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Abstract

We construct cup and cap products in intersection (co)homology with field coef-

ficients. The existence of the cap product allows us to give a new proof of Poincaré

duality in intersection (co)homology which is similar in spirit to the usual proof for

ordinary (co)homology of manifolds.
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1 Introduction

Intersection homology is a basic tool in the study of singular spaces. It has important

features in common with ordinary homology (excision, Mayer-Vietoris, intersection pairing,

Poincaré duality with field coefficients) and important differences (restrictions on functorial-

ity, failure of homotopy invariance, restrictions on Poincaré duality with integer coefficients).

An important difference is the fact that the Alexander-Whitney map does not induce a map

of intersection chains (because if a simplex satisfies the relevant allowability condition there

is no reason for its front and back faces to do so). Because of this, it has long been thought

that there is no reasonable way to define cup and cap products in intersection (co)homology.

In this paper, we use a different method to construct cup and cap products (with field coeffi-

cients) with the usual properties, and we use the cap product to give a new proof of Poincaré

duality for intersection (co)homology with field coefficients.

We give applications and extensions of these results in [18] and [17]. In [18] we show that

our Poincaré duality isomorphism agrees with that obtained by sheaf-theoretic methods in

[20] and that our cup product is Poincaré dual to the intersection pairing of [20]. We also

prove that the de Rham isomorphism of [5] takes the wedge product of intersection differential

forms to the cup product of intersection cochains. In [17] we give a new construction of the

symmetric signature for Witt spaces (which responds to a question raised in [1]).

In future work, we plan to use the cup product (and the underlying structure on cochains)

as a starting point for developing an “intersection” version of rational homotopy theory (see

Remark 1.2 below).

Our basic strategy for constructing cup and cap products is to replace the Alexander-

Whitney map by a combination of the cross product and the (geometric) diagonal map.

To illustrate this, we explain how it works in ordinary homology. For a field F , the cross
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product gives an isomorphism (where the tensor is over F )

H∗(X ;F )⊗H∗(Y ;F )→ H∗(X × Y ;F ),

and we can use this isomorphism to construct the algebraic diagonal map

d̄ : H∗(X ;F )→ H∗(X ;F )⊗H∗(X ;F )

as the composite

H∗(X ;F )
d
−→ H∗(X ×X ;F )

∼=
←− H∗(X ;F )⊗H∗(X ;F ),

where d is the geometric diagonal. The evaluation map induces an isomorphism

H∗(X ;F )→ Hom(H∗(X ;F ), F ),

and we define the cup product of cohomology classes α and β by

(α ∪ β)(x) = (α⊗ β)(d̄(x)), x ∈ H∗(X ;F ).

The fact that the cup product is associative, commutative, and unital follows easily from

the corresponding properties of the cross product. Similarly, we define the cap product by

α ∩ x = (1⊗ α)(d̄(x)).

In order to carry out the analogous constructions in intersection homology, we need to

know that the cross product gives an isomorphism on intersection homology (with suitable

perversities) and that the geometric diagonal map induces a map of intersection homol-

ogy (with suitable perversities). The first of these facts is Theorem 3.1 and the second is

Proposition 4.2.

Here is an outline of the paper. In Section 2, we establish terminology and notations

for stratified pseudomanifolds and intersection homology. (We allow strata of codimension

one and completely general perversities, which means that intersection homology is not

independent of the stratification in general.) In Section 3, we state the Künneth theorem

for intersection homology, which is the basic tool in our work. In Section 4, we construct

the algebraic diagonal map, cup product, and cap product in intersection (co)homology and

show that they have the expected properties. In Section 5, we show that an orientation of an

n-dimensional stratified pseudomanifold X determines a fundamental class in I 0̄Hn(X,X −
K;R) for each compact K and each ring R. In Section 6, we show that cap product with

the fundamental class induces a Poincaré duality isomorphism

Ip̄H
i
c(X ;F )→ I q̄Hn−i(X ;F )

when p̄ and q̄ are complementary perversities. In Section 7, we extend our results to stratified

pseudomanifolds with boundary. The proofs in Sections 5 through 7 follow the general outline

of the corresponding proofs in [21], but the details are more intricate.
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Remark 1.1 (Signs). We include a sign in the Poincaré duality isomorphism (see [14, Sec-

tion 4.1]). Except for this we follow the signs in [8], which means that we use the Koszul

convention everywhere except in the definition of the coboundary on cochains (see Remark

4.10 below).

Remark 1.2. For a space X , the method given above for constructing the cup product in

H∗(X) also leads to a Leinster partial commutative algebra structure (see [25], [27, Sec-

tion 9]) on the singular cochains S∗(X). This structure can be rectified over Q ([32]) to

give a commutative algebra structure on a cochain complex naturally quasi-isomorphic to

S∗(X ;Q); thus we obtain a functor from spaces to commutative DGA’s over Q which solves

the “commutative cochain problem” ([31]) and represents the rational homotopy type of X

([26]). We expect that our work will lead in a similar way to a a model for a pseudomanifold

X which is part of an “intersection” version of rational homotopy theory (that is, a Quillen

equivalence between a certain model category of filtered spaces and a model category of

“perverse” commutative algebras [22]).

Remark 1.3. In [3, Section 7], Markus Banagl constructed a cup product

Ip̄H
∗(X ;Q)⊗ Ip̄H

∗(X ;Q)→ Iq̄H
∗(X ;Q)

for certain pairs of perversities p̄, q̄ (namely for classical perversities satisfying p̄(k) + p̄(l) ≤
p̄(k + l) ≤ p̄(k) + p̄(l) + 2 for all k, l and q̄(k) + k ≤ p̄(2k) for all k). We show in Appendix

D that this cup product agrees with ours (up to sign) for all such pairs p̄, q̄. Banagl’s

construction is similar to ours, except that the Künneth theorem he uses is the one in [7]

(which is a special case of that in [13]; see [13, Corollary 3.6]). He does not consider the cap

product.

2 Background

We begin with a brief review of basic definitions. Subsection 2.1 reviews the definition

of stratified pseudomanifold. Subsection 2.2 reviews singular intersection homology with

general perversities as defined in [16, 15]. Other standard sources for more classical versions

of intersection homology include [19, 20, 4, 24, 2, 23, 12].

2.1 Stratified pseudomanifolds

We use the definition of stratified pseudomanifold in [20], except that we allow strata of

codimension one. Before giving the definition we need some background.

For a space W we define the open cone c(W ) by c(W ) = ([0, 1)×W )/(0×W ) (we put the

[0, 1) factor first so that our signs will be consistent with the usual definition of the algebraic

mapping cone). Note that c(∅) is a point.

If Y is a filtered space

Y = Y n ⊇ Y n−1 ⊇ · · · ⊇ Y 0 ⊇ Y −1 = ∅,

we define c(Y ) to be the filtered space with (c(Y ))i = c(Y i−1) for i ≥ 0 and (c(Y ))−1 = ∅.
The definition of stratified pseudomanifold is now given by induction on the dimension.
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Definition 2.1. A 0-dimensional stratified pseudomanifold X is a discrete set of points with

the trivial filtration X = X0 ⊇ X−1 = ∅.
An n-dimensional (topological) stratified pseudomanifold X is a paracompact Hausdorff

space together with a filtration by closed subsets

X = Xn ⊇ Xn−1 ⊇ Xn−2 ⊇ · · · ⊇ X0 ⊇ X−1 = ∅

such that

1. X −Xn−1 is dense in X , and

2. for each point x ∈ X i −X i−1, there exists a neighborhood U of x for which there is a

compact n− i− 1 dimensional stratified pseudomanifold L and a homeomorphism

φ : Ri × cL→ U

that takes Ri× c(Lj−1) onto X i+j ∩U . A neighborhood U with this property is called

distinguished and L is called a link of x.

The X i are called skeleta. We write Xi for X
i −X i−1; this is an i-manifold that may be

empty. We refer to the connected components of the various Xi as strata
1. If a stratum Z

is a subset of Xn it is called a regular stratum; otherwise it is called a singular stratum. The

depth of a stratified pseudomanifold is the number of distinct skeleta it possesses minus one.

We note that this definition of stratified pseudomanifolds is slightly more general than

the one in common usage [19], as it is common to assume that Xn−1 = Xn−2. We will not

make that assumption here, but when we do assume Xn−1 = Xn−2, intersection homology

with Goresky-MacPherson perversities is known to be a topological invariant; in particular,

it is invariant under choice of stratification (see [20], [4], [23]). Examples of pseudomanifolds

include irreducible complex algebraic and analytic varieties (see [4, Section IV]).

If L and L′ are links of points in the same stratum then there is a stratified homotopy

equivalence between them (see, e.g., [11]), and therefore they have the same intersection

homology by Appendix A. Because of this, we will sometimes refer to “the link” of a

stratum instead of “a link” of a point in the stratum.

2.2 Singular intersection homology with general perversities.

Definition 2.2. Let X be a stratified pseudomanifold. A perversity on X is a function

p̄ : {strata of X} → Z with p̄(Z) = 0 if Z is a regular stratum.

This is a much more general definition than that in [19, 20]; on the rare occasions when

we want to refer to perversities as defined in [19, 20] we will call them “classical perversities.”

Besides being interesting in their own right, general perversities are required in our work

because of their role in the Künneth theorem (Theorem 3.1 below).

1This terminology agrees with some sources, but is slightly different from others, including our own past

work, which would refer to Xi as the stratum and what we call strata as “stratum components.”
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In the literature, there are several non-equivalent definitions of intersection homology

with general perversities. We will use the version in [16, 15] (which is equivalent to that in

[30]). The reason for this choice is that it gives the most useful version of the “cone formula”

(Proposition 2.3 below).

As motivation for the definition, recall that the singular chain group Si(X ;G) of a space

X with coefficients in an abelian group G consists of finite sums
∑

gjσj , where each gj ∈ G

and each σj is a map σj : ∆
i → X of the standard i-simplex to X . The boundary is given by

∂
∑

gjσj =
∑

gj∂σj =
∑

j,k(−1)
kgj∂kσk. If instead G is a local coefficient system of abelian

groups, then an element of Si(X ;G) is again a sum
∑

gjσj , where now gj is a lift of σj to G
or, equivalently, a section of the coefficient system σ∗

jG over ∆i. The boundary map becomes

∂
∑

gjσj =
∑

j,k(−1)
kgj|∂kσj

∂kσj ; in other words, the restriction of the “coefficient” gj to

the boundary piece ∂kσj is the restriction of the section over ∆i to ∂k∆
i. If the system G is

constant, then we recover Si(X ;G).

If X is a stratified pseudomanifold we make a slight adjustment. Suppose G is a local

coefficient system defined on X −Xn−1. Let Ci(X ;G) again consist of chains
∑

gjσj , where

now gj is a section of (σj |σ−1

j (X−Xn−1))
∗G over σ−1

j (X−Xn−1). Note that if σ−1
j (X−Xn−1) is

empty then the sections of (σj |σ−1

j (X−Xn−1))
∗G form the trivial group (because there’s exactly

one map from the empty set to any set). The differential is given by the same formula as in

the previous paragraph, with restrictions to boundaries ∂k∆
i being trivial if σj maps ∂k∆

i

into Xn−1. Even when we have a globally defined coefficient system, such at the constant

system G, we continue to let2Ci(X ;G) denote Ci(X ;G|X−Xn−1).

Now given a stratified pseudomanifold X , a general perversity p̄, and a local coefficient

system G on X−Xn−1, we define the intersection chain complex I p̄C∗(X ;G) as a subcomplex

of C∗(X ;G) as follows. An i-simplex σ : ∆i → X in Ci(X) is allowable if

σ−1(Z) ⊂ {i− codim(Z) + p̄(Z) skeleton of ∆i}

for any singular stratum Z of X . The chain ξ ∈ Ci(X ;G) is allowable if each simplex with

non-zero coefficient in ξ or in ∂ξ is allowable. I p̄C∗(X ;G) is the complex of allowable chains.

The associated homology theory is denoted I p̄H∗(X ;G) and called intersection homology.

Relative intersection homology is defined similarly.

If p̄ is a perversity in the sense of Goresky-MacPherson [19] and X has no strata of codi-

mension one, then I p̄H∗(X ;G) is isomorphic to the intersection homology groups I p̄H∗(X ;G)
of Goresky-MacPherson [19, 20].

Even with general perversities, many of the basic properties of singular intersection ho-

mology established in [23] and [12] hold with little or no change to the proofs, such as

excision and Mayer-Vietoris sequences. Intersection homology is also invariant under prop-

erly formulated stratified versions of homotopy equivalences. Proof of this folk result for

Goresky-MacPherson perversities is written down in [10]; the slightly more elaborate details

necessary for general perversities are provided below in Appendix A.

Intersection homology with general perversities can also be formulated sheaf theoretically;

see [15, 16] for more details.

2In the first-named author’s prior work, this would have been denoted Ci(X ;G0).
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Cone formula. General perversity intersection homology satisfies the following cone for-

mula, which generalizes that in [19, 20] (but it differs from King’s formula in [23]); see [15,

Proposition 2.1] and [12, Proposition 2.18]. We state it with constant coefficients, which is

all that we require.

Proposition 2.3. Let L be an n− 1 dimensional stratified pseudomanifold, and let G be an

abelian group. Let cL be the cone on L, with vertex v and stratified so that (cL)0 = v and

(cL)i = c(Li−1) for i > 0. Then

I p̄Hi(cL;G) ∼=

{

0, i ≥ n− 1− p̄({v}),

I p̄Hi(L;G), i < n− 1− p̄({v}),

where the isomorphism in the second case is induced by any inclusion {t} × L →֒ ([0, 1) ×
L)/(0× L) = cL with t 6= 0.

Therefore, also

I p̄Hi(cL, L;G) ∼=

{

I p̄Hi−1(L;G), i ≥ n− p̄({v}),

0, i < n− p̄({v}).

3 The Künneth theorem for intersection homology

Let X and Y be stratified pseudomanifolds, and let F be a field. We stratify X × Y in the

obvious way: for any strata Z ⊂ X and S ⊂ Y , Z × S is a stratum of X × Y .

By [13, page 382], the cross product (where the tensor is over F )

C∗(X ;F )⊗ C∗(Y ;F )→ C∗(X × Y ;F )

restricts to give a map

I p̄C∗(X ;F )⊗ I q̄C∗(Y ;F )→ IQC∗(X × Y ;F )

provided that Q(Z × S) ≥ p̄(Z) + q̄(S) for all strata Z ⊂ X , S ⊂ Y .

