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Local formulae for combinatorial Pontryagin classes

A. A. Gaifullin

Abstract. Let p(|K |) be the characteristic class of a combinatorial manifold K
given by a polynomial p in the rational Pontryagin classes of K . We prove that
for any polynomial p there is a function taking each combinatorial manifold K to a
cycle zp(K) in its rational simplicial chains such that: 1) the Poincaré dual of zp(K)
represents the cohomology class p(|K |); 2) the coefficient of each simplex ∆ in the
cycle zp(K) is determined solely by the combinatorial type of link∆. We explicitly
describe all such functions for the first Pontryagin class. We obtain estimates for
the denominators of the coefficients of the simplices in the cycles zp(K).

§ 1. Introduction
The following well-known problem is studied, for instance, in [1]–[5]. Given

a triangulation of a manifold, construct a simplicial cycle whose Poincaré dual
represents a given Pontryagin class of this manifold. In addition, one usually wants
the coefficient of each simplex in this cycle to be determined solely by the structure
of the manifold in some neighbourhood of this simplex. First let us discuss the
most important results concerning this problem.
Gabrielov, Gelfand and Losik [1], [2] found an explicit formula for the first ratio-

nal Pontryagin class of a smooth manifold. To apply this formula, one needs the
manifold to be endowed with a smooth triangulation satisfying a certain special
condition. In their paper [3], Gelfand and MacPherson considered simplicial mani-
folds endowed with the additional combinatorial structure of a fixing cycle. A fixing
cycle is a combinatorial analogue of a smooth structure and can be induced by a
given smooth structure. For simplicial manifolds with a given fixing cycle, Gelfand
and MacPherson constructed rational cycles whose Poincaré duals represent the
Pontryagin classes of the manifolds. The coefficients of the simplices in these cycles
depend both on the combinatorial structure of a neighbourhood of the simplex and
on the restriction of the fixing cycle to this neighbourhood.
Another approach is due to Cheeger. In [4] he obtained explicit formulae for

cycles whose Poincaré duals represent real Pontryagin classes. These formulae
involve the calculation of the spectra of Laplace operators on pseudo-manifolds
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with a locally flat metric. The coefficients of the simplices in the cycles obtained
depend only on the combinatorial type of the link of the simplex. Cheeger’s formula
can be applied to any pseudo-manifold. It is not known whether the cycles obtained
are rational.

Suppose that for any combinatorial manifold K we have a (dimK − n)-dimen-
sional cycle z(K) in its co-oriented simplicial chains (see the definition in § 2.1) such
that

z(K) =
∑

∆∈K, dim∆=dimK−n
f(link∆)∆,

where the value f(L) is determined solely by the isomorphism class of the ori-
ented (n − 1)-dimensional PL sphere L and the function f does not depend on
the manifold K. Then we say that z is a characteristic local cycle (c. l. cycle) of
codimension n. The function f is called the local formula for this c. l. cycle. We
prove that for any rational characteristic class p ∈ H∗(BPL;Q) = H∗(BO;Q) there
is a rational c. l. cycle zp such that the Poincaré dual of the cycle zp(K) represents
the cohomology class p(|K|) for any combinatorial manifold K. (Here BPL is the
classifying space for stable PL bundles.) This improves a theorem of Levitt and
Rourke [5]. They obtained a similar result for cycles given by

∑
h(link∆, dimK)∆,

which are not c. l. cycles since the function h depends on the dimension of K. They
also proved that for any characteristic class p ∈ H∗(BPL;Z) there is a function
taking each m-dimensional combinatorial manifold K with a given ordering of the
vertices to a cycle

∑
g(star∆, ord) whose Poincaré dual represents the cohomology

class p(|K|). Here g is a function on the isomorphism classes of oriented ordered
triangulations of the m-dimensional disc. The function g does not depend on the
given manifold K.

In § 2 we define a cochain complex T ∗(Q) whose elements are functions on the set
of isomorphism classes of oriented PL spheres. We prove that a function f ∈ T ∗(Q)
is a cocycle if and only if f is a local formula for some c. l. cycle. If f is a coboundary,
then f is a local formula for a c. l. cycle z such that z(K) is a boundary for any
combinatorial manifold K. We prove that there is an isomorphism H∗(T ∗(Q)) ∼=
H∗(BO;Q). In particular, we see that any rational c. l. cycle represents homology
classes dual to some polynomial in Pontryagin classes of manifolds. In § 2.5 we
prove that for any ψ ∈ Hn(T ∗(Q)) there is a local formula f representing ψ such
that the function f : Tn→ Q is algorithmically computable.
In § 3 we obtain an explicit formula describing all rational c. l. cycles z such that

the Poincaré dual of z(K) represents the first Pontryagin class of a combinatorial
manifoldK. This result is new because the formulae of [1]–[3] cannot be applied to
an arbitrary combinatorial manifold and the formulae of [4] give only real c. l. cycles.
We use the following approach. First we explicitly find all rational c. l. cycles of
codimension 4. Then we notice that any rational c. l. cycle of codimension 4 rep-
resents the homology classes dual to the first Pontryagin class multiplied by some
rational constant. The use of bistellar moves is very important.

In § 4 we study the denominators of the coefficients of c. l. cycles, that is, the
denominators of the values of the local formulae. We estimate these denominators
via the number of vertices of the PL sphere. We prove that if f is a local formula
for the first Pontryagin class and q is an integer, then there is a PL sphere L
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such that the denominator of f(L) is divisible by q. In particular, there are no
integer c. l. cycles representing homology classes dual to the first Pontryagin class
multiplied by some non-zero integer.
The proof of the isomorphism H∗(T ∗(Q)) ∼= H∗(BO;Q) is based on the results

of § 5, where we study decompositions of polyhedra into simple cells. A D-structure
on a polyhedron is defined as an equivalence class of decompositions of this poly-
hedron into simple cells with respect to some equivalence relation. We show that
D-structures have many properties similar to those of stable bundles. We construct
the classifying space Z for D-structures, which is an analogue of the classifying
space BO for stable vector bundles. We also construct a natural map X taking any
block bundle to a D-structure. We prove that the corresponding mapX : BPL→ Z
induces an isomorphism in rational cohomology. This isomorphism is very impor-
tant for the proof of the main result.

All necessary definitions and results of PL topology can be found in [6]. All
manifolds, triangulations, maps, homeomorphisms, and bordisms are supposed to
be piecewise linear unless otherwise stated. All bordisms are supposed to be ori-
ented. A PL sphere is a simplicial complex whose geometric realization is PL
homeomorphic to the boundary of a simplex. An m-dimensional combinatorial
manifold is a simplicial complex K such that the link of each vertex v ∈ K is an
(m − 1)-dimensional PL sphere. Any piecewise-linear triangulation of a manifold
is a combinatorial manifold. In §§ 2–4 all manifolds are supposed to be closed. An
isomorphism of oriented simplicial complexes is an orientation-preserving isomor-
phism. An orientation-reversing isomorphism is called an anti-isomorphism. Let
K be a simplicial complex on a set S. We denote the cone over K by CK. The
full subcomplex spanned by a subset V ⊂ S is the subcomplex L ⊂ K consisting of
all simplices ∆ ∈ K such that all vertices of ∆ belong to V . We denote the join
of two simplicial complexes K and L by K ∗ L.

§2. Local formulae
2.1. Main definitions. Let Tn be the set of all isomorphism classes of oriented
(n − 1)-dimensional PL spheres. (We assume that T0 = {∅}, T−n = ∅, n > 0.)
Usually we do not distinguish between a PL sphere and its isomorphism class. For
any L ∈ Tn we denote by −L the PL sphere L with the opposite orientation. We say
that L ∈ Tn is symmetric if there is an anti-automorphism of L. LetG be an Abelian
group. We denote by T n(G) the Abelian group of all functions f : Tn → G such
that f(L) = f(−L) for every L ∈ Tn. We assume that T 0(G) = G, T −n(G) = 0,
n > 0. Let the differential δ : T n(G)→ T n+1(G) be given by

(δf)(L) =
∑
f(link v),

where the sum is taken over all vertices v ∈ L and the orientation of linkv is induced
by the orientation of L. Evidently, δ2 = 0. Thus T ∗(G) is a cochain complex.
We denote by Tn(Z) the Abelian group generated by the set Tn with relations

L+ (−L) = 0. The boundary operator ∂ : Tn+1(Z) → Tn(Z) is given by its values
on the generators of Tn+1(Z):

∂L =
∑
linkv,
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where the sum is taken over all vertices v ∈ L. Then T∗(Z) is a chain complex.
We have T n(G) = Hom(Tn(Z), G) and (δf)(x) = f(∂x) for any f ∈ T n(G), x ∈
Tn+1(Z). In the same way, we can define the chain complex T∗(G) for any Abelian
group G, but in what follows we shall use only the chain complex T∗(Z).
Let K be an m-dimensional combinatorial manifold. Let Ĝ be the local system

on |K| with fibre G and twisting given by the orientation. A co-orientation of a
simplex ∆n ∈ K is an orientation of link∆n. Any m-simplex is supposed to be
positively co-oriented. Let Ĉn(K;G) be the complex of co-oriented simplicial chains

of K and let ∂̂ be the boundary operator of this complex. (The incidence coeffi-
cient of two co-oriented simplices τk−1 ⊂ σk is equal to +1 if the orientation
of linkσk is induced by that of link τk−1. Otherwise it is equal to −1.)
The homology of Ĉ∗(K;G) is equal to H∗(|K|; Ĝ). If K is oriented, then we have
the augmentation ε : Ĉ0(K;G)→ G.
Suppose that f ∈ T n(G). Let f�(K) ∈ Ĉm−n(K;G) be the co-oriented chain

given by

f�(K) =
∑

∆m−n∈K
f(link∆m−n)∆m−n.

(The summand f(link∆m−n)∆m−n does not depend on the co-orientation of∆m−n.)
We say that f ∈ T n(G) is a local formula if the co-oriented chain f�(K) is a cycle
for any combinatorial manifold K. The correspondence f �→ f� obviously provides
an isomorphism between the group of local formulae and the group of c. l. cycles.

Proposition 2.1. 1) f is a local formula if and only if f is a cocycle in the cochain
complex T ∗(G).
2) If f is a coboundary in T ∗(G), then the cycle f�(K) is a boundary for any

combinatorial manifold K.
3) Let K1 and K2 be two triangulations of a manifold M

m. If f is a local
formula, then the cycles f�(K1) and f�(K2) are homologous.

Proof. Notice that ∂̂f�(K) = (δf)�(K) for any f ∈ T n(G). This proves the second
assertion of the proposition. It also follows that if f is a cocycle, then f is a local
formula.
Suppose that δf �= 0. Then there is an L ∈ Tn+1 such that (δf)(L) �= 0. Consider

a combinatorial manifold K such that link∆ ∼= L for some simplex ∆ ∈ K. Then
the coefficient of ∆ in the chain ∂̂f�(K) = (δf)�(K) is non-zero. Hence f�(K) is
not a cycle. Therefore f is not a local formula.
Let us now prove the third assertion of the proposition. The stellar subdivision

of a simplex ∆ ∈ K is the operation transforming K into the simplicial complex

(K \ (∆ ∗ link∆)) ∪ ((C∂∆) ∗ link∆).

Any two triangulations of a compact polyhedron can be transformed to each other
by a finite sequence of stellar subdivisions and inverse stellar subdivisions (see [7]).
We can assume without loss of generality that K1 can be transformed into K2 by a
stellar subdivision of some simplex ∆. Then the support of the cycle f�(K2)−f�(K1)
is contained in the subcomplex star∆, which is contractible. If m > n, then the
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dimension of the cycle f�(K2) − f�(K1) is positive. Hence f�(K2) − f�(K1) is a
boundary.
Assume that n = m. The case of an orientable manifoldMm will be considered

in § 2.2. For a non-orientable manifold Mm, the assertion is proved by taking the
two-sheeted orientable covering of Mm.

Given any cohomology class ψ ∈ Hn(T ∗(G)) and any manifoldMm, we denote
by ψ�(M

m) ∈ Hm−n(Mm; Ĝ) the homology class represented by f�(K), where K
is an arbitrary triangulation of Mm and f is an arbitrary representative of ψ. The
homology class ψ�(M

m) is well defined by Proposition 2.1. We denote the Poincaré
dual of ψ�(M

m) by ψ�(Mm) ∈ Hn(Mm;G). If Mm is oriented and m = n, then ψ
determines an element ψ�(Mn) of G by ψ�(Mn) = 〈ψ�(Mn), [Mn]〉.
The main result of this section is the following theorem.

Theorem 2.1. For any rational characteristic class p ∈ Hn(BPL;Q) there is a
unique cohomology class ϕp ∈ Hn(T ∗(Q)) such that ϕ�p(M) = p(M) for any mani-
foldM . For any cohomology class ψ ∈ Hn(T ∗(Q)) there is a rational characteristic
class p such that ψ = ϕp. Thus,

H∗(T ∗(Q)) ∼= H∗(BPL;Q) = H∗(BO;Q).

Corollary 2.1. There is an additive isomorphism H∗(T ∗(Q)) ∼= Q[p1, p2, . . . ],
deg pj = 4j.

By Theorem 2.1, there is a one-to-one correspondence between rational c. l. cycles
z such that z(K) is a boundary for any combinatorial manifoldK and coboundaries
of the complex T ∗(Q).
2.2. Invariance under bordisms.

Proposition 2.2. Suppose that ψ ∈ Hn(T ∗(G)). Then ψ�(Mn1 ) = ψ�(Mn2 ) for
any bordant oriented manifolds Mn1 and M

n
2 .

Thus we have a well-defined homomorphism � : Hn(T ∗(G)) → Hom(Ωn, G)
taking the cohomology class ψ to the homomorphism ψ�. Here Ωn is the group of
oriented n-dimensional PL bordisms of a point. There is a canonical isomorphism
Hom(Ωn,Q) ∼= Hn(BPL;Q). Hence the homomorphism � induces a homomorphism
	 : Hn(T ∗(Q))→ Hn(BPL;Q).
Suppose that f ∈ T n(G) is a local formula and L is an n-dimensional null-

bordant oriented combinatorial manifold. Let us prove that ε(f�(L)) = 0, where

ε : Ĉ0(L;G) → G is the augmentation. This will prove Proposition 2.2 and the
remaining case of Proposition 2.1.
Let K be an oriented combinatorial manifold with boundary such that ∂K = L.

Suppose that u is a co-oriented vertex of L. Then linkK u is an oriented trian-
gulation of an n-disc. The co-orientation of the vertex u in K induces the co-

orientation of u in L. Hence we have a monomorphism i: Ĉ0(L;G) → Ĉ0(K;G).
Obviously, ∂ linkK u = linkL u. We denote by link

∗
K u the simplicial complex

linkK u∪linkL uC(linkL u) whose orientation is induced by the orientation of linkK u.
Then link∗K u ∈ Tn+1. We similarly define a PL sphere link∗K e ∈ Tn for any co-
oriented edge e ∈ L.
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We define a 1-chain f�(K) ∈ Ĉ1(K;G) by

f�(K) =
∑
e∈K\L

f(linkK e)e+
∑
e∈L
f(link∗K e)e.

The support of the chain ∂f�(K) is obviously contained in the subcomplex L. For
any co-oriented vertex v ∈ L we have (δf)(link∗K v) = 0. Therefore,∑

f(linkK e) +
∑
f(link∗K e) = f(linkL v),

where the first sum is taken over all co-oriented edges e ∈ K\L entering the vertex v
and the second over all co-oriented edges e ∈ L entering the vertex v. (We say that
a co-oriented edge e enters a co-oriented vertex v if the incidence coefficient of the

pair (e, v) is equal to +1.) Consequently, ∂̂f�(K) = i(f�(L)). Hence, ε(f�(L)) = 0.

Remark 2.1. The formula ∂̂f�(K) = i(f�(∂K)) actually holds for combinatorial
manifolds K of any dimension m � n+ 1.
2.3. ��� is an epimorphism for rational coefficients.

Theorem 2.2. The homomorphism � : Hn(T ∗(Q)) → Hom(Ωn,Q) is an isomor-
phism.

Corollary 2.2. The homomorphism 	 : Hn(T ∗(Q)) → Hn(BPL;Q) is an isomor-
phism.

In § 5.8 we shall prove that � is a monomorphism.
To prove that � is an epimorphism, we need some of the definitions and results

of [5]. A totally ordered simplicial complex is a simplicial complex together with
a total ordering on its set of vertices. A locally ordered simplicial complex is a
simplicial complex together with a partial ordering on its set of vertices such that

the star of each vertex is a totally ordered complex. Let BP̃Lm be the classifying
space for m-dimensional block bundles (see the definition of a block bundle in

§ 5.7 and [8] for more details). A cohomology class p ∈ Hn(BP̃Lm;G) is called a
characteristic class for block bundles. Given a cohomology class p ∈ Hn(BP̃Lm;G),
we have a cohomology class p(ξ) ∈ Hn(P ;G) for anym-dimensional block bundle ξ
over a polyhedron P . In particular, for any manifoldMm we have the cohomology
class p(Mm) = p(τ) ∈ Hn(Mm;G), where τ is the tangent block bundle of the
manifoldMm.
In their paper [5], Levitt and Rourke studied local formulae for characteris-

tic classes of locally ordered combinatorial manifolds. They proved the following

assertion. For any p ∈ Hn(BP̃Lm;G), n � m, there is a function g taking each
isomorphism class of totally ordered oriented triangulations of an m-disc to an ele-
ment of the group G such that the cycle

∑
∆m−n∈K g(star∆

m−n)∆m−n represents
the Poincaré dual of the cohomology class p(|K|) for any locally ordered oriented
combinatorial manifold K.
Consider the case G = Q. Let J be an unordered triangulation of anm-disc. We

denote by h(J) the arithmetic mean of the values of g over all different total order-
ings of J . Levitt and Rourke also proved that, for any (unordered) combinatorial
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manifold K, the cycle
∑
∆m−n∈K h(star∆

m−n)∆m−n represents the Poincaré dual
of the cohomology class p(|K|).
Let us now prove that � is an epimorphism. For any n there is a canonical

isomorphism

Hom(Ωn,Q) ∼= Hn(BP̃Ln;Q).

Suppose that p ∈ Hom(Ωn,Q). We also denote the corresponding characteristic
class of block bundles by p. Now put m = n. Let the function f1 : Tn → Q be
given by f1(L) = h(CL), where h is as above. We have∑

v∈K
f1(linkv) = p(|K|)

for any n-dimensional oriented combinatorial manifold K. It is possible that
f1(−L) �= −f1(L) for some L ∈ Tn. Therefore it is possible that f1 /∈ T n(Q).
Let the function f ∈ T n(Q) be given by

f(L) =
f1(L) − f1(−L)

2
.

Then
∑
v∈K f(link v) = p(|K|) for any n-dimensional oriented combinatorial mani-

fold K. Obviously, p(Sn) = 0. Hence
∑
v∈K f(link v) = 0 for any PL sphere

K ∈ Tn+1. Therefore δf = 0, that is, f is a local formula. Let ψ be the cohomology
class represented by f . Then ψ�(|K|) = p(|K|) for any n-dimensional oriented
combinatorial manifold K. Consequently, �(ψ) = p.
The approach of [5] is based on an explicit realization of the classifying space

BP̃Ln as a CW complex. We want to prove that � is an epimorphism in a more
elementary way without using the results of [5] and hence without using the explicit

cell decomposition of BP̃Ln.
Let K be an n-dimensional oriented combinatorial manifold. We say that K

is balanced if, for any L ∈ Tn, the number of vertices v ∈ K such that linkv is
isomorphic to L is equal to the number for which it is anti-isomorphic to L, that
is, if 2

∑
v∈K linkv = 0 in the group Tn(Z). For example, the disjoint union of two

anti-isomorphic oriented combinatorial manifolds is balanced.

