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Classification of simplicial triangulations
of topological manifolds
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0. Introduction

This paper undertakes the study of the existence and uniqueness of
simplicial triangulations of a given topological manifold. Unlike a combina-
torial triangulation of a given topological manifold M (a simplicial triangu-
tion of M in which the star of each vertex is piecewise linearly homeomorphic
to a simplex), a simplicial triangulation of M is not necessarily piecewise-
linearly homogeneous. Thus the usual “triangulating” techniques, often
adapted from “smoothing” techniques, do not directly apply.

In 1969, R. Kirby and L. Siebenmann [19] showed that in each dimension
greater than four there exist closed topological manifolds which admit no
piecewise linear manifold structures and hence cannot be triangulated as
combinatorial manifolds. Then in 1974, R.D. Edwards [10] showed that the
double suspension of the Mazur homology 3-sphere is homeomorphic to S?,
thus exhibiting that a simplicial triangulation of a topological manifold need
not be combinatorial. It is still unknown whether every topological manifold
can be triangulated as a simplicial complex.

In this paper we relate the question of whether a given topological
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n-manifold M", with » =7 (n = 6 if dM compact or n =5 if M closed), can
be triangulated as a simplicial complex to a lifting problem, classify such
triangulations up to a natural equivalence relationship in terms of homotopy
classes of lifts, and then reduce the lifting problem to the existence of a
certain PL homology 3-sphere.

To be more specific, let BTOP denote the stable classifying space for
topological block bundles [31].

THEOREM 1. There is a space BTRI and a natural map BTRI — BTOP
such that if M is a topological n-manifold, n =17 (n =6 if M compact or
n =5 if M closed), and : M — BTOP classifies the stable topological tangent
bundle of M, then there is a one-to-one correspondence between the set of
concordance classes of simplicial triangulations of M and the set of vertical
homotopy classes of lifts of © to BTRI.

Here, two simplicial triangulations are concordant if there exists a
simplicial triangulation K of M x [0, 1] which restricts to triangulations on
M x {i}, ©+ = 0, 1, compatible with the given ones.

THEOREM 2. The fiber TOP/TRI of BTRI — BTOP is a K (ker (a: 62 —
Z,), 4).

Here, 6i' denotes the abelian group obtained from the set of oriented
3-dimensional PL homology spheres using the operation of connected sum,
modulo those which bound acyclic PL 4-manifolds; and a: 6 — Z, is the
Kervaire-Milnor-Rochlin epimorphism a(H?) = o(H %)/8(mod 2), where o(H?)
is the index of any parallelizable PL 4-manifold that H?® bounds.

COROLLARY 3. Let M be a topological n-manifold with N a codimension
zero submanifold of 0M such that a neighborhood of N in M is simplicially
triangulated. If n =7 (n =6 if cl(6M — N) is compact or n =5 if Mis
closed), then there exists a well-defined obstruction Ve H %M, N;ker(a:

i Zz)) such that V =0 if and only if there exists a simplicial triangula-
tion of M compatible with the given one near N. Furthermore the con-
cordance classes of such triangulations on M are in one-to-one correspondence
with the elements of H*(M, N; ker (a: 65 — Z.,)).

THEOREM 4. Ewery topological n-manifold, n =7 (n = 6 if 0M compact
or m =5 1f oM = @), can be triangulated as a simplicial complex if and
only if there exists a PL homology 3-sphere H® such that

(i) a(H®) =1, and

(ii) H*# H® bounds an acyclic PL 4-manifold.

Let M be a given topological n-manifold, » =7 (n =6 if 6M compact
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orn = 5if M closed) and let A € H(M; Z,) be the Kirby-Siebenmann obstruc-
tion to triangulating M as a combinatorial manifold [19]. Also, let

B: H'(M; Z,) — H*(M; ker()) be the Bockstein associated with the short
exact coefficient sequence

a

0 — ker (a) ol > 7, 0.

THEOREM 5. The topological manifold M can be triangulated as a
simplicial complex if and only if B(A) = 0.

In this paper we also investigate the question of whether a given topo-
logical manifold can be triangulated as a simplicial homotopy manifold.
Some sample theorems are:

THEOREM 6. Suppose that every PL homotopy 3-sphere bounds a con-
tractible PL 4-manifold. Then there is a natural one-to-one correspondence
between the set of concordance classes of simplicial homotopy triangulations
of a topological n-manifold M, m =T (n=6 if 0M compact or n =5 of M
closed), and concordance classes of PL mani fold structures on M.

THEOREM 7. Ewvery topological n-manifold M, n =17 (n=61f0M compact
orn =51foM = @), can be triangulated as a simplicial homotopy manifold
1f and only if there exists a PL homotopy 3-sphere H?® such that

(i) a(H® =1, and

(ii) H*$H® bounds a contractible PL 4-manifold.

Theorem 4 was first conjectured to be true by L. Siebenmann after he
had shown in [34] that every oriented topological 5-manifold could be
simplicially triangulated if and only if there exists a PL homology 3-sphere
of Rochlin invariant one whose double suspension is homeomorphic to S°.
For closed topological n-manifolds M, 6 < n < 8, with the integral Bockstein
of the Kirby-Siebenmann obstruction to putting a PL manifold structure on
M being zero, M. Scharlemann [33] proved that M could be simplicially
triangulated provided there exists a PL homology 3-sphere of Rochlin
invariant one whose double suspension is homeomorphic to S®.

Further evidence for the existence of a classification theorem for
simplicial triangulations of topological manifolds was given in [15] where
we showed, without assuming any suspension theorems, that every
polyhedral homology n-manifold P, n >6 (n =5 if 0P = @ or if 4P is a
topological manifold), is canonically simple homotopy equivalent to a
topological n-manifold. Then in 1974 R.D. Edwards [12] showed that the
double suspension of every PL homology n-sphere, n = 4, is homeomorphic
to S***. This allowed us in 1975 to prove Theorems 1, 6, and 7 and weaker
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versions of Theorems 2, 3, and 4 (cf. [16], [17]). However, in 1976, R.D.
Edwards showed that the triple suspension of every PL homology 3-sphere
is homeomorphic to S® and in 1977 J. Cannon [5] showed that the double
suspension of ewvery homology mn-sphere is homeomorphic to S**:. This
allowed us to simplify our proof of Theorem 1 and eliminate one of our
obstructions to triangulating topological manifolds. In this paper we give
the simplified proof. Also, T. Matumoto [24] has independently given a
different proof of Theorem 4.

This paper is divided into 8 sections. In Section 1 we observe that every
simplicially triangulated topological manifold is a polyhedral homology
manifold and show that a closed polyhedral homology n-manifold, % = 5, is
locally Euclidean if and only if its (n — 1)-dimensional links are 1-connected.
We then show that every homology n-manifold, n = 5, can be resolved via
a PL contractible map to a triangulated topological n-manifold. We conclude
Section 1 with the definition of a TRI manifold. In Section 2 we develop a
theory of topological triangulated cone bundles and observing that this
theory is stably equivalent to N. Martin and C. Maunder’s theory of homology
cobordism bundles [22], we produce the classifying space BTRI and a natural
map of BTRI — BTOP.

Section 3 is devoted to embedding theorems of spheres and disks into
triangulated topological manifolds so that we can use surgery techniques in
Section 4 to prove our product structure theorem, which implies that if the
product of a closed topological n-manifold M (n = 5) with Euclidean space
has a simplicial triangulation, then so does M. In Section 5 we use the
product structure theorem to prove the classification theorem and Section 6
is devoted to the calculation of the homotopy groups of the fiber of BTRI —
BTOP. Then in Section 7 we give necessary and sufficient conditions for
topological manifolds to be triangulated as simplicial complexes in terms of
the existence of certain PL homology 3-spheres.

Finally, in Section 8, we observe that the work of Sections 1-7 carries
over to the question of when a topological manifold can be triangulated as
a simplicial homotopy manifold.

We wish to thank R.D. Edwards for a trick which allowed us to prove
Theorem 1.6 when k = 4. Also, we thank John Hollingsworth for constant
inspiration, encouragement, and useful conversations throughout the dura-
tion of this work.

1. Recognizing topological manifolds among homology manifolds

Recall that a locally finite polyhedron M is a homology m-manifold if
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there exists a triangulation K of M such that for any x € M and any sub-
division K’ of K with « as a vertex, H,(lk(z, K')) is isomorphic to either
H,(S"™") or to H,(point). Here, as in the rest of the paper, all homology,
unless otherwise stated, is integral homology, and lk(g, K'), for a simplex
o of K’, denotes the link of ¢ in K’. The boundary of M, denoted oM, is the
set of points x such that H,(lk(x)) = H,(point) and is a homology manifold
without boundary. We refer the reader to [22] for basic properties about
homology manifolds.

If X is a compact space, let ¢(X) denote the cone on X, let ¢’(X) denote
the open cone on X, and let "X denote the »-fold suspension of X.

LEMMA 1.1. If X is a compact space, then

a) ¢'(X) x R™ is an open topological (n + r)-manifold if and only if
X+ X is homeomorphic to S™*".

b) ¢'(X) X R" is a topological (n + r)-manifold with boundary if and
only if 2" X is homeomorphic to [—1, 1]*+".

Proof. We only prove 1.1(a), as 1.1(b) follows from a similar argument.
If "X~ S"*" (where ~ denotes homeomorphic to), then since 2" X ~
S7+ZX,and ZX X R"~[S"'x(ZX)] — 8"}, where * denotes join, it follows
that both X x R and ¢'(x) x R" are open (n + 7)-manifolds.

Conversely, suppose that ¢/(X) x R" is an open (n + r)-manifold. Note
that ¢(X) x [—1, 1] ~ ¢(Z7X), so that ¢/(£"X) is an open (n + 7)-manifold.
But then by gluing two copies of ¢(£7X) together along X" X we have by the
generalized Schoenflies theorem [3] that Z(Z'X) = 2+ X ~ S™+7. O

PrOPOSITION 1.2. If M s a simplicially triangulated topological
n-manifold, then M is a homology n-manifold.

