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THE braid group B, ,, was first defined by Artin in a paper published
in 1926 (1). The word problem for the group was solved by Artin (1, 2),
and the centre was given by Chow (3). The present paper incorporates
the results of my D.Phil. Thesis (Oxford, November 1965), under the
supervision of Professor G. Higman, whose help and advice I acknow-
ledge with gratitude. The primary concern will be to give the solution
of the conjugacy problem in B, ;. A new solution of the word problem
is also given, and a new method of finding the centre. In the last section
a connection is traced between the braid groups and the truncated
octahedron and higher dimensional polytopes. Examples are given of
further groups connected with other even-faced Archimedean solids and
polytopes, which can be dealt with in the same manner as that developed
for the braid groups.

1. Positive words
1.1. Definitions and notation

The Braid Group B, ,,. We define B, ,, as the group generated by

a,, as,..., @, subject to the relations
BBy @ = 84188 (1 <1 <n—1) (1.1)
Ay = Oy G4 (i—kl > 2)

Words. 1f A, B are words in the generators and their inverses, then
A = B will mean that 4 can be transformed into B by the use of the
defining relations, A = B will mean the two words are identical letter
by letter, A ~ B will mean 4 is conjugate to B. A word consisting of
an ordered sequence of the generators only, in which no inverse of any
generator occurs will be called a posttive word. We shall denote by L(W)
the word-length of a word W.

Positively equal. Two positive words A, B will be said to be positively
equal, if (a) they are identically equal, or (b) they are transformable into
each other through a sequence of positive words, such that each word
of the sequence is obtained from the preceding one by a single direct
application of the defining relations (1.1), so that at no stage of the
transformation does the inverse of any one of the generators occur.
Quart. J. Math, Oxford (2), 20 (1969), 235-54.
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If A4 is positively equal to B we shall write
A = B,
and such a statement will imply that 4 and B are both positive.

If A = B, then L(4) = L{B).

If A is transformed positively into B by a sequence of ¢ single applica-
tions of the defining relations (1.1), then the whole transformation will
be said to be of chain-length t.

Reverse. If P = z,x,...z; be any word, where each z, is a generator
or its inverse, the z; being not necessarily distinct, then by the reverse
of P we shall mean the word z,...z,z;. We shall write the reverse of P
as rev P, and note that rev PQ = rev Qrev P. It is easily seen that if
P = @, then rev P = rev Q.

1.2. TeeoreM H. In B, ,,, for+, k=1, 2,..., n, given a, X = q, Y, it
Sfollows that

(i) ifk=1t,thnX =7,

(ii) of |k—t| = 2,then X =a, Z,Y = a,Z, for some Z,

(i) of |k—¢| = 1, then X = a0, 2, Y = a,a; Z, for some Z.

The theorem for words X, ¥ of word-length & will be referred to as H,.
For s = 0, 1 the theorem takes the simpler forms which follow trivially
from (1.1):

H,. When X, Y are the empty word

(1) ife, X =a, Y, then X =Y (+ =1, 2,..., n),
(ii) if ¢ 5~ &, then a; X cannot be positively equal to a; Y.
H,. When X, Y are of word-length 1, fors =1, 2,..., n,
(i) fa; X = a,Y,then X = Y,
(ii) ifa; X = a, Y (|Jk—3i| = 2), then X = a;, Y = a,,
(iii) if Jk—1| = 1, then a; X cannot be positively equal to a, Y.

The proof of the general theorem now follows by induction. For our
induction hypothesis we assume

(«) H, is true for 0 < ¢ < r for transformations of all chain-lengths,
and

(B) H,,, is true for all chain-lengths < ¢.

Let X, Y be of word-length r+1, and let ¢;X = a, Y through a
transformation of chain-length ¢t+1. Let the successive words of the
transformation be

W=aX, Wo=.. W,a=4aY.
Choose arbitrarily any intermediate word W, = a,, W, say, from the
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middle of the chain somewhere. The transformations a;X - a, W,
a, W - a, Y are each of chain-length < ¢, and we can therefore apply
(B) to them. We have then
o X =a,W=aY. (1.2)
For the complete proof (8) we have to consider all possible variations
in the values of 1, m, k. The general pattern of the proof is, however,
exactly the same for each variation, and it will be sufficient here to deal
with two cases only, as typical examples of the common method of proof.