We can now state the Künneth theorem:

Theorem 3.1. Let p̄ and q̄ be perversities on X and Y , and define a perversity Qp̄,q̄ on

X × Y by

Qp̄,q̄(Z × S) =























p̄(Z) + q̄(S) + 2, Z, S both singular strata,

p̄(Z), S a regular stratum and Z singular,

q̄(S), Z a regular stratum and S singular,

0, Z, S both regular strata.

Then the cross product induces an isomorphism

I p̄H∗(X ;F )⊗ I q̄H∗(Y ;F )→ IQH∗(X × Y ;F ).
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This is a somewhat sharper form of the main result of [13]. We show in Appendix B how

to deduce it from the results of [13].

Remark 3.2. In fact there are other choices of Q that give isomorphisms, as explained in [13],

but this is the right choice for our purposes because of its compatibility with the diagonal

map; see Proposition 4.2.

There is also a relative version of the Künneth theorem.

Theorem 3.3. Let X and Y be stratified pseudomanifolds with open subsets A ⊂ X,B ⊂ Y .

The cross product induces an isomorphism

I p̄H∗(X,A;F )⊗ I q̄H∗(Y,B;F )→ IQp̄,q̄H∗(X × Y, (A× Y ) ∪ (X × B);F ).

The proof is given in Appendix B.

4 The diagonal map, cup product, and cap product

4.1 The diagonal map

In this subsection, we define the algebraic diagonal map using the method described in the

introduction. The first step is to show that the geometric diagonal map induces a map of

intersection chains for suitable perversities.

First we need some notation. Recall that the top perversity t̄ is defined by

t̄(Z) =

{

0, if Z is regular,

codim(Z)− 2, if Z is singular.

Definition 4.1. Let p̄ be a perversity. Define the dual perversity Dp̄ by

Dp̄(Z) = t̄(Z)− p̄(Z).

With the notation of Theorem 3.1, let us write Qp̄,q̄,r̄ for QQp̄,q̄,r̄ (which is equal to Qp̄,Qq̄,r̄).

Proposition 4.2. Let d : X → X ×X be the diagonal and let G be an abelian group.

1. If Dr̄(Z) ≥ Dp̄(Z) +Dq̄(Z) for each stratum Z of X then d induces a map

d : I r̄C∗(X ;G)→ IQp̄,q̄C∗(X ×X ;G).

2. If Ds̄(Z) ≥ Dq̄(Z) +Dr̄(Z) for each stratum Z of X then 1× d induces a map

1× d : IQp̄,s̄C∗(X ×X ;G)→ IQp̄,q̄,r̄C∗(X ×X ×X ;G).

3. If Ds̄(Z) ≥ Dp̄(Z) +Dq̄(Z) for each stratum Z of X, then d× 1 induces a map

d× 1 : IQs̄,r̄C∗(X ×X ;G)→ IQp̄,q̄,r̄C∗(X ×X ×X ;G).

8



Proof. We prove the first part, the other two are similar. A chain ξ is in I r̄Ci(X ;G) if for any

simplex σ of ξ and any singular stratum Z ofX , σ−1(Z) is contained in the i−codim(Z)+r̄(Z)

skeleton of the model simplex ∆i. Now the only singular strata of X×X which intersect the

image of d have the form Z×Z, where Z is a singular stratum of X , so the chain d(ξ) will be

in IQp̄,q̄Ci(X×X ;G) if each (dσ)−1(Z×Z) is contained in the i−codim(Z×Z)+Qp̄,q̄(Z×Z)
skeleton of the model simplex ∆i. For this it suffices to have

i− codim(Z) + r̄(Z) ≤ i− codim(Z ×Z) +Qp̄,q̄(Z ×Z) = i− 2 codim(Z) + p̄(Z) + q̄(Z) + 2,

and this is equivalent to the condition in the hypothesis.

Now we can define the algebraic diagonal map.

Definition 4.3. If Dr̄ ≥ D̄p+ D̄q let

d̄ : I r̄H∗(X ;F )→ I p̄H∗(X ;F )⊗ I q̄H∗(X ;F )

be the composite

I r̄H∗(X ;F )
d
−→ IQp̄,q̄H∗(X ×X ;F )

∼=
←− I p̄H∗(X ;F )⊗ I q̄H∗(X ;F ),

where the second map is the Künneth isomorphism (Theorem 3.1).

In the remainder of this subsection we show that the algebraic diagonal map has the

expected properties.

Note that d̄ is a natural map due to the naturality of the cross product.

Proposition 4.4 (Coassociativity). Suppose that Ds̄ ≥ Dū +Dr̄, Ds̄ ≥ Dp̄ + Dv̄, Dū ≥
Dp̄+Dq̄ and Dv̄ ≥ Dq̄ +Dr̄. Then the following diagram commutes

I s̄H∗(X ;F )
d̄

✲ I ūH∗(X ;F )⊗ I r̄H∗(X ;F )

I p̄H∗(X ;F )⊗ I v̄H∗(X ;F )

d̄

❄

1⊗d̄

✲ I p̄H∗(X ;F )⊗ I q̄H∗(X ;F )⊗ I r̄H∗(X ;F ).

d̄⊗1

❄

Proof. Consider the following diagram (with coefficients left tacit):

I s̄C∗(X)
d //

d

��

IQū,r̄C∗(X ×X)

d×1
��

I ūC∗(X)⊗ I r̄C∗(X)
q.i.oo

d⊗1
��

IQp̄,v̄C∗(X ×X)
1×d // IQp̄,q̄,r̄C∗(X ×X ×X) IQp̄,q̄C∗(X ×X)⊗ I r̄C∗(X)

q.i.oo

I p̄C∗(X)⊗ I v̄C∗(X)

q.i.

OO

1⊗d // I p̄C∗(X)⊗ IQq̄,r̄C∗(X ×X)

q.i.

OO

I p̄C∗(X)⊗ I q̄C∗(X)⊗ I r̄C∗(X)
q.i.oo

q.i.

OO

9



Here the arrows 1 × d and d × 1 exist by parts 2 and 3 of Proposition 4.2. The arrows

marked q.i. are induced by the cross product and are quasi-isomorphisms by Theorem 3.1.

The upper left square obviously commutes, the upper right and lower left squares commute

by naturality of the cross product, and the lower right square commutes by associativity of

the cross product. The result follows from this.

Proposition 4.5 (Cocommutativity). If Dr̄ ≥ Dp̄ + Dq̄ then the following diagram com-

mutes.

I r̄H∗(X ;F )
d̄
✲ I q̄H∗(X ;F )⊗ I p̄H∗(X ;F )

I p̄H∗(X ;F )⊗ I q̄H∗(X ;F ).

∼=

❄

d̄

✲

As background for our next result, note that for any q̄ and any abelian group G there is

an augmentation ε : I q̄H∗(X ;G)→ G that takes a 0-chain to the sum of its coefficients and

all other chains to 0. Also note that Dt̄ is identically 0, so for every p̄ there is an algebraic

diagonal map

d̄ : I p̄H∗(X ;F )→ I t̄H∗(X ;F )⊗ I p̄H∗(X ;F ).

Proposition 4.6 (Counital property). For any p̄, the composite

I p̄H∗(X ;F )
d̄
−→ I t̄H∗(X ;F )⊗ I p̄H∗(X ;F )

ε⊗1
−−→ F ⊗ I p̄H∗(X ;F ) ∼= I p̄H∗(X ;F )

is the identity.

Proof. First observe that (by an easy argument using the definition of allowable chain) the

projection p2 : X ×X → X induces a map

IQt̄,p̄H∗(X ×X ;F )→ I p̄H∗(X ;F ).

Now it suffices to observe that the following diagram commutes.

I p̄H∗(X ;F )
d //

=
((Q

Q
Q

QQ
Q

Q
QQ

Q
Q

QQ

IQt̄,p̄H∗(X ×X)

p2

��

I t̄H∗(X ;F )⊗ I p̄H∗(X ;F )
∼=oo

ε⊗1

��
I p̄H∗(X ;F ) F ⊗ I p̄H∗(X ;F )

∼=oo

The commutativity of the square follows easily from the fact that the cross product is induced

by the chain-level shuffle product [8, Exercise VI.12.26(2)].

The results of this subsection also have relative forms. Suppose A and B are open subsets

of X and that Dr̄ ≥ Dp̄+Dq̄. Then there is an algebraic diagonal

d̄ : I r̄H∗(X,A ∪B;F )→ I p̄H∗(X,A;F )⊗ I q̄H∗(X,B;F ),

and the obvious generalizations of the preceding results hold. Moreover, we have the following

proposition.
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Proposition 4.7. Let A be an open subset of X and let i : A → X be the inclusion. Then

the diagram

I r̄H∗(X,A;F )
d̄ //

∂

��

I p̄H∗(X,A;F )⊗ I q̄H∗(X ;F )

∂⊗1
��

I r̄H∗(A;F ) d̄ // I p̄H∗(A;F )⊗ I q̄H∗(A;F )
1⊗i // I p̄H∗(A;F )⊗ I q̄H∗(X ;F )

commutes.

Proof. This follows from the commutativity of the diagrams

I r̄H∗(X,A;F )
d //

∂

��

IQp̄,q̄H∗(X ×X,A×X ;F )

∂
��

I r̄H∗(A;F ) d // IQp̄,q̄H∗(A×A;F )
1×i // IQp̄,q̄H∗(A×X ;F ),

which commutes by the naturality of ∂,

IQp̄,q̄H∗(X ×X,A×X ;F )

∂
��

I p̄H∗(X,A;F )⊗ I q̄H∗(X ;F )
∼=oo

∂⊗1

��
IQp̄,q̄H∗(A×X ;F ) I p̄H∗(A;F )⊗ I q̄H∗(X ;F ),

∼=oo

which commutes because the cross product is a chain map, and

IQp̄,q̄H∗(A× A;F )
1×i // IQp̄,q̄H∗(A×X ;F ) I p̄H∗(A;F )⊗ I q̄H∗(X ;F )

∼=oo

I p̄H∗(A;F )⊗ I q̄H∗(A;F ),

∼=

jjVVVVVVVVVVVVVVVVV
1⊗i

33gggggggggggggggggggg

which commutes by naturality of the cross product.

4.2 Cochains and the cup product

We begin by defining intersection cochains and intersection cohomology with field coeffi-

cients.

Definition 4.8. Define Ip̄C
∗(X ;F ) to be HomF (I

p̄C∗(X ;F ), F ) and Ip̄H
∗(X ;F ) to be

H∗(Ip̄C
∗(X ;F )). Similarly for the relative groups: Ip̄C

∗(X,A;F ) is HomF (I
p̄C∗(X,A;F ), F )

and Ip̄H
∗(X,A;F ) is H∗(Ip̄C

∗(X,A;F )).

Remark 4.9. Because F is a field we have

Ip̄H
∗(X ;F ) ∼= HomF (I

p̄H∗(X ;F ), F )

and

Ip̄H
∗(X,A;F ) ∼= HomF (I

p̄H∗(X,A;F ), F ).
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Remark 4.10. We will typically write α for a cochain and x for a chain. We follow Dold’s

convention for the differential of a cochain (see [8, Remark VI.10.28]; note that this differs

slightly from the Koszul convention):

(δα)(x) = −(−1)|α|α(∂x).

This convention is necessary in order for the evaluation map to be a chain map.

Definition 4.11. If Ds̄ ≥ Dp̄+Dq̄, we define the cup product in intersection cohomology

`: Ip̄H
∗(X ;F )⊗ Iq̄H

∗(X ;F )→ Is̄H
∗(X ;F )

by

(α ` β)(x) = (α⊗ β)d̄(x).

Explicitly, if d(x) =
∑

yi × zi, then (α ` β)(x) =
∑

(−1)|β||yi|α(yi)β(zi).

As immediate consequences of Propositions 4.4 and 4.5 we have.

Proposition 4.12 (Associativity). Let p̄, q̄, r̄, s̄ be perversities such that Ds̄ ≥ Dp̄+Dq̄+Dr̄.

Let α ∈ Ip̄H
∗(X ;F ), β ∈ Ip̄H

∗(X ;F ), and γ ∈ Ir̄H
∗(X ;F ). Then

(α ` β) ` γ = α ` (β ` γ)

in Is̄H
∗(X ;F ).

Proposition 4.13 (Commutativity). Let p̄, q̄, s̄ be perversities such that Ds̄ ≥ Dp̄ + Dq̄.

Let α ∈ Ip̄H
∗(X ;F ), β ∈ Iq̄H

∗(X ;F ). Then

α ` β = (−1)|α||β|β ` α

in Is̄H
∗(X ;F ).

4.3 The cap product

Definition 4.14. If Dr̄ ≥ Dp̄ + Dq̄ and A, B are open subsets of X , we define the cap

product

a: Iq̄H
i(X,B;F )⊗ I r̄Hj(X,A ∪ B;F )→ I p̄Hj−i(X,A;F )

by

α a x = (1⊗ α)d̄(x).

Explicitly, if d(x) =
∑

yi × zi, then α a x =
∑

(−1)|α||yi|α(zi)yi.

Remark 4.15. This definition is modeled on [8, Section VII.12]. The reason Dold has 1⊗ α

instead of α⊗1 in the definition is so that the cap product will make the chains a left module

over the cochains (in accordance with the fact that α is on the left in the symbol α a x).

In the remainder of this subsection we show that the cap product has the expected

properties. We begin with the analogue of [8, VII.12.6].
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Proposition 4.16. Suppose Dr̄ ≥ Dp̄+Dq̄. Let A,B,X ′, A′, B′ be open subsets of X with

A′ ⊂ X ′ ∩ A and B′ ⊂ X ′ ∩ B. Let i : (X ′;A′, B′) → (X ;A,B) be the inclusion map of

triads. Let α ∈ Iq̄H
k(X,B;F ) and x ∈ I r̄Hj(X

′, A′ ∪B′;F ). Then

α a i∗x = i∗((i
∗α) a x)

in I p̄Hj−k(X,A;F ).

Proof.

α a i∗x = (1⊗ α)d̄(i∗x)

= (1⊗ α)(i∗ ⊗ i∗)d̄(x)

= (i∗ ⊗ i∗α)d̄(x)

= i∗((i
∗α) a x).

Proposition 4.17. Suppose Dr̄ ≥ Dp̄ +Dq̄ +Dū. Let α ∈ Ip̄H
i(X ;F ), β ∈ Iq̄H

j(X ;F ),

and x ∈ I r̄Hk(X ;F ). Then

(α ` β) a x = α a (β a x)

in I ūHk−i−j(X ;F ).

Proof. First we observe that the perversity condition ensures that both sides of the equation

are defined. Now we have

(α ` β) a x = (1⊗ (α ` β))d̄(x)

= (1⊗ α⊗ β)(1⊗ d̄)d̄(x)

= (1⊗ α⊗ β)(d̄⊗ 1)d̄(x) by Proposition 4.4

= (1⊗ α)d̄((1⊗ β)d̄(x))

= α a (β a x).

