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In [1] P. Cohn suggested the construction of a localization of a ring with respect
to a class of square matrices. Let us briefly recall the definitions.

Let A be a ring and I be a set of square matrices over A. A ring homomorphism
f:A—8 (S being a ring) is said to be Z-inverting if every matrix in ¥ is mapped by
f to an invertible matrix in 8. A ring homomorphism a:A— A; is the universal 2-
inverting homomorphism if it is E-inverting and any Z-inverting ring homomorphism
f:A— S factors uniquely by «, i.e. there is a unique ring homomorphism y:A;—> 8
such that the accompanying triangle

A
7N
A,;T)S

commutes. It is easy to see that the universal Z-inverting homomorphism o:A - A;
exists and is unique up to isomorphism. The ring Ay is also called Cohn’s localization
of A with respect to Z.

This localization construction turned out to be extremely useful in the algebraic
topology of manifolds. It was shown in [8, 9] that I'-groups (homology surgery
obstruction groups of Cappell and Shaneson) can be viewed as L-groups (Wall
surgery obstruction groups) of the localization (in the sense of Cohn) of the group
ring.

The aim of the present paper is to compute explicitly the Cohn localization of the
free group ring A with respect to the class £ of square matrices which become
invertible after applying the augmentation e€:A - k. We show in this paper that A;
is isomorphic to a ring of ‘rational functions’ in non-commuting variables. These
non-commutative rational functions are represented by their Taylor power series
having some ‘periodicity’ properties. They were discovered in the theory of formal
languages ; we refer to [6] for a more comprehensive treatment and applications. In
the subsequent sections we will describe these rational functions as solutions of some
systems of linear equations [6] and will find a relation between rational functions and
link modules (homology modules associated to links of codimension two).

In view of [8, 9] and of the theory of Cappell and Shaneson[3], our computation
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of Ay is relevant to I'y,(A — k) which is essentially isomorphic to the boundary link
concordance group.

Our construction and proofs are purely algebraic. Nevertheless some (algebraic)
notions and results which appeared first in link theory [4], naturally come into play.

1. Rational functions

In this section we will describe a non-commutative generalization of the notion of
rational function. Our approach is a little different from [6]; the results of the next
section show that we obtain the same notion.

1-1. Fix an integer 4 > 0 and a principal ideal domain k. Let F, denote the free
group on u generators ¢, ...,¢, and let A = k[F,] be the group ring.

Consider also the ring I' = k{<z, ...,z,>) of formal power series in non-commuting
variables z,, ...,z,. The ring A is embedded in I' via the Magnus embedding

L 14x,,
-+t —ad+. ...

It is convenient to use the following conventions on multiple indices. A multi-index

« is a sequence of integers a = (¢,,...,%,) with 5;e{l,...,u} for j = 1,...,s. An empty
sequence is also allowed. For a sequence b = (b,, ..., b,) of symbols (letters) and for a
multi-index a = (¢, ..., 7;) define the monomials

b*=b, b, ...b,, b,=b b, ..b

" tg—1 ” Y

with the convention that
W=1= by.

Now, each element y €I has a unique representation of the form
y=2a@)z* (a(x)€k),

where a runs over all multi-indices.
The augmentation e:I' -k maps y into

€(y) = a(p)ek.
It is a ring homomorphism ; its restriction to A is the usual augmentation
e A=k, et)=1.
1-2. Let us define derivations
0;:T->T (=1,...,p)
If y=2ala)s*

a

define @,y as Y alie) 22,

where ta denotes (i,%,,...,%,) for @ = (¢,,...,4,). Thus d; acts as a cancellation of z;
from the left on monomials containing x; on the left-most position, and sends to zero
all other monomials. Each yeTI has a representation

¥ =)+ S 2.0, ().

i=1
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0, is a k-linear map; it is related to the product in I’ by the formula

0:i(7,72) = 0i(yy) - Y2+ €(71) . 0i(y,),

where y,,v,€T. From this it follows that 0,(A) © A and the restriction of 9, on A
coincides with the Fox derivative [2] with respect to ¢,. (Note that J; is also known
as an (e, 1)-derivation or a transduction with respect to z;.)

1-3. Using the conventions of 11 on multi-indices we shall define the higher
derivatives

0,:T>T
where a = (¢,, ..., ;) is a multi-index and
0,=0;0; ...0;.

