stratified pseudomanifolds with nonempty boundary.

Before continuing we need to recall some definitions. Let K be a simplicial complex. A

subcomplex L of K is full if every simplex whose vertices are in L is in L. Let s be a simplex

of K. The closed star of s is the union of all the simplices containing it; this will be denoted

St(s). The open star of s is the interior of St(s); this will be denoted St(s).

Fix a triangulation of X with the property that each skeleton of X is a full subcomplex.

For the proof of Lemma 6.7 we need two other lemmas, whose proofs we defer for a

moment.

21



Lemma 6.9. Let s be a simplex of X which is contained in X ′. Then I p̄C∗(S̃t(s);F ) is

homotopy finite over F [π].

Lemma 6.10. The homotopy pushout (double mapping cylinder) of homotopy finite chain

complexes over F [π] is quasi-isomorphic over F [π] to a finite F [π] chain complex.

Proof of Lemma 6.7. Part 1. By the definition of ∂-stratified pseudomanifold ([18, Definition

7.1]) ∂X has an open collar neighborhood in X . This implies that the inclusion X̃ ′ → X̃ is

a stratified homotopy equivalence, and the result follows from [18, Appendix A].

Part 2. First observe that X ′ is the union of the open stars of the vertices of X that are

contained in X ′ and that there are finitely many such vertices (because X is compact). We

will also use the fact that the intersection of the open stars of finitely many vertices, if it is

nonempty, is the open star of the simplex determined by these vertices.

We will prove by induction on k that if U1, . . . , Uk are open stars of simplices contained

in X ′ and U is U1 ∪ · · · ∪ Uk then I p̄C∗(Ũ ;F ) is quasi-isomorphic over F [π] to a finite F [π]

chain complex. Let V = U1 ∪ · · · ∪ Uk−1 and let W = V ∩ Uk. Let C be the pushout of the

diagram

I p̄C∗(W̃ ;F ) //

��

I p̄C∗(Ũk;F )

I p̄C∗(Ṽ );F )

(*)

and let D be its homotopy pushout. I p̄C∗(Ũ ;F ) is chain homotopy equivalent to C by

Proposition 6.1.2. The three chain complexes in diagram (*) are homotopy finite over F [π]

(this follows from the inductive hypothesis, Proposition 6.4.1, and Lemma 6.9) so by Lemma

6.10 D is quasi-isomorphic over F [π] to a finite F [π] chain complex. To conclude the proof

we show that the quotient map D → C is a quasi-isomorphism. Diagram (*) gives a Mayer-

Vietoris sequence

· · · → I p̄Hi(W̃ ;F )→ I p̄Hi(Ũk;F )⊕ I
p̄Hi(Ṽ );F )→ Hi(D)→ I p̄Hi−1(W̃ ;F )→ · · ·

There is also a Mayer-Vietoris sequence for C (because the map

I p̄Ci(W̃ ;F )→ I p̄Ci(Ũk;F )⊕ I
p̄Ci(Ṽ );F )

is a monomorphism) so the five lemma shows that H∗(D)→ H∗(C) is an isomorphism.

For the proof of Lemma 6.9 we need a definition. The combinatorial link of s, denoted

Lk(s), is the union of the simplices of St(s) that do not intersect s.

Proof of Lemma 6.9. First recall (for example from [27, Lemma 62.6]) that St(s) is equal to

the join s ∗ Lk(s).
In particular, St(s) is contractible, so the covering map p : X̃ → X is trivial over St(s),

and hence

I p̄C∗(S̃t(s);F ) ∼= F [π]⊗ I p̄C∗(St(s);F ).
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Thus it suffices to show that I p̄C∗(St(s);F ) is homotopy finite over F . But (using the fact

that F is a field) I p̄C∗(St(s);F ) is chain homotopy equivalent to I p̄H∗(St(s);F ), so it suffices

to show that the latter is finitely generated.

Now s = ŝ ∗ ∂s, where ŝ is the barycenter of s, and so St(s) = ŝ ∗ ∂s ∗ Lk(s). This is

homeomorphic to the cone on ∂s ∗ Lk(s), and the homeomorphism takes St(s) to the open

cone

([0, 1)× (∂s ∗ Lk(s)))/(0× x ∼ 0× y)

which we denote by Q. We give Q the stratification determined by the homeomorphism.