Proof. Let o be an i-simplex of M. Then the open star of ¢ in M which
equals
00 x c(lk(o, M)) — oo xlk(o, M) ~ ¢ (lk(a, M)) x R
is a topological n-manifold. Hence, by (1.1), Zi*'lk(g, M) is an n-sphere or
ball. Thus lk(o, M) has the homology of an (n — ¢ — 1) sphere or ball. []
Note that the proof of (1.1) and (1.2) implies
PROPOSITION 1.3. A homology n-manifold M is a topological n-manifold

if and only if for each i-simplex o of M, Z'+'1k(c, M)~ S™ if 6 ¢ M and
X k(o, M)~ [—1, 11" if 0 C OM.

We now investigate to what extent the converse of (1.2) is true. This
is accomplished by the following four theorems.
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THEOREM 1.4. Let H* be a compact homology k-manifold having the
integral homology of a k-sphere such that H* x R*™* 13 an open topological
n-manifold. If n — k=2, then Z* *H*~ S™. If H* is also 1l-connected,
n—k=1land k =4, then 2" *H*~ S™.

THEOREM 1.5. A homology k-manifold M with a collared boundary,
k=5 (=6 1i1f oM + ), 1s a topological k-manifold if and only if for each
vertex v of M both lk(v, M) and lk(v, M) are 1-connected.

THEOREM 1.6. Let H* be a compact homology k-manifold having the
integral homology of S*. If k = 4, then H* bounds a contractible homology
(k 4+ 1)-manifold V such that V — 0V is a topological (k + 1)-manifold.

THEOREM 1.7. Let M be a homology k-manifold with collared boundary,
k=5(=61f0oM+ @). Then there exist a homology k-manifold N which
1s also a topological k-manifold and a PL contractible map f: N— M with
f(0M) = dN. Furthermore, if P is a collared codimension zero subpoly-

hedron of oM which is also a topological manifold, then f can be chosen to
be a homeomorphism over P.

Remark. Note that (1.7) strengthens the main result of [15].

To prove these theorems we will use the following theorem of J. Cannon
[5] and R.D. Edwards [11].

THEOREM 1.8 (Double Suspension Theorem). The double suspension of
every PL homology m-sphere is homeomorphic to S™*2.

Proofs of (1.4)-(1.7). Let (1.4),, (1.5),, (1.6), and (1.7), denote the
statements of (1.4), (1.5), (1.6), and (1.7), respectively, for k < » with &
restricted by the statements of the respective theorems. We first show the
validity of (1.4), for » = 4, and then show that

(1.4), = (1.5),4, == (1.6), == (1.7),4, == (1.4),+,
for » = 4, thus establishing the validity of the four theorems.

Step 1. (1.4), holds for » = 4. For k < 8, H* is actually a PL manifold,
so the result follows from (1.8). So assume that k¥ = 4 and » = 5. By (1.1)
we must show that ¢'(H*) x R"°is an open topological n-manifold. As H*
is a homology 4-manifold, the only non PL sphere links are the links
L, = lk(v;, H*) of a finite number of vertices v,, - -+, v,, of H*. Construct a
boundary connected sum of star neighborhoods of the v, in H* along suitable
arcs and denote the resulting acyclic homology 4-manifold by M* Then
oM* is PL homeomorphic to L,% --- #L, where # denotes connected sum.
Thus H* = P* U,;,xM*, where P*is an acyclic PL 4-manifold with oP* = oM*.
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Let X =c'(0M*) x R*°, Y = ¢/(P*) x R*®, @* denote the double of P*,
Z =c'(Q) X R and W = ¢'(M*) x R*™®. If we can show that there exists
a proper embedding h: Y — Z, a collar C of X in W, a collar D of h(X) in
cl(Z — h(Y)), and that Z is an open topological n-manifold, the proof will
be complete. For then H can be extended to a homeomorphism Y U C —
h(Y) U D where Y U C is an open neighborhood of (cone point) x R*™® in
¢'(H*) x R**,and h(Y) U D is an open topological n-manifold being an open
subset of Z.

First suppose that » = 6. Since Q*is a PL homology 4-sphere and n = 6,
(1.8) implies X" *Q*~ S", so that Z is a topological n-manifold by (1.1).
Now by the codimension one approximation theorem of Ancel-Cannon [1]
(the version of Bryant-Edwards-Seebeck [4] suffices in this case), Y C Z can
be properly re-embedded via h: Y — Z so that Z — k(YY) is 1-ULC at h(X).
But, by (1.8) and (1.1), X is a topological »-manifold, so that the codimension
one taming theorem of R. Daverman [8] implies that #(X) has a collar D in
cl(Z — h(Y)).

Let N* denote the double of M*. Now N*is homeomorphic to XL, - - -
$XL,, so that since Z*ZL,)~ S* by (1.8), we have that Z*N*~ S" by [13].
Thus, (1.1) implies that ¢/(N*) x R is a topological manifold. Next note that
W — X is 1-ULC at X c¢'(@*) x R"™° since M* is l-connected and X is a
topological manifold. Therefore, the codimension one taming theorem of
R. Daverman [8] implies that X has a collar C in W, thus completing the
case when n = 6.

For m = 5, the proof is the same as above, except that (1.8) does not
apply. Toremedy this we note that since H*is 1-connected, Q* is a homotopy
4-sphere, and thus ZQ* ~ S*® by [34].

Step 2. For r > 4, (1.4), = (1.5),;,. The necessity part of (1.5) follows
from (1.1) and the fact that if ZX ~ S*, then X is 1-connected.

Conversely suppose oM = @, for if oM + @, apply the unbounded case
to 0M and M — oM, and then use the fact that 6M is collared in M. Solet P,
denote the statement that if o is a(k —i)-simplex of M, then 2*~+'lk(a, M)~ S*.
The statement P, for ¢ = 0, 1, 2 is well known to be true and P, is true by
(1.8). So assume P, to be true for i <s, where 4 <s <k <r» + 1, and let ¢
be a (k — s)-simplex of M. Now lk(o, M) x R***! is a topological (k + 1)-
manifold, for if (x, t) e lk(o, M) x R***+', then

X = lk((, t), lk(o, M) x R**") ~ Uk(x, U(o, M))xlk(t, R**+")
~~ lk(xxo, M)xS* ™ ~ ZF*+ [ [(xxa, M) .
But by the induction hypothesis £X ~ ¢ ***[k(x*xo, M)~ S*. Thus by (1.1)
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¢'(X)is an open topological manifold neighborhood of (2, ¢)in lk(a, M) x R**+',
Finally, (1.4), implies that Z***'lk(o, M)~ S*, hence P, is true and the
induction is complete. An application of (1.3) completes the proof.

Step 3. For r = 4, (1.5),,, — (1.6),.

Case 1: r = 4. Since H* is a compact homology 4-manifold, the only
non PL sphere links are the links L, = lk(v,, H*) of a finite number of
vertices v, ---, v, of H*. Construct a boundary connected sum of star
neighborhoods of the v, in H* along suitable arcs and denote the resulting
homology 4-manifold by M*. Then oM* is PL homeomorphic to L% --- ¢L,,
and H* = P* U, M*, where P*is an acyclic PL 4-manifold with P* = oM*.

Remove the interior of a PL 4-disk from the interior of P* and call the
resulting PL 4-manifold W. Then W is a PL homology cobordism from oP*
to S°. Let J((W, oP*) be a handlebody decomposition for W relative to oP*.
We can assume that J((W, 0P*) contains no 0- nor 4-handles. Let C, (W, oP*)
be the (relative) chain complex based on these handles. As H, (W, 6P*) = 0,
we have the split short exact sequence

0— C(W, 0P*) — Cy(W, 0P*) — C,(W, oP*) — 0
so that we have a short exact sequence
00— C(W, oP)— C,PC,—> C(W, 9P — 0

where C,(W, 6P*) maps isomorphically to C, and C, maps isomorphically to
C.(W, oP*). By sliding the 2-handles of J((W, P*) we can geometrically
realize C; and C, as being freely generated by 2-handles and then by reorder-
ing these handles we can assume that the 2-handles generating C, are
attached after the 2-handles generating C,. Let W, be the union of dP* with
the 1-handles of J((W, dP*) and the 2-handles generating C,, and let W, be
the union of S*® with the 3-handles of J((W, 0 P*) and the 2-handles generating
C;. Then W, and W, are homology cobordisms between dP* and H?, and H*
and S? respectively, where H® is a PL homology 3-sphere, and W =
W, U s W,. Furthermore, van Kampen’s theorem implies that both X, =
M* Uz Wi U pse(H?) and X, = ¢(S*) U W, U ;s¢(H?) are 1-connected.
Finally, let V be the contractible homology 5-manifold

V= C(Xl) Uc(}13)c(X2) .
Then 0V = H*and V — 4V is a topological 5-manifold by (1.5),.

Case 2: r=5. By (1.5),;, we need to show that H* bounds a con-
tractible homology (k + 1)-manifold V such that the links of vertices of
V — 0V are l-connected. But for k& =5 this is just a trick of C. Maunder
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(Proposition 2.1 of [29]). Let P be a copy of H* halfway between a and H*
in axH* and let x, ---, 2, be a set of generators for ,(P). Homology
manifolds have enough general position properties so that each x; can be
represented by a disjoint embedded S, and since H,(P) = 0, each S* can be
spanned by a disjoint acyclic 2-dimension subpolyhedron D in P. Let N be
a regular neighborhood of one such Dand let @ be a x N projected out to H*.
Now replace @ by ¢(0Q). Do this for each x, and call the resulting manifold
V. Now lk(a, V) is clearly 1-connected, and 7,(3Q) = 0 by general position.
Thus all the links of vertices of V — 6V are 1-connected.

Step 4. For » = 4, (1.6), — (1.7),,,. Assume oM = . Let v, Vs, - De
the vertices of a triangulation of M and let V,, i =1, 2, -- -, be the contrac-
tible homology manifolds that lk(v,, M"") bound given by (1.6),, where M"
is a second barycentric subdivision of M. Let

N = U.[(M — int(v,* kv, M")) U V.].

Now N is a homology ( + 1)-manifold with links of vertices 1-connected,
so that by the established (1.5),,,, N is a topological manifold. Define
S N-— M by shrinking the complement of an inner collar of 4V, in each V,
to a point.

If oM + @, triangulate M so that oM and P are subcomplexes, resolve
M as above noting that we need not touch P and then similarly extend this
to a resolution of M.