14. For yeA denote by V, the k-submodule of I' generated (over k) by all
derivatives 0,7y, where a runs over all multi-indices (including a = ¢).

Definition. An element ye @ will be said to be a rational function if V, is finitely
generated over k. The set of all rational functions will be denoted by Z.

1-5. In case y = 1 the above definition is equivalent to the statement that y € k[[x]]
is the Taylor power series of a rational function of the form

_P®)
7T )
where p(x), ¢(x) are polynomials with coefficients in & and ¢(0)e k*; cf. 24 below.
We will describe now some properties of rational functions in the sense of the
definition 1+4.

ProposITION 1:6. (1) Any element y€ A is a rational function.

(2) The sum (product) of two rational functions is a rational function.

(3) If ye A is a rational function and e(y) is invertible in k then y™* is also a rational
Junction.

Proof. Let us prove (2) first. For y,,y,€R we have
’)’1+Y2EVV1+V}'2’ YI"YZEI/%VH_*-I/V‘Z

and both modules V, +V, and V, V, +V, are finitely generated over k and invariant

under 0,, ..., 0,.

To prove (3), assume that vy is a rational function with e(y) = 1. Let us define W
to be the set of all power series y, represented in the form

Y1 =Ye ¥ eyl

where y, €V, and ce k. W is finitely generated over k and is invariant under d,, ..., 0,
because of the following formulae:

Oly™) = —04y).y":
61(72 YY) = aj(')’z) YT - e(y,) aj(')’) Yy

Since Yy~ '€ W we get that y™! is a rational function.
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Now (1) follows from (2) and (3). Each element y of A is a polynomial in ¢, = 1 + 2,
and t;' = (1+2,)". By (2) it is enough to check that ¢, and ¢;! belong to R. For ¢, it
is evident and for ¢;! it follows from (3).

2. Systems of linear equations

ProrosrTion 2:1. Consider a system of equations of the form

n
2Ayv;=0, (i=1,..,n),
J=1
with coefficients A, 0; rational functions. Asswme that det (e(A;;)) is invertible in k. Then
(1) there exists a unique solution (y,,...,y,) with each component vy, a rational
Junction and
(2) any rational function is a component of solution of a system of the above type with
coefficients Ay, 8, belonging to A.

Proof. (1) We may assume additionally that

E(Alj) = 6‘! ’

the Kronecker symbol. Then the above system can be written in the matrix form as
I+A)a=0b,

where a= (Y0¥, b=1(8,....,0,),

and 7 is the unit matrix while each element of 4 belongs to the augmentation ideal

of T'. Thus
a={I—-A+A%2—A%*+..)b

and the power series converges in I'. This proves that there is a unique solution of the
above system in I'.

Let us use the induction on % to show that all components vy, of the solution are
rational.

If n = 1 then the system has the form

Ay =346,

with €(A) = 1. So y = A7'§ and the result follows from Proposition 1-6.
Now consider a general system as above with e(A;;) = d;;. From the first equation

one finds
Y1 = A0 06— AT A Y= — A A Ve

Substituting the expression in other equations of the system, we get a new system
n
Zpyyy=0p (1=23,..,n)
=2
(of n—1 equations in »—1 variables) with
Big = Ay—An AL Ay, 0= 0,— A, A4, 6.
Firstly, one sees that the coefficients u,,, o; are rational. Secondly,
e(piy) = e(Ay) —e(Ay,)-€(A)) . €(Ay) = dy,

and our statement (1) now follows by induction.
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To prove (2), assume that vy is a rational function. Let e,,...,e, be a system of
generators (over k) of V,. One may assume that y = ¢,. Because V, is invariant under
d,..-.,0,, we have

n
O;e;= X ake, (1=1,...,n;5=1,..,p).

k=1

Thus, e; = €(e;)+ 2 Z; a;c:i €xs
ik
which can be rewritten in the form

> /\ije' = oy (z=1,...,n)

]
j=1

Lad .
with /\ij = 8,';'_' > X al,, o, = €le;).
s=1

It is clear that A;;, o;€ A and e(A;;) = §;;. This completes the proof.

4

2-:2. One may consider systems of equations of the form

E’Yi/\ij:aj (J= 1,...,7&)

i=1
with Ay, 6,€ 2, assuming det (e(A;;)) e k*. It is clear that statements (1) and (2) of
Proposition 2-1 are true with respect to these systems.