(1) £ =1, |/m—s| = 2. From (1.2) we have
X =a,W, a,W=aY (Im—i|=2).
By (B) X =a,P, W =a,P for some P;
and W =a,;Q, Y =a,Q forsome Q.
The two expressions for W give a, P = a; @, and hence by (a), P = Q.
Hence X = a,, P = a,, Q = Y as required.
(2) (k—t| =2, lm—¢] =2, |k—m| = 1. From (1.2) we have
X =a,W; a, W =a,Y.
By (B) X =a,P, W=aP for some P;
and W = aza,Q, Y =a,a,Q forsome Q.
By («) the two expressions for W give
P = a; R, a, @ = a; R for some R.
The last equation now gives
Q=a,S, R =a,S forsome S.

Therefore X =a,aa,8, Y =a,a,a;8.
Hence, using the defining relations, we have
X =aga,a. 8, Y=a,a,0, S =a4a,a,8,

ie. X =a,2, Y = a;Z asrequired, where Z = a,a;S.

The proofs for other variations in the values of ¢, m, k are similar.
Since H,,, is true for chain length 1, an induction proves it for all

chain lengths, and a further induction (on r) completes the proof of

the theorem.

TeEOREM K. In B, ,,fori, k= 1,2,...,n, given Xa, = Ya,, i follows
that
(i) efk=1,then X =Y,
(ii) of |k—3| > 2, then X = Za,, Y = Za,, for some Z,
(iii) #f |k—¢| = 1, then X = Za,a;, Y = Zaa,, for some Z.
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The theorem follows from Theorem H and the fact that X =Y
implies revX = revY.
As an immediate consequence of Theorems H (i), K (i) follows

TagoreM 1. In B,,,,if A = P, B= Q, AXB = PYQ (I{4) > 0
L(B) > 0), then X = ¥.

2. The fundamental word A
2.1. Definitions and notation

The word a,.a,,,...a, (a,a,._, ...a,), where all the generators from a, to
a, inclusive occur in ascending (descending) sequence will be denoted by
the abbreviation (g, ... a,). By the notation II, we shall mean the word

(ay ... a,).

In B,,,, if R is the mapping of (a,,a,,...,a,) onto itself given by
Ra; = a,,, 4, then by inspection of the relations R extends to an
automorphism of B, ,,. This automorphism we continue to denote by
R, and call it reflection tn B, ,. We note thatif P = @, then RP = RQ.

Assooiated with the ordered sequence of generators a,, ay,..., a, is the

word A' = Hr H,-_l . Hl)

which is of fundamental importance in what follows. We shall refer to
A, as the fundamental word of order r+1. When we are considering B, ,,
we shall normally abbreviate A, to the simpler form A.

Lemma 1. In B, forl <s <t <n, a1, =1a,,.
For by use of the defining relations

a,ll, = a,a,...a,_¢)a, 18,y ... )
= (g o By )y gy By @y - @)
= (G Byp) By By By (B - B)
= (Ay . Qyg)g_ Cg(@Byyy ... A)By_y
= Il,a,_, a8 required.

Lemma 2. In B,,, (i) a; A= Ajg, ¢ =1, 2,..., n); (il
(ill) a;'A = A(Ra,)!, (iv) a,A-! = A-Ra,, (v) a; A~
(s=1,2,..,n).

(i) Fort =1,

i) a,A = ARa,,
1= (‘Rﬂ )t

a,A; = a,a, = Aja, a8 required.
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Fort = 2, 3,..., n,
6,5 = ay{l1}(a; .. ay_1)B; 5
= 61(ay ... a){I1}A, 5, by Lemma 1,
= Il e}
=1, 00
= A,aq; a8 required.
(ii) For 8 = 1, by (i) above,
a, A = Aa, = ARa, as required.
For s = 2, 3,..., n,
e A=a,IL T, .1, 0l e
=1l 1,y .. Iy 428y 441, by Lemma 1,
=, OasaBnpi10ne41s DY (i),
= Aa, 4,
ie. a,A = A%a, asrequired.
(iii), (iv), and (v) follow easily from (ii).

THEOREM 2. In B, ,,,

(i) PAT™ — AP PAMm+1 — AR P for all positive words P (m > 0),
(i) QAT™ = AmQ, QA+ = AHIRQ for all words @, m positive or
negative.

This follows immediately from repeated applications of Lemma 2,
remembering that R:P = P, R:Q = Q.
2.2. Lemma 3. In B, ., (i) RA = A, (ii) revA = A.

(i) By Theorem 2,
(RA)A = AR(RA) = AA.

Hence, by Theorem 1,
RA = A as required.

(i) The proof is by induotion. Assume that for,any particular
r that revA, = A, Then

revA,,; = rev{(a;..a,)A}
rev A rev(a, ... a,,,)

= A(@,4,...a,), using the induction hypothesis,
ie. revA,,, =11 _, .. .M{a.,..q).

