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Abstract. We consider exact Lagrangian submanifolds in cotangent bun-
dles. Under certain additional restrictions (triviality of the fundamental
group of the cotangent bundle, and of the Maslov class and second Stiefel—
Whitney class of the Lagrangian submanifold) we prove such submanifolds
are Floer-cohomologically indistinguishable from the zero-section. This
implies strong restrictions on their topology. An essentially equivalent re-
sult was recently proved independently by Nadler [16], using a different
approach.

1. Introduction

This paper is concerned with the topology of Lagrangian submanifolds in
cotangent bundles. Take a closed manifold N (throughout the entire paper,
the convention is that all manifolds are assumed to be connected). Equip
the cotangent bundle 7*N with the standard symplectic structure. We will
be interested in closed exact Lagrangian submanifolds in 7*N.

Theorem 1. Suppose that N is simply-connected and spin. Fix a coeffi-
cient field K of characteristic # 2. Let L C T*N be a closed exact La-
grangian submanifold, which is spin and whose Maslov class m; € H'(L)
vanishes. Then the projection L — N has degree *1, and induces an
isomorphism H*(N; K) — H*(L; K). Moreover, if Ly, L are two sub-
manifolds satisfying the same conditions, and intersecting transversally,
then |Ly N Li| > dim H*(N; K), where the right hand side is the sum of
the Betti numbers with K-coefficients.
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A well-known conjecture says that all closed exact L C T*N should
be isotopic to the zero-section (where the isotopy goes through exact La-
grangian submanifolds). In this form, the conjecture (sometimes called the
“nearby Lagrangian problem™) seems to be beyond the reach of present
technology, but there is a long history of partial results. Surjectivity of
the projection N — L was proved in one of the first papers on the sub-
ject [14]. Furthermore, many non-embedding results are known for spe-
cial classes of manifolds N or L; besides the reference already quoted,
see [24,25,23,3,9,21] (even this is a non-exhaustive list). Together, these
papers use a wide variety of approaches, and the consequent statements vary
considerably in strength (sometimes far outstripping what one can get by
applying Theorem 1; for instance, results in [24] and [9] prove that every
oriented exact L C T*S? is indeed Lagrangian isotopic to the zero-section).
This diversity is one of the aspects making this an interesting problem to
study.

To bring the story to a close, there is an important very recent paper
of Nadler [16] in which, building on work of Nadler-Zaslow [17] and
Fukaya-Oh [4], he obtains a result essentially equivalent to our Theorem 1.
Nadler’s argument is somewhat different from the one used here (there is
also yet another approach, due to the authors of the present paper, which
remains so far unpublished). We emphasize that Nadler’s work and ours
were carried out entirely independently of each other. Nevertheless, there
are many similarities on a philosophical level; notably, the use of the Fukaya
category of T*N, enlarged by admitting certain non-compact Lagrangian
submanifolds, and of decompositions of the diagonal. We postpone a more
detailed comparison (and a discussion of the situation when 7 (N) # 0)
to [6].

This paper is organized as follows. The rest of Sect. 1 gives a complete
account of the proof of Theorem 1, assuming certain auxiliary theorems
which are then addressed in the subsequent sections. Mostly, the proofs
of those auxiliary results are quite self-contained, relying only on clas-
sical Floer homology theory and algebraic geometry. However, there is
one notable exception, Theorem 4, which belongs to the general theory
of Lefschetz fibrations. The use of Lefschetz fibrations is not, of course,
intrinsic to the nearby Lagrangian problem. Indeed, a large part of the
paper is devoted to going from one framework (cotangent bundles) to the
other (affine algebraic varieties) and back. Nevertheless, this turns out to be
a price worth paying, because the Fukaya categories associated to Lefschetz
fibrations belong to a particularly benign class (directed A,-categories, up
to derived equivalence).
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1a. Lefschetz fibrations on affine varieties. Let X be a smooth n-dimen-
sional complex projective variety, equipped with an ample line bundle
O3(1).Lett € HO((9)—((1 )) be a holomorphic section, which defines a normal
crossing divisor (possibly with multiplicities) ¥ = ¢~!(0). The complement
X = X\ Y is an affine variety. We fix a hermitian metric on O3 (1) whose
curvature is positive, hence defines a Kihler form. The restriction of this
form to X can be written as w = —ddh, where h = — log ||¢||? is the Kih-
ler potential. In particular, the symplectic form has a canonical primitive,
namely 6 = —d°h.

Take another section s € H O((9)—((1 )), which is not a multiple of . We say
that the function p = s/t : X — C is a Lefschetz fibration if the following
conditions are satisfied:

e p has only nondegenerate critical points, and there is at most one such
point in every fibre.

e s 1(0) is (reduced and) smooth near Y, and intersects each stratum of Y
transversally.

The first condition is the standard Lefschetz property, and the second one
ensures that the fibres are well-behaved at infinity. More precisely, if we
consider the symplectic connection defined by w, then:

Lemma 2. p : X — C has well-defined symplectic parallel transport maps
(away from the singular fibres).

We need to review some more terminology from Picard-Lefschetz the-
ory. A vanishing path is an embedded path y : [0; oc0) — C such that
1(0) is a critical value of p, all the other y(r) are regular values, and y’(r)
is constant for » > 0 (which means that the path eventually becomes
a straight half-line). For any such path there is an associated Lefschetz thim-
ble A, C X, which is an open Lagrangian disc projecting properly to y.
In fact, y~' o p|A,, is the standard exhausting Morse function on the open
disc, with a single nondegenerate minimum that lies precisely at the unique
singular point of p~'((0)). We refer to [20] for details.

Let’s label the critical values by {zi, ..., z,}. A pair of dual bases of
vanishing paths consists of collections {y;}, {yj’.} indexed by 1 < j < m,
with the following properties:

o y;(0) = y} (0) = z; for all j, with transverse intersection at that point,
and no other intersection points; except for this, any two of the paths

Vs ooy Yo Vis - - - » Vi) are disjoint.
e Forr > 0, yj(r) = c¢; — ir for some constants ¢; € C, which are such

that their real parts re c; are increasing with j. Similarly, y} (r) = c'} +ir,
with re c!j increasing with j.
These bases give rise to two collections of Lefschetz thimbles, which we
usually denote by {A;} and {A!j}. By construction, A ; intersects A’j precisely
at the unique critical point x; € p~'(z;) (and the intersection is transverse
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there); otherwise, the Lefschetz thimbles are all mutually disjoint. Note
that A, is always isotopic to A}, and similarly A, to A , just because the
relevant paths can be moved into each other.

1b. Floer cohomology. Take an affine variety X = X \ Y of the kind
considered above, with its symplectic form « = d6. In addition, assume
that X carries a meromorphic complex n-form whose zeros and poles lie
entirely inside Y. Restriction of that form to X then yields a holomorphic
volume form, which we denote by 7. For any Lagrangian submanifold
L C X, wethen have aclass [0|L] € H'(L; R), as well as the Maslov class
my; € H'(L). We define admissible Lagrangian submanifolds to be those L
which are:

e exact, meaning that [#|L] = 0O;
e spin, and in fact come with a choice of spin structure; and
e have zero Maslov class.