Step 5. For » =5, (1.7), = (1.4),. By (1.7), there exists a topological
k-manifold N* which is triangulated as a simplicial complex and a PL
contractible map f: N* > H*. Thus f x id: N* x T"* - H* x T** (T** =
(n — k)-fold Cartesian product of S'), is a PL contractible map. By hypo-
thesis H* x T""*is a topological manifold, so the CE approximation theorem
of M. Cohen [6] implies that f x id is homotopic to a homeomorphism
h: N* x T"™*-— H* x T**. We can assume that N*isin fact a PL manifold,
since the obstruction to putting a PL manifold structure on N* lies in
HYN;Z,)=0[19]. Any homeomorphism h’: N* x R** — H* x R** covering
h satisfies ||p, () — p.,h'(x)|| < constant for all x € N* x R**, where p,
denotes projection to R**. Let »: R** —»intD" * = {x e R" *|||z|| < 1} be
a ray preserving homeomorphism. Then (id|,k X #)oh’o(id |k x »7'): N* x
int D*— H* x int D* extends to a homeomorphism g: N*x S» %' Hkx Sr—k1,
Here we regard XS *"' as the quotient of X x D" * under the identifica-
tion of X x 0D""*to D™ * = S"*' by projection. Thus X" * H*~ Z" ¢ N*
and if » — k=2, (1.8) implies that " *N*~S*. If n —k =1 and H*,
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hence N*, is l-connected, then N* is a PL homotopy k-sphere, so that
SH*~ XNk~ Sk+! [34]. |

COROLLARY 1.9. Let H* be a compact homology k-manifold having the
integral homology of a k-sphere. If m — k=2, then Z~*H*~ S". If N*
is also 1-connected, n — k=1, k=1and k = 4, then 2" *H*~ S™.

Proof. By (1.5), H* x R** is a topological manifold, so that the result
follows from (1.4). ]

Motivated by (1.5), we call a (locally finite) polyhedron M a TRI
n-manifold if M is a homology n-manifold with collared boundary with
lk(v, M) and lk(v, 9M), l-connected for all ve M. Thus if n =6 (n =5 if
oM = @) a TRI n-manifold M is a topological n-manifold.

2. TRI cone bundles and their classifying space

We now describe a triangulated topological cone bundle theory, relate
it to the topological block bundle theory of Rourke-Sanderson [31], and show
that it is equivalent to the homology cobordism bundle theory of Martin-
Maunder [22].

Recall that a PL cell complex K on a polyhedron X is a locally finite
covering of X by compact subpolyhedra, together with subpolyhedra éa of
each element « of K, such that

(i) for each a € K, o« is a union of elements of K,

(ii) if a and B are distinct elements of K, then (a — da) N (8 — 9B) = @,
and

(iii) for each « € K, there is a PL homeomorphism a = ¢(da) rel da, where
o 1s a PL sphere.

If in (iii), da is only assumed to be a polyhedral homology manifold
having the integral homology of a sphere, then K is called an H-cell complex.

If K is a PL (H) cell complex on X, then K x I is the PL (H) cell
complex on X x I with a typical cell being the cone on (da x I) U a x {0, 1},
ac K.

If K is a PL (H) cell complex on a polyhedron X we denote this by
|K| = X.

Let K be a PL cell complex on a polyhedron X. A TRI q-cone bundle
¢/X consists of a polyhedron E(&) containing X = | K| as a subpolyhedron
such that

(i) for each p-dimensional cell o € K, there is a subpolyhedron B,(§) C
E(&) containing ¢ such that 8,(¢) is a TRI (p + ¢)-manifold and such that
(B.(2), o) is (topologically) homeomorphic to the cone on the standard sphere
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pair. B, is called the block of & over o.

(ii) E(¢) is the union of the blocks 5,(¢), 0 € K.

(iii) The interiors of the blocks are disjoint, and

(iv) B.(&) N B.(&) is the union of the blocks over the cells contained in
oNT.

Remark 2.1. Note that every TRI g-cone bundle is in fact a topological
disk block bundle.

If ¢/K is a TRI cone bundle and L is a PL cell subcomplex of K, the
restriction §|L of ¢/K to L is defined by setting 8,(¢|L) = B,(&) for each
ocelL.

Two TRI cone bundles are isomorphic if there is a PL homeomorphism
h: E(&) — E(&) such that h is the identity on | K| and R(B,(&)) = B,(&,) for
each o€ K.

Two cone bundles &, & /K are concordant if there is a TRI cone bundle
MN/K x I such that 9| K X {3} is isomorphic with &, i = 0, 1.

We now refer the reader to [22] for the definition of and basic results
concerning homology cobordism bundles. Insummary, a homology cobordism
g-bundle over an H cell complex K is a block bundle in which the block over
a cell 0 € K is a homology manifold homology cobordant to o x [—1, 1]

THEOREM 2.2. Let K be a PL cell complex. If q =6, then there is a
natural one-to-one correspondence between the set TRI(K) of concordance
classes of TRI q-cone bundles over K and elements of the set JH(K) of
concordance classes of homology cobordism g-bundles over K.

Proof. As every TRI g-cone bundle is itself a homology cobordism
bundle, there is a natural inclusion map i: TRI,(K)— 3 ,(K). We construct
an inverse j: J(,(K) — TRI,(K) for ¢ = 6 as follows. Let £%/K be a homology
cobordism S¢"'-bundle associated with £7/K. Now &/K is concordant as a
homology cobordism bundle to a homology cobordism bundle &'/K which is
a block spherical fibration (Proposition 8.1 of [27]). By (1.7), each block of
¢'/K is resolvable via a PL contractible map to a TRI manifold. Thus, by
inductively resolving the blocks of &/K, the mapping cylinders of these
resolutions exhibits a concordance of ¢’/K to a homology cobordism bundle
9U/K which is a spherical block fibration in which all blocks are TRI
manifolds. Thus, the generalized Poincaré conjecture and the h-cobordism
theorem imply that 919/K is in fact a topological block S*'-bundle. Then
by coning the blocks of all the constructed bundles and concordance we have
that ¢/K is concordant as a homology manifold to a TRI g-cone bundle
/K. Let 5: 3 (K)— TRI,(K) map the concordance class of &/K to the
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concordance class of 919/K. It is now easy to verify that j is indeed an
inverse for the inclusion map i: TRI,(K) — F(K). i

Note that every TRI g-cone bundle can be considered as a TRI (¢ +1)-cone
bundle by taking the product of the total space with [—1, 1] and then
observing that the correspondence of (2.2) commutes with this stabilization.

In [22], N. Martin and C. Maunder construct a classifying space BH(q)
for homology cobordism g-bundles over H-cell complexes. Hence (2.2) shows
that BH(q) can also be considered as a classifying space for TRI g-cone
bundles if ¢ = 6. To emphasize this, we let BTRI(q) denote this classifying
space for TRI g-cone bundles over PL cell complexes. So we have

LEMMA 2.3. Let K be a PL cell complex. If q =6, then there is a one-
to-one correspondence between the elements of TRI,(K) and elements of
[ K|, BTRI(g)].

Let B/"l‘\O/P(q) denote the classifying space for topological block bundles
over PL cell complexes [31]. By (2.1) we have

THEOREM 2.4. For q =6, there exists a matural map t:BTRI(q)—
I~ A~
BTOP (q) which induces a map t: BTRI = lim, ., BTRI(¢q) — lim,..BTOP(q) =
BTOP.

Remark 2.5. Theorem 2.2 is in fact true for ¢ = 3, so that (2.3) and
(2.4) are true for ¢ = 3, but for our triangulation work we only need a map
of stable classifying spaces. Section 7 of [15] provides a proof if one uses
(1.7) in place of Theorem 5.2 of [15].

We will discuss the fiber of ¢: BTRI -» BTOP in Section 6.

3. Some embedding theorems

In this section we will show how to represent certain maps of disks into
TRI manifolds by PL embedded disks up to an s-cobordism through a homolo-
gy manifold. These results will be used in Section 4 to prove our product
structure theorem.

Two closed homology m-manifolds are said to be s-cobordant if there is
a homology (m + 1)-manifold W such that o W is the disjoint union of M and
N, and the inclusions M © W and N C W are simple homotopy equivalences.
If M and N are homology manifolds with boundary, they are said to be
s-cobordant if there is a homology (m + 1)-manifold W such that oW =
M U W,U N, where W, is an s-cobordism from o W to 6N, and the inclusions
Mc W and Nc W are simple homotopy equivalences. If 0M = 6N, then
M and N are 7relatively s-cobordant if M and N are s-cobordant via an
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s-cobordism W with 0W = NUGON x I UM. We denote an s-cobordism
between M and N by (W; M, N).

We first show how to embed disks below the middle dimension.

THEOREM 3.1. Let M be a compact homology m-manifold with non-empty
boundary. Suppose f: (D*, S¥7') — (M, dM) is a proper map such that f|S*
18 @ PL embedding which extends to a PL embedding of S** x D™ * into
oM. If 2k <m — 1, then there exist a relative s-cobordism (W; M, M') and
a proper map F:(D*, S*') x (I;0,1) —(W; M, M') with

F{(D* S* ) x0=f,F|S*'xI=f|S*'xid,

and F[(D*, S*7') x 1 a proper PL embedding which extends to a PL embedding
of (D*, S*¥ Yy x D™ *,

Proof. The idea of this proof is due to Matsui [23]. We can assume
that oM is PL collared in M, as this can be accomplished via a relative
s-cobordism. In [26] Maunder develops general position theorems for maps
of polyhedra into a homology manifold M. The basic philosophy is that
given a map f: P — M of a k-dimensional polyhedron P into M, we may not
be able to homotope f into general position, but there is a PL acyeclic map
a: K-> P where K is also a k-dimensional polyhedron, and a map 8: K — M
which is in general position, such that fa is arbitrarily close to B and hence
homotopic to 8. In our situation then there exists an acyeclic polyhedron K
of dimension k with S**' — K, a PL acyclic map a: K —~ D* with a|S*' the
identity, and a PL embedding B: K — M with 8|S*' = f|S*'. Furthermore,
B is homotopic to fa. Using a collar C of 6M in M we can assume that
B(K)NC = f(S*") x I. Let N be a regular neighborhood of 8(K) in M
pushed off 0M using the collar C. If M, = cl(M — N) U ¢(6N), then there
is a PL acyclic map g: M -» M, with ¢g|C the identity. Now g induces an
isomorphism on 7, by van Kampen’s theorem, since B~ fa ~ 0 implies
m(N)—>xm (M) is the zero map. Thus, by [14], ¢ is a simple homotopy
equivalence. Also, there is a PL embedding f: (D* S*') — (M, oM,) with
fi1S* !t = f, induced by K%M M,. The mapping cylinder of ¢ provides
a relative s-cobordism (W,; M, M,). Also, the map