For our next result, note that (because Dt̄ is identically 0) there is a cap product

Ip̄H
i(X,A;F )⊗ I p̄Hj(X,A;F )→ I t̄Hj−i(X ;F ).

Proposition 4.18. Let A be an open subset of X. Let α ∈ Ip̄H
i(X,A;F ) and x ∈

I p̄Hi(X,A;F ). Then the image of α a x under the augmentation ε : I t̄H0(X ;F ) → F

is α(x).

Proof.

ε(α a x) = ε(1⊗ α)d̄(x)

= α(ε⊗ 1)d̄(x)

= α(x) by the relative version of 4.6.
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Proposition 4.19. Suppose Dr̄ ≥ Dp̄+Dq̄, and let i : A →֒ X be the inclusion of an open

subset.

1. Let α ∈ Iq̄H
k(X ;F ) and x ∈ I r̄Hj(X,A;F ). Then

∂(α a x) = (−1)|α|(i∗α) a (∂x)

in I p̄Hj−k−1(A;F ), where ∂ is the connecting homomorphism.

2. Let α ∈ Iq̄H
k(A;F ) and x ∈ I r̄Hj(X,A;F ). Then

δ(α) a x = −(−1)|α|i∗(α a ∂x)

in I p̄Hj−k(X ;F ), where ∂ and δ are the connecting homomorphisms.

Proof. We prove part 2; part 1 is similar.

δ(α) a x = (1⊗ δ(α))d̄(x)

= −(−1)|α|(1⊗ α)(1⊗ ∂)d̄(x)

= −(−1)|α|(1⊗ α)(i∗ ⊗ 1)d̄(∂x) by Proposition 4.7 and the relative version of 4.5

= −(−1)|α|i∗(α a ∂x)

We conclude this subsection with a fact which that be needed at one point in Section 6.

First observe that if M is a nonsingular manifold with trivial stratification the cross product

induces a map

H∗(M ;F )⊗ I p̄H∗(X ;F )→ I p̄H∗(M ×X ;F )

for any perversity p̄. This map is an isomorphism by [13, Corollary 3.7], and we define the

cohomology cross product

× : H∗(M ;F )⊗ Ip̄H
∗(X ;F )→ Ip̄H

∗(M ×X ;F )

to be the composite

H∗(M ;F )⊗ Ip̄H
∗(X ;F ) ∼= HomF (H∗(M ;F ), F )⊗ HomF (I

p̄H∗(X ;F ), F )→

HomF (H∗(M ;F )⊗ I p̄H∗(X ;F ), F ) ∼= HomF (I
p̄H∗(M ×X ;F ), F ) ∼= Ip̄H

∗(M ×X ;F ).

Remark 4.20. Note that the second map in this composite, and therefore the entire compos-

ite, is an isomorphism whenever either H∗(M ;F ) or I p̄H∗(X ;F ) is finitely generated.

Proposition 4.21. Suppose Dr̄ ≥ Dp̄ + Dq̄. Let α ∈ H∗(M ;F ), x ∈ H∗(M ;F ), β ∈
Iq̄H

∗(X ;F ), and y ∈ I r̄H∗(X ;F ). Then

(α× β) a (x× y) = (−1)|β||x|(α a x)× (β a y)

in I p̄H∗(M ×X ;F ).
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Proof. This is a straightforward consequence of the definitions and the commutativity of
(the outside of) the following diagram (where the F coefficients are tacit and Q denotes
Qp̄,q̄).

H∗(M)⊗ I r̄H∗(X)

×

��

d̄⊗d̄ //

d⊗d

**VVVVVVVVVVVVVVVVVV

H∗(M)⊗H∗(M)⊗ I p̄H∗(X)⊗ I q̄H∗(X)

×⊗×

rrffffffffffffffffffffffff

∼=
��

H∗(M ×M)⊗ IQH∗(X ×X)

×
��

H∗(M)⊗ I p̄H∗(X) ⊗H∗(M)⊗ I q̄H∗(X).

×⊗×

��

IQH∗(M ×X ×M ×X)

I r̄H∗(M ×X)
d̄ //

d
44hhhhhhhhhhhhhhhhhh

I p̄H∗(M ×X)⊗ I q̄H∗(M ×X)

×
llXXXXXXXXXXXXXXXXXXXXXXXX

This diagram commutes by the definition of d̄ and the naturality, associativity, and com-

mutativity properties of the cross product.

5 Fundamental classes

Recall that the basic homological theory of oriented n-manifolds has three parts: the calcula-

tion of H∗(M,M −{x}) and the construction of the local orientation class; the construction

of the fundamental class in H∗(M,M −K) for K compact; and the calculation of Hi(M) for

i ≥ n. In this section we show that all of these have analogues for stratified pseudomanifolds

using the 0 perversity:

Definition 5.1. 0̄ is the perversity which is 0 for all strata.

We begin with an overview of the main results, which will be proved in later subsections.

Let R be a ring, and let X be an n-dimensional stratified pseudomanifold. As usual, we

do not assume that X is compact or connected and we allow strata of codimension one.

Let Xn denote X −Xn−1. Recall the following definition from [20, Section 5].

Definition 5.2. An R-orientation of X is an R-orientation of the manifold Xn.

Our first goal is to understand I 0̄H∗(X,X − {x};R) (assuming X is R-oriented).

To begin with we note that for x ∈ Xn we have I 0̄H∗(X,X − {x};R) ∼= H∗(Xn, Xn −
{x};R) by excision. In particular the usual local orientation class in Hn(Xn, Xn − {x};R)

determines a local orientation class ox ∈ I 0̄Hn(X,X − {x};R).

Next we consider the case when X is normal (that is, when its links are connected).3

The following proposition generalizes a standard result for R-oriented manifolds.

Proposition 5.3. Let X be a normal R-oriented n-dimensional stratified pseudomanifold.

3This differs from the definition of normal given in [20, Section 5.6] but is equivalent in the cases considered

there.
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1. For all x ∈ X and all i 6= n, I 0̄Hi(X,X − {x};R) = 0.

2. The sheaf generated by the presheaf U → I 0̄Hn(X,X − Ū ;R) is constant, and there is

a unique global section s whose value at each x ∈ Xn is ox.

3. For all x ∈ X, I 0̄Hn(X,X − {x};R) is the free R-module generated by s(x).

Definition 5.4. Let X be a normal R-oriented stratified pseudomanifold, and let x ∈ X .

Define the local orientation class ox ∈ I 0̄Hn(X,X − {x};R) to be s(x).

Now we recall that Padilla [28] constructs a normalization π : X̂ → X for each stratified

pseudomanifold X . Here X̂ is normal and π has the properties given in [28, Definition 2.2];

in particular π is a finite-to-one map which induces a homeomorphism from X̂ − X̂n−1 to

X − Xn−1. Padilla shows that the normalization is unique up to isomorphism (that is, up

to isomorphism there is a unique X̂ and π satisfying [28, Definition 2.2]).

Proposition 5.5. Let X be an R-oriented n-dimensional stratified pseudomanifold, not

necessarily normal. Give X̂ the R-orientation induced by π. Let x ∈ X.

1. For all i 6= n, I 0̄Hi(X,X − {x};R) = 0.

2. I 0̄Hn(X,X − {x};R) is the free R-module generated by the set {π∗(oy) | y ∈ π−1(x)}.

Definition 5.6. Let X be an R-oriented stratified pseudomanifold and give X̂ the R-

orientation induced by π. For x ∈ X , define the local orientation class ox ∈ I 0̄Hn(X,X −
{x};R) to be

∑

y∈π−1(x)

π∗(oy).

This is consistent with Definition 5.4 because for normal X , π is the identity map.

Our next result constructs the fundamental class.

Theorem 5.7. Let X be an R-oriented stratified pseudomanifold. For each compact K ⊂ X,

there is a unique ΓK ∈ I 0̄Hn(X,X −K;R) that restricts to ox for each x ∈ K.

Definition 5.8. Define the fundamental class of X over K to be ΓK .

Remark 5.9. For later use we note that if K ⊂ K ′ then the map I 0̄Hn(X,X − K ′;R) →
I 0̄Hn(X,X −K;R) takes ΓK ′ to ΓK .

Our next result describes I 0̄Hi(X ;R) = 0 for i ≥ n when X is compact. Note that if

Z is a regular stratum of X then the closure Z̄ (with the induced filtration) is a stratified

pseudomanifold; this follows from a straightforward induction over the depth of X .

Theorem 5.10. Let X be a compact R-oriented n-dimensional stratified pseudomanifold.

1. I 0̄Hi(X ;R) = 0 for i > n.
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2. The natural map
⊕

Z

I 0̄Hn(Z̄;R)→ I 0̄Hn(X ;R)

is an isomorphism, where the sum is taken over the regular strata of X.

3. If Z is a regular stratum of X, then I 0̄Hn(Z̄;R) is the free R-module generated by the

fundamental class of Z̄.

Remark 5.11. If X is connected and normal then X has only one regular stratum, by [28,

Lemma 2.1]. So in this case we have I 0̄Hn(X ;R) ∼= R. (This also follows from the second

proposition in [20, Section 5.6], but that result does not give the relation with the local

orientation classes.)

Here is an outline of the rest of the section. We prove Proposition 5.3 and Theorems

5.7 and 5.10 (assuming X is normal) in Subsections 5.1 and 5.2. We deduce Proposition 5.5

and the general case of Theorems 5.7 and 5.10 in Subsection 5.3. In Subsection 5.4, we give

some further properties of the fundamental class, and in Subsection 5.5, we show that if X is

compact and has no strata of codimension one then ΓX is independent of the stratification.

Remark 5.12. In this section we focus attention on the perversity 0̄ because this is where

the fundamental class needed for our duality results lives, but much of our work is also valid

for other perversities and even for ordinary homology:

1. For any nonnegative perversity p̄, Propositions 5.3 and 5.5 and Theorems 5.7 and

5.10 all hold with I 0̄H∗ replaced by I p̄H∗, except that it is not true in general that

I p̄H∗(X,X − {x};R) = 0 for ∗ < n. The proofs are exactly the same.

2. If X is normal and has no codimension one strata then Proposition 5.3 and Theorems

5.7 and 5.10 hold with I 0̄H∗ replaced by ordinary homology H∗, except that it is not

true that H∗(X,X − {x};R) = 0 for ∗ < n. Again, the proofs are exactly the same.

5.1 The orientation sheaf

Our goal in this subsection will be to prove Proposition 5.3, while in the next subsection we

prove Theorems 5.7 and 5.10 under the assumption thatX is normal. The general plan of the

proofs is the same as in the classical case when X is a manifold; see e.g. [21, Theorem 3.26]

for a recent reference. However, there are some technical issues that need to be overcome

due to the lack of homogeneity of X .

The proofs of the proposition and the theorems proceed by a simultaneous induction on

the depth of X . Note that if the depth of X is 0, then X is a manifold, and all results follow

from the classical manifold theory. In the remainder of this subsection, we prove Proposition

5.3 under the assumption that Proposition 5.3 and Theorems 5.7 and 5.10 have been proven

for normal stratified pseudomanifolds of depth less than that of X . In the next section, we

will then use Proposition 5.3 to prove Theorems 5.7 and 5.10 at the depth of X .
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Proof of Proposition 5.3. Recall we let Xi = X i −Xi−1.

We first show that for any x ∈ X , I 0̄Hn(X,X−{x};R) ∼= R and I 0̄Hi(X,X−{x};R) = 0

for i 6= n. This is trivial for x ∈ Xn. For x ∈ Xn−k, we may assume that x has

a distinguished neighborhood of the form N ∼= Rn−k × cLk−1. By excision (see [12]),

I 0̄Hi(X,X − {x};R) ∼= I 0̄Hi(N,N − {x};R), and by the Künneth theorem [23] with the

unfiltered (Rn−k,Rn−k − 0), this is isomorphic to I 0̄Hi−(n−k)(cL, cL − {x};R). By the cone

formula, this is I 0̄Hi−(n−k)−1(L;R) for i− (n − k) > k − 1 (i.e. for i ≥ n) and 0 otherwise.

The link L is compact by the definition of a stratified pseudomanifold, it is connected since

X is normal, and it has depth less than that of X . So by induction, I 0̄Hk−1(L;R) = 0 for

i > k − 1 and, given an R-orientation of L (which we shall find in a moment), we have

I 0̄Hk−1(L;R) ∼= R with a preferred generator ΓL representing the local orientation class. It

follows that I 0̄Hi(X,X−{x};R) = 0 for i 6= n and I 0̄Hn(X,X−{x};R) ∼= R for any x ∈ X .

The I 0̄Hn(X,X − {x};R) are the stalks of the sheaf OX generated by the presheaf

U → I 0̄Hn(X,X − Ū ;R). We next show this is a locally constant sheaf. Certainly it is a

locally-constant sheaf over Xn by manifold theory. So assume by induction hypothesis that

this sheaf is locally-constant over X−Xn−k. Let x ∈ Xn−k, and again choose a distinguished

neighborhood N ∼= Rn−k × cL. To appropriately orient L, we assume that L is embedded

in cL as some b × L with b ∈ (0, 1), and we use that for any choice z ∈ N ∩ Xn, there is

a local orientation class oz ∈ I 0̄Hn(X,X − {z};R), determined by the orientation of X . In

particular, let z ∈ L ∩Xn ⊂ N , which we can write as z = (0, b, c) for 0 ∈ Rn−k, b ∈ (0, 1)

(along the cone line), and c ∈ L − Lk−2. Then I 0̄Hn(X,X − {z};R) ∼= Hn−k(R
n−k,Rn−k −

{0};Z)⊗H1((0, 1), (0, 1)−{b};Z)⊗I
0̄Hk−1(L, L−{c};R). Choosing the canonical generators

of Hn−k(R
n−k,Rn−k − {0};Z) and H1((0, 1), (0, 1) − {b};Z), the local orientation class of

I 0̄Hn(X,X − {z};R) thus determines a local orientation class of I 0̄Hk−1(L, L − {c};R).

Since c ∈ L − Lk−2 was arbitrary but the generators of Hn−k(R
n−k,Rn−k − {0};Z) and

H1((0, 1), (0, 1)−{b};Z) are fixed and we know the generator of I 0̄Hn(X,X−{z};R) remains

constant over L ∩Xn, this determines a fixed R-orientation of L and hence a choice of ΓL.