The last property allows us to choose a grading of L, in the terminology
of [18]. We will denote the resulting graded Lagrangian submanifold by L.
For any pair of closed submanifolds of this kind, one has a well-defined
Floer cohomology group HF*(Ly, L), which is a Z-graded vector space
(over a coefficient field K, which can be chosen arbitrarily). One can also
allow certain non-compact Lagrangian submanifolds. Namely, if X carries
a Lefschetz fibration in the sense defined above, then one or both I:k may
be Lefschetz thimbles (these are contractible, hence automatically admis-
sible), except for one condition: in the case of two Lefschetz thimbles, we
require that the associated paths should only intersect in a compact subset
of C. The resulting Floer cohomology groups have the usual properties: for
Lo = L, = L, one has HF*(L L) H*(L; K); isotopy invariance holds
within the class of Lagrangian submanifolds which are allowed; there is
a Poincaré duality 1somorphlsm HF*(L,, Lo) = HF'"™ *(LO, 1) and also
an associative product HF* (L1, L,) ® HF*(L¢, L\) — HF*(Lo, L»).

1c. A spectral sequence. Fix dual bases of vanishing paths, and consider
the associated Lefschetz thimbles. Recall that whenever two graded La-
grangian submanifolds L, L, intersect transversally at a point x, one can
define the absolute Maslov index

(1) i(Lo, L1; %) € Z,

which determines the degree in which this point will contribute to the
Floer cochain group CF*(Lg, L1). In our case, our convention is to choose
gradings so that the unique intersection point x; € p~'(z;) satisfies

@ (B Ajixg) =0

This implies that HF *(A A; ;) is K'in degree 0, and trivial in other degrees.
There is some residual amblgulty, since one can change the grading of both
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vanishing cycles by the same amount, but that will be irrelevant for our
purpose.

Lemma 3. This grading convention is compatible with the isotopy A, >~ A},
(but not with Ay =~ A!).

Theorem 4. Suppose that char(K) # 2. Let (ZO, [ L) be two closed admis-
sible Lagrangian submanifolds in X, equipped with gradings. Then there is
a spectral sequence converging to HF* (Lo, Ly), whose starting page is

3) El = (HF* (A}, L)) @ HF* (Lo, &))"

It is implicit in the statement that the columns E{* with j < 0 or
j > m are zero. The result is quoted from [22, Corollary 18.27] with some
notational changes, which we will comment on later. More importantly, we
will need two additional properties of this spectral sequence. First, like any
spectral sequence with bounded starting term, ours comes with a right-sided
edge homomorphism, which is a map E/"*™" — HF*(Ly, L,).

Addendum 5. Up to a nonzero multiplicative constant, the edge homo-
morphism _is the composition of the isomorphism HF “(Ap, L) =
HF *(Ain, Ly) obtained from the isotopy A, =~ A, and the multiplica-
tion HF*(A,,, L)) ® HF*(Lo, A,,)) —> HF*(Lo, L)).

The second observation can be motivated as follows. Suppose for a sec-
ond that HF*(Ly, A; ) = 0 for all j. Then, the spectral sequence would
imply that HF *(Lo, Ll) = 0 for all L,. This can never actually happen,

since HF* (LO, Lo) =% 0, but there is a useful relative version (a kind of
Whitehead theorem):

Addendum 6. Suppose that there is a ¢ € HF°(Ly, Ly) such that the
product with c is an isomorphism HF*(Ly, Aj) — HF*(L,, Aj)for all j.
Then, the same product is an isomorphism HF* (Lo, L) — HF*(L,, L) for
all closed admissible L.

1d. Real Lefschetz fibrations. We will be looking at Lefschetz fibrations
with real structures. This means that

e X carries an anti-holomorphic involution, which comes with a lift to
the line bundle (1), preserving the hermitian metric. The section ¢
should be defined over R, which means that it is invariant under the
involution;

e if we restrict the involution to X, then its fixed part X should be compact
(and connected);

e the section s defining the Lefschetz fibration should also be defined
over R.
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Note that X is automatically an exact Lagrangian submanifold, since both @
and 6 vanish on it. Restriction of p to the real part yields a function pg :
Xr — R, which is automatically Morse. Moreover, because we do not
allow more than one critical point in a given fibre, the critical points of pg
are precisely those critical points of p which have real values. In addition to
the properties above, we will often require the existence of a holomorphic
volume form 5 as before, which should again be defined over R (this means
that the pullback of 5 by the anti-holomorphic involution is 7). Then, the
restriction g = n|Xg is a volume form on Xg.

In the presence of a real structure, it is convenient to use dual bases
of vanishing paths of a particular kind. Suppose that there are s real and r
non-real critical values, so m = r + s. We choose an arbitrary ordering
{z1,..., z,} of the non-real ones, and then add the real ones in their natural
order as {z,41 < -+ < Zu). Let {y;}, {yl!.} be dual bases of vanishing paths,
with y;(0) = yl!. (0) = z;. We say that they are compatible with the real
structure if:

e foreach j <r, y; is disjoint from p(X);
e foreach j > r, both y; and yj!. intersect p(Xg) only at their starting point.
Moreover, im y]f(O) < 0and im (yj!.)’(O) > 0.

Figure 1 shows how to find such bases, first in a particularly simple situ-
ation, and then in a more realistic one (the two cases are related by a dif-

1
gl 75 V4
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" p(Xr)
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feomorphism of C preserving p(Xg), hence are not really substantially
different).

Having set up the theory, it remains to produce enough examples. For
this purpose we use standard approximation methods from real algebraic
geometry. The outcome is as follows:

Lemma 7. Let N be a closed orientable manifold, equipped with a Morse
function, which has the property that no two critical points lie on the same
level set. One can then find: a Lefschetz fibration p : X — C with a real
structure; which comes equipped with a holomorphic volume form defined
over R; and a diffeomorphism Xz = N, such that: the composition of pr
with this diffeomorphism is C*-close to the given Morse function.

le. Cotangent bundles. Fix a Lefschetz fibration with a real structure,
equipped with a holomorphic volume form which is defined over R. We write
N = Xg.By Weinstein’s theorem, one can find a symplectic embedding « of
some tubular neighbourhood of the zero-section N C T*N into X, such that
k(N) = Xg. Because of the exactness of X, this is an exact symplectic
embedding, which means that it preserves the class of exact Lagrangian
submanifolds. Since the holomorphic volume form 7 is defined over R, Xg
admits a canonical grading, and one can use that to transfer gradings of
Lagrangian submanifolds from 7*N to X.

Lemma 8. Let (Lo, L) be closed admissible Lagrangian submani-
folds of T*N, equipped with gradings. Assume that they lie close to
the zero-section, so that their images under k are well-defined. Then
HF*(k(Ly), x(L1)) = HF*(Ly, L1). Here, the Floer cohomology group
on the left hand side lives in X, and that on the right hand side in T*N.

There is also an analogue of this for a suitable class of Lefschetz thim-
bles. Namely, let x be a critical point of p which lies in the real locus,
and z its value. Let y be a vanishing path starting at z. We impose a con-
dition similar to the one in the previous section, namely y should not
intersect p(Xg) anywhere else, and im y'(0) # 0. Write A = A,, for the
Lefschetz thimble, and 7" C T*N for the cotangent fibre. We fix grad-
ings of these two submanifolds in such a way that i (XR, A: x) = 0 and
i(N, T* x) = 0.

Lemma 9. Let L be a closed admissible Lagrangian submanifold of T*N,
with a grading. Then HF*(x(L), A) = HF*(L, T;‘).