Proposition 2.3. Suppose that K is a balanced oriented combinatorial manifold.
Then a disjoint union of several copies of K is null bordant.

Proposition 2.3 is an obvious consequence of Theorem 2.2. In § 5.10 we shall
prove this proposition using neither Theorem 2.2 nor the results of [5]. Let us now
use Proposition 2.3 to show that � is an epimorphism. We must prove that for any
homomorphism p ∈ Hom(Ωn,Q) there is a local formula f ∈ T n(Q) such that∑

v∈K
f(link v) = p(|K|)

for every n-dimensional oriented combinatorial manifold K.
Let {Li} be a sequence of PL spheres in the set Tn with the following properties.
1) Li is non-symmetric for every i.



868 A. A. Gaifullin

2) If L ∈ Tn is non-symmetric, then there is i such that L is either isomorphic
or anti-isomorphic to Li.
3) If i �= j, then Li is neither isomorphic nor anti-isomorphic to Lj .
The condition

∑
v∈K f(link v)=p(|K|) can be regarded as a linear equation EK

in the values f(Li). It is sufficient to prove that the system of all equations EK is
consistent. Assume the opposite. Then there are combinatorial manifolds Kj and
integers kj, j = 1, 2, . . . , q, such that the linear equation

∑q
j=1 kjEKj is inconsis-

tent, that is, it takes the form 0 = B, where B is a non-zero number. We reverse
the orientation of Kj and the sign of kj whenever kj is negative. Thus we obtain
that all the kj are positive. Consider the manifold

K =

q⊔
j=1

K
�kj
j ,

where K
�kj
j is the disjoint union of kj copies of Kj . Then the equation

∑q
j=1 kjEKj

coincides with the equation EK. Hence, EK is inconsistent. Therefore the combi-
natorial manifold K is balanced and p(|K|) �= 0. This contradicts Proposition 2.3.

2.4. Cohomology classes ψ�(Mm)ψ�(Mm)ψ�(Mm) for manifolds of arbitrary dimension.
Proposition 2.2 implies that for any cohomology class ψ ∈ Hn(T ∗(Q)) there is a
rational characteristic class p = 	(ψ) such that ψ�(Mn) = p(Mn) for any
n-dimensional manifold Mn. Let us consider the cohomology classes ψ�(Mm) for
manifolds of dimension m > n.

Proposition 2.4. We have ψ�(Mm) = p(Mm) = 	(ψ)(Mm) for any manifold
Mm, m � n.
By Corollary 2.2, 	 is an isomorphism. Hence Theorem 2.1 follows from Corol-

lary 2.2 and Proposition 2.4.
Suppose that P is a compact polyhedron and Q ⊂ P is a closed PL subset. We

say that P is a manifold with singularities in Q if P \Q is a (non-closed) manifold.
Such a manifold with singularities is said to be oriented if the manifold P \ Q is
oriented. We have the Lefschetz duality Hm−n(P,Q; Ĝ) ∼= Hn(P\Q;G) for n < m.
Suppose thatK is an arbitrary triangulation of P . Let L ⊂ K be the subcomplex

consisting of all closed simplices whose intersection with Q is non-empty. Let f ∈
T n(G) be a local formula with n < m. Let the chain f�(K,L) ∈ Ĉm−n(K,L;G) be
given by

∑
f(link∆m−n)∆m−n, where the sum is taken over all (m− n)-simplices

∆m−n ∈ K\L. Arguing as in the proof of Proposition 2.1, one can easily show that
f�(K,L) is a relative cycle whose homology class in the group Hm−n(P,Q; Ĝ) is
determined solely by the cohomology class represented by f and does not depend on

the choice of the triangulation K. Thus the classes ψ�(P,Q) ∈ Hm−n(P,Q; Ĝ) and
ψ�(P,Q) ∈ Hn(P\Q;G) are well defined for any cohomology class ψ ∈ Hn(T ∗(G)),
n < m. Let S ⊂ P\Q be a compact subset. Evidently, the cohomology class
ψ�(P,Q)

∣∣
S
is determined solely by the topology of the pair (U, S), where U is an

arbitrarily small neighbourhood of S. Hence we have the following proposition.

Proposition 2.5. Suppose that Nk is a (closed) oriented manifold, ψ∈Hn(T ∗(G)),
n � k, and P is an m-dimensional manifold with singularities in Q, m > k.
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Let i : Nk ↪→ P\Q be an embedding such that i(Nk) ⊂ P\Q is a submanifold with
trivial normal bundle. We put ψ�m(N

k) = i∗(ψ�(P,Q)). Then the cohomology class
ψ�m(N

k) depends only on the manifold Nk and the number m and not on the choice
of the triple (P,Q, i).

Proposition 2.6. We have ψ�m(N
k) = ψ�(Nk) for any oriented manifold Nk,

k � n, and any m > k.

Proof. The join Nk ∗ ∆m−k−1 is an m-dimensional manifold with singularities
in Nk �∆m−k−1. The points of Nk ∗∆m−k−1 are linear combinations

t0x+
m−k∑
j=1

tjyj ,

where x ∈ Nk, y1, y2, . . . , ym−k are the vertices of the simplex ∆m−k−1, tj � 0,
j = 0, 1, . . . , m − k, and

∑m−k
j=0 tj = 1. Let i : N

k ↪→ Nk ∗ ∆m−k−1 be the
embedding given by

i(x) =
1

m− k + 1

(
x+

m−k∑
j=1

yj

)
.

Then i(Nk) is a submanifold with trivial normal bundle. Let K be an arbitrary
triangulation of Nk. Then K ∗∆m−k−1 is a triangulation of Nk ∗∆m−k−1. The
submanifold i(Nk) is transversal to the simplices of the triangulation K ∗∆m−k−1.
We have |τ ∗∆m−k−1|∩i(Nk) = i(|τ |) and linkK∗∆m−k−1 (τ ∗∆m−k−1) = linkK τ for
any simplex τ ∈ K. Hence, for any local formula f , the intersection of the cycles
f�(K ∗ ∆m−k−1, K � ∆m−k−1) and i∗([Nk]) coincides with the cycle i∗(f�(K)).
Therefore,

ψ�m(N
k) = i∗

(
ψ�(Nk ∗∆m−k−1, Nk �∆m−k−1)

)
= ψ�(Nk).

Proof of Proposition 2.4. We consider the case G = Q, n = k. Let Mm be an ori-
entable manifold with m > n. By Propositions 2.5 and 2.6 we have ψ�(Mm)

∣∣
Nn
=

p(Nn) for any submanifold Nn ⊂Mm with trivial normal bundle. It follows from
results of Rokhlin, Schwarz and Thom that ψ�(Mm) = p(Mm) if m > 2n+ 1.

Assume that n < m � 2n+1 and Mm is orientable. Let i :Mm ↪→Mm×Sn+1
be the standard embedding. By Propositions 2.5 and 2.6 we have

i∗
(
ψ�(Mm × Sn+1)

)
= ψ�(Mm).

On the other hand, i∗(p(Mm × Sn+1)) = p(Mm) and ψ�(Mm × Sn+1) =
p(Mm × Sn+1) since dim(Mm × Sn+1) > 2n+ 1. Therefore, ψ�(Mm) = p(Mm).
Assume now that Mm is not orientable. Let π : M̃m →Mm be the two-sheeted

orientable covering. Then π∗(ψ�(Mm)) = ψ�(M̃m), π∗(p(Mm)) = p(M̃m). The
proposition follows since π∗ is a monomorphism.
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2.5. Algorithms for computing the values of local formulae.

Theorem 2.3. Suppose that ψ ∈ Hn(T ∗(Q)). Then there is a local formula f
representing ψ such that the function f : Tn → Q is algorithmically computable.
Remark 2.2. S. P. Novikov has proved that for n � 6 there is no algorithm for
checking whether a given simplicial complex is an (n − 1)-dimensional PL sphere.
This proof can be found in [9]. Hence a rigorous formulation of Theorem 2.3 is
as follows. There is an algorithm that, for a given oriented simplicial complex L,
computes the value f(L) if L is an (n−1)-dimensional PL sphere and runs for ever
if it is not.

Remark 2.3. Obviously, for n � 4 there is an uncomputable coboundary f ∈ T n(Q).
Hence there are uncomputable rational local formulae.

In this section we shall consider infinite vectors b = (bi)
∞
i=1, bi ∈ Q, and infinite

matrices A = (aij)
∞
i,j=1, aij ∈ Q. A matrix A is said to be row-finite if every row

of A contains finitely many non-zero numbers. The product of a row-finite matrix
by an infinite vector is well defined. The product of two row-finite matrices is a row-
finite matrix. An infinite vector b is said to be computable if there is an algorithm
that computes bi for a given i. A row-finite matrix A is said to be computable if
there is an algorithm that computes aij for given i and j and there is an algorithm
that for a given i computes a number j0(i) such that aij = 0 for every j > j0(i).
In what follows all matrices are supposed to be row finite. We denote by ri(A) the
rank of the matrix consisting of i first rows of A. If A is computable, then r(A) is
a computable vector.

Proposition 2.7. Suppose that A is a computable matrix, b is a computable vector,
and the linear system Ax = b has a unique solution x0. Then the vector x0 is
computable.

Proof. Consider the system Ax = b together with one further equation xk = x
0
k+1.

This system is inconsistent. Hence it contains a finite inconsistent subsystem.
Therefore the value x0k is uniquely determined by some finite subsystem of the
system Ax0 = b.

Proposition 2.8. Suppose that A and B are computable matrices with AB = 0,
b is a computable vector, the system Ax = b is consistent, and any solution of the
system Ax = 0 is equal to Bz for some vector z. Then the system Ax = b has a
computable solution.

Proof. We obviously have either ri(B) = ri−1(B) or ri(B) = ri−1(B) + 1 for any
i > 1. Let l1 < l2 < l3 < . . . be the sequence consisting of all numbers i such
that ri(B) = ri−1(B) + 1. (We assume that l1 = 1 if and only if r1(B) = 1.)
This sequence can be either finite or infinite. The vector l = (li) is computable
in both cases. For any infinite vector v, we denote the vector (vl1 , vl2 , vl3 , . . . )

T

by v̂. Let B̂ be the matrix consisting of the rows of B with numbers l1, l2, l3, . . . .

The system B̂z = û is consistent for any vector u since any finite subsystem of this

system is consistent. Every row of B is a linear combination of rows of B̂. Hence,

if B̂z = 0, then Bz = 0. Consider the system Ax = b together with the equations
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xl1 = 0, xl2 = 0, . . . . (We interleave the equations of the system Ax = b with

these new equations.) Let Ãx = b̃ be the resulting system. The matrix Ã and the

vector b̃ are computable. To prove the proposition, we must show that the system

Ãx = b̃ has a unique solution. Let y be a solution of the system Ax = b. Let z0 be
a solution of the system B̂z = −ŷ. Then x0 = y + Bz0 is a solution of the system
Ãx = b̃. Suppose that x∗ is a solution of the homogeneous system Ãx = 0. Then
x∗ = Bz∗ for some vector z∗. But B̂z∗ = 0 since 0 = x∗l1 = x

∗
l2
= . . . . Therefore

x∗ = 0. Hence the system Ãx = b̃ has a unique solution.

Proof of Theorem 2.3. For every m, the set Tm is denumerable. To prove this, we
note that any PL sphere can be obtained from the boundary of a simplex by finitely
many bistellar moves (see § 3.1). Hence there is an algorithm producing a sequence
of (m− 1)-dimensional oriented PL spheres with the following properties.
1) All the PL spheres of this sequence are non-symmetric.
2) If L ∈ Tm is non-symmetric, then L is either isomorphic or anti-isomorphic

to some PL sphere of this sequence.
3) No two PL spheres of this sequence can be either isomorphic or anti-isomorphic

to each other.
We denote such sequences of PL spheres for m = n + 1, n and n − 1 respec-

tively by (K1, K2, . . . ), (L1, L2, . . . ) and (J1, J2, . . . ). Let Q1, Q2, . . . , Qk be ori-
ented combinatorial manifolds whose bordism classes form a basis in Ωn ⊗ Q.
We put Qj = Kj−k for j > k. We identify a function f ∈ T n(Q) with the vector
vf = (f(L1), f(L2), . . . )

T, and a function g∈T n−1(Q) with the vector vg =
(g(J1), g(J2), . . . )

T. Let B be the matrix of the linear operator δ : T n−1(Q) →
T n(Q). Obviously, B is row finite. To any f ∈ T n(Q) we assign the vector
wf = (ε(f�(Q1)), ε(f�(Q2)), . . . )

T. We consider the linear operator taking vf to wf
for every f ∈ T n(Q) and denote the matrix of this operator by A. Evidently,
A and B are computable and AB = 0.
We put p = �(ψ). It follows from Theorem 2.2 that f ∈ T n(Q) is a local

formula representing ψ if and only if Avf = b, where bj = p(|Qj|). The vector b
is computable since bj = 0 for j > k. Any solution of the system Ax = 0 is
equal to Bvg for some g. Hence the system Ax = b satisfies all the conditions of
Proposition 2.8. Therefore this system has a computable solution x0. The required
local formula f is given by f(Li) = x

0
i .

Remark 2.4. This proof actually contains an explicit algorithm for computing the
values f(L).

§ 3. An explicit local formula for the first Pontryagin class
An explicit local formula for the first Pontryagin class is given in § 3.3. In § 3.1 we

construct some objects needed for this formula. In particular, we define graphs Γn
and a homomorphism s : T 4(Q)→ C1

Z2
(Γ2;Q), where C1Z2(Γ2;Q) is the group of one-

dimensional equivariant cochains of Γ2. In § 3.2 we find generators for H1(Γ2;Z).
A sketch of the proof of the main theorem is given in § 3.3. Some parts of the proof
are postponed until §§ 3.4 and 3.5.
3.1. Bistellar moves. Let K be a combinatorial manifold. Suppose that there
is a simplex ∆1 ∈ K such that link∆1 = ∂∆2 is the boundary of a simplex.
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(Obviously, ∆2 does not belong to K.) Then ∆1 ∗ ∂∆2 is a full subcomplex of K.
The bistellar move associated with the simplex ∆1 is the operation transforming
K to the simplicial complex

β(K) = (K \ (∆1 ∗ ∂∆2)) ∪ (∂∆1 ∗∆2).

If dim∆ = 0, then we assume that ∂∆ = ∅. We assume that ∆ ∗ ∅ = ∆ for
any simplex ∆. Then stellar subdivisions of maximal simplices and inverse stellar
subdivisions of maximal simplices are bistellar moves. The combinatorial manifolds
K and β(K) are PL homeomorphic for any bistellar move β. Pachner [10] has
proved that two combinatorial manifolds are PL homeomorphic if and only if there
is a sequence of bistellar moves transforming the first into the second (see also [11]).
Specifically, for any two PL spheres of the same dimension there is a sequence of
bistellar moves transforming the first into the second.
For any positive integer n we define a graph Γn in the following way. The vertex

set of Γn is the set Tn+1. Suppose that L1, L2 ∈ Tn+1. Let β1 and β2 be bistellar
moves transforming L1 into L2 that are associated with the simplices ∆1 and ∆2
respectively. We say that β1 and β2 are equivalent if there is an automorphism of L1
taking ∆1 to ∆2. Let L1 and L2 be two different vertices of Γn. The edges of Γn with
endpoints L1 and L2 are in one-to-one correspondence with the equivalence classes
of bistellar moves transforming L1 into L2. Let us now describe the set of edges
both of whose endpoints coincide with some vertex L of Γn. For any bistellar move
β we denote the inverse bistellar move by β−1. A bistellar move β transforming L
into itself is said to be inessential if β is equivalent to β−1, and essential otherwise.
We assign no edges of Γn to equivalence classes of inessential bistellar moves. The
equivalence classes of essential bistellar moves transforming L into itself can be
divided into pairs of mutually inverse equivalence classes. The edges of Γn both of
whose endpoints coincide with L are in one-to-one correspondence with such pairs
of equivalence classes. The graph Γn is connected by Pachner’s theorem. For any
essential bistellar move β, we denote the corresponding edge of Γn by eβ . Then the
edges eβ and eβ−1 coincide but have opposite orientations.
Let C∗(Γn;Z) be the cellular chain complex of Γn. The group Z2 acts on

Γn by reversing the orientations of all PL spheres. The group Z2 acts on the
group Q by reversing sign. Let C∗

Z2
(Γn;Q) = HomZ2(C∗(Γn;Z),Q) be the equi-

variant cochain complex of Γn. (This means that the action of Z2 on the group
Z is trivial.) We denote the differential of the complex C∗

Z2
(Γn;Q) by d. Let

H∗
Z2
(Γn;Q) = H∗(C∗Z2(Γn;Q)) be the equivariant cohomology of Γn. We have a

canonical isomorphism

H1Z2(Γn;Q)
∼= HomZ2(H1(Γn;Z),Q).

Evidently, C0
Z2
(Γn−1;Q) = T n(Q). Hence we have the differential

δ : C0
Z2
(Γn−1;Q)→ C0Z2(Γn;Q).

Suppose that β is a bistellar move transforming L1 into L2, where L1, L2 ∈ Tn+1.
We may assume that L1 and L2 are simplicial complexes on the same vertex set V .
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Indeed, this is true whenever β is associated with a simplex whose dimension is
neither 0 nor n. Otherwise we assume that one of the two simplicial complexes
contains a vertex v0 which is not a simplex of this complex. For any vertex v ∈ V
the bistellar move β either does not change the link of v or induces a bistellar
move βv transforming linkL1 v into linkL2 v. Let W ⊂ V be the set of all vertices v
such that the bistellar move βv is essential. (We assume that v0 /∈ W .) The
differential δ : C1

Z2
(Γn−1;Q)→ C1Z2(Γn;Q) is given by

(δh)(eβ ) =
∑
v∈W
h(eβv ).

It is easy to show that δ2 = 0 and δd = dδ.

We put Cj,n = Cj
Z2
(Γn−1;Q). Then C∗,∗ is a bigraded complex. We have

bideg d = (1, 0) and bideg δ = (0, 1). Let Z∗,∗d , B
∗,∗
d , and H

∗,∗
d be respectively

the cocycle group, the coboundary group, and the cohomology group of the com-
plex C∗,∗ with respect to the differential d. Let Z∗,∗δ , B

∗,∗
δ , and H

∗,∗
δ be respec-

tively the cocycle group, the coboundary group, and the cohomology group of the
complex C∗,∗ with respect to the differential δ. The graph Γn−1 is connected.

