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Abstract

We show that the Schur multiplier of Sp(2g,Z/DZ) is Z/2Z, when D is divisible by 4 and g ≥ 4.
Further, for every prime p, we construct finite quotients of the mapping class group of genus g ≥ 3 whose
essential second homology has p-torsion, in contrast with the case of symplectic groups. Eventually, we
prove that mapping class groups have Serre’s property A2 for trivial modules, whereas symplectic groups
do not.
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1 Introduction and statements

Let g ≥ 1 be an integer, and denote by Mg the mapping class group of a closed oriented surface of genus g
and by Sp(2g,Z) the symplectic group with integer coefficients. The choice of a basis in homology provides a
surjective homomorphism Mg → Sp(2g,Z) and a natural question in this context is to compare the properties
of these two groups. The leit-motive of this article is the (non)-residual finiteness property. For symplectic

groups, Deligne’s non-residual finiteness theorem from [9] states that the universal central extension ˜Sp(2g,Z)
is not residually finite since the image of its center under any homomorphism into a finite group has order at
most two when g ≥ 3. Our first motivation was to understand this result and give a sharp statement, namely
to decide whether the image of the center might be of order two. Since these symplectic groups have the
congruence subgroup property, this boils down to understanding the second homology of symplectic groups
with coefficients the finite cyclic groups. In the sequel, for simplicity and unless otherwise explicitly stated,
all (co)homology groups will be understood to be with trivial integer coefficients. An old theorem of Stein
(see [49], Thm. 2.13 and Prop. 3.3.a) is that H2(Sp(2g,Z/DZ)) = 0, when D is not divisible by 4. The case
D ≡ 0 (mod 4) remained open since then; this is explicitly mentioned for instance in ([42], Remarks after
Thm. 3.8). Our first result settles this case:

Theorem 1.1. The second homology group of finite principal congruence quotients of Sp(2g,Z), g ≥ 4 is

H2(Sp(2g,Z/DZ)) = Z/2Z, if D ≡ 0 (mod 4).

This computation shows that Deligne’s statement of the non-residual finiteness theorem is sharp, because

the image of the center of the universal central extension ˜Sp(2g,Z) into the universal central extension of
Sp(2g,Z/DZ) is of order two, when D ≡ 0 (mod 4) and g ≥ 3.

In comparison, recall that Beyl (see [4]) has showed that H2(SL(2,Z/DZ)) = Z/2Z, for D ≡ 0(mod 4)
and Dennis and Stein proved using K-theoretic methods that for n ≥ 3 we have H2(SL(n,Z/DZ)) = Z/2Z,
for D ≡ 0(mod 4), while H2(SL(n,Z/DZ)) = 0, for D 6≡ 0(mod 4) (see [10], Cor. 10.2 and [38], section 12).

To better compare the behavior of the universal central extension of symplectic groups and mapping
class groups we introduce the essential (second) homology group:
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Definition 1.1. Let G be a discrete group and F a finite group. We define the essential second homology
group EH2(F,G) of F relative to G as the union:

EH2(F,G) =
⋃

p:G→F
p∗(H2(G)) ⊂ H2(F ) (1)

over all surjective homomorphisms p : G → F , where p∗ : H2(G) → H2(F ) denotes the map induced in
homology and all homology groups are considered with (trivial) integral coefficients.

Notice that by definition EH2(F,G) is a torsion group. In the case G is either a mapping class group or a
symplectic group we have two very different situations. First, we have:

Theorem 1.2. For any prime p there exist finite quotients F of Mg, g ≥ 3, such that EH2(F,Mg) has
p-torsion.

On the other hand, a consequence of [9, 5, 3] is the existence of a uniform bound (independent on g) for the
order of the torsion group EH2(F, Sp(2g,A)), where A is the ring of S-integers of a number field which is
not totally imaginary and g ≥ 3.

We prove Theorem 1.2 by exhibiting explicit finite quotients of the universal central extension of a mapping
class group that arise from the so-called quantum representations. We refine here the approach in [14] where
the first author proved that central extensions of Mg by Z are residually finite. In the meantime, it was
proved in [15, 34] by more sophisticated tools that the set of quotients of mapping class groups contains
arbitrarily large rank finite groups of Lie type. Notice however that the family of quotients obtained in
Theorem 1.2 are of different nature than those obtained in [15, 36], although their source is the same (see
Proposition 4.1 for details).

When G is a discrete group we denote by Ĝ its profinite completion. Recall, following ([47], I.2.6) that G has

property An for the finite Ĝ-module M if the homomorphism Hk(Ĝ,M) → Hk(G,M) is an isomorphism
for k ≤ n and injective for k = n + 1. Deligne’s theorem cited above actually is equivalent to the fact that
Sp(2g,Z) has not property A2 for the trivial Sp(2g,Z)-modules (see also [20]). In contrast we prove:

Theorem 1.3. For g ≥ 4 the mapping class group Mg has property A2 for trivial M̂g-modules.

The plan of this article is the following. In Section 3 we prove Theorem 1.1. Although it is easy to show
that the groups H2(Sp(2g,Z/2kZ)) are cyclic, their non-triviality is more involved. We give three different
proofs of the non-triviality, each one of them having its advantages and disadvantages in terms of bounds
for detections or sophistication. The first proof relies on deep results of Putman in [42], and shows that we
can detect this Z/2Z factor on H2(Sp(2g,Z/8Z)) for g ≥ 4, providing even an explicit extension that detects
this homology class. The second proof uses mapping class groups and Weil representations, it amounts to
show that a suitable projective unitary representation does not lift to a linear representation of the mapping
class group. This proof relies on deep results of Gervais [17]. The third proof is K-theoretical in nature and
uses a generalization of Sharpe’s exact sequence relating K-theory to symplectic K-theory due to Barge and
Lannes [2]. Indeed, by the stability results, this Z/2Z should correspond to a class in KSp2(Z/4Z). This
group admits a natural homomorphism to a Witt group of symmetric non-degenerate bilinear forms on free
Z/4Z-modules, which we use to detect the non-triviality of that class. Finally in Section 4 we discuss the case
of the mapping class groups and prove Theorems 1.2 using the quantum representations that arise from the
SU(2)/SO(3)-TQFT’s. These representations are the non-abelian counterpart of the Weil representations
of symplectic groups.

Acknowledgements. We are thankful to Jean Barge, Nicolas Bergeron, Will Cavendish, Florian Deloup,
Philippe Elbaz-Vincent, Richard Hain, Greg McShane, Ivan Marin, Gregor Masbaum, Alexander Rahm and
Alan Reid for helpful discussions and suggestions. We are grateful to Pierre Lochak and Andy Putman for
their help in clarifying a number of technical points and improving the presentation.

2 Residual finiteness of universal central extensions

In this section we collect results about universal central extensions of perfect groups, for the sake of com-
pleteness of our arguments. Every perfect group Γ has a universal central extension Γ̃, and the kernel of
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the canonical projection map Γ̃ → Γ coincides with the center Z(Γ̃) of Γ̃ and is canonically isomorphic to
the second integral homology group H2(Γ). We will recall now how the residual finiteness problem for the

universal central Γ̃ of a perfect and residually finite groups Γ translates into an homological problem about
H2(Γ). We start with a classical result for maps between universal central extensions of perfect groups.

Lemma 2.1. Let Γ and F be perfect groups, Γ̃ and F̃ their universal central extensions and p : Γ→ F be a
group homomorphism. Then there exists a unique homomorphism p̃ : Γ̃→ F̃ lifting p such that the following
diagram is commutative:

1→ H2(Γ) → Γ̃ → Γ → 1
p∗ ↓ p̃ ↓ ↓ p

1→ H2(F ) → F̃ → F → 1

For a proof we refer the interested reader to ([31], chap VIII) or ([6], chap IV, Ex. 1, 7). If Γ is a perfect

residually finite group, to prove that its universal central extension Γ̃ is also residually finite we only have to
find enough finite quotients of Γ̃ to detect the elements in its center H2(Γ). The following lemma analyses
the situation.

Lemma 2.2. Let Γ be a perfect group and denote by Γ̃ its universal central extension.

1. Let H be a finite index normal subgroup H ⊂ Γ such that the image of H2(H) into H2(Γ) contains
the subgroup dH2(Γ), for some d ∈ Z. Let F = Γ/H be the corresponding finite quotient of Γ and
p : Γ→ F the quotient map. Then d ·p∗(H2(Γ)) = 0, where p∗ : H2(Γ)→ H2(F ) is the homomorphism
induced by p. In particular, if p∗ : H2(Γ)→ H2(F ) is surjective, then d ·H2(F ) = 0.