Each subspace (0, 1) × z of Q is taken by the inverse homeomorphism to the interior of a

simplex of X , and the interior of each simplex of X is contained in a single stratum, so each

subspace (0, 1)× z is contained in a single stratum of Q. It follows that the subspace

([0, 1/2)× (∂s ∗ Lk(s)))/(0× x ∼ 0× y),

which we denote by P , is stratified homotopy equivalent to Q (as defined in [18, Appendix

A]). Next we recall that I p̄H∗ of an open set in X ′ is the hypercohomology of the Deligne

sheaf (for general perversities this is [16, Theorem 3.6]) and that the Deligne sheaf is coho-

mologically constructible ([16, Proposition 4.1]), which in particular means that it satisfies

Wilder’s Property (P,Q) ([5, page 69]). In our situation this says that the image of the map

I p̄H∗(P ;F ) → I p̄H∗(Q;F ) is finitely generated. But this map is an isomorphism by [18,

Appendix A], so I p̄H∗(Q;F ) is finitely generated as required.

Proof of Lemma 6.10. Let

A
g //

f
��

C

B

(*)

be a diagram of homotopy finite chain complexes over F [π] and F [π] chain maps. Recall

that the homotopy pushout of diagram (∗) is defined as follows. Let I denote the cellular

chain complex of the unit interval, that is, the F chain complex with two generators a and

b in dimension 0, one generator c in dimension 1, and differential ∂c = b− a. Let F be the

chain complex consisting of F in dimension 0, and let α, β : F → I be the maps which take

1 to a and b respectively. Define B′ by the pushout diagram

A

f

��

A⊗β // A⊗ I

��
B // B′

and similarly for C ′. Then the homotopy pushout of (∗), which we will denote by D, is

defined by the pushout diagram

A //

��

C ′

��
B′ // D,
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where the upper horizontal and leftmost vertical arrows are induced by A⊗ α.
Next let i : A → Ā, j : B → B̄, k : C → C̄ be chain homotopy equivalences over

F [π] with Ā, B̄, C̄ finite F [π] chain complexes. Then there are maps f̄ : Ā → B̄ and and

ḡ : Ā→ C̄ making the diagram

B

j
��

A
foo g //

i
��

C

k
��

B̄ Ā
f̄oo ḡ // C̄

(**)

commute up to chain homotopy. The homotopy pushout D̄ of the second row is given by a

pushout diagram

Ā //

��

C̄ ′

��
B̄′ // D̄.

It is easy to check that D̄ is a finite F [π] chain complex. To compare D with D̄ we

introduce an “extended” version of D. Define a chain complex 2I by the pushout diagram

F
α //

β
��

I

δ
��

I
γ // 2I.

(***)

Let ζ (resp., η) be the composite F
α
−→ I

γ
−→ 2I (resp., F

β
−→ I

δ
−→ 2I). Replacing I by 2I, α

by ζ , and β by η in the construction of D gives a pushout diagram

A //

��

C ′′

��
B′′ // E.

Next we construct a quasi-isomorphism E → D. In diagram (***), write I1 ⊂ 2I for the

image of γ and I2 for the image of δ. Also let ǫ : I → F be the chain map which takes a and

b to 1. Define a map θ : 2I → I by letting θ be γ−1 on I1 and β ◦ ǫ ◦ δ−1 on I2. θ induces

maps B′′ → B′ and C ′′ → C ′ and hence a map E → D. Applying the five lemma to the

Mayer-Vietoris sequences of E and D shows that the map E → D is a quasi-isomorphism.

Finally, we construct a quasi-isomorphism E → D̄. In diagram (**), let H : A⊗ I → B̄

be the chain homotopy from f̄ ◦ i to j ◦ f . Define a map κ : B′′ → B̄′ to be A ⊗ γ−1 on

A⊗ I1, H ◦ (A⊗ δ
−1) on A⊗ I2, and j on B. Similarly, define a map λ : C ′′ → C̄. Then κ

and λ give a map E → D̄, and applying the five lemma to the Mayer-Vietoris sequences of

E and D̄ shows that this is a quasi-isomorphism.

6.4 Proof of Proposition 6.3

We need a lemma, whose proof we defer for a moment.
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Lemma 6.11. Let U1, . . . , Um ∈ U and let ξi ∈ I
p̄C∗(Ui;M) for 1 ≤ i ≤ m with

∑
ξi = 0

in I p̄C∗(X,A;M). Then for 2 ≤ i ≤ m there exist ηi ∈ I
p̄C∗(Ui ∩ U1;M) with

ξ1 +
m∑

i=2

ηi = 0

in I p̄C∗(X,A;M).

Proof of Proposition 6.3. Let K be the kernel of the canonical epimorphism

⊕

U∈U

I p̄C∗(U, U ∩ A;M)→ I p̄UC∗(X,A;M)

and let L be the kernel of the canonical epimorphism

⊕

U∈U

I p̄C∗(U, U ∩ A;M)→ lim−→
V ∈C

I p̄C∗(V, V ∩ A;M).

