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Preface

This book is about the interplay between algebraic topology and the theory
of infinite discrete groups. I have written it for three kinds of readers. First,
it is for graduate students who have had an introductory course in algebraic
topology and who need bridges from common knowledge to the current re-
search literature in geometric and homological group theory. Secondly, I am
writing for group theorists who would like to know more about the topological
side of their subject but who have been too long away from topology. Thirdly,
I hope the book will be useful to manifold topologists, both high- and low-
dimensional, as a reference source for basic material on proper homotopy and
locally finite homology.

To keep the length reasonable and the focus clear, I assume that the reader
knows or can easily learn the necessary algebra, but wants to see the topology
done in detail. Scattered through the book are sections entitled “Review of ...”
in which I give statements, without proofs, of most of the algebraic theorems
used. Occasionally the algebraic references are more conveniently included in
the course of a topological discussion. All of this algebra is standard, and can
be found in many textbooks. It is a mixture of homological algebra, combina-
torial group theory, a little category theory, and a little module theory. I give
references.

As for topology, I assume only that the reader has or can easily reacquire
knowledge of elementary general topology. Nearly all of what I use is sum-
marized in the opening section. A prior course on fundamental group and
singular homology is desirable, but not absolutely essential if the reader is
willing to take a very small number of theorems in Chap. 2 on faith (or, with
a different philosophy, as axioms). But this is not an elementary book. My
maxim has been: “Start far back but go fast.”

In my choice of topological material, I have tried to minimize the overlap
with related books such as [29], [49], [106], [83], [110], [14] and [24]. There is
some overlap of technique with [91], mainly in the content of my Chap. 11,
but the point of that book is different, as it is pitched towards problems in
geometric topology.



VIII Preface

The book is divided into six Parts. Parts I and III could be the basis for a
useful course in algebraic topology (which might also include Sects. 16.1-16.4).
I have divided this material up, and placed it, with group theory in mind.
Part II is about finiteness properties of groups, including both the theory
and some key examples. This is a topic that does not involve asymptotic or
end-theoretic invariants. By contrast, Parts IV and V are mostly concerned
with such matters – topological invariants of a group which can be seen “at
infinity.” Part VI consists of essays on three important topics related to, but
not central to, the thrust of the book.

The modern study of infinite groups brings several areas of mathematics
into contact with group theory. Standing out among these are: Riemannian
geometry, synthetic versions of non-positive sectional curvature (e.g., hyper-
bolic groups, CAT(0) spaces), homological algebra, probability theory, coarse
geometry, and topology. My main goal is to help the reader with the last of
these.

In more detail, I distinguish between topological methods (the subject of
this book) and metric methods. The latter include some topics touched on here
in so far as they provide enriching examples (e.g., quasi-isometric invariants,
CAT(0) geometry, hyperbolic groups), and important methods not discussed
here at all (e.g., train-tracks in the study of individual automorphisms of
free groups, as well as, more broadly, the interplay between group theory and
the geometry of surfaces.) Some of these omitted topics are covered in recent
books such as [48], [134], [127], [5] and [24].

I am indebted to many people for encouragement and support during a
project which took far too long to complete. Outstanding among these are
Craig Guilbault, Peter Hilton, Tom Klein, John Meier and Michael Mihalik.
The late Karl Gruenberg suggested that there is a need for this kind of book,
and I kept in mind his guidelines. Many others helped as well – too many to
list; among those whose suggestions are incorporated in the text are: David
Benson, Robert Bieri, Matthew Brin, Ken Brown, Kai-Uwe Bux, Dan Far-
ley, Wolfgang Kappe, Peter Kropholler, Francisco Fernandez Lasheras, Gerald
Marchesi, Holgar Meinert, Boris Okun, Martin Roller, Ralph Strebel, Gadde
Swarup, Kevin Whyte, and David Wright.

I have included Source Notes after some of the sections. I would like to
make clear that these constitute merely a subjective choice, mostly papers
which originally dealt with some of the less well-known topics. Other papers
and books are listed in the Source Notes because I judge they would be useful
for further reading. I have made no attempt to give the kind of bibliography
which would be appropriate in an authoritative survey. Indeed, I have omitted
attribution for material that I consider to be well-known, or “folklore,” or (and
this applies to quite a few items in the book) ways of looking at things which
emerge naturally from my approach, but which others might consider to be
“folklore”.

Lurking in the background throughout this book is what might be called
the “shape-theoretic point of view.” This could be summarized as the transfer



Preface IX

of the ideas of Borsuk’s shape theory of compact metric spaces (later enriched
by the formalism of Grothendieck’s “pro-categories”) to the proper homotopy
theory of ends of open manifolds and locally compact polyhedra, and then, in
the case of universal covers of compact polyhedra, to group theory. I originally
set out this program, in a sense the outline of this book, in [68]. The forma-
tive ideas for this developed as a result of extensive conversations with, and
collaboration with, David A. Edwards in my mathematical youth. Though
those conversations did not involve group theory, in some sense this book is
an outgrowth of them, and I am happy to acknowledge his influence.

Springer editor Mark Spencer was ever supportive, especially when I made
the decision, at a late stage, to reorganize the book into more and shorter
chapters (eighteen instead of seven). Comments by the anonymous referees
were also helpful.

I had the benefit of the TeX expertise of Marge Pratt; besides her ever pa-
tient and thoughtful consideration, she typed the book superbly. I am also
grateful for technical assistance given me by my mathematical colleagues
Collin Bleak, Keith Jones and Erik K. Pedersen, and by Frank Ganz and
Felix Portnoy at Springer.

Finally, the encouragement to finish given me by my wife Suzanne and my
sons Niall and Michael was a spur which in the end I could not resist.

Binghamton University (SUNY Binghamton),

May 2007

Ross Geoghegan



X Preface

Notes to the Reader

1. Shorter courses: Within this book there are two natural shorter courses.
Both begin with the first four sections of Chap. 1 on the elementary topology
of CW complexes. Then one can proceed in either of two ways:

• The homotopical course: Chaps. 3, 4, 5 (omitting 5.4), 6, 7, 9, 10, 16 and
17.

• The homological course: Chaps. 2, 5, 8, 11, 12, 13, 14 and 15.

2. Notation: If the group G acts on the space X on the left, the set of orbits
is denoted by G\X ; similarly, a right action gives X/G. But if R is a commu-
tative ring and (M, N) is a pair of R-modules, I always write M/N for the
quotient module. And if A is a subspace of the space X , the quotient space is
denoted by X/A.

The term “ring” without further qualification means a commutative ring
with 1 �= 0.

I draw attention to the notation X −c A where A is a subcomplex of the
CW complex X . This is the “CW complement”, namely the largest subcom-
plex of X whose 0-skeleton consists of the vertices of X which are not in
A. If one wants to stay in the world of CW complexes one must use this as
“complement” since in general the ordinary complement is not a subcomplex.

The notations A := B and B =: A both mean that A (a new symbol) is
defined to be equal to B (something already known).

As usual, the non-word “iff” is short for “if and only if.”

3. Categories: I assume an elementary knowledge of categories and func-
tors. I sometimes refer to well-known categories by their objects (the word is
given a capital opening letter). Thus Groups refers to the category of groups
and homomorphisms. Similarly: Sets, Pointed Sets, Spaces, Pointed Spaces,
Homotopy (spaces and homotopy classes of maps), Pointed Homotopy, and
R-modules. When there might be ambiguity I name the objects and the mor-
phisms (e.g., the category of oriented CW complexes of locally finite type and
CW-proper homotopy classes of CW-proper maps).

4. Website: I plan to collect corrections, updates etc. at the Internet website

math.binghamton.edu/ross/tmgt

I also invite supplementary essays or comments which readers feel would
be helpful, especially to students. Such contributions, as well as corrections
and errata, should be sent to me at the web address

ross@math.binghamton.edu
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PART I: ALGEBRAIC TOPOLOGY FOR
GROUP THEORY

We have gathered into Part I some topics in algebraic and geometric topology
which are useful in understanding groups from a topological point of view:
CW complexes, cellular homology, fundamental group, basic homotopy theory,
and the most elementary ideas about manifolds and piecewise linear methods.
While starting almost from the beginning (though some prior acquaintance
with singular homology is desirable) we give a detailed treatment of cellular
homology. In effect we present this theory twice, a formal version derived from
singular theory and a geometrical version in terms of incidence numbers and
mapping degrees. It is this latter version which exhibits “what is really going
on”: experienced topologists know it (or intuit it) but it is rarely written down
in the detail given here.

This is followed by a discussion of the fundamental group and covering
spaces, done in a combinatorial way appropriate for working with CW com-
plexes. In particular, our approach makes the Seifert-Van Kampen Theorem
almost a tautology.

We discuss some elementary topics in homotopy theory which are useful
for group theory. Chief among these are: ways to alter a CW complex with-
out changing its homotopy type (e.g. by homotoping attaching maps, by cell
trading etc.), and an elementary proof of the Hurewicz Theorem based on
Hurewicz’s original proof.∗

We end by explaining the elementary geometric topology of simplicial com-
plexes and of topological and piecewise linear manifolds.

∗ Modern proofs usually involve more sophisticated methods.
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CW Complexes and Homotopy

CW complexes are topological spaces equipped with a partitioning into com-
pact pieces called “cells.” They are particularly suitable for group theory: a
presentation of a group can be interpreted as a recipe for building a two-
dimensional CW complex (Example 1.2.17), and we will see in later chapters
that CW complexes exhibit many group theoretic properties geometrically.

Beginners in algebraic topology are usually introduced first to simplicial
complexes. A simplicial complex is (or can be interpreted as) an especially nice
kind of CW complex. In the long run, however, it is often unnatural to be
confined to the world of simplicial complexes, in particular because they often
have an inconveniently large number of cells. For this reason, we concentrate
on CW complexes from the start. Simplicial complexes are treated in Chap.
5.

1.1 Review of general topology

We review, without proof, most of the general topology we will need. This
section can be used for reference or as a quick refresher course. Proofs of all
our statements can be found in [51] or [123], or, in the case of statements
about k-spaces, in [148].

A topology on a set X is a set, T , of subsets of X closed under finite
intersection and arbitrary union, and satisfying: ∅ ∈ T , X ∈ T . The pair
(X, T ) is a topological space (or just space). Usually we suppress T , saying
“X is a space” etc. The members of T are open sets. If every subset of X
is open, T is the discrete topology on X . The subset F ⊂ X is closed if the
complementary subset1 X − F is open. For A ⊂ X , the interior of A in X ,
intXA, is the union of all subsets of A which are open in X ; the closure of

1 Throughout this book we denote the complement of A in X by X − A. More
often, we will need X −c A, the CW complement of A in X (where X is a CW
complex and A is a subcomplex). This is defined in Sect. 1.5.
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A in X , clXA, is the intersection of all closed subsets of X which contain
A; the frontier of A in X , frXA, is (clXA)∩ (clX(X − A)). The frontier is
often called the “boundary” but we will save that word for other uses. The
subscript X in intX , clX , and frX is often suppressed. The subset A is dense
in X if clXA = X ; A is nowhere dense in X if intX(clXA) = ∅.

If S is a set of subsets of X and if T (S) is the topology on X consisting
of all unions of finite intersections of members of S, together with X and ∅,
S is called a subbasis for T (S).

A neighborhood of x ∈ X [resp. of A ⊂ X ] is a set N ⊂ X such that for
some open subset U of X , x ∈ U ⊂ N , [resp. A ⊂ U ⊂ N ].

For A ⊂ X , {U ∩ A | U ∈ T } is a topology on A, called the inherited
topology; A, endowed with this topology, is a subspace of X . A pair of spaces
(X, A) consists of a space X and a subspace A. Similarly, if B ⊂ A ⊂ X ,
(X, A, B) is a triple of spaces.

A function f : X → Y , where X and Y are spaces, is continuous if
whenever U is open in Y , f−1(U) is open in X . A continuous function is also
called a map. A map of pairs f : (X, A) → (Y, B) is a map f : X → Y
such that f(A) ⊂ B. If (X, A) is a pair of spaces, there is an inclusion map
i : A → X , a �→ a; another useful notation for the inclusion map is A ↪→ X .
In the special case where A = X , i is called the identity map, denoted idX :

X → X . The composition X
f−→Y

g−→Z of maps f and g is a map, denoted
g ◦ f : X → Z. If A ⊂ X , and f : X → Y is a map, f | A : A → Y is the

composition A ↪→ X
f−→ Y ; f | A is the restriction of f to A.

A function f : X → Y is closed [resp. open] if it maps closed [resp. open]
sets onto closed [resp. open] sets.

A homeomorphism f : X → Y is a map for which there exists an inverse,
namely a map f−1 : Y → X such that f−1 ◦ f = idX and f ◦ f−1 = idY .
A topological property is a property preserved by homeomorphisms. If there
exists a homeomorphism X → Y then X and Y are homeomorphic. Obviously
a homeomorphism is a continuous open bijection and any function with these
properties is a homeomorphism.

If f : X → Y is a map, and f(X) ⊂ V ⊂ Y , there is an induced map
X → V , x �→ f(x); this induced map is only formally different from f insofar
as its target is V rather than Y . More rigorously, the induced map is the
unique map making the following diagram commute

X

����
��
��
�� f

���
��

��
��

V
� � �� Y

This induced map X → V is sometimes called the corestriction of f to V .
The map f : X → Y is an embedding if the induced map X → f(X) is
a homeomorphism; in particular, if A is a subspace of X , A ↪→ X is an
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embedding. The embedding f : X → Y is a closed embedding if f(X) is
closed in Y ; f is an open embedding if f(X) is open in Y .

Let X1 and X2 be spaces. Their product X1 × X2 is the set of ordered
pairs (x1, x2) such that x1 ∈ X1 and x2 ∈ X2, endowed with the product
topology; namely, U ⊂ X1 × X2 is open if for each (x1, x2) ∈ U there are
open sets U1 in X1 and U2 in X2 such that (x1, x2) ∈ U1 × U2 ⊂ U . There

are projection maps X1
p1←−X1 ×X2

p2−→X2, (x1, x2)
pi�−→xi; the product topol-

ogy is the smallest topology making the functions p1 and p2 continuous. All

finite products,

n∏
i=1

Xi, are defined similarly, and if each Xi = X , we use the

alternative notation Xn; X1 and X are identical. There is a convenient way

of checking the continuity of functions into products: f : Z −→
n∏

i=1

Xi is con-

tinuous if pj ◦ f : Z → Xj is continuous for each j, where pj(x1, . . . , xn) = xj .

In addition to being continuous, each projection

n∏
i=1

Xi → Xj is surjective and

maps open sets to open sets. The product f1 × f2 : X1 × X2 → Y1 × Y2 of
maps is a map.

In the case of an arbitrary product ,
∏
α∈A

Xα, of spaces Xα, a subset U is

open if for each point (xα) there is a finite subset B ⊂ A, and for each α ∈ B
an open neighborhood Uα of xα in Xα such that (xα) ∈

∏
α∈A

Uα ⊂ U where

Uα = Xα whenever α �∈ B. This is the smallest topology with respect to which
all projections are continuous. As in the finite case, continuity of maps into
an arbitrary product can be checked by checking it coordinatewise, and the
product of maps is a map.

When we discuss k-spaces, below, it will be necessary to revisit the subject
of products.

One interesting space is R, the real numbers with the usual topology:
U ⊂ R is open if for each x ∈ U there is an “open” interval (a, b) such
that x ∈ (a, b) ⊂ U . “Open” intervals are open in the usual topology! Our
definition of Xn defines in particular Euclidean n-space Rn. Many of the spaces
of interest are, or are homeomorphic to, subspaces of Rn or are quotients of
topological sums of such spaces (these terms are defined below).

Some particularly useful subspaces of Rn are
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N = the non-negative integers;

Bn = {x ∈ Rn | |x| ≤ 1} = the n-ball where |x|2 =

n∑
i=1

x2
i ;

Sn−1 = frRnBn = the (n− 1)- sphere;

I = [0, 1] ⊂ R;

Rn
+ = {x ∈ Rn | xn ≥ 0};

Rn
− = {x ∈ Rn | xn ≤ 0}.

Addition and scalar multiplication in Rn are continuous. R0 and B0 are other
notations for {0}, and, although −1 /∈ N, it is convenient to define S−1 = ∅.
An n-ball [resp. an (n − 1)-sphere] is a space homeomorphic to Bn [resp.
Sn−1].

It is often useful not to distinguish between (x1, . . . , xn) ∈ Rn and
(x1, . . . , xn, 0) ∈ Rn+1, that is, to identify Rn with its image under that
closed embedding Rn → Rn+1. This is implied when we write Sn−1 ⊂ Sn,
Bn ⊂ Bn+1, etc.

Let X be a space, Y a set, and p : X → Y a surjection. The quotient
topology on Y with respect to p is defined by: U is open in Y iff p−1(U) is
open in X . Typically, Y will be the set of equivalence classes in X with respect
to some given equivalence relation, ∼, on X , and p(x) will be the equivalence
class of x; Y is the quotient space of X by ∼, and Y is sometimes denoted
by X/∼. More generally, given spaces X and Y , a surjection p : X → Y is a
quotient map if the topology on Y is the quotient topology with respect to p
(i.e., U ⊂ Y is open if p−1(U) is open in X). Obviously, quotient maps are
continuous, but they do not always map open sets to open sets. The subset
A ⊂ X is saturated with respect to p if A = p−1(p(A)); if A is saturated
and open, p(A) is open. There is a convenient way of checking the existence
and continuity of functions out of quotient spaces: in the following diagram,
where f : X → Z is a given map, and p : X → X/∼ is a quotient map, there
exists a function f ′ making the diagram commute iff f takes entire equivalence
classes in X to points of Z. Moreover, if the function f ′ exists it is unique and
continuous.

