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Abstract

It is well known that the Artin representation of the braid group may be used to calculate the
fundamental group of knot complements while the Burau representation can be used to calculate
the Alexander polynomial of knots. In this note we will study extensions of the Artin representation
and the Burau representation to the singular braid monoid and the relation between them which are
induced by Fox’ free calculus.

Closing singular braids, we obtain singular knots as they appear in the theory of Vassiliev
invariants. Thus the extensions of the Artin representation and the Burau presentation give rise to
invariants of singular knots. Here, we will focus on the invariants coming from the extended Artin
representations. We obtain an infinite family of group invariants, all of them in relation with the
fundamental group of the knot complement2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

A knot is represented by an embedding of one or several copigsiato S3. (We will
not distinguish between knots and links and use the term knot throughout the article.) Two
such embeddings represent the same knot if there is an ambient isotopy transforming one
into the other.

A braid (onn strings) is represented by a subsettok [0, 1] consisting ofn disjoint
arcs from(i,1) e {1,...,n} x {1} to (j,0) € {1, ..., n} x {0}, monotonic with respect to
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Fig. 1. Closing a braid.

the last coordinate. Two such subsets are considered to represent the same braid if there is
an isotopy from one to the other through braids.

It is well known that the setB, of braids on n strings forms a group, where the
multiplication is given by attaching the upper ends of the second string to the lower ends
of the first string.

Given a braidb we can construct a knd;, out of it, by ‘closing’ the upper and lower
ends with trivial non-crossing arcs (see Fig. 1). Alexander’s theorem states that any knot
can be obtained by closing a braid. Thus the closing operation is surjective. The question
of injectivity is solved by Markov’s theorem [3]: Two braids correspond to the same knot if
they can be transformed one into the other by a finite sequence of so-called Markov moves.

This gives rise to an equivalence relation and as a consequence we can consider a knot
as a Markov class of braids. This relation has been used to define knot invariants via
representations of the braid group; the Jones polynomial [15] being the most prominent
example. In this paper we will focus on some classical examples.

Let F" be the free group om generatorsy, ..., x,. The Artin representatiop,, : B, —

Aut(F™) from B,, into the automorphism group d” has already been defined in Artin’s
first paper on braid groups [1]. He uses it in order to calculate the fundamental group of
the knot complement.

Theorem 1.1 (Artin's Theorem).Letb € B, be a braid,K; the corresponding knot and
G, be the group presented by

Gp,b) = (xL ceesXpy X1= (pn (b))(x1)7 ceesXp = (,On (b))(xn)>
Then we haveés ,, ) = m1(S3\ Kp).
Applying Fox’ free differential calculus [11] to Artin’s representation, we can derive a
linear representation, the Burau representafipnB, — Gl, (Z[x*1]), of the braid group.

Its irreducible(n — 1)-dimensional part may be used to calculate the Alexander polynomial
of aknot [7].
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Theorem 1.2 (Burau’s Theorem)Letb € B, be a braid,K;, the corresponding knot and
Bn : B, — Gl,_1(Z[x*1]) the reduced Burau representation. The Alexander polynomial
A(Kp) of Kj, is given by

det(B, (b) — Id)
xt=lpn=2 4.4 1

A(Kp) = (=11

Since Vassiliev invented the theory of Vassiliev invariants [17,5], singular knots, which
were rarely considered before 1990, attracted a lot of interest. For singular knots, the
embedding property is weakened: A knot is allowed to have a finite number of self-
intersections, where two pieces of string intersect each other in a transverse manner.
Singular knots are only distinguished up to a certain notion of isotopy, known as rigid
vertex isotopy.

This notion of isotopy is translated to diagrams by introducing the following singular
Reidemeister moves. So we might consider two singular knots as isotopic if they admit
knot diagrams which can be transformed one into the other by a finite sequence of (possibly
singular) Reidemeister moves. See Fig. 2.

In the same manner, we can generalize braids to singular braids, where a finite number
of singularities are allowed. Since a singularity cannot be undone, ttf&Bsetf singular
braids onn strings does not form a group any longer. However, it still forms a monoid.
Algebraically it can be defined in the following way [4,2]:

Definition 1.3. The singular braid monoi8B, onn strands is generated by the elements
s17"‘7sﬂ—15s1_17"‘7sn__117t17"‘7tn—l
due to the relations
(1) Vi <n: s,-si_1 =e.
(2) Forli — j| > 1:
(a) SiSj =SjSi;

(b) 1isj=sjt;
(c) t;tj =1t;t;.
(3) Vi <n: sit; =t;s;.
(4) Vi<n-—1:

(@) sisit1Si = Sit18iSi41;
(b) tisivasi = sitaSiti+1;
(C) titasisi+1 = siSi+1li-

Geometrically, the generators correspond to the following braids (see Fig. 3).