2. Assume that F is a finite quotient of Γ satisfying d · p∗(H2(Γ)) = 0. Let F̃ denote the universal central

extension of F . Then the homomorphism p : Γ → F has a unique lift p̃ : Γ̃ → F̃ and the kernel of p̃
contains d ·H2(Γ).

Observe that in point 2. of Lemma 2.2 the group F being finite, H2(F ) is also finite, hence one can take
d = |H2(F )|.

Proof. The image of H into F is trivial and thus the image of H2(H) into H2(F ) is trivial. This implies
that p∗(d ·H2(Γ)) = 0, which proves the first part of the lemma.

Further, by Lemma 2.1 there exists an unique lift p̃ : Γ̃→ F̃ . If d · p∗(H2(Γ)) = 0 then Lemma 2.1 yields
d · p̃(c) = d · p∗(c) = 0, for any c ∈ H2(Γ). This settles the second part of the lemma.

Remark 2.1. It might be possible that the d′ · p∗(H2(Γ)) = 0, for some proper divisor d′ of d, so the first
part of Lemma 2.2 can only give an upper bound of the orders of the image of the second cohomology. In
order to find lower bounds we need additional information concerning the finite quotients F .

Lemma 2.3. Let Γ be a perfect group, Γ̃ its universal central extension, p : Γ → F be a surjective homo-
morphism onto a finite group F and p̂ : Γ̃→ G be some lift of p to a central extension G of F by some finite
abelian group C. Assume that the image of the center Z(Γ̃) = H2(Γ) of Γ̃ in G by p̂ contains an element of
order q. Then there exists an element of p∗(H2(Γ)) ⊂ H2(F ) of order q.

Proof. By Lemma 2.1 there exists a lift p̃ : Γ̃ → F̃ of p into the universal central extension F̃ of F . Then,
by universality there exists a unique homomorphism s : F̃ → G of central extensions of F lifting the identity
map of F . The homomorphisms p̂ and s ◦ p̃ : Γ̃ → G are then both lifts of p. Using the centrality of C in
G it follows that the map Γ̃ → C given by x 7→ p̂(x)−1 · (s ◦ p̃(x)) is a group homomorphism, and hence is

trivial since Γ̃ is perfect and C abelian. We conclude that p̂ = s ◦ p̃.
Recall that the restriction of p̃ to H2(Γ) coincides with the homomorphism p∗ : H2(Γ) → H2(F ) and

that H2(F ) is finite since F is so. Then, if z ∈ H2(Γ) is such that p̂(z) has order q in C, the element

p∗(z) ∈ p∗(H2(Γ)) ⊂ F̃ is sent by s onto an element of order q and therefore p∗(z) has order a multiple of q,

say aq. Then (p∗(z))
a = p∗(z

a) ∈ p∗(H2(Γ)) ⊂ F̃ has order q.
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3 Proof of Theorem 1.1

3.1 Preliminaries

According to ([40, Thm. 5]) and since symplectic groups are perfect for g ≥ 3 (see e.g. [42], Thm. 5.1), it
suffices to compute H2(Sp(2g,Z/DZ)) when D is a power of a prime. Then, from Stein’s computations for
D 6≡ 0 (mod 4) (see [49, 51]), Theorem 1.1 is equivalent to the statement:

H2(Sp(2g,Z/2kZ)) = Z/2Z, for all g ≥ 3, k ≥ 2.

We will freely use in the sequel two classical results due to Stein. Stein’s isomorphism theorem (see [49],
Thm. 2.13 and Prop. 3.3.(a)) states that there is an isomorphism:

H2(Sp(2g,Z/2kZ)) ' H2(Sp(2g,Z/2k+1Z)), for all g ≥ 3, k ≥ 2.

Further, Stein’s stability theorem (see [49]) states that the stabilization homomorphism Sp(2g,Z/2kZ) ↪→
Sp(2g + 2,Z/2kZ) induces an isomorphism:

H2(Sp(2g,Z/2kZ)) ' H2(Sp(2g + 2,Z/2kZ)), for all g ≥ 4, k ≥ 1.

Therefore, to prove Theorem 1.1 it suffices to show that:

H2(Sp(2g,Z/2kZ)) = Z/2Z, for some g ≥ 4, k ≥ 2.

We provide hereafter three different proofs of this statement, each having its own advantage. For the first and
the second proofs, the starting point is the intermediary result H2(Sp(2g,Z/2kZ)) ∈ {0,Z/2Z}, for g ≥ 4.
This will be derived from Deligne’s theorem ([9]). Then it will be enough to find a non-trivial extension of
Sp(2g,Z/2kZ) by Z/2Z for some g ≥ 4, k ≥ 2.

In section 3.3 we show then that Putman’s computations from ([42], Thm. F) provide us with a non-
trivial central extension of Sp(2g,Z/8Z) by Z/2Z. The second proof seems more elementary and it provides
a non-trivial central extension of Sp(2g,Z/4nZ) by Z/2Z, for all integers n ≥ 1. Moreover, it does not use
Stein’s isomorphism theorem and relies instead on the study of the Weil representations of symplectic groups,
or equivalently abelian quantum representations of mapping class groups. Since these representations come
from theta functions this strategy is deeply connected to Putman’s approach. In fact the proof of Theorem
F in ([42]) is based on his Lemma 5.5 whose proof requires the transformation formulas for the classical theta
nulls. The third proof, based on an extension of Sharpe’s sequence in symplectic K-theory due to Barge and
Lannes (see [2]) uses more sophisticated techniques but works already for Sp(2g,Z/4Z). Moreover, this last
proof does not rely on Deligne’s theorem.

3.2 An alternative for the order of H2(Sp(2g,Z/2kZ))
As our first step we prove, as a consequence of Deligne’s theorem:

Proposition 3.1. We have H2(Sp(2g,Z/2kZ)) ∈ {0,Z/2Z}, when g ≥ 4.

Notice that although our proof hereafter works only for g ≥ 4, the claim holds when g = 3 as well, by
Stein’s stability theorem.

Proof of Proposition 3.1. Let p : Sp(2g,Z)→ Sp(2g,Z/2kZ) be the reduction mod 2k and p∗ : H2(Sp(2g,Z))→
H2(Sp(2g,Z/2kZ)) the induced homomorphism. The first ingredient in the proof is the following result which
seems well-known, and that we isolate for later reference:

Lemma 3.1. The homomorphism p∗ : H2(Sp(2g,Z))→ H2(Sp(2g,Z/2kZ)) is surjective, if g ≥ 4.

Now, it is a classical result that H1(Sp(2g,Z)) = 0, for g ≥ 3 and H2(Sp(2g,Z)) = Z, for g ≥ 4 (see e.g.
[42], Thm. 5.1). Note however that for g = 3, we have that H2(Sp(6,Z)) = Z ⊕ Z/2Z according to [50].
This implies that H2(Sp(2g,Z/2kZ)) is cyclic when g ≥ 4 (this was also shown by Stein in [49]) and we only
have to bound the order of this cohomology group.

Lemma 2.1 provides a lift between the universal central extensions p̃ : ˜Sp(2g,Z) → ˜Sp(2g,Z/2kZ) of

the mod 2k reduction map, such that the restriction of p̃ to the center H2(Sp(2g,Z)) of ˜Sp(2g,Z) is the
homomorphism p∗ : H2(Sp(2g,Z)) → H2(Sp(2g,Z/2kZ)). From Deligne’s theorem [9] every finite index

4



subgroup of the universal central extension ˜Sp(2g,Z), for g ≥ 4, contains 2Z, where Z is the central kernel

ker( ˜Sp(2g,Z) → Sp(2g,Z)). If c is a generator of the center Z we have 2p∗(c) = p̃(2c) = 0. According to
Lemma 3.1 p∗ is surjective and thus H2(Sp(2g,Z/2kZ)) is a quotient of Z/2Z, as claimed.

3.3 First proof: an explicit extension detecting H2(Sp(2g,Z/8Z)) = Z/2Z
According to Proposition 3.1 and Stein’s stability theorem, in order to prove Theorem 1.1 it is enough to
provide a non-trivial central extension of Sp(2g,Z/2kZ) by Z/2Z, for some g ≥ 3 and k ≥ 2. Denote by
Sp(2g, 2) the kernel of the mod 2 reduction map Sp(2g,Z)→ Sp(2g,Z/2Z). As ingredients of our proof we
use the following results of Putman (see [42], Lemma 5.5 and Thm. F), which we state here in a unified way:

Proposition 3.2. The pull-back ˜Sp(2g, 2) of the universal central extension ˜Sp(2g,Z) under the inclusion
homomorphism Sp(2g, 2) → Sp(2g,Z) is a central extension of Sp(2g, 2) by Z whose extension class in
H2(Sp(2g, 2)) is even.