Now, having chosen the R-orientation for L and a corresponding fundamental class ΓL, a

more careful look at the usual Künneth and cone formula arguments show that I 0̄Hn(N,N−
{x};R) ∼= R is generated by [η]× c̄ΓL, where η is a chain representing the local orientation

class of Hn−k(R
n−k,Rn−k − 0;Z) and c̄ΓL is the singular chain cone on ΓL. More explicitly,

if we let ξ stand for a specific intersection chain representing the class ΓL, continuing to

consider L as the subset {b} × L ⊂ cL, then c̄ΓL is represented by the chain c̄ξ formed by

extending each simplex σ in ξ to the singular cone simplex [v, σ], where v represents the

cone point of cL.

Now, if we assume x lives at 0× v ∈ N ∼= Rn−k× cL, where 0 is the origin in Rn−k and v

is the cone point of cL, then we can take a smaller neighborhood N ′ of x with N ′ ∼= Bδ× c̄ǫL,
where Bδ is the ball of radius δ about the origin in Rn−k and c̄ǫL is ([0, ǫ]×L)/ ∼ within the

cone ([0, 1)×L)/ ∼ (where ∼ collapses L× 0 to a point). We choose δ so that the image of

η in Hn−k(R
n−k,Rn−k − {a};Z) is a generator for all a ∈ Bδ, and we let ǫ < b, where again

we have embedded L in cL at distance b from the vertex. With these choices, the chain

[η]× c̄ΓL not only generates I 0̄Hn(N,N − {x};R) ∼= I 0̄Hn(X,X − {x};R) ∼= R, but it also

restricts to the local orientation class oz ∈ I 0̄Hn(X,X − {z};R) for any z ∈ N ′ ∩Xn.
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Next we observe that I 0̄Hn(X,X −N ′;R) ∼= I 0̄Hn(X,X −{x};R) via the inclusion map

since X−N ′ is stratified homotopy equivalent to X−{x} (see Appendix A), and furthermore,

[η]× c̄ΓL generates both groups. Similarly, it generates I 0̄Hn(X,X − {x′};R) for any other

x′ ∈ N ′ ∩ Xn−k. This is enough to guarantee that our orientation sheaf is locally constant

along N ′ ∩ Xn−k. But now also if z is any point in the top stratum of N ′, we have seen

that oz ∈ I 0̄Hn(X,X − {z};R) ∼= R is also represented by [η] × c̄ΓL (and in a way that

preserves the choice of orientation). But then by the induction hypotheses, this chain must

also restrict to oz′ ∈ I 0̄Hn(X,X − {z′};R) ∼= R for any z′ ∈ N ′ − N ′ ∩ Xn−k. So OX is

constant on N ′, and for x′ ∈ N ′ ∩Xn−k, we can now let ox′ ∈ I 0̄Hn(X,X − {x′};R) be the

image of [η] ∩ c̄ΓL.

It now follows by induction that OX must be locally constant. Furthermore, over suffi-

ciently small distinguished neighborhoods N ′, we have found local sections that restrict to

ox for each x ∈ N ′ ∩Xn. If U, V are any two such open sets of X with corresponding local

sections sU , sV , then we see that sU and sV must therefore agree on U∩V ∩Xn. But it follows

from the local constancy that they must therefore also agree on all of U ∩ V . Therefore,

we can piece together the local sections that agree with the local orientation classes into a

global section, and it follows that OX is constant.

5.2 Fundamental classes and global computations

In this section, we provide the combined proofs of Theorems 5.7 and 5.10 assuming X is

normal and assuming Proposition 5.3 up through the depth of X . In order to prove Theorem

5.10 we need a somewhat stronger version of Theorem 5.7:

Proposition 5.13. Suppose X is a normal n-dimensional R-oriented stratified pseudoman-

ifold. Then for any compact K ⊂ X, I 0̄Hi(X,X − K;R) = 0 for i > n, and there is a

unique class ΓK ∈ I 0̄Hn(X,X−K;R) such that for any x ∈ K, the image of ΓK in X is the

local orientation class ox ∈ I 0̄Hn(X,X − {x};R). Furthermore, if η ∈ I 0̄Hn(X,X −K;R)

is such that the image of η in I 0̄Hn(X,X − {x};R) is zero for all x ∈ K, then η = 0.

Proof of Proposition 5.13. We first observe that if the proposition is true for compact sets

K, K ′, and K ∩K ′, then it is true for K ∪K ′. This follows from a straightforward Mayer-

Vietoris argument exactly as it does for manifolds (see [21, Lemma 3.27]). Also analogously

to the manifold case in [21], we can reduce to the situation where X has the form of a

distinguished neighborhood X ∼= Rn−k × cLk−1. To see this, we note that any compact

K ⊂ X can be written as the union of finitely many compact sets K = K1 ∪ . . . ∪ Km

with each Ki contained in such a distinguished neighborhood in X . This can be seen by a

covering argument using the compactness of K. Now, notice that (K1∪ · · ·∪Km−1)∩Km =

(K1 ∩Km) ∪ · · · ∪ (Km−1 ∩Km) is also a union of m − 1 compact sets each contained in a

distinguished neighborhood, so the Mayer-Vietoris argument and an induction on m reduces

matters to the base case of a single K inside a distinguished neighborhood. Then by excision,

we can assume that X = Rn−k × cLk−1.
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The next step in the classical manifold setting, as discussed in [21], would be to consider

the case where K is a finite union of convex sets in Rn. This is not available to us in an

obvious way. However, let us define a compact set in X = Rn−k × cLk−1 to be PM-convex

(“PM” for pseudomanifold) if either

1. it has the form C× ([0, b]×L)/ ∼, where C is a convex set in Rn−k, and ([0, b]×L)/ ∼
is part of the cone on L, including the vertex, or

2. it has the form C × [a, b]×A, where C is a convex set in Rn−k, A is a compact subset

of L, and [a, b] is an interval along the cone line with a > 0.

It is clear that the intersection of any two PM-convex sets is also a PM-convex set, so

another Mayer-Vietoris argument and induction allows us to reduce to the case of a single

PM-convex set. For PM-convex sets of the second type, we can use an excision argument

to cut Rn−k × {v} (where v is the cone vertex) out of I 0̄H∗(X,X −K;R) and then appeal

to an induction on depth. For a PM-convex set K of the first type, computations exactly

as in the proof of Proposition 5.3 show that there is a class ΓK with the desired restrictions

to I 0̄Hn(X,X − {x};R) for each x ∈ K. Now, by stratified homotopy equivalence (see

Appendix A), I 0̄H∗(X,X − K;R) ∼= I 0̄H∗(X,X − {x};R) for any x ∈ C × v, and by the

usual computations then I 0̄H∗(X,X −K;R) ∼= I 0̄H∗(X,X − {x};R) ∼= I 0̄H∗−n−k−1(L;R),

which is 0 for ∗ > n and R for ∗ = n. Therefore, any other element of I 0̄Hn(X,X −K;R)

that is not ΓK cannot yield the correct generator of I 0̄Hn(X,X − {x};R) upon restriction,

and so ΓK is unique. Furthermore, we see that if η ∈ I 0̄Hn(X,X −K;R) restricts to 0 in

I 0̄Hn(X,X −{x};R) for any x ∈ C × v ⊂ K then η = 0 (and so certainly η = 0 if η goes to

0 in I 0̄Hn(X,X − {x};R) for every x ∈ K).

Next, we consider an arbitrary compact K in Rn−k × cLk−1 and again follow the general

idea from [21]. For the existence of a ΓK , let ΓK be the image in I 0̄Hn(X,X −K;R) of any

ΓD, where D is any PM-convex set sufficiently large to contain K. It is clear that such a

D exists using that our space has the form Rn−k × cLk−1. By applying the results of the

preceding paragraph for the PM-convex case, we see that ΓK has the desired properties.

To show that ΓK is unique, suppose that Γ′
K ∈ I 0̄Hn(X,X − K;R) is another class with

the desired properties. Suppose z is a relative cycle representing ΓK − Γ′
K ∈ I 0̄Hn(X,X −

K;R). Let |∂z| be the support of ∂z, which lies in X −K. Since |∂z| is also compact, we

can cover K by a finite number of sufficiently small PM-convex sets that do not intersect

|∂z|. Let P denote the union of these PM-convex sets. The relative cycle z defines an

element α ∈ I 0̄Hn(X,X − P ;R) that maps by inclusion to ΓK − Γ′
K ∈ I 0̄Hi(X,X −K;R).

So α is 0 in I 0̄Hn(X,X − {x};R) for all x ∈ K. This implies that the image of α is

also 0 in I 0̄Hn(X,X − {x};R) for all x in P . To see this, note that any x ∈ P is in

the same PM-convex set, say Q, as some y ∈ K. But then by the preceding paragraph,

I 0̄Hn(X,X − {x};R) ∼= I 0̄Hn(X,X − Q;R) ∼= I 0̄Hn(X,X − {y};R). But now we must

have α = 0 in I 0̄Hn(X,X − P ;R) since P is a finite union of PM-convex sets. Hence

ΓK − Γ′
K = 0. This implies the uniqueness of the class ΓK . The same arguments show that

if η ∈ I 0̄Hn(X,X −K;R) goes to 0 in I 0̄Hn(X,X − {x};R) for each x ∈ K, then η = 0.
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Finally, to see that I 0̄Hi(X,X − K;R) = 0 for i > n, again let z be a relative cycle

representing an element ξ ∈ I 0̄Hi(X,X − K;R), i > n. We can form P exactly as in the

preceding paragraph. Once again, the relative cycle z defines an element α ∈ I 0̄Hi(X,X −
P ;R) that maps by inclusion to ξ ∈ I 0̄Hi(X,X − K;R). But now if i > n, then by the

preceding results, α = 0 since P is PM-convex. Thus also ξ = 0.

For X normal, we can now complete the proof of Theorems 5.7 and 5.10. Theorem 5.7

follows directly from Proposition 5.13, as well as the first part of Theorem 5.10 by taking

K = X if X is compact.

We need to see that if X is compact and connected then I 0̄Hn(X ;R) ∼= R, generated by

ΓX . For any x ∈ X , we have a homomorphism I 0̄Hn(X ;R) → I 0̄Hn(X,X − {x};R) ∼= R,

which we know is surjective, sending ΓX onto a local orientation class, by Proposition 5.13.

On the other hand, suppose that η ∈ I 0̄Hn(X ;R) goes to 0 ∈ I 0̄Hn(X,X − {x};R) for

some x ∈ X . Since x → im(η) ∈ I 0̄Hn(X,X − {x};R) is a section of the locally-constant

orientation sheaf, this implies that im(η) = 0 ∈ I 0̄Hn(X,X −{x};R) for all x ∈ X (since X

is connected). But then η = 0 by Proposition 5.13. Thus for any x ∈ X , the homomorphism

I 0̄Hn(X ;R) → I 0̄Hn(X,X − {x};R) ∼= R is an isomorphism. If X has multiple compact

normal connected components, the rest of the theorem follows by noting that I 0̄Hn(X ;R)

is the direct sum over the connected components and by piecing together the results for the

individual components.

5.3 5.5, 5.7 and 5.10 for general pseudomanifolds

Proof of Proposition 5.5. If X is not necessarily normal, let π : X̂ → X be its normaliza-

tion. By Lemma C.1 of the Appendix C (which extends results well-known for Goresky-

MacPherson perversities), π induces isomorphisms I 0̄H∗(X̂, X̂−π−1(Ū);R)→ I 0̄H∗(X,X−
Ū ;R). Proposition 5.3 then implies that I 0̄Hi(X,X − {x};R) = 0 for i 6= n and that

OX ∼= π∗O
X̂ . We thus obtain our desired global section of OX from the preferred global

section of OX̂ using the general sheaf theory fact Γ(X ; π∗O
X̂) = Γ(X̂ ;OX̂). The formula for

I 0̄Hn(X,X − {x};R) also follows from basic sheaf theory.

Finally, we prove Theorems 5.7 and 5.10 for X not necessarily normal.

Proof. If X is not necessarily normal, once again there is a map π : X̂ → X such that X̂ is

normal, π restricts to a homeomorphism from X̂−X̂n−1 to Xn = X−Xn−1, and π induces an

isomorphism on intersection homology by Lemma C.1. In addition, the number of connected

components of X̂ is equal4 to the number of connected components of X−Xn−1. Notice that

if Z is such a component of X −Xn−1, π restricts to a normalization map from the closure

of Ẑ := π−1(Z) in X̂ to the closure of Z in X , which is also a stratified pseudomanifold (as

follows from a local argument via an induction on depth). Also, if K is a compact subset

4Since X̂ − X̂n−1 ∼= X − Xn−1 and X̂ − X̂n−1 is dense in X̂, the number of connected components of

X̂ is less than or equal to the number of components of X −Xn−1. But each connected normal stratified

pseudomanifold has only one regular stratum [28, Lemma 2.1], so this must in fact be an equality.
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of X , then K̂ = π−1(K) is compact since π is proper, and π restricts to the normalization

X̂ − K̂ → X −K (see Proposition 2.5 and Theorem 2.6 of [28]).

So π also induces isomorphisms I 0̄H∗(X̂, X̂ − K̂;R)→ I 0̄H∗(X,X −K;R), and since X̂

is normal, our preceding results yield a unique fundamental class Γ̂K ∈ I 0̄Hn(X̂, X̂ − K̂;R)

and show that I 0̄Hi(X̂, X̂ − K̂;R) = 0 for i > n. But the isomorphism π on intersection

homology then shows that I 0̄Hi(X,X − K;R) = 0 for i > n and provides a class πΓ̂K ∈
I 0̄Hn(X,X −K;R). Let us see that πΓ̂K has the desired properties for it to be ΓK .

By taking sufficiently small distinguished neighborhoods around x ∈ X , letting π−1(x) =
{y1, . . . , ym}, and excising, we have the following commutative diagram (coefficients tacit):

I 0̄Hn(X̂, X̂ − K̂) ✲ I 0̄Hn(X̂, X̂ − π−1(x)) ✛
∼=

I 0̄Hn(N̂, N̂ − π−1(x)) ∼= ⊕m
i=1

I 0̄Hn(N̂i, N̂i − yi)
∼=
✲ ⊕m

i=1
R

I 0̄Hn(X,X −K)

π ∼=

❄

✲ I 0̄Hn(X,X − x)

π ∼=

❄

✛
∼=

I 0̄Hn(N,N − x)

π ∼=

❄
∼=
✲ ⊕m

i=1
R.

∼=

❄

(1)

So by the definition of the local orientation class ox, we see that the image of πΓ̂K in

I 0̄Hn(X,X − {x};R) is precisely ox since Γ̂K restricts to the local orientation class in each

I 0̄Hn(X,X − {yi};R). Restricting this same argument to Z̄ and cl(Ẑ) demonstrates that

the image of Γcl(Ẑ) must be ΓZ̄ .