Addendum 10. Let Ly, L be two closed admissible Lagrangian submani-
folds of T*N, with gradings. Then, the Floer-theoretic products in X and
T*N respectively,

HF*(A, k(L)) ® HF*(k(Lo), A) —> HF*(k(Lo), k(L))

“4) < s L .
HF*(T{, L1) @ HF*(Lo, T;) — HF*(Ly, L1)
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are compatible with the isomorphisms from Lemma 8 and 9 (together with
the obvious analogue of the latter for HF* (A, k(L)), which can be reduced
to the original statement by duality).

We need one more fact about gradings. Let x be as before, and write
w(x) = u(pg; x) for its Morse index as a critical point of pg. Take two van-
ishing paths y, y' starting at z = p(x), with the property that im y'(0) < 0,
im (y')'(0) > 0. Then, the two thimbles A, A' and the real part Xy intersect
each other pairwise transversally at x.

Lemma 11. For any choice of gradings,

(5) i(A', Ay x) — i(Xp, A; x) — i (A, Xg; x) = —p(x).

1f. The main argument. We start with a closed, simply-connected mani-
fold of dimension n > 6. Choose a Morse function ¢ : N — R with no
critical points of index 1 or n — 1 (it is a classical result from topology
that such functions exist [15]). Denote by (yi, ..., yy) the critical points
of g. We assume that no two such points lie on the same level set. Sup-
pose that (io, I:l) are closed admissible Lagrangian submanifolds of 7*N,
equipped with gradings. Then, there is a spectral sequence converging to
HF*(Lg, L), with

(6) Eff = (HF*(T;;_n L) ® HF* (Lo, fjj_r))j+k+nfu(yj4).

Here, we have graded the cotangent fibres as in Lemma 9. The number r of
non-real critical values appears for compatibility with labeling conventions
elsewhere (it has the trivial effect of shifting the entire E; page to the right
and down).

We will construct this spectral sequence by reduction to Theorem 4.
First, using Lemma 7, find a suitable Lefschetz fibration p : X — C,
whose real part approximates our Morse function; in particular, there is
a bijective correspondence between the critical points of ¢ and pg, pre-
serving Morse indices and the ordering of the critical values. As before,
we extend the diffeomorphism N = Xy to a symplectic embedding « of
some neighbourhood of N C T*N into X. Choose dual bases {y;}, {yj!.} of
vanishing bases which are compatible with the real structure, and take the
associated Lefschetz thimbles {A ;}, {A’j}, graded according to the standard
convention (2). Let’s start by looking at j < r, which are just the indices cor-
responding to non-real critical values. In that case, A; is disjoint from Xg,
hence also from «(Lg), k(L) if we bring those submanifolds sufficiently
close to the zero-section. As a consequence, the associated columns in (3)
vanish. Now consider the real critical points x; and critical values z;, j > r.
By Lemma 11, there is some constant d; such that

- i(Xr, Ajix)) = dj,
i()N(R, A'l’ Xj) =n— I(A'l, )N(R; Xj) =n— ,LL(XJ) +dl
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Lemma 9, as originally formulated, assumes that these two quantities are
zero. We adjust the statement to take into account the gradings here, and
find that

HF*(k(Lo), Aj) = HF*~% (Lo, T}),

® HF* (A, k(Ly)) = HF**"”‘(X/)*‘JJ(TZ ,Ly).
In view of the correspondence between critical points of pg and ¢, and the
isotopy invariance of Floer cohomology in 7*N (which makes it irrelevant
whether one takes the cotangent fibre at x; or y;_,), the £ page now takes
on the form (6). In fact, the last-mentioned observation also shows that all
columns on this page are isomorphic, up to a shift.

For our first application, take I:o =L, =1L equal, and write

9) H =HF*(T*, L) ® HF*(L, T}),

where x is any point in N. Let a < b be the lowest and highest degrees
in which H is nonzero. Then, the term in (6) with the highest total (row
plus column) degree is EY’ b=m (recall that by convention, the last critical
value is the maximum of pg, hence the unique critical point with Morse
index n). Moreover, because there are no critical points with index n — 1, any
other term has total degree < b — 2, so this highest degree piece necessarily
survives to E,. The lowest degree piece, which is Er+1 4=l survives for

analogous reasons. Now, the spectral sequence converges to HF*(L, L) =
H*(L; K), which is obviously concentrated in degrees 0 < % < n. Hence,
b < n and a — n > 0, which implies equality. Moreover, the bottom and
top classical cohomology groups are one-dimensional, hence we find that
HF*(L, T;‘) is one-dimensional. After shifting the grading of L, we may
assume that it is concentrated in degree 0. Of course, by passing to Euler
characteristics, it follows that projection L — N has degree +1.

Next, apply the same spectral sequence to Ly=Land L, = N (at this
point, we have to assume that N is spin). The top degree piece in the E;
pageis ET""" = HF"(T*, N) QHF(L, T;‘) = K, and this survives for the
same reasons as before. As a consequence, the edge homomorphism is an
isomorphism in degree n. Addendum 5 describes the edge homomorphism
as a Floer-theoretic product in X, and we can apply Addendum 10 to transfer
the product to T*N, where it takes the form HF "(T;‘, N) ® HF? (I:, T;‘) —
HF"(L, N). Here, x can be arbitrary by isotopy invariance. Transferring
this insight back to X, we find that for any j > r, the map

(100 HF"(A;,k(N)) ® HF'(k(L), A ;) —> HF"(k(L), k(N))

is an isomorphism of one-dimensional vector spaces. Equivalently, fixing
anonzero element c in the dual group HF? (k(N ) K(L)) the statement is that
product with ¢ induces isomorphisms HF *(k(L), A; i) = HF*(k(N), A ; )
for all j > r. In this form, the statement also holds for j < r, where



10 K. Fukaya et al.

the groups involved are all zero. Hence, Addendum 6 applies. Recall that
(closed) admissible Lagrangians and their Floer cohomology groups form
a (genuine) category H¥ (X). We may therefore appeal to the Yoneda
lemma, which asserts that in any category C, an object O is determined
up to isomorphism by the functor x — Morc (0O, x). The conclusion of the
Addendum then implies that ¢ is an isomorphism in the category H¥ (X).
In particular, (L) and K(N ) must have isomorphic endomorphism rings,
so H*(L;K) = HF*(k(L), k(L)) = HF*(x(N),k(N)) = H*(N;K). We
already know that the projection L — N has degree +1, hence is injective
on cohomology. By comparing dimensions, it follows that it must be an
isomorphism. Now let Ly, L; be two submanifolds as in the last part of
Theorem 1. We know that in HF (X), both K(Z,j) are isomorphic to k(N),
hence HF*(k(Lo), k(L)) = HF*(k(N), k(N)) = H*(N; K). By definition
of the Floer cochain complex, this implies the desired lower bound on
the number of intersection points. Finally, to get rid of the assumption
dim(N) > 6, one argues by stabilization (taking the product with a sphere
of large dimension).

2. Parallel transport

This section contains the proof of Lemma 2. The point is to show that the
parallel transport vector fields are integrable, which means that orbits do
not escape to infinity in finite time.

2a. Estimates for horizontal vector fields. Take the vector field 9, on the
base C, and take its unique lift to a horizontal vector field on X (away from
the critical points), using the Kihler metric. The outcome can be written as

Vp

11 =——.
(a : IV pl?