X

p ���
��

��
��

�
f �� Z

X/∼
f ′

����������

If A ⊂ X , and the equivalence classes under ∼ are A and the sets {x} for
x ∈ X −A then X/∼ is also written X/A.

If p : X → Y is a quotient map and B ⊂ Y , one sometimes wishes to claim
that p| : p−1(B)→ B is a quotient map. This is not always true, but it is true
if B is an open subset or a closed subset of Y .

A closely related notion is that of “weak topology”. Let X be a set, and
let {Aα | α ∈ A} be a family of subsets of X , such that each Aα has a
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topology. The family of spaces {Aα | α ∈ A} is suitable for defining a weak

topology on X if (i) X =
⋃
α

Aα, (ii) for all α, β ∈ A, Aα ∩ Aβ inherits the

same topology from Aα as from Aβ , and (iii) either (a) Aα∩Aβ is closed both
in Aα and in Aβ for all α, β ∈ A, or (b) Aα ∩ Aβ is open both in Aα and in
Aβ for all α, β ∈ A. The weak topology on X with respect to {Aα | α ∈ A} is
{U ⊂ X | U ∩Aα is open in Aα for all α ∈ A}. This topology has some useful
properties: (i) S ⊂ X is closed [resp. open] if S ∩Aα is closed [resp. open] in
Aα for all α; (ii) each Aα inherits its original topology from the weak topology
on X ; (iii) there is a convenient way of checking the continuity of functions
out of weak topologies: a function f : X → Z is continuous iff for each α,
f | Aα : Aα → Z is continuous; (iv) if (a) in the above definition of suitability
holds then each Aα is closed in X , while if (b) holds each Aα is open in X . By
custom, if one asserts that X has the weak topology with respect to {Aα}, it
is tacitly assumed (or must be checked) that {Aα} is suitable for defining a
weak topology on X .

Given a family of spaces {Xα | α ∈ A} (which might not be pairwise

disjoint), their topological sum is the space
∐
α∈A

Xα whose underlying set

is
⋃
{Xα × {α} | α ∈ A} and whose topology is generated by (i.e., is the

smallest topology containing) {U ×{α} | U is open in Xα}. There are closed-

and-open embeddings iβ : Xβ →
∐
α∈A

Xα, x �→ (x, β), for each β ∈ A. The

point is: iβ(Xβ) ∩ iα(Xα) = ∅ when β �= α. In practice, the inclusions iβ are
often suppressed, and one writes Xβ for Xβ ×{β} when confusion is unlikely.
In the case of finitely many spaces X1, . . . , Xn their topological sum is also

written as

n∐
i=1

Xi or X1  . . . Xn. The previously mentioned weak topology

on X with respect to {Aα | α ∈ A} is the same as the quotient topology

obtained from p :
∐
α∈A

Aα → X , (a, α) �→ a.

A family {Aα | α ∈ A} of subsets of a space X is locally finite if for each
x ∈ X there is a neighborhood N of x such that N ∩Aα = ∅ for all but finitely
many α ∈ A.

It is often the case that one has: spaces X and Y , a family {Aα | α ∈ A}
of subsets of X whose union is X , and a function f : X → Y such that
f | Aα : Aα → Y is continuous for each α, where Aα has the inherited
topology. One wishes to conclude that f is continuous. This is true if every
Aα is open in X . It is also true if every Aα is closed in X and {Aα} is a locally
finite family of subsets of X .

An open cover of the space X is a family of open subsets of X whose union
is X . A space X is compact if every open cover of X has a finite subcover. If
f : X → Y is a continuous surjection and if X is compact, then Y is compact.
Products and closed subsets of compact spaces are compact. In particular,
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closed and bounded subsets of Rn are compact, since, by the well-known
Heine-Borel Theorem, I is compact. The space X is locally compact if every
point of X has a compact neighborhood. The space R is locally compact but
not compact.

The space X is Hausdorff if whenever x �= y are points of X , x and y have
disjoint neighborhoods. A compact subset of a Hausdorff space is closed. In
particular, one-point subsets are closed. If X is compact and Y is Hausdorff,
any continuous bijection X → Y is a homeomorphism and any continuous sur-
jection X → Y is a quotient map. Products, topological sums, and subspaces
of Hausdorff spaces are Hausdorff. The space R is clearly Hausdorff, hence all
subsets of Rn are Hausdorff. In general, a quotient space of a Hausdorff space
need not be Hausdorff; example: X = R, x ∼ y if either x and y are rational
or x = y.

A Hausdorff space X is a k-space (or compactly generated space) if X has
the weak topology with respect to its compact subsets; for example, locally
compact Hausdorff spaces are k-spaces. (The Hausdorff condition ensures that
the compact subsets form a family suitable for defining a weak topology.)
One might wish that a category whose objects are k-spaces should be closed
under the operation of taking finite products, but this is not always the case.
However, there is a canonical method of “correcting” the situation: for any
Hausdorff space X one defines kX to be the set X equipped with the weak
topology with respect to the compact subspaces of X . Indeed, this k defines
a functor from Spaces to k-Spaces, with kf defined in the obvious way for
every map f . In the category of k-spaces one redefines “product” by declaring
the product of X and Y to be k(X × Y ). This new kind of product has all
the properties of “product” given above, provided one consistently replaces
any space occurring in the discussion by its image under k. The main class of
spaces appearing in this book is the class of CW complexes, whose definition
and general topology are discussed in detail in the next section; CW complexes
are k-spaces. It should be noted that throughout this book, when we discuss
the product of two CW complexes, the topology on their product is always to
be understood in this modified sense.

A path2 in the space X is a map ω : I → X ; its initial point is ω(0)
and its final point is ω(1). A path in X from x ∈ X to y ∈ X is a path
whose initial point is x and whose final point is y. Points x, y ∈ X are in the
same path component if there is a path in X from x to y. This generates an
equivalence relation on X ; an equivalence class, with the topology inherited
from X , is called a path component of X . The space X is path connected if X
has exactly one path component. The empty space, ∅, is considered to have no
path components, hence it is not path connected. The set of path components
of X is denoted by π0(X). If x ∈ X the notation π0(X, x) is used for the
pointed set whose base point is the path component of x.

2 Sometimes it is convenient to replace I by some other closed interval [a, b].
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A space X is connected if whenever X = U ∪ V with U and V disjoint
and open in X then either U = ∅ or V = ∅. A component of X is a maximal
connected subspace. Components are pairwise disjoint, and X is the union of
its components. The empty space is connected and has one component.

X is locally path connected if it satisfies any of three equivalent conditions:
(i) for every x ∈ X and every neighborhood U of x there is a path connected
neighborhood V of x such that V ⊂ U ; (ii) for every x ∈ X and every neigh-
borhood U of x there is a neighborhood V of x lying in a path component of
U ; (iii) each path component of each open subset of X is an open subset of X .
Each path component of a space X lies in a component of X . For non-empty
locally path connected spaces, the components and the path components co-
incide. In particular, this applies to non-empty open subsets of Rn or Bn or
Sn or Rn

+ or I.
A metric space is a pair (X, d) where X is a set and d : X ×X → R is a

function (called a metric) satisfying (i) d(x, y) ≥ 0 and d(x, y) = 0 iff x = y;
(ii) d(x, y) = d(y, x); and the triangle inequality (iii) d(x, z) ≤ d(x, y)+d(y, z).
For x ∈ X and r > 0 the open ball of radius r about x is

Br(x) = {y ∈ X | d(x, y) < r}.

The closed ball of radius r about x is

B̄r(x) = {y ∈ X | d(x, y) ≤ r}

The diameter of A ⊂ X is diam A = sup{d(a, a′) | a, a′ ∈ A}. The metric d
induces a topology Td on X : U ∈ Td iff for every x ∈ U there is some r > 0
such that Br(x) ⊂ U . Two metrics on X which induce the same topology
on X are topologically equivalent . A topological space (X, T ) is metrizable if
there exists a metric d on X which induces T . Metrizable spaces are Hausdorff.
Countable products of metrizable spaces are metrizable. The Euclidean metric
on Rn is given by d(x, y) = |x− y|.

A family {Uα} of neighborhoods of the point x in the space X is a basis for
the neighborhoods of x if every neighborhood of x has some Uα as a subset. The
space X is first countable if there is a countable basis for the neighborhoods
of each x ∈ X . Every metrizable space is first countable, so the absence of this
property is often a quick way to show non-metrizability. Every first countable
Hausdorff space, hence every metrizable space, is a k-space.

If X and Y are spaces, we denote by C(X, Y ) the set of all maps X → Y
endowed with the compact-open topology: for each compact subset K of X
and each open subset U of Y let 〈K, U〉 denote the set of all f ∈ C(X, Y )
such that f(K) ⊂ U ; the family of all such sets 〈K, U〉 is a subbasis for
this topology. An important feature is that the exponential correspondence
C(X × Y, Z) → C(X, C(Y, Z)), f �→ f̂ where f̂(x)(y) = f(x, y), is a well-
defined bijection when Y is locally compact and Hausdorff, and also when all
three spaces are k-spaces, with “product” understood in that sense. The map
f̂ is called the adjoint of the map f and vice versa. When X is compact and
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(Y, d) is a metric space the compact-open topology is induced by the metric
ρ(f, g) = sup{d(f(x), g(x)) | x ∈ X}.

1.2 CW complexes

We begin by describing how to build a new space Y from a given space A by
“gluing n-balls to A along their boundaries.”

Let A be an indexing set, let n ≥ 0, and let Bn(A) =
∐
α∈A

Bn
α where

each Bn
α = Bn, i.e., the topological sum of copies of Bn indexed by A. Let

Sn−1(A) =
∐
α∈A

Sn−1
α where Sn−1

α = Sn−1. Let f : Sn−1(A) → A be a map.

Let ∼ be the equivalence relation on A
∐

Bn(A) generated by: x ∼ f(x)
whenever x ∈ Sn−1(A). Then the quotient space Y := (A

∐
Bn(A))/∼ is the

space obtained by attaching Bn(A) to A using f . See Fig. 1.1.

Proposition 1.2.1. Let q : A
∐

Bn(A)→ Y be the quotient map taking each
point to its equivalence class. Then q | A : A→ Y is a closed embedding, and
q | Bn(A)− Sn−1(A) is an open embedding.

Proof. Equivalence classes in A
∐

Bn(A) have the form {a} ∪ f−1(a) with
a ∈ A, or the form {z} with z ∈ Bn(A) − Sn−1(A). Thus q | A and q |
Bn(A)−Sn−1(A) are injective maps. If C is a closed subset of A, q−1q(C) =
f−1(C) ∪ C which is closed in A

∐
Bn(A), hence q(C) is closed in Y . Thus

q | A is a closed embedding. If U is an open subset of Bn(A) − Sn−1(A),
q−1q(U) = U , hence q(U) is open in Y . Thus q | Bn(A)−Sn−1(A) is an open
embedding. �

There is some terminology and notation to go with this construction. In
view of 1.2.1, it is customary to identify a ∈ A with q(a) ∈ Y and hence to
regard A as a closed subset of Y . Let en

α = q(Bn
α). The sets en

α are called the

n-cells of the pair (Y, A). Let
◦
e n

α = en
α − A. By 1.2.1,

◦
e n

α is open in Y . Let3
•
e n

α = en
α ∩ A. The map qα := q | Bn

α : (Bn
α, Sn−1

α ) → (en
α,

•
e n

α) is called the
characteristic map for the cell en

α. The map fα := f | Sn−1
α : Sn−1

α → A is
called the attaching map for the cell en

α. The map f itself is the simultaneous
attaching map.

Before proceeding, consider some simple cases: (i) If Y is obtained from A
by attaching a single 0-cell then Y is A

∐{p} where p is a point and p �∈ A;
this is because B0 is a point and S−1 is empty. (ii) If Y is obtained from A
by attaching a 1-cell then the image of the attaching map f : S0 → A might
meet two path components of A, in which case they would become part of a

3 •
e n

α is sometimes called the “boundary” of en
α, and

◦
e n

α is the “interior” of en
α.

Distinguish this use of “interior” from how the word is used in general topology
(Sect. 1.1) and in discussing manifolds (Sect. 5.1).
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single path component of Y ; or this image might lie in one path component
of A, in which case it might consist of two points (an embedded 1-cell) or one
point (a 1-cell which is not homeomorphic to B1). (iii) When n ≥ 2 the image
of the attaching map f : Sn−1 → A lies in a single path component of A.

Proposition 1.2.2. If A is Hausdorff, Y is Hausdorff. Hence en
α = clY

◦
e n

α.

Proof. Let y1 �= y2 ∈ Y . We seek saturated disjoint open subsets U1, U2 ⊂
Bn(A)

∐
A whose images contain y1 and y2 respectively. There are three cases:

(i) q−1(yi) = {zi} where zi ∈ Bn(A)−Sn−1(A) for i = 1, 2; (ii) q−1(y1) = {z1}
where z1 ∈ Bn(A)−Sn−1(A) and q−1(y2) = {a2}∪f−1(a2) where a2 ∈ A; (iii)
q−1(yi) = {ai}∪f−1(ai) where ai ∈ A for i = 1, 2. In Case (i), pick U1 and U2

to be disjoint open subsets of Bn(A) − Sn−1(A) containing z1 and z2: these
clearly exist and are saturated. In Case (ii) let z1 ∈ Bn

α − Sn−1
α where α ∈ A.

There is clearly an open set U , containing z1, whose closure lies in Bn
α−Sn−1

α .
Then U and the complement of cl U are the required saturated sets. In Case
(iii), use the fact that A is Hausdorff to pick disjoint open subsets W1 and
W2 of A containing a1 and a2. Then f−1(W1) and f−1(W2) are disjoint open
subsets of Sn−1(A). There exist disjoint open subsets V1 and V2 of Bn(A) such
that Vi∩Sn−1(A) = f−1(Wi) (exercise!). The sets V1∪W1 and V2∪W2 are the
required saturated sets. So Y is Hausdorff. It follows that en

α, being compact, is

closed in Y . So clY
◦
e n

α ⊂ en
α. Since q−1(clY

◦
e n

α)∩Bn
α is closed in Bn

α and contains

Bn
α − Sn−1

α , Bn
α ⊂ q−1(clY

◦
e n

α). So en
α = q(Bn

α) ⊂ q(q−1(clY
◦
e n

α)) = clY
◦
e n

α. �

We have described the space Y in terms of (A,A, n, f : Sn−1(A) → A).
Note that there is a bijection between A and the set of path components of
Y − A. In practice, we might not be dealing with the pair (Y, A) but with a
pair “equivalent” to it: we now say what this means.

Let (Y, A) be a pair, and let {◦eα | α ∈ A} be the set of path components of
Y −A. Let n ∈ N. Y is obtained from A by attaching n-cells if there exists a
quotient map p : A

∐
Bn(A)→ Y such that p(Sn−1(A)) ⊂ A, p | A : A ↪→ Y ,

and p maps Bn(A) − Sn−1(A) homeomorphically onto Y − A. This implies

that A is closed in Y , and that each
◦
eα is open in Y . See Fig. 1.1.

Proposition 1.2.3. Let f = p | Sn−1(A) : Sn−1(A)→ A. Let X be the space
obtained by attaching Bn(A) to A using f . Let q : A

∐
Bn(A) → X be the

quotient map. There is a homeomorphism h : X → Y such that h ◦ q = p.

Proof. Consider the following commutative diagram:

A
∐

Bn(A)

q

������
���

���
���

�
p

��

q

����
���

���
���

�

X := (A
∐

Bn(A))/∼ h �� Y
k �� (A

∐
Bn(A))/∼
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e2
1

e2
2

f2

f1

 Aobtained from Y by attaching two 2−cells

1
1S

B 1
2

B 2

S 2
1

A

2

Fig. 1.1.

By definition of p and q, functions h and k exist as indicated. Since p and q
are quotient maps, h and k are continuous. By uniqueness of maps induced
on quotient spaces, k ◦ h = id. Similarly h ◦ k = id. �

Let Y be obtained from the Hausdorff space A by attaching n-cells. Then
Y − A is a topological sum4 of copies of Bn − Sn−1. By 1.2.2 and 1.2.3, Y
is Hausdorff. Let p : A

∐
Bn(A) → Y be as above. Denote p(Bn

α) by en
α; by

1.2.2 and 1.2.3, en
α is the closure in Y of a path component of Y − A. The

sets en
α are called n-cells of (Y, A). Write

◦
e n

α = en
α −A. As before,

◦
e n

α is open

in Y . Write
•
e n

α = en
α ∩ A. The map pα := p | Bn

α : (Bn
α, Sn−1

α ) → (en
α,

•
e n

α)
is a characteristic map for the cell en

α. The map fα := p | Sn−1
α : Sn−1

α → A
is an attaching map for en

α. p | Sn−1(A) : Sn−1(A) → A is a simultaneous
attaching map. We emphasize the indefinite article in the latter definitions.
They depend on p, not simply on (Y, A), as we now show.