Let G̃ ⊂ ˜Sp(2g, 2) be a central extension of Sp(2g, 2) by Z whose extension class is half the extension

class of ˜Sp(2g, 2). We have then a commutative diagram:

1→ Z → G̃ → Sp(2g, 2) → 1
↓ ×2 ↓ ↓∼=

1→ Z → ˜Sp(2g, 2) → Sp(2g, 2) → 1
↓∼= ↓ ↓

1→ Z → ˜Sp(2g,Z) → Sp(2g,Z) → 1.

(2)

In this section we will denote by i : Z → ˜Sp(2g,Z) the inclusion of the center and by p : ˜Sp(2g,Z) →
Sp(2g,Z) the projection killing i(Z). Now G̃ is a subgroup of index 2 of ˜Sp(2g, 2) and hence a normal

subgroup of the form ker f , where f : ˜Sp(2g, 2) → Z/2Z is some group homomorphism. In particular, f

factors through the abelianization homomorphism F : ˜Sp(2g, 2) → H1( ˜Sp(2g, 2)). If we denote by K̃ the

kernel of F , then K̃ ⊂ G̃.

Lemma 3.2. The image K = p(K̃) under the projection p : ˜Sp(2g,Z) → Sp(2g,Z) is the kernel of the
abelianization homomorphism Sp(2g, 2)→ H1(Sp(2g, 2)). In particular K is the Igusa subgroup Sp(2g, 4, 8)

of Sp(2g, 4) consisting of those symplectic matrices

(
A B
C D

)
with the property that the diagonal entries

of AB> and CD> are multiples of 8.

Proof of Lemma 3.2. Let φ : Sp(2g, 2)→ H1(Sp(2g, 2))/F (i(Z)) be the map defined by:

φ(x) = F (x̃),

where x̃ is an arbitrary lift of x to ˜Sp(2g, 2). Then φ is a well-defined homomorphism and moreover,

p(K̃) = kerφ. The 5-term exact sequence associated to the central extension ˜Sp(2g, 2) is:

H2(Sp(2g, 2))→ (H1(Z))Sp(2g,2) → H1( ˜Sp(2g, 2))→ H1(Sp(2g, 2))→ 0.

The image of (H1(Z))Sp(2g,2) ∼= Z into H1( ˜Sp(2g, 2)) in the sequence above is, by construction, the subgroup

F (i(Z)). Therefore p induces an isomorphism between H1( ˜Sp(2g, 2))/F (Z) and H1(Sp(2g, 2)). This proves
the first claim.

The second claim follows from Sato’s computation of H1(Sp(2g, 2)) (see [46], Proposition 2.1) where he
identifies the commutator subgroup [Sp(2g, 2), Sp(2g, 2)] with Sp(2g, 4, 8).

Lemma 3.3. The subgroups K̃ and K are normal subgroups of ˜Sp(2g,Z) and Sp(2g,Z), respectively.
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Proof of Lemma 3.3. For any group G the subgroup ker(G → H1(G)) is characteristic. Now the group

˜Sp(2g,Z) acts by conjugation on its normal subgroup ˜Sp(2g, 2) and since K̃ is a characteristic subgroup of

˜Sp(2g, 2) it is therefore preserved by the conjugacy action of ˜Sp(2g,Z) and hence a normal subgroup. The
proof of the other statement is similar. The fact that Sp(2g, 4, 8) is a normal subgroup of Sp(2g,Z) was
proved by Igusa (see [27], Lemma 1.(i)).

Lemma 3.4. If H̃ ⊂ G̃ is a finite index normal subgroup of ˜Sp(2g,Z), then H̃ ∩ i(Z) = 2 · i(Z).

Proof of Lemma 3.4. We have H̃ ∩ i(Z) ⊂ G̃ ∩ i(Z) = 2 · i(Z) so that H̃ ∩ i(Z) = m · i(Z)), with m ≥ 2 or

m = 0. Then m 6= 0 since H̃ was supposed to be of finite index in ˜Sp(2g,Z). If m > 2 then the projection

homomorphism ˜Sp(2g,Z) → ˜Sp(2g,Z)/H̃ would send the center i(Z) into Z/mZ, contradicting Deligne’s
theorem ([9]). Thus m = 2.

Lemma 3.5. The subgroup K̃ is of finite index in ˜Sp(2g,Z).

Proof of Lemma 3.5. By the definition of K̃ the statement is equivalent to prove that H1( ˜Sp(2g, 2)) is a
finite abelian group. From the 5-term exact sequence above, and since the group H1(Sp(2g, 2)) is finite, it is

enough to show that the image of H1(Z)Sp(2g,2) is finite in H1( ˜Sp(2g, 2)) and this is precisely the image of

the center of ˜Sp(2g,Z). If this image is infinite in H1( ˜Sp(2g, 2)), then we could find finite abelian quotients

of ˜Sp(2g, 2) for which the center is sent into Z/mZ, for arbitrary large m. Using induction we obtain finite

representations of ˜Sp(2g,Z) with the same property, contradicting Deligne’s theorem.

From this we already have that the following central extension between finite groups

1→ Z/2Z → ˜Sp(2g,Z)/K̃ → Sp(2g, 2)/Sp(2g, 4, 8) → 1

is non-trivial. Therefore, there are finite quotients of ˜Sp(2g,Z) in which the image of the center is not trivial.
The final proposition will provide now a whole familly of examples and will achieve our computation of

H2(Sp(2g,Z/2k)) for g ≥ 3 and k ≥ 3.

Proposition 3.3. If H ⊂ Sp(2g, 4, 8) is a principal congruence subgroup of Sp(2g,Z) and g ≥ 3 then
H2(Sp(2g,Z)/H) = Z/2Z. In particular for all k ≥ 3, taking for H the level 8 principal congruence
subgroup, we have H2(Sp(2g,Z/2kZ)) ' H2(Sp(2g,Z/8Z)) = Z/2Z.

Proof. Let H̃ ⊂ K̃ be the pull-back of the central extension ˜Sp(2g,Z) under the inclusion homomorphism

H ⊂ Sp(2g,Z), which is a normal finite index subgroup of ˜Sp(2g,Z). Then the image of the center i(Z)

by the projection homomorphism ˜Sp(2g,Z) → ˜Sp(2g,Z)/H̃ is of order two. Therefore we have a central
extension:

0→ Z/2Z→ ˜Sp(2g,Z)/H̃ → Sp(2g,Z)/H → 0.

If the extension ˜Sp(2g,Z)/H̃ were trivial then we would obtain a surjective homomorphism ˜Sp(2g,Z) →
Z/2Z. But H1( ˜Sp(2g,Z)) = 0 by universality. Therefore H2(Sp(2g,Z)/H;Z/2Z) 6= 0. By Deligne’s theorem
H2(Sp(2g,Z)/H) ∈ {0,Z/2Z) and hence H2(Sp(2g,Z)/H) = Z/2Z.

3.4 Second proof: detecting the non-trivial class via Weil representations

The projective representation that we use is related to the theory of theta functions on symplectic groups.
Although the Weil representations of symplectic groups over finite fields of characteristic different from 2
is a classical subject present in many textbooks, the slightly more general Weil representations associated
to finite rings of the form Z/`Z received less consideration until recently. They first appeared in print
as representations associated to finite abelian groups in [29] for genus g = 1 and were extended to locally
compact abelian groups in ([54], Chapter I) andalso independently in the work of Igusa and Shimura on theta
functions (see [26, 48, 25]) and in physics literature (see e.g. [23]). They were rediscovered as monodromies
of generalized theta functions arising in the U(1) Chern-Simons theory in [12, 19, 13] and then in finite-time
frequency analysis (see [28] and references from there). In [12, 13, 19] these are projective representations
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of the symplectic group factorizing through the finite congruence quotients Sp(2g,Z/2`Z), which are only
defined for even ` ≥ 2. However, for odd ` the monodromy of theta functions lead to representations of
the theta subgroup of Sp(2g,Z). These also factor through the image of the theta group into the finite
congruence quotients Sp(2g,Z/2`Z). Notice however that the original Weil construction works as well for
Z/`Z with odd ` (see e.g. [22, 28]).