Il
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Now a,., commutes with II,, Il,,..., II,_;; a, commutes with II,, II,,...,
II,_,; ...,eto. Hence

reVAr+1 = Il a4, Hr-lar"' pa, Hla'ﬁa’l = Ay
The induction is now established, since the hypothesis is clearly true for
r = 1, and the result follows.

LevMa 4. In B, ,, there exist positive words X,, ¥, such that
X, =A=7Ya (r=12,..,n).

By definition A=11,,..II1,,
ie. A =Ya,, where Y, =II,II, ,..1I,. (2.1)
We now observe that if f(a,, as,..., a;) is any positive word involving the
generators a,, ag,..., ; only, then by Lemma 1

Hlf(ala Qayeeny a'l—l) = f(az: Qy;.-ey a'l)nt
Let a, be any particular one of the generators ag, as,..., ¢,. Then, denoting
II,_, I, ;... II, by f(a,,as,...,a_,), We have
A=1,1,,..11L,1,f(a, ag...,a,_;)

= 0, My ... My f(y, a5y, @)

= I, Iy oo Ui fas, a5, @) (84 - )y

= Ya,, say. (2.2)
(2.1) and (2.2) show that words ¥, exist for r = 1,..., n. Now putting
X. =revY,, we have, forr = 1, 2,..., n,

a. X, =arevY, =rev(¥,a)=revA = A, by Lemma 3.

Hence words X, also exist, and the proof is complete.

CoroLLARY. In B,.,, sf A 18 any positive word, then forr = 1,2,...,n,
there exist words A, such that Ad = A, a,.

For AAd = (RA)A = (R4)Y,a, = 4,a,, say.

LeMwMA 5. Let a, be any one of the n generatorsin B, ., and let x,, @,,..., Z;
be generators, not necessarily distinct, such that each x, permutes with a;.
Then, if a; P = z, z,...7,Q, there exists some R such that Q = a; R.

We have a, P = 2,%,...7, Q. Hence, by making successive applica-
tions of Theorem H (ii), we have z,z,...7,Q = a, R, for some R,;
Z3%,...7,Q = a, R, for some Ry; ...; 2, @ = a; R, for some R;; and finally
@ = a, R for some R, as required.

Lemma 8. In B,,,, if ;. P = 11, Q, then Q = a,;,, a; R, for some R
¢t=1,2,.,n—1)
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By hypothesis a,;,, P = @, a;...a; Q and hence, by Lemma 5,
4@ =0a;, T

for some T'. Henoce, by Theorem H (iii), it follows that @ = a,,,a; R for
some R, as required.

TrEEOREM 3. If W is any positive word in B, ,, such that esther

(i) W=0a,X, =X, = ... =0a,X,,

or @ W=Yaq=Ya,=..=7Y,a,
then W = AZ for some Z.

(i) The proof is by induction. Let r be any natural number << n—1.
Then as our induction hypothesis we agsume that, in B, ,,, if

W = a1X1 = a,,X,,, = ... = a,X,,
then W = A, F, for some F,. Now suppose that
W=aX =a6X;=..=¢X =0a,X.,,. (2.3)

Then from (2.3) and the induotion hypothesis it follows that
i1 X,n = W =4F =(a,...a,)A, F.
Hence, by Lemma 6,

A F = a,a,@Q for some @,

8o that W = (a,...0,)8, 16, @,
or, putting T =a0Q, (2.4)
W=(a..a,)T=I1,,T. (2.5)

From (2.3) and (2.5) we now have, fors =1, 2,..., r—1,

@ Xy = (01004, .. a4 T,
so that, by Lemma 6,

(@y4q e a,))T = ayya,8;, for some ;.
Therefore, by Theorem 1,
(@149---0,0)T = a, S,
Applying Lemma 5 it follows that for some @,
T=aQ, (1=12,..r—-1) (2.8)
From (2.4), (2.6), and the induction hypothesis, it now follows that
T = A,B,, forsome P,

W=1L,AF,=0,F,

8605.2.20 B

and hence, by (2.5)
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Remarking that the induction hypothesis is clearly true for r = 1, the
induction i8 now established, and the result follows.
(ii) Now suppose

w = Ylal = Y,ae = ...= Y,,an.
Then
revW = a,revY; = ayrevY, = ... = a,revY, = AP, by (i).
Henoe W =rev PrevA = (rev P)A, by Lemma 3,

= A%R(rev P), by Theorem 2,
and the result follows.

2.3. Lemma 7. If X, Y are any two positive words in B, ,, then there
extst words U, V such that UX = VY.

Forlet X = r,r,...7,, Y = 8, 8,... 3, be any two positive words, where
the r, and s, are generators, not necessarily distinct. Then, by repeated
application of the Cofollary to Lemma 4,

AmX — A"‘_lAl 8y = Am-24,8 18, = ..= A, Y.
The result follows on putting U = A™, V = 4,,.