For more information about the structure of the singular braid monoid the reader might
consult [10].

The braid groupB, is the group of all invertible elements i8B,. Its classical
presentation is obtained from the presentatioBBf by omitting the generators as well
as all the relations in which they appear.

The relation between singular knots and singular braids is just the same as in the classical
case.
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Fig. 2. (a) Regular Reidemeister moves. (b) Singular Reidemeister moves.

The following generalizations of Alexander’s Theorem and Markov’s Theorem may be
found in [4,12].

Theorem 1.4 (Alexander’s Theorem, singular versioRpr any(singular) knotK there is
a (singulan braid b such thatkX is isotopic toK}.
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Fig. 3. (a) Generators of the braid group. (b) Singular generators.

Theorem 1.5 (Markov’s Theorem, singular versionlf. » € SB, and ¢ € SB, are two
(singulan braids with K, isotopic toK . then there is a finite sequence(singular) Markov
moves which transfornisinto c. The singular Markov moves are given by

(1) b1bz € SB, ~ boby € SB;

(2) by € SB, ~y b1stt € SBy 1.

In this article we want to consider extensionsopfand g, to the singular braid monoid
and examine the topological meanings of these extensions.

SB, is a monoid and not a group and therefore it would be an unnecessary restriction if
we would only consider extensions

fn:SB, — Aut(F") and B,:SB, — Gl,(z[x*]).

Since the grouAut(F”*) embeds in the monoiBnd(F") of endomorphisms oF” and
the groquIn(Z[xﬂ]) embeds in the monoid, (Z[x*1]) of all matrices with entries
in Z[x*1], it would be more interesting to look for extensiofis: SB, — End(F") and
Bn :SB, — M, (Z[x*1]). To summarize this, we regard the following diagram:

Fox

.
AUL(F™) < B, s Gly(ZIx )

| |

End(F") < SB, > My (Z[x*1])
e

?
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Five questions arise naturally:

)

)

®3)

“4)

®)

Are there any representatiofs: SB, — End(F") which extend the Artin repre-
sentationo, ?

This question will be answered in the affirmative in Section 3. In fact, we will find
a whole family A,, of possible extensions. This family can be indexed in a natural
way by the elements of the free gro#i on two generators.

Are there any representatio : SB, — M, (Z[x*1]) which extend the Burau
representatios, ?

This question will be answered in Section 2. Once more, we will find a whole family
An Of possible extensions. All these extensions arise as specifications of a universal
extension; : SB, — M, (Z[x*1, y]).

Does Fox’ free differential calculus relate the extensiond,jrto those ini,,?

This question will be answered in Section 5. In fact, the free differential calculus
induces a map, : A, — A, which preserves a certain multiplicative structure on
A, andi,. This multiplicative structure will be defined in Section 4.

Is there a generalizations of Burau's Theorem: Can the Alexander polynomial be
generalized to singular knots by using extensions of the Burau representation?
This question is treated in a separate paper [13] where the universal extghsson
used to define a generalized Alexander polynomial. A generalization of the Homfly
polynomial and relations between these generalized polynomials and Vassiliev
invariants are also treated in this paper.

Is there a generalization of Artin's Theorem: Do we obtain group invariants of
singular knots from the extensions pf which relate to the fundamental group

of the knot complement?

Section 7 deals with this question.

This note summarizes some results of the author’s Ph.D. thesis [14]. The other parts of
it may be found in [13].

2. Extensions of the Burau representation

In this section we will examine possible extensions of the Burau represengatidvie
start by recalling the definition of the classical Burau representation [6].

Definition 2.1. The classical Burau representatign: B, — Gl, (Z[xF1) is given by

Id;_1 0 0
x

1- X
pusr=| O P B
0 0 Id,,—i_1

The Burau representation satisfies a certain locality condition: The only non-trivial
entries ofB,(s;) are on the intersections of thiéh and (i + 1)th row and column. This
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corresponds to the geometric fact, that the bsaidoes only affect theéth and(i + 1)th
string. It is therefore natural to impose an analogous locality condition on our extensions.

Definition 2.2. An extensiong, : SB, — M, (Z[x*]) of the Burau representatiqf), is
called local if

Id;_1 0 0
Bn(ti) = 0 M; 0 s
0 0 Id,—i—1

whereM; € M>(Z[x*1]). The set of all local extensions gf, will be denoted by,

Note that forn > 3 there are extensions which are not local. For example, we get a non-
local representation &B, by settingg, (7;) = 0 for all . Obviously, this representation is
not very interesting.