2-3. Let  denote the set of all square matrices u = (A;;) over A with det (e(A;))
ek*.

Using the terminology of Cohn[1], chapter 7, we may reformulate Proposition 2-1
and the remark of 22 as follows: the inclusion A—T is a Z-inverting ring
homomorphism and the set of rational functions # coincides with the X-rational
closure of A in T.

2-4. The following expression

y=[l—a(l—y*) e—y(l—2°) Y]
gives an example of a rational function. In fact, any rational function can be
represented by a finite algebraic formula (similar to that given above); this follows
from the proof of Proposition 2-1.

2:5. Let d;:'> T be the cancellation of x; from the right (cf. 1-2). One may use 9§,
instead of 0, and define rational functions as those y for which {3, y}, has finite rank
over k. It follows from the above remark (and also from 2-2) that this gives the same
class of formal power series.

3. Link modules
3-1. A finitely generated left A-module M is of type L (or a link module) if
Tor} (k, M) = 0 for allt ¢, where k is regarded as a right A-module with trivial action
via the augmentation map. As was shown by Sato[7], this condition is equivalent

to the following: the map Me=M MM
= X...X e 3
N ———

ptimes

t Note that Tor) vanishes identically for ¢ > 2.
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given by (m,, ..., m,)~Zf_, ({,— 1) m, is a bijection. In other words, each me M has a
unique representation in the form

7
m=73 (t,—1)m,.
i=1
Because of this it is possible [4] to define the derivations 0, M >M fori=1,...,u
by 0,(m) = m,, where m, is the element of M appearing in the above decomposition.
Now we can think of M as also having a left module structure over the ring

D=1(d,,...,0.>

of polynomials in non-commuting variables 0,, ..., 0,. Any A-homomorphism f:M, -
M, between modules of type L is also a D-homomorphism ; the converse is also true.

3-2. A relation between the D-module structure and the A-module structure is
given by
0;(A.m) = 0,(A). m+e(A).0;(m),

where A€ A, meM and 0,(A) is the Fox derivative with respect to ¢,.

3-3. Following [4], let us define some other operations on a module M of type L. For
i=1,...,u define
m(m) = (,—1)0y(m) (meM).

Then m = m(m)+...+m,(m),
mom, =m;, mom =0 foriz+j.

3-4. Let M be a A-module of type L. A lattice in M is a k-submodule 4 =« M which

(a) is invariant under 0,,m;,, for i =1,..., 4,

(b) generates M over A, and

(c) is finitely generated over k.

It is proved in [4] that any module of type L admits a lattice and any such lattice
determines the whole module: two modules of type L are isomorphic if and only if
they admit lattices which are isomorphic as D-modules, cf. [4], lemmas 1'5 and 2'6.
(Note: because of property (a) above, each lattice is a D-submodule of M.)

ProPOSITION 3'5. The following conditions are equivalent :

(@) v€T is a rational function;

(b) there exists a left A-submodule M — I' /A which is of type L and contains the image
of y under I'>T/A.

Proof. (a)=(b) Let W = I'/A be the image of V, under I' >T/A. W is finitely
generated over k and 0,(W) = W, fori= 1, ..., u. Consider the left A-module M = I'/A
generated by W over A. Then d,(m)eM for meM and we see that each meM has a
unique representation of the form

#
m= 3 x,m;
i=1
with m, = 0,(m). By the Sato theorem [7], M is of type L.
(b) = (a) Suppose that 7, the image of y under the projection I'>I'/A, belongs to
a submodule M < I'/A of type L. From the proof of lemma 1-5 in [4] it follows that
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there is a lattice W = M containing ¥. Let ¥,, ..., ¥, € W generate W over k. One may
assume that ¥y, = ¥. Because (W) = W for ¢ = 1, ..., 4, there is a presentation

0:;(7;) = p a; ¥y, (aj€k).
r=1

Let y,eI" be arepresentative of ¥, fors = 1, ..., #; we may choose y, = y. Then we have

i 7] E aw 71 + o'zj

with o;;€ A. Because y; = e(y;) + 2=, z; 0,(v;), we obtain that (y,,...,,) is a solution
of the system

n
> Aij Yi = b;
j=1

I ld
with /\ij = 3,','“ 2 X a.';}i: bz = 6(71) + Z Ls Oy
§=1

s=1

We observe that e(A,;) = d;; and by Proposition 2-1 we see that y = 7y, is a rational
function. This completes the proof.