To see that ΓK is unique, let Γ′
K be another class with the desired properties. Then ΓK

and ΓK ′ each correspond to unique elements Γ̂K and Γ̂K ′ in I 0̄Hn(X̂, X̂ − K̂;R). But now

using diagram (1) again, we see that Γ̂K and Γ̂′
K must each restrict to the local orientation

class of I 0̄Hn(X̂, X̂ − {y};R) for each y ∈ K̂ or else their images in I 0̄Hn(X,X − {x};R)

will not be correct. But by the uniqueness for normal stratified pseudomanifolds, which we

obtained in Proposition 5.13, this implies Γ̂K = Γ̂′
K , and so ΓK = Γ′

K .

This completes the proof of Theorem 5.7.

If Xn is connected and we take K = X , then Theorem 5.10 follows immediately from the

isomorphism I 0̄H∗(X̂;R) ∼= I 0̄H∗(X ;R).

If Xn is not connected, let Z̄ be the closure of Z in X , let cl(Ẑ) be the closure of Ẑ in

X̂ , and notice X̂ is the disjoint union of the connected components X̂ = ∐cl(Ẑ). So then

⊕ZI
0̄Hn(cl(Ẑ);R)

∼=
✲ I 0̄Hn(X̂ ;R)

⊕ZI
0̄Hn(Z̄;R)

π ∼=

❄
∼=
✲ I 0̄Hn(X̂;R).

π ∼=

❄

(2)

The top map is an isomorphism because the spaces cl(Ẑ) are disjoint. The vertical maps

are normalization isomorphisms, and it follows that the bottom is an isomorphism. Thus it

follows from the normal case that I 0̄Hi(X̂ ;R) = 0 for i > n and that I 0̄Hn(X̂ ;R) ∼= Rm,

where m is the number of connected components of X −Xn−1.

The remainder of the Theorem 5.10 follows since our earlier arguments imply that the

image of Γcl(Ẑ) ∈ I 0̄Hn(cl(Ẑ);R) under the normalization π|cl(Ẑ) : cl(Ẑ) → Z̄ is ΓZ̄ ∈

I 0̄Hn(Z̄;R).
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5.4 Corollaries and Complements

For later use we record some further properties of the fundamental class.

Corollary 5.14. Suppose X is a compact connected normal n-dimensional R-oriented strat-

ified pseudomanifold. If γ ∈ I 0̄Hn(X ;R) ∼= R is a generator, then γ is the fundamental class

of X with respect to some orientation of X.

Proof. If ΓX is the fundamental class of X with respect to the given orientation, then clearly

γ = rΓX for some unit r ∈ R. Thus the image of γ in any I 0̄Hn(X,X − {x};R) is r times

the image of ΓX in I 0̄Hn(X,X − {x};R). Thus γ is the fundamental class corresponding to

the global orientation section obtained from that corresponding to ΓX by multiplication by

r.

Corollary 5.15. Suppose X is a compact connected n-dimensional R-oriented stratified

pseudomanifold. Let {xi} be a collection of points of X, one in each connected component

of X − Xn−1. If γ ∈ I 0̄Hn(X ;R) restricts to oxi
∈ I 0̄Hn(X,X − {xi};R) for each xi, then

γ = ΓX . More generally, given that X is orientable, any element of I 0̄Hn(X ;R) that restricts

to a generator of each I 0̄Hn(X,X − {xi};R) determines an orientation of X.

Proof. First assume X is given an orientation and hence has a fundamental class ΓX . We

know ΓX has the desired property. It is clear from Theorem 5.7 and diagram (2), that no

other element of I 0̄Hn(X ;R) can have this property, since, as in the proof of the preceding

corollary, any other element of I 0̄Hn(X ;R) would have to restrict to a different element of

I 0̄Hn(X,X − {xi};R) for at least one of the xi.

Conversely, an element of I 0̄Hn(X ;R) that restricts to a generator of each I 0̄Hn(X,X −
{xi};R) determines a local orientation at each xi. But since X is orientable, any local

orientation at one point of each regular stratum determines an orientation of X .

Our next result will be needed in [17]. It utilizes the definition of stratified homotopy

equivalence given in Appendix A.

Corollary 5.16. Suppose X and Y are compact n-dimensional stratified pseudomanifolds,

that X is R-oriented, and that f : X → Y is a stratified homotopy equivalence. Then Y is

orientable and f takes ΓX to ΓY for some orientation of Y .

Proof. By Padilla [28, Theorem 2.6], normalization is functorial, so we have a diagram

I 0̄Hn(X̂ ;R)
f̂
✲ I 0̄Hn(Ŷ ;R)

I 0̄Hn(X ;R)

πX

❄

f
✲ I 0̄Hn(Y ;R).

πY

❄

The bottom map is an isomorphism by the invariance of intersection homology under strati-

fied homotopy (see Appendix A), and the vertical maps are isomorphisms by normalization.
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Hence the top map is also an isomorphism. Borrowing the notation from above, since each

connected component cl(Ẑ) of X̂ is a compact connected oriented normal stratified pseu-

domanifold, with its orientation coming from that of the stratum Z ⊂ X , we have each

I 0̄Hn(cl(Ẑ);R) ∼= R, and the fundamental class ΓX̂ determined by ΓX is a sum of generators

of the separate I 0̄Hn(cl(Ẑ);R). Since X and Y are stratified homotopy equivalent, there

is a bijection between connected components of X − Xn−1 and Y − Y n−1, and f induces

homotopy equivalences of these manifolds. It follows that Y must be orientable and that

f̂(ΓŶ ) must similarly be a sum of generators of the corresponding I 0̄Hn(cl(Ŝ);R) for regular

strata S ⊂ Y . By Corollary 5.14, these generators must be fundamental classes for the cl(Ŝ)

with respect to some orientation on Ŷ . This determines an orientation of Y by the homeo-

morphism Ŷ − Ŷ n−1 ∼= Y − Y n−1, and, it follows from the diagram that f(ΓX) = πY f̂(ΓX̂)

is the corresponding fundamental class on Y .

We conclude this subsection with a fact that will be needed at one point in Section

6. First observe that if M is an R-oriented manifold and X is an R-oriented stratified

pseudomanifold of dimension n there is a canonical R-orientation on M × X (namely the

product orientation on M ×Xn; see [8, VIII.2.13]).

Proposition 5.17. Let M be an R-oriented manifold and let X be an R-oriented stratified

pseudomanifold. Let K1 ⊂ M and K2 ⊂ X be compact. Then ΓK1
× ΓK2

= ΓK1×K2
in

I 0̄H∗(M ×X,M ×X −K1 ×K2).

Proof. It suffices to show that for each x ∈M and y ∈ X we have o(x,y) = ox × oy.

First suppose X is normal. Applying Proposition 5.3(2) to M , X and M × X gives

sections s, t and u. Then s× t is a continuous section which agrees with u for regular points

by [8, VIII.2.13] and hence for all points by the uniqueness property in Proposition 5.3(2).

Thus we have

o(x,y) = u(x, y) = s(x)× t(y) = ox × oy

for all x ∈M and y ∈ X .

For general X , let π : X̂ → X be a normalization. Then 1×π : M × X̂ →M ×X is also

a normalization by [28, Example 2.3(3)], and if x ∈M , y ∈ X we have

ox × oy = ox ×
(

∑

z∈π−1(y)

π∗(oz)
)

=
∑

(x,z)∈(1×π)−1(x,y)

(1× π)∗(o(x,z))

= o(x,y).

Remark 5.18. The analogous fact is true for a product of two pseudomanifolds, but the

proof is more involved (because one has to show that the product of two normalizations is a

normalization).
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5.5 Topological invariance of the fundamental class

In this subsection, we demonstrate a fact needed in [17]: the fundamental class of a compact

oriented stratified pseudomanifold with no codimension one strata is an oriented homeomor-

phism invariant.

The proscription on codimension one strata is necessary because the group I 0̄Hn(X ;R)

itself depends on the stratification of X if codimension one strata are allowed. For example,

let S = S1 be the unit circle stratified trivially, and let S ′ be the circle stratified as S1 ⊃
{x, y}, where x, y are any two distinct points of S1. Then simple computations reveal that

I 0̄H1(S;R) ∼= H1(S;R) ∼= R but I 0̄H1(S
′;R) ∼= H1(S

1, {x, y};R) ∼= R ⊕R.

For the remainder of this subsection, we limit discussion to stratified pseudomanifolds

with no codimension one strata.

We recall from [23] that for any stratified pseudomanifold X there is an intrinsic coarsest

“stratification” X∗ of X (which is actually a CS-set, not a stratified pseudomanifold) that

depends only on X as a topological space. The inclusion map I 0̄H∗(X ;R) → I 0̄H∗(X
∗;R)

is an isomorphism, and hence if X ′ is a restratification of X (that is, the space X with an

alternate pseudomanifold stratification) there is a canonical composite isomorphism

I 0̄H∗(X ;R)
∼=
−→ I 0̄H∗(X

∗;R)
∼=
←− I 0̄H∗(X

′;R).

We first show that an orientation of X determines an orientation on each restratification

of X and on X∗.

Lemma 5.19. Let X be an oriented stratified pseudomanifold. Let X ′ be a restratification

of X. Then X ′ has a unique orientation so that the induced orientations on Xn ∩X ′
n from

X and X ′ agree. This remains true with X ′ replaced by X∗.

Proof. The proof is the same for X ′ or X∗. Note that since X∗ is coarser than X or X ′, it

must also have no codimension one strata.

Notice that Xn ∩X
′
n is dense in both Xn and X ′

n since Xn and X ′
n are each dense in X .

Now, by definition, an orientation on X is an orientation on Xn, i.e. an isomorphism on

Xn from the orientation R-bundle to the constant R-bundle. Just as in the proof of Borel

[4, Lemma 4.11.a], the restriction of this isomorphism to the dense subset Xn ∩X ′
n extends

uniquely to an isomorphism from the orientation R-bundle to the constant R-bundle on X ′
n,

using the equivalence of local systems with π1-modules on connected manifolds (in this case,

components of X ′
n), and that the fundamental group of a dense open set of a connected

manifold surjects onto the fundamental group of the connected manifold.

Proposition 5.20. If X is a compact R-oriented n-dimensional stratified pseudomanifold

and X ′ is a restratification of X with the induced R-orientation then the canonical isomor-

phism I 0̄Hn(X ;R) ∼= I 0̄Hn(X
′;R) takes ΓX to ΓX′.

Proof. This follows easily from Corollary 5.15, choosing points in Xn ∩X ′
n.

Finally, we observe that the fundamental class is an oriented topological invariant. To see

what this means, suppose X, Y are compact R-oriented n-dimensional stratified pseudoman-

ifolds and that f : X → Y is a topological homeomorphism (not necessarily stratified). The
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stratification ofX induces a restratification Y ′ of Y with (Y ′)i = f(X i) and the R-orientation

of X induces an R-orientation of Y ′.

Definition 5.21. Let X, Y be compact R-oriented n-dimensional stratified pseudomanifolds

without codimension one strata. We will say that the topological homeomorphism f : X →
Y is an oriented homeomorphism if the induced orientation on Y ′ is consistent with the given

orientation of Y in the sense of Lemma 5.19.

The following corollary is now evident from the preceding results of this subsection:

Corollary 5.22. If f : X → Y is an oriented homeomorphism of compact R-oriented n-

dimensional stratified pseudomanifolds without codimension one strata, then f takes ΓX ∈
I 0̄Hn(X ;R) to ΓY ∈ I 0̄Hn(Y ;R).

6 Poincaré duality

Let F be a field. In this section all intersection homology and cohomology will have F

coefficients.

We will show that cap product with the fundamental class induces a Poincaré duality

isomorphism from compactly supported intersection cohomology to intersection homology.

Let X be an F -oriented stratified pseudomanifold of dimension n, possibly noncompact

and possibly with codimension one strata. Let p̄ be a perversity.

Definition 6.1. The compactly supported intersection cohomology of X with perversity p̄,

denoted Ip̄H
∗
c (X ;F ), is defined to be

lim−→ Ip̄H
∗(X,X −K;F ),

where K ranges over all compact subsets of X .

Let q̄ = t̄− p̄.

For each compact K ⊂ X we define

DK : Ip̄H
∗(X,X −K;F )→ I q̄Hn−∗(X ;F )

by

DK(α) = (−1)|α|n(α a ΓK).

Remark 6.2. For the sign (−1)|α|n, which does not appear in the literature, see [14, Section

4.1], where this sign is introduced to make the duality map a chain map of appropriate

degree.

Next we observe that the DK are consistent asK varies. LetK ⊂ K ′ and let j : X−K ′ →֒
X −K be the inclusion. Then for α ∈ Ip̄H

∗(X,X −K) we have

DK ′(j∗α) = (−1)|α|n((j∗α) a Γ′
K)

= (−1)|α|n(α a (j∗Γ
′
K)) by Proposition 4.16

= (−1)|α|n(α a ΓK) by Remark 5.9

= DK(α).
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Now we define

D : Ip̄H
∗
c (X ;F )→ I q̄Hn−∗(X ;F )

to be

lim
−→

DK .

Theorem 6.3 (Poincaré duality). Let F be a field. Let X be an n-dimensional F -oriented

stratified pseudomanifold, possibly noncompact and possibly with codimension one strata, and

let p̄+ q̄ = t̄. Then D : Ip̄H
i
c(X ;F )→ I q̄Hn−i(X ;F ) is an isomorphism.

Proof. We argue by induction on the depth of X . When X has depth 0, X is a manifold and

the result is classical. So we assume now that X has positive depth and that the theorem

has been proven on stratified pseudomanifolds of depth less than that of X .

Lemma 6.4. If the conclusion of Theorem 6.3 holds for the compact F -oriented stratified

k − 1 pseudomanifold L, then it holds for cL.

For the proof we need some notation, which will also be used later.

Notation 6.5. For 0 < r < 1 let crL denote the image of [0, r]×L in cL = ([0, 1)× L)/ ∼.

Proof. We orient cL consistently with the product (0, 1)× (L− Lk−2) ∼= cL − (cL)k−1. Let

v denote the vertex of cL.

We are free to choose any cofinal collection of compact sets, so we choose K to have the

form crL, 0 < r < 1.

Fix such a K. We claim that the map

DK : Ip̄H
i(cL, cL−K;F )→ I q̄Hk−i(cL;F )

is already an isomorphism (before passage to the direct limit).