With the notation introduced above, we can answer the first question of the introduction:

Proposition 2.3. There is a representatiof)’ : SB, — M, (Z[x*1, y]) given byB;(oi) =
Bn(oi) and

Id;_1 0 0

Biti)y=1] 0 0

0 0 Idn—i—l

All local extension&ﬁn :SB, —> M, (Z[x*1]) are obtained fronB;¥ by substitution of by
a Laurent polynomial irZ[x*1].

Proof. Checking the relations of Definition 1.3, we easily see gjais a representation
of SB,. We have to show that any local extensiorggfis obtained by substitution of.

By relation 4(c) of the singular braid monoid we haye= s1spt15, s7 . This implies
that M2 = M;. By induction we see that/; = M for all i. So assume that

M1=<u v>
y z

with u,v,y,z € Z[x*]. Now, relation (3) implies that we must hawe= xy and
u =y — xy + z while relation 4(b) implies that + 7z = 1. These equations prove the
proposition. O

The local extension corresponding to the Laurent polynopiaill be denoted byg) .
As an immediate consequence of the last proposition we get:

Corollary 2.4. The set., is in natural bijection withZ[x*1].
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We have already mentioned in the introduction that the universal extef$ioray be
used to generalize the Alexander polynomial to singular knots [13]. Still, there are also
some other applications @f;: In [9] the faithfulness o8] is used to show that the Birman
conjecture [4] is true fon = 3.

3. Extensions of the Artin representation

In this section we will consider extensions of the Artin representatipiil]. Once
more, we start by recalling the classical case. E&tdenote the free group generated by
X1, ..., xn. We will consider the groug™” as canonically embedded i" for n < m. By
(a1, ay, ..., ar) we will denote the subgroup &”" generated byt1, a, ..., ax.

Definition 3.1. The Artin Representatiom, : B, — Aut(F") is given by p,(s;) = S;
wheres; is given by the following formulas:

Si i xi > xix,-+1xi_l

Xi+1 = X

xj = x; forj#ii+1

Remark. In the braid group1b2 usually denotes the braid whéreis applied first and,
second. In the automorphism gropjpo p! denotes the automorphism whergis applied

first andp;, second. We will stick to this notation even though we get the rather unusual
formulap,, (b1b2) = p, (b2) o p, (b1) for homomorphisms.

As the Burau representation, the Artin representation does also fulfill a locality
condition. We therefore impose the analogous condition on our extengjaswell.

Definition 3.2. An extensiorp, : SB, — End(F") of p, is called local, if

(Pn (t)) (xi) € (xi, xiy1):
(Pn (1)) (xi41) € (xi, Xit1);
(,5,1 (t,-))(x]-) =x; forj#i i, +1

The set of all local extensions pf, will be denoted byA,,.

As in the case of local extensions®fwe can give a complete classification of all local
extensions op,. To do this, we need the following two lemmas.

Lemma3.3. Letr;: (x1,x2) = (x;, x;+1) be the homomorphism givenbyx;) = x4 ;1
for j=1,2.If p,:SB, — End(F") is a local extension, we have

on (1) (xi) = Ti (P (12) (x1));

Pn (1) (xXi11) = Ti (B (11) (x2)).
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Proof. The assertion follows easily by induction an using relation 4(c) of the
presentation 06B,. O

The last lemma means geometrically that the effect of a singularity does not depend
on the place where it is situated in the braid. This translation invariance implies that we
know the local extensiop, completely, if we know its effect om, that is, if we know
(Pn(11)) (x1) @nd (o, (t1)) (x2).

Lemma 3.4. Let w,v € F2 C F" be two words inxf* and x3*. Let S; be the
automorphism of” defined byp, (s;). Let S1(v) = w andwv = x1x2 in F". Then there
is a local extensiom, : SB, — End(F™) with

(Pn(@))(xi) =wi(w) and  (5n (1)) (xi41) = i (V).

Proof. We have to show that all the relations 8B, are satisfied by,. The relations
(1), (2) and (4a) are relations iB,. Therefore they are automatically satisfied because
onlB, = pn. Relations (2b) and (2c) hold by the locality condition. Hence we only have to
deal with the relations (3), (4b) and (4c). In fact, translation invariance ensures that we just
have to consider the following three relations:

(1) s1t1 =t151;

(2) 125152 = s1s211;

(3) 115281 = §28112.
We will check these relations one after another. In the sequel we will denote the
endomorphism, (t;) by T;.

We start with the first relation. Since only the subgrdthof F” is affected, we have
to check the relation only on this subgroup. We see that:

T1 0 S1(x1x2) = T1(x1x2) = WV = X1X2
= S1(x1x2) = S1(wv) = 8§10 T1(x1x2)
and that
T10 81(x2) = T1(x1) = w = S1(v) = S1 0 T1(x2).