THEOREM 4. In B, ., if two positive words are equal they are positively
equal.

Let S be the semi-group generated by a,, a,,..., a, subject to the
relations

By Oy = Ggyy Q84 (1 <3< n—l)} 2.7)
QG = Ay Gy (li—k] = 2)

By Theorem 1 and Lemma 7, S is cancellative and right-reversible,
and hence, by Ore’s Theorem (4, 5), can be embedded in a group, G,.1,
say. Let G, ., be the subgroup of G, ., generated by a,, as,..., a,. Then
G,.,, embeds S, and in virtue of (2.7) its relations include

a«(a{.'.la{ - a{+1a{a‘i+l (l <i < n—l)}' [(1.1)]
G, Qy = Ay (li—k| = 2)

which are preoisely the relations of B, .

Now suppose X, Y are any two equal positive words in B, ,;,. The
equality X = Y in B, ,, must be a consequence of the relations (1.1).
These are also relations in G,,,;, and hence X = ¥ in @,,,. Since G,,,,
embeds S, X = Y in S also, i.e. X = ¥, and the theorem is proved.
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3. Cayley diagrams

3.1. Any group G with given generators and defining relations can be
represented in a drawn diagram, called its Cayley diagram (6, 7). In
the sequel, although all the proofs given will be purely algebraic, con-
siderable use will be made of the general concept of the Cayley diagram,
and in one or two instances actual diagrams will be drawn. In order to
preserve algebraio rigour we proceed to make certain formal definitions.

3.2. Definitions and notation

Links. The successive generators of a positive word will be called links.
Thus the initial link of the word a, a, a, a; i8 a,; the third link is a; ete.
In the drawn diagram the link a_ will be represented as

r
Fia. 1

No arrow will be put in, as it will be understood flways that the positive
direction is left to right. The drawn figure will show the initial link on
the left, the successive other links extending in order to the right.

Diagram. Let W be any positive word, and let W, W, W,,..., W, be
the complete set of distinet words which are positively equal to W (see
Lemma 8). Then we shall refer to this set as the diagram of W, and
write it D(W). Clearly D(W)= D(W,) = ... = D(W,). The words
W, W,,...., W,, will be called the routes of D(W). The process of enumerat-
ing the routes of D(W) will be called drawing the dtagram D(W). In the
drawn figure the diagram of W is the Cayley diagram of all words
positively equal to W. The name Cayley will be omitted from now on.

Nodes of D(W). Let W be any positive word, and D(W) its diagram.
If A, X are any two positive wordssuch that W = AX (0 < L(4), L(X)),
then we shall call D(4) a node of D(W). When we are considering nodes
we shall frequently write the node D(4) as the node 4, or simply A.
If L(A) = t we shall say the node 4 is of order t.

Sub-routes of D(W). If W = AXB (L(4) > 0, L(B) > 0), we shall
say that X is a sub-route of D(W). If L(4) = 0, we shall say X is an
inittal sub-route of D(W). If W = PXQ (L(P) = 0, L(Q) > 0), we shall
say the sub-route X starts at P. If W = RQ = PXQ we shall say the
sub-route X ends at R.

Incidence. If the link a, either (i) starts at P, or (ii) ends at P, we
shall say the link a, is incident at P. If the links a,, a, are both incident
at P, we shall say they meet at P. We shall also say that P is the meet



244 F. A. GARSIDE

of the links a,, a,. If a link a, ends at P and a link a, starts at P, we
shall say the link a, is repeated at P.

W contains A. W is prime to A. If any sub-route of D(W) is A, i.e.
if W = AAB (L(A4) > 0, L(B) > 0), we shall say A is a factor of W,
or simply W contains A. It follows from Theorem 2 that if W contains A,
then W = AX for some X. If W is any positive word which does not
contain A, we shall say W is prime to A.

: I I f
{ | | o
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[ | | |
b2 \ L I
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Base of D(W). In B, ,, suppose W is of word-length L, and suppose
D(W) consists of the t words W, = asa;a;..., W = a,q,0,..., ...,
W,= a,a,a,.... Then there is a one to one correspondence between the
words W, W,,..., W,and the set of numbers P, = k..., P, = pgr..., ...,
F, = zyz..., where each number P is expressed in the scale of n+1, and
consists of L digits. The numbers P are all distinct. Suppose the
smallest is F,. Then the corresponding word W,, which is uniquely
defined, will be called the base of D(W). If A is a positive word prime
to A, we shall sometimes denote the base of A by 4. The use of this
notation will imply that A is positive and prime to A.