Hence H0,nd = 0. Therefore d : C0,n→ C1,n is a monomorphism.
Suppose that L1, L2 ∈ Tn. Let β, V and W be as above. Suppose that the

bistellar move β replaces the subcomplex ∆1 ∗ ∂∆2 ⊂ L1 by the subcomplex
∂∆1 ∗ ∆2 ⊂ L2. We consider the cone CL1 with vertex u1 and the cone CL2
with vertex u2. Let Lβ be the simplicial complex on the set V ∪ {u1, u2} given
by Lβ = CL1 ∪ CL2 ∪ (∆1 ∗ ∆2). Then Lβ is an n-dimensional PL sphere. We
choose the orientation of Lβ in such a way that the induced orientation of linku2
coincides with the given orientation of L2. Then Lβ ∈ Tn+1. If β1 and β2 are equiv-
alent bistellar moves, then the PL spheres Lβ1 and Lβ2 are isomorphic. The PL
spheres Lβ and Lβ−1 are anti-isomorphic. If β is inessential, then Lβ is symmetric.
Let the homomorphism s : C0,n+1 → C1,n be given by s(f)(eβ ) = f(Lβ).
Since δd = dδ, we see that d : C0,∗ → C1,∗ is a chain homomorphism of complexes

with differential δ.

Proposition 3.1. The homomorphism s is a chain homotopy between the chain
homomorphisms d and 0 of C0,∗ to C1,∗, that is, d = δs+ sδ.

Proof. Suppose that f ∈ C0,n, L1, L2 ∈ Tn, and β is a bistellar move transform-
ing L1 into L2. For any v ∈ V \W , the link of v in Lβ is symmetric. For any v ∈W ,
the link of v in Lβ is isomorphic to −Lβv . The links of u1 and u2 are isomorphic
to −L1 and L2 respectively. Hence,

s(δf)(eβ ) = (δf)(Lβ ) = −
∑
v∈W
f(Lβv ) + f(L2)− f(L1)

= −
∑
v∈W
s(f)(eβv ) + f(∂eβ ) = −δs(f)(eβ ) + df(eβ).

Consequently, df = δs(f) + s(δf).
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We denote by An the subgroup of C1,n such that h ∈ An if and only if δh ∈
B1,n+1d .

Proposition 3.2. The homomorphism s|Z0,nδ is a monomorphism and s(Z0,nδ ) ⊂
An−1.

Proof. It follows from Proposition 3.1 that

d
∣∣
Z0,nδ
= δs
∣∣
Z0,nδ
.

Since d is a monomorphism, we see that s
∣∣
Z0,nδ

is a monomorphism. If f ∈ Z0,nδ ,
then δs(f) = df . Hence s(f) ∈ An−1.

Corollary 3.1. We have Z0,3δ = 0. Hence H
0,3
δ = 0.

Proof. Γ1 is isomorphic to the graph with vertex set {3, 4, 5, 6, . . .} such that for
any k there is a unique edge with endpoints k and k+1. The action of Z2 is trivial.
Therefore C1,2 = 0. By Proposition 3.2, there is a monomorphism from Z0,3δ to C

1,2.

Hence Z0,3δ = 0.

Proposition 3.3. The homomorphism s
∣∣
B0,4δ
is an isomorphism of B0,4δ onto B1,3d .

Proof. We have C1,2 = 0. Therefore, dg = s(δg) for every g ∈ C0,3. The proposi-
tion follows.

Thus s induces a monomorphism

s∗ : H0,4δ → H1,3d = H
1
Z2
(Γ2;Q).

Let Ã3 be the kernel of the homomorphism δ∗ : H1,3d → H1,4d induced by the chain

homomorphism δ : C∗,3 → C∗,4. Then s∗(H0,4δ ) ⊂ Ã3.

3.2. Generators of H1(Γ2;Z)H1(Γ2;Z)H1(Γ2;Z). In what follows, if we say that {u1, u2, . . . , ul}
is a simplex of an (l − 1)-dimensional oriented simplicial complex L, we mean
that the sequence of vertices u1, u2, . . . , ul provides the given orientation of L.
If we show a 2-dimensional simplicial complex in a figure, then we mean
that the orientation is clockwise. For any cycle γ ∈ Z1(Γn;Z) let γ̄ ∈ H1(Γn;Z) be
the homology class represented by γ. Suppose that L is an oriented 2-dimensional
PL sphere. An edge e ∈ L is said to be admissible if there is a bistellar move
associated with e.

Let ∆1,∆2 ∈ L be two different triangles. We apply to L the bistellar move
associated with ∆1 and denote by v1 the new vertex created. Then we apply to
the resulting PL sphere the bistellar move associated with ∆2 and denote by v2 the
new vertex created. Then we apply to the resulting PL sphere the bistellar move
associated with v1. Finally, we apply to the resulting PL sphere the bistellar
move associated with v2. Let α1(L,∆1,∆2) be the resulting cycle in the graph
Γ2 (see Fig. 1, a, b, c).
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Figure 1 Figure 2

There are three possibilities: ∆1 and ∆2 have 0, 1 or 2 common vertices. Let S01
be the set of all homology classes ᾱ1(L,∆1,∆2) ∈ H1(Γ2,Z) such that the triangles
∆1 and ∆2 have no common vertices (see Fig. 1, a). We denote by S11 (p, q) the set
of all homology classes ᾱ1(L,∆1,∆2) such that

1) the triangles ∆1 and ∆2 have a unique common vertex x (see Fig. 1, b),

2) there are exactly p triangles containing x and situated in the angle ϑ1,

3) there are exactly q triangles containing x and situated in the angle ϑ2.

We denote by S21 (p, q) the set of all homology classes ᾱ1(L,∆1,∆2) such that
1) the triangles ∆1 and ∆2 have a common edge e with endpoints x and y such

that the triangle ∆1 is on the right when we pass along e from x to y (see Fig. 1, c),

2) there are exactly p triangles that contain x and coincide with neither ∆1
nor ∆2,

3) there are exactly q triangles that contain y and coincide with neither ∆1
nor ∆2.

Suppose that ∆ ∈ L is a triangle, e ∈ L is an admissible edge, and e �⊂ ∆. We
denote by α2(L,∆, e) the cycle shown in Fig. 2. Let S02 be the set of all homology
classes ᾱ2(L,∆, e) such that the triangle ∆ has no vertices in common with ∆1 or
∆2, where ∆1 and ∆2 are the two triangles containing e (see Fig. 2, a). We denote
by S12 (p, q) the set of all homology classes ᾱ2(L,∆, e) such that
1) the triangles ∆ and ∆1 have a unique common vertex x (see Fig. 2, b),

2) there are exactly p triangles containing x and situated in the angle ϑ1,

3) there are exactly q triangles containing x and situated in the angle ϑ2.
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We denote by S22 (p, q) the set of all homology classes ᾱ2(L,∆, e) such that
1) the triangles ∆ and ∆1 have a common edge e1 with endpoints x and y (see

Fig. 2, c),
2) there are exactly p triangles that contain x and coincide with neither ∆ nor

∆1,
3) there are exactly q triangles that contain y and coincide with none of the

triangles ∆, ∆1, ∆2.
Suppose that e1 and e2 are admissible edges such that the bistellar move asso-

ciated with e1 takes e2 to an admissible edge and there is no triangle containing
both e1 and e2. We denote by α3(L, e1, e2) the cycle shown in Fig. 3. Let S03 be
the set of all homology classes ᾱ3(L, e1, e2) such that any triangle containing the
edge e1 has no vertices in common with any triangle containing the edge e2 (see
Fig. 3, a). We denote by S13 (p, q) the set of all homology classes ᾱ3(L, e1, e2) such
that
1) the triangles ∆1 and ∆2 have a unique common vertex x (see Fig. 3, b),
2) there are exactly p triangles containing x and situated in the angle ϑ1,
3) there are exactly q triangles containing x and situated in the angle ϑ2.
We denote by S23 (p, q) the set of all homology classes ᾱ3(L, e1, e2) such that
1) the triangles ∆1 and ∆2 have a common edge with endpoints x and y (see

Fig. 3, c),
2) there are exactly p triangles that contain x and coincide with none of the

triangles ∆1, ∆2, and ∆4,
3) there are exactly q triangles that contain y and coincide with none of the

triangles ∆1, ∆2, ∆3.
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Figure 3

Suppose that x, y, z are vertices of L and there is a (unique) vertex u such that
{u, x, y}, {u, y, z}, and {u, z, x} are (oriented) triangles of L. Then we denote
by α4(L, x, y, z) the cycle shown in Fig. 4. Let S4(p, q, r) be the set of all homology
classes ᾱ4(L, x, y, z) such that there are exactly p, q, and r triangles that contain
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the vertices x, y, and z respectively and coincide with none of the triangles {u, x, y},
{u, y, z}, {u, z, x}.
Suppose that x, y, z, u are vertices of L such that the full subcomplex spanned

by the set {x, y, z, u} consists of the triangles {x, y, z} and {x, z, u}, and their edges
and vertices. Then we denote by α5(L, x, y, z, u) the cycle shown in Fig. 5. Let
S5(p, q, r, k) be the set of all homology classes ᾱ5(L, x, y, z, u) such that there are
exactly p, q, r, and k triangles that contain the vertices x, y, z, and u respectively
and coincide with neither {x, y, z} nor {x, z, u}.
Suppose that x, y, z, u, v are vertices of L such that the full subcomplex spanned

by the set {x, y, z, u, v} consists of the triangles {x, y, z}, {x, z, u}, and {x, u, v},
and their edges and vertices. Then we denote by α6(L, x, y, z, u, v) the cycle shown
in Fig. 6. Let S6(p, q, r, k, l) be the set of all homology classes ᾱ6(L, x, y, z, u, v)
such that there are exactly p, q, r, k, and l triangles that contain the vertices x, y,
z, u, and v respectively and coincide with none of the triangles {x, y, z}, {x, z, u},
{x, u, v}.
We denote by S the union of all sets S01 , S11 (p, q), S21 (p, q), S02 , S12 (p, q), S22(p, q),

S03 , S13 (p, q), S23 (p, q), S4(p, q, r), S5(p, q, r, k), and S6(p, q, r, k, l).
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Proposition 3.4. The set S generates the group H1(Γ2,Z).
Proof. The proof of the proposition is based on the following statements.
1) Any 2-dimensional PL sphere can be realized as the boundary of a convex

simplicial polytope in R3.
2) Suppose that P0 and P1 are two convex simplicial polytopes in R3 with iso-

morphic boundaries. Then there is a continuous deformation Pt, t ∈ [0, 1], such
that Pt is a convex simplicial polytope isomorphic to P0 for every t ∈ [0, 1].
3) Suppose that L is a 2-dimensional PL sphere and e ∈ L is an admissible edge.

Then there is a convex polytope P ⊂ R3 containing a quadrilateral face F and such
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that all other faces of P are triangular, and L is isomorphic to the boundary of P
with F decomposed into two triangles.

These statements are proved in [12] (see also [13]).
We denote by T3,l the set of all oriented 2-dimensional PL spheres with at most

l vertices. Let Γ2,l be the full subgraph of Γ2 spanned by the set T3,l.
Let us consider an affine space R3l, l � 12. The points of this space are regarded

as rows y = (y1, y2, . . . , yl), yj ∈ R3. The points yj are called the coordinates of y.
We denote by P (y) the convex hull of the points y1, y2, . . . , yl. Let V (y) be obtained
from the set y1, y2 . . . , yl by deleting all points that belong to the interior of P (y).
(The set V (y) may contain multiple points.) We denote by Θ3l ⊂ R3l the subset
consisting of all y such that P (y) is not contained in a 2-dimensional plane. We
denote by Θ3l0 ⊂ Θ3l the subset consisting of all y such that the set V (y) is in general
position, that is, V (y) does not contain four points belonging to a 2-dimensional
plane. We denote by Θ3l−11 ⊂ Θ3l\Θ3l0 the subset consisting of all y such that V (y)
contains exactly one quadruple of points belonging to a 2-dimensional plane. We
denote by Θ3l−22,1 ⊂ Θ3l\

(
Θ3l0 ∪Θ3l−11

)
the subset consisting of all y such that V (y)

contains exactly two quadruples of points belonging to a 2-dimensional plane. We
denote by Θ3l−22,2 ⊂ Θ3l\

(
Θ3l0 ∪Θ3l−11

)
the subset consisting of all y such that V (y)

contains exactly one triple of points belonging to a line and such that four points
of V (y) belong to a 2-dimensional plane if and only if three of them belong to a line.
We denote by Θ3l−22,3 ⊂ Θ3l \

(
Θ3l ∪Θ3l−1

)
the set of all y such that V (y) contains

exactly one 5-tuple of points belonging to a 2-dimensional plane and such that four
points of V (y) belong to a 2-dimensional plane if and only if they are contained in
this 5-tuple. By definition, we put Θ3l−22 = Θ3l−22,1 ∪Θ3l−22,2 ∪Θ3l−22,3 . Then

dimΘ3l0 = 3l, dimΘ3l−11 = 3l − 1, dimΘ3l−22 = 3l− 2
dim
(
R3l \

(
Θ3l0 ∪Θ3l−11 ∪Θ3l−22

))
= 3l − 3.

It follows from statements 1)–3) that the set Θ3l0 ∪Θ3l−11 is connected. The group Sl
acts on Θ3l by permuting the coordinates.
To each point y ∈ Θ3l0 we assign the vertex of Γ2,l corresponding to the iso-

morphism class of the boundary of P (y). A sequence of bistellar moves (that is, a
path in Γ2,l) corresponds to each smooth curve y : [0, 1] → Θ3l0 ∪ Θ3l−11 transver-

sal to Θ3l−11 . This correspondence can obviously be extended to a well-defined
homomorphism

j : H1(Θ
3l
0 ∪Θ3l−11 ;Z)→ H1(Γ2,l;Z).

The following proposition is a consequence of statements 1)–3).

Proposition 3.5. Suppose that γ is a closed path in Γ2,l starting at the vertex
corresponding to the boundary of a tetrahedron. Then there is a curve y : [0, 1]→
Θ3l0 ∪Θ3l−11 transversal to Θ3l−11 such that y induces the path γ. The curve y can
be chosen in such a way that y(1) = νy(0) for some permutation ν ∈ Sl.

Proposition 3.6. Suppose that y0, y1 ∈ Θ3l0 are points such that P (y0) and P (y1)
are tetrahedra and νy0 = y1 for some permutation ν ∈ Sl. Then there is a smooth
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curve y : [0, 1]→ Θ3l0 ∪ Θ3l−11 transversal to Θ3l−11 such that y(0) = y0, y(1) = y1

and the curve y induces a cycle homologous to zero in Γ2,l.

Proof. We may assume without loss of generality that each coordinate of the
point yi either belongs to V (yi) or coincides with the barycentre of the tetra-
hedron P (y0) = P (y1). Since l � 12, we may assume that the permutation ν has
at least four fixed elements. Then there is a point y

1
2 ∈ Θ3l0 such that νy

1
2 = y

1
2 .

Let y :
[
0, 1
2

]
→ Θ3l0 ∪ Θ3l−11 be an arbitrary smooth curve transversal to Θ3l−11

such that y(0) = y0 and y
(
1
2

)
= y

1
2 . We put y(t) = νy(1 − t) for every t ∈

[
1
2 , 1
]
.

Smoothing the curve y in the neighbourhood of y
(
1
2

)
, we obtain the required curve.

It follows from Propositions 3.5 and 3.6 that j is an epimorphism. The group
H1(Θ

3l
0 ∪Θ3l−11 ;Z) is generated by circuits ωX around the connected components X

of the set Θ3l−22 . If X is a connected component of Θ3l−22,1 or Θ3l−22,3 , then either

j(ωX) ∈ S or −j(ωX) ∈ S. If X is a connected component of Θ3l−22,2 , then j(ωX)
can be represented by a cycle as shown in Fig. 7. Hence j(ωX) is the sum of two
generators belonging to S.

3.3. The formula. It follows from Theorem 2.1 that there is a unique generator
ϕ ∈ H4(T ∗(Q)) ∼= Q such that ϕ�(M) = p1(M) for any manifoldM . The following
theorem gives an explicit description of the generator ϕ.

Theorem 3.1. Suppose that c0 : S → Q is the function given by

c0(ᾱ) = 0, ᾱ ∈ S01 ∪ S02 ∪ S03 ,

c0(ᾱ) =
q − p

(p+ q + 2)(p+ q + 3)(p+ q + 4)
, ᾱ ∈ S11 (p, q) ∪ S12 (p, q)∪ S13 (p, q),

c0(ᾱ) =
q

(q + 2)(q + 3)(q + 4)
− p

(p+ 2)(p+ 3)(p+ 4)
, ᾱ ∈ S21 (p, q) ∪ S23(p, q),

c0(ᾱ) =
q

(q + 2)(q + 3)(q + 4)
+

p

(p+ 2)(p+ 3)(p+ 4)
, ᾱ ∈ S22 (p, q),

c0(ᾱ) =
1

(p+ 2)(p+ 3)
− 1

(q + 2)(q + 3)
+

1

(r + 2)(r + 3)
− 1
12
, ᾱ ∈ S4(p, q, r),

c0(ᾱ) =
1

(p+ 2)(p+ 3)
− 1

(q + 2)(q + 3)
− 1

(r + 2)(r + 3)

+
1

(k + 2)(k + 3)
, ᾱ ∈ S5(p, q, r, k),

c0(ᾱ) =
1

(p+ 2)(p+ 3)
+

1

(q + 2)(q + 3)
+

1

(r + 2)(r + 3)
+

1

(k + 2)(k + 3)

+
1

(l + 2)(l + 3)
− 1
12
, ᾱ ∈ S6(p, q, r, k, l).

Then there is a unique linear extension of c0 to H1(Γ2;Z). This extension is also
denoted by c0 and belongs to H

1
Z2
(Γ2;Q) = HomZ2(H1(Γ2;Z),Q). Then we have
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c0 = s
∗(φ). Thus s maps the affine space of all local formulae for the first Pon-

tryagin class isomorphically onto the affine space of all cocycles ĉ0 ∈ C1Z2(Γ2;Q)
representing c0.

Remark 3.1. Similar numbers appear in the solution of a quite different problem
in [14] (see also [15]), where Kazarian obtains a formula for the Chern-Euler class
of a circle bundle via singularities of the restrictions of a Morse function on the
total space to the fibres.
Let us describe how to make calculations using this theorem. We first choose

a representative ĉ0 of the class c0 to fix a local formula f for the first Pontryagin
class. Suppose that we want to calculate f(L), where L is an oriented 3-dimensional
PL sphere. Let β1, β2, . . . , βl be a sequence of bistellar moves transforming the
boundary of a 4-simplex into L. We denote by Lj the PL sphere obtained from ∂∆

4

by applying the bistellar moves β1, β2, . . . , βj−1. LetWj be the set of all vertices v ∈
Lj such that the bistellar move βj induces an essential bistellar move βjv of linkv.

Corollary 3.2. f(L) =
∑l
j=1

∑
v∈Wj ĉ0(eβjv ).

Proof. We have

f(Lj+1)− f(Lj ) = df(eβj ) = δĉ0(eβj) =
∑
v∈Wj

ĉ0(eβjv ).