CoroLLARY 36. If M is a left A-module of type L then the image of any A-
homomorphism M — T /A belongs to Z/A.

Proof. The result follows from Proposition 3-5 because the image of M >T/A is a
module of type L.

COROLLARY 3'7. #/A is the union of all left A-submodules M < T'/A of type L.

4. X-local modules

4-1. As in 2-3, let £ denote the set of all square matrices u = (A;;) over A with

i
det (e(A;)) € k*.
A right A-module X is called Z-local if for any n X n matrix u = (A;)€Z, the map

Xn_>Xn’ (xla""xn)'_)(yh""yn)’
n
where py=2x2y; (J=1,...,n),
i=1

is a bijection.
Examples of Z-local A-modules are provided by T" and £, cf. 2:3. A; is also an
example.

Proposition 4-2. A right A-module X is Z-local if and only if
Tor) (X, M) =
Sfor every left A-module M of type L without k-torsion and for every q.

In the proof (cf. 4-4) we will need the following lemma.
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LemMMma 4-3. Let u = (A;) be an n X n matrix in X. Thus u determines a homomorphism
(of left A-modules)
wA"— A", u(a,,...,a,) = (b, ....b,),

where byj=2aA; (j=1,...,n).

i=1
Then
(1) ker(u)=0;
(2) coker (u) is a left A-module of type L without k-torsion;
(3) any module of type L without k-torsion is isomorphic to coker (u) for some uex.

4-4. Proof of Proposition 4-2. Let X be a X-local module and M be a module of type
L without k-torsion. According to statement (3) of Lemma 4-3, M has a free

resolution
u

O— A" A"—>M—0

with w€Z. Now Tor) (X, M) is the homology of

0—X"—X"——>0

which vanishes since X is Z-local.
The converse statement follows similarly.

4-5. Proof of Lemma 4-3. Statement (1) follows from
ker [u: A" —A"] < ker [u: " —I'"]

since the group on the right is trivial (cf. the beginning of the proof of Proposition
2:1).
To prove (2), consider M = coker (u), € Z. Then
u

00— A"—A"—>M—0

is a resolution of M and Torj (k; M) may be computed as the homology of

19u
0— k@ A" — k@ A"—0,

e(u)
which coincides with 00— k" —k"—0.

The last complex is acyclic because ¢(u) is invertible over k.
By similar arguments Torj (I'; M) = 0 and this can be used to show that M has no
k-torsion: from the exact sequence

0—A—>T—T/A—0
we get an isomorphism
M ~ Tor} (I'/A; M)

and thus M is isomorphic to the kernel of
1@u:T/A@A"—T/AR,A™

It is clear that this kernel (and M as well) are free of k-torsion since the modules I'/A
and I'/A ®, A" = (I'/A)" are free of k-torsion. This proves (2).
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Let us prove (3). Consider a module M of type L and N < M be a lattice (cf. (3-4).

N is finitely generated over £ and has no k-torsion (assuming that M has no k-torsion).
Thus N is free over k. Consider the homomorphism

wAQ,N—A®,N, uA®n)=AQn— > Alt;—1) ® 8,(n),

im1

where Ae A, neN. It is clear that w€X and thus coker (u) is a module of type L. We
want to show that coker (u) =~ M.
Consider the following diagram

M

R

A®,CNL> A® N ., coker (u) —— 0

8 /
N

where Pp(n)=1@n (neN),
fA®@n)y=An (AeA,neN),
Yr=cod.

Since fou = 0 we get a A-homomorphism g:coker (u) >M with goe = f. The map
¥ : N— coker (u) is a D-homomorphism :

Y(n) =e(l®@n)= e(i tL—-1)® 51-(")) = (ﬁ (t;—1)e(1® 5z(n)) -5 (L= 1) 9 (0;m)

i=1 i=1 i=1
and thus o, y(n)=y(O;m) (i=1,..,u).

Moreover ¥ is a monomorphism because goy = fo¢ coincides with the inclusion
N-—>M. Thus ¢ provides a D-isomorphism between N (which is a lattice in M) and
Y (V) (which is a lattice in coker (u)). That M and coker (u) are isomorphic now follows
from lemma 2-6 of [4]. This completes the proof of Lemma 4-3.