Example 1.2.4. Let (Y, A) = (B2, S1). Here Y is obtained from A by attaching
2-cells, since we can take p : S1

∐
B2 → Y to be the identity on B2 and

the inclusion on S1. The corresponding attaching map f : S1 → S1 for e2

is the identity map. But we could instead take p′ : S1
∐

B2 → Y to be
r : (x1, x2) �→ (−x1, x2) on B2 and to be the inclusion on S1. Then the
attaching map f ′ : S1 → S1 would be r | S1, which is a homeomorphism
but not the identity. Nor is it true that attaching maps are unique up to
composition with homeomorphisms as in the case of f and f ′. For example,
define h : I× I → I by (x, 0) �→ 0, (x, 1

3 ) �→ 1
3 + x

6 , (x, 2
3 ) �→ 2

3 − x
6 , (x, 1) �→ 1,

and for each x, h linear on the segments {x}× [0, 1
3 ], {x}× [ 13 , 2

3 ], {x}× [ 23 , 1].

Define p′′ : S1
∐

B2 → Y to be r e2πit �→ r e2πih(r,t) on B2 and to be the

4 In fact an exercise in Sect. 2.2 shows that Bn − Sn−1 is not homeomorphic to
Bm −Sm−1 when m �= n, so there is no m �= n such that Y is also obtained from
A by attaching m-cells; however, we will not use this until after that section.
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inclusion on S1. Then the attaching map f ′′ : S1 → S1 is e2πit �→ e2πih(1,t)

(0 ≤ t ≤ 1); f ′′ is constant on {e2πit | 1
3 ≤ t ≤ 2

3}, hence f ′′ is not the
composition of f and a homeomorphism.

Proposition 1.2.5. Let A be Hausdorff and let Y be obtained from A by
attaching n-cells. Then the space Y has the weak topology with respect to
{en

α | α ∈ A} ∪ {A}.

Proof. First, we check that {en
α | α ∈ A}∪{A} is suitable for defining a weak

topology (see Sect. 1.1). By 1.2.1, A inherits its original topology from Y .

When α �= β, en
α ∩ en

β =
•
e n

α ∩
•
e n

β which is compact, hence closed in en
α and in

en
β (by 1.2.2 and 1.2.3). The subspace en

α ∩ A =
•
e n

α is compact, hence closed
in A and in en

α. Next, let C ⊂ Y be such that C ∩A is closed in A and C ∩ en
α

is closed in en
α for all α. We have p−1(C) =

⋃
α

p−1
α (C ∩ en

α) ∪ (C ∩ A). Each

term in this union is a closed subset of a summand of the topological sum

A
∐(∐

α

Bn
α

)
, and different terms correspond to different summands. Hence

their union is closed, hence p−1(C) is closed, hence C is closed in Y . �

Proposition 1.2.6. Let A be Hausdorff and let Y be obtained from A by
attaching n-cells. Any compact subset of Y lies in the union of A and finitely
many cells of (Y, A).

Proof. Suppose this were false. Then there would be a compact subset C of

Y such that C ∩ ◦
e n

α �= ∅ for infinitely many values of α. For each such α, pick

xα ∈
◦
e n

α ∩C. Let D be the set of these points xα. For each α, D∩ eα contains
at most one point, so D ∩ eα is closed in eα. And D ∩A = ∅. So, by 1.2.5, D
is closed in Y . For the same reason, every subset of D is closed in Y . So D
inherits the discrete topology from Y . Since D ⊂ C, D is an infinite discrete
compact space. Such a space cannot exist, for the one-point sets would form
an open cover having no finite subcover. �

Note that, in spite of 1.2.6, a compact set can meet infinitely many cells.
If we are given a pair of spaces (Y, A) how would we recognize that Y is

obtained from A by attaching n-cells? Here is a convenient way of recognizing
this situation:

Proposition 1.2.7. Let (Y, A) be a Hausdorff pair,5 let {◦eα | α ∈ A} be the

set of path components of Y −A, and let n ∈ N. Write eα = clY
◦
eα. The space

Y is obtained from A by attaching n-cells if

(i) for each α ∈ A, there exists a map pα : (Bn, Sn−1) → (A ∪ ◦
eα, A) such

that pα maps Bn − Sn−1 homeomorphically onto
◦
eα;

5 This is just a short way of saying that (Y, A) is a pair of spaces and Y (hence
also A) is Hausdorff.
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(ii) Y has the weak topology with respect to {eα | α ∈ A} ∪ {A}.

Proof. If Y is obtained from A by attaching n-cells then (i) is clear and (ii)
follows from 1.2.5. For the converse, we first show that if (i) holds, then the
family of sets {eα | α ∈ A} ∪ {A} is suitable for defining a weak topology on
Y . Since Y is Hausdorff, the compact set pα(Bn) is closed in Y , hence eα :=

clY
◦
eα ⊂ pα(Bn). If eα were a proper subset of pα(Bn), then p−1

α (eα) would
be a proper closed subset of Bn containing Bn − Sn−1, which is impossible.
Hence eα = pα(Bn). It follows that each eα is compact, hence that each eα∩eβ

is closed in eα and in eβ. The fact that eα = pα(Bn), when combined with
(i), also gives eα ∩ A = pα(Sn−1); this implies that eα ∩ A is compact, and
therefore closed, in the Hausdorff spaces eα and A. So {eα | a ∈ A} ∪ {A} is
indeed suitable.

Assume (i) and (ii). For each α, we have seen that eα = pα(Bn). By (i),
◦
eα = pα(Bn − Sn−1). Hence eα −

◦
eα = pα(Sn−1) which is closed in eα. Thus

◦
eα is open in eα, and therefore each

◦
eα is an open subset of Y . In particular,

an open subset of
◦
eα is open in Y −A.

Define p : A
∐

Bn(A)→ Y to agree with pα on Bn
α and with inclusion on

A. p is onto, and p(Sn−1(A)) ⊂ A. The restriction p |: Bn(A) − Sn−1(A) →
Y − A is clearly a continuous bijection; to see that it is a homeomorphism,
note that any pα maps an open subset of Bn − Sn−1 homeomorphically onto

an open subset of
◦
eα (by (i)) and hence onto an open subset of Y − A, since

◦
eα is open in Y −A.

It only remains to show that p is a quotient map. Let C ⊂ Y be such
that p−1(C) is closed in A

∐
Bn(A). Note that p−1(C) ∩A = C ∩A is closed

in A. For each α, p−1
α (C) ∩ Bn

α = Bn
α ∩ p−1(C ∩ eα) is closed in Bn

α, hence
is compact, hence p−1

α (C) is closed in Bn, hence p−1
α (C) is compact, hence

C ∩ eα := pαp−1
α (C) is compact, hence C ∩ eα is closed in eα. By (ii), C is

closed in Y , so p is a quotient map. �

In the special case where A is finite this theorem becomes simpler:

Proposition 1.2.8. Let (Y, A) be a Hausdorff pair such that {◦eα | α ∈ A},
the set of path components of Y −A, is finite. Let n ∈ N. Y is obtained from
A by attaching n-cells if A is closed in Y and, for each α ∈ A, there is a map

pα : (Bn, Sn−1)→ (A∪◦
eα, A) such that pα maps Bn−Sn−1 homeomorphically

onto
◦
eα.

Proof. “Only if” is clear. To prove “if”, note that (i) of 1.2.7 is given. Writing

eα = clY
◦
eα, it follows, as in 1.2.7, that {eα | α ∈ A} ∪ {A} is suitable for

defining a weak topology on Y . It only remains to check (ii) of 1.2.7. Let
C ⊂ Y be such that C ∩ eα is closed in eα for each α, and C ∩A is closed in
A. Since A and each eα are closed in Y , C ∩A and each C ∩ eα are closed in
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Y . The set C = (C ∩A)∪
(⋃

α

C ∩ eα

)
, which is a finite union of closed sets,

so C is closed in Y . Thus (i) and (ii) of 1.2.7 hold. �

In applying the “if” halves of 1.2.7 and 1.2.8 it is usually easy to check in
a given situation that pα maps Bn−Sn−1 bijectively (and continuously) onto
◦
eα. In general, a continuous bijection is not a homeomorphism. However, given

that our continuous bijection extends to a map pα : (Bn, Sn−1)→ (A∪◦
eα, A),

and that Y is Hausdorff, we have:

Proposition 1.2.9. Let (Y, A), {◦eα | α ∈ A} and n ∈ N be as in 1.2.7, and

let pα : (Bn, Sn−1) → (A ∪ ◦
eα, A) be a map such that pα maps Bn − Sn−1

bijectively onto
◦
eα. Then pα maps Bn − Sn−1 homeomorphically onto

◦
eα.

Proof. Since Bn is compact, pα : Bn → en
α is a quotient map. The restriction

pα |: Bn − Sn−1 → ◦
e n

α is a bijective quotient map, hence a homeomorphism.
�

Example 1.2.10. The one-point space {v} is obtained from ∅ by attaching a 0-
cell. The “figure eight”, with topology inherited from R2, is obtained from its
center point {v} by attaching two 1-cells. It is also obtained from the discrete
two-point space by attaching three 1-cells; see Fig. 1.2(a). The torus, with
topology inherited from R3, is obtained from the “figure eight” by attaching
a 2-cell; see Fig. 1.2(b). The space Y illustrated in Fig. 1.2(c), with topology
inherited from R2, is not obtained from the indicated subspace A by attaching
a 2-cell, even though Y −A is homeomorphic to B2 − S1, because (i) of 1.2.7
fails. The space illustrated in Fig. 1.2(d), with topology inherited from R, is
not obtained from ∅ by attaching 0-cells, because (ii) of 1.2.7 fails. The space
Y illustrated in Fig. 1.2(e), with topology inherited from R2, is not obtained
from A by attaching a 1-cell because (ii) of 1.2.7 fails – this demonstrates the
need, in 1.2.8, for A to be closed in Y .

Now we can define the spaces of interest to us.
A CW complex consists of a space X and a sequence {Xn | n ≥ 0} of

subspaces such that

(i) X0 is discrete;
(ii) For n ≥ 1, Xn is obtained from Xn−1 by attaching n-cells;

(iii) X =
⋃
n

Xn;

(iv) X has the weak topology6 with respect to {Xn}.

6 By (i)–(iii), {Xn} is suitable for defining a weak topology on X.
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It is customary to say “let X be a CW complex,” etc. but two different
CW complexes could have the same underlying space, as in Fig. 1.2(a) for
example. For induction arguments it is convenient to write X−1 = ∅.

The subspace Xn is called the n-skeleton of the CW complex X . If X = Xn

for some n, then the dimension of the CW complex is min{n | X = Xn}.
Otherwise the dimension is ∞. A 1-dimensional CW complex is also called a
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graph.7 The CW complex X is countable [resp. has finite type] if each Xn is
obtained from Xn−1 by attaching countably many [resp. finitely many] n-cells.
The CW complex is finite if it has finitely many cells.

Clearly, each Xn is closed in X , and, by 1.2.2, each Xn is Hausdorff. A
little more work shows:

Proposition 1.2.11. Every CW complex is Hausdorff.

Proof. Let X be a CW complex. Let x1 �= x2 ∈ X . For some n, x1 ∈ Xn and
x2 ∈ Xn. By 1.2.2 there are disjoint open sets Un and Vn of Xn such that
x1 ∈ Un and x2 ∈ Vn. Xn+1 is obtained from Xn by attaching (n + 1)-cells.
Let p : Xn

∐
Bn+1(A)→ Xn+1 be a quotient map such that p(Sn(A)) ⊂ Xn,

p | Xn = inclusion, and p maps Bn+1(A) − Sn(A) homeomorphically onto
Xn+1 − Xn. We find disjoint open subsets of Xn+1, Un+1 and Vn+1, such
that Un+1 ∩ Xn = Un and Vn+1 ∩ Xn = Vn as follows: just as in the proof
of 1.2.2, there exist disjoint open sets U ′

n+1 and V ′
n+1 of Bn+1(A) such that

U ′
n+1 ∩Sn(A) = p−1(Un)∩Sn(A) and V ′

n+1 ∩ Sn(A) = p−1(Vn)∩ Sn(A); the
required sets are Un+1 = p(U ′

n+1) ∪ Un and Vn+1 = p(V ′
n+1) ∪ Vn. Proceed

by induction to build disjoint open subsets of Xm, Um and Vm, such that
Um ∩ Xm−1 = Um−1 and Vm ∩ Xm−1 = Vm−1, for each m ≥ n + 1. Then

U =

∞⋃
m=n

Um and V =

∞⋃
m=n

Vm are disjoint open subsets of X , x1 ∈ U and

x2 ∈ V . �

The n-cells of X are the n-cells of (Xn, Xn−1) as previously defined. If

en is an n-cell of X ,
◦
e n = en − Xn−1 and

•
e n = en ∩ Xn−1. An n-cell has

characteristic maps and attaching maps as before. A 0-cell is often called a
vertex .

Proposition 1.2.12. A CW complex X has the weak topology with respect to
its cells.

Proof. This is proved for n-dimensional CW complexes by induction on n,
using 1.2.5. For an arbitrary CW complex X , U ⊂ X is open iff U ∩ Xn is
open in Xn for all n, iff U ∩ ei is open in ei for every i-cell ei of X such that
i ≤ n and for every n, iff U ∩ e is open in e for every cell e of X . �

Proposition 1.2.13. A compact subset of a CW complex lies in the union
of finitely many cells. In particular, a CW complex is finite iff its underlying
space is compact.

Proof. Suppose this were false. Then there would be a compact subset C of

X such that C ∩ ◦
eα �= ∅ for infinitely many values of α (where {eα | α ∈ A} is

the set of cells of X). For each such α, pick xα ∈
◦
eα ∩ C. Let D be the set of

7 In discussing graphs it is sometimes sensible to enlarge the definition to include
0-dimensional (i.e., discrete) CW complexes and we will occasionally do this.
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these points xα. By an induction argument similar to that given in the proof
of 1.2.6, D∩Xn is finite for each n. So every subset of D is closed in X . As in
the proof of 1.2.6, one concludes that D is an infinite discrete compact space,
a contradiction. �

Here is a way of recognizing that a given space admits the structure of a
CW complex.

Proposition 1.2.14. Let X be a Hausdorff space and let {◦eα | α ∈ A} be a
family of subspaces with the following properties:

(i) X =
⋃
α

{◦eα} and
◦
eα �=

◦
eβ ⇒

◦
eα ∩

◦
eβ = ∅;

(ii) for each α, there is8 n(α) ∈ N such that
◦
eα is homeomorphic to the space

Bn(α) − Sn(α)−1;

(iii) letting Xk = ∪{◦eβ | n(β) ≤ k}, there exists for each α (writing n = n(α))

a map pα : (Bn, Sn−1)→ (Xn−1∪◦
eα, Xn−1) such that pα maps Bn−Sn−1

homeomorphically onto
◦
eα;

(iv) (writing eα = clX
◦
eα, and calling eα an n-cell of X when n = n(α)) each

cell of X lies in the union of finitely many members of {◦eα};
(v) X has the weak topology with respect to the set {eα} of all cells.

Then (X, {Xk}) is a CW complex. Conversely, with cell notation as before,
any CW complex9 (X, {Xk}) possesses Properties (i)–(v).

Proof. Let A ⊂ X0 and let eα be a cell of X . Then A ∩ eα is finite by (iv),
hence compact, hence closed in eα. So A is closed in X , hence also in X0. So
X0 is discrete.

Next, we show that Xn has the weak topology with respect to {eα |
dim eα ≤ n} where dim eα = n(α). Let C ⊂ Xn be such that C ∩ eα is
closed in eα whenever dim eα ≤ n. Let dim eβ > n. By (iv), there are only

finitely many cells eα1 , . . . , eαs
such that eβ ∩

◦
eαi
�= ∅. Assume dim eαi

≤ n if
i ≤ r and dim eαi

> n if i > r. For i ≤ r, eαi
⊂ Xn. We have

C ∩ eβ = C ∩ eβ ∩Xn ⊂
r⋃

i=1

(C ∩ eβ ∩ eαi
)

because

eβ ∩Xn ⊂
s⋃

i=1

eβ ∩
◦
eαi
∩Xn ⊂

r⋃
i=1

eβ ∩ eαi
.

8 We will see in Sect. 2.2 Exercise 3 that this n(α) is unique.
9 The C in CW stands for “closure finite” which is a name for (iv); the W stands

for “weak topology”. Note that, by (i)–(iv), {eα} is suitable for defining a weak
topology on X. As in the proof of 1.2.7, eα = pα(Bn) and is therefore compact.
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And
r⋃

i=1

(C ∩eβ ∩eαi
) ⊂ C ∩eβ . It follows, since each C ∩eαi

is compact, that

C ∩ eβ is compact, hence closed in eβ . By (v), C is closed in X , hence in Xn.
By induction, it follows that Xn has the weak topology with respect to

{eα | dim eα = n}∪{Xn−1}. This and (iii) together imply that Xn is obtained
from Xn−1 by attaching n-cells (by 1.2.7).

Obviously X =
⋃
n

Xn and X has the weak topology with respect to

{Xn}, the latter following from (v) and what has just been established. Thus
(X, {Xk}) is a CW complex.

The converse is clear from the previous propositions. �

In the finite case we get a simpler criterion:

Proposition 1.2.15. Let X be a Hausdorff space and let {◦eα | α ∈ A} be
a finite family of subspaces which satisfy (i), (ii), and (iii) of 1.2.14. Then
(X, {Xn}) is a finite CW complex. In particular, X is compact. �

Example 1.2.16. Let x ∈ Sn−1. Let
◦
e1 = {x} and

◦
e2 = Sn−1−{x}. This gives

Sn−1 the structure of a CW complex with one 0-cell e1 and one (n − 1)-cell

e2. Now consider Bn ⊃ Sn−1. Let
◦
e3 = Bn−Sn−1. This makes Bn into a CW

complex with the 0-cell e1, the (n− 1)-cell e2 and an n-cell e3. Note that all
this makes sense when n = 1.