To find a cycle whose Poincaré dual represents the first Pontryagin class of a
compact combinatorial manifold, we do not actually need to choose a cocycle ĉ0 on
the whole graph Γ2. It is sufficient to choose a cocycle representing the restriction
of c0 to some finite subgraph of Γ2.
To calculate the first Pontryagin number of an oriented 4-dimensional combina-

torial manifold K, we do not need to choose ĉ0 at all. Let L1, L2, . . . , Lk be the
links of all vertices of K. Let βi1, βi2, . . . , βili be a sequence of bistellar moves
transforming the boundary of a 4-simplex into Li. We denote by Lij the PL sphere
obtained from ∂∆4 by applying the bistellar moves βi1, βi2, . . . , βi,j−1. Let Wij be
the set of all vertices v ∈ Lij such that the bistellar move βij induces an essential
bistellar move βijv of linkv. We put

γ =
k∑
i=1

li∑
j=1

∑
v∈Wij

(eβijv − ẽβijv ) ∈ C1(Γ2;Z),

where ẽ is the edge of Γ2 such that the action of Z2 takes e to ẽ. It is easy to show
that γ is a cycle.

Corollary 3.3. The first Pontryagin number of K is equal to 12 c0(γ̄).

Proof. Suppose that ĉ0 ∈ C1Z2(Γ2;Q) is a cocycle representing c0. Then the first
Pontryagin number of K is equal to

k∑
i=1

f(Li) =
k∑
i=1

li∑
j=1

∑
v∈Wij

ĉ0(eβijv )

=
k∑
i=1

li∑
j=1

∑
v∈Wij

(
1

2
ĉ0(eβijv )−

1

2
ĉ0(ẽβijv )

)
=
1

2
ĉ0(γ) =

1

2
c0(γ̄).
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To use this formula in actual calculations, we must represent the cycle γ̄ as a
linear combination of elements of S.

Remark 3.2. Unlike the formula of Corollary 3.2, the formula of Corollary 3.3 is
non-local.

Sketch of proof of Theorem 3.1. Since

� : H∗(T ∗(Q))→ Hom(Ω∗,Q)

is an epimorphism, we see that dimH4(T ∗(Q)) � 1. On the other hand, we shall
prove in § 3.4 that for any cohomology class c ∈ Ã3 there is a λ ∈ Q such that
c(ᾱ) = λc0(ᾱ) for any ᾱ ∈ S. Therefore dim Ã3 � 1. But s∗ : H4(T ∗(Q)) → Ã3 is
a monomorphism. Hence,

dimH4(T ∗(Q)) = dim Ã3 = 1.

Therefore the cohomology class c0 is well defined, c0 ∈ Ã3 and s∗(ϕ) = λc0 for
some rational λ �= 0. We shall prove in § 3.5 that λ = 1.

Remark 3.3. This proof does not use the fact that � is a monomorphism. However,
it follows from the proof that � is a monomorphism in dimension 4.

3.4. The group Ã3̃A3̃A3. Let c be an arbitrary element of Ã3 ⊂ HomZ2(H1(Γ2;Z),Q).
Suppose that α = αi(L, . . . ) is a cycle as shown in one of Figs. 1–6. Let X(α) be

the set of all vertices denoted by x, y, z, u, v in the corresponding figure. (Some of
these letters are absent from some figures.) A generator ᾱ ∈ S is said to be regular
if the following conditions hold.
1)

⋃
a∈X(α)

star a is a full subcomplex of L.

2) If w /∈ X(α), a, b ∈ X(α) and {w, a}, {w, b} ∈ L, then {w, a, b} ∈ L.
Suppose that ᾱ1(L,∆1,∆2) ∈ S01 . Let K ∈ T4 be a PL sphere containing a

vertex u such that linku ∼= L and staru is a full subcomplex of K. We identify the
simplicial complexes linku and L. We put ∆̃1 = ∆1 ∪{u} and ∆̃2 = ∆2 ∪{u}. We
apply to K the bistellar move associated with the tetrahedron ∆̃1 and denote by z1
the new vertex created. Then we apply to the resulting PL sphere the bistellar move
associated with ∆̃2 and denote by z2 the new vertex created. Then we apply to the
resulting PL sphere the bistellar move associated with z1. Finally, we apply to
the resulting PL sphere the bistellar move associated with z2. We denote the
resulting cycle in Γ3 by γ. For every vertex v of K, a sequence of bistellar moves
transformingK into itself induces a sequence of bistellar moves transforming linkK v
to itself. Hence the cycle γ induces a cycle γv in Γ2. Then

δ∗(c)(γ̄) =
∑
v∈K
c(γ̄v).

We have δ∗(c) = 0 since c ∈ Ã3. The cycle γv is homologous to zero for any
vertex v ∈ K different from u, and γu coincides with α1(L,∆1,∆2). Hence
c(ᾱ1(L,∆1,∆2)) = 0. We similarly have c(ᾱ) = 0 for any ᾱ ∈ S02 ∪ S03 .
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Proposition 3.7. For any p, q > 0 the restriction of c to S11 (p, q) is a constant
function.

Proof. Suppose that ᾱ1(L
(i),∆

(i)
1 ,∆

(i)
2 ) ∈ S11 (p, q), i = 1, 2. Let x(i) be the common

vertex of the triangles ∆
(i)
1 and ∆

(i)
2 . We assume that ᾱ1(L

(1),∆
(1)
1 ,∆

(1)
2 ) is regular.

Let us show that there is a 3-dimensional oriented PL sphere K containing an edge
e with endpoints u and w such that
1) the link of e is a (p+ q + 2)-gon containing two edges denoted by e1 and e2,
2) the link of u is isomorphic to L(1), and this isomorphism takes the triangle

spanned by the vertex w and the edge ej to the triangle ∆
(1)
j , j = 1, 2,

3) the link of w is isomorphic to −L(2), and this isomorphism takes the triangle
spanned by the vertex u and the edge ej to the triangle ∆

(2)
j , j = 1, 2.

We consider a cone CL(1) with vertex u and a cone CL(2) with vertex w. We
identify the full subcomplex starx(1) ⊂ CL(1) with the subcomplex starx(2) ⊂
CL(2) in such a way that x(1) is identified with w, u is identified with x(2), and

the tetrahedron spanned by u and ∆
(1)
j is identified with the tetrahedron spanned

by w and ∆
(2)
j , j = 1, 2. Gluing CL

(1) and CL(2) along this identification of their

subcomplexes, we obtain a triangulation J of a 3-disc. Then K = J ∪∂J C(∂J) is a
PL sphere satisfying conditions 1)–3). (We have K ∈ T4 because any triangulation
of a 3-dimensional sphere is a PL sphere.) In this proof we need star x(1) ⊂ CL(1) to
be a full subcomplex (otherwise it may happen that J is not a simplicial complex).

Hence it is essential that ᾱ1
(
L(1),∆

(1)
1 ,∆

(1)
2

)
be regular. We shall omit proofs of

this kind in what follows.
We denote by ∆̃j the tetrahedron of K spanned by the edges e and ej . Let

the cycle γ be as above. Then the induced cycle γv is homologous to zero for
any vertex v ∈ L different from u and w. The cycle γu coincides with the
cycle α1

(
L(1),∆

(1)
1 ,∆

(1)
2

)
, and γv coincides with α1

(
−L(2),∆(2)1 ,∆

(2)
2

)
. Hence

c
(
ᾱ1
(
L(1),∆

(1)
1 ,∆

(1)
2

))
= c
(
ᾱ1
(
L(2),∆

(2)
1 ,∆

(2)
2

))
. To complete the proof, we note

that each set S11 (p, q) contains a regular generator.

We denote the value of the function c on the set S11 (p, q) by ρ(p, q).

Proposition 3.8. For any p, q > 0, the restriction of c to S21 (p, q) is a constant
function. Let τ(p, q) be the value of c on S21 (p, q). Then τ(p, q)+τ(q, r)+τ(r, p) = 0
for any p, q, r > 0.

Proof. Suppose that ᾱi(L
(1),∆

(1)
1 ,∆

(1)
2 ) ∈ S21 (p, q), r > 0. Let ᾱ1(L(2),∆

(2)
1 ,∆

(2)
2 ) ∈

S21 (q, r) and ᾱ1(L(3),∆
(3)
1 ,∆

(3)
2 ) ∈ S21 (r, p) be regular generators. There is a 3-

dimensional oriented PL sphere K containing a triangle ∆0 with vertices u
(1), u(2),

and u(3) such that
1) the link of u(i) is isomorphic to L(i),

2) the isomorphism L(i) → linku(i) takes ∆(i)j to the 2-dimensional face of ∆̃j
opposite to u(i), j = 1, 2 (here ∆̃1, ∆̃2 ∈ L are the two tetrahedra containing ∆0).
Arguing as in the proof of Proposition 3.7, we obtain

c
(
ᾱ1
(
L(1),∆

(1)
1 ,∆

(1)
2

))
+ c
(
ᾱ1
(
L(2),∆

(2)
1 ,∆

(2)
2

))
+ c
(
ᾱ1
(
L(3),∆

(3)
1 ,∆

(3)
2

))
= 0.
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We can replace the generator ᾱ1
(
L(1),∆

(1)
1 ,∆

(1)
2

)
by any generator belonging to

S21 (p, q). Hence the function c is constant on S21 (p, q). The equality τ(p, q) +
τ(q, r) + τ(r, p) = 0 follows.

Obviously, τ(p, q) = −τ(q, p). Therefore there is a function χ : Z>0 → Q such
that τ(p, q) = χ(q)−χ(p) for any p, q > 0. The function χ is unique up to a rational
constant. The function ρ maps Z>0 × Z>0 to Q. We extend ρ to Z�0 × Z�0 by
putting ρ(0, p) = χ(p), ρ(p, 0) = −χ(p), and ρ(0, 0) = 0.

Proposition 3.9. The function ρ satisfies the equations
(i) ρ(p, q) = −ρ(q, p),
(ii) ρ(p, q + r + 2) + ρ(q, r + p + 2) + ρ(r, p+ q + 2) = ρ(p, q + r + 1) + ρ(q, r +

p+ 1) + ρ(r, p+ q + 1).

Proof. Since α1(L,∆1,∆2) = −α1(L,∆2,∆1), we see that equation (i) holds for
p, q > 0. If p = 0 or q = 0, then equation (i) follows immediately from the
definition of ρ. Let L be an oriented simplicial 2-sphere containing a vertex x such
that there are exactly (p + q + r + 3) triangles containing x. Let ∆1, ∆2, and ∆3
be triangles containing x such that a clockwise circuit around x passes successively
through ∆1, r other triangles, ∆2, p other triangles, ∆3, q other triangles, and
again through ∆1. We denote by Lj the PL sphere obtained from L by applying
the bistellar move associated with ∆j. It is easy to show that

2∑
j=0

α1(Lj,∆j+1,∆j+2) =
2∑
j=0

α1(L,∆j+1,∆j+2),

where the sums of subscripts are understood modulo 3. Applying c to the homology
classes of both sides of this equality, we obtain equation (ii).

Proposition 3.10. Suppose that the function ρ : Z�0 × Z�0 → Q satisfies equa-
tions (i) and (ii). Then there are b1 ∈ Q and λ ∈ Q such that ρ(p, q) =

λ(q−p)
(p+q+2)(p+q+3)(p+q+4)

for every p, q > 0 and ρ(0, q) = λq
(q+2)(q+3)(q+4)

+ b1 for

every q > 0.

Proof. For any b1, λ ∈ Q, we easily see that the function given by these formulae
satisfies equations (i) and (ii). Thus it remains to prove that the function ρ is
uniquely determined by equations (i) and (ii) and the values ρ(0, 1) and ρ(1, 2).
Putting p = q = r = 0 and p = 1, q = r = 0 in (ii), we get ρ(0, 2) = ρ(0, 1) and
2ρ(0, 3)+ ρ(1, 2) = 2ρ(0, 2) respectively. Hence the values ρ(k, l) with k+ l � 3 are
uniquely determined by ρ(0, 1) and ρ(1, 2). Let us prove that the values ρ(k, l) with
k+ l = m, m � 4, are uniquely determined by the values ρ(k, l) with k+ l = m−1.
We consider equations (ii) for all triples (p, q, r) such that p + q + r + 2 = m.
On the left-hand side of every such equation, we replace all terms ρ(k, l) with
k > l by −ρ(l, k) and all terms ρ(k, k) by 0. The resulting system of equations
can be regarded as a system of linear equations in the variables ρ(0, m), ρ(1, m−1),
. . . , ρ(n−1, n+1) ifm = 2n and in the variables ρ(0, m), ρ(1, m−1), . . . , ρ(n−1, n) if
m = 2n− 1. We must prove that this system has a unique solution for any value of
the right-hand side, that is, the rank of the system is equal to n in both cases.
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To prove this, we shall find a subsystem of n equations such that the matrix
of this subsystem is non-singular. If m = 2n, then we consider the subsystem
consisting of the equations corresponding to the triples (p, q, r) = (m− 2− k, k, 0),
k = 0, 1, . . . , n−1. If m = 2n−1, then we consider the subsystem consisting of the
equations corresponding to the triples (p, q, r) = (m−2−k, k, 0), k = 0, 1, . . . , n−2
and the equation corresponding to the triple (p, q, r) = (m− 4, 1, 1). The matrices
of these subsystems are easily seen to be non-singular.

Since the function χ was defined up to a constant, we may assume that ρ(p, q) =
λ(q−p)

(p+q+2)(p+q+3)(p+q+4)
for every p, q � 0.

Suppose that ᾱ2(L,∆, e) ∈ S12 (p, q). Let ∆1, ∆2 and x be as in § 3.2. Let K
be an oriented 3-dimensional PL sphere containing a vertex u such that star u is
a full subcomplex of K and linku ∼= L. We identify the complexes linku and L.
We denote by ẽ, ∆̃, ∆̃1, and ∆̃2 the simplices of K spanned by the vertex u and
the simplices e, ∆, ∆1, and ∆2 respectively. We apply to K the bistellar move

associated with ∆̃. Then we apply to the resulting complex the bistellar
move associated with ẽ. Then we restore the tetrahedron ∆̃. Finally, we restore

the tetrahedra ∆̃1 and ∆̃2. We denote the resulting cycle in Γ3 by γ. The cycles γv
are homologous to zero for all vertices v except u and x. Since γ̄x ∈ S11 (q, p), we
have c(γ̄x) = ρ(q, p). Therefore,

c(ᾱ2(L,∆, e)) = c(γ̄u) = −c(γ̄x) = ρ(p, q).

Similarly, c(ᾱ) = ρ(p, q) for any ᾱ ∈ S13 (p, q).
Proposition 3.11. If ᾱ2(L,∆, e) ∈ S22 (p, q), then

c(ᾱ2(L,∆, e)) = ρ(0, p) + ρ(0, q) + b2,

where the number b2 ∈ Q is independent of p and q.
Proof. Suppose that ᾱ2(L

(0),∆(0), e(0)) ∈ S22 (r, q) is a regular generator. We define
the simplices ∆

(0)
1 , ∆

(0)
2 , e

(0), x(0), and y(0) in the same way as the simplices ∆1, ∆2,
e, x and y were defined in § 3.2 (see Fig. 2, c). There is an oriented 3-dimensional
PL sphere K containing tetrahedra ∆̃, ∆̃1 and ∆̃2 with the following properties.
1) The tetrahedra ∆̃ and ∆̃1 have a common 2-dimensional face. The tetrahe-

dra ∆̃1 and ∆̃2 have a common 2-dimensional face, which is denoted by ẽ. The

tetrahedra ∆̃, ∆̃1 and ∆̃2 have a common edge, which is denoted by ε. We denote
the endpoints of ε by u and v.
2) There is no edge connecting the vertices of ∆̃1 and ∆̃2 that are opposite to

the face ẽ.
3) The link of u is isomorphic to L. The isomorphism L → linku takes the

triangles ∆, ∆1 and ∆2 to the 2-dimensional faces of ∆̃, ∆̃1 and ∆̃2 (respectively)
that are opposite to u.
4) The link of v is isomorphic to −L(0). The anti-isomorphism L(0) → linkv

takes the triangles ∆(0), ∆
(0)
1 and ∆

(0)
2 to the 2-dimensional faces of ∆̃, ∆̃1 and ∆̃2

(respectively) that are opposite to v.
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Let the cycle γ be as in the previous case. We denote by w the vertex that belongs
to ∆̃ and ∆̃1 and coincides with neither u nor v. We have c(γ̄u)+ c(γ̄v)+ c(γ̄w) = 0
since γt is homologous to zero for every vertex t except for u, v and w. But c(γ̄w) =
−ρ(0, p) + ρ(0, r) since γ̄w ∈ S21(p, r). The cycle γu coincides with α2(L,∆, e), and
the cycle γv coincides with α2

(
−L(0),∆(0), e(0)

)
. Hence,

c(ᾱ2(L,∆, e))− c
(
ᾱ2
(
L(0),∆(0), e(0)

))
= ρ(0, p)− ρ(0, r).

Therefore the restriction of c to S22 (p, q) is a constant function. We denote the value
of c on S22 (p, q) by ξ(p, q). Then

ξ(p, q)− ξ(r, q) = ρ(0, p)− ρ(0, r).

If ᾱ2(L,∆, e) ∈ S22 (p, q), then −ᾱ2(−L,∆, e) ∈ S22 (q, p). Hence ξ(p, q) = ξ(q, p).
The proposition follows.

Suppose that ᾱ3(L, e1, e2) ∈ S23 (p, q). Let x, y, e, ∆1, ∆2, ∆3, ∆4 be as
in Fig. 3, c. Let K be an oriented 3-dimensional PL sphere containing a ver-
tex u such that staru is a full subcomplex of K and linku ∼= L. We identify the
complexes linku and L. We denote by ẽj , ∆̃j the simplices spanned by the ver-
tex u and the simplices ej , ∆j respectively. We assume that there are exactly r

triangles that contain e and are different from ∆̃1 and ∆̃2. We apply to K the bi-
stellar move associated with ẽ1. Then we apply to the resulting complex the bistellar

move associated with ẽ2. Then we restore the tetrahedra ∆̃1 and ∆̃3. Finally, we

restore the tetrahedra ∆̃2 and ∆̃4. We denote the resulting cycle in Γ3 by γ. The
cycle γv is homologous to zero for any vertex v except u, x and y. The cycle γu
coincides with α3(L, e1, e2). But γ̄x ∈ S22 (r, p) and (−γ̄y) ∈ S22(r, q). Therefore
c(ᾱ3(L, e1, e2)) = ρ(0, q) − ρ(0, p).
Let p12, p13, p14, p23, p24, p25, p34, p35, p36, p45, p46, p56 be integers greater than

2. Suppose that ωj ∈ Z1(Γ2;Z), j = 1, 2, . . . , 6 are cycles such that the following
conditions hold:
1) ω1 = α4(L1, x1, y1, z1), ω̄1 ∈ S4(p13, p14, p12),
2) ω2 = α5(L2, x2, y2, z2, u2), ω̄2 ∈ S5(p23, p12, p24, p25),
3) ω3 = α6(L3, x3, y3, z3, u3, v3), ω̄3 ∈ S6(p34, p13, p23, p35, p36),
4) ω4 = α6(L4, x4, y4, z4, u4, v4), ω̄4 ∈ S6(p34, p46, p45, p24, p14),
5) ω5 = α5(L5, x5, y5, z5, u5), ω̄5 ∈ S5(p45, p56, p35, p25),
6) ω6 = α4(L6, x6, y6, z6), ω̄6 ∈ S4(p46, p36, p56),
7) at least 5 of the generators ω̄j are regular.