It is well-known (see [54] sections 43, 44 or [43], Prop. 5.8) that these projective Weil representations lift
to linear representations of the integral metaplectic group, which is the pull-back of the symplectic group in
a double cover of Sp(2g,R). The usual way to resolve the projective ambiguities is to use the Maslov cocycle
(see e.g. [53]). Moreover, it is known that the Weil representations over finite fields of odd characteristic and
over C actually are linear representations. In fact the vanishing of the second power of the augmentation
ideal of the Witt ring of such fields (see e.g. [52, 32]) implies that the corresponding metaplectic extension
splits. This contrasts with the fact that Weil representations over R (or any local field different from C)
are true representations of the real metaplectic group and cannot be linearized (see e.g. [32]). The Weil
representations over local fields of characteristic 2 is subtler as they are rather representations of a double
cover of the so-called pseudo-symplectic group (see [54] and [21] for recent work).

Let ` ≥ 2 be an integer and denote by 〈, 〉 the standard bilinear form on (Z/`Z)g × (Z/`Z)g → Z/`Z.
The Weil representation we consider is a representation in the unitary group of the complex vector space
C(Z/`Z)g endowed with its standard Hermitian form. Notice that the standard basis of this vector space is
canonically labeled by elements in (Z/`Z)g.

It is well-known (see e.g. [27]) that Sp(2g,Z) is generated by the matrices having one of the follow-

ing forms:

(
1g B
0 1g

)
where B = B> has integer entries,

(
A 0
0 (A>)−1

)
where A ∈ GL(g,Z) and(

0 −1g
1g 0

)
.

We can now define the Weil representations on these generating matrices as follows:

ρg,`

(
1g B
0 1g

)
= diag

(
exp

(
π
√
−1

`
〈m,Bm〉

))
m∈(Z/`Z)g

, (3)

where diag stands for diagonal matrix with given entries;

ρg,`

(
A 0
0 (A>)−1

)
= (δA>m,n)m,n∈(Z/`Z)g , (4)

where δ stands for the Kronecker symbol;

ρg,`

(
0 −1g
1g 0

)
= `−g/2 exp

(
−2π

√
−1〈m,n〉
`

)
m,n∈(Z/`Z)g

. (5)

It is proved in [13, 19], that for even ` these formulas define a unitary representation ρg,` of Sp(2g,Z) in
U(C(Z/`Z)g))/R8. Here U(CN ) = U(N) denotes the unitary group of dimension N and R8 ⊂ U(1) ⊂ U(CN )
is the subgroup of scalar matrices whose entries are roots of unity of order 8. For odd ` the same formulas
define representations of the theta subgroup Sp(2g, 1, 2) (see [27, 26, 13]). Notice that by construction ρg,`
factors through Sp(2g,Z/2`Z) for even ` and through the image of the theta subgroup in Sp(2g,Z/`Z) for
odd `.

Proposition 3.4. The projective Weil representation ρg,` of Sp(2g,Z), for g ≥ 3 and even ` does not lift to
linear representations of Sp(2g,Z), namely it determines a generator of H2(Sp(2g,Z/2`Z);Z/2Z) ∼= Z/2Z.

Remark 3.1. For odd ` it was already known that the projective Weil representations ρg,` lift to linear
representations (see [1], Appendix AIII).

3.4.1 Outline of the proof

We use again, as in the first proof, Proposition 3.1. The projective Weil representation ρg,` determines a
central extension of Sp(2g,Z/2`Z) by Z/2Z, since it factors through the metaplectic central extension, by
[54]. We will prove that this central extension is non-trivial thereby proving the claim. The pull-back of this
central extension by the homomorphism Sp(2g,Z) → Sp(2g,Z/2`Z) is a central extension of Sp(2g,Z) by
Z/2Z and it is enough to prove that this last extension is non-trivial. It turns out to be easier to describe the
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pull-back of this central extension over the mapping class group Mg of the genus g closed orientable surface.

Denote by M̃g the pull-back of the central extension above under the homomorphism Mg → Sp(2g,Z). By
the stability results of Harer for g ≥ 5, and the low dimensional computations in [41] and [30] for g ≥ 4, the
natural homomorphism Mg → Sp(2g,Z), obtained by choosing a symplectic basis in the surface homology
induces isomorphisms H2(Mg;Z) → H2(Sp(2g,Z);Z) and H2(Sp(2g,Z);Z) → H2(Mg;Z) for g ≥ 4. In

particular in this range the class of the central extension M̃g is an element of H2(Mg;Z/2Z). Therefore, we
can reformulate Proposition 3.4 at least for g ≥ 4 in an equivalent form but involving the mapping class
group instead; the case g = beeing recovererd from this by Stein’s stability theorem:

Proposition 3.5. If g ≥ 4 then the class of the central extension M̃g is a generator of H2(Mg;Z/2Z) '
Z/2Z.

3.4.2 A presentation of M̃g

The method we use is due to Gervais (see [17]) and was already used in [16] for computing central extensions
arising in quantum Teichmüller space. We start with a number of notations and definitions. Recall that Σg,r
denotes the orientable surface of genus g with r boundary components. If γ is a curve on a surface then Dγ

denotes the right Dehn twist along the curve γ.

Definition 3.1. A chain relation C on the surface Σg,r is given by an embedding Σ1,2 ⊂ Σg,r and the
standard chain relation on this 2-holed torus, namely

(DaDbDc)
4 = DeDd,

where a, b, c, d, e, f are the following curves of the embedded 2-holed torus:

a

c

e fb

Definition 3.2. A lantern relation L on the surface Σg,r is given by an embedding Σ0,4 ⊂ Σg,r and the
standard lantern relation on this 4-holed sphere, namely

Da12Da13Da23D
−1
a0 D

−1
a1 D

−1
a2 D

−1
a3 = 1, (6)

where a0, a1, a2, a3, a12, a13, a23 are the following curves of the embedded 4-holed sphere:

a

aa
0

3

a

a

a12

13

23

a

1

2

The key step in proving Proposition 3.5 and hence Proposition 3.4 is to find an explicit presentation for the
central extension M̃g. By definition, if we choose arbitrary lifts D̃a ∈ M̃g for each of Dehn twists Da ∈Mg,

then M̃g is generated by the elements D̃a plus a central element z of order at most 2. Specifically, as a
consequence of Gervais’ presentation [17] of the universal central extension of the mapping class group, the

group M̃g in the next proposition determines canonically a non-trivial central extension of Mg by Z/2Z.

Proposition 3.6. Suppose that g ≥ 3. Then the group M̃g has the following presentation.

1. Generators:
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(a) With each non-separating simple closed curve a in Σg is associated a generator D̃a;

(b) One (central) element z.

2. Relations:

(a) Centrality:

zD̃a = D̃az, (7)

for any non-separating simple closed curve a on Σg;

(b) Braid type 0-relations:

D̃aD̃b = D̃bD̃a, (8)

for each pair of disjoint non-separating simple closed curves a and b;

(c) Braid type 1-relations:

D̃aD̃bD̃a = D̃bD̃aD̃b, (9)

for each pair of non-separating simple closed curves a and b which intersect transversely at one
point;

(d) One lantern relation on a 4-holed sphere subsurface with non-separating boundary curves:

D̃a0D̃a1D̃a2D̃a3 = D̃a12D̃a13D̃a23 , (10)

(e) One chain relation on a 2-holed torus subsurface with non-separating boundary curves:

(D̃aD̃bD̃c)
4 = zD̃eD̃d. (11)

(f) Scalar equation:
z2 = 1. (12)

Moreover z 6= 1.

3.4.3 Proof of Proposition 3.6

By definition M̃g fits into a commutative diagram:

0 // Z/2Z // M̃g

��

// Mg

ρg,`

��

// 1

0 // Z/2Z // ˜ρg,`(Mg) // ρg,`(Mg) // 1,

where ˜ρg,`(Mg) ⊂ U(C(Z/`Z)g ). This presents M̃g as a pull-back and therefore the relations claimed in

Proposition 3.6 will be satisfied if and only if they are satisfied when we project them into Mg and ˜ρg,`(Mg) ⊂
U(C(Z/`Z)g ). If this is the case then M̃g will be a quotient of the group obtained from the universal central
extension by reducing mod 2 the center and that surjects onto Mg. But, as the mapping class group is
Hopfian there are only two such groups: first, Mg × Z/2Z with the obvious projection on Mg and second,
the mod 2 reduction of the universal central extension. Then relation (e) shows that we are in the latter
case.
The projection on Mg is obtained by killing the center z, and by construction the projected relations are
satisfied in Mg and we only need to check them in the unitary group.

Lemma 3.6. One can choose the lifts of Dehn twists in M̃g so that all braid type relations are satisfied and
the lift of the lantern relation is trivial, namely

D̃aD̃bD̃cD̃d = D̃uD̃vD̃w,

for the non-separating curves on an embedded Σ0,4 ⊂ Σg.