Sincexyx, andx, generateF? we have shown the first relation.
We go on with the second relation. This time we have to condider F”. We compute:

S208107T2(x1) = S2081(x1) = xlxz)C3x2_1x1_1 = wvx3v_1w_1
-1 -1
= Tl(x1x2x3x2 Xq ) =T10 820 851(x1).
In an analogous manner we see that
S2 0 810 To(x1x2x3) = S2 0 S1(x1x2x3) = x1x2x3 = T1(X1X2X3)
= T1 0820 8S1(x1x2x3).

Sincexq, x2 and x1x2x3 generateF3, it remains to show thaf o S» o S1(x2) =T1 0
S2(x1) = T1(x1) = w equalsSz o S1 o T2(x2). By translation invariance we havé(xz) =
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T2(w). Thus we have to show thab o S1 o 72 restricted toF? is the identity. We easily
check:

S20 81 0712(x1) = 82 0 S1(x2) = x1;
S2 081 0 12(x2) = S2 0 S1(x3) = x2.

Hence we have shown that the second relation holds. The third relation holds by a similar
argument. O

We are now in a position to state the main result of this section. For this purpose we
introduce the automorphismof F2. Itis defined byr(x1) = x2 andr(x2) = x1.

Theorem 3.5. If 5, :SB, — End(F") is a local extension o#,, then there exist® € F?
such that

(1) (Bn () (xi) = Ti (x1r (@)™ L);

(2) (Bn (1)) (xi41) = T (0r (@ Hx2).
Moreover, any elemeni € F2 induces a local extension in the indicated way.

Proof. We start by showing that the formulas above define a local extension for any
w € F2. Inview of Lemmas 3.3 and 3.4 we only have to show that

(1) x1r (a))w_la)r (a))_lxz = X1X2;

(2) S1(wr(w) tx2) = x1r(@)o L.
The first equation being obvious, we only have to consider the second equation. It is easy
to observe tha$ o r, restricted taF?, is just conjugation with1. Therefore we have

Sl(a)r(a))_lxz) = Sl(r (r(w)a)_lxl)) = xlr(a))w_l

which proves the first part of the theorem.

Now let us show that for any local extensipp we havew € F? as described above.
Let p, be an arbitrary local extension and §gt= p, (¢;). Definew, v to bew = T1(x1)
andv = Ti(x2). Using the relations holding i8B, we compute thaf; o Sz o S1(x1) =
wouxzv twtandSy 0 S10 To(xq) = xlxzxgxz_lxl_l. By locality w andv are inF2. Hence
we getwv = x1x2. This implies thatw andv may be written in the following form:

w=x10 1, V= wWx2,
for somei e F2. With this notation we observe that
szlr(ﬂ)')xz—l =roTio81(x1) =roS10T1(x1) = xlexz_lr o sl(w—l)_
Sincer o §1 is conjugation withx, this implies thati = r(w~1). It is now easy to derive
that there exist® as required in the assertion. This completes the proof.
As an immediate corollary we get:

Corollary 3.6. The elements ofl,, are in natural bijection with the elemenfz?.
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The simplest examples of local extensions will be given explicitly in the following
example.

Example 3.7. The simplest local extension, corresponding to the identit§f &fis given
by settingp¢(#;) = id. The element:; € F2 corresponds to the extensigri* defined

-1
by ppt(t1) = pn(si) and the eIementz‘l corresponds to the extensif;vr,i‘2 given by

1
pn? (1) = pa(s71). Two other local extensions are given by
P2(11) (x1) = x1x1%5 P2 (1) (x2) = x2x7 1x2,

wherew = x2 and

—1 -1
ot (t)(x) =x1x5tx1, et (1) (x2) = X7 “xoxz,
wherew = x7 .

It is worth noting that whilep, : B, — Aut(F") is known to be faithful, we do not
know if any of our extensiong? is faithful. Even if this is not the case, it seems very
likely that, given two different singular braidg and b, there is an extensiop with
oy (b1) # py (b2).

4. Multiplicative structureson 1, and A,

In this section we will equip.,, and A, with multiplicative structures. We start by a
simple observation:

Remark that the projectiop’ : SB, — B, given by pk(s;)) =s; and pk(#;) = s is a
homomorphism (of monoids) for artye Z. Hence, given any representatign: B, — M
of B, into some monoid/, we get representationd : SB, — M by settingy* = y, o pX.
Moreover we have/f(t;) - yl(t;) = y**(4). This formula gives rise to a multiplicative
structure on the representations3s, .