We denote by L
(1)
j , j = 1, 6 the PL sphere obtained from Lj by the bistellar move

associated with uj. Here the vertex uj is defined as the vertex u in Fig. 4. There is
a 3-dimensional oriented PL sphere K containing vertices wj, j = 1, 2, . . . , 6 such
that the following conditions hold.
1) The full subcomplex spanned by the set {wj, j = 1, . . . , 6} consists of the

tetrahedra {w1, w2, w3, w4}, {w2, w3, w4, w5}, and {w3, w4, w5, w6} and all their
faces.
2) For any edge {wi, wj} ∈ K, i < j, there are exactly pij tetrahedra that

contain the edge {wi, wj} and coincide with none of the tetrahedra {w1, w2, w3, w4},
{w2, w3, w4, w5}, {w3, w4, w5, w6}.
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3) The links of the vertices wj can be identified with the complexes Lj for 1 <

j < 6 and the complexes L
(1)
j for j = 1, 6 so that the vertices are identified by the

formulae w1 = y2 = y3 = v4, w2 = z1 = z3 = u4 = u5, w3 = x1 = x2 = x4 = z5 =
y6, w4 = y1 = z2 = x3 = x5 = x6, w5 = u2 = u3 = z4 = z6, w6 = v3 = y4 = y5.
We apply to K the following sequence of bistellar moves.
1) We replace the tetrahedra {w1, w2, w3, w4} and {w2, w3, w4, w5} by the tetra-

hedra {w1, w2, w3, w5}, {w1, w3, w4, w5} and {w1, w4, w2, w5}.
2) We replace the tetrahedra {w1, w3, w4, w5} and {w3, w4, w5, w6} by the tetra-

hedra {w1, w3, w4, w6}, {w1, w4, w5, w6} and {w1, w5, w3, w6}.
3) We replace the tetrahedra {w1, w2, w3, w5} and {w1, w5, w3, w6} by the tetra-

hedra {w2, w3, w1, w6}, {w2, w1, w5, w6} and {w2, w5, w3, w6}.
4) We replace the tetrahedra {w1, w4, w2, w5}, {w1, w6, w4, w5} and {w1, w2,

w6, w5} by the tetrahedra {w1, w2, w6, w4} and {w2, w6, w4, w5}.
5) We replace the tetrahedra {w1, w2, w3, w6}, {w1, w3, w4, w6} and {w1, w4,

w2, w6} by the tetrahedra {w1, w2, w3, w4} and {w2, w3, w4, w6}.
6) We replace the tetrahedra {w2, w3, w4, w6}, {w2, w4, w5, w6} and {w2, w5,

w3, w6} by the tetrahedra {w2, w3, w4, w5} and {w3, w4, w5, w6}.
This sequence of bistellar moves transforms K into itself. Let γ be the resulting

cycle in Γ3. The cycle γwj is homologous to ωj for j = 3, 5, 6. The cycle γwj is
homologous to −ωj for j = 1, 2, 4. Therefore,

c(ω̄1) + c(ω̄2)− c(ω̄3) + c(ω̄4)− c(ω̄5)− c(ω̄6) = 0.

Consequently the restriction of c to each of the sets S4(p, q, r), S5(p, q, r, k),
and S6(p, q, r, k, l), p, q, r, k, l � 3, is a constant function. We denote the values
of c on these sets by η(p, q, r), ζ(p, q, r, k), and θ(p, q, r, k, l) respectively.

Proposition 3.12. There is a constant b5 ∈ Q such that

θ(p, q, r, k, l) =
λ

(p+ 2)(p+ 3)
+

λ

(q + 2)(q + 3)
+

λ

(r + 2)(r + 3)

+
λ

(k + 2)(k + 3)
+

λ

(l + 2)(l + 3)
+ b5

for any p, q, r, k, l� 3.
Proof. Suppose that

ᾱ6(L, x, y, z, u, v) ∈ S6(p, q, r, k, l), p, q, r, k, l� 3.

Let ∆ ∈ L be a triangle such that x is a vertex of ∆ but y, z, u, v are not. Let us go
clockwise round the vertex x. Suppose that we pass successively through ∆, through
p′ other triangles, through the triangles {x, y, z}, {x, z, u}, {x, u, v}, through p′′
other triangles, and then again through ∆. Then p′ + p′′ = p − 1. The cycle
α6(L, x, y, z, u, v) is a sequence of five bistellar moves. Let Lj (j = 0, 1, 2, 3, 4) be
the PL sphere obtained from L by the first j of these moves. In particular, L0 = L.

We denote by L
(1)
j the simplicial complex obtained from Lj by the bistellar move

associated with ∆. Let us define a graphG in the following way. The vertex set of G
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is the set
{
L0, . . . , L4, L

(1)
0 , . . . , L

(1)
4

}
. There are 15 edges in G. For each j, an edge

with endpoints Lj and L
(1)
j corresponds to the bistellar move that transforms Lj

into L
(1)
j and is associated with ∆. For each j, an edge with endpoints Lj and Lj+1

corresponds to the (j+1)st bistellar move in the cycle α6(L, x, y, z, u, v). Similarly,

for each j, an edge with endpoints L
(1)
j and L

(1)
j+1 corresponds to the (j + 1)st

bistellar move in the cycle α6(L
(1)
0 , x, y, z, u, v). Sums of subscripts are understood

modulo 5. There is a canonical map from G to Γ2. (This map is not necessarily
injective.) The graph G is isomorphic to the 1-skeleton of a pentagonal prism. The
circuit around a 2-dimensional face of this prism yields a cycle in Γ2. In this way,

we obtain the cycles α6(L, x, y, z, u, v), −α6(L(1)0 , x, y, z, u, v), α2(L0,∆, {x, z}),
α2(L1,∆, {u, x}), α2(L2,∆, {y, u}), α2(L3,∆, {v, y}), α2(L4,∆, {z, v}). The sum
of all these cycles is equal to zero. Consequently,

θ(p, q, r, k, l)− θ(p + 1, q, r, k, l)− ρ(p′, p′′ + 1) + ρ(p′ + 1, p′′) = 0.

Hence,

θ(p + 1, q, r, k, l)− θ(p, q, r, k, l) = − 2λ

(p + 2)(p+ 3)(p+ 4)
.

In addition, the function θ is cyclically symmetric. The proposition follows from
the equality

j∑
i=1

1

i(i+ 1)(i+ 2)
=
1

4
− 1

2(j + 1)(j + 2)
.

Proposition 3.13. The constant b2 in Proposition 3.11 is equal to zero.

Proof. Suppose that

ᾱ6(L, x, y, z, u, v) ∈ S6(p, q, r, k, l), p, q, r, k, l� 3.

Let ∆ be the triangle that contains the edge {x, y} and does not coincide
with {x, y, z}. Arguing as in the proof of Proposition 3.12, we see that

θ(p + 1, q+ 1, r, k, l)− θ(p, q, r, k, l)

= − 2λ

(p+ 2)(p+ 3)(p+ 4)
− 2λ

(q + 2)(q + 3)(q + 4)
− b2.

Hence b2 = 0.

The following two propositions are proved in the same way as Proposition 3.12.

Proposition 3.14. There is a constant b3 ∈ Q such that

η(p, q, r) =
λ

(p+ 2)(p+ 3)
− λ

(q + 2)(q + 3)
+

λ

(r + 2)(r + 3)
+ b3.

for any p, q, r � 3.



888 A. A. Gaifullin

Proposition 3.15. There is a constant b4 ∈ Q such that

ζ(p, q, r, k) =
λ

(p+ 2)(p+ 3)
− λ

(q + 2)(q + 3)

− λ

(r + 2)(r + 3)
+

λ

(k + 2)(k + 3)
+ b4.

for any p, q, r, k � 3.
Suppose that

ᾱ6(L, x, y, z, u, v) ∈ S6(p, q, r, k, l), p, q, r, k, l� 2.

Let ∆ be the triangle that contains the edge {x, y} and does not coincide with
{x, y, z}. Let L(1) be the PL sphere obtained from L by the bistellar move associated
with ∆. Arguing as in the proof of Proposition 3.13, we see that

c
(
ᾱ6
(
L, x, y, z, u, v

))
− c
(
ᾱ6
(
L(1), x, y, z, u, v

))
=

2λ

(p + 2)(p+ 3)(p+ 4)
+

2λ

(q + 2)(q + 3)(q + 4)
.

Consequently the restriction of c to S6(p, q, r, k, l) is a constant function and the
formula of Proposition 3.12 holds for any p, q, r, k, l � 2. Similarly the formulae of
Propositions 3.14 and 3.15 hold for any p, q, r � 2 and p, q, r, k � 2 respectively.
The formula of Proposition 3.14 also holds for p = q = r = 1.
Obviously, η(1, 1, 1) = 0 and ζ(2, 2, 2, 2) = 0. Hence, b3 = − λ12 and b4 = 0. It is

easy to show that θ(2, 2, 2, 2, 2) = −5η(2, 2, 2) = λ
6 . Therefore, b5 = −

λ
12 .

Thus, c(ᾱ) = λc0(ᾱ) for every ᾱ ∈ S.
3.5. The constant λλλ. We have s∗(ϕ) = λc0 for some λ ∈ Q. To prove that λ = 1,
we must show that the formula of Corollary 3.3 holds for at least one oriented
4-dimensional combinatorial manifold with non-zero first Pontryagin number.
Kühnel and Banchoff [16] constructed a triangulation K of CP 2 with 9 vertices

(see also [17]). The links of all vertices of this triangulation are isomorphic to the
same 3-dimensional oriented PL sphere L. L is one of the two 3-dimensional PL
spheres with 8 vertices that are not polytopal spheres (see [18]). One can number
the vertices of L in such a way that the 3-dimensional simplices are given by

1243 3476 5386 7165
1237 3465 4285 1785
1276 4576 4875 1586
2354 2385 4817 1682
2376 2368 4371 1284

(The order of the vertices in each simplex is chosen in such a way that the signature
of CP 2 with the corresponding orientation is equal to +1.)
We consider the following sequence of nine bistellar moves.
1) We replace the simplices 1243, 1237, and 4371 by the simplices 1247 and 3274.
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2) We replace the simplices 2354, 2385, and 4285 by the simplices 2384 and 3584.
3) We replace the simplices 7165, 1785, and 1586 by the simplices 1786 and 5687.
4) We replace the simplices 1786, 1682, and 1276 by the simplices 1278 and 6287.
5) We replace the simplices 1247, 1278, 1284, and 4817 by the simplex 2487.
6) We replace the simplices 3274, 2384, and 2487 by the simplices 2387 and 3487.
7) We replace the simplices 2387, 6287, 2376, and 2368 by the simplex 6387.
8) We replace the simplices 3465, 5386, and 3584 by the simplices 4386 and 5486.
9) We replace the simplices 4386, 6387, 3476, and 3487 by the simplex 6487.
This sequence transforms L into the boundary of a 4-dimensional simplex. Using

this sequence, one can check the formula of Corollary 3.3 by direct calculation.

Corollary 3.4. Suppose that f is a local formula representing ϕ. Then f(L) = 1
3 .

§ 4. The denominators of the values of the local formulae
Suppose that f ∈ T n(Q) is a local formula. Let us estimate the denominator

of f(L) via the number of vertices of L. As in § 3.2, let Tn,l be the set of all oriented
(n − 1)-dimensional PL spheres with at most l vertices. We denote by denl(f) the
least common denominator of all the f(L), L ∈ Tn,l.

4.1. An upper bound. Let us prove the following theorem.

Theorem 4.1. Suppose that ψ ∈ Hn(T ∗(Q)) is an arbitrary cohomology class.
Then there are a local formula f representing ψ and an integer constant b �= 0 such
that the number denl(f) is a divisor of b(l+ 1)! for every l � n.

Proof. We put p = �(ψ) and denote the corresponding characteristic class of block
bundles also by p. We define functions g, h, f1 and a local formula f representing ψ
as in § 2.3. There is a positive integer b1 such that the characteristic class b1p
belongs to the image of the natural homomorphismHn(BP̃Ln;Z)→ Hn(BP̃Ln;Q).
Then the function g can be chosen in such a way that b1g(J) is an integer for
any totally ordered triangulation J of an n-disc. Hence the denominator of the

value f(L) = h(CL)−h(−CL)
2

is a divisor of 2b1(l+ 1)! for every L ∈ Tn,l.

4.2. A lower bound. Let us prove the following theorem.

Theorem 4.2. Let f be an arbitrary local formula representing the generator ϕ of
the group H4(T ∗(Q)). Then the number denl(f) is divisible by the least common
multiple of the numbers 1, 2, 3, . . . , l− 3 for any even l � 10.

Proof. We put l = 2k. We consider a convex (l−5)-gon with vertices v1, v2, . . . , vl−5.
Suppose that L0 is an arbitrary triangulation of this (l− 5)-gon such that the ver-
tex set of L0 coincides with the set {v1, v2, . . . , vl−5}. We add to L0 a vertex v0
and the triangles {v0, v1, v2}, {v0, v2, v3}, . . . , {v0, vl−5, v1}. Thus we obtain a two-
dimensional PL sphere L. We orient this PL sphere in such a way that the trian-
gle {v0, v1, v2} is positively oriented.We putα=α1(L, {v0, v1, v2}, {v0, vk−2, vk−1}).
Then ᾱ ∈ S11 (k − 4, k− 3). Therefore,

c0(ᾱ) =
1

(l − 5)(l − 4)(l − 3) .
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We put ĉ0 = s(f). Let the cycle α consist of the bistellar moves β1, β2, β3,
and β4. Then

4∑
i=1

f(Lβi ) =
4∑
i=1

ĉ0(eβi) = c0(ᾱ).

Hence the least common denominator of the values f(Lβi ) is divisible by (l − 5)
(l − 4)(l − 3). Evidently, Lβi ∈ T4,l. Therefore denl(f) is divisible by
(l − 5)(l − 4)(l − 3) for any even l � 10. But denl(f) is divisible by denm(f)
for any m < l. Consequently denl(f) is divisible by the least common multiple of
the numbers 5, 6, . . . , l − 3 for any even l � 10. It remains to prove that den10(f)
is divisible by 4.
Suppose that L is a two-dimensional PL sphere on the set {v0, v1, . . . , v6} such

that L consists of the triangles {v0, v1, v6}, {v1, v2, v6}, {v2, v0, v6}, {v0, v2, v3},
{v0, v3, v4}, {v0, v4, v5}, {v0, v5, v1}, {v1, v5, v4}, {v2, v1, v4}, {v3, v2, v4}, and
their edges and vertices. Then c0(ᾱ4(L, v0, v1, v2)) = η(4, 3, 3) = − 584 . Let the
cycle α4(L, v0, v1, v2) consist of the bistellar moves β1, β2 and β3. Then the least
common multiple of the values f(Lβi ), i = 1, 2, 3 is divisible by 4. To complete
the proof, we note that Lβi ∈ T4,10, i = 1, 2, 3.
4.3. Local formulae with coefficients in subgroups of QQQ. We obviously have
T 1(G) = 0 and T 2(G) = 0 for any Abelian group G that contains no elements
of order 2. By Corollary 3.1, the group T 3(Q) does not contain non-zero local
formulae. Hence the group T 3(G) does not contain non-zero local formulae for any
subgroup G ⊂ Q.
Theorem 4.3. We have H4(T ∗(G)) = 0 for any proper subgroup G ⊂ Q.
Proof. Suppose that f ∈ T 4(Q) is a local formula which is not a coboundary. It
follows from Theorem 4.2 that for any positive integer q there is a positive integer l
such that denl(f) is divisible by q. Therefore, if f ∈ T 4(G) is a local formula, then
there is a g ∈ T 3(Q) such that f = δg. It remains to prove that g ∈ T 3(G). Recall
that s(f) = dg ∈ C1

Z2
(Γ2;Q). The value of the cochain s(f) = dg on every edge

of Γ2 belongs to G since f ∈ T 4(G). Hence g ∈ T 3(G).

§5. Decompositions into simple cells
In this section all polyhedra are supposed to be compact and all manifolds are

supposed to be compact manifolds with or without boundary. We denote by L′ the
barycentric subdivision of a simplicial complex L.

5.1. DDD-structures. Suppose that L is an (n − 1)-dimensional PL sphere and
τ �= ∅ is a simplex of L. Let Sτ be the set of barycentres of all simplices σ ⊇ τ ,
σ ∈ L. We denote by Qτ the full subcomplex of L′ spanned by Sτ . We assume
that Q∅ = CL

′. Then dimQτ = n − 1 − dim τ . (We assume that dim∅ = −1.)
The simple cell Q dual to L is the simplicial complex CL′ with the decomposition
into closed subsets Qτ . The subsets Qτ are called faces of the simple cell Q. Faces
of codimension one are called facets. The vertex of the cone CL′ is called the
barycentre of Q. The barycentre of the face Qτ is the barycentre of the simplex
τ ∈ L. The triangulation CL′ is called the barycentric subdivision of the simple
cell Q. Obviously, Qτ is a simple cell dual to link τ . If L is the boundary of a
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convex simplicial polytope, then Q is the dual simple polytope. In particular, the
simplex ∆n and the cube In are simple cells.
A simple cell is always the simple cell dual to some PL sphere. An isomorphism

of two simple cells is an isomorphism of their barycentric subdivisions taking each
face of the first onto some face of the second. Evidently, two simple cells dual to
PL spheres L1 and L2 are isomorphic if and only if L1 and L2 are isomorphic. Let
us consider several simple cells and glue them together along isomorphisms of their
faces. We allow two simple cells to be glued along several faces, but we do not allow
two different vertices of a simple cell to become identified by this gluing. Then we
obtain a complex of simple cells. It is easy to define the notions of barycentric
subdivision and isomorphism for complexes of simple cells.

Definition 5.1. A decomposition of a polyhedron P into simple cells is a pair
(K, h), where K is a complex of simple cells and h : P → K is a homeomorphism.
(We usually identify P and K.) Two decompositions (K1, h1) and (K2, h2) of P
into simple cells are said to be isomorphic if there is an isomorphism i : K1 → K2
such that i ◦ h1 = h2. In what follows, decompositions are always understood as
decompositions into simple cells unless otherwise stated.

Suppose that Y is a decomposition of a polyhedron P into simple cells. Let us
consider a subset R ⊂ P such that R is the union of several (closed) cells of Y . The
corresponding decomposition of R into simple cells is called the restriction of Y
to R.

Definition 5.2. Two decompositions Y1 and Y2 of P into simple cells are said
to be equivalent if there is a decomposition X of P × [0, 1] into simple cells such
that the restriction of X to P × {0} is isomorphic to Y1 and the restriction of X
to P × {1} is isomorphic to Y2.

An equivalence class of decompositions of P into simple cells is called a D-
structure on P . We denote by D(P ) the set of all decompositions of P into simple
cells. Let D(P ) be the set of all D-structures on P .
We denote by dimx P the local dimension of P at a point x ∈ P . The following

proposition will be proved in § 5.2.

Proposition 5.1. Suppose that P1, P2 are polyhedra with dimy P2 � dimP1 for
every y ∈ P2, R ⊂ P1 is a closed piecewise-linear subset, and Y2 ∈ D(P2),
X ∈ D(R). Let h : P1 → P2 be a continuous map taking each cell of X iso-
morphically onto some cell of Y2. Then one can find a decomposition Y1 ∈ D(P1)
and a piecewise-linear map g : P1 → P2 such that
1) X is the restriction of Y1 to R,
2) g is homotopic to h, the homotopy being constant on R,
3) g maps each cell of Y1 isomorphically onto some cell of Y2.