Our next example is very important. While the notion of “fundamental
group” only appears in Chap. 3, this example shows how to create, for any
group G, a CW complex whose fundamental group is isomorphic to G:

Example 1.2.17. Let W = {xα | α ∈ A} freely generate the free group F (W ),
abbreviated to F , let R = {yβ | β ∈ B} be a (possibly empty) set, and let
ρ : R→ F be a function. Then 〈W | R, ρ〉 is a presentation, and if the group G
is isomorphic to the group F/N(ρ(R)), where N(ρ(R)) is the normal closure of
ρ(R) in F , it is called a presentation of G. Often, R will be a subset of F and
ρ will be the inclusion, in which case we simplify, denoting the presentation
of the group F/N(R) by 〈W | R〉. If R = ∅, so that the group is the free
group generated by W , the presentation is often written as 〈W |〉 rather than
〈W | ∅〉.

Associated with 〈W | R, ρ〉 is a CW complex X called a presentation
complex , having one 0-cell e0, a 1-cell e1

α for each α ∈ A, and a 2-cell e2
β for

each β ∈ B, as we now describe.10 There is only one possibility for attaching

the 1-cells to form X1. Choose a characteristic map hα : (B1, S0)→ (e1
α,

•
e 1

α)
for each α. We define an attaching map fβ : S1 → X1 for the 2-cell e2

β

10 G is finitely generated [resp. finitely presented ] if W [resp. W and R] can be chosen
to be finite. If W and R are finite 〈W | R,ρ〉 is a finite presentation of G. For
more on presentations and presentation complexes see the Appendix to Sect. 3.1.
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as follows. The element ρ(yβ) is uniquely expressible as a reduced word in
the letters {xα, x−1

α | α ∈ A} consisting of, say, λ letters. If λ = 0, let fβ

map all of S1 to the 0-cell e0. If λ > 0, ρ(yβ) = xε1
α1

. . . xελ
αλ

where11 each

εj = ±1 [x1
α := xα]. Partition S1 by the λ roots of unity {1, ω, . . . , ωλ−1} where

ω = e2πi/λ. This defines a CW complex decomposition of S1 having λ 0-cells

{ωj | 1 ≤ j ≤ λ}, and λ 1-cells {e1
j} such that

◦
e 1

j = {e2πit/λ | j − 1 < t < j};
see 1.2.15. As a characteristic map cj : [−1, 1]→ e1

j choose a homeomorphism

which maps 1 to e2πij/λ. Let rj : [−1, 1] → [−1, 1] be the identity if εj = 1
and be t �→ −t if εj = −1. The required attaching map fβ is the unique map
S1 → X1 such that12 for each 1 ≤ j ≤ λ, fβ ◦ cj = hαj

◦ rj .

λ∐
j=1

B1
j

(cj)−−−−→ S1

⏐⏐
 λ∐
j=1

rj

⏐⏐
iβ

λ∐
j=1

B1
j

(hαj
)

−−−−→ X1

Up to cell-preserving homeomorphism, X does not depend on the choices of
characteristic maps hα, but it does depend on the presentation rather than
on the group F/N(ρ(R)).

Here are some simple cases of this construction. The one-point space cor-
responds to the trivial presentation of the trivial group (W = R = ∅). The
“figure eight” CW complex with one 0-cell and two 1-cells corresponds to the
presentation 〈x1, x2 | ∅〉 of the free group of rank 2. The torus CW complex
in 1.2.10 corresponds to the presentation 〈x1, x2 | x1x2x

−1
1 x−1

2 〉 of Z× Z.

The distinction made at the beginning of 1.2.17 between presentations
of the form 〈W | R, ρ〉 and presentations of the form 〈W | R〉 deserves a
comment. The point is that we might wish to allow yβ1 = yβ2 when β1 �= β2.
For example, let W = ∅ and B = {1, 2}. Then F (W ) is the trivial group {e}.
Letting R = {y1, y2}, there is only one function ρ : R → {e}. 〈W | R, ρ〉 is a
presentation of the trivial group. The corresponding CW complex, X , in the
spirit of 1.2.17, has one 0-cell, no 1-cells, and two 2-cells (a “bouquet of two
2-spheres”). On the other hand, there is no presentation of the trivial group
having the form 〈W | R〉 which yields that particular CW complex X .

11 x1
α means xα.

12 Intuitively, this says: attach B2
β to X1 by wrapping the jth of the λ intervals of

S1 around the αth
j 1-cell, in the “preferred” direction (as defined by choice of

characteristic maps) if εj = 1, and in the other direction if εj = −1. We have
written this out formally to illustrate how the terminology and the properties of
the quotient topology are used.
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We turn to some standard methods for manufacturing new CW complexes
from old ones.

Proposition 1.2.18. If {Xα | α ∈ A} is a set of CW complexes then X :=∐
α

Xα is a CW complex with Xn =
∐
α

Xn
α . �

It is sometimes convenient to have cubes rather than balls as the domains
of characteristic maps. This is because the product of two cubes is a cube.
An example of this is Proposition 1.2.19, below, so we pause to discuss cubes.

Let In =
n∏

i=1

Xi where each Xi = [−1, 1]. Then In ⊂ Rn. Let
•
I n = frRnIn. In

is the n-cube. Note that I1 �= I. The map In an−→ Bn, defined by: 0 �→ 0 and,
for x �= 0, x �−→ (t(x)/|x|)x, where t(x) = max{|x1|, . . . , |xn|}, is a continuous
bijection. Since In is compact and Bn is Hausdorff, an is a homeomorphism.

an takes
•
I n to Sn−1. WHEN WE USE (In,

•
I n) AS THE DOMAIN OF A

CHARACTERISTIC MAP, WE ALWAYS MEAN TO IDENTIFY (In,
•
I n)

WITH (Bn, Sn−1) VIA an. All this makes sense for n = 0 if we define I0 = {0}.

Proposition 1.2.19. Let X and Y be CW complexes. Then X ×Y (with the
product topology understood to be in the sense of k-spaces) is a CW complex
with (X × Y )n = ∪{X i × Y j | i + j = n}. �

The special case of 1.2.19 where Y = I (with two 0-cells, 0 and 1, and one
1-cell) is very useful in constructing homotopies: see Sect. 1.3.

Proposition 1.2.20. Let (X, {Xn}) be a CW complex, let {eα | α ∈ A} be

the set of cells of X, let B ⊂ A, let A = ∪{◦eα | α ∈ B}, and let An = A∩Xn.

If B is such that
•
eα ⊂ A whenever α ∈ B, then (A, {An}) is a CW complex

and A is closed in X.

A CW complex A formed from a CW complex X by the selection of B ⊂ A
as in 1.2.20 is called a subcomplex of X . A CW pair is a pair (X, A) such that
X is a CW complex and A is a subcomplex of X . It is usually convenient not
to distinguish between the CW pair (X, ∅) and the CW complex X .

Proof. We verify the axioms (i)–(iv) in the definition of a CW complex. Ax-
ioms (i) and (iii) clearly hold. To verify Axiom (ii), we show by induction
that An is obtained from An−1 by attaching n-cells and that An is closed
in Xn. This is clear when n = 0; assume it for (n − 1). Then An−1 is
closed in Xn−1. Let An = {α ∈ A | eα is an n-cell of X}. Apply 1.2.7 to

(Xn, Xn−1) and {◦e n
α | α ∈ An} to conclude that for each α ∈ An there ex-

ists pα : (Bn, Sn−1) → (Xn−1 ∪ ◦
e n

α, Xn−1) such that pα maps Bn − Sn−1

homeomorphically onto
◦
eα, and that Xn has the weak topology with respect

to {eα | α ∈ An} ∪ {Xn−1}. Let Bn = An ∩ B. Consider (An, An−1) and



22 1 CW Complexes and Homotopy

{◦e n
α | α ∈ Bn}. Since An−1 is closed in Xn−1, and

•
e α ⊂ A ∩Xn−1 = An−1

when α ∈ Bn, (i) and (ii) of 1.2.7 hold. Hence An is obtained from An−1 by
attaching n-cells. The subspace Xn has the weak topology with respect to
{en

α | α ∈ An} ∪ {Xn−1}. To show that An is closed in Xn, we thus observe:
An∩Xn−1 = A∩Xn−1 = An−1 is closed in Xn−1; when α ∈ Bn, An∩en

α = en
α;

when α ∈ An − Bn, An ∩ en
α = An ∩ •

e n
α = An−1 ∩ •

e n
α which is a compact

subset, hence a closed subset, of en
α. This completes the induction, and estab-

lishes Axiom (ii). The fact that An is closed in Xn obviously implies Axiom
(iv). �

Note that the union of subcomplexes of X is a subcomplex of X . Note also
that each Xn is a subcomplex of X .

Proposition 1.2.21. Each path component of a CW complex X is a subcom-
plex, an open subset of X, and a closed subset of X. Hence, a non-empty CW
complex is connected iff it is path connected.

Proof. The first part is clear. For the rest, let A be a path component of the
CW complex X . Cells are path connected, being the images of balls under
maps. Hence, for each cell e of X , either e ∩A = e or e ∩A = ∅. This proves
A is both open and closed in X . �

Let X be a CW complex, let {Aα} be a family of pairwise disjoint sub-
complexes, and let ∼ be the equivalence relation on X generated by: x ∼ y
whenever there exists α such that x ∈ Aα and y ∈ Aα. Let X/∼ be given the
quotient topology, with quotient map p : X → X/∼. Define (X/∼)n = p(Xn).
It is in fact always the case that (X/∼, {(X/∼)n}) is a CW complex; the non-
obvious part of the proof is the fact that X/∼ is Hausdorff, which is in turn a
consequence of the fact that X is a normal space. However, we will only need:

Proposition 1.2.22. If there exist pairwise disjoint open sets Uα ⊂ X such
that, for each α, Aα ⊂ Uα, then (X/∼, {(X/∼)n}) is a CW complex. In
particular, if A is a subcomplex of X, then (X/A, {(X/A)n}) is a CW complex.

Proof. Apply 1.2.14. The Hausdorff property is clear under these hypotheses.
�

With this CW structure, X/∼ is the quotient complex .
To end this section, we discuss continuity of functions X → Z where X is a

CW complex and Z is a space. The recognition problem is easy: by 1.2.12 such
a function is continuous iff its restriction to each cell is continuous. On the
other hand, the building of continuous functions is usually done by induction
on skeleta:

Proposition 1.2.23. Let (X, A) be a CW pair and let the n-cells of X which
are not cells of A be indexed by A. Let {hα : Bn

α → en
α | α ∈ A} be a set of

characteristic maps for those cells. Let Z be a space and let fn−1 : (Xn−1 ∪
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A)→ Z and g : Bn(A) → Z be maps such that fn−1 ◦ hα | Sn−1
α = g | Sn−1

α .
Then there is a unique map fn : (Xn∪A)→ Z such that fn | Xn−1∪A = fn−1

and fn ◦ hα = g | Bn
α.

Proof. By 1.2.7, Xn ∪A is obtained from Xn−1 ∪A by attaching n-cells. The
result follows from the properties of the quotient topology stated in Sect. 1.1.
�

Remark 1.2.24. A Hausdorff space Z is paracompact if every open cover U of
Z has a locally finite open refinement V ; this means: V is a locally finite open
cover of Z and every element of V is a subset of some element of U . It is a fact
that every CW complex is paracompact; for a proof see [105]. This arises, for
example, in the proof that a fiber bundle whose base space is a CW complex
has the homotopy lifting property.

Historical Note: CW complexes were introduced by J.H.C. Whitehead in [154].

In his exposition primacy was given to the “open cells”
◦
eα rather than the “closed

cells” eα, presumably because each
◦
eα is homeomorphic to an open ball while eα

need not be homeomorphic to a closed ball. The shift of primacy to “closed cells”
has become standard.

Exercises

1. If X0 = ∅ then X = ∅; why?
2. Show that a compact subset of a CW complex lies in a finite subcomplex.
3. In Example 1.2.10(a) and (b) it is asserted that some familiar spaces have partic-

ular CW complex structures. Prove that these spaces (endowed with the topol-
ogy inherited from the Euclidean spaces in which they live) are homeomorphic
to the indicated CW complexes.

1.3 Homotopy

Let X and Y be spaces and let f0, f1 : X → Y be maps. One says that f0

is homotopic to f1, denoted f0 � f1, if there exists a map F : X × I → Y
such that for all x ∈ X , F (x, 0) = f0(x) and F (x, 1) = f1(x). The map F is
called a homotopy from f0 to f1. One often writes Ft : X → Y for the map
x �→ F (x, t); then F0 = f0 and F1 = f1. If F is a homotopy from f0 to f1, one
writes F : f0 � f1.

Proposition 1.3.1. Homotopy is an equivalence relation on the set of maps
from X to Y .

Proof. Given f : X → Y , define F : f � f by F (x, t) = f(x) for all t ∈ I;
F = f ◦ (projection: X × I → X), the composition of two maps. So F
is a map. Thus reflexivity. Given F : f � g, define F ′ : g � f by F ′(x, t) =
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F (x, 1−t). The function q : I → I, t �→ 1−t, is a map. F ′ = F ◦(id×q), so F ′ is
a map. Thus symmetry. Given F : f � g and G : g � h, define H : X×I → Y
by H(x, t) = F (x, 2t) when 0 ≤ t ≤ 1

2 and by H(x, t) = G(x, 2t − 1) when
1
2 ≤ t ≤ 1. Let q1 : [0, 1

2 ] → I be the map t �→ 2t. Let q2 : [12 , 1] → I be
the map t �→ 2t− 1. On X × [0, 1

2 ], H agrees with the map F ◦ (id × q1); on
X× [ 12 , 1], H agrees with the map G◦ (id× q2). Since X× [0, 1

2 ] and X× [ 12 , 1]
are closed in X × I, and the restriction of H to each is a map, H is a map.
Thus transitivity. �

A map f : X → Y is a homotopy equivalence if there exists a map g :
Y → X such that g ◦ f � id : X → X and f ◦ g � id : Y → Y . Such
a map g is called a homotopy inverse of f . The spaces X and Y have the
same homotopy type if there exists a homotopy equivalence from X to Y .
If g is a homotopy inverse of the homotopy equivalence f , then g is also
a homotopy equivalence. A map homotopic to a homotopy equivalence is a
homotopy equivalence. Any two homotopy inverses of f are homotopic, and
any map homotopic to a homotopy inverse of f is a homotopy inverse of f .
The map idX is a homotopy equivalence. A homeomorphism is a homotopy
equivalence.

Definitions parallel to those of the last paragraph hold for maps of pairs.
A map f : (X, A) → (Y, B) is a homotopy equivalence if there exists a map
g : (Y, B) → (X, A) such that g ◦ f � id : (X, A) → (X, A) and f ◦ g � id :
(Y, B) → (Y, B). Such a map g is called a homotopy inverse of f . The pairs
(X, A) and (Y, B) have the same homotopy type if there exists a homotopy
equivalence from (X, A) to (Y, B), etc.

Let (X, A) and (Y, B) be pairs of spaces, let f0, f1 : (X, A) → (Y, B) be
maps of pairs, and let X ′ ⊂ X . One says that f0 is homotopic to f1 relative to
X ′, denoted f0 � f1 rel X ′, if there exists a map F : (X × I, A× I)→ (Y, B)
such that for all x ∈ X , F (x, 0) = f0(x) and F (x, 1) = f1(x), and for all
x′ ∈ X ′ and t ∈ I, F (x′, t) = f0(x

′). Then F is a homotopy relative to X ′

from f0 to f1. By a proof similar to that of 1.3.1 we have:

Proposition 1.3.2. Homotopy relative to X ′ is an equivalence relation on
the set of maps from (X, A) to (Y, B). �

It is customary not to distinguish between the space X and the pair (X, ∅),
so that homotopy between maps of spaces is considered to be a special case
of homotopy between maps of pairs.

Proposition 1.3.3. Let f0, f1 : (X, A) → (Y, B) be homotopic rel X ′, let
g0, g1 : (Y, B)→ (Z, C) be homotopic rel Y ′, where f0(X

′) ⊂ Y ′. Then g0 ◦ f0

and g1 ◦ f1 are homotopic rel X ′.

Proof. Let F : f0 � f1 and G : g0 � g1 be homotopies which behave as
required on A, B, C and X ′. Let p : X × I → I be projection. Let (F, p) :
X × I → Y × I denote the function (x, t) �→ (F (x, t), p(x, t)) = (F (x, t), t).
(F, p) is a map. The required homotopy is G ◦ (F, p) : X × I → Z. �



1.3 Homotopy 25

The space X is contractible if it has the same homotopy type as the one-
point space. Equivalently, X is contractible if idX is homotopic to some con-
stant map from X to X .

Proofs of 1.3.4–1.3.7 below are left as exercises:

Proposition 1.3.4. Any two maps from a space to a contractible space are
homotopic. �

Proposition 1.3.5. Any two maps from a contractible space to a path con-
nected space are homotopic. �

Proposition 1.3.6. The product of two contractible spaces is contractible. �

Example 1.3.7. The spaces R, R+, and I are contractible. Hence also (by 1.3.6)
Rn, Rn

+ and Bn are contractible. If p ∈ Sn, then Sn − {p} is homeomorphic
to Rn; hence Sn − {p} is contractible.

The subspace A ⊂ X is a retract of X if there is a map r : X → A such

that A
i

↪→X
r−→A is the identity. Such a map r is a retraction of X to A.