Proposition 4.1. Let M be a monoid andp,: B, — M a representation. Lep/, ¢, :
SB, — M be two extensions @f, with the commutator property that

&, ()P, () = by, (1)), (1;)  forall i — j| > 2.
Then we have another representatign= ¢, © ¢, of SB, into M given by
Y (si) = Pn(si); Yn (i) = ¢, (t1) - dp (1)
Proof. We just have to check that, © ¢, satisfies the relations iBB,. Since (¢, ©

#)|s, = ¢, we do not have to check the relations (1), (2a) and (4a).
(2b) For|i — j| > 2 we have

(¢, @ D) isj) = (¢, © ) (1) - (b, © ¢;)(5)) = b, (t1) Py, (t:)Pn (s)
= (1P (s, (1) = b (5))9;, (1)), (1) = (b, © b, (st
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(2c) For|i — j| = 2 we have

(¢, © o) (titj) = ¢y, (1)), (t) P, ()@ (1))
= ¢, (1)), (t)) (1), (1) = (¢, © ¢, (tj1;).

Here we have used the commutator property. The relations (3), (4b) and (4c) may be treated
in a similar way. O

Thus, we can multiply representations $8, under certain circumstances. By the
definition of our locality conditions, any pair of representationsiin (respectivelyr,,)
can be multiplied with each other.

Corollary 4.2. The setsA,, and,, are monoids with respect to thg-product.

Attention The multiplicative structures given by the-product do not correspond to
the multiplicative structure orF? (respectivelyZ[x*1]) induced by the bijections of
Corollaries 2.4 and 3.6.

It may be interesting to understand the structures of the montjdandx,,. We will
give some first results here.

Proposition 4.3. The monoid.,, is commutative. Its invertible elements are exactly those
of the formpB, = B, o p* (with p* defined as aboyeHence, the group of all invertible
elements of,, is isomorphic tdZ.

Proof. Let p1 and p» be two polynomials inZ[x*1] and g!* and B/? be the two
corresponding local extensionsof. Easy calculations show that

OB =B =B 0B

whereq = p1+ p2 — (x — 1) p1p2. Thus,(,, ®) is commutative.

Since it is clear that the extensions of the fg8o p,’; are invertible, it remains to show
that all invertible elements are of this form.

Now, if g7* is invertible, then depB?*(r1)) = 1— p1 —xp1 has to be invertible ifZ[x =1].
Thus, there has to be am € Z such that - p; — xp1 = +x™. Easy calculations show
that these equations are only satisfied for polynompalsorresponding to the extensions
described above. O

The structure ofA,, is much more complicated than the onexgf We only give the
following result.

Proposition 4.4. The monoidA,, is not commutative.

-1
Proof. It is easy to work out that the two extensiop$* and p,fl corresponding to
xp € F2 andx; ! € F? do not commute with respect to tteeproduct. O
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5. The Fox homomorphism &, : A, — A,

In this section we will show that Fox’ free differential calculus induces a homomorphism
of monoids®,, from A,, to A,,.

We briefly recall some facts about the free differential calculus. A detailed treatment
may be found in [11] or [8].

Denote the group ring af” by Z[ F"]. The groupF" is canonically included itZ[ F"].

The partial derivative
i F" — Z[F"]
8x,~
is uniquely defined by the following conditions:

(1) %()Cj) = é;; wheres;; denotes the Kronecker symbol.

) %(wlwz) = %(wl) + wla%(wz), wherewr, wo are elements idF”.
As an easy consequence we derive #atx; 1) = —x; .

Let 7 :Z[F"] — Z[x*1] be the ring homomorphism defined by(x;) = x for all
i =1,...,n. (By abuse of language we will denote the restrictionrofo F" with =
as well.) ByM, (Z[x*1]) we denote the ring ofz x n)-matrices with entries if[x*1].

With this notation we can state the following result which relates representations
into End(F"*) and linear representations. It is a slight generalization of analogous result
concerning representations of groups iAtd(F,,) which may be found in [3] or [16]. The
proof of the classical case also works for this generalization.

Proposition 5.1. Let M be a monoid and let),, : M — Aut(F") be a representation
of M such thatz ((y,(m))(x;)) = x for all m € M and for all x;. Then we obtain a
representatiord, (V,,) : M — M, (Z[x*1]) by setting

o ( 3(%5@)()61)) R ( 3(%5@)()61))
(@n () (m) = : :
n(a(vfng;li)(xn)) n(a(vfng;lj)(xn))

Applying @, to the representation, we get the following well known fact [3]:
Proposition 5.2. With notations as above we haw#g (o,) = B, .

We are interested in an analogous result for local extensions. The following proposition
answers the third question of the introduction.

Proposition 5.3. The mapd,, : A, — A, is a monoid homomorphism.