Let b ∈ (r, 1) and let j : L → cL take x to (b, x). Then j is a stratified homotopy

equivalence L → cL − K, so Appendix A implies that, for every r̄, j∗ is an isomor-

phism I r̄H∗(L;F ) → I r̄H∗(cL − K;F ) and j induces an isomorphism I r̄H∗(cL, L;F ) →
I r̄H∗(cL, cL−K;F ).

Now if i < k − p̄({v}) then Proposition 2.3 and Remark 4.9 imply that the the domain

and range of DK are both 0 and DK is vacuously an isomorphism.

So let i ≥ k − p̄({v}) and consider the following diagram

Ip̄H
i(cL, cL−K;F ) ✛

δ
Ip̄H

i−1(cL−K;F )
j∗

∼=
✲ Ip̄H

i−1(L;F )

I q̄Hk−i(cL;F )

DK

❄

✛
inc

I q̄Hk−i(cL−K;F )

·aj∗ΓL

❄

✛
j∗

∼=
Iq̄Hk−i(L;F ).

·aΓL

❄

The right vertical arrow is an isomorphism by hypothesis (since L is compact), and the

right square commutes up to sign by Proposition 4.16, so the middle vertical arrow is an

isomorphism. Proposition 2.3 and Remark 4.9 imply that the horizontal arrows in the left
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square are isomorphisms so it suffices to show that the left square commutes up to sign. For

this it suffices, by Proposition 4.19(2), to show that j∗ΓL = ∂ΓK . This in turn follows from

the fact, shown in the proof of Proposition 5.3, that c̄ΓL = ΓK (in that proof it was assumed

that X is normal, but the relevant part of the argument holds more generally).

Lemma 6.6. If the conclusion of Theorem 6.3 holds for the compact F -oriented stratified

k − 1 pseudomanifold L, then it holds for M × cL, where M is an F -oriented unstratified

n− k manifold and we use the product stratification and the product orientation.

Proof. For convenience, let M × cL = Y .

Any compact set K ⊂ Y is contained in the compact set p1(K)× p2(K), where p1, p2 are

the respective projections to M and to cL. So the compact sets of the form K1 ×K2 ⊂ Y

are cofinal among all compact sets. Furthermore, since compact sets of the form crL (in the

notation of the proof of Lemma 6.4) are cofinal among compact sets in cL, compact sets of

the form K1× crL are cofinal among the compact sets of Y . Therefore, to prove the lemma,

it suffices to show that the direct limit of the maps

· a ΓK1×crL : Ip̄H
i(Y, Y − (K1 × crL);F )→ I q̄Hn−i(Y ;F )

is an isomorphism.

Now consider the following diagram.

Ip̄H
∗(Y, Y −K1 × crL;F ) ✛

c
H∗(M,M −K1;F )⊗ Ip̄H

∗(cL, cL− crL;F )

I q̄H∗(Y ;F )

·aΓK1×crL

❄

✛
×

H∗(M)⊗ I q̄H∗(cL).

(·aΓK1
)⊗(·aΓcrL)

❄

Here the map c is defined by c(α ⊗ β) = (−1)|β|(n−k)(α × β) (recall that the coho-

mology cross product was defined just before Proposition 4.21). The diagram commutes

by Proposition 5.17 and the relative version of Proposition 4.21. The lower horizontal ar-

row is an isomorphism by Theorem 3.1 (using perversity 0̄ for the M factor) and the up-

per horizontal arrow is an isomorphism by the relative version of Remark 4.20; note that

Ip̄H
∗(cL, cL − crL;F ) is finitely generated because L is compact. The right hand vertical

arrow induces an isomorphism after passage to the direct limit by [21, Theorem 3.35] and

Lemma 6.4. It follows that the left hand vertical arrow induces an isomorphism after passage

to the direct limit as required.

We can now complete the proof of Poincaré duality on X with a Zorn’s Lemma argu-

ment, as in the proof of manifold duality in Hatcher [21, Proof of Theorem 3.35]. By the

induction assumption, any space of depth less than that of X satisfies the conclusion of

the theorem. In particular, it is true on X − Xm where Xm is the smallest non-empty

skeleton of X . Let U denote the set of open sets of X containing X − Xm and on which

D is an isomorphism; U is partially ordered by inclusion. Suppose S is a totally ordered

subset of U , and let W = ∪U∈SU . For Ua ⊂ Ub elements of S, there is a natural map
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Ip̄H
i
c(Ua;F )→ Ip̄H

i
c(Ub;F ) since an element of Ip̄H

i
c(Ua;F ) is represented by an element of

Ip̄H
i(Ua, Ua−K;F ) for some compactK and then Ip̄H

i(Ua, Ua−K;F ) ∼= Ip̄H
i(Ub, Ub−K;F )

by excision. Furthermore, we then see that lim
−→U∈S

Ip̄H
i
c(U ;F ) ∼= Ip̄H

i
c(W ;F ). Of course also

I q̄Hn−i(W ;F ) ∼= lim
−→U∈S

I q̄Hn−i(U ;F ), and it follows that D : Ip̄H
i
c(W ;F )→ I q̄Hn−i(W ;F )

is the direct limit of duality isomorphisms and hence an isomorphism.

Therefore, each totally ordered set in U has a maximal element, and by Zorn’s lemma,

there is a largest open U ⊂ X such that U contains X − Xm and duality holds on U . If

U = X we are done. Suppose U 6= X , and let x ∈ X−U . Then x ∈ X−Xn−k for some k ≥ 1,

and x is contained in a distinguished neighborhood N homeomorphic to Rn−k×cLk−1. From

now on we write Xn−k for Xn−k − Xn−k−1. Proceeding as in the proof of [23, Proposition

8], let V = U ∩ N . Since this set is open (and so is U ∩N ∩Xn−k in Xn−k), we can shrink

the cL factors in N to obtain an open neighborhood W of U ∩N ∩Xn−k in U ∩N = V such

that W is homeomorphic to (U ∩N ∩Xn−k)× cL.
Now we have the following diagram, in which the rows are Mayer-Vietoris sequences:

✲ Ip̄H
i
c(W −W ∩Xn−k;F ) ✲ Ip̄H

i
c(W ;F )⊕ Ip̄H

i
c(V − V ∩Xn−k;F ) ✲ Ip̄H

i
c(V ;F ) ✲

✲ I q̄Hn−i(W −W ∩Xn−k;F )

D

❄

✲ I q̄Hn−i(W ;F )⊕ I q̄Hn−i(V − V ∩Xn−k;F )

D⊕(−D)

❄

✲ I q̄Hn−i(V ;F )

D

❄

✲ .

(3)

The diagram commutes up to sign by Proposition 6.7 in subsection 6.1.

The left hand vertical map and the second summand of the middle map are isomor-

phisms by the induction hypothesis on depth. The first summand of the middle map is an

isomorphism by Lemma 6.6. Hence the right hand map is an isomorphism by the five lemma.

Now we can plug this into the Mayer-Vietoris diagram

✲ Ip̄H
i
c(V ;F ) ✲ Ip̄H

i
c(U ;F )⊕ Ip̄H

i
c(N ;F ) ✲ Ip̄H

i
c(U ∪N ;F ) ✲

✲ I q̄Hn−i(V ;F )
❄

✲ I q̄Hn−i(U ;F )⊕ I q̄Hn−i(N ;F )
❄

✲ I q̄Hn−i(U ∪N ;F )
❄

✲ ,

and we conclude similarly that duality holds on U ∪N , contradicting the maximality of U .

Hence we must have U = X and duality holds on X .

Note: if we assume that Xn−1 is second countable, then rather than resort to Zorn’s

lemma, we could instead use the same diagrams to perform an induction, starting with

X − Xn−1 and then taking unions one at a time with members of a countable covering of

Xn−1 by distinguished neighborhoods.

6.1 Commutativity of Diagram (3)

In this subsection all intersection chain groups and intersection homology groups have F -

coefficients, which will not be included in the notation. Our goal is to prove the following
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analogue of Lemma 3.36 of [21].

Proposition 6.7. Let X be an F -oriented stratified pseudomanifold. Let U and V be open
subsets of X with X = U ∪V . Let p̄+ q̄ = t̄. Then the following diagram, in which the rows
are Mayer-Vietoris sequences, commutes up to sign.

✲ Ip̄H
i
c(U ∩ V ) ✲ Ip̄H

i
c(U)⊕ Ip̄H

i
c(V ) ✲ Ip̄H

i
c(X) ✲ Ip̄H

i+1
c (U ∩ V ) ✲

✲ I q̄Hn−i(U ∩ V )

D

❄

✲ I q̄Hn−i(U)⊕ I q̄Hn−i(V )

D⊕(−D)

❄

✲ I q̄Hn−i(X)

D

❄

✲ I q̄Hn−i−1(U ∩ V )

D

❄

✲ .

(4)

Our proof will follow the general strategy of [21] (but with our sign conventions). As

in [21], the commutativity up to sign of the three squares shown in diagram (4) is an easy

consequence of the three parts of the following lemma.

Lemma 6.8. Let K and L be compact subsets of U and V . The following diagrams commute.

1.

Ip̄H
k(X,X −K ∩ L) ✲ Ip̄H

k(X,X −K)⊕ Ip̄H
k(X,X − L)

Ip̄H
k(U ∩ V, U ∩ V −K ∩ L)

❄

Ip̄H
k(U,U −K)⊕ Ip̄H

k(V, V −K)
❄

I q̄Hn−k(U ∩ V )

aΓK∩L

❄

✲ I q̄Hn−k(U)⊕ I q̄Hn−k(V )

aΓK⊕−(aΓL)

❄

2.

Ip̄H
k(X,X −K)⊕ Ip̄H

k(X,X − L) ✲ Ip̄H
k(X,X −K ∪ L)

Ip̄H
k(U,U −K)⊕ Ip̄H

k(V, V −K)

❄

I q̄Hn−k(U)⊕ I q̄Hn−k(V )

aΓK⊕−(aΓL)

❄

✲ I q̄Hn−k(X)

aΓK∪L

❄

3.

Ip̄H
k(X,X −K ∪ L)

δ
✲ Ip̄H

k+1(X,X −K ∩ L) ✲ Ip̄H
k+1(U ∩ V, U ∩ V −K ∩ L)

I q̄Hn−k(X)

aΓK∪L

❄
∂

✲ I q̄Hn−k−1(U ∩ V ).

aΓK∩L

❄

(5)
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In the remainder of this section we prove Lemma 6.8.

For part 1, it suffices to consider the two summands on the right hand side separately.

We will verify commutativity for the first summand; the second is similar. Consider the

following diagram, where all unmarked arrows are induced by inclusions.

Ip̄H
k(X,X −K ∩ L)

��

//

++VVVVVVVVVVVVVVVVVVV

Ip̄H
k(X,X −K)

��
Ip̄H

k(U ∩ V, U ∩ V −K ∩ L)

aΓK∩L

��

Ip̄H
k(U, U −K ∩ L)oo //

aΓK∩L **TTTTTTTTTTTTTTT

Ip̄H
k(U, U −K)

aΓK

��
I q̄Hn−k(U ∩ V ) // I q̄Hn−k(U)

Here the upper half obviously commutes, and the lower half commutes by Proposition 4.16

(using the fact that the inclusion (U, U −K)→ (U, U −K ∩ L) takes ΓK to ΓK∩L).

For part 2, it again suffices to work one summand at a time. For the first summand,

consider the following diagram.

Ip̄H
k(X,X −K)

��

//

aΓK

$$I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

Ip̄H
k(X,X −K ∪ L)

aΓK∪L

��

Ip̄H
k(U, U −K)

aΓK

��
I q̄Hn−k(U) // I q̄Hn−k(X)

Both triangles commute by Proposition 4.16, using the fact that the inclusion (X,X −K ∪
L)→ (X,X −K) takes ΓK∪L to ΓK .

Next we prove part 3. We need a lemma which will be proved at the end of this subsection.

Lemma 6.9. There exist chains

βU−L ∈ I p̄C∗(U − L)⊗ I q̄C∗(U − L, U −K ∪ L),

βU∩V ∈ I p̄C∗(U ∩ V )⊗ I q̄C∗(U ∩ V, U ∩ V −K ∪ L)

and

βV−K ∈ I p̄C∗(V −K)⊗ I q̄C∗(V −K, V −K ∪ L)

such that βU−L + βU∩V + βV−K represents d̄(ΓK∪L) ∈ I p̄H∗(X)⊗ I q̄H∗(X,X −K ∪ L).

The inclusion (X,X −K ∪ L) → (X,X −K ∩ L) takes ΓK∪L to ΓK∩L, so the image of

βU−L+βU∩V +βV−K in I p̄H∗(X)⊗ I q̄H∗(X,X−K ∩L) represents d̄(ΓK∩L). But this image

is just βU∩V , since the other two terms map to 0 in I p̄C∗(X)⊗ I q̄C∗(X,X −K ∩ L). Thus

βU∩V represents the class d̄(ΓK∩L) in I p̄H∗(U ∩ V )⊗ I q̄H∗(U ∩ V, U ∩ V −K ∪ L).

Now let ϕ ∈ Ip̄C
k(X,X −K ∪L) be a cocycle; we want to calculate the image of [ϕ] for

the two ways of going around the diagram (5). Let A and B denote X −K and X − L, so

that ϕ ∈ Ip̄C
k(X,A ∩B).
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As in [21], we have δ[ϕ] = [δϕA], where ϕ = ϕA − ϕB with ϕA ∈ Ip̄C
k(X,A) and

ϕB ∈ Ip̄C
k(X,B). Continuing on to I q̄Hn−k−1(U ∩ V ) we obtain [(1 ⊗ δϕA)(βU∩V )], which

is the same as

(−1)k+1[(1⊗ ϕA)(∂βU∩V )]

because ∂((1 ⊗ ϕA)(βU∩V )) = (1⊗ δϕA)(βU∩V ) + (−1)k(1⊗ ϕA)(∂βU∩V ).

Going around the diagram (5) the other way, let β denote βU−L + βU∩V + βV−K . [ϕ]

first maps to [(1 ⊗ ϕ)(β)]. To apply the Mayer-Vietoris boundary ∂ to this, we first write

(1⊗ ϕ)(β) as a sum of a chain in U and a chain in V :

(1⊗ ϕ)(β) = (1⊗ ϕ)(βU−L) + ((1⊗ ϕ)(βU∩V ) + (1⊗ ϕ)(βV−K)).

Then we take the boundary of the first of these two terms, obtaining the homology class

[∂(1 ⊗ ϕ)(βU−L)]. To compare this to (−1)k+1[(1⊗ ϕA)(∂βU∩V )], we have

∂(1 ⊗ ϕ)(βU−L) = (−1)k(1⊗ ϕ)(∂βU−L) since δϕ = 0

= (−1)k(1⊗ ϕA)(∂βU−L) since (1⊗ ϕB)(∂βU−L) = 0, ϕB being

zero on chains in B = X − L

= (−1)k+1(1⊗ ϕA)(∂βU∩V ),

where the last equality comes from the fact that ∂(βU−L) + ∂(βU∩V ) = ∂(β)− ∂(βV −K) and

ϕA vanishes on chains in V −K ⊂ A.

