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Configuration-Spaces and Iterated Loop-Spaces

Graeme Segal (Oxford)

§ 1. Introduction

The object of this paper is to prove a theorem relating “configuration-
spaces” to iterated loop-spaces. The idea of the connection between
them seems to be due to Boardman and Vogt [2]. Part of the theorem
has been proved by May [6]; the general case has been announced by
Giffen [4], whose method is to deduce it from the work of Milgram [7].

Let C, be the space of finite subsets of IR". It is topologized as the
disjoint union [] C, ,, where C, , is the space of subsets of cardinal k,

k20
regarded as the orbit-space of the action of the symmetric group X, on
the space C,, of ordered subsets of cardinal k, which is an open subset
of R"™,

There is a map from C, to Q"S", the space of base-point preserving
maps S"—S", where S" is the n-sphere. One description of it (at least when
n>1) is as follows. Think of a finite subset ¢ of IR" as a set of electrically
charged particles, each of charge +1, and associate to it the electric
field E, it generates. This is a map E,: R"—c—IR" which can be extended
to a continuous map E;: R"Ucw—R"uUoo by defining E (¢)=oc0 if
¢ec, and E (00)=0. Then E, can be regarded as a base-point-preserving
map S$"—S", where the base-point is oo on the left and 0 on the right.
Notice that the map c— E, takes C,, into Q"S",,, the space of maps of
degree k.

Our object is to prove that C, is an approximation to Q"S" in the
sense that the two spaces have composition-laws which are respected
by the map C,—Q"S" and the induced map of classifying-spaces is a
homotopy-equivalence. In view of the “group-completion” theorem of
Barratt-Priddy-Quillen [1, 8] one can say equivalently that C, ,—Q"S",,
induces an isomorphism of integral homology up to a dimension tending
to co with k. But to make precise statements it is convenient to introduce
a modification of the space C,.

Ifu<vin R, let R", , denote the open set Ju, v(x IR*~! in R". Then
C, is homotopy-equivalent to the space

C,={(c,)eC,xR: t=20,ccR", },
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which has an associative composition-law given by juxtaposition, i.e.
(¢, 9.(c',t)=(cuT,c,t+t), where T;: R", ,—IR" . is translation. As a
topological monoid C, has a classifying-space BC,.

Theorem 1. BC,~Q"~' 5", the (n— 1)-fold loop-space of S".

More generally, let X be a space with a good base-point denoted
by 0. (That means that there exists a homotopy h,: X - X (0<t<1) such
that h,=identity, h,(0)=0, and h, ~*(0) is a neighbourhood of 0.) Let
C,(X) be the space of finite subsets of R" “labelled by X ” in the following
sense. A point of C,(X) is a pair (c, x), where ¢ is a finite subset of R”,
and x: ¢c— X is a map. But (c, x) is identified with (¢, x") if cc¢’, x'|c=x,
and x'(¢)=0 when £¢c.

C,(X) is topologized as a quotient of the disjoint union
]_I (cn,k x X5)/Z,.
k20

As before, C,(X) is homotopy-equivalent to a topological monoid
C,(X)=C,(X)xR , consisting of triples (c, x,t) such that t=0 and
ccR? ..

Theorem 2. BC,(X)~ Q" 'S"X.

Here S"X is the n-fold reduced suspension of X. Theorem1 is
Theorem 2 for the case X =S°. If X is path-connected so is C,,(X), and
then QBC,(X)~ C,(X)~ C,(X), and one has

Theorem 3. If X is path-connected C,(X)~Q"S"X.

This has been proved by May [6].

Some other special cases are

(a) If n=1, C,(X) is equivalent to the free monoid MX on X, in the
sense that there is a homomorphism Cj(X)— MX which is a homotopy-
equivalence. Thus one obtains the theorem of James [5] that BMX ~SX.

(b) If n=2, C, , is the classifying-space for the braid group Br, onk
strings. Thus one has B( | | B(Br,))~QS>.

k20

(c) Because C,,,,‘ is (n—2)-connected, being the complement of some
linear subspaces of codimension n in IR™, one has C, ,—BZ, as n—oo.
This gives the theorem of Barratt-Priddy-Quillen that B(]] BZ,)~
Q218 kz0

The theorems above do not mention a specific map between the
configuration-spaces and the loop-spaces. I shall return to this question
in §3.