FUFIS* xid,) Ufi: D*US*' x I)UD*— M U @M x I) U M,
extends to a proper map F: (D*, S* ') x (I;0, 1) — (W,; M, M,) which has all
the desired properties except that f, may not extend to an embedding of
(D*, 8*') x D™*. To remedy this situation note that f,(D* S*°') has a
normal homology cobordism bundle v/f(D*) which is stably trivial
rel7[f(S*™"). But since #,(BH, BH(r)) = 0 for i <n and » =3 [25], v is
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concordant relv|f,(S*™*) to the trivial bundle D* x D™*. Let 9/f(D*) x I
be this concordance and let N’ be a regular neighborhood of f,(D*) X I'in E(91).
Then (M, x I) U N’, where the union is taken along a regular neighborhood
of f(D*)x1in M, x 1, is a relative s-cobordism (W’; M,, M’) such that there

is an embedding f': (D*, S**) —» (M’, 0M’) which extends to a PL embedding
of (D* S* ') x D™ *. Now extend

LU(AISF xid) U DFUS* x HUD*— M, UGM, x HUM

to a proper map F':(D* S* ') x ([;0,1)— (W', M,, M') and adjoin W, and
W' along M,, and F, and F' along f, to obtain the required s-cobordism. []
As a consequence of (3.1) we have

COROLLARY 3.2. Let M be a closed homology m-manifold. Suppose
f:S*—>M is a map and 2k <m — 1. Then there exist an s-cobordism
(W; M, M') and a proper map F:S* x (I;0,1)—(W; M, M') with F|S* x
0 = f, and F'|S* x 1 extends to a PL embedding of S*™* x D™,

Our goal in the rest of this section is to treat the middle dimensional
embedding problem for TRI manifolds. However, to do this we must first
introduce the notion of a PL resolution of a homology manifold.

Let M be a compact homology m-manifold and let N be a codimension
zero compact PL submanifold of M. A PL resolution of M rel N is a pair
(P, f) where P is a PL »-manifold and f: (P, 6P)— (M, 6M) is a surjective PL
map of pairs such that f'(0M) = 6P, f|f '(IN) is a PL. homeomorphism,
and f is acyeclic, i.e., H,(f'(x)) = 0 for all x € M. The pair (P, f) is called a
simple resolution of M rel N if we further require that f be a simple
homotopy equivalence.

M. Cohen [6] and D. Sullivan [38] have developed an obstruction theory
for PL resolving M rel N. They show that there is a well-defined element
o(M, N)e H'M, N;6i') whose vanishing is a necessary and sufficient condi-
tion for the existence of a PL resolution of M rel N.

PROPOSITION 3.3. Let M be a compact homology m-manifold and let N

be a codimension zero submanifold of oM. If M has a PL resolution rel N,
them M has a simple resolution rel N.

Proof. For simplicity we assume N = oM = ¢, as the general case is
handled similarly.

By hypothesis M has a PL resolution so that ¢(M) = 0. Now by [6] or
[20] there exist homology manifolds M,, ¢ = 0, 1, - - -, m and PL acyclic maps
9. M, ,— M, so that f=g¢,,_,0o---09:M,— M, = M is a PL resolution of
M. We further observe by the construction of the g, in [6] or [20] and by
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van Kampen’s theorem, that the elements in the kernel of the Gy (M, )—
7, (M,) lie in simply connected sets. But then each 9., and hence f, induces
an isomorphism on 7,. Therefore, by [14], f is a simple homotopy equi-
valence. ]

THEOREM 3.4. Let M be a compact TRI 2k-manifold, k=3, with non-
empty boundary. Suppose that f;: (D*,S**)—(M,oM), 15907, are proper
maps which are homotopic to disjoint topologically locally flat embeddings
with trivial normal bundles. Then there exist an s-cobordism (W; M, M)
and proper maps F;:(D* S¥') x (I;0,1) »(W; M, M), 1<i <, with
F.[(D*, S¥') x 0 = f, and F,|(D* S*) x 1 disjoint proper PL embeddings
which extend to proper PL embeddings of (D* x D*, S¥' x D¥).

Proof. As in the proof of (3.1) we can assume that M is PL collared
in M. Let f/:(D*x D* S*'x D*)— (M, oM) be disjoint topological
embeddings with f/|(D* x 0, S¥*"* x 0) properly homotopic to folse <.
Let

(S, T)) = fi(D* x D*, S*' x D*, (Q, R, = (kM — S), el(M — T)),
and g;: (M, 6M)—(S,/Q,, T.,/R,) be the natural collapse maps. Since the range
of each g, can be considered as the Thom space of trivial PL bundles over
(D*, §*7"), the homology transversality theorem (Theorem 3.7 of [15]) implies
that we can homotope each g, rel @, to maps, which we still call 9:, so that
(P;, 0P,) = g:'(D* x0, S¥' x 0) is a proper homology k-submanifold of M
with a trivial normal homology cobordism bundle, v./P;, inside S,. Let
/P, x Ibe the concordance with 91, | P, x 0 =v,/P,and 9%, | P, x 1 = P, x D*.
Let N, be a relative regular neighborhood of P, x I in the homology manifold
E(91;). Then the homology manifolds N, furnish s-cobordisms between a
regular neighborhood of P, in M and, by uniqueness of relative regular
neighborhoods, P, x D*. Thus by attaching the N, to M x I over a regular
neighborhood of P, in M x 1, we obtain an s-cobordism from (M, oM) to a
homology manifold which we also call (M, 9M), and with (P;, 0P,) disjointly
embedded in (M, M) with neighborhoods of the form (P, x D*, oP; x D*).
We also extend the maps g, rel Q, over the s-cobordism to obtain maps

9: (M, oM) — (S,/Q,, T,/R,) with (P, 6P, = g7"(D* x 0, S*" x 0) .

As P, has a trivial normal bundle in M, it is stably parallelizable (as a
homology manifold). Thus, by the classification theorem for PL resolutions
(Theorem 5.1 of [9]) and by (3.3), there exist PL k-manifolds P; and PL
acyclic maps h;: P/ — P, with h,|0P/ and h, simple homotopy equivalences.
By adjoining the (simplicial mapping cylinder of #,) x D* to M over P, x D*
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we have that (M, 6M) is s-cobordant to a homology manifold, which we
again call (M, oM), with (P/, 6P/) PL embedded in (M, 6M) with neighbor-
hoods of the form (P x D*, 0P/ x D*). We also extend the maps g, rel Q,
over the s-cobordism to obtain maps g¢.: (M, oM)—(S,/Q, T./R,) with
(P{, 0P/) = g;'(D* x 0, S** x 0). Our goal is now to do surgery on the P;
away from @Q,, using (3.1), so that the P, are disks.

We first do surgery on the 0P/ away from the R, so that the 6P, are
spheres. So inductively assume that g¢,: 0P/ —»dD* x 0 is (j — 1)-connected
for 2j <k — 1. Let a:S?-->9P/ be an embedding representifg a non-zero
generator of 7,(6P;) which extends to an embedding of S7 x D* i !, Since
we inductively assume that the R, have been kept fixed, @ extends to a map
a. (D, 87)— (oM, 6P;) with g,a(D?*') C f(D* x 0). By (3.1) there is an
s-cobordism W, between 6M and a homology manifold M, with W, fixing
0P/ x D* and an embedding B: (D", S%) »(M, 6P, which extends to an
embedding of (D’*', S7¥) x D**i"' and with 8 homotopic to «a rel S7. Also,
we extend the maps g, over the s-cobordism to yield maps g,: (M, 6M = M) —
(S./Q., T,/R,) with 0P/ = g7 (S*' x 0), where M is M union the above
s-cobordism along 0M. By PL surgery we can use the embeddings 5 to kill the
homotopy element @ and deform the maps g, so that the transversal preimage
of S*7' x 01isidentified with the resulting surgery. Soif k > 6, we continue
in this fashion until each ¢;'(S*' x 0)is S*'. For k = 5, using the above
procedure we can assume that the 0P/ are 1-connected. Since the index of
each 6P/ is zero we can ambiently take connected sums of 9P, with connected
sums of S* X S* so that we can assume that 6P/ is PL homeomorphic to a
connected sum of copies of S* x S* (ef. [40]). Now by adding 3-handles,
using (3.1) as above, we can assume that the 6P/ are 4-spheres. For k = 4
we can assume that the 0P/ are connected. Since 3-dimensional cobordism
is zero, we have that 6P/ is cobordant through a spin 4-manifold W to S®.
But W can be realized by adding only 2 and 38 handles to dP/, so by using
(3.1) as above we can embed this normal cobordism. Thus we can assume
that the 0P, are 3-spheres.

So after performing the above surgeries we have the following situation.
There are an s-cobordism W between (M, 6M) and a homology manifold
(M, 6M), proper maps F;: (D*, S*")x (I;0, 1) - »(W; M, M) with F,|(D*, S¥™)x
0 = fiand F,|S*' x 1 disjoint PL embeddings which extend to embeddings
of S*'x D* into oM, and maps g,: (M, oM) —(S,/Q,, T./R,) with g,|oM
transverse to S*7' X 0and ¢;7'(S*! x 0) = F,(S*' x 1). Now use the relative
homology transversality theorem (Theorem 3.7 of [15]) to deform the g,
rel oM, so that (P/, 0P/ = S*™') = g, (D* x 0, S*' x 0) are homology k-mani-
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folds with trivial homology cobordism bundles v,/P; with v, |P; = S* ' x D*,
Now proceed, as we did above for 4P/, to make P, a disk. The result now
follows. O

The proof of (3.4) also applies to show

THEOREM 3.5. Let M be a compact TRI (2k + 1)-manifold, k = 3, with
non-empty boundary. Suppose that f,: (D*+', S*) — (M, oM), 1 <i < r, are
proper maps which are homotopic to disjoint topologically locally flat
embeddings with trivial normal bundles. Then there exist an s-cobordism
(W; M, M') and proper maps F;: (D*"', S*) x (I; 0, 1)>(W; M, M"), 1 <i <7,
with F,|(D**', S¥*)x0 = f, and F,|(D**', D*) x 1 disjoint proper PL embed-
dings which extend to proper PL embeddings of (D**' x D*, S* x D%,

4. A produect structure theorem

In this section we prove a product structure theorem from which our
main theorem classifying TRI manifold structures on a given topological
manifold routinely follows. We begin with some definitions.