This concludes the proof of Lemma 6.8.

It remains to prove Lemma 6.9.

Let C be the category with objects U −L, U ∩V , V −K and their intersections and with

morphisms the inclusion maps. It suffices to show that d̄(ΓK∪L) is in the image of the map

κ : lim−→
W∈C

I p̄H∗(W )⊗ I q̄H∗(W,W −K ∪ L)→ I p̄H∗(X)⊗ I q̄H∗(X,X −K ∪ L).

Let Y denote the subspace

((U − L)× (U − L)) ∪ ((U ∩ V )× (U ∩ V )) ∪ ((V −K)× (V −K))

of X ×X and consider the commutative diagram

I 0̄H∗(X,X −K ∪ L)
d //

d

++WWWWWWWWWWWWWWWWWWWWW

IQp̄,q̄H∗(X ×X,X × (X −K ∪ L)) I p̄H∗(X) ⊗ I q̄H∗(X,X −K ∪ L)
∼=oo

IQp̄,q̄H∗(Y, Y − (X × (K ∪ L)))

OO

H∗(lim−→W∈C
IQp̄,q̄C∗(W ×W,W × (W −K ∪ L)))

λ

OO

H∗(lim−→W∈C
I p̄C∗(W )⊗ I q̄C∗(W,W −K ∪ L)).

κ

OO

µoo

d̄(ΓK∪L) is the image of ΓK∪L along the top row. The map λ is an isomorphism by [17,

Proposition 6.1.1], so to show that d̄(ΓK∪L) is in the image of κ it suffices to show that the

map µ is an isomorphism.
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Let us write W1, W2 and W3 for U − L, U ∩ V and V − K respectively. Let C′ be the

subcategory of C with objects W1, W2 and W1∩W2, and let C′′ be the subcategory of C with
objects W1∩W3, W2∩W3 and W1∩W2∩W3. For any functor F from C to chain complexes,

lim−→W∈C
F (W ) can be written as an iterated pushout: it is the pushout of the diagram

lim−→W∈C′′
F (W )

��

// F (W3)

lim
−→W∈C′

F (W )

and lim
−→W∈C′′

F (W ) and lim
−→W∈C′

F (W ) are also pushouts.

Next recall that, if

A //

��

C

��
B // D

is a pushout diagram of chain complexes for which A→ B⊕C is a monomorphism, there is

a Mayer-Vietoris sequence

· · · → HiA→ HiB ⊕HiC → HiD → Hi−1A→ · · ·

Combining this with Theorem 3.3 and the five lemma, we see that the map

lim
−→
W∈C′

I p̄C∗(W )⊗ I q̄C∗(W,W −K ∪ L)→ lim
−→
W∈C′

IQp̄,q̄C∗(W ×W,W × (W −K ∪ L)),

and the analogous map with C′ replaced by C′′, are quasi-isomorphisms. Now one further

application of the Mayer-Vietoris sequence, Theorem 3.3, and the five lemma shows that µ

is an isomorphism as required.

7 Stratified pseudomanifolds-with-boundary and Lef-

schetz duality

In subsection 7.1, we give the definition of stratified pseudomanifold-with-boundary; we

call these ∂-stratified pseudomanifolds, following Dold’s use of ∂-manifold to mean manifold

with boundary [8, Definition VIII.1.9]. In subsection 7.2, we show that a compact ∂-stratified

pseudomanifold has a fundamental class, and in subsection 7.3 we show that cap product

with the fundamental class induces a Lefschetz duality isomorphism.

7.1 ∂-stratified pseudomanifolds

Definition 7.1. An n-dimensional ∂-stratified pseudomanifold is a pair (X,B) together with

a filtration on X such that
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1. X − B, with the induced filtration, is an n-dimensional stratified pseudomanifold (in

the sense of Section 2.1),

2. B, with the induced filtration, is an n − 1 dimensional stratified pseudomanifold (in

the sense of Section 2.1),

3. B has an open collar neighborhood in X , that is, a neighborhood N with a homeomor-

phism of filtered spaces N → B× [0, 1) (where [0, 1) is given the trivial filtration) that

takes B to B × {0}.

B is called the boundary of X and denoted ∂X .

We will often abuse notation by referring to the “∂-stratified pseudomanifold X ,” leaving

B tacit.

Note that a stratified pseudomanifold X (as defined in Section 2.1) is a ∂-stratified

pseudomanifold with ∂X = ∅.

Definition 7.2. The strata of a ∂-stratified pseudomanifold X are the components of the

spaces X i −X i−1.

Our next result shows that when there are no codimension one strata ∂X is a topological

invariant.

Proposition 7.3. Let (X,B) and (X ′, B′) be ∂-stratified pseudomanifolds of dimension n

with no codimension one strata, and let h : X → X ′ be a homeomorphism (which is not

required to be filtration preserving). Then h takes B to B′.

Proof. It suffices to show that h takes the union of the regular strata of B to B′, since the

regular strata are dense in B and B′ is closed. So let x be in a regular stratum of B and

suppose that h(x) is not in B′. Then there is a Euclidean neighborhood E of x in B such

that h(E) ⊂ X ′ − B′. The existence of an open collar neighborhood of B shows that the

local homology group Hn(X,X − {y}) is 0 for each y ∈ E, so by topological invariance of

homology h(E) must be contained in the singular set S of X ′ − B′.

Next we use the dimension theory of [6, Section II.16]. We will use the fact that each

skeleton of a pseudomanifold (and in particular the singular set) is locally compact.

dimZ E (as defined in [6, Definition II.16.6]) is n−1 by [6, Corollary II.16.28], so dimZ h(E)

is also n−1, and by [6, Theorem II.16.8] (using the fact that S is locally compact) this implies

that dimZ S is ≥ n − 1. To obtain a contradiction it suffices to show that dimZ of the i-

skeleton of a pseudomanifold is ≤ i (a fact that doesn’t seem to be written down explicitly

in the literature).

So let Y be a pseudomanifold and assume by induction that dimZ Y
i ≤ i for some i. Let

c denote the family of compact supports and let dimc,Z be as in [6, Definition 16.3]. Then

dimZ is equal to dimc,Z for any locally compact space by [6, Definition II.16.6]. Since Y i is a

closed subset of Y i+1 and Y i+1−Y i is a (possible empty) (i+1)-manifold, [6, Exercise II.11

and Corollary II.16.28] imply that dimc,Z Y
i+1 is ≤ i+ 1 as required.
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Proposition 7.3 is not true if codimension one strata are allowed, as shown by the following

example.

Example 7.4. Let M be a paracompact n-manifold with boundary (in the classical sense),

and let P be its boundary.

1. Suppose we filter M trivially so that M itself is the only non-empty stratum. Then

(M,P ) is a ∂-stratified pseudomanifold. Note that all the conditions of Definition 7.1

are fulfilled: M − P is an n-manifold, P is an n− 1 manifold, and P is collared in M

by classical manifold theory (see [21, Proposition 3.42]).

2. On the other hand, suppose X is the filtered space M ⊃ P . Then it is easy to check

that (X, ∅) is a ∂-stratified pseudomanifold; that is, X is a stratified pseudomanifold

in the sense of Section 2.1. With this filtration, we cannot have ∂X = P because

condition (3) of Definition 7.1 would not be satisfied.

Remark 7.5. All of the intersection homology machinery developed in Sections 2–4 of this

paper applies immediately to ∂-stratified pseudomanifolds.

7.2 Fundamental classes of ∂-stratified pseudomanifolds

Definition 7.6. An R-orientation of a ∂-stratified pseudomanifold X is an R-orientation of

X − ∂X .

Given an R-orientation of X and a point x ∈ X − ∂X , Definition 5.6 gives a local

orientation class ox ∈ I 0̄Hn(X − ∂X,X − {x} − ∂X ;R). We will denote the image of this

class under the inclusion map I 0̄Hn(X − ∂X,X − {x} ∪ ∂X ;R)→ I 0̄Hn(X,X − {x};R) by

o′x.

Proposition 7.7. Let X be a compact R-oriented ∂-stratified pseudomanifold of dimension

n. There is a unique class ΓX ∈ I 0̄Hn(X, ∂X ;R) that restricts to o′x for every x ∈ X − ∂X.

Proof. Let N be an open collar neighborhood of ∂X . Theorem 5.7 gives a fundamental class

ΓX−N in I 0̄Hn(X − ∂X,N − ∂X ;R). Let ΓX be the image of ΓX−N under the composite

I 0̄Hn(X − ∂X,N − ∂X ;R)→ I 0̄Hn(X,N ;R)
∼=
←− I 0̄Hn(X, ∂X ;R),

where the second map (which is induced by inclusion) is an isomorphism by a stratified

homotopy equivalence (see Appendix A). It is easy to check that ΓX is independent of N ,

using the fact that the intersection of two open collar neighborhoods contains another. If

x ∈ X − ∂X , the fact that ΓX restricts to o′x follows from the fact that there is an N

not containing x. Uniqueness follows from the uniqueness property in Theorem 5.7 and

the fact that the maps I 0̄Hn(X − ∂X,X − {x} ∪ ∂X ;R) → I 0̄Hn(X,X − {x};R) and

I 0̄Hn(X − ∂X,N − ∂X ;R)→ I 0̄Hn(X,N ;R) are isomorphisms by excision.

ΓX will be called the fundamental class of X .
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Remark 7.8. Corollary 5.22 has an analogue for ∂-stratified pseudomanifolds. We will not

give details here because this fact is not needed for our work.

We conclude this section with a result that will be needed in [17].

First we observe that an R-orientation of X induces an R-orientation of ∂X , because the

union of the regular strata of X and the regular strata of ∂X is a (nonsingular) R-oriented

∂-manifold.

Proposition 7.9. Let X be a compact R-oriented ∂-stratified pseudomanifold of dimension

n, and give ∂X the induced orientation. Then the map

∂ : I 0̄Hn(X, ∂X ;R)→ I 0̄Hn−1(∂X ;R)

takes ΓX to Γ∂X .

Proof. By Corollary 5.15, it suffices to show that ∂ΓX restricts to the local orientation class

in I 0̄Hn−1(∂X, ∂X − {x};R) for each x that’s in a regular stratum of ∂X . So let x be such

a point. Let E be a closed Euclidean ball around x in ∂X , and let E◦ be the interior of

E. Let N be an open collar neighborhood of ∂X , and let M be the image of E × [0, 1/2]

under the homeomorphism ∂X × [0, 1)→ N ; then M is a (nonsingular) ∂-manifold and the

R-orientation of X restricts to an R-orientation of M . Let M◦ denote the interior of M .

Now consider the following commutative diagram (where the R coefficients are tacit).

I 0̄Hn(X, ∂X)

∂

��

// I 0̄Hn(X,X −M◦)

∂

��

I 0̄Hn(M,∂M)
∼=oo

∂

��
I 0̄Hn−1(X −M◦)

��

I 0̄Hn−1(∂M)

��

oo

I 0̄Hn−1(∂X) //

44jjjjjjjjjjjjjjjj

I 0̄Hn−1(X −M◦, X − (M◦ ∪ E◦)) I 0̄Hn−1(∂M, ∂M − E◦)
∼=oo // I 0̄Hn−1(E◦, E◦ − {x}).

Here the second arrows in the first and last rows (which are induced by inclusion) are iso-

morphisms by a combination of excision and stratified homotopy equivalence. It’s straight-

forward to check that the lower composite is the usual restriction map I 0̄Hn−1(∂X) →
I 0̄Hn−1(E

◦, E◦ − {x}), so it suffices to show that this composite takes ∂ΓX to the local

orientation class at x. But it’s straightforward to check that the upper composite takes ΓX

to ΓM , and a standard fact in manifold theory (using the fact that I 0̄H∗ = H∗ for spaces

with trivial stratification) says that the rightmost ∂ takes ΓM to Γ∂M . Since Γ∂M maps to

the local orientation class at x the proof is complete.

7.3 Lefschetz duality

Theorem 7.10 (Lefschetz Duality). Let F be a field, and let X be an n-dimensional compact

∂-stratified pseudomanifold such that X − ∂X is F -oriented. Suppose that p̄ + q̄ = t̄. Then

the cap product with ΓX is an isomorphism Ip̄H
i(X, ∂X ;F )→ I q̄Hn−i(X ;F ).
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Proof. We follow the strategy in [21]. Let N be an open collar of ∂X . Consider the following

commutative diagram

Ip̄H
i(X − ∂X,N − ∂X ;F ) ✛

∼=
Ip̄H

i(X,N ;F )

I q̄Hn−i(X − ∂X ;F )

(−1)in·aΓX−N

❄ ∼=
✲ I q̄Hn−i(X ;F ).

(−1)in·aΓX

❄

The top isomorphism is by excision and stratified homotopy equivalence. The bottom

isomorphism is also by stratified homotopy equivalence. If we take the direct limit of

the diagram as N shrinks to ∂X , then lim
−→

Ip̄H
i(X,N ;F ) ∼= Ip̄H

i(X, ∂X ;F ) (in fact, all

maps in the directed system obtained by retracting the collar are isomorphisms), while

lim
−→

Ip̄H
i(X − ∂X,N − ∂X ;F ) ∼= Ip̄H

i
c(X − ∂X ;F ). So by Theorem 6.3, the left hand map

becomes an isomorphism in the limit. It follows therefore that the right hand map also

becomes an isomorphism in the limit, proving the theorem.

A Stratified maps, homotopy, and homotopy equiva-

lence

The definition of “stratum preserving homotopy equivalence” given in [10, 29] needs to be

modified a little in the context of general perversities. In this appendix we give the necessary

details.

Let X and Y be ∂-stratified pseudomanifolds, and assume that we are given perversities

p̄, q̄ on X and Y respectively.

Definition A.1. We will say that a map f : X → Y is stratified with respect to p̄, q̄ if

1. the image of each stratum of X is contained in a single stratum of Y of the same

codimension, i.e. if Z ′ ⊂ Y is a stratum of codimension k, then f−1(Z ′) is a union of

strata of X of codimension k,

2. if the stratum Z ⊂ X maps to the stratum Z ′ ⊂ Y , then p̄(Z) ≤ q̄(Z ′).

Note that if f : X → Y is an inclusion of an open subset, then f is always stratified with

respect to any perversity q̄ on Y and its induced restriction to X (i.e. the perversity on X

whose value on Z is defined to be q̄(Z ′) if Z ⊂ Z ′).