For a chain ξ ∈ I p̄C∗(U ;M), let [ξ] denote its image in I p̄C∗(U, U ∩ A;M). K is generated

by tuples

([ξ1], . . . , [ξm]) ∈
m⊕

i=1

I p̄C∗(Ui, Ui ∩ A;M)

with
∑
ξi = 0 in I p̄C∗(X,A;M), as (U1, . . . , Um) ranges over allm-tuples in U . L is generated

by pairs

([ξ], [−ξ]) ∈ I p̄C∗(U, U ∩ A;M)⊕ I p̄C∗(U
′, U ′ ∩ A;M)

with ξ ∈ I p̄C∗(U ∩ U
′;M), as (U, U ′) ranges over all pairs in U . It’s clear that L ⊂ K and

it suffices to show that each of the generating tuples for K is in L. So let ([ξ1], . . . , [ξm]) be

such a tuple. We assume inductively that all shorter such tuples are in L. Lemma 6.11 gives

an equation

([ξ1], . . . , [ξm]) = ([−η2], [η2], 0, . . . , 0)+([−η3], 0, [η3], 0, . . . , 0)+ · · ·+([−ηm], 0, . . . , 0, [ηm])

+ (0, [ξ2 − η2], . . . , [ξm − ηm]).

The last summand on the right is in L by the inductive hypothesis, and the remaining

summands are obviously in L.

Proof of Lemma 6.11. We begin with the case A = ∅.
For a chain ξ and a singular simplex σ with the same dimension as ξ, we write

cξ(σ)

for the coefficient of σ in ξ. We say that σ belongs to ξ if cξ(σ) 6= 0.
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Let Ui and ξi, 1 ≤ i ≤ m, be as in the lemma. For 2 ≤ i ≤ m, let Ai be the set of singular

simplices which belong to both ξi and ξ1, and let

θi =
∑

σ∈Ai

cξi(σ)σ.

The equation
∑m

i=1 ξi = 0 implies

ξ1 +

m∑

i=2

θi = 0, (1)

which might suggest we could take ηi to be θi, but θi will not be an intersection chain in

general because its boundary can contain non-allowable simplices that cancel out in ξi.

For 2 ≤ i ≤ m, let Bi be the set of singular simplices which belong to ξi and intersect

U1 but do not belong to ξ1. Let B = ∪mi=2Bi. The equation
∑m

i=1 ξi = 0 implies

m∑

i=2

cξi(σ) = 0 (2)

for each σ ∈ B.

The strategy of the rest of the proof is to replace each σ in B by a chain σ̄, in such a

way that for 2 ≤ i ≤ m

(I) the support |σ̄| is contained in |σ| ∩ U1, and

(II) the chain θi +
∑

σ∈Bi
cξi(σ)σ̄ is allowable.

We can then let ηi be θi +
∑

σ∈Bi
cξi(σ)σ̄; the equation ξ1 +

∑m
i=2 ηi = 0 will follow from

equations (1) and (2).

We will construct the chains σ̄ by using the subdivision procedure in the proof of [12,

Proposition 2.9] (with the ordered cover U1, X); for the convenience of the reader we give

the details.

First we need some notation. Suppose we are given

• a singular simplex τ : ∆j → X ,

• a simplicial complex K which is a subdivision of ∆j , and

• an ordering of the vertices ofK which is a total ordering on the vertices of each simplex.

For each j-dimensional simplex s of K the total ordering of the vertices of s determines an

affine isomorphism

is : ∆
j → s.

Let ǫs be 1 if the total ordering of the vertices of s agrees with the orientation inherited from

∆j and −1 otherwise. Let

iK =
∑

ǫs is, (3)
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where the sum is taken over all j-dimensional simplices of K. Then iK is a singular chain of

∆j . The chain τ∗(iK) is the subdivision of τ determined by the given data.

Now suppose in addition that τ is allowable. Then [12, Lemma 2.6] says that for every

j-dimensional simplex s of K the singular simplex τ ◦ is is allowable. Also, if t is a (j − 1)-

dimensional simplex of K then a straightforward argument (which is written out on page

1993 of [12]) shows that τ ◦ it is allowable except perhaps when t contains a simplex u which

is contained in the dim(u)-skeleton of ∆j. We will call a simplex u of K which is contained

in the dim(u)-skeleton of ∆j awkward (with respect to τ).