Proof. This is standard, see [16].
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We say that the lifts of the Dehn twists are normalized if all braid type relations and one lantern relation
are lifted in a trivial way.

Now the proposition follows from:

Lemma 3.7. If all lifts of the Dehn twist generators are normalized then (D̃aD̃bD̃c)
4 = zD̃eD̃d, where

z 6= 1, z2 = 1.

Proof. We denote by Tγ the action of Dγ in homology. Moreover we denote by Rγ the matrix in U(C(Z/`Z)g )
corresponding to the prescribed lift ρg,`(Tγ) of the projective representation. The level ` is fixed through
this section and we drop the subscript ` from now on.

Our strategy is as follows. We show that the braid relations are satisfied by the matrices Rγ . It remains to
compute the defect of the chain relation in the matrices Rγ .

Consider an embedding of Σ1,2 ⊂ Σg such that all curves from the chain relation are non-separating, and
thus like in the figure below:

a
b

c

d

e

f

The subgroup generated by Da, Db, Dc, Dd, De and Df act on the homology of the surface Σg by preserving
the symplectic subspace generated by the homology classes of a, e, b, f and being identity on its orthogonal
complement. The Weil representation behaves well with respect to the direct sum of symplectic matrices
and this enables us to focus our attention on the action of this subgroup on the 4-dimensional symplectic
subspace generated by a, e, b, f and to use ρ2,`. In this basis the symplectic matrices associated to the above
Dehn twists are:

Ta =


1 0 0 0
0 1 0 0
−1 0 1 0
0 0 0 1

 , Tb =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Tc =


1 0 0 0
0 1 0 0
−1 −1 1 0
−1 −1 0 1

 ,

Td = Te =


1 0 0 0
0 1 0 0
0 0 1 0
0 −1 0 1

 , Tf =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 .

Notice that Tb = J−1TaJ , where J is the matrix of the standard symplectic structure.

Set q = exp
(
πi
`

)
, which is a 2`-th root of unity. We will change slightly the basis {θm,m ∈ (Z/`Z)g}

of our representation vector space in order to exchange the two obvious parabolic subgroups of Sp(2g,Z).
Specifically we fix the basis given by −Sθm, with m ∈ (Z/`Z)g. We have then:

Ra = diag(q〈Lax,x〉)x∈(Z/`Z)2 , where La =

(
1 0
0 0

)
Rc = diag(q〈Lcx,x〉)x∈(Z/`Z)2 , where Lc =

(
1 1
1 1

)
and

Re = Rd = diag(q〈Lex,x〉)x∈(Z/`Z)2 , where Le =

(
0 0
0 1

)
We set now:

Rb = S3RaS and Rf = S3ReS,

where S = ρg,`

(
0 −1g
1g 0

)
.

Lemma 3.8. The matrices Ra, Rb, Rc, Rf , Re are normalized lifts, namely the braid relations are satisfied.
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We postpone the proof of this lemma a few lines. Let us denote by G(u, v) the Gauss sum:

G(u, v) =
∑

x∈Z/vZ

exp

(
2π
√
−1ux2

v

)
.

Denote by ω = 1
2G(1, 2`). The lift of the chain relation is of the form:

(RaRbRc)
4 = µReRd,

with µ ∈ U(1). Our aim now is to compute the value of µ. Set X = RaRbRc, Y = X2 and Z = X4. We
have then:

Xm,n = `−1ωδn2,m2q
−(n1−m1)

2+m2
1+(n1+n2)

2

.

This implies Ym,n = 0 if δm2,n2
= 0. If m2 = n2 then:

Ym,n = `−2ω2
∑

r1∈Z/`Z

q−(m1−r1)2+m2
1+(r1+n2)

2−(n1−r1)2+r21+(n1+n2)
2

=

= `−2ω2
∑

r1∈Z/`Z

qm
2
2+n

2
2+2n1n2+2r1(m1+m2+n1).

Therefore Ym,n = 0, unless m1 +m2 + n1 = 0. Assume that m1 +m2 + n1 = 0. Then:

Ym,n = `−1ω2qm
2
2+n

2
2+2n1n2 = `−1ω2q−2m1m2 .

It follows that: Zm,n =
∑
r∈(Z/`Z)2 Ym,rYr,n vanishes, except when m2 = r2 = n2 and r1 = −(m1 + m2),

n1 = −(r1 + r2) = m1. Thus Z is a diagonal matrix. If m = n then:

Zm,n = `−2ω4Ym,rYr,n = `−2ω4q−2m1m2−2r1r2 = `−2ω4qm
2
2 .

We have therefore obtained:
(RaRbRc)

4 = `−2ω4T 2
e

and thus µ = `−2ω4 =
(
G(1,2`)

2`

)4
. This proves that whenever ` is even we have µ = −1. Since this computes

the action of the central element z, it follows that z 6= 1.

Proof of Lemma 3.8. We know that Rb is S3RaS, where S is the S-matrix, up to an eight root of unity. The
normalization of this root of unity is given by the braid relation:

RaRbRa = RbRaRb

We have therefore:
(Rb)m,n = `−2

∑
x∈(Z/`Z)2

q〈Lax,x〉+2〈n−m,x〉

This entry vanishes except when m2 = n2. Assume that n2 = m2. Then:

(Rb)m,n = `−1
∑

x1∈Z/`Z

qx
2
1+2(n1−m1)x1 = `−1q(n1−m1)

2 ∑
x1∈Z/`Z

q(x1+n1−m1)
2

= `−1q(n1−m1)
2

ω

where ω = 1
2

∑
x∈Z/2`Z q

x2

is a Gauss sum. We have first:

(RaRbRa)m,n = `−1ωδm2,n2
q−(n1−m1)

2+m2
1+n

2
1 = `−1ωδm2,n2

q2n1m1

Further
(RbRa)m,n = `−1ωδm2,n2q

−(n1−m1)
2+n2

1

so that:
(RbRaRb)m,n = `−2ω2

∑
r∈(Z/`Z)2

δm2,r2δn2,r2q
−(n1−r1)2+r21−(r1−n1)

2

=

= `−1ω2δm2,n2
q2m1n1

∑
r1∈Z/`Z

q−(r1−m1+n1)
2

= `−1ωδm2,n2
q2n1m1

Similar computations hold for the other pairs of non-commuting matrices in the set Rb, Rc, Rf , Re. This
ends the proof of Lemma 3.8
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3.5 Third proof: K-theory computation of H2(Sp(2g,Z/4Z))
We give below one more proof using slightly more sophisticated tools which were developed by Barge and
Lannes in [2] and which allow us to dispose of Deligne’s theorem. Recall that according to Stein’s stability
theorem ([49]) it is enough to prove that H2(Sp(2g,Z/4Z)) = Z/2Z, for g large. It is well-known that the
second homology of the linear and symplectic groups can be interpreted in terms of the K-theory group
K2. Denote by K1(A),K2(A) and KSp1(A), KSp2(A) the groups of algebraic K-theory of the stable linear
groups and symplectic groups over the commutative ring A, respectively, see [24] for definitions. Our claim
is equivalent to the fact that KSp2(Z/4Z) = Z/2Z. The key ingredient in this proof is the exact sequence
from ([2], Thm. 5.4.1) which is a generalization of Sharpe’s exact sequence (see [24], Thm.5.6.7) in K-theory:

K2(Z/4Z)→ KSp2(Z/4Z)→ V (Z/4Z)→ K1(Z/4Z)→ 1, (13)

where the las map is known as the discriminant. We first show:

Lemma 3.9. The homomorphism K2(Z/4Z)→ KSp2(Z/4Z) is trivial.

Proof of Lemma 3.9. Recall from [2] that this homomorphism is induced by the hyperbolization inclusion
GL(g,Z/4Z)→ Sp(2g,Z/4Z), which sends the matrix A to A⊕ (A−1)>. Therefore it would suffice to show
that the pull-back of the universal central extension over Sp(2g,Z/4Z) by the hyperbolization morphism
SL(g,Z/4Z)→ Sp(2g,Z/4Z) is trivial.

Suppose that we have a central extension by Z/2Z over Sp(2g,Z/4Z). It defines therefore a class in
H2(Sp(2g,Z/4Z);Z/2Z). We want to show that the image of the hyperbolization homomorphism

h : H2(Sp(2g,Z/4Z);Z/2Z)→ H2(SL(g,Z/4Z);Z/2Z)

is trivial, when g ≥ 3.