A TRI manifold structure T on a topological manifold M is a maximal
family of PL related embeddings of compact TRI manifolds. If £ is a TRI
manifold structure on M, there exists a locally finite complex K which is a
TRI manifold and a homeomorphism h: | K| — M which is PL related to every
element of X, and such a homeomorphism determines a TRI manifold
structure on M.

Let N be a codimension zero topological submanifold of M. Then a
TRI manifold structure on M mear N is a TRI manifold structure %, on a
neighborhood U of N in M such that I, restricts to a TRI manifold structure
on N. Let Z be a TRI manifold structure on M x I (I = [0, 1]). By restric-
tion it gives TRI manifold structures Z, x {1} on M x {i} for i = 0, 1. It is
said to give a TRI concordance rel X’ if ¥ equals ¥’ x I on a neighborhood
of NxIin M x I, where ¥’ is a given TRI manifold structure on M near
N. When the TRI manifold structure on M is clear from the context, we
will sometimes refer to M as a TRI manifold.

THEOREM 4.1. Let M" be a compact conmected topological n-manifold
and let 6 be a TRI manifold structure on M x R. Let %, be a TRI manifold
structure on M near 6M such that %, x R agrees with 6 near oM X R. If
n = 5, then there is a topological s-cobordism (W; M, M') rel a neighborhood
of oM in M, a TRI manifold structure X' on M' coinciding with Z, near
oM = oM’, and a TRI manifold structure = on W x (—1, 1) with
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IIMx (=L 1)=0|Mx(—1,1) and EI|M'x(-1,1)=3x(-1,1).

Moreover, any such X determines a TRI manifold structure T’ on M coincid-
ing with Z, near oM, unique up to concordance rel ,, such thatT" x (—1, 1)
is concordant rel X, X (—1,1)to 8| M x (—1, 1).

Proof. Our proof is modelled on W. Browder’s Structures on M X R
[2]. However, in our case M may not be simply connected so we will use
A= Z(n’l(M )) coefficients in homology, noting that the kernels of degree
one maps satisfy Poincaré duality (see [41]) and hence the algebra of Section
2 of [2] holds in our case.

We will assume that oM = @, as our proof can easily be modified to
keep oM fixed throughout the construction.

Let 6 be the given TRI structure on M X R and let § be the induced
TRI manifold structure on M x (2, 3). Letw: M X (2, 8)— (2, 3) be projection
and subdivide (M x (2, 8)); so that 7 has a simplicial approximation which
we also call 7. Let x € (2, 3) be a point in the interior of a 1-simplex. Then
K = 7m7(x) is a polyhedron with a neighborhood PL homeomorphic to K x R.
As K x R is a TRI manifold, K is a homology n-manifold. By choosing an
appropriate component of K we may assume that K is connected, closed,
and divides M x (2, 8) into two homology manifolds 4 and B with boundary
K = AN B. Let g: K— M be the inclusion K — M x (2, 3) followed by the
projection p: M x (2, 83) — M. Then g: K — M is of degree 1. We proceed to
kill the kernel of ¢,: 7. (K)— 7w, (M) by doing ambient surgery on K inside
M x (2, 3) up to s-cobordisms through homology manifolds, and then use
(1.7) to do the surgery up to s-cobordisms through TRI manifolds.

We first resolve K inside of M x (2, 3) so that K is a TRI manifold. As
n = 5, (1.5) shows that we only need to alter the (n — 1)-dimensional links
of K so that they are l-connected. Let v be a vertex of K; then by (1.6),
lk(v, K) bounds a contractible manifold M, with W, — oM, a TRI manifold.
So replace D(v, K) by W, and replace D(v, M x (2, 8)) ~ S°+ D(v, K) by
S°x W,. Do this for all vertices of K and let K’ denote the repaired K and
let N denote the repaired M x (2, 3). Then K’ c N are both TRI manifolds
and there is a proper PL contractible map f: N— M x (2, 8) with f|K": K' -»K
a PL contractible map and with f the identity off a neighborhood of K’ in
N. Now K’ is connected, closed, and divides N into two TRI manifolds A’
and B’, with K' = A’ N B’. Note that we can assume that K’ is PL bicol-
lared in N, for, if necessary, we can split N open along K’ and fill in with
K’ x I. Let g’: K’ — N be the composition K’ & NL M x (2, 3) 2 M, where
p is projection. We then have the homotopy commutative diagram
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N Sk ym

b
M@, 3)> K

Next we kill the kernel of ¢%: 7, (K’) — n,(M) by doing surgery on K’ inside
N up to s-cobordism through homology manifolds.

Choose a set of normal generators g,, - - -, g, of ker(g4: 7,(K’) — n'(M)).
As K is a TRI manifold, its top dimensional links are 1-connected, so that K
is an ND(3) manifold in the sense of Stallings [85]. Thus by Theorem 5.4.11
of [35], these generators can be represented by disjoint PL embeddings
9::8'—> K’'. As N is a topological manifold, the g, extend to topological
embeddings g,: D* — N meeting K’ topologically transversally. Thus, for
eachl1 =<1 <, ¢g.(D,) N K’ is a collection of disjoint topologically embedded
circles. Again, as K’ is ND(3), every map of a circle can be arbitrarily
closely approximated by a PL embedding. Thus, by the homotopy extension
property, topological general position [39], and the fact that K’ is bicollared,
we can assume that the g,: D*— N, 1 < ¢ < 7, are disjoint topological embed-
dings with g,(D? N K’ a collection of disjoint PL embedded circles. Choose
an innermost one of g,(D*) N K’ which bounds a topologically embedded disk
0, with 6 c A’ or 6 B’, say 6 c A’. Let P be a regular neighborhood of
simplicial neighborhood of 6 in A’ with ¢,(D)Ng(D)NP =96, 251 < 7.
By (3.1), Pis s-cobordant rel 0P to P’ with 6 PL embedded in P’ with trivial
normal bundle. Thus by attaching this s-cobordism to N x I we have K’
embedded in a homology manifold N’ with N’ properly simple homotopy
equivalent to M x (2, 3), equal to M x (2, 3) off a neighborhood of K’ and
divided into two homology manifolds A4, and B, with boundary K’ = 4, N B,.
There exist PL embeddings g¢,: S'— K’ representing generators of
ker(g,: 7 (K') —> m (N ")) which extend to disjoint topological embeddings
9.: D* >N’ with g,(D* N K’ a collection of disjoint PL embedded circles.
Also an innermost circle of ¢,(D? N K’ bounds a PL embedded disk { with
a PL trivial normal bundle neighborhood P. Now let A, = cl(4, — P),
B, = B,UP and K, = A, N B, and say that K, was obtained from K’ by
adding the handle P. Do this for all subdisks which bound innermost circles
of K, N g,(D* until we finally have exchanged ¢,(D?) and killed the generator
g, of ker(g,: 7,(K’) ~»>m(N)). Now do this for all the g,, 1 < ¢ < », until we
have the following situation. There are (new) homology manifolds K’ and
N with K’ © N a PL Dbicollared homology manifold; N is properly simple
homotopy equivalent via a (new) map fto M x (2, 3), Nis equal to M x (2, 3)
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off a neighborhood of K', and K’ divides N into two homology manifolds A’
and B’ with boundary K' = A'NB’. Leta: K'—>A',b: K’ ->B’and1: K' - N
be inclusions and note that they induce isomorphisms on 7, and that < is
degree 1.

We now proceed to kill ker (i,: 7, (K’) > 7 (N)) (cf. [2; Prop. 4.1]). So
let us inductively assume that 7 (N, K') =0 for j <k and k <n/2. Note
that as in [2], ker i, = kera, @ kerb,. Now 7,(a) = ker(i,: H,_,(K'; A)—
Hy_,(A’; A)) is finitely generated so let « € 7,(a) be a generator. Then there
is a mapping h: (D* S*')— (A’, K') representing . Now apply (3.1) and
(8.2) so that we can assume that h is a PL embedding which extends to a
PL embedding of (D*, S¥7!) x D™ *. Next exchange a regular neighborhood
of h(D*) from A’ to B’, to obtain new K’, A’, B’, i, a, and b. We note that
as in [2] we have reduced the number of generators of 7,(a) and kept 7,(b)
the same. Now do this for all generators of 7,(a) and 7,(b) until they are
zero and hence 7,(¢) = 0. Thus by induction we can assume that 7,(N, K')=0
for 25 < n. _

We now have the following situation. There is a (new) homology
manifold N with the proper simple homotopy type M x (2, 3), a (new) con-
nected homology manifold K’ ¢ N with Nequal to M x (2, 3) off a neighbor-
hood of K’, K’ divides N into two (new) homology manifolds A’ and B’ with
boundary K’ = A’ N B’, B’ U M x [0, 2] is connected and 7 (i) = 0 for 25 < n,
where i: K’ ¢ N. We now consider two cases, n = 2k + 1 and » = 2k.

Casel: m =2k + 1. Letg, ---, g, represent a basis of
Tiri(a) ~ Ker (a,: H(K'; A) — H(A"; N))

where g,: (D**', S¥) - (A’, K’). By resolving K’ in N as in the beginning of
the proof we can assume K’ is a bicollared TRI manifold in N. Now by
topological surgery (§4 of [41]) we can apply (3.4) to A’ so that we can
assume that the g, are disjoint PL embeddings with trivial normal bundle
neighborhoods in a new N which is properly simple homotopy equivalent
to M x (2, 3) and which is equal to M X (2, 3) off a neighborhood of K’ (but
now K’, A’, B’ are again just homology manifolds). Exchange these neigh-
borhoods from A’ to B’ and let K, A, and B be the new K’, A’, and B’,
respectively. We now apply this process again to the free generators of
Ti(b) = Ker (b,: H(K; A) — H(B; A)) and conclude as in (4.2) of [2] that
i: K — Nis a homotopy equivalence and by resolving K in the new N we can
again assume that K is TRI bicollared in N.