Proof. Theorem 3.5 implies directly that the conditions of Proposition 5.1 are satisfied for
all elements in4,,. Moreover, the locality condition of the local extensignimplies the
locality condition for®,, (0,). Hence, we have a well defined mép : A, — A,. The fact

that this map is a monoid homomaorphism follows easily from Proposition 51.
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Obviously, the monoid homomorphisgn, cannot be injective sincd,, is not commu-
tative whilei,, is. As an example the non-trivial local extensionpgfcorresponding to the
element

2

-1
XoXq

xz_lexz_lxl_l € F?
maps to the unit element iy, underd,,.
Surprisingly, the mag@,, is not surjective neither. The following proposition determines

its image completely.

Proposition 5.4. Let ¢ be a Burau-like extension ¢f, and p = 3" pix’ € Z[x*!] the
associated polynomial. L&t € Z/2Z[x*1] polynomialp reduced modul@. Theng! is
the image of somg;, € A7, ifand only if p is of the following form

) p=0,

(2) p=)""Lox" withm > 0;

@B) p=Y2, x withm > 1.
Proof. For notational reasons, we consider the rdg@as a map fron#2 to Z[x*1] rather
than a map from,, to %,,. By definition of®,, and the bijections of Corollaries 2.4 and 3.6
this means that

(@) = ( 3(wr (@ Hx2) )

0x1

So we have to prove that for anye F?, the polynomialp = 7 (3 (wr (0 1)x2)/dx1) is of
the form presented in the proposition. This can be done by induction on the minimal word
length ofw. The induction step requires long and technical computations. Therefore it is
omitted here. A detailed proof may be found in [14].

Hence, any local extension in the imagedgf is covered by our proposition. It remains
to prove that every polynomiai, which is of the given form, has a preimagefitf. We
start by constructing some examples:

we F2 Polynomial®;, (w)
v =" Hi=%i o
=" Hh=Tim
A=yt =2

vﬁ = xll‘xle_k_l pffl = —2xK

vé =x2_kx1x]2(_l uész‘k

vlé = xkazx]{_l pfé =2k

We observe that far > 3 and anyw € F2 we have
D, (vlka)) = uf + @, (w).
Since any polynomiap of the form given above may be written as a sum of M’jein

which only one term of the sum is of the for;m’{ oru’é, this formula allows us to construct
inductively an element in the preimagepf 0O
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6. Thefundamental group of the complement of a singular knot

The fundamental group of a knot complement is a strong invariant in the regular case
and many algorithms which yield presentations of these groups are known. One of the most
famous such algorithms is due to Wirtinger [8]. It starts off from an arbitrary knot diagram
and produces the so-called Wirtinger presentation. In this section we will generalize this
method to singular knots. L&t be a (possibly) singular knot aridly be a diagram of this
knot. We decomposg in components by cutting it open at

(1) any undercrossing;

(2) any singular point. Locally, four components arise from a singular point.

To each of the constructed components we assign a generator of the Wirtinger
presentation. Any singular point & and any other double point @k gives a relation of
the Wirtinger presentation. These relations are depicted in Fig. 4.

Definition 6.1. The Wirtinger groupV (K p) of a knot diagranDy is the group presented
by the Wirtinger presentation.

Example 6.2. We want to calculate the Wirtinger presentation associated to the knot
diagram drawn below. We get:

W(Dg) = (a,b,c,d;dc=ba,cb=dc,ba = cb)
>~ (a,b,c,d;d=bac™t,cb=dc,a=b"tch)

= (b, c; bc=bc)
= Zx 7.
a b a b a b
AN /
7N N
ab=cd ab=bd ab = ca

Fig. 4. Relations of the Wirtinger presentation.

Fig. 5. The Wirtinger presentation of'3
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Regarding singular Reidemeister moves, it is easy to check that the Wirtinger group does
not depend on the diagramy but only on the knot itself. Moreover, we get:

Proposition 6.3. Let K be a(possibly singular knot,Dg a diagram ofK andW (D) its
Wirtinger group. Then we ha# (Dx ) = 1(S° \ K).

The proof is an easy adaptation of Crowell and Fox’ proof in the regular case [8].
Therefore it will be omitted here.

7. Group invariantsof singular knots

In this section we will study group invariants of singular knots coming from local
extensions op,. We will see that these group invariants are related to the Wirtinger group
of a singular knot. We start with the following proposition which assures that we get a
group invariant for any local extensigne A,,.