Let’s place ourselves at a point at infinity in X, which lies in the closure of
s~1(0) (note that this is equal to the closure of p~!(z), for any z). There are
local coordinates (xi, ..., x,) around that point, and a local trivialization
of O3 (1), with respect to which

(12) SO = X, 1) = 2]

We then have

(13) IVl = 19,00 > |'p'| forl<j<k and
]
k
"
(14) e < S
ol

j=1
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Here, the gradient and its norm are formed with respect to the given Kéhler
metric. The notation = means that inequality holds up to some multiplicative
constant (mainly, this involves comparing the metric with the standard one).
In our local trivialization, the hermitian metric on Oz (1) is || - 1> =e|- |2
for some smooth function o, hence h = — log ||t||?> = — log |¢|> — 0. Differ-
entiate this in direction of (11):

[(Vp, Va)| | 2|7 -[(VL, Vp)|
IVpll2 IVpI - |12
1 Vel

~AVel IVl -l

In view of (13), the first term is bounded above by const/|p| near x = 0.
A combination of (13) and (14) yields the same bound on the second term.

&.h] <
(15)

2b. Application. Consider parallel transport along a horizontal segment
[a, b] C C, which avoids all critical values. This is defined by integrating &
over p~!([a, b]). Assume temporarily that O ¢ [a, b], so that we get a bound
on 1/|p|. Then, after covering the closure of s~'(0) with finitely many
neighbourhoods of the kind considered above, it follows that |£.4 ] is bounded
on the whole of p~!([a, b]). Since & is an exhausting function, that gives
an a priori bound on the growth of trajectories, prohibiting their escape to
infinity. To get rid of the assumption 0 ¢ [a, b], one argues as follows: if p
is a Lefschetz fibration, then so is p + ¢ for any constant ¢. Moreover, the
parallel transport maps remain the same. In other words, by changing the
way in which we choose local coordinates, the 1/|p| bound can be replaced
by a 1/|p + c| one. It then suffices to choose ¢ ¢ [a, b].

Finally, parallel transport along an arbitrary path g is defined by taking
the horizontal lifts of the tangent vectors d8/dr. Since these are all complex
multiples of (11), the same argument as before works.

3. From Morse functions to Lefschetz fibrations

This section contains the proof of Lemma 7. This is a standard exercise in
real algebraic geometry, using the Nash—Tognoli approximation theorem,
resolution of singularities, and Bertini-type transversality results.

3a. Real algebraic approximation. Let N be a closed n-dimensional
manifold, smoothly embedded into R?*'*!. The Nash-Tognoli theorem,
in the form given in [11, Theorem 7], says that any such N can be C"-
approximated by a smooth real algebraic variety Ug, for every v (v = 2 will
be enough for us). Let U be the complexification of Ugr, which means the
affine variety in C>'*! defined by the same equation as Ug. In general, this
complexification will be singular, but one can throw out the singularities by
using the following trick [13]. Sing(U) C U is itself an algebraic subvariety
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defined over R, which means the zero-set of real polynomials fi, ..., f..
Set F = f{+---+ f?, and consider

(16) {(u,v) eC*"*' x C : uelU, Fuw=1).

This is isomorphic to U \ Sing(U). Since Uy is smooth, we have Sing(U) N
Ur = @, which means that the real part of (16) is isomorphic to Ug (in both
cases, the isomorphism is given by projection to C>**1),

From now on, we assume that N is orientable. Take an n-form Bg on
R>"*! (not closed, of course) whose restriction to N is a volume form. We
may choose S to be real algebraic; this is just the Stone—Weierstrass theo-
rem on polynomial approximation. In our previous construction, we take Uy
to be sufficiently close to N, and then Sg|Ug will again be a volume form.
Take the complexification B, and pull it back to (16) by projection. This
may not necessarily be a complex volume form, but the set where it degen-
erates (becomes zero) is an algebraic subvariety defined over R, and disjoint

from the real locus. We choose real defining polynomials g1, ..., g for this
subvariety, and apply the same trick as before, which means passing to
(17)

{(u, v, w) eC**'xCxC : uelU, Fuv=1, Gu,vw =1},

where G = g% + --- + g2. The outcome is that we have a smooth affine
algebraic variety defined over R, whose real part is diffeomorphic to N,
which comes equipped with a holomorphic volume form.

3b. Resolution of singularities at infinity. The projective closure of (17)
is not in general well-behaved (it can have arbitrarily bad singularities). To
resolve these, we appeal to Hironaka’s theorem [10]. The precise statement
is as follows: for some g > 2n + 3, there is an affine algebraic variety
X c C4, such that:

e X is defined over R;

e projection to the first 2n + 3 coordinates maps X isomorphically to (17);

e the projective closure X C CP? is smooth, and the divisor at infinity
Y = X N CPY~! has at most normal crossing singularities.

We equip X with the line bundle O (1), with its standard metric, and the
section ¢ defining the divisor at infinity. Finally, we take the previously
constructed holomorphic volume form, and pull it back to a form »n on X,
then extend that to a rational form on X. This data satisfies all the conditions
from Sects. 1a and 1d, as far as the geometry of the total space X itself is
concerned. Next, we will address the construction of the real Lefschetz
pencil p.

3c. Constructing the Lefschetz fibration. Suppose that our N comes with
a choice of Morse function, which has at most one critical point in each level
set. At the outset of the construction, we may assume that the embedding
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N C R?"*! has been chosen in such a way that the first coordinate u; is
C2-close to the given Morse function (one can even arrange that the two are
equal, but we won’t need this). By choosing Uy sufficiently close to N and
going through the construction, one gets the following: there is a section s
of O3(1), which is defined over R, such that the restriction of p = s/ to
the real part Xg = N is C2-close to the original Morse function.

By Bertini’s theorem, the complex hyperplanes which intersect X non-
transversally form a proper subvariety of the dual projective space CP7~!.
The real locus of that is a proper subvariety of RPY~! hence its complement
is open and dense. This means that by a small perturbation of s inside the
space of sections defined over R, we may achieve that s~!(0) is smooth.
Similarly, a generic choice ensures that s intersects all the strata of Y
transversally; that the critical points of p are nondegenerate; and that at
most one such point lies in each fibre. In all those cases, it is a classical
fact that the set of complex parameter values (choices of s) where things
go wrong is a constructible subset of positive codimension, and one applies
the same argument as before to obtain the desired result for real s.

4. Grading issues

In this section, we review in a little more detail the standard machinery
of graded Lagrangian submanifolds, and the resulting gradings on Floer
cohomology groups. Most of our argument, including Lemma 3, uses this
machinery only in straightforward ways. The exception is Lemma 11, for
which we will provide a proof based on the index formula for holomorphic
triangles (more pedestrian proofs, by explicit computation of all the indices
involved, are also possible).

4a. Generalities. Let M be any symplectic manifold, and Gr=Gry — M
the bundle of Lagrangian Grassmannians associated to the symplectic vector
bundle TM. Suppose that in addition, we have an infinite cyclic covering

(18) Gr —s Gr,

which fibrewise is isomorphic to the universal covering of each Grassman-
nian. Every Lagrangian submanifold L C M comes with a tautological
section of Gr|L, given by x +— TL,. One defines a grading of L to be a lift
of this to Gr, which means a choice of preimage fl:x € Gi»x for any x,
varying continuously. A graded Lagrangian submanifold L is a Lagrangian
submanifold equipped with a choice of grading. It is then obvious that
the Maslov class m; € H'(L), defined as the pullback of the element of
H'(Gr) classifying (18) by the tautological section, is the obstruction to the
existence of a grading.