Let W, be the region between K and M x 0. Then W, is a topological
h-cobordism between M x 0 and K with Whitehead torsion 7( W,). We can
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easily construct a TRI h-cobordism, W,, between K and a TRI n-manifold
M’ with Whitehead torsion 7(W,) = —t(W,). Thus W= W, Uz W, is a
topological s-cobordism between M x 0 and M’ with M x (—1, 0] U,», W a
TRI(n + 1)-manifold. W will be the desired cobordism between M and M’.

Case 2. m = 2k. We now proceed as in Case 1. By using topological
surgery we invoke (3.5) so that if g,, - - -, g, represents a basis of 7,,,(a) ~
ker (a*: H(K'; A)— H,(A'; A)), we can assume that they are represented by
disjoint PL embeddings g,: (D**!, S¥) —(A’, K') with trivial PL normal
bundles. Abstractly attach disjoint handles D/*' x D* to A’ by identifying
0D+ x D* with ¢,(S*) x D*andlet W, = M x [0, 2] U B’ U U, (D#** x D*).
Thus W, is an h-cobordism between M x 0 and say, M" with Whitehead
torsion 7(W,) and with M x (—1, 0] U ,«, W, a TRI (n + 1)-manifold. As in
Case 1 let W, be a TRI h-cobordism from M” to M’ with ¢(W,) = —t(W,).
The desired topological s-cobordism W from M x 0 to M’ is W, U W.,.

Now let (W; M, M') be the topological s-cobordism produced by the
above construction with 2’ the TRI manifold structure on M’ and S the TRI
manifold structure on W' = WU (M x (—1,0]) with S|M x(—-1,1) =
0|M x (—1,1) and Z|M’' = %', where M x [0, 1) is the collar of M in W.
There is a PL ambient isotopy k,: 2D*—2D*of the 2-disk 2D*={x € 7*|||2 || < 2}
which fixes 9(2D?) and interchanges the axes of D* = {xv ¢ R*|||z|| <1}. This
isotopy extends to an ambient topological isotopy of W’ x R which leaves
W’ x R fixed on a neighborhood of M’ x R and interchanges the axes in the
fibers of M x D* in W’ x R. Thus there is a TRI manifold structure ¥ on
W x (-1, 1), induced by = x Rand h,, with | M x (—1,1) = 6| M x (-1, 1)
and with 2| M’ x (—1,1) = &' x (-1, 1).

By the topological s-cobordism theorem there is a homeomorphism
h:(W; M, M")— M x ([0, 1]; 0, 1) with & | M the identity. Then h|M’: M’'— M
determines a structure I'on Mand & x id: (W x (—1, ) > M xI)x(—1,1)
exhibits the desired concordance between I' x (—1, 1) and 6| M x (—1, 1).

To see the uniqueness of I' up to concordance, suppose (W, M, M) is
another topological s-cobordism given by the above construction. Then by
the topological s-cobordism theorem there is a homeomorphismz:(W; M, M)
M x ([—1, 0]; 0, —1) with 2| M the identity. Thus h|M: M — M determines
a structure I' on M. Note that (h Uh) xid: (WU, W) x (=1,1) > M x
[—1, 1] x(—1, 1) determines a TRI structure £ on Mx[—1, 1]x(—1, 1) with

SIMx —1)x(=1,1)=Tx(-1,1)
and
ZIMx1)x(-,1)=Ix(-11).
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Now applying relative existence to (M x [—1,1] x (—1, 1))s, we obtain a
concordance between I' and T. O

Remark 4.2. It is not difficult to see that the above construction can be
used to produce a TRI s-cobordism between M x R and a TRI manifold L,
properly containing W (W as in (4.1)), which is a product outside any given
neighborhood of M x 0 and with M’ c L (M’ as in (4.1)) a simple homotopy

equivalence. Moreover, we can assume M’ C L has a neighborhood homeo-
morphic to M’ x I.

COROLLARY 4.3. Let M" be a compact topological n-mani fold, 6 a TRI
manifold structure on M x R, N a codimension zero submanifold of oM,
and Z, a TRI manifold structure on M mear N such that I, X R agrees
with 6 near N X R. If m =6, then there is a topological s-cobordism
(W; M, M’) rela meighborhood of N in M, a TRI manifold structure X’ on
M’ coinciding with Z, near N, and a TRI manifold structure = on W x
(=L, DwithZ|Mx(—1,1)=60|Mx(—1,1) and Z|M’'x(—~1, 1)=3'x(—1, 1).
Moreover, any such I determines a TRI manifold structure T on M coincid-
g with L, near N, unique up to concordance rel %,, such that T x (-1,1)
18 concordant rel T, X (—1,1) to 6| M x (—1, 1).

Proof. Let I, be the TRI manifold structure on a neighborhood U of
N which restricts to the TRI manifold structure on N, and P be a regular
neighborhood of N in U. Now P is a homology manifold with int P a TRI
manifold and with P = c¢l(0P N int M) PL bicollared. We can now use 1.7
to ambiently repair the top dimensional links of P in M so that we can
assume that X, induces a TRI manifold structure on P. Now let N =
cl(0M — P), let (W; N, N') be a TOP s-cobordism rel a neighborhood of 9N
in N given by applying (4.1) to N, and let J be the result of attaching W
to M along N. Noting that M has a TRI manifold structure near o, we
apply (4.1) to M to get a TOP s-cobordism (W; M, M’) rel a neighborhood of
oM in M. By construction we can view W as a TOP s-cobordism between
M and M’ rel a neighborhood of N in M with a TRI manifold structure N’

on M’ coinciding with X, near N, and a TRI manifold structure ¥ on
W x (-1, 1) with

ZIMx(—1,1)=0|M x(—1,1) and Z|M x(—-1,1)=3" x(-1,1).

Finally apply the s-cobordism theorem to W as in the end of the proof (4.1)
to obtain the desired TRI structure I" on M and note that the uniqueness of
I up to concordance follows from relative existence as in 4.1. |

COROLLARY 4.4 (Product Structure Theorem). Let M? be a conmected
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topological g-manifold and let 6 be a TRI manifold structure on M x R".
Let N be codimension zero submanifold of oM and X, a TRI manifold
structure on M mear N such that X, X R* agrees with 8 near N x R*. If
q=" (q =61fcl(oM — N) is compact or ¢q =5 1f M s closed), then there
exists a TRI manifold structure I' on M coinciding with Z, near N, unique

up to concordance rel X,, with I' X (—1, 1)* concordant relZ, X (—1, 1)* to
6|M x (—1, 1)".

Proof. The theorem need only be proved for » = 1 for we can induec-
tively reduce the M X R" case to M x R. We also assume for simplicity
that oM = @, for the case when oM = @& follows similarly.

Filter M by codimension zero compact topological submanifolds M, C
My cM,c M* C --- such that each S; = cl(M; — M,) is a compact codimen-
sion zero topological submanifold of M., (S;, 0_S,) is homeomorphic to
(0_S; x [0, 1], 0) where 0_S, = S, N M,, and each B, =cl(M, — M) is a
compact codimension zero submanifold of M,. Such filtrations exist (Theorem
5.9.2 in Essay III of [19]) provided » = 6. Call such a filtration a TOP
filtration on M.

Next we construct a TOP filtration M, c M, c M/ c M C--- on M
and a TRI manifold structure ¢ on M x R concordant to § so that ¢’ re-
stricts to a TRI manifold structure on each 4S;/ x (—2,2) where S/ =
cl(M; — M)).

Foreachi,let A, = S, X [—38, 8] € M x R. Then dA, is a closed topologi-
cal manifold homeomorphic to 9_S; x S!, and @ restricts to a TRI manifold
structure on the interior of a small closed neighborhood C; on 04, in M X R
homeomorphic to dA4; x [—1, 1], where 0A; corresponds to 04, x 0, D, =
C.NMx0cMxR is the disjoint union of D; and D;* where D; and D;" are
small closed bicollared neighborhoods in M of 4_S; and 4.S;, respectively,
0.8, = S;N My, and C;N(Mx(—2,2)) = D, x(—2,2)cM x R. By Remark
4.2 applied to Int C,, there exists a TOP s-cobordism (W;; C,, C/) with the
following properties:

1) X, =(M x R x [0, 1]) U¢,x; W, has a TRI manifold structure Z, with
M x R x[0,1] =68 x [0, 1] and Z, restricts to a TRI manifold structure
on C/, and

2) W, = oW, — Int(C, U C;) is a TOP s-cobordism between oC, and oC;.

Let X = U; X, and £ be the TRI structure on X induced from the X,.
By applying the TOP s-cobordism theorem first to d W, and then to W,, we
get homeomorphisms g¢,: (W/, C;,, C/)—C, x ([1, 2], 1,2) with g¢,|C, the
identity. Therefore ¢ = (IJ,9,) Uid|M x R x [0, 1] is a homeomorphism
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from X to Y=Mx R x[0,11U(U.C, x[1,2]) with g|M x R X0 the
identity.

By utilizing collar structures, it is easy to see that there exists a
homeomorphism h: Y — M x R x [0, 1] such that

hIMxRx0=id, h|c1[Y—<Cix[%,2]>]:id,

h(C,.xB_,z]) :Cix[—;—,l] and, h(D, xtx2) =D, xtx1

for —2 <t < 2. Therefore hog(X) determines a concordance of M x (—2, 2)
from 6|, .., to a TRI manifold structure, say 6, and there is a TOP filtra-
tion McM;”"cM,cMc--- of M defined by S/ =cl(M} — M) =
h(D; x 2). Also from the above construction it easily follows that 8’ restricts
to a TRI manifold structure on 4S; x (—2, 2).

To complete the proof we apply 4.2 inductively to the new filtration to
obtain a TRI manifold I" on M. The uniquencess of I', up to concordance,
follows from relative existence as in 4.1. O

5. The classification theorem

Recall from Section 2 that a TRI cone bundle /K with base a (finite
dimensional) polyhedron X = | K| is a topological disk block bundle over X
and hence has an underlying microbundle which we denote by mic (n)/X
[80]. Let £/X be a microbundle. A TRI reduction of &/ X to a TRI cone
bundle, also called a TRI reduction of &, isa TRI cone bundle £¢'/X such that
mic (&) is identical to £/ X as microbundles, i.e., mic (¢') is micro-identical
to mic(&). A stable TRI reduction of & is a TRI reduction 7 of £ P e’, s > 0,
where ¢: X — X X R*— X is the standard trivial microbundle.