The direct product of two decompositions Y1 ∈ D(P1) and Y2 ∈ D(P2) is the
decomposition Y1 × Y2 ∈ D(P1 × P2) whose cells are given by Q1 ×Q2, where Q1
is a cell of Y1 and Q2 is a cell of Y2. If Y1 and Ỹ1 are equivalent, then Y1 × Y2
and Ỹ1 × Y2 are equivalent. Hence the direct product Y1 × Y2 ∈ D(P1 × P2) of
D-structures Y1 ∈ D(P1) and Y2 ∈ D(P2) is well defined.
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Let h : P1 → P2 be a continuous map. Let us define the pullback h∗ : D(P2) →
D(P1) in the following way. We consider an arbitrary D-structure Y2 ∈ D(P2).
Suppose that n is a positive integer with dimy(P2 × In) � dimP1 for every y ∈
P2 × In, and Y2 is an arbitrary decomposition in the equivalence class Y2. By
Proposition 5.1, one can find a decomposition Y1 ∈ D(P1) and a map g : P1 →
P2 × In homotopic to h × pt : P1 → P2 × In such that g maps each cell of Y1
isomorphically onto some cell of Y2 × In. We denote the equivalence class of Y1
by h∗Y2 and call it the pullback of Y2.

Proposition 5.2. The D-structure h∗Y2 depends on Y2 and h only and not on Y2,
n or g.

Proof. Let Ỹ1 ∈ D(P1) be the decomposition obtained by taking Ỹ2, ñ and g̃
instead of Y2, n and g respectively. We claim that Y1 and Ỹ1 are equivalent. Indeed,
first of all, there is a standard embedding of P2×In in P2×Im with m > n, and Y1
is not changed if we replace n by m and g by the composite of g and this standard
embedding. Therefore we can assume that n = ñ � dimP1 + 1.
Since Y2 and Ỹ2 are equivalent, we see that there is an X2 ∈ D(P2 × In × [0, 1])

whose restrictions to the subsets P2 × In × {0} and P2 × In × {1} are isomorphic
to Y2 and Ỹ2 respectively. Let G : P1 × [0, 1]→ P2 × In be a homotopy between g
and g̃. We define a map Ĝ : P1 × [0, 1]→ P2 × In × [0, 1] by Ĝ(x, t) = (G(x, t), t).
We consider the decomposition Y1 of P1×{0} and the decomposition Ỹ1 of P1×{1}.
The polyhedron P1× [0, 1], its subset P1×{0}�P1×{1} and the map Ĝ satisfy all
conditions of Proposition 5.1. Therefore there is a decompositionX1 ∈ D(P1×[0, 1])
such that the restrictions of X1 to P1×{0} and P1×{1} are isomorphic to Y1 and
Ỹ1 respectively. Hence Y1 and Ỹ1 are equivalent, as required.

Obviously, the pullback h∗ remains unchanged under a homotopy of h. It is
easy to show that (h2 ◦ h1)∗ = h∗1 ◦ h∗2 for any continuous maps h1 : P1 → P2 and
h2 : P2 → P3. The direct sum of two D-structures Y1,Y2 ∈ D(P ) is the D-structure

Y1 ⊕Y2 = d∗(Y1 × Y2),

where d : P ↪→ P × P is the diagonal map.
Any triangulation of a polyhedron P is a decomposition into simple cells. Any

two triangulations of P are equivalent since any triangulation of P ×{0}�P ×{1}
can be extended to a triangulation of P × [0, 1]. Thus the set D(P ) contains
a distinguished D-structure EP corresponding to triangulations of P . Obviously,
h∗EP2 = EP1 for any map h : P1 → P2. We shall show in § 5.3 that Y ⊕ EP = Y for
any Y ∈ D(P ). The set D(P ) is a commutative semigroup with respect to the direct
sum operation. The D-structure EP is the zero of this semigroup. A decomposition
of a polyhedron is said to be trivial if it is equivalent to a triangulation.

5.2. Proof of Proposition 5.1. We first consider the case (P1, R) ∼= (Dn, Sn−1).
Since dimy P2 � dimP1 for every y ∈ P2, we see that there is a piecewise-linear
map h1 : P1→ P2 such that:
1) h1 is homotopic to h, the homotopy being constant on R,
2) h1(P1) is contained in the n-skeleton of Y2,
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3) there is an open dense subset U ⊂ P1 such that the restriction of h1 to U is
a local homeomorphism onto its image.

Let J1 and J2 be triangulations of P1 and P2 such that the map h1 : |J1| → |J2|
is simplicial. We consider a triangulation K2 of P2 such that

1) K2 is a common (rectilinear) subdivision of J2 and Y
′
2 ,

2) the restriction KQ of K2 to any n-dimensional cell Q of Y2 is isomorphic to
some (rectilinear) subdivision of an n-simplex.

Let K1 be a subdivision of J1 such that the map h1 : |K1| → |K2| is simplicial.
Then the restriction of h1 to any simplex of K1 is a linear homeomorphism onto
some simplex of K2.

Given an n-cell Q of the decomposition Y2, we denote the (n−1)-skeleton of KQ
by LQ. We realize Q as a geometric n-simplex ∆

n ⊂ Rn in such a way that all the
simplices of KQ are realized as geometric simplices. Take a point o in the interior
of ∆n such that o belongs to none of the planes containing simplices of LQ. We

denote the radial projection from o by π : |LQ| → ∂∆n. Let L̃Q be a subdivision of
LQ such that the image of each simplex of L̃Q under π is contained in some facet

of ∆n. We denote by π̃ : |L̃Q| → ∂∆n the pseudo-radial projection from the point o
(see [6] for a definition). Unlike π, the map π̃ is piecewise linear.

Let us define a piecewise-linear map t : ∆n → ∆n such that t||LQ| = π̃. Let τ0
be the n-simplex of KQ such that o belongs to the interior of τ0. We extend the
homeomorphism π̃|∂τ0 : ∂τ0 → ∂∆

n to a homeomorphism τ0 → ∆n. This yields
a realization of the restriction of t to τ0. Suppose that τ is an n-simplex of KQ,
τ �= τ0. We denote by (∂τ)− the set of all points x ∈ ∂τ such that the interval
with endpoints x and o is disjoint from the interior of τ . We denote the closure
of ∂τ\(∂τ)− by (∂τ)+. The quadruple (∂τ, (∂τ)−, (∂τ)+, (∂τ)− ∩ (∂τ)+) is homeo-
morphic to the standard quadruple (Sn−1, Dn−1− , Dn−1+ , Sn−2). The projection π̃
maps each of the sets (∂τ)− and (∂τ)+ homeomorphically onto some closed disc
Bn ⊂ ∂∆n. Let bτ be the barycentre of τ . We denote by τ− and τ+ the cones
with vertex bτ over (∂τ)− and (∂τ)+ respectively. We put τm = τ+ ∩ τ−. Let the
restriction of t to τm be realized by an arbitrary homeomorphism τm → ∂∆n\B
coinciding with π̃ on ∂τm = (∂τ)− ∩ (∂τ)+. Then the restriction of t to either of
the sets ∂τ− and ∂τ+ is a homeomorphism of this set onto ∂∆

n. Extending these
homeomorphisms to homeomorphisms τ− → ∆n and τ+ → ∆n respectively, we
obtain the restriction of t to τ .

The map t : Q→ Q is constant on ∂Q. We see that t maps the simplex τ0 and
all the sets τ−, τ+ (for every τ) homeomorphically onto Q. We consider such maps
for all n-cells Q. We obtain a map t : Skn Y2 → Skn Y2 which is homotopic to the
identity map and coincides with the identity map on the (n−1)-skeleton of Y2. Let
ρ be any n-simplex of K1. Then h1 maps ρ homeomorphically onto some n-simplex
τ ∈ K2. Consider the n-cell Q of Y2 such that τ ⊂ Q. If τ �= τ0, then the partition
τ = τ− ∪ τ+ induces a partition ρ = ρ− ∪ ρ+. The sets ρ− and ρ+ are cells. Thus
we obtain a cell decomposition Y1 of P1. The composite g = t ◦ h1 maps each cell
of Y1 homeomorphically onto some cell of Y2. Therefore Y1 can be regarded as a
decomposition into simple cells. It is easy to show that the decomposition Y1 and
the map g satisfy all conditions of Proposition 5.1.
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For an arbitrary polyhedral pair (P1, R), the proof is by induction over the cells
of P1.

5.3. The classifying space ZZZ. A numbering of the vertices of a simple cell Q
is an injection of the vertex set of Q into Z. A numbering of the vertices of a
decomposition Y into simple cells is a map of the vertex set of Y to Z whose
restriction to the vertex set of each cell Q ∈ Y is injective. An isomorphism between
two simple cells with numbered vertices is a numbering-preserving isomorphism.
Sometimes we do not distinguish between a simple cell and its isomorphism class.
We denote by Pn the set of all isomorphism classes of n-dimensional simple cells

with numbered vertices (here simple cells are not supposed to be oriented). Let us
construct the space Z by induction over skeletons. The zero-dimensional skeleton
of Z is the set Z. The set of n-dimensional cells of Z coincides with Pn. Each
simple cell Q ∈ Pn is attached to the (n− 1)-skeleton of Z in such a way that each
facet of Q is mapped isomorphically onto the corresponding cell of Z. The resulting
decomposition of Z into simple cells is also denoted by Z.
In the definition of a pullback in § 5.1, it is immaterial whether or not P2 is

a compact polyhedron. Hence for any continuous map h : P → Z there is a well-
defined D-structure h∗Z ∈ D(P ), which remains unchanged under homotopies of h.
Thus we have a natural map iP : [P,Z]→ D(P ).
Theorem 5.1. The natural map iP is a bijection.

Proof. Suppose that Y ∈ D(P ). Choose a numbering of vertices of Y . Let Y be
the resulting decomposition with numbered vertices. We map each cell of Y
isomorphically onto the corresponding cell of Z and denote the resulting map P→Z
by gY . The equivalence class g

∗
Y
Z contains Y . Hence iP is a surjection.

Consider two maps h0, h1 : P → Z such that h∗0Z = h∗1Z = Y. By Proposi-
tion 5.1, there are decompositions Y 0, Y 1 ∈ Y with numbered vertices such that
h0 is homotopic to gY 0 and h1 is homotopic to gY 1 . Suppose that the numbers

of all vertices of Y 0 are different from the numbers of all vertices of Y 1. Then
there is a decomposition X ∈ D(P × [0, 1]) with numbered vertices such that the
restrictions of X to P ×{0} and P ×{1} are isomorphic to Y 0 and Y 1 respectively.
The map gX : P × [0, 1] → Z is a homotopy between gY 0 and gY 1 . Now assume
that the number of some vertex of Y 0 coincides with that of some vertex of Y 1. We
denote by Y 2 a decomposition Y 0 with another numbering of vertices such that the
numbers of all vertices of Y 2 are different from those of all vertices of Y 0 and Y 1.
Arguing as above, we see that gY 2 is homotopic to both gY 0 and gY 1 . Thus h0
and h1 are homotopic. Therefore iP is an injection.

For any Y ∈ D(P ) we denote by gY an arbitrary map representing i−1P (Y). The
map gEP is obviously homotopic to a constant map for any polyhedron P .
Given any ψ ∈ H∗(Z;G), we have a function that takes every Y ∈ D(P )

to ψ(Y) = g∗Y(ψ) ∈ H∗(P ;G). This function is called a characteristic class of
decompositions into simple cells. We shall also say that the cohomology classes
ψ ∈ H∗(Z;G) and ψ(Y) ∈ H∗(P ;G) are characteristic classes of decompositions
into simple cells.
Suppose that χ : Z×Z→ Z is an injection. We denote by µ the map Z×Z → Z

that coincides with χ on the zero-dimensional skeleton of Z and maps cells of Z×Z
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isomorphically onto cells of Z. It is easy to show that the homotopy class of µ is
independent of χ. If Y1 ∈ D(P1) and Y2 ∈ D(P2), then we obviously have

gY1×Y2 � µ ◦ (gY1 × gY2).

Hence if Y1,Y2 ∈ D(P ), then

gY1⊕Y2 � µ ◦ (gY1 × gY2) ◦ d.

Therefore Y ⊕ EP = Y for any Y ∈ D(P ).
5.4. The cohomology of ZZZ. Suppose that Q is an oriented cell of Z. Then Q is
dual to some PL sphere L ∈ Tn. The correspondence Q �→ L induces a homomor-
phism κ : H∗(T ∗(G))→ H∗(Z;G).
Proposition 5.3. If G = Q, then κ is an isomorphism.

Proof. By a factorization of Q ∈ Pn we always mean a factorization of the formQ =
Q1 × ∆k, where Q1 is a simple cell of dimension n − k. Let P̂n be the set of
all isomorphism classes of n-dimensional simple cells with a given factorization
and numbering of vertices. (Here all isomorphisms are supposed to preserve the

factorization and the numbering of vertices.) The rank of Q ∈ P̂n is the dimension
of the corresponding cell Q1. We construct a space Ẑ whose set of cells is P̂∗ using
the same construction as for the space Z whose set of cells is P∗. There is an
embedding i : Z ↪→ Ẑ that maps each cell Q isomorphically onto the cell Q with
the same numbering of vertices and factorization Q = Q×∆0. There is a retraction
r : Ẑ → Z that maps each cell Q = Q1 × ∆k isomorphically onto the cell Q with
the same numbering of vertices.
Let Zp be the union of all cells Q ∈ P̂∗ whose rank does not exceed p. The

sets Zp form a filtration in Ẑ. Let E∗,∗∗ be the cohomology spectral sequence of
this filtration with rational coefficients.
The set Zp\Zp−1 contains no cells of dimension less than p. Therefore Ep,q1 = 0

for q < 0. Each p-cell of Zp\Zp−1 has the factorization Q = Q × ∆0 and is a
relative cycle in C∗(Z

p, Zp−1;Z). It is easy to show that such cycles are homolo-
gous if and only if the corresponding cells are isomorphic. (Here the isomorphism
preserves orientation but not the numbering of vertices.) Hence there is an isomor-

phism Ep,01 = T p(Q). The differential δ1 coincides with the differential δ of T ∗(Q).
Hence Ep,02 = H

p(T ∗(Q)).
Consider a relative cycle α ∈ Cp+q(Zp, Zp−1;Z), q > 0. We claim that there is

an integer m �= 0 such that mα is a relative boundary. Indeed, α may be written
as

α =
n∑
j=1

lj(Qj ×∆qj),

where lj ∈ Z and the Qj ×∆qj are oriented cells of Ẑ with dimQj = p. We group
together all the terms of this sum with the same combinatorial type as Qj . Then
α = α1+α1+ . . .+αk, where each αs is the sum of the lj(Qj ×∆qj) with the same
combinatorial type as Qj. Obviously, αs is a relative cycle for any s. Hence we
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may assume that all the Qj have the same combinatorial type. Let Q = Q×∆0 be
a cell of Ẑ isomorphic to the cells Qj. We denote by m the order of the group of
all automorphisms of Q. (Here the automorphisms may change the orientation and

numbering of vertices.) The cells Q̃j,h ∼= Q×∆q+1 that contain Qj ×∆qj and Q are
in one-to-one correspondence with the isomorphisms h : Qj ∼= Q. We choose the
orientation of Q̃j,h in such a way that the incidence coefficient of Q̃j,h and Qj ×∆qj
is equal to +1. Let γ ∈ Cp+q+1(Zp, Zp−1;Z) be the chain

γ =
n∑
j=1

∑
h

ljQj,h,

where the inner sum is taken over all isomorphisms h : Qj ∼= Q. It is easy to show
that ∂γ = mα. Hence Hp+q(Z

p, Zp−1;Z) is a torsion group for q > 0. Therefore
the group Ep,q1 = H

p+q(Zp, Zp−1;Q) is trivial for q > 0.
Consequently, the spectral sequence E∗,∗∗ stabilizes at the E2 term. Hence

H∗(Ẑ ;Q) ∼= H∗(T ∗(Q)). We consider the sequence of homomorphisms

H∗(T ∗(Q)) κ−−−−→ H∗(Z;Q) r∗−−−−→ H∗(Ẑ ;Q) i∗−−−−→ H∗(Z;Q).

We see that r∗ ◦ κ is an isomorphism. To complete the proof, we note that i∗ ◦ r∗
is the identity homomorphism.

Remark 5.1. The map µ : Z × Z → Z induces a coproduct in H∗(Z;Q). In § 5.7
we shall define a map X : BPL → Z that takes this coproduct to the standard
coproduct in H∗(BPL;Q). The isomorphism κ enables us to define a product
and coproduct in H∗(T ∗(Q)). This raises the problem of finding explicit combi-
natorial formulae for the product and the coproduct in the cohomology of T ∗(Q).
The coproduct can even be defined in T ∗(Q) and is given by

a(f)(L1 ⊗ L2) = f(L1 ∗ L2).

The problem of finding a combinatorial formula for the product is still open.

Remark 5.2. Let Q be a simple cell. Suppose that a point x ∈ Q belongs to the inte-
rior of a simplex τ ∈ Q′ whose vertices are the barycentres of cells Q1 ⊂ Q2 ⊂ · · · ⊂
Qk. Then we say that x is a point with singularity corresponding to the combina-

torial type of Q1. We define a decomposition of Ẑ into strata by declaring that a
point (x, y) ∈ Q×∆l has the same singularity as the point x ∈ Q for any cell Q×∆l
of Ẑ. It is not hard to prove that the stratum corresponding to the combinato-
rial type of a simple cell Q is homotopy equivalent to K(G(Q), 1), where G(Q) is
the automorphism group of Q. One usually obtains a classifying space for a given
classification of singularities by gluing together the spaces K(G, 1), where G stands
for the symmetry groups of the singularities (see, for instance, [19], [15]). How-
ever we do not want to classify all the decompositions into strata corresponding to
combinatorial types of simple cells but only those that arise from decompositions

into simple cells. Therefore it is unknown whether the embedding i : Z ↪→ Ẑ is a
homotopy equivalence.
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5.5. The dual decomposition.

Definition 5.3. A decomposition Y ∈ D(P ) is said to be good if the intersection of
any two cells of Y is either empty or a cell of Y . Two good decompositions Y1, Y2 ∈
D(P ) are said to be strongly equivalent if there is a good decomposition X ∈
D(P × [0, 1]) whose restrictions to P ×{0} and P ×{1} are isomorphic to Y1 and Y2
respectively.