Example. We proceed to give an example to illustrate the corre-
spondence between these definitions and the drawn figure. In B, con-
gider the word W = @, aya,a,. The drawn diagram of D(W) is shown
in Fig. 2.

Algebraically, D(W) is the set a,a,a,a,, a,a5a;5a,, a,a,a,a5. The
node O, of order 0, is the empty set. The node B, of order 3, is the set
a,@,a,, aya,a,. Thelinksa,, a, end at B. The links a,, a;, a, are incident
at B. W, the base of D(W), i8 a,a,4,4a, ..., etc.

Lemma 8. The diagram of any positiveword W in B, , can be systemaltic-
ally drawn, and is finite.

Let the set of all distinet words positively equal to W through a
transformation of chain-length 1 be W,,..., W. It is clear that this set
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can be enumerated, and is finite. Now consider the set of words positively
equal to W, through a transformation of chain-length 1. Denote those
which are distinct from W, W,,..., W, and from each other, by W, W,,... .
Continue to repeat the process sucocessively for W,, W;,..., W,,,..., etec.
Clearly the number of positive words of word-length equal to L(W) is
finite, and hence the set of words positively equal to W is finite. Hence
the sequence W, W,,... ultimately terminates. It is clear that any word
which is positively equal to W must ultimately be reached through the
process outlined above, and the lemma is proved.

3.3. Solution of the word problem

THEOREM 5. In B, every word W can be expressed uniquely in the
form AmA4.

(i) First suppose P is any positive word. From the set D(P) select
any route starting with as many consecutive sub-routes A as possible,
equal to ¢, say (¢ > 0). Suppose P = A’4. Then 4 is prime to A, as
otherwise there would be a route of D(P) starting with more than ¢
consecutive sub-routes A. Denoting the base of A by 4, we have
P = A4,

(ii) Now let W be any word in B, ,,. Then clearly we may put

W = Wilz,)  We(z5) 7. (2,) Wi,

where each W, is a positive word of word-length > 0, and the z, are
generators. Now for each z, there exists, by Lemma 4, a positive word
X, such that z, X, = A, so that (z,)-1 = X, A-1, and hence

W = W, X, AW, X, A1 W, X, A W,,,.

Hence, moving the factors A-! to the left by Theorem 2, we have
W = A-*P, where P is positive. Now using (i) above to express P in
the form A'A, we have W = A—*A'4, or, putting t—s = m,

W = Am4. (3.1)
(iii) It now merely remains to show that the form (3.1) is unique.
Suppose Amd = A?B. (3.2)

First suppose p < m, and let m—p = ¢, where t > 0. Then (3.2) gives
A'4 = B and hence, by Theorem 4, A'tA — B. Hence B contains A,
which is impossible. Therefore p < m, and similarly m < p. Hence
p = m, and from (3.2) we now have 4 = B, and on using Theorem 4,
A4 = B. But any positive word has one and only one base. Hence
A = B, and the uniqueness of the form (3.1) is established.
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Definitions. Any word W of B,,, expressed in the unique form A™A
of Theorem 5 will be said to be in standard form. The index m will be
called the power of W.

THEOREM 6. The necessary and sufficient condition that two words in
B, ., are equal is that their standard forms are identical.

The condition is clearly sufficient. The necessity has been shown in
section (iii) of the proof of Theorem 5.

3.4. The centre of B,

THEOREM 7. (i) When n = 1 the centre of B, ., ts generated by A.
(ii) When n > 1 the centre of B, ,, 8 generated by A%. (3)

(1) This case is trivial.

(ii) Let W be any word in the centre. Then, by the definition of centre,
if X is any word in B, ,;, X" 1WX = W, so that

WX = XW. (3.3)

There are three possible forms for W: (a) W = A?4, where L(4) > 0;
(b) W = An+1; (¢) W = A#". We proceed to consider each in turn.

(@) W = Ar4 (L(4) > 0).

Let A = a,A; (L(4;) > 0). Let |s—i| = 1. Considering first the
case p even, put X = a,a,. Then (3.3) gives

Ara A a0, = a,a,APa, A, = APa,a,a, A,
Hence a; A;a,a; = a,a;a; 4;. Applying Theorem 4,
a;4;a,a; = a,a.a, 4,
and hence by Theorem H, a;a,4; = a;a,4, for some 4,, so that by
Theorem 1 @A, = a,A,. (3.4)
The case p odd gives exactly the same result on putting X = R(a,a,).
Repeated application of (3.4) now gives
CLIAI = agAg = ... = aﬂAn = Z

Hence by Theorem 3, 4 contains A, which is impossible. Therefore there
are no words in the centre of the form (a).