Configuration-Spaces and Iterated Loop-Spaces 215

§ 2. Proofs

Theorem 2 is obtained by induction from

Proposition (2.1). BC,(X)~ C,_,(SX).

For C,_,(8X) is connected, so C,_,(SX)~C,_,(SX)~QBC,_,(SX)
~QC, ,(S*X)~ - ~Q"1Cy(S"X)=Q 15" X.

The proof of (2.1) is based on the idea of a “partial monoid”.

Definition(2.2). A partial monoid is a space M with a subspace
M,cM x M and a map M,— M, written (m, m')>m - m’, such that

(a) there is an element 1 in M such that m.1 and 1.m are defined for
alminM,and 1. m=m.1=m.

(b) m.(m' m")=(m. m’). m" for all m, m, m" in M, in the sense that if
one side is defined then the other is too, and they are equal.

A partial monoid M has a classifying-space BM, defined as follows.
Let M, =M x e M be the space of composable k-tuples. The M, form
a (semi)simplicial space, in which d;: M,—»M,_, and s;: M,—M, ,, are
defined by

dimy,...,m)=(m,,...,m) if i=0
=(my,...,m.m ,...m) if O<i<k
=(my,...,m_,) if i=k

simy, ...,m)=(my,...,m, L,m_ (,....m) if 0Zisk.

BM is defined as the realization of this simplicial space [9]. If M is
actually a monoid (i.e. if M, =M x M) then BM is the usual classifying-
space. On the other hand if M has trivial composition (i.e. M, =M v M)
then BM = SM, the reduced suspension of M.

The space C,_,(X) can be regarded as a partial monoid, in which
(c,x) and (c’, x") are composable if and only if ¢ and ¢’ are disjoint, and
then (¢, x).(c/, x)=(cu c, x U X').

Proposition (2.3). BC,_,(X)~C,_,(SX).

Proof. Write M =C,_,(X). By definition BM is a quotient of the
disjoint union of the spaces M, x A* for k=0. Regard the standard
simplex 4* as {(t,...,t)eR*: 0<t, <---<t,<1}. Define M, x 4*—
Co_1(8X) by ((c1, %)), ..., (s Xp)s g5 .-, t) > (c, X), where ¢c=Uc; and
%:c—SX takes Pec; to (t;, x,(P))e SX.

These maps induce a map BM —C,_,(SX) which is obviously sur-
jective. It is injective because each point of BM is representable in the
above form with 0<t, <--- <t, <1, all ¢; non-empty, and x;(c;) = X — {0}.
It is a homeomorphism because one can define a continuous inverse-

15 Inventiones math., Vol. 21




216 G. Segal

map, observing that C,_,(SX) is a quotient of the dispoint union for
k=0 of the spaces C,_, , x X*x [0, 1]% which map to M, x [0, 1]*

The partial monoid C,_,(X) is related to the monoid C,(X) by
means of a sub-partial-monoid of the latter. Call an element (c, x, t) of
C,(X) projectable if ¢ is mapped injectively by the projection

pry: Ry —»R"1,

The projectable elements form a subspace which the composition-law
of C,(X) makes into a partial monoid. Projection defines a homo-
morphism C,(X)—C,_,(X), and elements of C,(X) are composable if
and only if their images in C,_,(X) are. Furthermore C;(X)—C,_,(X)
is a homotopy-equivalence (with inverse (c, x)(s(c), x, 1), where s is
any cross-section of pr,: R} ,—IR"!); and so is the map C}(X),—
C,_,(X), of spaces of composable k-tuples. Because the simplicial spaces
in question are good (see Appendix2), this implies that BC,(X)>
BC,_,(X). So to prove (2.1) it is enough to prove

Proposition (2.4). The inclusion C,(X)— C,(X) induces a homotopy-
equivalence of classifying-spaces.