The subspace A ⊂ X is a strong deformation retract of X if there is a
retraction r : X → A and a homotopy F : X × I → X relative to A such
that F0 = idX and F1 = i ◦ r. Such a homotopy F is a strong deformation
retraction of X to A. A pair (A, A′) is a strong deformation retract of the
pair (X, X ′) if (A, A′) ⊂ (X, X ′) and the retraction r and the homotopy F in
the previous sentence are maps of pairs.13

Proposition 1.3.8. If A is a strong deformation retract of X then A ↪→ X
is a homotopy equivalence.

Proof. In the notation above, r is a homotopy inverse for inclusion. �

For building homotopies involving CW complexes the following example
is fundamental.

Lemma 1.3.9. The subspace (Bn×{0})∪ (Sn−1× I) is a strong deformation
retract of Bn × I.

Proof. One standard proof involves “radial projection” of Bn × I onto the
subspace(Bn×{0})∪ (Sn−1× I) from the “light source” (0, . . . , 0, 2) ∈ Rn+1.
We give a variation which avoids complicated formulas.

Let f : Bn → I be the map f(x) = 0 if |x| ≤ 1
2 and f(x) = 2|x| − 1 if

1
2 ≤ |x| ≤ 1. Let Y = {(x, t) ∈ Bn × R | f(x) ≤ t ≤ 1}. Let Y0 = {(x, t) ∈ Y |
13 If F is not required to be rel A while r remains a retraction, one says that A is

a deformation retract of X. If this is further weakened by only requiring r ◦ i to
be homotopic to idA then A is a weak deformation retract of X. Note that A is a
weak deformation retract of X iff i : A ↪→ X is a homotopy equivalence. When A
is a subcomplex of the CW complex X the three notions of deformation retract
coincide; see Exercises 2 and 3 below.
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t = f(x)}. There is a strong deformation retraction F : Y × I → Y of Y to
Y0, namely F (x, t, s) = (x, (1 − s)t + sf(x)). And there is a homeomorphism
h : (Bn×I, (Bn×{0})∪(Sn−1×I))→ (Y, Y0), namely h(x, t) = ( 1

2 (t+1)x, t).
�

We are preparing for the important Theorem 1.3.15. The building blocks
of the proof are Lemma 1.3.9 and the following (compare 1.2.23):

Proposition 1.3.10. Let (X, A) be a CW pair and let the n-cells of X
which are not in A be indexed by A. Let {hα : Bn

α → X | α ∈ A}
be a set of characteristic maps for those n-cells. Let Z be a space and let
Fn−1 : (Xn−1 ∪ A) × I → Z and g : Bn(A) × I → Z be maps such that
Fn−1 ◦ (hα × id) | Sn−1

α × I = g | Sn−1
α × I. Then there is a unique map

Fn : (Xn ∪ A) × I → Z such that Fn | (Xn−1 ∪ A) × I = Fn−1 and
Fn ◦ (hα × id) = g | Bn

α × I.

The proof of 1.3.10 requires a non-obvious lemma from general topology;
see [51, p. 262]:

Lemma 1.3.11. Let Z and W be Hausdorff spaces. If q : Z →W is a quotient
map then q × id : Z × I →W × I is a quotient map. �

Proof (Proof of 1.3.10). By 1.2.7, Xn ∪ A is obtained from Xn−1 ∪ A by
attaching n-cells. Thus there is a quotient map p : (Xn−1 ∪ A)

∐
Bn(A) →

Xn∪A which agrees with inclusion on Xn−1∪A and with hα on Bn
α ⊂ Bn(A).

By 1.3.11, p × id : ((Xn−1 ∪ A) × I)
∐

(Bn(A) × I) → (Xn ∪A)× I is a
quotient map agreeing with inclusion on the first summand and with hα × id
on the Bn

α×I part of the second summand, for each α ∈ A. The desired result
therefore follows from the properties of the quotient topology stated in Sect.
1.1. �

Proposition 1.3.12. If Y is obtained from A by attaching n-cells, then (Y ×
{0}) ∪ (A × I) is a strong deformation retract of Y × I. Hence any map
(Y × {0}) ∪ (A× I)→ Z extends to a map Y × I → Z.

Proof. By 1.3.9, there is a strong deformation retraction F : Bn × I × I →
Bn×I of Bn×I to (Bn×{0})∪(Sn−1×I). Let A index the n-cells. Consider
the diagram

(A
∐

Bn(A))× I × I

p×id×id

��

f

����
���

���
���

�

Y × I × I
f̃

������� Y × I

Here, p : A
∐

Bn(A) → Y is a quotient map, and f agrees with

A× I × I
projection �� A× I

inclusion ��Y × I on A × I × I and with

Bn
α × I × I

F ��Bn
α × I

(p|)×id ��Y × I on Bn
α × I × I for each α ∈ A.
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By 1.3.11, p × id× id is a quotient map. By the properties of quotient maps
stated in Sect. 1.1, the map f̃ exists and is the desired strong deformation
retraction. For the last part, any map g : (Y ×{0})∪ (A× I)→ Z is extended
by g ◦ f̃1 to a well-defined map Y × I → Z. �

The last sentence of 1.3.12 illustrates the following basic property. A pair
of spaces (Y, A) has the homotopy extension property with respect to a space
Z if every map (Y ×{0})∪ (A× I)→ Z extends to a map Y × I → Z. In the
presence of this property, a map on A can be extended to X if it is homotopic
to a map which can be extended to X .

By 1.2.7 we have:

Proposition 1.3.13. If A is a subcomplex of X, then Xn∪A is a subcomplex
of X. Moreover Xn ∪A is obtained from Xn−1 ∪A by attaching n-cells. �

Proposition 1.3.14. Let Z =
⋃
n≥1

Zn be a CW complex, where each Zn is a

subcomplex of Z. For all n > 1, assume Zn−1 is a strong deformation retract
of Zn (in particular Zn−1 ⊂ Zn). Then Z1 is a strong deformation retract of
Z.

Proof. Let n ≥ 2. Let F (n) : Zn × [ 1
n , 1

n−1 ]→ Zn satisfy F
(n)
t (x) = x if t = 1

n

or if x ∈ Zn−1, and F
(n)
1

n−1

(Zn) = Zn−1. Let F̂
(n)
1

n−1

: Zn → Zn−1 be the map

induced by F
(n)
1

n−1

. Define G(n) : Zn×I → Zn to agree with projection (x, t) �→
x on Zn × [0, 1

n ], with F (n) on Zn × [ 1
n , 1

n−1 ], with F (n−1) ◦
(
F̂

(n)
1

n−1

× id
)

on

Zn×[ 1
n−1 , 1

n−2 ], with F (n−2)◦
(
F̂

(n−1)
1

n−2

×id
)
◦
(
F̂

(n)
1

n−1

×id
)

on Zn×[ 1
n−2 , 1

n−3 ], . . .,

and with F (2)◦
(
F̂

(3)
1
2

×id
)
◦. . .◦

(
F̂

(n)
1

n−1

×id
)

on Zn×[ 12 , 1]. Then G(n) is a strong

deformation retraction of Zn to Z1, and G(n) agrees with G(n−1) on Zn−1× I.
Define G : Z × I → Z to agree with G(n) on Zn × I for all n ≥ 2. By 1.2.12,
G is continuous. Clearly, G is the required strong deformation retraction of Z
to Z1. �

Now we are ready for the Homotopy Extension Theorem for CW com-
plexes:

Theorem 1.3.15. (Homotopy Extension Theorem) If (X, A) is a CW
pair, then (X×{0})∪ (A× I) is a strong deformation retract of X× I. Hence
(X, A) has the homotopy extension property with respect to every space.

Proof. Let Zn = (X × {0}) ∪ ((Xn ∪ A) × I) and let Z = X × I. Then

Z−1 = (X×{0})∪ (A× I), and Z =
⋃

n≥−1

Zn. By 1.3.13 and 1.2.19, each Zn is

a subcomplex of Z, and of Zn+1. By 1.3.13, Xn∪A is obtained from Xn−1∪A
by attaching n-cells. Hence, by 1.3.12, ((Xn ∪A)×{0})∪ ((Xn−1 ∪A)× I) =
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(Xn×{0})∪ ((Xn−1∪A)× I) is a strong deformation retract of (Xn∪A)× I.
It follows immediately that Zn−1 is a strong deformation retract of Zn. By
1.3.14, Z−1 is a strong deformation of Z, as claimed. The last part is proved
as in the proof of 1.3.12. �

Examination of the proof of 1.3.15 shows a little more which can be useful:

Addendum 1.3.16. Let (X, A) be a CW pair and let F : (X×{0})∪(A×I)→
Z be a map. The map F extends to a map F̃ : X× I → Z such that, for every

cell eα of X −A, F̃1(eα) = F0(eα) ∪ F̃ (
•
eα × I). �

The definition of the homotopy extension property has nothing to do with
CW complexes. Therefore the last part of 1.3.15 is more powerful than it
might appear; it says that the existence of a CW pair structure on the pair of
spaces (X, A) ensures that (X, A) has the homotopy extension property with
respect to every space.

Corollary 1.3.17. If (X, A) is a CW pair and Z is a contractible space, every
map A→ Z extends to a map X → Z. �

Exercises

1. Prove 1.3.4–1.3.7.

For the next two exercises (X, A) is a CW pair.

2. Prove that if A is a weak deformation retract of X then A is a deformation
retract of X.

3. Prove that if A is a deformation retract of X then A is a strong deformation
retract of X.

Hint for 2. and 3.: Apply 1.3.15 appropriately.

1.4 Maps between CW complexes

A map f : X → Y between CW complexes is cellular if f(Xn) ⊂ Y n for all
n ≥ 0. A homotopy F : X × I → Y is cellular if it is a cellular map with
respect to the natural CW complex structure on X× I given by 1.2.19. There
are similar definitions for pairs.

The key fact is that arbitrary maps are homotopic (in well controlled ways)
to cellular maps. CW complexes are built from euclidean balls of various
dimensions, and, although one aims to simplify their homotopy theory by
making things formal and combinatorial, there are places in the theory where
the geometry of Rn must appear. This is one such place:
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Proposition 1.4.1. Let m > n. Let U be an open subset of Rn such that the
space cl U is compact. Let f : cl U → Bm be such that f(fr U) ⊂ Sm−1. Then
f is homotopic, rel fr U , to a map g such that some point of Bm − Sm−1 is
not in the image of g.

Proof. There are many proofs in the literature. The most common involve
“simplicial approximation” of f (see, for example, [146, 7.6.15], ). We give a
proof here which assumes instead knowledge of multivariable calculus.

Let V = f−1(Bm − Sm−1). Define ε : V → (0,∞) by ε(x) = distance14

from x to fr V . Using partitions of unity (see [85, pp. 41–45] ), there exists a
C1 map ĝ : V → Bm−Sm−1 such that |f(x)− ĝ(x)| < ε(x) for all x ∈ V . Since
|f(x)− ĝ(x)| → 0 as x approaches frRmV , ĝ can be extended continuously to
g : cl U → Bm by defining g = ĝ on V and g = f on (cl U) − V . Then f is
homotopic to g by the homotopy

Ht(x) = (1− t)f(x) + tg(x).

We have g(cl U) ∩ (Bm − Sm−1) = g(V ). We will show that g(V ) is a proper
subset of Bm − Sm−1.

Identify Rn with Rn × {0} ⊂ Rm. Then V ⊂ Rn × {0} ⊂ Rm and g(V ) =
gp(V ) where p : Rm → Rn is projection.

An m-cube C in Rm of side λ > 0 is a product C = I1× . . .× Im of closed
intervals each of length λ. The m-dimensional measure of C is λm. A subset
X ⊂ Rm has measure 0 if for every ε > 0, X can be covered by a countable
set of m-cubes the sum of whose measures is less15 than ε.

Clearly V ⊂ Rm has m-dimensional measure 0. Since ĝ is C1, so also
is ĝp |: p−1(V ) → Bm − Sm−1. By the Mean Value Theorem, given any
compact subset K ⊂ p−1(V ), there exists µ(K) > 0 such that |ĝp(x)−ĝp(y)| ≤
µ(K)|x − y| for all x, y ∈ K; we may take µ(K) = sup{||D(ĝp)x|| | x ∈ K}.
It follows that if C ⊂ K is an m-cube of side λ, then gp(C) lies in an m-cube
C ′ of side

√
m.µ(K).λ. Thus C ′ has measure (

√
m.µ(K))m.(measure of C).

It is a theorem of elementary topology that every open cover of an open
subset of Rn has a countable subcover; see pages 174 and 65 of [51] for a

proof. Hence we may write V =
∞⋃

i=1

Vi where each set Vi lies in the interior

of a closed m-ball Bi ⊂ p−1(V ). Let ε > 0 be given. Each Vi can be covered

by countably many m-cubes Ci1, Ci2, . . . such that each Cij ⊂ int Bi, and
∑

j

measure (Cij) < ε. Hence, by the above discussion, g(Vi) can be covered by

countably many cubes C ′
ij such that

∑
j

measure (C ′
ij) < ε(

√
m.µ(Bi))

m. So

14 All distances in euclidean spaces refer to the usual euclidean metric |x − y| =
(
P

(x2
i − y2

i ))1/2.
15 Of course, this is m-dimensional Lebesgue measure, but we need almost no mea-

sure theory!
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gp(Vi) has measure 0. But, clearly, the countable union of sets of measure 0
has measure 0, so gp(V )(= g(V )) has measure 0. Clearly, Bm − Sm−1 does
not have measure 0. So g(V ) is a proper subset. �

Proposition 1.4.2. Let en
α be an n-cell of the CW complex X, and let z ∈ ◦

e n
α.

Then Xn − ◦
e n

α is a strong deformation retract of Xn − {z}.

Proof. Let h : (Bn, Sn−1) → (en
α,

•
e n

α) be a characteristic map. For any y ∈
Bn − Sn−1, the formula x �→ x + (1 − |x|)y defines a homeomorphism of Bn

fixing each point of Sn−1 and sending 0 to y. Hence we may assume h(0) = z.
Let H : (Bn−{0})×I → Bn−{0} be the homotopy (x, t) �→ (1− t)x+ tx/|x|.
Note that H is a strong deformation retraction of Bn−{0} onto Sn−1. It is an
easy exercise to check that a function H ′ exists making the following diagram
commute:

(Bn − {0})× I
H−−−−→ Bn − {0}⏐⏐
h|× id

⏐⏐
h|

(en
α − {z})× I

H′

−−−−→ en
α − {z}

i.e., that if (h(x1), t1) = (h(x2), t2) then h(H(x1, t1)) = h(H(x2, t2)). Since h
is a quotient map, so is h |, and also (h |)× id by 1.3.11. Thus H ′ is continuous
and is therefore the required strong deformation retraction. �

If X is a CW complex and S ⊂ X , the carrier of S is the intersection
of all subcomplexes of X which contain S. It is a subcomplex of X , denoted
C(S).

Theorem 1.4.3. (Cellular Approximation Theorem) Let f : X → Y
be a map between CW complexes and let A be a subcomplex of X such that
f | A : A→ Y is cellular. Then f is homotopic, rel A, to a cellular map.

Proof. We will construct H : X×I → Y such that H0 = f , Ht | A = f | A for
all t, and g := H1 is cellular. This H is defined by induction on (Xn ∪A)× I.

For each vertex e0 of X0−A, there is a unique cell d such that f(e0) ∈
◦
d.

Define H | {e0} × I to be any path in C(d) from f(e0) to a vertex of C(d):
call that vertex g(e0). (There is such a path because C(d) is path connected.)

Assume H already defined on (Xn−1 ∪A)× I with the desired properties.
Extend H to agree with f on Xn × {0}. By 1.3.15, H extends to a map
H̄ : (Xn ∪ A) × I → Y . Let ḡ = H̄1. Then ḡ | Xn−1 = g | Xn−1 and is
cellular, but ḡ might not map n-cells of X − A into Y n. We claim that ḡ
is homotopic rel Xn−1 ∪ A to a cellular map. For each n-cell en of X , the
carrier of ḡ(en), C(ḡ(en)), is a finite subcomplex of Y , by 1.2.13. Let dm be a
top-dimensional cell of C(ḡ(en)). Write q : en → C(ḡ(en)) for the restriction
of ḡ. If m ≤ n, the next step can be omitted, so suppose m > n. Since

q(
•
e n) ⊂ Y n−1, q−1(d −

•
d) ⊂ en − •

e n. We want a homotopy of q, rel
•
e n, to
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a map which misses a point of
◦
d m, for then, by 1.4.2, there is a homotopy

of q, rel
•
e n, to a map of en into C(ḡ(en)) −

◦
d, and after finitely many such

homotopies, rel
•
e n, we will obtain a map of en into Y n.

If q(en) ∩
◦
d = ∅, there is nothing to do. Otherwise, let y ∈ q(en) ∩

◦
d.

q−1(y) is a compact set lying in
◦
e n. Let D be a neighborhood of y in

◦
d which

is homeomorphic to a closed ball, and let U = q−1(int D). Then cl U is a

compact subset of
◦
e n and q |: cl U → D. By 1.4.1, the desired homotopy of

q, rel en − U (hence rel
•
e n), exists.

Doing this on each n-cell of X , we get the desired homotopy of ḡ, and,
hence, in the obvious way, the desired H : (Xn ∪A)× I → Y . �

Addendum 1.4.4. The homotopy H : X × I → Y obtained in the proof of
1.4.3 has the property that for each cell e of X, H(e× I) ⊂ C(f(e)).