(b) W = Atme+1,

Putting X = a,, (3.3) gives A¥+lg, = q, AP+ = AMHRg by
Theorem 2. Henoce a, = Ra,, which is impossible since n > 1. There-
fore there are no words in the centre of the form (b).
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(c) W = A,
Clearly X-'WX = W for all words X in virtue of Theorem 2. Hence

any word of the form A2 ig in the centre, and no other words, i.e. the
centre of B, ., is generated by A2.
3.5. The structure of D(A)
TrEOREM 8. In B,,,, if W = AV 13 any positive word containing A,
then each of the n links a, (r = 1, 2,..., n) i8 incident at each node of D(A).
By Lemma 4, W = a, W, =a, W, = ... = a, W, so the theorem is
certainly true for the initial node 0. The proof of the theorem will be
by induction. As our induction hypothesis we assume the theorem is
true for all nodes of D(W) of order < m. Let C be any node of order m,
and let a, be any link of the diagram starting at ' and ending at D.

(a) We first consider the links a,, where |s—s| > 2. By the induction
hypothesis D(W) includes either (i), a link a; ending at C, or (ii), a link a,
starting at C, or (iii), both (i) and (ii) are true.

(i) a; ends at C (Ji—s| > 2). The diagram D(W) includes Fig. 3. By
the defining relations this implies Fig. 4, i.e. D(W) includes a link a;,
ending at D.

(ii) a; starts at C (Ji—s| > 2). The diagram D(W) includes Fig. 5.
By Theorem H this implies Fig. 6, i.e. D(W) includes a link a, starting
at D.

(tii) If (i) and (ii) are both true D(W) must include both a link a;
ending at D, and a link a, starting at D.

Henoe in all cases, for [{—s| > 2, at least one link a, is incident at D.

(b) It remains to consider the links g, where |t—s| = 1. The proof
will be omitted. It follows the same pattern as (a) above. In all cases,
if |t—s| = 1, at least one link g, is incident at D.

Now by hypothesis there is a link a, ending at D. Hence, by (a) and
(b) together, we see that the = links a, (»r = 1, 2,..., n) are incident at D.
The induction is now established, and the result follows.

THEOREM 9. In B, ., every node of D(A) 18 the meet of the n links
ay, Gg,..., a,. Furthermore only n links are incident at each node.

By Theorem 8 it follows at once that each node of D(A) is the meet
of the n links a,, a,,..., @,. It therefore remains only to prove that we

cannot have a repeated link at any node. For suppose the contrary is
true, so that for some 4, r, B we have A = Aa.a, B. Then

Aa,a, BRA = ARA = AA,
by Theorem 2. Henoe aa X =A (3.5)
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where X = BRA. Using Lemma 4 then, (3.5) gives
46X =ad =. . =044, ,=a,4, = =a,4,

Fra. 3

e

s s ~
& < & < -
- S/
; .
\ r \/ 2
Ve
Fie. 5 Fia. 6
and Theorem H now gives
@X=aB=.=¢,B_=a,4B,=..=¢B,
Hence, by Theorem 3, a¢,X contains A, whioh is impossible since
L(a, X) < L(A), from (3.5). The theorem therefore follows.

Drawn diagram of A,.
The drawn diagram of A, is given in Fig. 7.
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4. Solution of the conjugacy problem in B, ,
4.1. Index length
The algebraioc sum of the indices of any given word will be called its
index length. For example (a,)~®(ay)%a, is of index length 2.

Fig. 7

Lemma 9. In B, ,, the number of words tn standard form of index length
t and power = p 18 finite.
Let A™4 be any word satisfying the conditions. Then if L(A) = d,

we have m > p, (4.1)
and t = md-+ L(4). (4.2)
Since L(4) > 0 and d is positive, the last equation gives

m < t/d. (4.3)

(4.1) and (4.3) together show that the number of values of m is finite.
(4.2) shows that for any fixed m, L(4) is constant, and so the number
of possible values of A4 is finite. The result now follows.

Defindtions. In the diagram D(A)in B, ,,,let « be any initial sub-route,
so that A = «X (0 < I(X) < L(A)). We shall call such a sub-route an
a-route. If W is any word in B,, ,,, the word o«~1Wa, reduoced to standard
form, will be called an a-transformation of W. If a is the base of any
a-route o, then we shall call & an a-route and the transformation a—'Wa
an &-transformation of W. It is clear that any «-transformation is equal
to the corresponding &-transformation.