One case where this formalism applies in a straightforward way is that
of cotangent bundles 7*N. Take the tautological section associated to the



14 K. Fukaya et al.

zero-section N C T*N, and extend that over the whole of T7*N in an
arbitrary way. Then, take Gry+y to be the fibrewise universal cover with
base points given by that section. As a direct consequence of the definition,
the zero-section N comes with a trivial grading (if one thinks of points
in the universal cover as equivalence classes of paths, this is given for
each x by the constant path at TN, ). In a more general context, this example
occurs as follows: suppose that M is any symplectic manifold equipped
with a covering (18), and N a graded Lagrangian submanifold. Enlarge the
inclusion N < M to a symplectic embedding of a tubular neighbourhood
of the zero-section inside 7*N. On this neighbourhood, there is a preferred
isomorphism between the pullback of Gry, and the previously considered
covering Grr«y, given by the grading of N C M. In less precise but more
practical terminology, there is a unique coherent way of mapping graded
Lagrangian submanifolds in 7*N to ones in M, with the property that the
zero-section (with its trivial grading) gets mapped to N.
Algebro-geometrically, the natural source of coverings (18) is as follows.
Let X be a Kihler manifold with a holomorphic volume form #. This
induces a squared phase function o : Gry — S', defined by a(A) =
NI A=A /In(vi A~ - Av,)|?, where {v;} is any basis of the Lagrangian
subspace A C TX,. Taking (18) to be the pullback of R — S! by «, one
immediately sees that: for any Lagrangian submanifold L, the class m is
represented by the function oy : L — S', a7 (x) = «(TL,); and a grading
of L is the same as a real-valued phase function &; : L — R satisfying
exp(2mid;) = . In our specific application, we have a real involution
(which reverses the Kéhler form and almost complex structure, and maps n
to 7). In that case, n(v; A --- Av,) € R for any basis {v;} of (TXg),, hence
ax, = 1. One therefore has a canonical grading of the real locus, &y, = 0.

4b. Maslov indices. The main role of gradings is to allow us to fix the
Z-grading of the Floer cochain complex. This is done through the absolute
Maslov index, which was already mentioned in (1) above. We refer to [18]
for a general definition. For our applications, only one case is really im-
portant. Take 7*N with its standard covering Gr. Suppose that Ly = N is
the zero-section, and L; = graph(df) the graph of some exact one-form df.
There is an obvious isotopy from L to L, and we assume that gradings
have been chosen in a way that is compatible with this isotopy. Then, for
any nondegenerate critical point of f, the absolute Maslov index equals the
Morse index:

(19) i(x) = p(x).

We now prove Lemma 3, which holds for any Lefschetz fibration, namely
that (2) is compatible with the isotopy A, =~ A! . Pick local co-ordinates
near the critical point for which p(x) = x} + -+ + x2. We first move the

relevant vanishing paths so that y,,(r) = z, + exp(—ie)r and yn!1 r) =
Zm + exp(ie)r near r = 0, for some small € > 0. It is well-known, see for
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instance [20, Lemma 1.7], that one can deform the Kihler structure locally
to make it standard in any given complex coordinate system, so there are
local coordinates in which the vanishing cycles are A, = exp(—ie/2)R",
Ain = exp(ie/2)R". Rotate linearly into Darboux coordinates (p, ¢g), with
symplectic form dp A dg, so that Ain ={p =0} and A,, = {p = tan(e)q}.
The isotopy A,, =~ Al is locally given by deforming € to zero, and one
can apply (19) to show that if one chooses gradings compatibly with this
isotopy, the Maslov index is indeed zero. By contrast, in the analogous local
model describing A; = {p = —tan(€)gq} as a graph over A!l = {p =0},
the generating function has a maximum (rather than a minimum), which
gives a discrepancy between (19) and (2).

4c. An index computation. Next, let Lo, L1, L, be three graded La-
grangian submanifolds, intersecting at the same point x, with pairwise
transverse intersections. Once one has chosen a compatible almost complex
structure, there is a trivial holomorphic triangle # with boundary condi-
tions (anticlockwise ordered) Ly, L1, L,, namely the constant u = x. Let
D, be the linearized operator at . Equivalently, this is the d-operator on
the trivial vector bundle with fibre TM, over a three-punctured disc, with
boundary values in TL¢ , TL; , TL, .. As a special case of the general
index formula for such operators (one reference with compatible termi-
nology is [22, Proposition 11.13], but there are many others), one has the
following equality: for any choice of gradings,

(20)  index (D,) = i(Lo, Ly; x) — i(Lo, L1; x) —i(Ly, Ly; x).

The simplest case is that of three lines in the plane. Thinking of this as
C = T*R, we can compute absolute Maslov indices (for suitable choices
of gradings) from (19), and then apply (20). The outcome is that the
index of D, is either 0 or —1, depending on the ordering of the lines
(Fig. 2).

We now turn to Lemma 11. First consider a simplified local model,
namely X = C" with the standard symplectic structure, the constant com-
plex volume form n = dx; A --- A dx,, and the standard real structure

Lo Lo

Ly Lo Lo Ly
Case 1: index D,, = —1 Case 2: index D, =0

Fig. 2
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(complex conjugation). Moreover, our p should be a quadratic function
21) p)=—xi—- —x, +x, + X,

and our vanishing paths are straight lines y(r) = —ir, y'(r) = ir. The
associated Lefschetz thimbles are A = +/iR* x IR A = /—iRM x
ViR" ", From (20) we know that the right hand side of (5) is the index
of the linearized operator D, for the constant holomorphic triangle u = 0
with boundary conditions (A', Xg, A). Clearly, this operator splits into the
direct sum of n scalar ones, of which the first u correspond to the left-hand
picture in Fig. 2, and the remaining ones to the right-hand one. Hence, its
index is —u by our previous computation.

To derive the general case from this, note first that by the real-analytic
version of the Morse lemma, there are always coordinates compatible with
the real structure in which, near a critical point x of pr of Morse index pu,
p has the form (21). We apply a local deformation of the Kéhler form as
before; in our case, this can be done compatibly with the real structure, so
that Xr remains Lagrangian. Obviously, such a deformation also affects A
and A', which change by a Lagrangian isotopy. However, throughout this
isotopy they do stay transverse to each other, as well as to X, so the relevant
indices remain the same.

5. A shrinking argument

We will now prove the remaining results from Sect. le (everything other
than Lemma 11). The idea is to arrange that the relevant holomorphic curves
have very small energy, and therefore cannot escape a neighbourhood of the
real locus Xp.

S5a. The Monotonicity lemma. Let (M, w, J) be any compact symplectic
manifold, equipped with a compatible almost complex structure,and L C M
a Lagrangian submanifold. The Monotonicity Lemma, in its relative form,
says:

Lemma 12. There are constants p > 0, y > 0 such that the following holds.
Let B = B(r;y) C M be a closed ball (in the associated Riemannian
metric) of radius 0 < r < p around a point y. Let ¥ be a compact
connected Riemann surface with corners, and u : ¥ — B a non-constant
J-holomorphic curve such that y € u(X), u(0¥) C L U dB. Then

(22) E(u) = f o > yre.
b))

The case where L = J is the most familiar one, see for instance [1], but
the relative version is proved in the same way (by looking at Darboux charts
and doing integration by parts). Now take a closed manifold N, fix a Rie-
mannian metric on it, and denote by V = T, N the subspace of cotangent
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vectors of length less than some constant A (similarly, we write 77, N for
the set of vectors of length > X). This comes with a canonical symplectic
form wy = dby and (due to the metric) almost complex structure Jy. Fix
some point x € N, and let Ay = TZ, =~ C V be the piece of its cotangent
fibre which is contained in V.