To prove (2.4) I shall use an alternative description of the classifying-
space of a partial monoid M. Let € (M) be the topological category [9]
whose objects are the elements of M, and whose morphisms from m
to m' are pairs of elements m,, m,eM such that m;.m.m,=m'. Thus
ob % (M)=M, and mor ¥(M)=M,. Let |€(M)| be the realization or
“classifying space” of ¢ (M) in the sense of [9].

Proposition (2.5). |¢(M)|=~BM.

This is a particular case of a subdivision theorem for arbitrary
simplicial spaces, proved in Appendix 1. For the proof of (2.4) I shall use
a modification of the category €(C,(X)). Let Q be the ordered space
whose points are 4-tuples (u,v; ¢, x), with u,velR, u<0=<v, ¢ a finite
subset of IR} ,, and x: c— X, subject to the usual equivalence-relation.
It is ordered by defining (u,v; c.x)S(W/,v';c.x") if [u,v]c[u,v],
c=c'n([u,v]x R""1), and x’|c=x. Thinking of the topological ordered
set Q as a topological category, define a functor n: Q—%(C,(X)) by
(u,v; ¢, x)—(T_,c, x,v—u).

Lemma (2.6). |n|: |Q|—|€(C,(X))| is shrinkable [3] (i.e. it has a
section s such that s|n|~identity by a homotopy h, for which |r|h,=|n|).

Proof. Using the homomorphism of monoids C,(X)—R__ which
takes (c, x, t) to t one can regard Q as the fibre-product (of categories)
(C(X)) X ¢m,)F#> Where # is the space of intervals [u, v] with u<0=<v
ordered by inclusion. Forming the nerve commutes with fibre-products.
But | #|—|% (R, )| is easily seen to be shrinkable; so |r| is shrinkable.
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Continuing the proof of (24), if P is the sub-ordered-space of Q
consisting of all (u, v; c, x) with ¢ projectable then n(P)=%(C./(X )); so it
will be enough to show that |P|—|Q| is a homotopy-equivalence. Heur-
istically this is so because P is co-initial in Q, i.e. for each geQ there is a
peP such that p<gq, and if p; <q and p,<gq there is a p,eP such that
P3=p, and p; <p,. But some further conditions are needed, and I shall
use the following ad hoc lemma.

Proposition (2.7). Let Q be a good ordered space such that

(a) g,nq,=inf(q,, q,) is defined whenever there exists qeQ such that
91=q and q,<q, and

(b) g, " q, depends continuously on (q,, q,) where defined.

Let Q, be an open subspace of Q such that if qeQ and peQ, and
q=p then qeQ,. Suppose there is a numerable covering [3] U= {U,} of
Q, and maps f,: U,— Q, such that f,(q)<q for all ge U,.

Then |Qy|—|Q| is a homotopy-equivalence.

In the application of (2.7) Q is as above. Using the fact that X has a
good base-point, choose a homotopy h,: X — X such that hy is the identity
and h{'(0) is a neighbourhood of 0. This induces h: Q—Q. Let Q,=
h{'(P), a neighbourhood of P. One might call Q, the “almost pro-
jectable” elements of Q. Obviously |P|—|Q,| is a homotopy-equivalence,
with inverse induced by h,. But Q, and Q satisfy the hypotheses of (2.7) —
itis proved in Appendix 2 that Q is good. Thus (2.4) is proved modulo 2.7).

The proof of (2.7) would be almost trivial if one could choose the
maps f, compatibly so as to get a continuous map Q—Q,. In general it
depends on the fact that one does not change the homotopy-type of a
topological category by breaking apart the space of objects into the sets
of a numerable covering and introducing isomorphism between the
reduplicated objects. To be precise, if C is a topological category, and
U={U,},c4 is a numerable covering of ob(C), then the disintegration of
C by U is the topological category C whose objects are pairs (x, a) with
a€A and xe U,, and whose morphisms (x, a)—(x’, ') are the morphisms
from x to x" in C. Thus ob(C)=]] U, and mor(C)= [] V,,, where V,,

acAd a, feA
consists of the elements of mor (C) with source in U, and target in Us.

Proposition (2.8). If C is a topological category, U is a numerable
covering of ob(C), and C is the disintegration of C by U, then the pro-
jection || —|C| is shrinkable.