Summait form. Summit set. Summit. Summit power.
Let W be any word in B,,, with standard form A™A4 -- W, say.
Consider now the following chains of a-transformations of W. Take all



260 F. A. GARSIDE

the o-transformations of W, and let those which are of power > m and
which are distinot from W, and from each other, be W,, W,..., W,. Now
repeat the process for each of the words W,, W,,..., W, in turn, denoting
successively by W,,,, W,,s,... any new words ocourring, the condition
being always that each new word must be of power > m. Continue to
repeat the process for every new distinot word arising, as the sequence
W, Ws,..., Wiyg,... expands. Now each word of the sequence is of the same
index length as W. Hence, by Lemma 9, the sequence is finite, and
ultimately a stage must be reached when further applications of the
proocess will yield no new words.

Suppose that in the set W;, W;,... the highest power reached is s, and
that the words of power & form the subset ¥}, ¥,,.... Then any ¥, will
be said to be a summit form of W. The set ¥}, ¥,... will be called the
summit set of W, or simply the summit of W. The power s of any summit
form will be called the summst power of W. It is clear from the definitions
given above that no single a-transformation of & summit form can be
of power greater than the summit power.

Lemma 10. In B, ., if W = A™V, where V i3 positive, and P 13 a
positive word such that P-'WP i3 of power m+r (r > 0), then VP
contains A.

By hypothesis P-1AmV P = A™+{), so that

VP = A-mPA™+(. (4.4)
Put P = P (m4r even), P = RP (m-+r odd). Then, by Theorem 2,
(4.4) gives VP = A"P{, so that by Theorem 4, VP = A"PQ. Hence
V P contains A.

Lemma 11. In B,,,, if W ~ V, then there exists a posttive word X
such that XWX = V.

By hypothesis there exists a word A such that A-'WA = V. Let
A = AmP. Then P-1IA-mWAmP = V. (4.5)
If m is even, Theorem 2 now gives P-1WP = V (P positive). If m is
odd, (4.5) may be written P-1A-}(A-m+1FAm-1)AP = V, i.e. using
Theorem 2 again, (AP)-'W(AP) = V (AP positive), and the lemma is
proved.

Lemma 12. In B, ., suppose (i) that W = APP is a summit form of
any given word A, (ii) that X is any positive word such that XWX = A¢Q,
where ¢ > p, and (iii) that X = uY where u i8 an a-route of mazimum
length. Then u-'Wu, reduced to standard form, is a summit form of A.
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When u = A the proof is trivial. For u # A, since u is an a-route,
there exists a word U (L(U) > 0) such that

ulU = A. (4.6)

Now, by Theorem 9, every node of D(A) is the meet of the n links
a,, @y,..., &,, and of these n links only. In the diagram D(A) denote

the links ending at the node D(u) by z,, z,..., Z,; 4.7
and the links starting at D(u) by y,, ¥s,..., ¥n—e (4.8)

By hypothesis,
AQ = XWX = Y- lAPPuY (g = p). (4.9)

Now from (4.8), u-1Wu = u1A?Py = u-uUA?-1Py = UA?-1Pu, so
that, putting U = RU (p even), and U = U (p odd), and using

Theorem 2, u-1Wu = u-1AP Pu = A?1{J Pu. (4.10)

Substituting in (4.9) we now get Y-1AP10PuY = A¢Q (¢ > p), and
hence, by Lemma 10, U PuY contains A. By Theorem 8, therefore,
each of the n links z,, z,,..., 2,, ¥, ¥s,--., Yn—s i8 incident at each node
of D(UPuY). Now in the diagram D(U PuY) no link y; can start at
the node D(U Pu). For in this case we would have ¥ = y, Z for some Z,
and hence X = uy; Z where uy, would be an «-route of length greater
than L(u), vitiating condition (iii) of the hypothesis. Hence the n—s
links ¥,, ¥s,-.-, Yn_, 2ll end at the node D(U Pu). Furthermore, by (4.7),
the s links z,, z,,..., z, end at D(UPu). Hence by Theorem 3, UPu
contains A, so that, from (4.10), u-1Wu reduced to standard form is of
power at least p. Now it cannot be of power > p, since it is an «-
transformation of the summit form W. Hence u-1Wu, reduced to
standard form, is an «-transformation of the summit form W of A4, of
the same power as W, and is therefore itself a summit form of 4.

TaEOREM 10 (CoNyugacy). In B,.,, A ~ B if and only if their
summit sets are identical.

(i) If the condition is satisfied, let C' be any member of the common
summit set. Then 4 ~ C, B ~ C. Henoe A ~ B, so that the condition
is certainly sufficient.