THEOREM 4:6. Let & < T be the ring of rational functions. Consider R as a left
A-module. If X 1s a Z-local right A-module then the map
X=X@ AN —X®,R
18 an isomorphism.
Proof. We have an exact sequence

Tor? (X; R/AN)— X NAN—>XR,Z2—>X®,R/A—0.

Therefore 4-6 will follow if we prove that Tor} (X; Z2/A) = 0. Consider all submodules
M, <= Z/A of type L. By Corollary 37, Z/A is the direct limit of {#_ }. Now from
Proposition 4-2 we get

Tor}(X; Z/A) = lim Tor} (X;M,) =0

as required.
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CoroLLARY 4'7. Each Z-local right A-module X has an R-module structure extending
its A-module structure. If X and Y are two Z-local A-modules and f: XY is a A-
homomorphism then f is also an R-homomorphism.

5. The main theorem

THEOREM 5°1. The ring of rational functions R is isomorphic to the ring Ay, the Cohn
localization of A with respect to Z.

Proof. Let a:A—>A; and f:A— % denote the canonical inclusions. Since £ is
T-inverting (cf. Section 2), there is a unique ring homomorphism y:A;—> % with
voa = f#. On the other hand, since A; is a Z-local right A-module it has a right
ZA-module structure (by Corollary 4-7). Let us denote the product in this structure of
A€ A and reZ by (A, 7)€ As. For each aeA; the left multiplication by «,

fa:AZ—)AZ7 fa(A)=aA (’\EAE)a

is a homomorphism of right A-modules. By Corollary 47, f, is also an %-
homomorphism. Thus
a(A,r) = (ad,r) (*)
for ae Ay, A€Ay, re.
Let us now define a homomorphism ¢:% — A; by

or)=(1,r)eAy (reR),
where 1 is the unit element of A;. Thus § is a ring homomorphism : using (*) we have
a(r)é(r)y = (L, n)(1,7) = ((L,r) 1,7y = ((1,7),7) = (1,77") = 8(rr’).

It is clear that for re A we get d(r) = r. Thus we have the following diagram of ring

homomorphisms
A
v N
Y

As <———_8_> R

with vyoa=pf, dofi=a.

Now one gets
(foy)oa=a andthus doy =1,

by the universal property of a. On the other hand
(yod)of =4

and so y048:%Z —~ Z is a ring homomorphism which acts as identity on A. Since any
rational function r€ Z is a component if solution for a linear system with coefficients
in A (with matrix in X), cf. Proposition 21 (2), then applying y 0 to this system we
will get another solution of the same system. From uniqueness of the solution (cf.
Proposition 2-1 (1)) it follows now that y o ¢ = 14. Thus y and ¢ are mutually inverse
ring homomorphisms.
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52. We will show now that the ring of rational functions is the Cohn localization
with respect to other ‘k-points’ of A.

Let w = (w,, ..., ,) be an ordered set of invertible elements w; € k*. It defines a ring
homomorphism ¢,: A = k& where ¢,(t;) = w;. Denote by X the set of all square matrices
(A4) over A with

det (e,(A;;)) e k*.

TuEOREM 53. The ring homomorphism B,: A — R, where f,(¢;) = w,(x;+1) fori =1,
<o jt 18 the universal X -inverting ring homomorphism.

Proof. For w = (1, ..., 1) this was proved in Theorem 5-1. For general it follows
from the following commutative diagram

P

.// Vw

A <L A

N
k

where £ is the Magnus embedding and f is the ring automorphism of A defined by
fit) =w;t,fori=1,... p.

54. Remark. We are thankful to the referee for pointing out Lewin’s paper [5]
to us. There he gave a representation of Cohn’s universal field of fractions U of A in
the Mal’cev—Neumann ring of formal series. U is a (non-commutative) field ; it can be
represented as A,, where ® is the class of all full square matrices, cf. [1]. Lewin
showed in [S] that U is isomorphic to the rational closure of A in any
Mal’cev-Neumann embedding of A.

There is an obvious ring homomorphism f: #Z — U (because our X is embedded in ).
It seems plausible that f is an inclusion; however, f is not surjective (for obvious
reasons).
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