Proof. Assume the induction hypothesis H(em×I) ⊂ C(f(em)) for all m < n.

It is clearly true when n = 1. Let
•
e n ⊂ ◦

e m1
α1
∪ . . . ∪ ◦

e mr
αr

. Then ḡ(en) ⊂

H̄(en × I) = H(en × 0) ∪ H(
•
e n × I) ⊂ f(en) ∪

r⋃
i=1

C(f(emi
αi

)) ⊂ C(f(en)).

(The last inclusion holds because, if
◦
e m ∩ •

e n �= ∅, then C(em) ⊂ C(en).)
The other half of the homotopy of en takes place in C(ḡ(en)) ⊂ C(f(en)). So
H(en × I) ⊂ C(f(en)). �

Corollary 1.4.5. Let X be a CW complex; X is path connected iff X1 is path
connected.

Proof. As in the proof of 1.4.3, there is a path from any point of X to a point
of X1, so X is path connected if X1 is path connected. For the converse, let
ω : I → X be a path with ω(0), ω(1) ∈ X1. Without loss of generality assume
ω(0), ω(1) ∈ X0. Apply 1.4.3 to produce a cellular path, necessarily in X1,
from ω(0) to ω(1). �

Exercise

Give an example in as low a dimension as possible of a cell e of X whose carrier is
not covered by the set e.

1.5 Neighborhoods and complements

Let A be a subcomplex of a CW complex X . In general, neither its complement
X − A nor the closure clX(X − A) are subcomplexes of X . When we study
“end-invariants” of groups, complements will play an important role, and they
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should be subcomplexes. So we introduce the notion of CW complement,
and set out the basic properties. Closely tied to this is our need for a good
definition of the “CW neighborhood” of A; this should be a subcomplex of
X , a neighborhood of A, and, in a reasonable sense, the tightest subcomplex
with these properties.

The subcomplex A is full if it is the largest subcomplex of X having A0 as
its 0-skeleton. The full subcomplex of X generated by the vertices of X0−A0

is the CW complement of A, denoted16 by X −c A.
The CW neighborhood of a subcomplex A of X is N(A) :=

⋃{C(e) | e is
a cell of X and C(e) ∩ A �= ∅}, the union of all cell carriers which meet A.
Clearly, N(A) is a subcomplex of X . See Fig. 1.3. If Y is a subcomplex and
A ⊂ Y , we write NY (A) for the CW neighborhood of A in Y , omitting the
subscript when there is no ambiguity. Note that NXn(A) ⊂ N(A) ∩Xn but
equality does not always hold (see Exercises).

A  N(A)X     Ac

Fig. 1.3.

A path ω : I → X is descending if there is a partition 0 = t0 < t1 <

. . . < tr = 1 of I such that ω([ti−1, ti)) ⊂
◦
ei for some cell ei, where dim

e1 > dim e2 > . . . > dim er. If r = 1 there is no dimension condition.

Proposition 1.5.1. If x ∈ ◦
e then C(e) = {y ∈ X | there is a descending path

in X from x to y}.

Proof. By induction on dim e. If dim e = 0, the Proposition is trivial. Assume
the Proposition for cells of dimension < n, and let dim e = n. Let e1, . . . , ek

be the cells of X such that
◦
ei∩

•
e �= ∅. We have

•
e ⊂ C(e), so each ei is a cell of

C(e), hence C(ei) is a subcomplex of C(e) for all i. Thus
◦
e∪

k⋃
i=1

C(ei) ⊂ C(e).

16 This complement and its symbol −c are non-standard, but are natural in our
context. When X is a simplicial complex (see Sect. 5.2) clX(X − A) is indeed a
subcomplex of X, but this is not always so when X is a CW complex.
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But
◦
e ∪

k⋃
i=1

C(ei) is a subcomplex of X containing e, so
◦
e ∪

k⋃
i=1

C(ei) = C(e).

Using induction, it is now an easy exercise to finish the proof. �

Proposition 1.5.2. Let A be a subcomplex of X. Then N(A) = {z ∈ X | for
some y ∈ A and x ∈ X there are descending paths from x to y and from x to
z}.

Proof. This follows by considering the definition of N(A) in the light of 1.5.1.
�

Proposition 1.5.3. A is full in X iff whenever x ∈ X−A there is a descend-
ing path in X from x to a vertex of X −A.

Proof. Let A be full and let x ∈ ◦
e ⊂ X −A. Then C(e) �⊂ A, so C(e)0 �⊂ A0.

Apply 1.5.1. Conversely, let A not be full. Let B be a subcomplex of X such

that B0 = A0 while B − A �= ∅. Let x ∈ ◦
e ∩ (B − A). Then C(e) ⊂ B, so

C(e)0 ⊂ B0, so, by 1.5.1, every descending path from x to a vertex of X ends
in A0. �

Note that N(A) can fail to be full even when A is full. For example, let X

have two vertices v0 and v1 and two 1-cells e1 and e2 where
•
e1 = {v0, v1} and

•
e2 = {v1}; and let A = {v0}.

Proposition 1.5.4. Let A be a subcomplex of X and let B be the full sub-
complex generated by A0. Then B ⊂ N(A) and X −c (X −c A) = B.

Proof. Let e be a cell of B. Then C(e)0 ⊂ B0 = A0, so C(e) ∩ A �= ∅, hence
C(e) ⊂ N(A). The second part is clear. �

Proposition 1.5.5. Let A be a subcomplex of X. Then X = N(A)∪(X −c A)
and A ∩ (X −c A) = ∅. In particular, N(A) is a neighborhood of A.

Proof. Let x ∈ ◦
e ⊂ X . If all descending paths from x to X0 end in X0−A0 =

(X −c A)0, then C(e)0 ⊂ (X −c A)0 and hence x ∈ C(e) ⊂ X −c A. If there
exists a descending path from x to a vertex of A, then C(e) ∩ A �= ∅, by
1.5.1; hence x ∈ N(A). This proves that X = N(A) ∪ (X −c A). To prove
A ∩ (X −c A) = ∅, suppose the cell e lies in A ∩ (X −c A). Then C(e) is a
subcomplex of X −c A, so all its vertices lie in X0 − A0. On the other hand,
C(e) is a subcomplex of A, so all its vertices lie in A0, a contradiction. The
subcomplex X −c A is closed in X by 1.2.20 and is disjoint from A, so its (set
theoretic) complement lies in N(A). Thus N(A) is a neighborhood of A. �
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Exercises

1. Give an example of a finite CW pair (X, A) such that cl(X − A) is not a sub-
complex of X.

2. When (X, A) is a CW pair prove that (X −c A)n = Xn −c An.
3. Give an example where N(X −c A) ∪ A �= X (compare with 1.5.5).
4. Give an example where NXn(A) is a proper subset of N(A) ∩ Xn.
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Cellular Homology

The natural homology theory for CW complexes is cellular homology. Cel-
lular homology theory is geometrically appealing at an intuitive level, but
some technical subtleties are hidden in the theory and should be exposed to
view for a thorough understanding. There are two ways of defining cellular
homology: a formal way, given in terms of singular homology (Sects. 2.2, 2.3),
and a geometrical way, in terms of incidence numbers and mapping degrees,
given in Sect. 2.6 after an extensive discussion of degree and orientation in
Sects. 2.4and 2.5. The chapter ends with a presentation of the main points of
homology in the cellular context.

2.1 Review of chain complexes

As with our other review sections, this one is intended either for reference
or as a quick refresher. Proofs of all our statements can be found in most
books on algebraic topology, for example [146, Chap. 4], [77, Chap. 2], or, on
homological algebra, for example [83, Chap. 4].

Throughout this book R denotes a commutative ring with an identity
element 1 �= 0; R-modules are understood to be left modules unless we say
otherwise. An important case is R = Z; we use the terms “Z-module” and
“abelian group” interchangeably.1

A graded R-module is a sequence C := {Cn}n∈Z of R-modules. If C and
D are graded R-modules, a (graded) homomorphism of degree d from C to
D is a sequence f := {fn : Cn → Dn+d}n∈Z of R-module homomorphisms.
A chain complex over R is a pair (C, ∂) where C is a graded R-module and
∂ : C → C is a homomorphism of degree −1 such that ∂ ◦ ∂ = 0. ∂ is the
boundary operator of C.

1 At various points we will explicitly assume more about R, namely that it is either
a principal ideal domain (PID) or a field.
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When (C, ∂) is a chain complex, we have ∂n : Cn → Cn−1 for each n.
Define Zn(C) = ker ∂n, Bn(C) = im ∂n+1, and Hn(C) = Zn(C)/Bn(C); the
last makes sense because ∂ ◦ ∂ = 0. Elements of Zn(C) are n-cycles, elements
of Bn(C) are n-boundaries , and Hn(C) is the n-dimensional homology of C.
Then Z(C), B(C) and H(C) are graded R-modules.2

If (C, ∂) and (D, ∂′) are chain complexes over R, a chain map is a homo-
morphism f of degree 0 from C to D such that ∂ ′ ◦ f = f ◦ ∂. If f, g : C → D
are chain maps, a chain homotopy from f to g is a homomorphism h : C → D
of degree 1 satisfying ∂ ′h+h∂ = f −g. Since chain maps take cycles to cycles
and boundaries to boundaries, it follows that a chain map f : C → D induces
a homomorphism of degree 0, H(f) : H(C)→ H(D). If f is chain homotopic
to g (i.e., if there exists h as above), H(f) = H(g). The chain map f : C → D
is a chain homotopy equivalence if there is a chain map g : D → C such that
g ◦ f and f ◦ g are chain homotopic to the respective identity chain maps (of
C and of D). The chain map g is a chain homotopy inverse for f . If f is a
chain homotopy equivalence, H(f) is an isomorphism.

If C
f−→ D

g−→ E are chain maps, then H(g ◦ f) = H(g) ◦ H(f). Also,
H(idC) = idH(C). Thus, H is a covariant functor from the category of chain
complexes and chain homotopy classes of chain maps to the category of graded
R-modules and homomorphisms of degree 0.

Morphisms of graded R-modules C
f−→ D

g−→ E are exact at D if
ker gn = im fn for all n. A sequence of such morphisms

. . . −→ C(n+1) f(n+1)

−→ C(n) f(n)

−→ C(n−1) −→ . . . is exact if every three-term
subsequence of consecutive R-modules is exact at its middle term.

An exact sequence of chain complexes over R of the form

0 −→ C ′ i−→ C
p−→ C ′′ −→ 0 is called a short exact sequence; it induces a

“long” exact sequence of R-modules

. . . −−−−−→ Hn(C′)
H(i)

−−−−−→ Hn(C)
H(p)

−−−−−→ Hn(C′′)
∂∗−−−−−→ Hn−1(C′)

H(i)
−−−−−→ . . .

where ∂∗{x′′} = {i−1∂p−1(x′′)}. Surprisingly, ∂∗ is well-defined and is there-
fore a homomorphism; it is called the connecting homomorphism. This long
exact sequence is natural in the sense that if the following diagram of chain
maps commutes

0 −−−−→ C ′ −−−−→ C −−−−→ C ′′ −−−−→ 0⏐⏐
f ′

⏐⏐
f

⏐⏐
f ′′

0 −−−−→ D′ −−−−→ D −−−−→ D′′ −−−−→ 0

where the horizontal rows are exact, then the following diagram commutes for
all n:
2 Graded Z-modules are often misnamed “graded groups,” rather than “graded

abelian groups.”
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Hn(C′) −−−−→ Hn(C) −−−−→ Hn(C′′) ∂∗−−−−→ Hn−1(C
′)

Hn(f ′)

⏐⏐
 Hn(f)

⏐⏐
 Hn(f ′′)

⏐⏐
 ⏐⏐
Hn−1(f ′)

Hn(D′) −−−−→ Hn(D) −−−−→ Hn(D′′) ∂∗−−−−→ Hn−1(D
′).

Exercises

1. Just as with chain complexes, an exact sequence

0 ��M ′ α ��M
β ��M ′′ ��0 of R-modules is called a short exact se-

quence. It splits (or is splittable) if one of the following three conditions hold.
Prove they are equivalent:

(i) the epimorphism β has a right inverse;
(ii) the monomorphism α has a left inverse;
(iii) there is an isomorphism φ making the following diagram commute

M
β

		��
��

��
��

��

∼= φ

��

0 �� M ′

α



										

i ��















M ′′ �� 0

M ′ ⊕ M ′′

j



									

where i : x 
→ (x, 0) and j : (x, y) 
→ y. (The importance of this is that
if the sequence splits, the middle term is isomorphic to the direct sum of
the other two.)

2. With R = Z, give an example of an unsplittable short exact sequence of abelian
groups.

3. Show that if M ′′ in Exercise 1 is a free R-module then the sequence splits.

2.2 Review of singular homology

Here we quickly review the basics of singular homology.
The standard n-simplex ∆n is the closed convex hull of the points

p0, . . . , pn in Rn+1 where pj has (j + 1)th coordinate 1 and all other coor-

dinates 0. Hence ∆n =

⎧⎨
⎩

n∑
j=0

tjpj | 0 ≤ tj ≤ 1 and
∑

j

tj = 1

⎫⎬
⎭. A singular

n-simplex in the topological space X is a map σ : ∆n → X . Let R be a
ring as in Sect. 2.1. The free R-module generated by the set of all singular
n-simplexes is denoted by Sn(X ; R) and its elements are called singular n-
chains (over R). When n ≥ 1, the ith face of the singular n-simplex σ is the

composite map ∆n−1 Fi ��∆n σ ��X where Fi is the affine map which sends
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pj to pj if j < i and pj to pj+1 if j ≥ i. A singular 0-simplex has no faces.
By definition Sn(X ; R) = 0 when n < 0. When n > 0 the boundary operator

∂ : Sn(X ; R) → Sn−1(X ; R) is defined by ∂(σ) =

n∑
i=0

(−1)i(σ ◦ Fi); when

n ≤ 0, ∂ = 0. The graded R-module {Sn(X ; R)} is abbreviated to S∗(X ; R).
One shows that ∂ ◦ ∂ = 0, so (S∗(X ; R), ∂) is a chain complex over R called
the singular chain complex of X . Its singular homology modules are denoted3

by H∆∗ (X ; R). The ring R is the ring of coefficients .
A map f : X → Y induces a chain map S∗(f) := {f# : S∗(X ; R) →

S∗(Y ; R)} defined by f#(σ) = f ◦ σ. We have4 (g ◦ f)# = g# ◦ f#, and id# =
id. We write f∗ for Hn(f) : H∆

n (X ; R) → H∆
n (Y ; R), the homomorphism

induced by f (or by f#).
For A ⊂ X , the homology of the quotient chain complex S∗(X ; R)/S∗(A; R)

is denoted by H∆
∗ (X, A; R). When A = ∅, this is identified with H∆

∗ (X ; R).
When A ⊂ B ⊂ X , there is a short exact sequence of chain complexes

0→ S∗(B; R)/S∗(A; R)→ S∗(X ; R)/S∗(A; R)→ S∗(X ; R)/S∗(B; R)→ 0

where the arrows are induced by inclusion maps. This is natural in the sense
that a map of triples f : (X, B, A) → (Y, D, C) induces a commutative dia-
gram whose vertical arrows are chain maps:

0 �� S∗(B; R)/S∗(A; R)

f#

��

�� S∗(X; R)/S∗(A; R)

f#

��

�� S∗(X; R)/S∗(B; R)

f#

��

�� 0

0 �� S∗(D; R)/S∗(C; R) �� S∗(Y ; R)/S∗(C; R) �� S∗(Y ; R)/S∗(D; R) �� 0

and hence a natural long exact sequence of a triple (X, B, A), namely

· · · → H∆
n (B, A; R)→ H∆

n (X, A; R)→ H∆
n (X, B; R)

∂∗→ H∆
n−1(B, A; R)→ · · ·

If A = ∅, H∆
n (X, ∅) is identified with H∆

n (X) and this becomes the long exact
sequence of a pair (X, B):

· · · → H∆
n (B; R)→ H∆

n (X ; R)→ H∆
n (X, B; R)→ H∆

n−1(B; R)→ · · ·

Homotopic maps of spaces, or pairs of spaces, or triples of spaces induce
chain homotopic chain maps. Thus singular homology is homotopy invariant.

Homology “turns” topological sums into direct sums: i.e., there is an obvi-

ous isomorphism H∆
n

(∐
α∈A

Xα; R

)
∼=
⊕
α∈A

H∆
n (Xα; R). The homology of the

3 The ∆ is for singular homology; we reserve the notation H∗(X; R) for cellular
homology.

4 The reader can formulate what this says about S as a functor.
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one-point space {p} is given by H∆
n ({p}; R) = 0 if n �= 0, and H∆

0 ({p}; R) ∼= R.
It follows that H∆

n (S0; R) = 0 if n �= 0 and H∆
0 (S0; R) ∼= R⊕R.

Singular homology satisfies the excision property that if clXU ⊂ intXA
then the inclusion map (X − U, A− U) ↪→ (X, A) induces an isomorphism of
homology modules. Such an inclusion is called an excision map. An immediate
consequence of this, using homotopy invariance, is that if U ⊂ V ⊂ A with U
as above and if the pair (X −V, A−V ) is a strong deformation retract of the
pair (X − U, A − U), then the excision map (X − V, A − V ) ↪→ (X, A) also
induces an isomorphism of homology modules.