Let k denote the dimension of the chains ξi. For 0 ≤ j ≤ k, let Bj denote the set of

singular simplices of dimension j which are faces of singular simplices in B (in particular

Bk = B). By induction on j, we will construct for each τ ∈ Bj

• a subdivision Kτ of ∆j , and

• a partial ordering of the vertices of Kτ which restricts to a total ordering on the vertices

of each simplex,

with the following properties.2

(i) If |τ | ⊂ U1 then Kτ = ∆j .

(ii) Under the identification of the l-th face of ∆j with ∆j−1, the subdivision of the l-th

face agrees with K∂lτ .

(iii) If u is an awkward simplex of Kτ which is contained in τ−1(U1), then any simplex of

Kτ containing u is contained in τ−1(U1).

For j = 0, Kτ = ∆0. Suppose the construction has been accomplished for all dimensions

< j and let τ ∈ Bj with |τ | not contained in U1. The subdivisions associated to the faces

of τ give a simplicial complex K0 which is a subdivision of the boundary of ∆j . Let ∆′ be

the cone on K0. Then K0 is a subcomplex of ∆′ so we can apply barycentric subdivision

holding K0 fixed (see [27, page 89] for the definition) until Property (iii) is satisfied (see the

proof of [27, Lemma 16.3]). We order the vertices at each stage of the subdivision process

by letting each new vertex be greater than all the existing vertices adjacent to it.

Now for each σ ∈ Bk we let

σ̄ =
∑

ǫs σ ◦ is

where the sum is over all simplices s of Kσ that are contained in σ−1(U1). Also, for each

τ ∈ Bk−1, we let

τ̄ =
∑

ǫt τ ◦ it

where the sum is over all simplices t of Kτ that are contained in τ−1(U1).

We need to show that the σ̄ satisfy Properties (I) and (II) above. Property (I) is clearly

satisfied. As a first step toward Property (II), we calculate ∂σ̄ modulo allowable singular

simplices. Fix a σ ∈ Bk and let

j =
∑

ǫsis,

2Property (i) is a slight modification of the procedure in [12].
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where the sum is over all simplices of Kσ that are contained in σ−1(U1); then σ̄ = σ∗j and

∂σ̄ = σ∗(∂j). Suppose that t is a (k − 1)-simplex belonging to ∂j such that σ ◦ it is non-

allowable. Then t must contain an awkward simplex of Kσ, so Property (iii) implies that

the coefficient of it in ∂j is the same as its coefficient in ∂iKσ
(see equation (3)). If t is not

contained in ∂∆k then this coefficient is 0. If t is contained in the l-the face of ∆k then

(identifying this face with ∆k−1) this coefficient is (−1)lǫt. It follows that

∂σ̄ ≡
∑

τ∈Bk−1

c∂σ(τ)τ̄ (4)

modulo allowable singular simplices.

Now we can verify Property (II). Let ηi denote θi+
∑

σ∈Bi
cξi(σ)σ̄. All singular simplices

that belong to ηi are allowable by [12, Lemma 2.6], so it only remains to check that the

singular simplices that belong to ∂ηi are allowable. First note that if τ is non-allowable and

belongs to ∂θi then τ is an element of Bk−1 (because ∂θi ⊂ U1 and ξi is allowable), and we

have τ̄ = τ by Property (i). This implies that, modulo allowable singular simplices, we have

∂θi ≡
∑

τ∈Bk−1

c∂θi(τ)τ̄ . (5)

Combining equations (4) and (5) gives

∂ηi ≡
∑

τ∈Bk−1

[
c∂θi(τ) +

∑

σ∈Bi

cξi(σ)c∂σ(τ)

]
τ̄ . (6)

If τ is allowable then all singular simplices belonging to τ̄ are allowable, by [12, Lemma

2.6]. If τ is not allowable and τ̄ 6= 0 then |τ | must intersect U1, which implies that the

expression in brackets in equation (6) is equal to the coefficient of τ in ∂ξi, which is 0 since

ξi is allowable. Thus all singular simplices belonging to ∂ηi are allowable, as required.

This completes the proof of Lemma 6.11 for the case A = ∅. For the general case, we are
given ξi ∈ I

p̄C∗(Ui;M) for 1 ≤ i ≤ m with

∑
ξi ∈ I

p̄C∗(A;M).

Let Um+1 = A and ξm+1 = −
∑m

i=1 ξi. Applying the case already proved to the (m+1)-tuple

(ξ1, . . . , ξm+1), we obtain ηi ∈ I
p̄C∗(Ui ∩ U1;M) for 2 ≤ i ≤ m+ 1 with

ξ1 +

m+1∑

i=2

ηi = 0,

and from this it follows that

ξ1 +

m∑

i=2

ηi ∈ I
p̄C∗(A;M)

as required.
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