Proposition 7.1. Let » be an element inF2 and p? be the local extension of,
corresponding taw. Letb € SB, be a braid. The groujs ,»») presented by

Gy =(x1. ..., xn3 x1= (05 (0)) (x1), ..., xn = (p (b)) (xn))

does only depend on thgingulan Markov class ofh. We therefore can define a group
invariant G,, of singular knots by setting ,,(K») = G 5o )-

Proof. We have to show that the group,. ) is invariant under Markov's moves, that is
we have to show that

(D) Gopabn = Gppbaby);
(2) Gp,‘f’(b) = Gp(y:)+l(b53:l).
By definition we have
Gpo(biby) = (X1, - Xt x1= pf (b1b2) (x1), . . ., Xp = p (b1b2) (xn));
G po(boby) = (X1, -, Kt F1= pf (b2b1)(X1), ..., X = pf (b2b1) (%))

Now, we define homomorphismgs G ye 16, — G pe (baby) @NAY 2 G po boby) = G po (byby)
by setting

o (x;) = p, (b1)(X)
and
V(X)) = py (b2) (x7).

Itis easy to check that these homomorphisms are well defined and that we have- id
and¢ oy =id. Therefore we have& yo,5,) = G po(b,6,) @and we are done with the first
case. So, we are left with the second case. By definition we have

Gp,’i’ﬂ(bsn) = (xl, coo Xngls X1= P$+1(bsfl)(xl)’ ceo Xntl = p,‘1’)+1(bsfl) (xn+1))'
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Since
P;?+1(bsfl) (Xn+1) = pr(f)+1(snﬂ) (VT (OIEAEY)
R [
we get

Gpo ity = o1ttt 11 = o (570) (L ) o).

Xn = pz).;_]_(sy:ztl) (10;1()+1(b)('xn))7 Xn+1 = xn)-

The equation, 1 = x,, implies thatp,‘l”(s,;ﬂ) is the identity. Hence

Gpﬁﬁrl(bsnﬂ) = (xl, vy Xy X1= o7 (B)(X1), ... Xn = pfq"H(b)(xn))

= Gop)-

This completes the proof.0

Thus we have defined an infinite family of group invariants for singular knot& If
is a regular knot, Artin’s Theorem assures tlia;(K) = 71(S2 \ K) for all w. If K
is singular, the group invariants corresponding to differer¢ F? are different as the
following example shows:

Example 7.2. Let K be a singular knot. LeK be the regular knot obtained fro&
by resolving all the singularities in the right-handed manner Endbe the regular knot
obtained fromK by resolving all the singularities in the left-handed way. Then we have:

Gy (K) = 1S3\ K+);
G a(K)= 7 (S3\ K-).

Table 1 shows the value of the group invariaGts and le—l on the three knots drawn
below. More examples may be found in Appendix B.

Thus, for a singular knok the groupG,,(K) is not the fundamental group of the knot

complement (at least not for adl). However, there is still a close relationship between our
group invariants and1(S3\ K).

37 3 % % 4 @

Fig. 6. Group invariants of certain singular knots.
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Table 1
Knot Local Corresponding Gu(K)
K extension elemenb
ST! P2 X2 (a,b; a’b = b2a)
ST! p,fl_l xl_l (a,b; bab~1=aba=1)
33" on2 x2 (a,b; a?b~1a? = p2a—112)
s it (@, b; ba~tba=2 =ab~lab2)
4 P2 X2 (a,b; (ba)~laba=t=ab lbab™1)
4’£ p,fl_l xl_l (a, b; ab = b2a)

Proposition 7.3. Letw be an element af? and K be a singular knot. The grou@,,(K)

is a quotient groug(depending onw) of the fundamental group1(S® \ K) of the knot
complement.

Proof. Let b € SB, be a braid withK; ~ K. Write b = b1b»...b,, in the standard
generatorsb; € {s;.—Ll, t;}) and consider the Wirtinger presentation of the closed bkaid

Fig. 7. Group invariants and the Wirtinger presentation.
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Slightly modifying the Wirtinger presentation, we see thatS® \ K}) is generated by
they; ; (with 1 <i <n and 1< j <m), due to the relations:
(1) yim=yio forl<i<n;
(2) Kbp_j=s;:
(@) yij = Yyi+1,j+1;
(0) Yij+1Yit1,j+1=YijYi+1l)s
(©) yr,j =k j+1 fork##i,i+1;
(3) f by j =57
(@) yit1,j =i j+1;
(0) yi,j+1Yi+1,j+1= Vi jYi+1.j;
(©) ykj=yrjrrfork#£ii+1;
4) Wby_j =1
(@) Yi,j+1Yi+1,j+1 = Yi,jVi+1.j;
() yej =y j+1 fork#i,i+1;
The groupG ,« (b) is given by

(X1, xns x1= 07 (D) (X1, ..., X = ) (B) (xn))-
We have to show that there is a surjective group homomorphism
W ZJT1(53 \ Kb) — Gp;;’(b).