A TRI concordance between TRI reductions 7, and 7, of ¢ is a TRI
reduction /X x I of & x I such that the reduction 7| X X ¢ =7, x 1 for
1 =0,1. If L is a subcomplex of K and U is a neighborhood of C = |L| in
X such that »|U x I = 9,| U x I, then 7 is called a TRI concordance rel C.
A stable concordance rel C of stable TRI reductions 7, and 7, of ¢ is just a
TRI concordance rel C between stabilizations 7, and 7,.

If &, is a stable TRI reduction of &|C which extends to a stable TRI
reduction of &£|V for some neighborhood V of C in X we write

TOP/TRI(érel C, &)

for the set of stable concordance classes rel C of stable TRI reductions & of
¢ that coincide near C with &, in the sense that &'| U is stably the same as
&| U for some neighborhood U of C.
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By (2.4) there is a natural map ¢: BTRI — BTOP, where BTOP classifies
stable topological microbundles. We can, and do, assume that ¢: BTRI —
BTOP is a Hurewicz fibration. Let £/X be a microbundle over a polyhedron
X = | K| and let & X — BTOP classify £&/X. Let & be a TRI reduction of £|C,
C a subpolyhedron of X, which extends to a TRI reduction of &| U, U some
neighborhood of C in X, and let &: U — BTRI classify &|U. We then have
té, = €| U. Define

Lift(érel C, &)

to be the set of liftings of & to BTRI through ¢: BTRI — BTOP that equal &,
near C, modulo the equivalence relation of vertical homotopy rel C.
By the homotopy lifting property we have

PROPOSITION 5.1. There is a ome-to-one correspondence between the
elements of TOP/TRI(érel C, &) and Lift(érel C, &,).

Remark. As X is finite dimensional &: BTOP = lim, . BTOP(n) factors
through a classifying map f: X — BTOP(n). Let v" denote the universal
topological microbundle over BTOP(n). Technically, the homotopy lifting
property only establishes a one-to-one correspondence between the elements
of TOP/TRI(f*(v*)relC, &) and Lift(¢relC, &), so (5.1) is true only when
a specific stable micro-isomorphism between f*(v*) and ¢ is given. However,
we choose to ignore this technical point as in all our uses of (5.1) such a
choice will be obvious.

Let M be a topological m-manifold and let S;r;(M) denote the set of
TRI concordance classes of TRI manifold structures on M. If %, is a TRI
manifold structure on M near a codimension zero submanifold N of oM, let
Srri(Mrel N, Z,) denote the set of TRI concordance classes rel Z, of TRI
manifold structures on M.

We now fix a proper topological embedding of M in a Euclidean space
R, ¢ > m, that is a PL embedding near N, and fix a PL manifold neigh-
borhood @ of M in R that admits a deformation retraction »: Q@ — M with
r a PL map to X, on the preimage of a neighborhood of N in M. Let (M)
denote the topological tangent microbundle of M.

PROPOSITION 5.2. If M has a TRI manifold structure T then r*t(M)
has a TRI reduction.

Proof. Homotope 7 (rel a neighborhood of N) to a PL map »:Q - M
and note that by the microbundle homotopy theorem »¥z(M) is micro-

A T .
isomorphic to r*z(M). Since (M) is the microbundle M — M x M — M with
A(z) = (x, ) and 7(x, y) = x, the induced microbundle »'*z(M) has a total



26 D.E. GALEWSKI AND R.J. STERN

space Ertt(M) = {(y, 7(), %)| € @ x M x @} with projection (y, r,(y), z) >y
and zero section y — (y, 7,(¥), r(¥)). Now Qis a subpolyhedron of E(r¥M )~
Q x M. Assume oM = . Triangulate @ and @ x M so that @ is a full
subcomplex. Now r}(M) has a natural TRI cone bundle structure over the
dual cell complex of @ by assigning to every dual cell of a simplex ¢ in @
the dual cell D, of ¢ in @ x M. Note that

D, ~ S*=*"%«D(s, M) = Z*=*D(q, M)

is topologically homeomorphic to an appropriate dimensional PL ball if ¢ is
sufficiently large. Thus r}¥7(M), hence r*z(M), has a TRI reduction.

Note that if oM + @ we alter the above construction of a TRI cone
bundle structure on 7*z(M) slightly as follows. The construction is unaltered
for simplices of M not in M. Let 6 € M. We replace D(o, Q) by D(o, Q)
with D(o, Q) = D (0, Q) as a subset of Q, and 4D(s, Q) = 0D(c, Q) U D(a, 7Q).
Now push the cone point of D(o, Q) into @ — 0Q using a collar of 0Q to
realize D (o, Q) as a cone on 6D (g, M), so that these new cells form a PL cell
complex on Q. A similar construction applied to the D, yields the desired
TRI cone bundle. O

With the data preceding (5.2) we now have that »*z(M) restricted to a
neighborhood of N in @ has a TRI reduction that we call §,. Also if we have
a given TRI manifold structure X on M coinciding with X, near N the proof
of (5.2) again shows that r*z(M) admits a TRI reduction & rel&. The con-
struction X — ¢ determines a well-defined map

7: Seri(Mrel N, ) — TOP/TRI(»*z(M)rel N, &) .

Suppose now that r*z(M) admits a stable TRI reduction rel&. Then
E(r*z(M)@e’) admits a TRI manifold structure near the zero section.
However, there is an open embedding h: E(r*t(M)@ Z*) — M X R', for some
t, that sends the zero section A(M) of (M) to M x 0C M x R' and that
gives a PL embedding of a neighborhood of A(N) in M x R* (ef. [19], [30]).
We thus have a TRI manifold structure # on M X R* near M x 0 that
coincides with X, x R* near N x 0. Then (4.4) produces a concordance
relZ, x (—1, 1)t of 6| M x (—1, 1)’ to a TRI manifold structure that is a
product of the form X x (—1, 1)*. This construction ¢ — X determines a
well-defined map

0: TOP/TRI(r*z(M)rel N, &) — Stri(Mrel N, &) .

THEOREM 5.3. If m =7 (m =6 if cl(0M — N) is compact or m =5 if
M s closed), then o is bijective.
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Proof. o 1s onto. To illustrate this one shows o7 = identity, but this
is just a chase of definitions which we leave to the reader.

o 1s tnjective. Let &, & be two stable TRI reductions of »*z(M) D X,
s = 0, agreeing near N in the total space with the reductions determined
by Z, X R*. Suppose 6(&,) = 0(&,). We want to show that &, and &, are stably
concordant rel N. As d(&) = d(&,), we get a TRI concordance I' rel N from
a TRI manifold structure on an open neighborhood U of M as a subset of
E (&) to a TRI manifold structure on U as a subset of E(&,). Let Q@ = UNQ
and let &€ be a TRI cone bundle neighborhood of @' in U as constructed in
(5.2). This yields a stable TRI concordance rel N of &, |Q’ to &,|Q’. By pulling
Q into Q' via a PL homotopy and applying the (relative) microbundle
homotopy theorem we get the desired concordance from &,|Q to &,|Q. O

Combining (5.1) and (5.3) we have

CLASSIFICATION THEOREM 5.4. Let M be a topological m-manifold, %, a
TRI manifold structure on M mear a codimension zero submanifold N of
oM, 7, U — BTRI the map classifying the stable TRI cone bundle structure
on t(M)| U, U a neighborhood of N in M, determined by Z,, and let v: M —
BTOP classify t(M) such that tt, = T near N.

Ifm=1T(m=61if cl(0M — N) is compact or m =5 if M is closed) then
M admits a TRI manifold structure & coinciding with X, near N if and
only if T has a lifting M — BTRI equal to 7, near N. In fact there is a
bijection

Srri(Mrel N, ) — Lift(rrel N, 7,) .

6. The fiber of t: BTRI — BTOP

Consider the classifying spaces BTRI, BTOP (cf. §2), and BPL (the
classifying space for stable PL microbundles). Then there is a homotopy
commutative diagram

BPL —— BTRI
6.1) \]\ lt
BTOP
where 1, 7, and t are the forgetful maps. The (homotopy-theoretic) fiber of
jis a K(Z, 3) (cf. [19]) and the fiber of ¢ is a K(67, 3) (cf. [20]).

THEOREM 6.2. The fiber TOP/TRI of t: BTRI —BTOP is a K(kernel

(a: 0 — Z,), 4).

Proof. Since the fibers of 7and jarea K(6, 3)and K(Z,, 3),respectively,
the homotopy exact sequence of the triple (BTOP, BTRI, BPL) implies that
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all the homotopy groups of TOP/TRI are zero except possible in dimensions
3 and 4, in which case we have the exact sequence

0 — 7(TOP/TRI) —— 7,(TRI/PL) — 7,(TOP/PL) —> 7,(TOP/TRI) — 0

Il Ul Ul Il
0 — 7,(TOP/TRI) — [N Z, ——n(TOP/TRI)—0.
The result follows once we identify a with the Kervaire-Milnor-Rochlin
homomorphism a: 6 — Z,. To do this we recall the construction of an iso-
morphism e: 6/ —m,(TRI/PL) from [20] and an isomorphism d: =,(TOP/PL)—Z,
from [19] and show that the following diagram commutes:

#,(TRI/PL) —— 7,(TOP/PL)

I |

a
n
3 — 4

The isomorphism e is constructed as follows (cf. [20]): Let H® be a PL
homology 3-sphere representing an element of 6!’ and remove a PL 3-disk
from the boundary of ¢(H?®). Now consider ¢(H*) as a space over A® X I such
that over (A° x {0, 1}) U (A®* x I) it is the trivial point bundle. But c¢(H?)x S?,
for ¢ = 1, is a topological manifold by the double suspension theorem [5] and
¢(H* x S? is a space over A® x I which is the product bundle over (A® x
{0, 1}) U (A% x I). By coning these blocks we get a representative for an
element e(H?) e m,(TRI/PL). Now dte(H?®) is precisely the obstruction to
putting a PL manifold structure on ¢(H*) x S¢ extending the natural PL
manifold structure on H*® x S?. But by Theorem C of [34], ¢c(H®) X S? has
such a PL manifold structure if and only if a(H?®) = 0. Thus dte(H?®) = a(H?®).

O

Theorems 5.4 and 6.1 now establish Corollary 3 of the introduction.
COROLLARY 6.3. m,(TOP/TRI) = 0 if and only if 05’ = Z,.