Lemma 13. For fixed X\, there is a constant € > 0 with the following
property. Let ¥ be a compact connected Riemann surface with corners, and
u: X — VaJy-holomorphic map with

(23) u(@%) C Ay UTZ 3 UTL, 5.

Suppose that the image u(X) contains some cotangent vector of length
< A/3, and another one of length > 2\ /3. Then E(u) > e.

This can be derived directly from the previous result, as follows. By
connectedness, we know that u#(X) must contain a y with ||y| = A/2.
There is some r depending only on the metric, such that the ball B(r; y) is
disjoint from 77, 5 and T, 5. By making r smaller if necessary, we may
assume that it is less than the constant p from Lemma 12. We may also find
some r/2 < r’ < r, such that u is transverse to the boundary of B(r'; y).
Setting ' = u~'(B(’; y)) and applying (22) to u’ = u|%’, we find that
E(u) > E) > y(r')? = yr’/d=e.

5b. Energy estimates. We now turn to our application. Supposing that A
is sufficiently small, we have a symplectic embedding x : V —> X such
that x| N is the given identification of N with Xg. Moreover, this embedding
is exact, which means that «*6 differs from the canonical one-form 6y by
an exact one-form (this is obvious, because both «*6 and 6y vanish on the
zero-section). After making a suitable change

(24) 0 — 0+ dH,

and maybe shrinking A a little, we may assume that *6 = 0y.. Such a change
is unproblematic, because our only use for 6 is in defining the class of exact
Lagrangian submanifolds, which is unaffected by (24). Similarly, we can
find a compatible almost complex structure J on X which agrees with the
given complex structure outside a compact subset, and such that «*J = Jy.

Let (Lo, L) be two Lagrangian submanifolds of V which are closed
and exact, and which intersect transversally. Exactness means that there are
functions Ky, K such that dK; = 6y|L ;. Recall that the action functional
at an intersection point x € Ly N L is defined to be

(25) A(X) = Ay, (X) = Ki(x) — Ko(x).

In our case, this agrees with the action functional for (L), (L) viewed
as Lagrangian submanifolds of X. In particular, if # : R x [0; 1] — X is any
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J-holomorphic strip with u(R x {j}) C «(L;) and limits limy_, 1 u(s, -)
= x4, then

(26) E@) = A(x_) — A(x,).

Now rescale our Lagrangian submanifolds radially in the cotangent bundle,
replacing them by pL ; for some 0 < p < 1. Because 0y is homogeneous in
fibre direction, the associated functions change to pK ;, which by (25) means
that the action is A,z 1, (px) = pA(x). Using (26) we see that there is
a constant C such that E(u) < Cp for any finite energy holomorphic strip u
with boundary in (k(pLg), k(pL1)). By choosing p sufficiently small, one
can arrange that (oLo, pL,) are contained in T, /3N , and that Cp 1is less
than the constant € from Lemma (13) (for this particular application, the
cotangent fibre Ay is irrelevant). It follows that no such u canleave TZ,, ;N.
On the other hand, the Floer cohomology of (oLg, pL1) in T7%,, /3N is the
same as that in the entire cotangent bundle, by the maximum principle.
This essentially completes the proof of Lemma 8. A little caution must be
observed, since Floer cohomology is usually computed by using pseudo-
holomorphic strips for a generic z-dependent perturbation of the almost
complex structure. However, one can make this perturbation small and
supported inside 7%, /3N, and then the pseudo-holomorphic strips must still
remain inside 7%, s N, by Gromov compactness.

Sc. The Lefschetz thimble case. Let A C X be a Lefschetz thimble for
a path chosen as in Lemma 9. In particular, A intersects Xg in a single
point x, and the intersection is transverse there. Let Ay C V be the cotangent
fibre at the same point. One can find local Darboux coordinates (p, g) for X
centered at x, in which

Q7)) Xe={¢=0}, «(Ay)={p=0}, A={p=dfig)}

for some function f which has a critical point at ¢ = 0. By multiplying f
with a smooth cutoff function vanishing near ¢ = 0, one finds another
Lagrangian submanifold A" C X isotopic to A, such that A’ N X = {x}
and A" = k(Ay) near x. After making A smaller if necessary, we may
assume that in fact, k “'(A) = Ay.

Now apply the previous argument to (k(Lg), A"), where Ly C V is
closed and exact. Since Oy |Ay = 0, we may choose a function K with
dK = 6|A’ in such a way that it vanishes on x(Ay). In that case, a linear
rescaling of Ly still results in a linear change of the actions of all intersection
points, hence in a linear decrease of the energy. One applies Lemma 13 as
before, to argue that all holomorphic strips must remain inside V, and ob-
tains Lemma 9. Addendum 10 is the same argument applied to holomorphic
triangles; this works because the energy of a holomorphic triangle is deter-
mined by the actions of its endpoints, in a way which is entirely parallel
to (26).
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6. The spectral sequence

This section concerns Theorem 4. This is essentially the same as [22, Corol-
lary 18.27], but a review still seems appropriate, if only because we need
to derive some additional properties of the spectral sequence. The idea
originally arose in algebraic geometry, where the prototype is Beilinson’s
spectral sequence for sheaves on projective space. This was subsequently
generalized to triangulated categories admitting full exceptional collections,
see [8, Sect. 2.7.3]. We follow this partially, but combine it with a more direct
approach in terms of A,,-modules. Having derived the spectral sequence in
this purely algebraic framework, we then quote, without proof, the geomet-
ric results from [22, Chapter 3] which explain how this applies to Lefschetz
fibrations. An informal overview of the geometric side of the story is also
given in [6].

6a. A-modules. Let A be a directed A, -category, linear over K. By
definition (see [19] or [22, Sect. Sm]) this is a strictly unital A.-category,

with a finite ordered set of objects Ob A = {Y1, ..., Y, }, such that
finite-dimensional over K i< J,

(28) hom4(Y;, Y;) = { Ke; (e; is the identity element) i = j,
0 i > j.

A (strictly unital, finite-dimensional, right) #-module M consists of
a collection of finite-dimensional graded K-vector spaces M(Y;), together
with maps

(29)

!
MY j) ® homy (Y, . Yj,) ® - -- @ homa (Yo, Yj,) —> M(Yy)[1 —d]
for all d > 0. Strict unitality means that Mfu(', er) = id, and that all the

higher order maps M_‘fjl, d > 2, vanish if one of the last d entries is an
identity morphism. The A,,-module equations are

; j+1 d—j+1
0= (=plaltt il i (Wb mag, g, an)

J
(30) a ctlaj —i
+ Z(_l)ll Ll +lajll ij% +2(m, Ads s Ajyitts
b Mi{,(ajJri»---,aj+l)’---aa]),
where |la|| = deg(a) — 1 is the reduced degree. A,,-modules of this kind

form a differential graded category C = mod(+) (note that here, differential
graded categories are considered as a special class of A, -categories, with
the resulting notation and sign conventions). An element ¢ € hom’é (M, N)
consists of a collection of maps

(31)
¢d+]
eM(de) ® hom,A,(de_,, de) R---Q homA(on, Yj]) —> N(YJU)[k — d],
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with the property that ¢?*! vanishes if one of the last d entries is an identity
morphism (this requirement, together with directedness, ensures that the
home spaces are always finite-dimensional). The differential is

(32)
pe @ m, aq, ..., a)

i j+1( d—j+1
= Y (=Dlnltetlealdnt JE T g ag, L ag), )
J

. i+1 d—j+1
+ Y (=Dl ml g (ST G ag, L ag), - an)
J

ajyrl+-+lagll+m| g d—i+2
4 E (_l)ll jll llagll+] |¢ (m’ad’_‘_’ajﬁ“’

b MfA,(aj-‘rl""'saj-‘rl),--',al)’

|m| = deg(m) being the ordinary unreduced degree; and the composition is

(33)
P2, Y . ag. . ar)

) it1( . d—i+1
J

Let C = H°(C) be the underlying cohomological category (the chain
homotopy category of A, -modules). Let f € Hom¢ (M, N) be amorphism
in that category, and ¢ a cocycle representing it. The induced map on
u!'-cohomology,

(34)  H"): P H (MY, i) — D H (N (X))
k k

depends only on f. We say that f is a quasi-isomorphism if H(¢') is an
isomorphism. An important property of A,-modules is that every quasi-
isomorphism can be inverted in C [12, Sect. 4].