Since these groups are perfect we have the following isomorphisms coming from the universal coefficient
theorem:

H2(Sp(2g,Z/4Z);Z/2Z) ∼= Hom(H2(Sp(2g,Z/4Z)),Z/2Z),

H2(SL(g,Z/4Z);Z/2Z) ∼= Hom(H2(SL(g,Z/4Z)),Z/2Z).

As recalled in Lemma 3.1 that the obvious homomorphism H2(Sp(2g,Z))→ H2(Sp(2g,Z/4Z)) is surjective.
This implies that the dual map H2(Sp(2g,Z/4Z);Z/2Z)→ H2(Sp(2g,Z);Z/2Z) is injective.

In the case of SL we can use the same arguments to prove surjectivity. Anyway it is known (see [44]) that
H2(SL(g,Z)) → H2(SL(g,Z/4Z)) is an isomorphism and that both groups are isomorphic to Z/2Z, when
g ≥ 3. This shows in particular that H2(SL(g,Z/4Z);Z/2Z) → H2(SL(g,Z);Z/2Z) is injective. Now, we
have a commutative diagram:

H2(Sp(2g,Z/4Z);Z/2Z) ↪→ H2(Sp(2g,Z);Z/2Z)
h ↓ ↓ H

H2(SL(g,Z/4Z);Z/2Z) ↪→ H2(SL(g,Z);Z/2Z).
(14)

The vertical arrow H on the right side is the hyperbolization homomorphism induced by the hyperbolization
inclusion SL(g,Z) → Sp(2g,Z). We know that H2(Sp(2g,Z);Z/2Z) is generated by the mod 2 Maslov
class. But the restriction of the Maslov cocycle to the subgroup SL(g,Z) is trivial because SL(g,Z) fixes the
standard direct sum decomposition of Z2g in two Lagrangian subspaces. This proves that H is zero. Since
the horizontal arrows are injective it follows that h is the zero homomorphism.

An alternative argument is as follows. The hyperbolization homomorphism H : K2(Z/4Z) → KSp2(Z/4Z)
sends the Dennis-Stein symbol {r, s} to the Dennis-Stein symplectic symbol [r2, s], see e.g. ([52], section 6).
According to [49] the group K2(Z/4Z) is generated by {−1,−1} and thus its image by H is generated by
[1,−1] = 0.

It is known that:
K1(Z/4Z) = (Z/4Z)∗ = Z/2Z, (15)

and the problem is to compute the discriminant map V (Z/4Z)→ Z/2Z.
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For an arbitrary ring R, the group V (R) for a ring R is defined as follows (see [2, Section 4.5.1]). Consider
the set of triples (L; q0, q1), where L is a free R-module of finite rank and q0 and q1 are non-degenerate
symmetric bilinear forms. Two such triples (L; q0, q1) and (L′; q′0, q

′
1) are equivalent, if there exists an R-

linear isomorphism a : L→ L′ such that a∗ ◦ q′0 ◦ a = q0 and a∗ ◦ q′1 ◦ a = q1. Under direct sum this triples
form a monoid. The group V (R) is by definition the quotient of the associated Grothendieck-Witt group by
the subgroup generated by Chasles’ relations, that is the subgroup generated by the elements of the form:

[L; q0, q1] + [L; q1, q2]− [L; q0, q2].

There is a canonical map from V (R) to the Grothendieck-Witt group of symmetric non-degenerate bilinear
forms over free modules that sends [L; q0, q1] to q1−q0. Since Z/4 is a local ring, we know that SK1(Z/4Z) = 1
and hence by [2, Corollary 4.5.1.5 ] we have a pull-back square of abelian groups:

V (Z/4Z) −→ I(Z/4Z)
↓ ↓

(Z/4Z)∗ −→ (Z/4Z)∗/((Z/4Z)∗)2,

where I(Z) is a the augmentation ideal of the Grothendieck-Witt ring of Z/4Z. The structure of the group
of units in Z/4Z is well-known, and the bottom arrow in the square is then an isomorphism Z/2Z ' Z/2Z,
so V (Z/4Z) ' I(Z/4Z) and the kernel of V (Z/4Z)→ (Z/4Z)∗ ' K1(Z/4Z) is the kernel of the discriminant
homomorphism I(Z/4Z) → (Z/4Z)∗/((Z/4Z)∗)2. To compute V (Z/4Z) it is therefore enough to compute
the Witt ring W (Z/4Z). Recall that this is the quotient of the monoid of symmetric non-degenerate bilinear
forms over finitely generated projective modules modulo the sub-monoid of split forms. A bilinear form is
split if the underlying free module contains a direct summand N such that N = N⊥. Since, by a classical
result of Kaplansky, finitely generated projective modules over Z/4Z are free by [39, Lemma 6.3] any split
form can be written in matrix form as: (

0 I
I A

)
,

for some symmetric matrix A. Isotropic submodules form an inductive system, and therefore any isotropic
submodule is contained in a maximal one and these have all the same rank, in case of a split form this rank
is necessarily half of the rank of the underlying free module, which is therefore even. The main difficulty
in the following computation is due to the fact that as 2 is not a unit in Z/4Z, so that the classical Witt
cancellation lemma is not true. As usual in this context, for any invertible element u of Z/4Z we denote by
〈u〉 the non-degenerate symmetric bilinear form on Z/4Z of determinant u.

Proposition 3.7. The Witt ring W (Z/4Z) is isomorphic to Z/8Z, and it is generated by the class of 〈−1〉.

The computation of W (Z/4Z) was also obtained by Gurevich and Hadani in [21].

The discriminant of ω =

(
2 1
1 2

)
is 1 and in the proof of Proposition 3.7 below we show that its class

is non-trivial in W (Z/4Z) and hence it represents a non-trivial element in the kernel of the discriminant
map I(Z/4Z) → (Z/4Z)∗/(Z/4Z)∗2. From the Cartesian diagram above we get that it also represents a
non-trivial element in the kernel of leftmost vertical homomorphism V (Z/4Z) → K1(Z/4Z). In particular
KSp2(Z/4Z) is Z/2Z.

Proof of Proposition 3.7. Thus given a free Z/4Z-module L, any non-degenerate symmetric bilinear form on
L is an orthogonal sum of copies of 〈1〉, of 〈−1〉 and of a bilinear form β on a free summand N such that for
all x ∈ N we have β(x, x) ∈ {0, 2}. Fix a basis e1, · · · , en of N . Let B denote the matrix of β in this basis.
Expanding the determinant of β along the first column we see that there must be an index i ≥ 2 such that
β(e1, ei) = ±1, for otherwise the determinant would not be invertible. Without loss of generality we may

assume that i = 2 and that β(e1, e2) = 1. Replacing if necessary ej for j ≥ 3 by ej − β(e1,ej)
β(e1,e2)

e2, we may

assume that B is of the form: 2 1 0
1 a c
0 tc A


where A and c are a square matrix and a row matrix respectively, of the appropriate sizes, and a ∈ {0, 2}.
But then β restricted to the submodule generated by e1, e2 defines a non-singular symmetric bilinear form
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and therefore N = 〈e1, e2〉 ⊕ 〈e1, e2〉⊥, where on the first summand the bilinear form is either split or ω. By
induction we have that any symmetric bilinear form is an orthogonal sum of copies of 〈1〉, 〈−1〉, of

ω =

(
2 1
1 2

)
and split spaces.

It’s a classical fact (see [39, Chapter I]) that in W (Z/4Z) one has 〈1〉 = −〈−1〉. Also 〈−1〉⊕〈−1〉⊕〈−1〉⊕〈−1〉
is isometric to ω⊕〈−1〉⊕ 〈1〉. To see this notice that, if e1, . . . , e4 denotes the preferred basis for the former
bilinear form, then the matrix in the basis e1 + e2, e1 + e3, e1 − e2 − e3, e4 is precisely ω ⊕ 〈−1〉 ⊕ 〈1〉. Also,
in the Witt ring 〈1〉 ⊕ 〈−1〉 = 0, so 4〈−1〉 = ω, and a direct computation shows that ω = −ω, in particular
ω has order at most 2. All these show that W (Z/4Z) is generated by 〈−1〉 and that this form is of order at
most 8. It remains to show that ω is a non-trivial element to finish the proof.

Assume the contrary, namely that there is a split form σ such that ω ⊕ σ is split. We denote by A the
underlying module of ω and by {a, b} its preferred basis. Similarly, we denote by S the underlying space of
σ of dimension 2n and by {e1, . . . , en, f1, . . . , fn} a basis that exhibits it as a split form. By construction
e1, . . . , en generate a totally isotropic submodule E of rank n in A ⊕ S, and since it is included into a
maximal isotropic submodule, we can adjoin to it a new element v such that v, e1, . . . , en is a totally isotropic
submodule of A ⊕ S, and hence has rank n + 1. By definition there are unique elements x, y ∈ Z/4Z and
elements ε ∈ E and φ ∈ F such that v = xa+ yb+ ε+ φ. Since v is isotropic we have:

2x2 + 2xy + 2y2 + σ(ε, φ) + σ(φ, φ) ≡ 0 (mod 4).