When X = U ∪V , where U and V are open subsets, there is a short exact
sequence of chain complexes

0 �� S∗(U ∩ V ; R)
i �� S∗(U ; R)⊕ S∗(V ; R)

j �� S∗(X : R) �� 0

with i(c) = (c,−c) and j(c, d) = c+d. This induces a Mayer-Vietoris sequence
which is natural in the obvious sense.

· · · → H∆
n (U ∩ V ; R) → H∆

n (U ; R) ⊕ H∆
n (V ; R) → H∆

n (X; R) → H∆
n−1(U ∩ V ; R) → · · ·

The following proposition is an easy consequence of the theory we have
just outlined:

Proposition 2.2.1. In the long exact sequence of the pair (Bn, Sn−1), ∂∗ :
H∆

k (Bn, Sn−1; R) → H∆
k−1(S

n−1; R) is an isomorphism for 2 ≤ k ≤ n. For

n ≥ 0, H∆
n (Bn, Sn−1; R) is isomorphic to R, and for k �= n H∆

k (Bn, Sn−1; R)
is trivial. �

Historical Note: Early definitions of homology were applicable only to simpli-
cial complexes (Sect. 5.2). In the period 1925–35 extensions of the theory to large
classes of topological spaces appeared: to metric spaces by Vietoris and to compact
Hausdorff spaces by Čech (see Sect. 17.7 for the latter). These agree on the overlap
- compact metrizable spaces. Singular homology, applicable to all spaces, was in-
troduced in 1944 by Eilenberg. With proper precision of wording all these theories
agree on finite CW complexes.

Exercises

1. Prove that Sn is not contractible.
2. Prove that if m �= n, Sm and Sn do not have the same homotopy type.
3. Prove that if m �= n, Rm and Rn are not homeomorphic.
4. Prove that if Y is obtained from A by attaching n-cells, and if m �= n then Y

is not obtained from A by attaching m-cells. Hence the dimension of a cell in a
CW complex is a topological property.
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2.3 Cellular homology: the abstract theory

The homology theory to be used in this book is cellular homology. We give two
equivalent treatments. The first, in this section, is the traditional approach
which is efficient but is hard to grasp intuitively, even with a good prior
understanding of singular homology theory. The second treatment in Sect.
2.4–2.6 is more intuitive. A full understanding involves both approaches.

When X is a CW complex the homology modules H∆
∗ (X ; R) can be com-

puted from a chain complex much smaller than S∗(X ; R). Define Cn(X ; R) =
H∆

n (Xn, Xn−1; R). Call its elements cellular chains in X (over R).

Proposition 2.3.1. Let the set A index the n-cells of X. Then Cn(X ; R) is

isomorphic to
⊕
α∈A

R and also to
⊕

α

H∆
n (en

α,
•
e n

α).

Proof. By excisionH∆
n (Xn,Xn−1;R) is isomorphic to H∆

n (Bn(A),Sn−1(A);R),

hence to
⊕
α∈A

H∆
n (Bn, Sn−1), hence, by 2.2.1, to

⊕
α∈A

R. The second statement

also follows by excision. �

For reference we note that excision also gives:

Proposition 2.3.2. For all k, H∆
k (Xn, Xn−1; R) is isomorphic to

H∆
k (Bn(A), Sn−1(A); R), and these are zero when k �= n. �

Define ∂ : Cn(X ; R) → Cn−1(X ; R) to be the connecting homomorphism
∂ : H∆

n (Xn, Xn−1; R)→ H∆
n−1(X

n−1, Xn−2; R) in the long exact sequence of
the triple (Xn, Xn−1, Xn−2).

Proposition 2.3.3. (C∗(X ; R), ∂) is a chain complex; i.e., ∂ ◦ ∂ = 0.

Proof. If we consider the long exact sequences of the triple (Xn+1, Xn, Xn−1)
and of the pairs (Xn+1, Xn) and (Xn, Xn−1), we obtain a commutative dia-
gram

H∆
n+1(Xn+1, Xn; R)

∂ ��

∂
(n+1)
∗ ����

��
��

��
H∆

n (Xn, Xn−1; R)
∂ ��

∂
(n)
∗ ��

���
���

�
H∆

n−1(Xn−1, Xn−2; R)

H∆
n (Xn; R)

j
(n)
∗

��
H∆

n−1(Xn−1; R)

j
(n−1)
∗

�����������

where j(n) : (Xn, ∅) → (Xn, Xn−1) denotes inclusion. By exactness we have

∂
(n)
∗ ◦ j

(n)
∗ = 0 so ∂ ◦ ∂ = 0. �

The chain complex (C∗(X ; R), ∂) is the cellular chain complex of X (over
R). We write Z∗(X ; R) and B∗(X ; R) for the cycles and boundaries respec-
tively.

If X and Y are CW complexes and f : X → Y is a cellular map, f induces
a homomorphism f# : Cn(X ; R) → Cn(Y ; R) in the obvious way. The proof
of the next proposition is an exercise:
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Proposition 2.3.4. {f# : C∗(X ; R)→ C∗(Y ; R)} is a chain map. If g : Y →
Z is another cellular map then (g ◦ f)# = g# ◦ f# : C∗(X ; R) → C∗(Z; R).
For all X, id# = id : Cn(X ; R)→ Cn(X ; R). �

Thus C∗(·; R) is a functor from the category of CW complexes and cellular
maps to the category of chain complexes over R.

The cellular homology of X (over R) is the homology, H∗(X ; R), of the
cellular chain complex C∗(X ; R). The fundamental fact is that it is naturally
isomorphic to singular homology:

Theorem 2.3.5. There is a natural isomorphism ψ : Hn(X ; R)→ H∆
n (X ; R).

Remark 2.3.6. Here, as usual, “natural” means that if f : X → Y is a cellular
map then f∗ ◦ ψ = ψ ◦ f∗.

For the proof of 2.3.5 we need a lemma about the singular homology of CW
complexes. The support of a singular n-chain z in X is the union of the (finitely
many) compact sets σα(∆n) such that the singular n-simplex σα occurs in z
with non-zero coefficient. Thus every singular n-chain has compact support.
So if X is a CW complex, 1.2.13 implies that the support of the n-chain z lies
in Xm for some m. This implies:

Lemma 2.3.7. If {z} ∈ H∆
n (X, Xk) then, for some m, {z} is in the image

of i∗ : H∆
n (Xm, Xk)→ H∆

n (X, Xk). �

Proof (of Theorem 2.3.5). Consider the following diagram:

H∆
n+1(X

n+1, Xn; R)
∂
(n+1)
∗ �� H∆

n (Xn; R)
j
(n)
∗ ��

i
(n)
∗

��

H∆
n (Xn, Xn−1; R) = Cn(X; R)

H∆
n (Xn+1; R)

φ

�����������

��
0 = H∆

n (Xn+1, Xn; R)

The homomorphism φ is not well defined but the relation j
(n)
∗ (i

(n)
∗ )−1 has

its image in Zn(X ; R) and the ambiguity in defining φ is clearly resolved by
factoring out Bn(X ; R). Thus the relation φ defines a homomorphism φ̄ :
H∆

n (Xn+1; R)→ Hn(X ; R) which is easily seen to be an isomorphism.
We claim that the inclusion map i : Xn+1 ↪→ X induces an isomorphism on

n-dimensional singular homology. By 2.2.1 and 2.3.2, H∆
k (Xj+1, Xj; R) = 0

when k ≤ j. It follows from this and 2.3.7, together with the long exact
sequence of a triple, that H∆

k (X, Xn+1; R) = 0 when k ≤ n +1 and hence, by
the long exact sequence of the pair (X, Xn+1), that i induces an isomorphism
as claimed. The composition of isomorphisms
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Hn(X ; R)
φ̄−1

�� H∆
n (Xn+1; R) �� H∆

n (X ; R)

is natural. �

We have now seen that singular homology can be computed from the
cellular chain complex. For this to be useful we need a better understanding
of the homomorphisms ∂ and f#. We do this in two stages, first algebraically
in this section, then geometrically in Sect. 2.5.

In 2.3.1 we saw that Cn(X ; R) can be viewed as the free R-module gen-
erated by the set of n-cells of X , but this is rather vague. We should pick
generators for Cn(X ; R) in some geometrically meaningful way, reflecting the
fact that

Cn(X ; R) ∼= Hn(Xn, Xn−1; R) ∼=
⊕
α∈A

H∆
n (en

α,
•
e n

α).

To begin, we choose, once and for all, a generator λn ∈ H∆
n (Bn, Sn−1; R)

which is isomorphic to R by 2.2.1. Later (after 2.5.17) we will be more specific
about our choice, but here we will only use the fact that we have made a choice.

Next, we choose hα : (Bn, Sn−1) → (en
α,

•
e n

α), a characteristic map for each
n-cell en

α. It follows from the proof of 2.3.1 that the homomorphism⊕
α

H∆
n (en

α,
•
e n

α; R)→ H∆
n (Xn, Xn−1; R) =: Cn(X ; R)

induced by the inclusion maps iα : en
α ↪→ Xn is an isomorphism. Moreover, by

excision hα∗ : H∆
n (Bn, Sn−1; R)→ H∆

n (en
α,

•
e n

α; R) is an isomorphism. Indeed,
only the homotopy class of the characteristic map hα matters. Writing h̄α =
iα ◦ hα : (Bn, Sn−1)→ (Xn, Xn−1), we can sharpen 2.3.1 to read:

Proposition 2.3.8. The R-module Cn(X ; R) is freely generated by the set
{h̄α∗(λn) | α ∈ A}. �

Let en−1
β be a cell of X . To understand the boundary homomorphism

∂ : Cn(X ; R)→ Cn−1(X ; R) we must understand the coefficient of h̄β∗(λn−1)
in ∂h̄α∗(λn). That coefficient is the image of 1 ∈ R under the following R-
module homomorphism from R to R (omitting explicit mention of R in the
homology modules):

R
∼= �� H∆

n (Bn, Sn−1)
hα∗

∼=
�� H∆

n (en
α,

•
e n

α)
iα∗ �� H∆

n (Xn, Xn−1)

∂∗

��
1
� �� λn

H∆
n−1(X

n−1, Xn−2)

R �� ∼= H∆
n−1(Bn−1, Sn−2)

hβ∗

∼=
�� H∆

n−1(en−1
β ,

•
e n−1

β ) ��
projection L

γ H∆
n−1(en−1

γ ,
•
e n−1

γ )

∼=

��

1 �� �
λn−1
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Similarly, if f : X → Y is cellular and if A and B index the n-cells of X and
Y respectively, we understand f# : Cn(X ; R) → Cn(Y ; R) by understanding

the coefficient of ¯̃hβ∗(λn) in the chain f#(h̄α∗(λn)), where we also choose a

characteristic map h̃β : (Bn, Sn−1) → (ẽn
β ;

•
ẽ n

β) for each n-cell ẽn
β of Y . That

coefficient is the image of 1 ∈ R under the following R-module homomorphism
from R to R:

R
∼= �� H∆

n (Bn, Sn−1)
hα∗ �� H∆

n (en
α,

•
e n

α)
iα∗ �� H∆

n (Xn, Xn−1)
f# �� H∆

n (Y n, Y n−1)

1
� �� λn

R �� ∼=
H∆

n (Bn, Sn−1)
h̃β∗

∼=
�� H∆

n (ẽn
β ,

•
ẽ n

β) ��
projection L

γ H∆
n (ẽn

γ ,
•
ẽ n

γ )

∼=

��

1 �� �
λn

To understand cellular homology geometrically we must understand these
complicated homomorphisms R→ R. We tackle this in the next three sections.

2.4 The degree of a map from a sphere to itself

If f and g are maps from Sn to Sn it is important to know when they are
homotopic. This turns out to be a simple matter: they are homotopic if and
only if they have the same “degree”. The degree of f , deg (f), is an integer
which counts algebraically the number of times that f wraps Sn around itself.
The main issues, all treated in this section, are:

1. The definition of deg(f).
2. If f � g then deg(f) = deg(g).
3. For every d ∈ Z and every n ≥ 1 there exists f with deg (f) = d.
4. If deg(f) = deg(g) then f � g (except when n = 0).
5. Product Theorem for degree.

First, we dispose of the case n = 0. There are four maps S0 → S0. We
define the degree of the identity map to be 1, the degree of the map which
permutes the two points of S0 to be −1, and the degree of both constant maps
to be 0. Obviously, 1. and 2. hold while 3. does not.

For the rest of this section we assume n ≥ 1. The abelian group H∆
n (Sn; Z)

is infinite cyclic. The degree of f is the integer deg(f) such that f∗(κ) =
deg(f)κ where κ is a generator (it doesn’t matter which generator) of
H∆

n (Sn; Z). By homotopy invariance of singular homology we have:

Proposition 2.4.1. Homotopic maps Sn → Sn have the same degree. �
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To exhibit maps of every degree we start with the case n = 1, the circle.
For d ∈ Z define f1,d : S1 → S1 by e2πit �→ e2πidt, a map with “winding
number” d.

Proposition 2.4.2. The map f1,d has degree d.

Proof. This is an exercise in applying the definitions given in Sect. 2.2. Apply
f1,d to the singular 1-simplex (1 − t)p0 + tp1 �→ e2πit. �

Whenever g : Sn → Sn is a map, its suspension Σg : Sn+1 → Sn+1 is
illustrated in Fig. 2.1; a formula is:

(Σg)(x, t) =

⎧⎪⎨
⎪⎩

(
√

1− t2g( 1√
1−t2

x), t) if −1 < t < 1

(0, . . . , 0, 1) if t = 1

(0, . . . , 0,−1) if t = −1

In the exercises, the reader is asked to check that Σg is continuous, and that
g1 � g2 implies Σg1 � Σg2. Define Σrg = Σ(Σr−1g) by induction. Σrg is
the r-fold suspension of g. It is convenient to define Σ0g to be g. For each
d ∈ Z, and each n ≥ 2, define fn,d : Sn → Sn to be Σn−1f1,d. The map
fn,0 maps Sn onto a proper subset of Sn, half of a great (n − 1)-sphere. By
considering f2,d := Σf1,d : S2 → S2, and then generalizing, we may think of
fn,d as wrapping Sn |d| times around itself, in a “positive” sense if d > 0 and
a “negative” sense if d < 0. This is made precise in 2.4.4.

g

Sg

on every levelg

Fig. 2.1.

Proposition 2.4.3. For n ≥ 1, fn,1 is the identity map of Sn; fn,−1 is the
map (x1, x2, x3, . . . , xn+1) �→ (x1,−x2, x3, . . . , xn+1); fn,0 is homotopic to a
constant map.
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Proof. The statements about fn,1 and fn,−1 are obvious. For the statement
about fn,0, one proves by induction on n that Pn does not lie in the image of
fn,0, where Pn = (−1, 0, . . . , 0) ∈ Sn ⊂ Rn+1. This is clear for n = 1; assume it
for n; if fn+1,0(x, t) = Pn+1, then t = 0, and fn,0(x) = Pn, a contradiction. By
1.3.7, Sn−{Pn} is contractible. So, by 1.3.4, fn,0 is homotopic (in Sn−{Pn},
hence in Sn) to a constant map. �

Proposition 2.4.4. deg(fn,d) = d.

Proof. The case n = 1 is 2.4.2, so we may assume n ≥ 2. Let en± = Sn∩Rn+1
± .

Then Sn = en
+ ∪ en

− and Sn−1 = en
+ ∩ en

−. The spaces en
± are homeomorphic

to Bn, hence they are contractible. The Mayer-Vietoris sequence in singular
homology gives (omitting the coefficient ring Z):

H∆
n (en

+)⊕H∆
n (en

−)→ H∆
n (Sn)

∂n−→ H∆
n−1(S

n−1)→ H∆
n−1(e

n
+)⊕H∆

n−1(e
n
−)

implying that, for n ≥ 2, ∂n is an isomorphism (between infinite cyclic
groups). Naturality of the Mayer-Vietoris sequence implies that for any map
f : Sn−1 → Sn−1 the following diagram commutes:

H∆
n (Sn)

(Σf)∗−−−−→ H∆
n (Sn)⏐⏐
∂n

⏐⏐
∂n

H∆
n−1(S

n−1)
f∗−−−−→ H∆

n−1(S
n−1)

This implies that deg(f) = deg(Σf). Since fn,d = Σfn−1,d and deg(f1,d) =
d, this completes the argument. �

We turn to Item 4 on our initial list.

Theorem 2.4.5. (Brouwer-Hopf Theorem) Two maps Sn → Sn are ho-
motopic iff they have the same degree.

In view of the previous propositions the only part of this theorem not yet
proved5 is that for n ≥ 1 every map f : Sn → Sn of degree d is homotopic to
fn,d. We begin with the case n = 1.

A map p : E → B is a covering projection if for every b ∈ B there is an
open neighborhood U of b such that p−1(U) can be written as the union of
pairwise disjoint open subsets of E each mapped homeomorphically by p onto
U . Sets U ⊂ B with this property are said to be evenly covered by p. The
space B is the base space and E is the covering space. For example, the map
exp : R→ S1, t �→ e2πit, is a covering projection.

The following two theorems about covering spaces are fundamental. The
proofs are elementary, and are to be found in numerous books on algebraic
topology, for example, [74, Chap. 5].