Submodules and quotient modules of A,,-modules are defined in the
obvious way. Besides that, we will use a few other constructions. First of
all, given M € ObC and a finite-dimensional chain complex (Z, z) of
K-vector spaces, one can form the tensor product Z ® M [22, Sect. 3c].
This is defined by setting (Z ® M)(Y;) = Z ® M(Y;), with

(35) Wheu@®m) = (=D"I8,2) @ m + 2 ® ul(m),
,u?é,ldw(z @m,aq,...,a) =z@uim,aq4,...,a1) ford>0.

Note that Z ® M is quasi-isomorphic to H*(Z, §z) ® M, which in turn
is a direct sum of shifted copies of M (indexed by generators of H(Z),
with shifts given by the degrees of those generators). Next, given two A,-
modules and a degree zero cocycle ¢ € hom%(M, N), ,ué(q&) = 0, we can
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form its mapping cone @ = Cone(¢), whichis @(Y;) = M(Y;))[1]1®N (Y)),
with module structure

(36)
MZ@H(W @®n,aq,...,a1)

= I’Lj,—{i_l(m’ad$ oo ,Cll) 52 (Mi\j_l(n’ad’ oo ,Cll) +¢d+l(m’ad’ .. .,Cl])).

One can prove that the isomorphism class of @ in C depends only on
f = [¢] € Homc(M, N). Finally, there is a combination of the two last-
mentioned operations which will be useful for our purposes. Namely, given
M and N, there is a canonical evaluation map € € hom% (home (M, N) ®
M, N), given by

(37) eNp@m,aq,...,a) =" (m,aq, ..., a).

We denote its cone by T (N) = Cone(e), and call this process (alge-
braically) twisting N by M.

C is a triangulated A, -category, with the standard exact triangles in-
volving mapping cones [22, Sect. 3h]. Hence, C itself is a triangulated
category in the classical sense. In particular, the algebraic twist sits in an
exact triangle

(38) Homi (M, N) @ M ——= N — Ty(N) .

\/

[1]

Here and later on, we write HomiC(M, N) for the space of degree i morph-
isms Homc (M, Ni]), and Hom{.(M, N') for the direct sum of those spaces
over all i € Z. As a second class of examples, any short exact sequence of
modules extends to an exact triangle in C. This is an analogue of the well-
known corresponding property for derived categories of abelian categories,
and holds in this context because of the invertibility of quasi-isomorphisms.

6b. Simple modules and the canonical filtration. The smallest nontrivial
objects in € are the simple modules §;, whose underlying vector spaces are

K (located in degree 0) i = j,
0 i #J.
In that case, the module structure (29) is uniquely determined. Now con-

sider an arbitrary M € Ob C. Because of directedness, this comes with
a canonical decreasing filtration, given by the submodules

(39) $;(Y) = {

MT) i=m+1-—]

4 <m+1—j Yi —
“0) M (¥ {O otherwise.

The graded pieces are M=""1"7 /M="") = M(Y,41-;) ® Sp+1-;. In par-
ticular, one gets the following characterization of simple modules.
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Lemma 14. Let M be an A-module such that all the complexes
(M(Y;), M,IM) are acyclic except one (say for i = j), whose cohomology is
one-dimensional and placed in degree zero. Then M = §; in C.

Proof. In the canonical filtration, all the graded pieces except one are
acyclic, hence isomorphic to zero. From a standard exact triangle argu-
ment, it follows that M is isomorphic to M=//M=/~!, which in turn is
isomorphic to H(M(Y;)) ® 4;. |

By definition, home(4;, 4;) = 0 whenever i < j, and home(8;, 8;)
contains only multiples of the identity map. Passing to the cohomological
category C, it follows that (4,,, . . ., 8;) is an exceptional collection. The ex-
istence of canonical filtrations shows that this collection is full, which means
that the &; generate C as a triangulated category (see [7] for definitions and
further discussion).

Lemma 15. Suppose that Hom{-(M, 8;) is zero for all j. Then M itself is
isomorphic to the zero object in C.

Proof. This is actually a general property of full exceptional collections.
Alternatively, one can argue as follows. Suppose that M is nonzero, and take
the largest j such that M (Y;) is not acyclic. Looking at the canonical filtra-
tion, it follows that M is quasi-isomorphic to M=/. Using the assumption,
one finds that

41) 0= Homi(M,8;) = Homi (M=, 8;) = H*(M(Y))"),
which is a contradiction. O

Lemma 16. Letc € Homc (M, My) be a morphism such that composition
with ¢ yields an isomorphism Hom¢(My, 8;) — Hom{ (M, §;) for all j.
Then c itself is an isomorphism.

Proof. Choose a cochain representative of ¢, and let .M be its mapping cone.
From the standard exact triangle involving that cone, one gets a long exact
sequence

42) .-« Hom¢ (M, 8;) — Hom{ (M, 8;) — Hom (Mo, 8;) - - -

where the second — is composition with c. In view of that, our assumption
implies that Homg. (M, §;) = 0 for all j, and then by Lemma 15 M itself
is zero. Again appealing to standard facts about mapping cones, it follows
that ¢ is an isomorphism. m|

6¢. Projective modules and the Yoneda embedding. Another basic class
of objects in C are the elementary projective modules 5, given by

(43) Pre(Y;) = hom (Y}, Yy)
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and Mjfk“l = ,ui“. For any /M there is a canonical quasi-isomorphism ' :

M(Yy) — home (P, M), given by
(44) Flm) ™ a, a4, ..., a1,a) = pi2m, a, a4, ..., a)).

It is elementary that this is a chain homomorphism. For a proof that it is
a quasi-isomorphism, see [5, §7] or [22, Sect. 2g]. An explicit quasi-inverse
takes ¢ € home (P, M) to ¢'(ex) € M(Y}). Specializing to M = 5, one
has quasi-isomorphisms hom 4 (Yy, Y;) ~ home (P, P;) for all k, I. This
observation can be sharpened as follows. There is a canonical A..-functor
F . A — C (the Yoneda embedding), sending Y to &, which extends the
previous F !, hence is a quasi-equivalence onto its image [5, §9].