A strong equivalence class of good decompositions of P into simple cells is called
a Dg-structure on P . We denote the set of all good decompositions of P into simple
cells by Dg(P ) and the set of all Dg-structures on P by Dg(P ).
Suppose that Y ∈ Dg(P ) and Q is a cell of Y . Let B(Q) be the set of all cells

containing Q. This set is partially ordered by inclusion. The partially ordered set
B(Q) is isomorphic to the set of simplices (including the empty simplex) of some
simplicial complex by partially ordered inclusion. It is natural to call this complex
the link of Q in Y and denote it by linkQ or linkY Q. If Y is a triangulation of P ,
then this definition of link is equivalent to the standard one. If P is a manifold
without boundary, then linkQ is a (dimP − dimQ− 1)-dimensional PL sphere.
Suppose that Mm is a manifold without boundary, Y is a good decomposition

of Mm into simple cells, and v1, v2, . . . , vt are the vertices of Y . We denote by Q
∗
j

the closed star of vj in the triangulation Y
′. The sets Q∗1, Q

∗
2, . . . , Q

∗
t are closed

and their interiors are disjoint. Each Q∗j can be regarded as a simple cell dual
to linkY vj . Thus the decomposition ofM

m into the sets Q∗j is a good decomposition
into simple cells. This decomposition is called the decomposition dual to Y and is
denoted by Y ∗. Obviously, (Y ∗)′ = Y ′. To each k-cell Q of the decomposition Y
we assign the (n− k)-cell Q∗ of Y ∗ such that

Q∗ = Q∗j1 ∩Q
∗
j2
∩ · · · ∩Q∗js ,

where vj1 , vj2, . . . , vjs are the vertices of Q. Then Q
∗ is a simple cell dual to linkQ.

We now extend this definition somewhat. Let R+ be the closed half-line.

Definition 5.4. Let Mm be a compact polyhedron. Let F be a filtration

∅ = F−1 ⊂ F 0 ⊂ F 1 ⊂ . . . ⊂ Fm =Mm

inMm by closed subsets F k such that for any y ∈ F k\F k−1 there are a neighbour-
hood U of y in Mm and a homeomorphism i : U → Rk × Rm−k+ that maps F l ∩ U
onto the l-skeleton of Rk × Rm−k+ for every l. Then the pair (Mm,F) is called
an m-dimensional manifold with corners. Connected components of F k\F k−1 are
called open k-dimensional faces of this manifold with corners. The closure of an
open face is called a closed face.

Let (Mm,F) be a manifold with corners. Let Y be a good decomposition ofMm
into simple cells. Suppose that Y is compatible with F , that is, each subset F k ⊂
Mm is a subcomplex of Y . As above, let v1, v2, . . . , vt be the vertices of Y . We
denote the closed star of vj in Y

′ by Q∗j . Each set Q
∗
j can be regarded as a simple

cell with the following facets.
1) The set Q∗j ∩ Q∗l is a facet of Q∗j if there is an edge of Y with endpoints vj

and vl.
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2) The closure of any connected component of Q∗j ∩ (Fm−1 \ Fm−2) is a facet
of Q∗j .
It is easy to show that the simple cell Q∗j is well defined. The cells Q

∗
j are glued

together along isomorphisms of their faces. Thus we obtain a good decomposition
of Mm into simple cells. It is called the decomposition dual to Y and denoted
by Y ∗.
Everywhere except in § 5.6, we shall assume that Mm is a manifold with or

without boundary but without corners. Then the dual decomposition Y ∗ is well
defined for any good decomposition Y ∈ Dg(Mm) since any Y ∈ Dg(Mm) is
compatible with the filtration. In what follows all manifolds are manifolds without
corners unless otherwise stated.

Proposition 5.4. Suppose that Mm is a manifold and Y1, Y2 ∈ Dg(Mm) are
strongly equivalent. Then the decompositions Y ∗1 and Y

∗
2 are strongly equivalent.

Proof. Let X be a good decomposition of Mm × [0, 1] into simple cells such that
the restrictions of X to Mm × {0} and Mm × {1} are isomorphic to Y1 and Y2
respectively. The cylinder Mm × [0, 1] is a manifold with corners. The decom-
position X is compatible with the corresponding filtration. Then X∗ is a good
decomposition of Mm × [0, 1] into simple cells such that the restrictions of X∗
to Mm × {0} and Mm × {1} are isomorphic to Y ∗1 and Y ∗2 respectively. Therefore
the decompositions Y ∗1 and Y

∗
2 are strongly equivalent.

Hence there is a well-defined map ∗ : Dg(Mm) → Dg(Mm). The image of a
Dg-structure Y under this map is called the Dg-structure dual to Y and is denoted
by Y∗.
5.6. The canonical subdivision of a decomposition into simple cells. Given
a decomposition Y of a polyhedron into simple cells, we want to construct a sub-

division Ŷ of Y such that Ŷ is a good decomposition into simple cells and Ŷ is
equivalent to Y .
Suppose that Q is a simple cell. Then Q can be regarded as a manifold with

corners. We denote by Q̂ the good decomposition of Q dual to the decomposi-

tion Q′ ∈ D(Q). We say that Q̂ is the canonical subdivision of Q. It is easy to show
that the restriction of Q̂ to any face of Q coincides with the canonical subdivision
of this face. Let Y be a decomposition of a polyhedron P into simple cells. We
replace each simple cell Q of Y by the canonical subdivision of Q. This yields a
good decomposition of P into simple cells. It is called the canonical subdivision
of Y and denoted by Ŷ .

Proposition 5.5. The decompositions Y and Ŷ are equivalent.

Proof. Let L be an (n−1)-dimensional PL sphere. We consider the standard trian-
gulation of the cylinder Sn−1× [0, 1] such that the restrictions of this triangulation
to the lower and upper ends of the cylinder are isomorphic to L and L′ respectively.
Attaching the cone over L with vertex u0 to the lower end of this triangulation and
the cone over L′ with vertex u1 to the upper end, we obtain an n-dimensional PL

sphere. We denote it by L̃. Let us introduce the following terminology. The ver-
tex u0 is called the lower vertex. The vertices belonging to the lower end of the
cylinder Sn−1×[0, 1] are calledmiddle vertices. The vertices belonging to the upper
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end of the cylinder Sn−1 × [0, 1] and the vertex u1 are called upper vertices. Any
vertex v ∈ L can be regarded as a middle vertex of L̃. Obviously, linkL̃ v = ˜linkL v.
Let Q be a simple cell dual to L. We denote by Q̃ the simple cell dual to L̃.

The facets of Q̃ corresponding to the lower, middle, and upper vertices of L̃ are

called lower , lateral, and upper facets respectively. The lower facet of Q̃ is evidently

isomorphic to Q. It is easy to show that the subcomplex of the boundary of Q̃ con-
sisting of all upper facets is isomorphic to Q̂. The lateral facet of Q̃ corresponding

to a facet Q0 of Q is isomorphic to Q̃0.

Suppose that a decomposition Y ∈ D(P ) consists of simple cells Q1, Q2, . . . , Qt.
Each cell Qj is attached to the cells Qk of dimension dimQj − 1 along isomor-
phisms ιjk, where ιjk maps some facet of Qj onto Qk. The isomorphism ιjk induces

an isomorphism ι̃jk that maps the corresponding lateral facet of Q̃j onto the cell

Q̃k. We attach each cell Q̃j to the cells Q̃k along the isomorphisms ι̃jk. Thus we

obtain a decomposition Ỹ ∈ D(P × [0, 1]) whose restrictions to the lower and upper
ends of the cylinder P × [0, 1] are isomorphic to Y and Ŷ respectively.

Corollary 5.1. If Y is a good decomposition, then the decompositions Y and Ŷ
are strongly equivalent.

Proof. To prove this, we notice that the decomposition Ỹ is good whenever Y is.

Proposition 5.6. Suppose that Y1 and Y2 are equivalent good decompositions of a
polyhedron P into simple cells. Then Y1 and Y2 are strongly equivalent.

Proof. Let X ∈ D(P × [0, 1]) be a decomposition whose restrictions to the ends of
the cylinder P×[0, 1] are isomorphic to Y1 and Y2 respectively. Then the restrictions
of the good decomposition X̂ ∈ Dg(P × [0, 1]) to the ends of the cylinder P × [0, 1]
are isomorphic to Ŷ1 and Ŷ2 respectively. By Corollary 5.1, Yj is strongly equivalent

to Ŷj , j = 1, 2. The proposition follows.

Corollary 5.2. The natural map Dg(P )→ D(P ) is a bijection.

Thus the Dg-structures on a polyhedron are in one-to-one correspondence with
the D-structures on the same polyhedron. In what follows we identify the sets
Dg(P ) and D(P ).

Proposition 5.7. Suppose that Mm is a manifold. Then the map ∗ : D(Mm) →
D(Mm) is an involution.

Proof. IfMm is a manifold without boundary, then the proposition is obvious since
Y ∗∗ = Y for every Y ∈ Dg(Mm). Assume that Mm is a manifold with boundary.
Suppose that Y ∈ D(Mm). Let Y ∈ D(Mm) be an arbitrary decomposition repre-
senting the D-structure Y. We denote byN the union of all the closed cells Q of the
decomposition Ŷ such that Q ∩ ∂Mm = ∅. Obviously, N is a deformation retract
of Mm. Hence i∗ : D(Mm) → D(N) is an isomorphism, where i : N ↪→ Mm is
the identity embedding. The restrictions of Ŷ and (Ŷ )∗∗ to N coincide. Therefore
i∗(Y) = i∗(Y∗∗). Hence Y = Y∗∗.
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5.7. The connection with block bundles. We recall some definitions and
results from [8].
Let Y be a decomposition of a polyhedron P into simple cells. Let Qk, k =

1, 2, . . . , t be the cells of Y . A q-dimensional block bundle ξq/Y over the decomposi-
tion Y is a space E(ξ) containing closed balls βk, k = 1, 2, . . ., t such that P ⊂ E(ξ)
and the following conditions hold.
1) βk is a (dimQk + q)-dimensional ball containing the cell Qk such that ∂Qk =

Qk ∩ ∂βk and (βk, Qk) is an unknotted ball pair. The ball βk is called the block
over the cell Qk.
2) E(ξ) is the union of the blocks βk.
3) The interiors of the blocks are disjoint.
4) βk ∩ βl is the union of the blocks over the cells of the subcomplex Qk ∩Ql.

Remark 5.3. In [8], Y is an arbitrary decomposition of a polyhedron P into closed
cells (not necessarily simple) such that the boundary of any cell and the intersection
of any two cells are unions of cells.

Two block bundles ξ1 and ξ2 over the decomposition Y are said to be isomor-
phic if there is a homeomorphism h : E(ξ1) → E(ξ2) such that the restriction of h
to P is the identity homeomorphism and h maps the blocks of ξ1 onto the corre-
sponding blocks of ξ2. For any subdivision Y1 of the decomposition Y there is a
unique (up to isomorphism) subdivision ξ1/Y1 of the block bundle ξ/Y . Suppose
that Y1, Y2 ∈ D(P ). Two block bundles ξ1/Y1 and ξ2/Y2 are said to be equivalent if
there is a subdivision of ξ1 isomorphic to some subdivision of ξ2. The pullback of an
equivalence class of block bundles along a continuous map and the direct product
and direct sum of two equivalence classes are defined in a standard way. In what
follows we do not distinguish between a block bundle and its equivalence class nor
between a block bundle and its stable equivalence class. The set of all stable equiv-
alence classes of block bundles over a polyhedron P is denoted by I(P ). Then I(P )
is an Abelian group with respect to the direct sum operation. The space BPL is
a classifying space for stable block bundles, that is, there is the natural isomor-
phism I(P ) ∼= [P,BPL]. The trivial block bundle over P is denoted by εnP . Suppose
that N ⊂ M is a locally flat submanifold with N ∩ ∂M = ∂N . Then there is a
unique (up to equivalence) normal block bundle of the submanifold N ⊂ M , that
is, a block bundle ν over N such that E(ν) ⊂ M . The normal block bundle of
the diagonal M ⊂ M ×M is called the tangent block bundle of M . If ξ is a block
bundle over a manifoldM , then E(ξ) is a manifold.
The aim of this subsection is to define a natural map X : I(P ) → D(P ). First

we define this map for manifolds.
Suppose thatM is a manifold. To avoid ambiguity,we denote the map ∗ :D(M)→

D(M) by ∗M . Let ξ be a block bundle over M . Suppose that i : M → E(ξ) is
the identity embedding and r : E(ξ) → M is a retraction. We denote the involu-
tion i∗ ∗E(ξ) r∗ : D(M) → D(M) by ∗ξ and the map ∗M∗ξ : D(M) → D(M) by λξ.
We denote by X (ξ) the D-structure

λξ(EM ) = ∗M i∗ ∗E(ξ) EE(ξ) ∈ D(M).

Remark 5.4. This definition can sometimes be formulated more geometrically. Sup-
pose that ∂M = ∅, dimM = m. We assume that there is a triangulation K of the
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space E(ξ) such that the submanifold M ⊂ E(ξ) is contained in the m-skeleton of
the dual decomposition K∗. Then the intersection of M with each simplex of K
can be regarded as a simple cell. The resulting decomposition X ∈ D(M) obvi-
ously belongs to the equivalence class X (ξ). Unfortunately, one cannot define the
D-structure X (ξ) as the equivalence class of X in the general case since there may
be no suitable triangulation K.

Suppose that M1,M2 are manifolds, Y1 ∈ D(M1), and Y2 ∈ D(M2). Then
(Y1 × Y2)∗ = Y ∗1 × Y ∗2 . Hence, if ξ1 and ξ2 are block bundles over M1 and M2
respectively, then

∗ξ1×ξ2(Y1 × Y2) = ∗ξ1(Y1) × ∗ξ2(Y2) (∗)

for every Y1 ∈ D(M1) and Y2 ∈ D(M2). The involution ∗ξ is determined solely
by the stable equivalence class of ξ since ξ ⊕ εnM = ξ × εnpt for any block bundle ξ
over M . Hence the following proposition is a consequence of formula (∗).

Proposition 5.8. For block bundles over manifolds we have

X (ξ1 × ξ2) = X (ξ1) ×X (ξ2), X (ξ ⊕ εnM ) = X (ξ), X (εnM ) = EM .

Thus the map X : I(M)→ D(M) is well defined for any manifoldM .
Proposition 5.9. Suppose that M,N are manifolds, h : M → N is a continuous
map, and ω is a block bundle over N . Then

h∗X (ω) = X (h∗ω).

To prove this, we need several auxiliary propositions.

Proposition 5.10. Suppose that M1,M2 are manifolds, dimM1 = dimM2, and
i : M1 ↪→M2 is an embedding. Then

i∗∗M2 = ∗M1i∗.

The proof is similar to that of Proposition 5.7.

Corollary 5.3. Under the hypotheses of the previous proposition we have

i∗∗ξ = ∗i∗ξi∗

for every ξ ∈ I(M2).

Proposition 5.11. Suppose that ξ and η are block bundles over a manifoldM and
τ is the tangent block bundle of M . Then

∗ξ⊕η⊕τ = ∗ξ⊕τ ∗τ ∗η⊕τ .

Proof. Suppose that Y1,Y2 ∈ D(M). It follows from formula (∗) that

∗ξ×η(Y1 × Y2) = ∗ξ×M ∗M×M ∗M×η(Y1 ×Y2).
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Suppose that i1 : M ↪→ E(τ), i2 : E(τ) ↪→M×M are the identity embeddings and
r: E(τ)→M is a retraction. By Corollary 5.3, we have

∗i∗2(ξ×η)(i
∗
2(Y1 × Y2)) = ∗i∗2(ξ×M) ∗E(τ) ∗i∗2(M×η)(i

∗
2(Y1 × Y2)).

Obviously, E(ω ⊕ τ) = E(r∗ω) for any block bundle ω over M . Hence ∗r∗ω =
r∗ ∗ω⊕τ i∗1. But

i∗2(ξ × η) = r∗(ξ ⊕ η), i∗2(ξ ×M) = r∗ξ,
i∗2(M × η) = r∗η, i∗1i

∗
2(Y1 × Y2) = Y1 ⊕ Y2.

Therefore,
∗ξ⊕η⊕τ (Y1 ⊕ Y2) = ∗ξ⊕τ ∗τ ∗η⊕τ (Y1 ⊕ Y2).

Corollary 5.4. We have λξ⊕η = λξλη, that is, ∗ξ⊕η = ∗ξ ∗M ∗η.
Proof. Suppose that ν = −τ in the group I(M), that is, ν is the stable equivalence
class of the normal block bundle of an embedding M ↪→ Rq . Substituting ν for
ξ in the formula of Proposition 5.11, we obtain ∗η = ∗M ∗τ ∗η⊕τ , that is, ∗η⊕τ =
∗τ ∗M ∗η. Similarly, ∗ξ⊕τ = ∗τ ∗M ∗ξ and ∗ξ⊕η⊕τ = ∗τ ∗M ∗ξ⊕η. To complete the
proof we substitute these expressions for ∗ξ⊕τ , ∗η⊕τ , and ∗ξ⊕η⊕τ in the formula of
Proposition 5.11.

Proof of Proposition 5.9. We may assume that h is piecewise linear and h(∂M) =
h(M) ∩ ∂N . Then h is a composite M ↪→ N × Dq → N , where the first map is
an embedding and the second is the projection. It was proved by Zeeman that any
submanifold of codimension � 3 is locally flat (see [20]). Hence we can choose q in
such a way that the embeddingM ↪→ N×Dq has a normal block bundle ξ. Thus h
is a composite

M
h1−−−−→ E(ξ) h2−−−−→ N ×Dq h3−−−−→ N.

It suffices to prove the proposition for each of the maps h1, h2, h3. For h2 and h3,
it follows immediately from Corollary 5.3 and Proposition 5.8 respectively. Let us
prove that h∗1X (ω) = X (h∗1ω) for any block bundle ω ∈ I(E(ξ)). Let r : E(ξ)→M
be a retraction. Since r is a homotopy equivalence, we see that there is a block
bundle η ∈ I(M) such that ω = r∗η. Therefore,

h∗1X (ω) = h∗1 ∗E(ξ) ∗r∗ηEE(ξ) = (h∗1 ∗E(ξ) r∗)(h∗1 ∗r∗η r∗)EM = ∗ξ ∗ξ⊕η EM ,

X (h∗1ω) = ∗M ∗η EM .

Thus the proposition follows from Corollary 5.4.

Proposition 5.12. Suppose that τ is the tangent block bundle of a manifold M
and ν = −τ . Then X (ν) = E∗M .
Proof. Let i : M ↪→ ∆q be an embedding such that i(M) ∩ ∂∆q = i(∂M) and
q � dimM +3. Then ν is the normal block bundle of the submanifold i(M) ⊂ ∆q.
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The embedding i is the composite of embeddings i1 : M ↪→ E(ν) and
i2 : E(ν) ↪→ ∆q. Hence,

X (ν) = ∗M ∗ν EM = ∗M i∗1 ∗E(ν) EE(ν) = ∗M i∗ ∗∆q E∆q = ∗M i∗E∆q = E∗M .

Here we have used the equation E∗∆q = E∆q , which holds because the simplex ∆q is
contractible and, therefore, D(∆q) = {E∆q}.
Now let P be an arbitrary polyhedron. We consider an embedding i : P ↪→ M

such that M is a manifold and i(P ) is a deformation retract of M . Let r : M → P
be the retraction. By definition, we put X (ξ) = i∗X (r∗ξ) for any ξ ∈ I(P ). It
follows from Proposition 5.9 that the D-structure X (ξ) does not depend on the
choice of a manifoldM and an embedding i.

Corollary 5.5. The following formulae hold for block bundles over arbitrary poly-
hedra:

X (εnP ) = EP , h∗X (ξ) = X (h∗ξ),
X (ξ × η) = X (ξ)× X (η), X (ξ1 ⊕ ξ2) = X (ξ1)⊕ X (ξ2).