Proof. Let {C,},,o be the simplicial space associated to C (i.e.
Co=0b(C), C,=mor(C), etc.), and let {C,},-, be that associated to €.
Then C, =(Co)**+! x ¢, k+1C,. Now for any space Y there is a simplicial
space {Y**1}, ., , whose realization is a contractible space called EY [9].
15%
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Because realization commutes with fibre-products |C|=ECg X ¢ |Cl,
and it is enough to show that EC,—EC, is shrinkable. But {EU_},_, is
a numerable covering of EC, over which EC,—EC, is shrinkable, so
the result follows from [3].

Proof of (2.7). Let p: —Q be the disintegration associated to U.
Q is a preordered space. The f, define a map f:  —Q, such that f(£)<
p(&) for all £eQ. Let chn(Q) be the space of finite chains of  ordered by
inclusion (cf. Appendix 2). Define F: chn(Q)—Q, by ({,< - S&)—
inf(f(&o), ..., f (&) This is order-preserving, and F()<r chn(p) (o) for
o echn(Q), where r: chn(Q)—Q is ({,<--- S&)—E&,. As |r| is a homo-
topy-equivalence by Appendix 2, and |p|, and so |chn(p)|, is one by (2.8),
and |F|~|r||chn (p)| by [9] (), it follows that the composite |chn (0)|—
|Qo|—|Q| is a homotopy-equivalence. Similarly the composite |chn (Q,)|—
|chn (Q)|—|Q,| is a homotopy-equivalence; and so |Qo|—|Q] is one, as
desired.

§3. The Map C, (X)—Q"S"X

Despite its picturesqueness the electrostatic map described in §1 is
not very convenient in practice. It is homotopic, however, to the follow-
ing map. Let D,(X) be the space of finite sets of disjoint open unit disks
in R", labelled by X. (This is a closed subset of C,(X), and obviously a
deformation retract of it) Choose a fixed map f of degree 1 from a
standard disk D to S", taking the boundary to the base-point. Then
associate to a point ({i,: D—>R"},. ., x:c—X) of D,(X) the map
¢: R"Uoo—S"X defined by

¢(©)=(fi7'(€),x(@) if &ei(D), and
=base-point otherwise.

Regard ¢ as a point of Q"S" X

D,(X) can be regarded as a partial monoid in n different ways, the
composition in each case being superimposition, but two sets of disks
being composable for the i-th law if and only if they are separated by a
hyperplane perpendicular to the i-th coordinate direction. These com-
position-laws are compatible in the sense that each is a homomorphism
for the others, so one can use each of them in turn and thus define an
n-fold classifying-space B"D,(X). There is a map X —D,(X) taking x to
the unit disk at the origin labelled by x. Giving X n trivial composition-
laws (so that B"X =S"X), X — D,(X) is a homomorphism for all n laws,
and induces $"X — B"D,(X). Evidently what was proved in §2 was that
S§"X—B"D,(X).

On the other hand the space of maps ¢: R"Uoo—S"X also has n
partial composition-laws. Define support (¢)=¢ ~*(S" X —{0}). Then ¢,
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and ¢, are composable for the i-th law if their supports are separated by
a hyperplane perpendicular to the i-th axis, and the composite is in any
case given by “union”. The map X —»Q"S" X is an n-fold homomorphism,
so induces S"X — B"Q"S" X, which one knows classically to be a homo-
topy-equivalence. But the map D,(X)—"S" X defined above is an n-fold
homomorphism, and the diagram

X

D,(X)>Q"S"X

commutes. So D,(X)—Q"S"X induces an isomorphism of classifying-
spaces, as desired.

Appendix 1. The Edgewise Subdivision of a Simplicial Space
This is more or less due to Quillen.

The standard n-simplex 4"={(t,,...,t)eR": 0<¢, <---<t,<1} can
be subdivided into 2" n-simplexes corresponding to the 2" possible

orders in which the 2" numbers (t,,...,t,; 1—¢,,...,1—t,) can occur
in [0, 1]. When n=2 the diagram is
11
01 12
00 02 22

In general one puts a new vertex F;; at the mid-point of each edge PP, of
4", the original vertices being denoted P,(0<i<n). And Bijoss By
span a simplex of the subdivision if iy > --- 2 i, and j, < --- <jj, .