Since E ⊕ Z/4Zv is totally isotropic, then σ(ei, v) = σ(ei, φ) = 0, for every 1 ≤ i ≤ n. In particular, since φ
belongs to the dual module to E with respect to σ, φ = 0, so the above equation implies:

2x2 + 2xy + 2y2 ≡ 0 (mod 4).

But now this can only happen when x and y are multiples of 2 in Z/4Z. Therefore reducing mod 2, we find
that v mod 2 belongs to the Z/2Z -vector space generated by the mod 2 reduction of the elements e1, . . . , en,
and by Nakayama’s lemma this contradicts the fact that the Z/4Z-module generated by v, e1, . . . , en has
rank n+ 1.

4 Mapping class group quotients

4.1 Preliminaries on quantum representations

The results of this section are the counterpart of those obtained in section 3.4, by considering SU(2) –
instead of abelian – quantum representations. The first author proved in [14] that central extensions of the
mapping class group Mg by Z are residually finite and we improve here this result by showing that the
second essential homology of the mapping class group has arbitrarily large torsion. Recall that for g ≥ 4 the
mapping class group is perfect and H2(Mg) = Z (see, for instance [41]), while for g = 3 this group is still
perfect but H2(M3) = Z⊕ Z/2Z (see [45]).

The quantum representation considered here is a projective representation ρk of Mg, depending on an
integer parameter k, which lifts to a linear representation ρ̃k : Mg(12)→ U(N(k, g)) of some central extension
Mg(12) of Mg by Z. Masbaum, Roberts ([34]) and Gervais ([17]) gave a precise description of this extension.
For g ≥ 3, H2(Mg,Z) is generated by the so-called signature class χ (see [30]).Then the cohomology class
cMg(12) ∈ H2(Mg,Z) of the extension Mg(12) equals 12χ. We denote more generally by Mg(n) the central
extension by Z whose class is cMg(n) = nχ. Their explicit presentations show that Mg(1) embeds as a
finite index subgroup into Mg(n), by sending the generator c of the center of Mg(1) into the n-th power of
the generator of Mg(n). Notice that for g ≥ 4 the signature extension χ = Mg(1) is the universal central
extension of Mg, but this is not the case when g = 3.

Let c be the generator of the center of Mg(1), which by construction is 12 times the generator of the
center of Mg(12). The quotient Mg(1)n of Mg(1) obtained by imposing the new relation cn = 1 is a non-
trivial central extension of Mg by Z/nZ. We will say that a quantum representation ρ̃p detects the center of
Mg(1)n if it factors through Mg(1)n and is injective on its center.
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Recall that the image of the generator c of the center of Mg(1) by quantum representations ρ̃p is torsion.

For instance, the SO(3)-TQFT with parameter A = −ζ(p+1)/2
p , where ζp is a primitive p-th root of unity, (so

that A is a primitive 2p root of unity with A2 = ζp provides the quantum representation ρ̃p. By carefully
choosing the parametrizing root of unity ζp for varying p we show:

Lemma 4.1. For each prime power qs there exists some quantum representation ρ̃p which detects the center
of Mg(1)qs .

Proof. By [34] we know that ρ̃p(c) = A−12−p(p+1), where A = −ζ(p+1)/2
p is a 2p-root of unity.

1. If q is a prime number q ≥ 5 we let p = qs. Then 2p divides p(p + 1) and ρ̃p(c) = A−12 = ζ−6p is of
order p = qs. Thus the representation ρ̃p detects the center of Mg(1)qs .

2. If q = 2, we set p = 2. Then ρ̃2(c) = ζ2, and ρ̃2 detects the center of Mg(1)2.

3. Set now p = 12r for some integer r > 1 to be fixed later. Then ρ̃p(c) = A−12−12r(12r+1) =

ζ
−1−r(12r+1)
2r = ζ−1−r2r . This 2r-th root of the unit has order l.c.m.(1+r, 2r)/(1+r) = 2r/g.c.d.(1+r, 2r).

An elementary computation shows that g.c.d.(1 + r, 2r) = 1 or 2 depending on whether r is even or
odd.

• If r = 2s, then ζ−1−2
s

2·2s is of order 2s+1 and the representation ρ̃p detects the center of Mg(1)2s+1 .

• If r = 3s, then ζ−1−3
s

2·3s is of order 3s and the representation ρ̃p detects the center of Mg(1)3s .

4.2 Proof of Theorem 1.2

We wish to prove that for any prime p there exist finite quotients F of Mg, g ≥ 3, such that EH2(F,Mg)
has p-torsion.

End of proof of Theorem 1.2. By a classical result of Malcev [33], finitely generated subgroups of linear
groups over a commutative unital ring are residually finite. This applies to the images of quantum repre-
sentations. Hence there are finite quotients F̃ of these for which the image of the generator of the center
is not trivial. By Lemma 4.1 we may find quantum representations for which the order of the image of the
center can have arbitrary prime power order p. Hence, for any prime p there are finite quotients F̃ of Mg(1)

in which the image of the center has an element of order p. We apply Lemma 2.3 to the quotient F of F̃
by the image of the center to get finite quotients of the mapping class group with arbitrary primes in the
essential homology EH2(F,Mg).

Concrete finite quotients with arbitrary torsion in their essential homology from mapping class groups
can be explicitly constructed as follows.

Let p be a prime different form 2 and 3. According to Gilmer and Masbaum ([18]) we have that

ρ̃p(M̃g(1)) ⊂ U(N(p, g)) ∩ GL(Op) for prime p, where Op is the following ring of cyclotomic integers

Op =

{
Z[ζp], if p ≡ −1(mod 4)
Z[ζ4p], if p ≡ 1(mod 4).

Let then consider the principal ideal m = (1− ζp) which is a prime ideal of Op. It is known that prime
ideals of Op are maximal and then Op/mn is a finite ring for every n. Let then Γp,m,n be the image of
ρ̃p(Mg(1)) into the finite group GL(N(p, g),Op/mn) and Fp,m,n be the quotient Γp,m,n/(ρ̃p(c)) by the image
of the center of Mg(1). The image ρ̃p(c) of the generator c into Γp,m,n is the scalar root of unity ζ−6p , which is
a non-trivial element of order p in the ring Op/mn and hence an element of order p into GL(N(p, g),Op/mn).
Notice that this is a rather exceptional situation, which does not occur for other prime ideals in unequal
characteristic (see Proposition 4.1).

Lemma 2.3 implies then that the image p∗(H2(Mg)) within H2(Fp,m,n) contains an element of order
p. This result also shows the contrast between the mapping class group representations and the Weil
representations:

Corollary 4.1. If g ≥ 3, p is prime and p 6∈ {2, 3} (or more generally, p does not divide 12 and not

necessarily prime), then ρ̃p(M̃g) is a non-trivial central extension of ρp(Mg). Furthermore, under the same
hypotheses on g and p, if m = (1− ζp), then the extension Γp,m,n of the finite quotient Fp,m,n is non-trivial.
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Proof. If the extension were trivial then by universality ρ̃p would kill the center of Mg(1), and this is not
the case. The same argument yields the second claim.

Remark 4.1. Although the group M2 is not perfect, because H1(M2) = Z/10Z, it still makes sense to consider

the central extension M̃2 arising from the TQFT. Then the computations above show that the results of
Theorem 1.2 and Corollary 4.1 hold for g = 2 if p is a prime and p 6∈ {2, 3, 5}.
Remark 4.2. The finite quotients Fp,m,n associated to the ramified principal ideal m = (1−ζp) were previously
considered by Masbaum in [35].

When p ≡ −1(mod 4) the authors of [15, 36] found many finite quotients ofMg by using more sophisticated
means. However, the results of [15, 36] and the present ones are of a rather different nature. Assume that
n is a prime ideal of Op such that Op/n is the finite field Fq with q elements. In fact the case of equal
characteristics n = m = (1− ζp) is the only case where non-trivial torsion can arise, according to:

Proposition 4.1. If n is a prime ideal of unequal characteristic (i.e. such that g.c.d.(p, q) = 1) and p, q ≥ 5
then EH2(Fp,n,n,Mg) = 0. Moreover, for all but finitely many prime ideals n of unequal characteristic both
groups Γp,n,1 and Fp,n,1 coincide with SL(N(p, g),Fq) and hence H2(Fp,n,1) = 0.