It follows from the previous discussion that (), ..., $,) is an excep-
tional collection in the cohomological category C. As in the case of simple
modaules, this collection is full. To prove that, take some M with the property
that M (Y;) is acyclic for j > k, and consider the twisted object N = Tp, M.
For j > k we have £ (Y;) = 0, hence N (Y;) = M(Y;) remains acyclic.
Moreover, N (Y;) is the mapping cone (in the sense of chain complexes)
of a map home (P, M) @ Pr(Yy) = home (P, M) — M(Y};), which is in
fact precisely the inverse quasi-isomorphism described above. The outcome
is that N () is acyclic for j > k — 1. By repeating this process, one writes
an arbitrary module as an iterated mapping cone involving only shifted
copies of the & as building blocks. From this fact and the Yoneda embed-
ding, it then follows that C is quasi-equivalent to the derived A, -category
D(A) [22, Sect. 5n]. In particular, descending to cohomology, we have an
equivalence of triangulated categories

(45) C = D(A).

Finally, we need to discuss briefly the relation between simple and pro-
jective modules. This will be based on the theory of mutations in triangulated
categories [7], which defines an action of the braid group Br,, on the set
of full exceptional collections (up to isomorphism) in the category C. The
standard generators o;, 1 < i < m, act by elementary mutations

(46)
(Mi, .o, My) = (M, ..., M1, T, (Mig1), M, Migo, ..., My).

Suppose that we have two collections (¢M’1, R eM,’n) and (M,,, ..., M),
of which the second is obtained from the first one through the action of the
element A'Y? = 0,,_1(0_20m_1)--- (0102 --0pn_1) € Br,. Then these
collections are duals [22, Sect. 5k] (for earlier work see [8, Sect. 2.6] or
[2, Sect. 7]), in the sense that

K (located in degree 0) j =k,

@47 Homg(My, M;) = {0 otherwise.

In particular, if M,L = &P, is the projective collection, (47) determines
H*(M;(Yy)), which in view of Lemma 14 means that M ; = 4 is isomorphic
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to the collection consisting of simple modules (there is also a direct, but
more computational, proof of this [22, Sect. 50]).

6d. The Beilinson spectral sequence. Given two objects (Mg, M) of C,
the decreasing filtration (40) of M = M, induces one of home (Mg, M),
which then gives rise to a spectral sequence converging to Homg. (Mg, My).

Using the quasi-isomorphism !, we write the starting page of this spectral
sequence as
E{k — HOmé+k(Mo, lem-‘rl—j/lem—j)
(48) = (H* (M1 (Yr1-7) @ Homg (Mo, 81+
= (Homg(Py1-j» My) @ Homi-(Mo, Sui1— ).

Lemma 17. If one identifies P, =48, the right-sided edge map of (48) turns
into the product Hom¢. (P, My) @ Homg (Mo, P1) — Hom (Mo, My).

Proof. By definition, the edge homomorphism is induced by the chain map

home (P, My) @ home (Mo, $1)
= home (Mo, home (P, M1) ® 81)
= home (Mo, M (Y1) ® 1)

= hom@(Mo, :lel) —> home (Mo, My),

(49)

where the last step comes from the inclusion lel — M. Concretely,
an element v € home (P, M) is determined by its first order com-
ponent, which is a single element ' € M;(Y}), and this is precisely
the identification home (P, M) = M (Y7) occurring in (49). In con-
trast, a ¢ € home (Mo, 8;) consists of a whole series of maps ¢?*! :
Mo(Y;) ®---@homy(Yj),Y;) — K, forall jy=1<--- < j;. The map
(49) takes ¥ ® ¢ to the morphism 1 whose components are

1 d+1 F

50)  nlGm.ay.....a) = {:)ﬁ (g™ (m,aq,...,a1) if jo —.1,
otherwise.

By comparing this with the definition, one sees that after identifying &) = 4,

this is indeed just the composition map % (to make the signs agree, note

that for degree reasons, ¢“*!(m, ay, . .., a;) can only be nonzero if ||a;|| +

~+llagll + Im| = 0). O

6e. The Fukaya category. Take a Lefschetz fibration p : X — R, where
the total space is equipped with a complex volume form 5. [22, Sect. 18]
introduces the Fukaya category & (p). Objects of this A.,-category are all
closed admissible Lagrangian submanifolds L C X, as well as the Lefschetz
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thimbles A C X for all vanishing paths y such that for » > 0, y'(r) = —

(of course, all of them have to be equipped with gradings). Take two dual
bases of vanishing paths, and then bend the ¥, clockwise at infinity until
they satisfy the restriction we have just mentioned, while still remaining
to the right of the y; (Fig. 3). Then, the associated Lefschetz thimbles A ;
and A} all become objects of F (p). Because of isotopy invariance, bending
the y; leaves the Floer cohomology groups HF*(A}, L) and HF* (A}, A)
unchanged (which is why we choose to keep the notation). These groups,
as well as HF™ (Zo, Zl) and HF*(L, Aj), are the morphisms between the
corresponding objects in H(¥ (p)). This is obvious from the definition in
some cases, and proved in [22, Remark 18.12] in the remaining ones.

Itis anontrivial fact [22, Propositions 18.17 and 18.23] that (Ain,. .. ,A!l)
is a full exceptional collection in the derived category D(¥ (p)). In particu-
lar, if A C F (p) is the directed A.,-subcategory associated to this collec-
tion, there is an A -functor A — ¥ (p) sending Y to A ma1—k» and this
induces an equivalence of triangulated categories D(4) = D(F (p)) [22,
Theorem 18.24]. In view of (45) we therefore have

(51) D(F (p)=C

where as usual C = H°(C) is the homotopy category of As-modules
over +. By construction, this equivalence sends each A to the elementary
projective module #,,,;_;. Furthermore, [22, Proposmon 18.23] shows
that Hurwitz moves on bases of vanishing paths give rise to mutations of
exceptional collections. It is an easy geometric exercise to show that the
basis (1, ..., ¥m) is obtained from (y,,, ..., y;) by applying the Hurwitz
move which corresponds to A'/?> € Br,,. From this and the discussion in

Fig. 3
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Sect. 6c, it follows that the equivalence (51) sends A j t0 81— (strictly
speaking, Hurwitz moves do not take gradings of Lefschetz thimbles into
account, but it follows from (2) that the grading of A j 1s indeed the correct
one). In particular, by applying (48) to the image of two closed admissible
Lagrangian submanifolds under (51), one immediately obtains the spectral
sequence as stated in Theorem 4. Lemma 16 turns into Addendum 6, and
Lemma 17 into Addendum 5. In the latter case, the isotopy between A,,
and Ain gives rise to an isomorphism between objects in D(F (p)), hence
also their images in C. It is not a priori clear that this agrees with the purely
algebraic identification 4; = #; used in Lemma 17. However, the two can
only differ by an element of K* = Aut-($;), which is why we pick up
a slight ambiguity when translating the result into geometric terms (closer
inspection would show that the two isomorphisms actually agree, but we do
not need this).

Remark 18. For the benefit of readers wishing to compare the spectral
sequence derived here with the formulation in [22, Corollary 18.27], we list
the differences regarding notation and conventions. First of all, the notion of
(exact) Lefschetz fibration in [22, Sect. 15d] does not agree exactly with the
one here. However, our Lefschetz fibrations can be brought into the form
required by [22] through some easy modifications (changing the connection
so that parallel transport maps become trivial at infinity, and then restricting
to a suitable large compact subset of X; compare the discussion in [22,
Sect. 19d]). Next, the notation for dual bases of vanishing cycles has been
swapped. Finally, our ordering of the vanishing paths differs from the one
in [22, Fig. 18.19].
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