This subdivision of a simplex, being functorial for simplicial maps,
induces a subdivision of |4| for any simplicial space A. Thereby |A4] is
expressed as the realization of a simplicial space B such that B,=4,,, .
To be precise, let 4 be the category of finite ordered sets, so that 4 is a
contravariant functor from 4 to spaces. There is a functor T: 4—4
which takes the set {,, ..., a,} with n+1 elements to the set {a,, ...,

s %ns

0y, ..., 0} With 2n+2 elements, ordered as written. Then Bis A- T,
Proposition (A.1). For any simplicial space A, |A|=|A-T).

Proof. To write down maps |4| |4 - T}, observe that the 2" simplexes
into which 4" is subdivided can be indexed 4",, where 0 runs through a
set of 2" maps [2n+1]—[n]; and 4", is the image of the composition
0,i,wherei: A"—> A" is(t,, ..., t) >ty ... 48,5, 1-1¢,, ..., 1-11)).
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Then the maps A,,,, X 4"—>4,,,, x 4*"*! given by (a, &)(a,i &)
induce |4-T|—|A4|; and the maps A,xA4"%—A,,,,x4" given by
(a,0,i&)—(6* a, &) induce its inverse.

Appendix 2. Good Simplicial Spaces

Goodness is a condition on a simplicial space which ensures that its
realization has convenient properties. (May [6] uses “strictly proper”
for a similar idea.) I have discussed the condition at greater length in [10].

First observe that for any simplicial space A={4,} there are n
distinguished subsets 4,; (1<i<n) in A4,, homeomorphic images of
A,_, by the degeneracy maps s;: 4,_;—A4,.

Definition. A simplicial space A4 is good if for each n there exists a
homotopy f;: A,—A4,(0=t=<1) such that
(i) f,=identity
(i) f,(4,)<A4,, for1<isn
(iii) f,~'(A,,,) is a neighbourhood of 4, ;in 4, for 1<i<n.
Two results about good simplicial spaces are used in this paper.
They are proved in [10].

Proposition (A.1). If ¢: A— B is a map of good simplicial spaces, and
¢,: A,— B, is a homotopy-equivalence for each n then |f|: |A|—|B| is a
homotopy-equivalence.

To state the second result one first associates to a simplicial space A
a topological category simp(A4). Its objects are pairs (n, a), where n=0
and aeA,, and its morphisms (n, a)—(m, b) are morphisms 6: [n]—[m]
in 4 such that 6* b=aq. Thus

ob(simp(4))=[] 4,, and mor(simp(4))= [] A4,

nz0 0:[n]— [m]
There is a natural map |simp (4)|—|A|.

Proposition (A.2). If A is a good simplicial space, |simp(4)|—|A| is a
homotopy-equivalence.

In the case occurring in this paper A is the simplicial space arising
from an ordered space Q. Then simp(A) is precisely chn(Q), the space of
finite chains g, <:-- <gq, in Q, ordered by inclusion; and |simp (4)|—|A4|
is induced by the order-reversing map (g, <::-<q,)—¢o-

I call a monoid, partial monoid, category, ordered space, etc., good
if it gives rise to a good simplicial space. One needs to know that the
condition holds for all the examples arising in the paper. Notice first:
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1. A monoid is good if and only if it is locally contractible at 1.

2. A neighbourhood of the identity in a good monoid is a good
partial monoid.

3. The edgewise subdivision of a good simplicial space is good.

Now we must consider in turn C,_,(X), C,(X), C/(X), Q. Because X
has a good base-point there is a homotopy h,: X —X such that h,=id,
h{'(0)=U, a neighbourhood of 0. The map h,: C,_1(X)—»C,_(X)
contracts a neighbourhood of the identity through partial-monoid-
homomorphisms, proving C,_,(X) is good. On the other hand C,(U) is
a contractible neighbourhood of the identity in C,(X), so the latter is
good. For the same reason k! C/(X) is good. But this is homotopy-
equivalent to C,(X) as partial monoid, so C;(X) is good. Finally Q is
good because Q »%(C, (X)) is shrinkable.
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