We define it by (yi,;) = oY (bmt1—jbmiz—j ... bm)(x;). Especially, this means that
Y (yi, 0) = p2(e)(x;) = x;. Thus, if ¢ is well defined, then it is surjective. We therefore
have to show that the relations0f(S2 \ V) are respected by .

(1) Since

Y im) = py (b1...bm) (xi) = p;’ (D) (xi) = xi = ¥ (¥i,0)

the relations of (1) hold.
(2) The relations fob,,_; =s;:
(a) Relation (2a) holds because

V(Yig1,j+1) = Py bm—jbmi1—j...bp)(xit1)
= oy (bmsi—j - bm) (0T (Bm—j)(xi+1))
= p (bms1—j - bm) (P2 (5i)(xi+1))
= py (bmt1—j - b)) (xi) = ¥ (i, j)-
(b) Relation (2b) holds because

Vi, j+1Yidd j+1) = Py bm—jbmi1—j ... bu)(XiXiy1)
= P Bmg1—j - -bu) (0 (bm—j) (XixXi+1))
= pF (bms1—j .. bm) (0 (si) (xixiy1))
= oy (bmt1—j - b)) (XiXiv1) = ¥ (Vi jVi+1,j)-
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(c) For relation (2c) we get the following equality:

YOk, j+1) = P (bm—jbms1—j . ..bm)(xi)
= 0 G- - - -bm) (0 (b—j) (k)
= oy (b1 - b)) (o3 (50 (x1))
= py (bms1—j - bm) (xi) = ¥ (v, )

(3) The relations fob,,_; = sl._l may be treated in the same way.
(4) The relations fob,,—; =1¢;:
(a) Since we havep? (1) (xixit1) = xir(ti(@)7i (@ HTi(@)r(m(@ H)xip1 =
Xxixj+1 We can treat relation (4a) in the same way as relation (2b).
(b) Relation (4b) may be checked in the same way as relation (2c).
Hence, all relations are respectediypyand the proof is complete.O

The last proposition gives another geometric interpretation for the generalized Alexan-
der polynomial introduced in [13]: In fact, i, (%) = B theng} — Id is just the Alexan-
der matrix corresponding to the group presentatiot gf ;) = G, (K,). Since the gener-
alized Alexander polynomial ok is defined by using the universal local extensgjnof
B, it contains information about certain subgroupsfsS \ K).
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Appendix A. Singular knots

The following figure shows all irreducible knots with one singularity and admitting a
projection with at most 6 double points.

o0 () ()
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Appendix B. Fundamental group and group invariants

For any knotk depicted in Appendix A, the following table gives the fundamental group
of its complement, as well as the group invariafits (K ) andel_l(K)

m1(S3\ K)
Knot Gy, (K)
G -1(K)
1

YY)
1? Y/
7

Zx 7
3 (a,b; ab? = ba?)
(a,b;abta = b~ tab)
YAV
4% (a.b; ab®= ba?)
(a, b; aba= 114 = babab_l)
YAV
5% (a.b; abab? = baba?)
(a, b; ababa=1 = babab_l)

YAY/
55 (a,b; b=*a"tba=tbab=t = ba=1b=tab=taba=1)
(a, b; a2ap~1 = b_lazba_l)

YAV
5:’5 (a,b; bab=Ya=Ybab = aba=1b~Laba)
Z

(a, b, c; abca = babc)
6’{ (a, b, c;abca = babc, aabcac = baba_lca)

(a, b, c;abca = babc, abcaca= e b1 = baba_lb_lal)

(a, b, c; abca = babc)

6; {(a,b, c;abca = babc, a’ba = bcab)
(a, b, c;abca = babc, abab=la=1p=1 = bcb_la_l)
Zx 7
6; (a, b; aba~Yaba=Yba = bab~Ya=1bab—Lab)

(a,b;ba= b= Yab = a=1p~Yaba=1)
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7183\ K)
Knot G, (K)
le—l(K)
(a, b, c;abca = babc)
6;‘1 {a, b, c;abca = babc, bca = abacz)
(a, b, c;abca = babc, bac la e = abacca_l)
RV
6; (a, b; bab~Yaba=1b%a = aba=1bab—1a2b)
(a, b; bab~taba=Ybab=ta=1b = aba=1bab~taba=1b~1a)
VY
62 (a, b; a1 1a Ypab=a1ptabab—1a1 = b_lalb_laba_lb_la_lbaba_lb_l)
(a, b; aba?b~ta=bab = bab?a=1b~Laba)
VY
6% (a, b; a2bab = b2aba)
(a, b; (ab)? (ba)~2%aba = (ba)?(ab)~2bab)
YA
65 (a,b;ap2ab™t = b~ Ya2pa1)
(a, b; a lbab=Yab=la1pa—1 = b_laba_lba_lb_lab_l)
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