(i) We now proceed to show that the condition is necessary. Suppose
A~ B. (4.11)

Let APP ~ A be any summit form of 4, (4.12)
and A?Q ~ B be any summit form of B. (4.13)
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First suppose ¢ > p. Clearly A?P ~ A¢Q, and hence, by Lemma 11,
there exists a positive word X such that

X-1A*PX = AQ (g > p). (4.14)

Let X =u, X,, X, =uX,,..., etc.,, and finally X, = u,,,, where
Uy, Uy,... aTe defined successively as a-routes of maximum length, and
X,, X,,... are words of steadily reducing length, so that the final word
X,,, i8 the empty word. Then

X = uyup... g (4.15)
Using (4.15) the transformation (4.14) may be regarded as the product
of the s+ 1 successive transformations (u,)-!A? Py, — W, say, in standard
form; (ug)~1W, uy = W, say, in standard form; . . .; (%,4,) W, u,,, = A?Q.
Now, by Lemma 12, W;, W,,... and finally A?Q are each summit forms
of 4. Hence we cannot have ¢ > », and similarly we cannot have p > g.
Hence ¢ = p, and by the argument given above A?Q = A7 is a summit
form of 4. We have thus proved that any summit form of B is a summit
form of 4. Similarly any summit form of 4 is a summit form of B,
i.e. the summit sets of 4 and B are identical.

4.2. Remark on the definition of summit set

In B, ., suppose any word W = APA4 has summit power p-r, where
r > 0. Then in the process of finding the summit set of W outlined in
§ 4.1, we have constantly to include in the words considered all words
of powers p, p+1, p+2,... until finally the complete set of words of
power p-r is established. In the process we must at some stage reach
a first word of power p-+1, W, say. Now since W, ~ W it follows from
Theorem 10 that their summits are the same. Hence it now suffices to
find the summit of W, and in doing this we can ignore all words of
power p. Similarly, when once a word of power p+2 is reached we can
thereafter ignore words of powers p and p+1 .. .etc. . . .. Moreover,
since any o-transformation is equal to the corresponding &-transforma-
tion, it is in fact sufficient to consider a-transformations only.

5. Other groups
5.1. Considered as a diagram in 3-space, the drawn Cayley diagram
of Ag, given in Fig. 7, will be seen to be the 2-skeleton of the truncated
octahedron (4.6%). Similarly, in B,,,, the drawn diagram of A, is the
2-skeleton of the n-dimensional polytope (4¥n-1Xn-5 gn-1),
Groups similar to the braid groups exist whose Cayley A-diagrams
are the 2-skeletons of the other even-faced Archimedean solids (including
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the prisms), and their higher-dimensional counterparts. The methods
given in the present paper can be applied to solving the word problems
and the conjugacy problems of these groups. In the next three sections
examples will be given of groups for which it may be verified that the
above remarks apply.

For all the examples given, Theorems H, K, 1-6, 8-10, and Lemmas
3, 4, 7-12, are true. The centres are given by methods of the same
general pattern as for the braid groups (Theorem 7), but there are con-
siderable differences in detail. In each example given, A is the shortest
element of the group which oan start with each one of the generators.

5.2. The truncated cuboctahedron (4. 6. 8)
The group, T say, i8 generated by a,, a,, a; subject to the relations
01030 Ay = GGy G0y, Ggl3Qy = Q3G Q3 013 = A30;.

For T}, A = (a,a,a,)?, and Aa, = a;A (1 =1, 2, 3). The centre is
generated by A.

5.3. The truncated icosidodecahedron (4. 6. 10)
The group, I, say, is generated by a,, a,, a; subjeoct to the relations

303070301 = 038,030, 3, G030, = (3A3a3, @03 = G307,
For I;, A = (a,a,a,)% and Aa;, = a;A (s =1, 2, 3). The centre is
generated by A.

5.4. The hypercube (47)

Naming the groups C,, say, there are two cases according as m is
odd or even.

(1) The group C,,_, is generated by a,, a,,..., a,_, subject to the
relations

Aoy, = Qg a8 (r=1,2,..,2n—1), }
a,a, = a,a,, , (r,s:slies between r and 2n—r)
For 021;—1’ A= (a'laZn—l)(aza‘?.n—ﬁ)"'(an—la’n+1)an’
and Aa, = ay, A (r=1,2,.,2n—1).

The »n products (a,a,,_,) (r = 1, 2,..., n) generate the centre. A% is in
the centre, but A is not.
(2) The group C,, is generated by a,, a,,..., s, subject to the relations

Ay Qgn—rs1 = App_ri1Gy (r=1,2,.,2n) .
a.a, = a,a,, .., (r,8:slies betweenr and 2n—r-+1)
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For C,,, A = (8102,)(33 B3n—2)---(Gn B 11),

and Ag, =a, A (r=1,2,.,2n).

The n products (a,a,,_,,,) (r = 1, 2,..., n) generate the centre, and in
this case A is in the centre.
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