Proof. The image of a p-th root of unity scalar in SL(N(p, g),Fq) is trivial, as soon as g.c.d.(p, q) = 1. Thus
Γp,n,n → Fp,n,n is an isomorphism and hence the image of H2(Mg) into H2(Fp,n,n) must be trivial. A priori
this does not mean that H2(Fp,n,n) = 0. However, Masbaum and Reid proved in [36] that for all but finitely
many prime ideals n in Op the image Γp,n,1 ⊂ GL(N(p, g),Fq) is the whole group SL(N(p, g),Fq). It follows

that the projection homomorphism M̃g(1) → SL(N(p, g),Fq) factors through Mg → SL(N(p, g),Fq). But
H2(SL(N,Fq)) = 0, for N ≥ 4, q ≥ 5, as SL(N,Fq) itself is the universal central extension of PSL(N,Fq).

4.3 Property A2 and proof of Theorem 1.3

We will now prove that for g ≥ 4 the mapping class group Mg has Serre’s property A2 for trivial modules.
Our first result reduces the case to study residual finiteness of central extensions of the mapping class group.

Proposition 4.2. 1. A residually finite group G has property A2 for all finite G-modules M if and only
if any extension by a finite abelian group is residually finite.

2. Moreover for (1.) to hold true for all finite trivial G-modules it is enough to consider central extensions
of G.

Hence Theorem 1.3 is then a direct consequence of:

Proposition 4.3. Let g ≥ 4 be an integer. For any finitely generated abelian group A and any central
extension

1→ A→ E →Mg → 1

the group E is residually finite.

It will convenient to rephrase property An as follows. A residually finite group G is said to have property
(Dn) for a module M if for each x ∈ Hj(G,M), 1 ≤ j ≤ n, there exists a subgroup H ⊂ G of finite index in
G such that the image of x in Hj(H,M) is zero. Following ([47], Ex.1) properties An and Dn are equivalent.
It is easy to see that these properties are also equivalent when we let the modules M run over the class of
finite trivial Ĝ-modules.

4.3.1 Proof of proposition 4.2 (1)

Assume that every extension of G by a finite abelian group is residually finite. Let x ∈ H2(G;A) be
represented by the extension:

1 // A // E // G // 1.

By the equivalent property D2, it is enough to find a finite index subgroup H ⊂ G such that x is zero in
H2(H;A). Since E is residually finite, for each non-trivial element a ∈ A choose a finite quotient Fa of E in
which the image of a is not identity. Let Ba be the image of A in Fa, and Qa = Ea/Ba. Denote by FA, BA
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and QA the products of these (finitely many) groups over the set of non-trivial elements a in A. Then the
diagonal map E → FA fits into a commutative diagram:

1 // A //

��

E //

��

G //

��

1

1 // EA // FA // QA // 1

Let K be the kernel ker(G → QA). Then K is a finite index normal subgroup and the pull back of x to
H2(K;A) is trivial.

Conversely, assume that extension G has property A2 and let

1 // A // E // G // 1

be an extension of G by the finite abelian group A. Then, by ([47], Ch. I.2.6, Ex. 2), we have a natural
short exact sequence of profinite completions:

1 // Â // Ê // Ĝ // 1

that fits into a commutative diagram

1 // A //

��

E //

��

G //

��

1

1 // Â // Ê // Ĝ // 1

Since A is finite A ' Â, and since G is residually finite the rightmost downward arrow is an injection. By
the five lemma the homomorphism E ↪→ Ê is also injective, and hence E is residually finite, as a subgroup
of a profinite group.

4.3.2 Proof of proposition 4.2 (2)

One can easily step from Fp coefficients to any trivial G-module. Condition (Dn) for G and all trivial

Ĝ-modules Fp implies (Dn) for G and all trivial Ĝ-modules M . This follows from decomposing the abelian
group M in p-primary components and then use induction on the rank of the composition series of M and
the 5-lemma.

4.3.3 Proof of Proposition 4.3

We will use below that a group is residually finite if and only if finite index subgroups are residually finite.
Observe that since Mg and A are finitely generated, so is E. Recall that Mg is perfect for g ≥ 4. The five
term exact sequence in homology associated to the central extension E yields the exact sequence:

H2(Mg;Z)→ A→ H1(E,Z)→ 0.

Any element f ∈ E that is not in A, projects non-trivially in the mapping class group and is therefore
detected by a finite quotient of this latter group. If f ∈ A but is not in the image of H2(Mg;Z), then it
projects non-trivially into the finitely generated abelian group H1(E;Z), and is therefore detected by a finite
abelian quotient of E. It remains to detect the elements in the image of H2(Mg;Z). Recall the following
elementary result:

Lemma 4.2. Let A be a finitely generated abelian group, B a subgroup of A. Then there exists a direct
factor C of A that contains B as a subgroup of finite index.

Apply this lemma to the image B of H2(Mg;Z) into A, let pC be the projection onto the subgroup C and
consider the push-out diagram:
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1 // A //

pC

��

E //

��

Mg
// 1

1 // C // EC // Mg
// 1

Then it is sufficient to prove that EC is residually finite in order to show that E is residually finite.

Now, the mapping class group Mg is perfect, and therefore we have a push-out diagram:

1 // H2(Mg;Z) //

��

Mg(1) //

��

Mg
// 1

1 // C // EC // Mg
// 1,

where the first row is the universal central extension, and the arrow H2(Mg;Z) → C is the one appearing

in the five term exact sequence of the bottom extension. Recall that for g ≥ 4, H2(Mg;Z) = Z. Two cases
could occur:

1. Either H2(Mg;Z)→ C is injective and in this case EC contains the residually finite group Mg(1) as a
subgroup of finite index, and this is known to be residually finite (see [14]).

2. Or the image of H2(Mg;Z)→ C is a cyclic group Z/kZ and EC contains as a finite index subgroup the
reduction mod k of the universal central extension. But Lemma 2.3 shows that for any integer n ≥ 2,
the group Mg(1)n obtained by reducing mod n a generator of the center of Mg(1) is residually finite.

References

[1] A.Andler and S.Ramanan, Moduli of abelian varieties, Lect. Notes. Math. 1644, 1996.

[2] J. Barge and J. Lannes, Suites de Sturm, indice de Maslov et périodicité de Bott, [Sturm sequences, Maslov
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2 (1969), 1–62.

[38] J. Milnor, Introduction to algebraic K-theory, Annals Math. Studies 72, Princeton Univ. Press, 1971.

[39] J. Milnor and D. Husemoller, Symmetric billinear forms, Ergeb. Math. Grenz. 73, Springer, 1973.

[40] M. Newman and J. R. Smart, Symplectic modulary groups, Acta Arith. 9 (1964), 83–89.

[41] W. Pitsch, Un calcul élémentaire de H2(Mg,1, Z) pour g ≥ 4, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999),
no. 8, 667–670.

[42] A. Putman, The Picard group of the moduli space of curves with level structures, Duke Math. J. 161 (2012),
623–674.

[43] R. Ranga Rao, On some explicit formulas in the theory of Weil representation, Pacific J. Math. 157 (1993),
335–371.

[44] J. Rosenberg, Algebraic K-theory and its applications, Graduate Texts in Mathematics 147, Springer-Verlag,
New York, 1994.

[45] T. Sakasai, Lagrangian mapping class groups from a group homological point of view, Algebr. Geom. Topol. 12
(2012), no. 1, 267–291.

[46] M. Sato, The abelianization of the level d mapping class group, J. Topology 3 (2010), 847–882.

[47] J.P. Serre, Cohomologie galoisienne, 5-th ed., Lect. Notes Math. vol. 5., Springer-Verlag, Berlin, 1994.

[48] G. Shimura, Moduli and fibre systems of abelian varieties, Ann. of Math. 83 (1966), 294–338.

19



[49] Michael R. Stein, Surjective stability in dimension 0 for K2 and related functors, Trans. Amer. Math. Soc. 178
(1973), 165–191.

[50] Michael R. Stein, The Schur multipliers of Sp6(Z), Spin8(Z), Spin7(Z) and F4(Z), Math. Annalen 215 (1975),
165–172.

[51] Michael R. Stein, Stability theorems for K1, K2 and related functors modeled on Chevalley groups, Japan. J.
Math. (N.S.) 4(1978), 77–108.

[52] A. Suslin, Torsion in K2 of fields, K-theory 1(1987), 5–29.

[53] V. G. Turaev, Quantum invariants of knots and 3-manifolds. de Gruyter Studies in Mathematics, 18, Walter de
Gruyter & Co., Berlin, 1994.
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