An easy argument from the definitions shows that if f : X → Y is stratified and G is a

coefficient system on Y − Y dim(Y )−1, then f# : I p̄C∗(X ; f ∗G) → I q̄C∗(Y ;G) is well-defined

and induces a map of intersection homology groups f∗ : I
p̄H∗(X ; f ∗G)→ I q̄H∗(Y ;G).

Now stratify X× I by letting the strata have the form Z× I, where Z is a stratum of X .

This stratification induces a natural bijection Z ↔ Z × I between the singular strata of X

and those of X × I and thus a natural bijection of perversities such that a perversity of X
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corresponds to a perversity of X×I if the two take the same value on corresponding singular

strata. In this case we will abuse notation and use the same symbol for both perversities.

We call F : X × I → Y a stratified homotopy (with respect to p̄, q̄) if F is a stratified

map (with respect to p̄, q̄). In particular, the image under F of each stratum Z × I ⊂ X × I

is contained in a single stratum of Y (again compare [10, 29]). If F : X × I → Y is a

stratified homotopy, then f = F (·, 0) and g = F (·, 1) are stratified maps X → Y and F

induces a chain homotopy between the induced maps of intersection chains f# and g#. The

proof of this fact follows by the usual prism construction (see e.g. [21]). One checks that

the necessary chains are all allowable as in the proof of Proposition 2.1 of [10], with some

obvious changes necessary to account for the general perversities.

We call ∂-stratified pseudomanifolds X, Y stratified homotopy equivalent if there is a

homotopy equivalence f : X → Y with homotopy inverse g : Y → X such that f , g, and

the respective homotopies from fg to idY and from gf to idX all satisfy condition (1) of

Definition A.1. The maps f and g are then deemed stratified homotopy equivalences. In this

case, there must be a bijection between the strata of X and the strata of Y , and thus a

bijection between perversities on X and perversities on Y . We often abuse notation and use

a common symbol for the corresponding perversities. With respect to such corresponding

perversities, f and g will be stratified maps, and the homotopies from fg to idY and from

gf to idX will be stratified homotopies.

Thus if f : X → Y is a stratified homotopy equivalence, it follows that I p̄C∗(X ; f ∗G) is
chain homotopy equivalent to I p̄C∗(Y ;G) and thus I p̄H∗(X ; f ∗G) ∼= I p̄H∗(Y ;G). In partic-

ular, any inclusion X × {t} →֒ X × I, where I is unfiltered and X × I is given the product

filtration, induces I p̄H∗

(

X × {t};G|X×{t}

)

∼= I p̄H∗(X × I;G).

B Proofs of Theorems 3.1 and 3.3

In this appendix, we provide some technical proofs concerning the intersection homology

Künneth theorem of [13]. The notation is taken from [13]; we refer the reader there for

discussion of the sheaves involved.

We first prove the following proposition, which implies Theorem 3.1.

Proposition B.1. Let F be a field. Then the Künneth isomorphism of [13] is induced (up

to sign) by the chain level cross product.
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Proof. Consider the following diagram (all coefficients are in F )

Hn+m−∗(I
p̄C∗(X)⊗ I q̄C∗(Y ))

×
✲ Hn+m−∗(I

Qp̄,q̄(X × Y ))

H∗(Γc(X × Y ;R∗))
❄

✲ H∗(Γc(X × Y ; IQp̄,q̄S∗))

∼=

❄

H∗(Γc(X × Y ; I∗))
❄ ∼=

✲ H∗(Γc(X × Y ;J ∗)).

∼=

❄

(6)

The sheaf R∗ is the sheaf defined in [13]; it is really just the sheaf π∗
X(I

p̄S∗
X) ⊗ π∗

Y (I
q̄S∗

Y ).

The top map is the chain cross product, which is allowable by [13]. The top vertical maps

are induced by sheafification. The bottom vertical maps are induced by taking c-acyclic

resolutions; therefore the diagram commutes (up to possible signs arising from the degree

shifts in the upper vertical maps). The maps on the right are isomorphisms by the properties

of the sheaf IQp̄,q̄S∗, which is homotopically fine and generated by a monopresheaf that is

conjunctive for coverings. The bottom isomorphism is the Künneth isomorphism of [13]. We

want to show that × is an isomorphism. It suffices to show that the composition on the left

of the diagram is an isomorphism.

In fact, we know abstractly that Hn+m−∗(I
p̄C∗(X) ⊗ I q̄C∗(Y )) ∼= H∗(Γc(X × Y ; I∗))

by [13, Corollary 4.2]. But we need slightly more; we must show that the isomorphism is

consistent with the left hand composition of the diagram here.

Let K∗
X and K∗

Y be injective resolutions of I p̄S∗
X and I q̄S∗

Y , respectively. Then we have

a diagram

Hn+m−∗(I
p̄C∗(X)⊗ I q̄C∗(Y )) =========Hn+m−∗(I

p̄C∗(X)⊗ I q̄C∗(Y ))

H∗(Γc(X ; I p̄S∗
X)⊗ Γc(Y ; I q̄S∗

Y ))

∼=

❄ ∼=
✲ H∗(Γc(X ;K∗

X)⊗ Γc(Y ;K∗
Y ))

∼=

❄

H∗(Γc(X × Y ; π∗
X(I

p̄S∗)⊗ π∗
Y (I

q̄S∗)))
❄

✲ H∗(Γc(X × Y ; π∗
X(K

∗
X)⊗ π∗

Y (K
∗
Y ))).

∼=

❄

The top left vertical map is induced by sheafification and is an isomorphism because I p̄S∗
X

and I q̄S∗
Y are induced by appropriate monopresheaves that are conjunctive for covers. The

middle and bottom horizontal maps are induced by the injective resolutions I p̄S∗
X → K

∗
X

and I p̄S∗
X → K

∗
Y . The middle horizontal map is an isomorphism because I p̄S∗

X and I q̄S∗
Y are

homotopically fine. We fill in the top right vertical arrow so that the top square commutes
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by definition. The bottom vertical maps are defined and the bottom square commutes in

the evident way (given a germ over x ∈ X and a germ over y ∈ Y , this determines a germ

of the tensor product of stalks over (x, y); see [6, Section II.15]). The composition of maps

on the left is equivalent to the map Hn+m−∗(I
p̄C∗(X) ⊗ I q̄C∗(Y )) → H∗(Γc(X × Y ;R∗))

of Diagram (6). Since K∗
X and K∗

Y are injective, and hence c-fine, and since X and Y are

locally compact and Hausdorff, π∗
X(K

∗
X) ⊗ π∗

Y (K
∗
Y ) is c-fine by [6, Exercise II.14 and page

494, fact (s)]. So the bottom map of the diagram is in fact induced by a c-fine resolution

π∗
X(I

p̄S∗
X) ⊗ π∗

Y (I
q̄S∗

Y ) → π∗
X(K

∗
X) ⊗ π∗

Y (K
∗
Y ). Therefore we can let the bottom horizontal

map here play the role of the bottom left map of Diagram (6). The bottom right vertical

map is an isomorphism by [6, Proposition 15.1].

Note, we cannot conclude that either of the maps in the diagram not labeled as such are

isomorphisms, but nonetheless, this is enough to show the composition along the left side of

Diagram (6) is the desired isomorphism.

Next we prove the relative Künneth theorem (Proposition 3.3). We restate it for the

convenience of the reader.

Theorem Let X and Y be stratified pseudomanifolds with open subsets A ⊂ X,B ⊂ Y . The

cross product induces an isomorphism

I p̄H∗(X,A;F )⊗ I q̄H∗(Y,B;F )→ IQp̄,q̄H∗(X × Y, (A× Y ) ∪ (X × B);F ).

Proof. Let Q denote Qp̄,q̄. Consider the following diagram (where we leave the F coefficients

tacit).

✲ I p̄H∗(A)⊗ I q̄H∗(Y ) ✲ I p̄H∗(X)⊗ I q̄H∗(Y ) ✲ I p̄H∗(X,A)⊗ I q̄H∗(Y ) ✲

✲ IQH∗(A× Y )

×

❄

✲ IQH∗(X × Y )

×

❄

✲ IQH∗(X × Y,A× Y )

×

❄

✲ .

Both rows are exact; the top row is exact because we work over a field (so all modules

are flat). The vertical maps are all induced by the chain cross product, and the diagram

commutes up to sign (as can be seen by working with representative chains). So we have

I p̄H∗(X,A)⊗ I q̄H∗(Y ) ∼= IQH∗(X × Y,A× Y ) by the five lemma.
Similarly, we now have the diagram

✲ I p̄H∗(X,A)⊗ I q̄H∗(B) ✲ I p̄H∗(X,A)⊗ I q̄H∗(Y ) ✲ I p̄H∗(X,A)⊗ I q̄H∗(Y,B) ✲

✲ IQH∗(X ×B,A×B)

×

❄

✲ IQH∗(X × Y,A× Y )

×

❄

✲ IQH∗(X × Y, (A× Y ) ∪ (X ×B))

×

❄

✲ .

The top row is again exact by flatness. The bottom row is the long exact sequence associated
to the short exact sequence

0 ✲ IQC∗(X ×B,A×B) ✲ IQC∗(X × Y,A× Y ) ✲ IQp̄,q̄C∗(X × Y, (A× Y ) ∪ (X ×B)) ✲ 0,
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which exists by some basic homological algebra.5 Again, commutativity follows from chain

arguments, and the proposition now follows from the five lemma.

C Invariance of general perversity intersection homol-

ogy under normalization

We provider here a theorem stating that intersection homology is preserved under normal-

ization. For general background on normalizations see [28, 19].

Lemma C.1. Let X be a stratified pseudomanifold, and let π : X̂ → X be its normalization.

Then π : I p̄H∗(X̂ ;R)→ I p̄H∗(X ;R) is an isomorphism.

Proof. This is a standard fact for intersection homology with Goresky-MacPherson perversi-

ties and no codimension one strata. We briefly revisit the proof to show that it remains true

in the more general setting. It is elementary to observe that π is well-defined as a homomor-

phism of intersection chains, and hence of intersection homology groups. The normalization

map is proper (since all stratified pseudomanifolds have compact links by definition), so we

can consider intersection homology either with closed or with compact supports.

By [15, Lemma 2.4], it is sufficient to consider perversities such that p̄(Z) ≤ codim(Z)−1
for each singular stratum Z, for otherwise we get nothing new. This fact allows us mostly

to reduce the proof to the usual one: if p̄(Z) ≤ codim(Z) − 1 for each singular Z, each

simplex of each allowable chain ξ of I p̄Ci(X ;R) intersects Xn−1 in at most the image of

the the i − 1 skeleton of the model simplex ∆i. So for any such singular simplex σ in ξ,

σ maps the interior of ∆i into X − Xn−1. But this mapping of the interior can be lifted

to X̂, and continuity ensures that we can then lift all of σ to X̂. This process generates a

homomorphism s : I p̄C∗(X ;R) → I p̄C∗(X̂ ;R), and it is clear that s is an inverse of π. It

only remains to check that s is a chain map. This is not difficult to see, recalling that any

boundary simplices with support entirely in Xn−1 are set automatically to 0.

D Comparison with the cup product of [3]

In this appendix we verify the claim in Remark 1.3.

First observe that for pairs p̄, q̄ satisfying the conditions in Remark 1.3 we have Dq̄ ≥
Dp̄+Dp̄, so Definition 4.11 gives a cup product map

Ip̄H
∗(X ;Q)⊗ Ip̄H

∗(X ;Q)→ Iq̄H
∗(X ;Q)

which we will show agrees up to sign with that constructed in [3, Section 7].

One of the ingredients in Banagl’s construction is the “Eilenberg-Zilber type isomor-

phism”

I p̄C∗(X ;Q)⊗ I p̄C∗(Y ;Q)→ I p̄C∗(X × Y ;Q)

5This essentially comes from the intersection chain short exact Mayer-Vietoris sequence for the pairs

(X × Y,A× Y ) and (X ×B,X ×B), since B ∩ Y = B, Y ∪B = Y , A× Y ∩X ×B = A×B.
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((23) on page 175 of [3]).6 We will denote this map by E. The criterion given at the end of

[13, Section 4.1] shows that, since p̄(k) + p̄(l) ≤ p̄(k + l), the cross product also induces a

map

× : I p̄C∗(X ;Q)⊗ I p̄C∗(Y ;Q)→ I p̄C∗(X × Y ;Q),

and we claim that (up to sign) this is the same as E. This follows from the uniqueness result

[7, Proposition 2], using the fact that both E and × are induced by maps of sheaves

π∗
XI

p̄S∗
X ⊗ π∗

Y I
p̄S∗

Y → I
p̄S∗

X×Y

(see the proofs of [3, Theorem 9.1] and Proposition B.1) which agree (up to sign) on π∗
UQU ⊗

π∗
VQV .

Now consider the following diagram.

I q̄C∗(X ;Q)
d //

d

))RRRRRRRRRRRRRR

I p̄C∗(X ×X ;Q)

��

I p̄C∗(X ;Q)⊗ I p̄C∗(X ;Q)∼=

Eoo

∼=

×

tthhhhhhhhhhhhhhhhh

IQp̄,p̄C∗(X ×X ;Q)

(7)

Here the two maps marked d are induced by the diagonal; the horizontal d is given by [3,

Proposition 7.1] and the other d is given by Proposition 4.2.1. The vertical map exists

because of the inequality p̄(k + l) ≤ p̄(k) + p̄(l) + 2. The left-hand triangle in diagram (7)

obviously commutes and we have just seen that the right-hand triangle commutes up to sign.

The dual of the lower composite in diagram (7) is the cup product of Definition 4.11, so

it suffices to show that the dual of the upper composite is the cup product of [3, Section 7].

This in turn is a straightforward consequence of the definition in [3] and Proposition IV.2.5

of [9].
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cohomology, Trans. Amer. Math. Soc. 333 (1992), 63–69.

[8] Albrecht Dold, Lectures on algebraic topology, Springer-Verlag, Berlin-Heidelberg-New

York, 1972.

[9] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules, and algebras

in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, American

Mathematical Society, Providence, RI, 1997, With an appendix by M. Cole.

[10] Greg Friedman, Stratified fibrations and the intersection homology of the regular neigh-

borhoods of bottom strata, Topology Appl. 134 (2003), 69–109.

[11] , Intersection homology of stratified fibrations and neighborhoods, Adv. Math.

215 (2007), no. 1, 24–65.

[12] , Singular chain intersection homology for traditional and super-perversities,

Trans. Amer. Math. Soc. 359 (2007), 1977–2019.
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