For a given topological m-manifold M, m =7 (m = 6 if M compact or
m = 5 if M closed), we can now observe that the one obstruction to putting
a TRI manifold structure on M is a cohomology class V(M)e H*(M;
ker (a: 6 — Z,)), namely the one obstruction to lifting the classifying map
7: M — BTOP for (M) to BTRI. The obstruction to sectioning the fibration

K (ker (), 4) — BTRI —— BTOP

is the universal triangulation obstruction V € H*(BTOP; ker (a)) and V(M) =
7*(V) by naturality of obstructions. Let A e H*(BTOP;Z, denote the
universal obstruction to combinatorially triangulating topological n-mani-
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folds, n =6 (m = 5 if oM compact) i.e., the obstruction to a section of the
fibration

K(Z,, 3) — BPL — BTOP .

Also, let B: H*(BTOP; Z,) — H*(BTOP; ker (a)) be the Bockstein homomor-
phism associated with the short exact coefficient sequence

0 — ker (@) — 04 —25 Z,—— 0

As (6.1) commutes, standard obstruction theory (see for instance § 38.8 of
[36]) implies

COROLLARY 6.4. B(A) = V.

Remark 6.5. It follows from Siebenmann [34] that all oriented topologi-
cal 5-manifolds without boundary can be triangulated as simplicial complexes.
But it is not known if there exists an unorientable closed 5-manifold M such
that M is not combinatorially triangulable [but is simplicially triangulable.
In fact, if such an example exists, then, for instance, all closed topological

n-manifolds » = 5 can be simplicially triangulated! (See [18] for a discus-
sion of this phenomenon.)

7. Necessary and suflicient conditions for the existence of

simplicial triangulations of topological manifolds

THEOREM 7.1. Ewvery topological m-manifold M, m =7 (m =6 +f oM
compact or m =5 1f oM = ), can be triangulated as a simplicial complex
if and only if there exists a PL homology 3-sphere H? such that

(i) H*bounds a parallelizable PL 4-manifold with index 8,i.e., a(H*) =1,
and

(il) H*# H*® bounds an acyclic PL 4-manifold.

Proof. Necessity. Let M be a closed topological m-manifold, m =5,
and let A(M) e HY(M; Z,) denote the Kirby-Siebenmann obstruction to putting
a PL manifold structure on M. There exists a closed topological 5-manifold
with Sq' A(M)+0 (see [18] for an explicit construction), where Sq': H(M; Z,)—
H*M; Z,) is the Steenrod squaring operation, i.e., Sq' is the Bockstein
homomorphism associated with the short exact coefficient sequence

02, 2, Z,— Z,— 0. Suppose that M has a simplicial triangulation and let
0 denote the finitely generated subgroup of 6 generated by the 3-dimensional
links of M. Let ¢: 8 — 6 denote the inclusion homomorphism. Suppose that
every element [H?®] of 6 with a(H?®) = 1 does not have order 2 in 6. We
construct a homomorphism v: 6 > Z, which commutes in the diagram
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6 — 07

|,k

0—Z,— Z,— Z,—>0

where r:Z,— Z, is reduction mod 2, as follows. There exist elements
H, ---, H, of 6 such that 6 = [H,]& --- @©[H,] where [H,] is the cyclic
subgroup of 6 generated by H,. If a(H;) =0, let v(H,) =0. If a(H;) =1
and [H,) = Z, let ¥ be given by reduction mod4. If a(H,) =1 and [H,] =
Z|p*'Z where, by assumption, p¥ > 4, then there is an element H of [H,]
with a(H) = 1 and of order p. Thus p must be even, and so p¥ = 4q for
some ¢q. Then let v be given again by reduction mod 4.

Now let (M) € H*(M; 6) be the obstruction to PL resolving M toa PL

manifold (cf. Section 3). Indeed, there is an element (M) € H*(M; 6) with
1*6(M) = o(M). Thus

Sq'a*a(M) = Sq'a*i*d(M) = Sq'r*y*(6(M)) = 0,
since Sq'r* = 0. But by (6.2), a*c(M) = A(M), so that Sq'A(M) =0, a

contradiction. Thus there must exist a PL homology 3-sphere H® with
a(H?* = 1 and H*# H® bounding an acyclic PL 4-manifold.

Suffictency. If there exists a PL homology 3-sphere satisfying (i) and
(ii), then we have a split exact sequence

a
0 — n,(TOP/TRI) — 6y 2 Z,—> 0

PA——

so that the associated Bockstein g: H*(M; Z,) — H*(M; ker (a)) is the zero
homomorphism. The result now follows from (6.4) provided M is not an
open 5-manifold. However, Siebenmann [34] along with the double sus-

pension theorem [5] implies that all open 5-manifolds can be simplicially
triangulated. O

Remark 7.2. Let M be a topological manifold satisfying the hypothesis
of (7.1) and let H® be a PL homology 3-sphere satisfying (i) and (ii) of (7.1).
Then one can actually show that M can be triangulated so that its 3-dimen-
sional homology sphere links are PL homeomorphic to connected sums of
H? — H?®and S°®as follows. If in Section 2 we further required in the defini-
tion of a TRI cone bundle that all the blocks be cones on TRI manifolds
whose 3-dimensional homology sphere links are PL homeomorphic to con-
nected sums of H® — H3, and S3 we can construct a classifying BTRI(H?®)

for such bundles. There are natural forgetful maps k: BPL — BTRI(H?) and
1: BTRI(H?®) — BTOP such that the diagram
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BTRI(H?)
k/ ll
/ J
BPL — BTOP
commutes. The fiber for k£ can be shown to be a K(Z,, 3), so that the fiber of
l is contractible. Thus M x R*, for some %, has a TRI manifold structure
such that each of its 3-dimensional homology sphere links is PL. homeomor-
phic to connected sums of H?, — H?, or S®. One then checks that (4.4) does
not destroy this property.

Our proof of (7.1) and Remark (7.2) allows us to (seemingly) strengthen
its statement. In particular, let
' Sa.: HY(;Z,) — H*(; Zy)
denote the Bockstein homomorphism associated with the short exact coef-
ficient sequence

X2 r

0 > 2y Zy Z,—0
where 7 is reduction mod 2. Note that Sq' = Sq,.

COROLLARY 7.3. Let M be a closed simplicially triangulated m-mani-
Sold, m =5, such that SquA(M) +# 0. Then there exists a PL homology
3-sphere H® such that

() a(H?® =1, and

(ii) the 2k-fold commected sum of H® bounds a PL acyclic 4-manifold.
Furthermore, if there exists a PL homology 3-sphere satisfying (i) and (i)
above, then every topological m-manifold M, m =7 (m = 6 1f oM compact

orm =5 1if oM = @) with Sq, A(M) = 0, can be triangulated as a simplicial
complex.

COROLLARY 7.4. If M is a topological m-manifold as in (7.1) and the

integral Bockstein of A(M) is zero, then M can be triangulated as a simpl-
1cral complex.

8. Triangulating topological manifolds as homotopy manifolds

In this final section we note that the work of Sections 1-7 can be modified
to classify triangulations of topological manifolds as polyhedral homotopy
manifolds (see Remark (7.2)). In fact this classification can be accomplished
by much easier geometry!

A (polyhedral) homotopy manifold of dimension n is a polyhedron P
such that there is a triangulation K of P in which given any k-simplex a in
K, lk(a, K) is homotopy equivalent to either S**~! or a point. The set of
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simplicies with the latter property form a subpolyhedron which is called
the boundary of the manifold, denoted 6P, and we insist further that P be
a homotopy (n — 1)-manifold without boundary. As usual, this definition is
independent of any triangulation of P chosen.

L. Siebenmann [34] has shown that every homotopy m-manifold is a
topological manifold if m = 5 (= 6 if oM # @) (see Theorem 1.5). M. Cohen
[6] has a theory for resolving a homotopy manifold M via a PL contractible
map to a PL manifold and the obstruction lies in H*(M; 6¢), where 6! is the
Kervaire-Milnor group of homotopy 3-spheres. Following [22] and Section
2 one can define a theory of hTRI-cone bundles which are topological disk
block bundles in which all the blocks are triangulated as homotopy mani-
folds, and one can construct the resulting stable classifying space BATRI.
There is a (homotopy) commutative diagram of forgetful maps

BPL — BATRI

| &
BTOP — BTRI

with the fiber A”TRI/PL of 7 being a K(6%, 3).

The proofs of the results of Sections 2-5 hold equally well for homotopy
manifolds. In fact, the proofs can be immensely simplified by observing
that every homotopy m-manifold satisfies the ND(m) condition of Stallings
[35], so has all the general position properties of a PL m-manifold. With
the obvious definitions, we then have the following results.

CLASSIFICATION THEOREM 8.1. Let M be a topological m-manifold, X, a
homotopy manifold structure on M mear a codimension zero submanifold
N of M, t, U— BRTRI the map classifying the structure on t(M)| U, U a
neighborhood of N in M, determined by X,, and let 7: M — BTOP classify
(M) such that t'tc, = = near N.

Supposem =T (m = 6 if cl(0M — N) compact or m =5 if M = N and
M compact). Then M admits a homotopy manifold structure X coinciding
with X, near N if and only if T has a lifting M > BRTRI equal to 7, near
N. In fact there is a bijection

ShTRI (M I'el N, ZO) E— Lift (Z' l‘el N, TO) .

THEOREM 8.2. The homotopy groups of TOP/ATRI of t': BATRI — BTOP
are zero except possibly for mw, and w,. Furthermore there is an exact
sequence

0 T, ox Z, w,—— 0
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where a 1s the Kervaire-Milnor-Rochlin map.
See [21] for a result related to (9.2).

COROLLARY 8.3. Ewery topological m-manifold M, m =7 (m = 6 if oM
compact or m =5 1f oM = ), has a homotopy manifold structure if and
only if there exists a PL homotopy 3-sphere with a(H®) =1 and H 4 H®
bounding a contractible PL 4-mamnifold.

Note that if §; = 0, then 7: BPL - BATRI is a homotopy equivalence,
so we have

COROLLARY 8.4. Suppose that every PL homotopy 3-sphere bounds a
contractible PL 4-manifold, i.e., 6 = 0. Then there exists a one-to-one
correspondence between the set of concordance classes of homotopy manifold
structures of a given topological m-manifold, n =17 (m = 6 if 6M compact
orm=51foM = @), and concordance classes of PL manifold structures
on M.
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