Thus the map X is a natural transformation of the functor I( · ) to the func-
tor D( · ), that is, a natural transformation of the functor [ · ,BPL] to the functor
[ · ,Z]. Hence the map X induces a map BPL → Z which is uniquely determined
up to homotopy. We also denote this map by X .
Suppose that ψ ∈ Hn(T ∗(Q)) is an arbitrary cohomology class. Then κ(ψ) ∈

Hn(Z;Q) is a characteristic class of decompositions into simple cells and
X ∗(κ(ψ)) ∈ Hn(BPL;Q) is a characteristic class of stable block bundles. On
the other hand, 	(ψ) ∈ Hn(BPL;Q) is a characteristic class of stable block bundles
(see § 2.3). We denote by w the automorphism of H∗(BPL;Q) that takes each
Pontryagin class pk to the cohomology class p̃k ∈ H4k(BPL;Q), where the classes
p̃k are determined by the equation

(1 + p1 + p2 + . . . )� (1 + p̃1 + p̃2 + . . . ) = 1.

It is easy to show that w is an involution. We have w(p)(ξ) = p(−ξ) for any
cohomology class p ∈ H∗(BPL;Q) and any block bundle ξ.
Proposition 5.13. The following diagram commutes:

H∗(T ∗(Q)) κ−−−−→
∼=

H∗(Z;Q)

�

� X∗
�

H∗(BPL;Q)
w−−−−→
∼=

H∗(BPL;Q).

Proof. Suppose that Mm is a manifold without boundary, τ is the tangent bundle
of Mm, K is a triangulation of Mm, f is a rational local formula, and ψ is the
cohomology class represented by f . It follows from Proposition 5.12 that

X ∗(κ(ψ))(−τ) = κ(ψ)(E∗Mm).
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Therefore the cohomology class X ∗(κ(ψ))(−τ) ∈ Hn(Mm;Q) is represented by the
cochain c such that c(Q) = f(L) for any simple cell Q ∈ K∗ dual to a PL sphere L ∈
Tn. On the other hand, the cohomology class ψ�(Mm) = 	(ψ)(τ) is represented by
the same cochain c. Therefore 	(ψ)(τ) = X ∗(κ(ψ))(−τ). Consequently 	(ψ)(τ) =
w(X ∗(κ(ψ)))(τ). To complete the proof, we note that a rational characteristic class
is uniquely determined by its values on the tangent bundles of closed manifolds.

In § 2.3 we proved that 	 is an epimorphism. Hence X ∗ is an epimorphism. In
§ 5.8 we shall prove that X ∗ is an isomorphism. The following corollary enables us
to calculate the cohomology class p(ξ) locally if we are given a decomposition X ∈
X (ξ).

Corollary 5.6. Suppose that f ∈ T n(Q) is a local formula representing ϕw(p).
Let c be the cochain such that c(Q) = f(L) for any simple cell Q ∈ X dual to a PL
sphere L ∈ Tn. Then c represents the cohomology class p(ξ).

5.8. ��� is a monomorphism for rational coefficients. First let us prove the
following auxiliary proposition.

Proposition 5.14. Suppose that P q is a q-dimensional polyhedron, K ∈ D(P q)
is a trivial decomposition, Mn is a manifold without boundary, and Y ∈ D(Mn).
Suppose that i : Mn ↪→ P q is an embedding satisfying the following conditions:
1) i maps the barycentre of each l-cell of the decomposition Y to that of some

(l + q − n)-cell of the decomposition K,
2) i linearly maps each simplex of Y ′ onto some simplex of K′.
Then there is a block bundle η ∈ I(Mn) such that the decomposition Y belongs

to the equivalence class X (η).

Proof. Replacing P q by P q×∆3, we may assume that q � n+3. The embedding i
maps the barycentre of each l-cell of the decomposition Ŷ to the barycentre of some

(l+ q−n)-cell of the decomposition K̂ and linearly maps each simplex of (Ŷ )′ onto
some simplex of (K̂)′. We denote by Nq the union of all closed cells Q ∈ K̂ such
that Q ∩ i(Mn) �= ∅. Let K1 be the restriction of K̂ to Nq . The image of each
l-cell Qk of Ŷ under i is contained in some (l + q − n)-cell βk of K̂ . The pair
(βk, Qk) is an unknotted ball pair since q � n+ 3. Thus we have a block bundle η
over Ŷ with blocks βk such that E(η) = N

q. To complete the proof, we note that

the decomposition K1 is trivial and i maps each cell of the decomposition (Ŷ )
∗

isomorphically onto some cell of the decomposition K∗1 .

Proposition 5.15. The homomorphism X ∗ ◦ κ is a monomorphism.

Proof. Suppose that ψ ∈ Hn(T ∗(Q)) is a non-zero cohomology class and f ∈ T n(Q)
is a local formula representing ψ. Since f is not a coboundary, we see that there
are PL spheres L1, L2, . . . , Lt ∈ Tn such that

∑t
j=1 ∂Lj = 0 in the group Tn(Z)

and
∑t
j=1 f(Lj ) = a �= 0. Let q be a positive integer such that the number of

vertices of each PL sphere Lj does not exceed q+1. We denote by Qj the oriented
simple cell dual to Lj . Doubling the set L1, L2, . . . , Lt of PL spheres, we may
assume that facets of the cells Q1, Q2, . . . , Qt are paired off in such a way that the
facets in each pair are anti-isomorphic and belong to different cells Qj and Qk.
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Let ∆q1,∆
q
2, . . . ,∆

q
t be q-simplices (these simplices are not oriented). We embed

the cell Qj in ∆
q
j in such a way that the barycentre of each l-dimensional face of Qj

is mapped to the barycentre of some (l + q − n)-dimensional face of ∆qj , and the
embedding is linear on the simplices of Q′j . This embedding is unique up to an

automorphism of ∆qj. We consider a set of q + 1 colours and paint the vertices

of each simplex ∆qj in different colours in all possible ways. This yields a set of

simplices ∆qj,α, j = 1, 2, . . . , t, α ∈ Sq+1, with vertices painted in different colours.
Each simplex ∆qj,α contains the simple cell Qj,α.

A facet of ∆qj,α is said to be important if it contains a facet of Qj,α. Suppose

that σ1 and σ2 are important facets of the simplices ∆
q
j,α and ∆

q
k,β respectively. An

isomorphism ι : σ1 → σ2 is said to be admissible if ι preserves colours of vertices and
the restriction of ι to the facet ofQj,α is an anti-isomorphismwith the corresponding
facet of Qk,β. Important facets of the simplices ∆

q
j,α can be paired off in such a

way that the following conditions hold:
1) the facets in each pair belong to different simplices,
2) for any pair (F1, F2) there is an admissible isomorphism F1 ∼= F2.
We glue every such pair of important facets along the admissible isomorphism.

Then the simple cells Qj,α ⊂ ∆qj,α are glued together in such a way that we obtain
an oriented pseudo-manifold Nn with a fixed decomposition Y ∈ D(Nn). We have

〈κ(ψ)(Y), [Nn]〉 = a(q + 1)! �= 0,

where Y is the equivalence class of Y .
One can find an oriented manifold without boundary Mn and a map h : Mn →

Nn such that h∗([M
n]) = b[Nn] for some integer b �= 0. It follows from Proposi-

tion 5.1 that there are a map g � h and a decomposition Y0 ∈ D(Mn) such that g
maps each cell of Y0 isomorphically onto some cell of Y (here the isomorphism may
change the orientation). We denote by Σ the set of all n-cells of the decomposi-
tion Y0. For each n-cell of Y , we are given an embedding of this cell into a q-simplex
whose vertices are painted in different colours. Hence, for any n-cell Q ∈ Σ, we
obtain an embedding of Q into a q-simplex ∆qQ with vertices painted in different
colours.
We consider the disjoint union of the simplices ∆qQ and glue the cells Q ⊂ ∆

q
Q

together along anti-isomorphisms of their facets to obtain the decomposition Y0.
Simultaneously, we glue the simplices ∆qQ along the corresponding admissible iso-
morphisms of their facets. Thus we obtain a q-dimensional polyhedron P q ⊃ Mn
with a distinguished decomposition K ∈ D(P q) such that all cells of K are sim-
plices. The identity embedding Mn ↪→ P q maps the barycentre of each l-cell of Y0
to the barycentre of some (l+q−n)-simplex ofK and is linear on the simplices of Y ′0 .
The decomposition K is trivial since the corresponding map P q → Z is homotopic
to a constant map. By Proposition 5.14, there is a block bundle η ∈ I(Mn) such
that X (η) = Y0, where Y0 is the equivalence class of Y0. Therefore,

〈X ∗(κ(ψ))(η), [Mn]〉 = 〈κ(ψ)(Y0), [Mn]〉 = b〈κ(ψ)(Y), [Nn]〉 �= 0.

Hence X ∗(κ(ψ)) �= 0.
Thus the homomorphism � : H∗(T ∗(Q)) → Hom(Ω∗,Q) is a monomorphism.

Theorem 2.2 follows.
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5.9. The semigroup D(P )D(P )D(P ). In §§ 5.1–5.8 we described many properties of D-
structures similar to those of stable bundles. The set of all stable bundles over a
compact polyhedron is a group.

Question 5.1. Is the semigroup D(P ) a group for any compact polyhedron P ?

It is sufficient to answer this question for manifolds since the semigroup D(P ) is
homotopy invariant. Suppose that M is a manifold and Y ∈ D(M). It is easy to
show that the equivalence class (Y ⊕Y∗)∗ contains a cubical decomposition whose
cells are intersections of cells of Y with cells of Y ∗, where Y is a decomposition
representing the D-structure Y. The following question arises.

Question 5.2. Is any cubical decomposition trivial?

If the answer to Question 5.2 is “yes”, then Y ⊕ Y∗ ⊕ X (τ) = EM for any
D-structure Y ∈ D(M). Hence the answer to Question 5.1 is also “yes”. Both
questions are open.

5.10. Proof of Proposition 2.3.

Definition 5.5. Suppose that Mn is a manifold without boundary. A regular
decomposition of Mn into manifolds with corners is a filtration F in Mn by closed
subsets ∅ = F−1 ⊂ F 0 ⊂ · · · ⊂ F n =Mn satisfying the following conditions:
1) the pair (V , F|V ) is a manifold with corners for any connected component V

of the set F k\F k−1,
2) for any y ∈ F k\F k−1 there are a neighbourhood U of y in Mn and a homeo-

morphism i : U → Rk × ∂(Rn−k+1+ ) that maps the set F l ∩ U isomorphically onto
the l-skeleton of Rk × ∂(Rn−k+1+ ) for every l.

Suppose that V is a connected component of F k\F k−1. Then the closure of V
is called a k-dimensional face of the decomposition F . Sometimes we say that the
closure of V is a face of Mn.

The filtration

∅ = F−1 = F 0 = F 1 = · · · = F n−1 ⊂ F n =Mn

is a regular decomposition of Mn into manifolds with corners. The connected
components of Mn are n-dimensional faces of this decomposition.
For any l � k � n we have the standard homeomorphism

Rl × ∂
(
Rk−l+1+

)
×Rn−k+

∼= Rk × Rn−k+ .

Hence the space Rl×∂
(
Rk−l+1+

)
×Rn−k+ is endowed with the following two filtrations:

the filtration Gl,k,n by skeletons of Rl×∂
(
Rk−l+1+

)
×Rn−k+ , and the filtration Fl,k,n

by skeletons of Rk ×Rn−k+ . Obviously, F ql,k,n ⊂ G
q
l,k,n for every q.

Definition 5.6. Suppose that (A,F) is a manifold with corners, Y is a decom-
position of A into simple cells, and G is a filtration in A by skeletons of Y .
Then Y is said to be regular if the following condition holds. If x ∈ F k\F k−1
and x ∈ Gl\Gl−1, then k � l and there are a neighbourhood U of x in A and a
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homeomorphism i : U → Rl×∂
(
Rk−l+1+

)
×Rn−k+ that takes the filtrations F and G

to the filtrations Fl,k,n and Gl,k,n respectively.

It is easy to show that if a triangulation K ∈ D(A) is compatible with the
filtration, then K∗ is a regular decomposition.

In this subsection we assume that every manifold with corners is endowed with
a fixed regular decomposition into simple cells. An isomorphism of two manifolds
with corners is a filtration-preserving isomorphism of the corresponding complexes
of simple cells. If we consider a decomposition of a manifoldMn into manifolds with
corners, then we assume that these manifolds with corners are glued together along
isomorphisms of their faces. We need these assumptions so that we can consider
the finite set of isomorphisms of two manifolds with corners instead of the infinite
set of homeomorphisms of them.

Suppose that L is a PL sphere and ∆ is a simplex of L. We consider the stellar
subdivision of ∆. The dual operation for simple cells is called cutting away the
corresponding face. Suppose thatF is a regular decomposition ofMn into manifolds
with corners, Ak is a face ofMn such that k < n and Ak is a closed manifold without
corners. Every n-dimensional face of F is endowed with a regular decomposition
into simple cells. All these decompositions are compatible with each other. Thus we
obtain a decomposition Y ∈ D(Mn) such that Ak is a subcomplex of Y . Let Qk1 ⊂
Qn2 be faces of Y such that Q

k
1 ⊂ Ak. We cut away the face Qk1 in the cell Qn2 for

every such pair (Qk1 , Q
n
2). This operation is called cutting away the face A

k. From
a topological point of view, we are cutting away the neighbourhood Ak ×∆n−k of
the face Ak in Mn.

Suppose that A is an oriented manifold with corners. We denote by −A the
oppositely oriented manifold with corners. Let F be a decomposition of a closed
oriented manifold Mn into manifolds with corners. The decomposition F is said
to be balanced if, for any n-dimensional manifold A with corners, the number of
faces of F that are isomorphic to A is equal to the number of faces of F that are
anti-isomorphic to A.

A decomposition into simple cells which is dual to a triangulation of a closed
manifold is a regular decomposition into manifolds with corners. Thus Proposi-
tion 2.3 is a consequence of the following proposition.

Proposition 5.16. Let Mn be an oriented closed manifold admitting a balanced
regular decomposition into manifolds with corners. Then a disjoint union of several
copies of Mn is null bordant.

Proof. Let F be a balanced regular decomposition of Mn into manifolds with cor-
ners. Let k be the least positive integer such that F k �= ∅. Let us prove the
proposition by reverse induction on k.

Basis of induction. Suppose that k = n. Then the n-dimensional faces of F are
connected components of Mn. Suppose that Nn is a connected oriented manifold.
The number of connected components A ofMn admitting an orientation-preserving
homeomorphism A ∼= Nn is equal to the number of connected components A ofMn
admitting an orientation-reversing homeomorphism A ∼= Nn. Hence the mani-
fold Mn �Mn is null bordant.
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Induction step. Replacing Mn by the manifold Mn �Mn, we may assume that
the n-dimensional faces of Mn are paired off in such a way that the faces in each
pair are anti-isomorphic. Suppose that A1, A2 are n-dimensional faces and i : A1 →
A2 is an anti-isomorphism. Then i can be extended to a homeomorphism ı̃ of a
neighbourhood of A1 to a neighbourhood of A2 in such a way that ı̃ preserves the
filtration F . We denote the number of n-dimensional faces ofMn by q. We consider
a set of q colours. There are q! ways to paint n-dimensional faces ofMn in different
colours. We denote by Mn1 the disjoint union of q! copies of the manifold M

n

such that the n-dimensional faces of each copy are painted in different colours
and each colouring is used exactly once. Let F1 be the filtration of Mn1 that
coincides with the filtration F in every copy of Mn. Then the n-dimensional faces
of Mn1 can be paired off in such a way that for each pair (A

−
l , A

+
l ) there is an

anti-isomorphism il : A
−
l → A

+
l that extends to a filtration- and colour-preserving

homeomorphism of a neighbourhood of A−l onto a neighbourhood of A
+
l .

Obviously there is an isomorphism j : F k1 → F k1 satisfying the following condi-
tions.
1) j2 = 1.
2) If B is a connected component of F k1 , then j(B) ∩B = ∅.
3) j extends to a homeomorphism of a neighbourhood of F k1 to itself that pre-

serves the filtration and colouring and reverses orientation.
Let j1, j2, . . . , js be all the distinct isomorphisms satisfying these conditions. We

denote by Mn2 the disjoint union of s copies of M
n
1 . Let F2 be the filtration inMn2

coinciding with F1 in each copy ofMn1 . The points of Mn2 are pairs (y, l), y ∈ Mn1 ,
l = 1, 2, . . . , s. We define an isomorphism ̂ : F k2 → F k2 by ̂(y, l) = (jl(y), l). This
isomorphism extends to a homeomorphism of a neighbourhood of F k2 to itself that
preserves the filtration and colouring and reverses orientation.
We cut away all the k-dimensional faces of the decomposition F2. Then we

obtain a manifold whose boundary is isomorphic to F k2 × ∂∆n−k. The isomor-
phism ̂ induces a filtration- and colour-preserving involutive anti-isomorphism
F k2 × ∂∆n−k → F k2 × ∂∆n−k without fixed points. We glue the set F k2 × ∂∆n−k to
itself along this anti-isomorphism. Thus we obtain a closed manifoldMn3 bordant
toMn2 . The filtration F2 inMn2 induces a filtration F3 inMn3 . Then F3 is a regular
decomposition into manifolds with corners such that F k3 = ∅.
Let us show that the decomposition F3 is balanced. Take an arbitrary colour c.

Let Mn1,c, M
n
2,c, and M

n
3,c be the unions of all n-dimensional faces painted in colour

c of the manifolds Mn1 , M
n
2 , and M

n
3 respectively. We denote by ic : M

n
1,c → Mn1,c

the anti-isomorphism coinciding with il on each face A
−
l ⊂ Mn1,c and coinciding

with i−1l on each face A
+
l ⊂Mn1,c. We extend the isomorphism

ic
∣∣
Fk1 ∩Mn

1,c
: F k1 ∩Mn1,c → F k1 ∩Mn1,c

to an isomorphism χc : F
k
1 → F k1 whose restriction to F k1 \(F k1 ∩Mn1,c) is the iden-

tity isomorphism. We obviously have χ2c = 1, and χc extends to a filtration- and
colour-preserving homeomorphism of a neighbourhood of F k1 to itself. The isomor-
phism χc◦jl◦χc satisfies conditions 1)–3) for every l. Hence there is a positive inte-
ger κc(l) such that χc ◦ jl ◦ χc = jκc(l). Obviously, κc : {1, 2, . . ., s} → {1, 2, . . . , s}



Local formulae for combinatorial Pontryagin classes 909

is an involution. We define an anti-isomorphism ı̂c : M
n
2,c →Mn2,c by

ı̂c(y, l) = (ic(y), κc(l)).

It is easy to show that ı̂c(̂(y, l)) = ̂(̂ıc(y, l)) for every (y, l) ∈ Mn2,c ∩ F k2 .
Therefore the anti-isomorphism ı̂c induces an anti-isomorphismM

n
3,c
∼=Mn3,c. Hence

the restriction of F3 toMn3,c is balanced. Consequently the decomposition F3 of the
manifoldMn3 is balanced. By the induction hypothesis, a disjoint union of several
copies of the manifoldMn3 is null bordant, as required.

The author is grateful to V. M. Buchstaber for suggesting the problems and for
his constant interest in this work. The author also wishes to thank L. A. Alania,
I. V. Baskakov, I. A. Dynnikov, M. E. Kazarian, and A. S. Mishchenko for useful
discussions.
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