5 A complete proof of the Brouwer-Hopf Theorem is included here because it is
omitted from many books on algebraic topology. The reader may prefer to skip
it and go to Theorem 2.4.19.
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Theorem 2.4.6. (Homotopy Lifting Property) Let p : E → B be a cov-
ering projection, let F : Y × I → B and f : Y × {0} → E be maps such that
p ◦ f = F | Y × {0}. Then there exists F̄ : Y × I → E making the following
diagram commute:

Y × {0} f ��

��

E

p

��
Y × I

F̄

�����������

F
�� B

�

Theorem 2.4.7. (Unique Path Lifting) Let p : E → B be a covering
projection. If ωi : I → E are paths, for i = 1, 2, such that p ◦ ω1 = p ◦ ω2 and
ω1(0) = ω2(0), then ω1 = ω2. �

Consider a map f : S1 → S1, and the covering projection exp : R → S1.
Let t0 ∈ R be such that f(1) = e2πit0 (where 1 ∈ S1 ⊂ C). By 2.4.6, the
path ω : I → S1, t �→ f(e2πit), lifts through p to a path ω̃ : I → R such that
ω̃(0) = t0.

Proposition 2.4.8. The number ω̃(1)− ω̃(0) is an integer and is independent
of the choice of t0 ∈ exp−1(f(1)).

Proof. Let ω̃(1) = t1. ω(0) = ω(1), so e2πit0 = e2πit1 , hence t0 − t1 ∈ Z. For
a ∈ R, let Ta : R → R be the translation homeomorphism x �→ x + a. If ω̃ is
replaced by ω̄ where ω̄(0) = t′0 and exp ◦ ω̄ = ω, then T(t′0−t0) ◦ ω̃ = ω̄, by
2.4.7. Hence t′1 := ω̄(1) = t1 + t′0 − t0. Hence t′1 − t′0 = t1 − t0. �

The integer ω̃(1)− ω̃(0) will be denoted by δ(f).

Proposition 2.4.9. Two maps f, g : S1 → S1 are homotopic iff δ(f) = δ(g).

Proof. Let F : S1 × I → S1 be a homotopy. Define G : I × I → S1 by
G(t, s) = F (e2πit, s). Let ω(t) = G(0, t) and let ω̃ : I → R be such that
ω = exp ◦ ω̃. By 2.4.6, there is a map G̃ : I × I → R such that G̃0 = ω̃. Note
that δ(Fs) = G̃s(1) − G̃s(0), a formula continuous in s and taking values in
the discrete subspace Z ⊂ R, hence constant. Thus δ(f) = δ(g).

Conversely, let δ(f) = δ(g) = d. Let ω, τ : I → S1 be defined by ω(t) =
f(e2πit) and τ(t) = g(e2πit). Let ω̃ and τ̃ be lifts of ω and τ such that d =
ω̃(1) − ω̃(0) = τ̃(1) − τ̃(0). Let β : I → R be a path from ω̃(0) to τ̃(0).
Then s �→ β(s) + d is a path from ω̃(1) to τ̃(1). By 1.3.17, there is a map
H̃ : I × I → R such that H̃(t, 0) = ω̃(t), H̃(t, 1) = τ̃(t), H̃(0, s) = β(s),
and H̃(1, s) = β(s) + d. Clearly, there is a function H making the following
diagram commute:

I × I
H̃−−−−→ R

(exp |)×id

⏐⏐
 ⏐⏐
exp

S1 × I
H−−−−→ S1
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By 1.3.11, H is continuous. One checks that H0 = f and H1 = g. �

Proposition 2.4.10. δ(f1,d) = d.

Proof. Let d ∈ Z ⊂ R. The map ω̃ : I → R, t �→ td makes the following
diagram commute:

I
ω̃ ��

exp |
��

ω

���
��

��
��

� R

exp

��
S1

f1,d

�� S1

where ω is defined by the diagram. Thus δ(f1,d) = ω̃(1)− ω̃(0) = d. �

This completes the proof of 2.4.5 when n = 1. Now we assume n ≥ 2.
We need some preliminaries (2.4.11–2.4.18).
Let K and K ′ be two CW complex structures on the same underlying

space X . The complex K ′ is a subdivision of K if for each cell eβ of K ′ there

is a cell dα of K such that
◦
eβ ⊂

◦
dα.

Proposition 2.4.11. Let L be a subcomplex of K and let K ′ be a subdivision
of K. Then there is a subcomplex L′ of K ′ which is a subdivision of L.

Proof. Let L′ consist of all cells e of K ′ such that e ⊂ L. We show that L′ is
a subcomplex and that L′ is a subdivision of L.

Let e be a cell of L′. By 1.2.13 there are only finitely many cells of K ′,
e1, . . . , er such that

•
e ∩ ◦

ei �= ∅. Since e ⊂ L,
•
e ⊂ L, so

◦
ei ∩ L �= ∅ for all i. Let

di be a cell of K such that
◦
ei ⊂

◦
di. Then for 1 ≤ i ≤ r,

◦
di ∩ L �= ∅, hence di

is a cell of L, hence ei ⊂ L, hence ei is a cell of L′, hence
•
e ⊂ L′. So L′ is a

subcomplex of L.

Given a cell e of L′, there is a cell d of K such that
◦
e ⊂

◦
d. Since e ⊂ L,

◦
d ∩ L �= ∅, so d ⊂ L. Thus d is a cell of L. Finally, if x ∈ L, there are cells ex

of K ′ and dx of L such that x ∈ ◦
ex ⊂

◦
dx. So

◦
ex ⊂ L, so ex ⊂ L, so x lies in a

cell of L′. Thus L′ is a subdivision of L. �

Let I1 := [−1, 1] have the CW complex structure consisting of two vertices
at −1 and +1, and one 1-cell. For k ≥ 1, the kth barycentric subdivision
of I1 is the CW complex I1

k whose vertices are the points i/2k−1, where
−2k−1 ≤ i ≤ 2k−1, and whose 1-cells are the closed intervals bounded by
adjacent vertices. The kth barycentric subdivision of In+1 is the (n + 1)-fold
product CW complex In+1

k := I1
k × . . . × I1

k . This is obviously a subdivision

of In+1. By 2.4.11, there is a subcomplex
•
I n+1

k of In+1
k subdividing

•
I n+1.

Proposition 2.4.12. For each open cover U of In+1 there exists k0 such that
for every k ≥ k0 every cell of In+1

k lies in some element of U .



48 2 Cellular Homology

Proof. Let x ∈ U (x) ⊂ In+1, where U (x) ∈ U . There are intervals V
(x)
1 , . . . , V

(x)
n+1

which are open sets in I1 such that x ∈ V
(x)
1 × . . . × V

(x)
n+1 =: V (x) ⊂ U (x).

{Vx | x ∈ X} has a finite subcover V (x1), . . . , V (xr) since In+1 is compact.

Clearly, there is a subdivision I1
ki

of I1 every cell of which lies in some V
(xj)
i .

Let k0 = max{k1, . . . , kn+1}. Then for each k ≥ k0 every cell of In+1
k lies in

some V (xj) ⊂ U (xj). �

Corollary 2.4.13. For each open cover U of
•
I n+1 there exists k0 such that

for every k ≥ k0 each cell of
•
I n+1

k lies in some element of U .

Proof. For each U ∈ U pick U ′ an open subset of In+1 such that U ′ ∩
•
I n+1 =

U . Let U ′ consist of all the sets U ′ and the set In+1−
•
I n+1. Apply 2.4.11 and

2.4.12 to U ′. �

Proposition 2.4.14. Let X be an n-dimensional CW complex, let en be an

n-cell of X and let U ⊂ ◦
e n be a neighborhood of z ∈ ◦

e n. There is a homotopy

H : X × I → X such that H0 = id, Ht = id on X − ◦
e n for all t, and

H1(e
n − U) ⊂ •

e n.

Proof. As in the proof of 1.4.2, pick a characteristic map h : (Bn, Sn−1) →
(en,

•
e n) such that h(0) = z. h−1(U) is a neighborhood of 0 in Bn, so there is

a ε > 0 such that h(Bε) ⊂ U , where Bε = {x ∈ Bn | |x| ≤ ε}. By 1.4.2, there
is a homotopy H : (X − int h(Bε)) × I → X such that H0 = id, Ht = id on

X − ◦
e n for all t, and H1(e

n − int h(Bn
ε )) ⊂ •

e n. Extend H0 to be the identity
on all of X × {0}. By 1.2.8, X is obtained from X − int h(Bε) by attaching
an n-cell. So, by 1.3.12, H further extends to map X × I to X as required. �

Proposition 2.4.15. Let x1, . . . , xm, y1, . . . , ym be distinct points of Sn,
where n ≥ 2. There is a homeomorphism k : Sn → Sn, which is homotopic to
id, such that k(xi) = yi for each i.

Proof. For any z ∈ Sn, Sn − {z} is homeomorphic to Rn. By choosing z
different from each xi and each yi, we may work in Rn. Let M > 0 be such
that every xi and every yi lies in (−M, M)n. We will show that there is a
homeomorphism h of [−M, M ]n which fixes every point of the frontier, and
takes xi to yi for all i. Clearly this will be enough.

The proof requires two elementary lemmas whose proofs are left to the
reader.

Lemma 2.4.16. Let N be a compact convex neighborhood of a point x ∈ Rn

and let y ∈ int N . There is a homotopy H : N × I → N such that H0 = id,
Ht = id on fr N for all t, Ht is a homeomorphism for all t, and H1(x) = y.
�
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Lemma 2.4.17. If n ≥ 3, there exist compact convex pairwise disjoint neigh-
borhoods Mi of xi and Ni of yi, and points x′

i ∈ int Mi and y′
i ∈ int Ni such

that no four points in {x′
1, . . . , x

′
m, y′

1, . . . , y
′
m} are coplanar. �

We now complete the proof of 2.4.15 for n ≥ 3. By 2.4.16 and 2.4.17, we
may assume that the line segments Li := [xi, yi] in Rn are pairwise disjoint.
Since each Li is compact and convex, Ci := {x ∈ Rn | |x − u| ≤ ε for some
u ∈ Li} is a compact convex neighborhood of every point of Li, and if ε is small
enough, the sets Ci are pairwise disjoint and lie in (−M, M)n. Applying 2.4.16
separately to each Ci to move xi to yi, and extending the resulting homotopy

to be the identity on Rn −
m⋃

i=1

Ci, we obtain the desired homeomorphism k.

The case n = 2 is left as an exercise. �

We remark that 2.4.15 and 2.4.17 are false when n = 1. The fundamental
geometric Proposition 2.4.15 will be used in the proof of Theorem 2.4.5. It is
also the core of the proof that higher homotopy groups are abelian (compare
4.4.5).

For n ≥ 2, give Sn the CW structure consisting of one 0-cell e0, lying in
Sn−1 ⊂ Sn, one (n − 1)-cell en−1 = Sn−1, and two n-cells en

± = Sn ∩ Rn+1
± .

A map f : Sn → Sn preserves hemispheres if f is cellular with respect to the
given CW structure, f(en

+) ⊂ en
+, and f(en

−) ⊂ en
−.

Proposition 2.4.18. For n ≥ 2, every map Sn → Sn is homotopic to a map
which preserves hemispheres.

Proof. Recall that we may identify
•
I n+1 with Sn via the homeomorphism

an+1 |: x �→ x/|x|. By the upper [resp. lower ] open hemisphere we mean the
set of points whose last coordinate is positive [resp. negative]; their closures are

closed hemispheres. We are given a map f1 :
•
I n+1 →

•
I n+1. Using the Cellular

Approximation Theorem with respect to various CW complex structures, we
will obtain a map homotopic to f1 which preserves hemispheres.

Define

U+ := {(x1, . . . , xn+1) ∈
•
I n+1 | xn+1 > −1

2
}

U− := {(x1, . . . , xn+1) ∈
•
I n+1 | xn+1 <

1

2
}.

By 2.4.13 there exists k such that every cell of the subdivision
•
I n+1

k lies in
f−1
1 (U+) or f−1

1 (U−).
Let φ : I1 → I1 be the piecewise linear map which fixes 0, 1 and −1, which

takes ± 1
2 to 0, and which is affine on [−1,− 1

2 ], [− 1
2 , 1

2 ], [12 , 1]. The homotopy

G :
•
I n+1

k ×I →
•
I n+1

k which takes (x1, . . . , xn+1, t) to (x1, . . . , xn, (1−t)xn+1+
tφ(xn+1)) has the property that G0 = id, G1(U+) lies in the upper closed
hemisphere, and G1(U−) lies in the lower closed hemisphere. Let f2 = G1 ◦f1.
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Then f2 takes each n-cell of
•
I n+1

k into either the upper or the lower closed
hemisphere.

We now regard f2 as a map
•
I n+1

k → Sn. Here, Sn has one vertex, one
(n − 1)-cell (which is Sn−1), and the two closed hemispheres as n-cells. By
1.4.3 and 1.4.4, f2 is homotopic to a cellular map f3 which maps the (n− 1)-

skeleton of
•
I n+1

k into Sn−1 and which maps each n-cell of
•
I n+1

k into one of
the closed hemispheres.

Let en
1 , . . . , en

m be the n-cells of
•
I n+1

k which are not mapped into Sn−1

by f3. Pick xi ∈
◦
e n

i such that f3(xi) /∈ Sn−1. Pick yi in the upper [resp.

lower] open hemisphere of
•
I n+1 iff f3(xi) is in the upper [resp. lower] open

hemisphere of Sn, and such that y1, . . . , ym are distinct. By 2.4.15, there is a

homeomorphism k :
•
I n+1 →

•
I n+1, homotopic to id, taking xi to yi for all i.

Let Vi ⊂
◦
e n

i be an open neighborhood of xi such that k(Vi) is entirely in the

open hemisphere of
•
I n+1 containing yi. See Fig. 2.2. By 2.4.14, f3 is homotopic

to a map f4 :
•
I n+1 → Sn such that, for 1 ≤ i ≤ m, f4(e

n
i − Vi) = f4(

•
e n

i ) ⊂

Sn−1, f4(e
n
i ) = f3(e

n
i ), while f4 = f3 outside

m⋃
i=1

en
i . Since k is homotopic to

id, so is k−1, hence f4 is homotopic to f5 := f4 ◦ k−1. If yi is in the upper
[resp. lower] open hemisphere, then f5 maps the neighborhood k(Vi) of yi into

the upper [resp. lower] open hemisphere of Sn. f5 maps
•
I n+1 −

m⋃
i=1

k(Vi) into

Sn−1. Thus f5 preserves hemispheres. �

i
V

k (V  )
i

i
y

x

.

i

3

.

. i
f   (x   )

Fig. 2.2.

Proof (of Theorem 2.4.5 (concluded)). Let f : Sn → Sn be a map. By 2.4.18,
it may be assumed that f preserves hemispheres. Let g : Sn−1 → Sn−1 be the
restriction of f . Then for each x ∈ Sn, (Σg)(x) and f(x) are not diametrically
opposite points of Sn. Thus the line segment in Rn+1, {ωt(x) := (1−t)Σg(x)+
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tf(x) | 0 ≤ t ≤ 1}, does not contain 0. The map (x, t) → ωt(x)/|ωt(x)| is
a homotopy from Σg to f . By induction, g is homotopic to Σn−2h where
h : S1 → S1 is a map. By 2.4.9 and 2.4.10, h is homotopic to f1,d for some d.
Thus f � Σn−1h � Σn−1f1,d =: fn,d. �

From the definition of degree one deduces:

Theorem 2.4.19. (Product Theorem for Degree) Let f, g : Sn → Sn be
maps, n ≥ 0. Then deg(g ◦ f) = deg(g)· deg(f). �

Corollary 2.4.20. A homotopy equivalence f : Sn → Sn has degree ±1. �

Together with 2.4.4 and 2.4.5, this corollary implies that a homeomorphism
h : Sn → Sn is homotopic either to idSn = fn,1 or to the homeomorphism
fn,−1. If the former, h is orientation preserving ; if the latter h is orientation
reversing. (For this to make sense when n = 0, define f0,−1 to be the map
which interchanges the two points of S0.)

There is another important theorem concerning degree, the Sum Theorem.
For this we need the notion of the “wedge” of a family of spaces. If X is a
space and x ∈ X , we write (X, x) for the pair (X, {x}), we call (X, x) a pointed

space6, and we call x the base point . The wedge
∨
α

Xα of a family {(Xα, xα)}

of pointed spaces is the quotient space
∐
α∈A

Xα/∼ where ∼ identifies all the

base points xα. The wedge is also called the one-point union. The point of∨
α

Xα corresponding to the equivalence class of {xα} is the wedge point . If

each Xα is a CW complex and if for all α the point xα is a vertex of Xα, then∨
α∈A

Xα acquires a quotient CW complex structure as in 1.2.22. The wedge

point is a vertex. When each Xα is an n-sphere,
∨
α

Xα is also called a bouquet

of n-spheres.
Let the base point v of Sn be (1, 0, . . . , 0). Then v ∈ S0 ⊂ S1 ⊂ . . ..

Consider
∨

α∈A
Sn

α where (Sn
α, vα) is a copy of (Sn, v) for each α. There are

canonical maps Sn
β

qβ←−−→
iβ

∨
α∈A

Sn
α for each β ∈ A; iβ is the inclusion of Sn

β as

the β-summand of the wedge; qβ is the identity of Sn
β and maps all other

summands to vβ ∈ Sn
β .

Exercises

1. Fill in the details in the proof of 2.4.2.

6 By a pointed CW complex we mean a pointed space (X, v) where X is a CW
complex and v is a vertex.
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2. In the definition of “suspension” prove that Σg is continuous when g is; and
that Σg1 and Σg2 are homotopic when g1 and g2 are.

3. Prove that homeomorphic CW complexes have the same dimension.
4. Describe a CW complex structure for Rn.
5. (for those who know category theory) Show that “wedge” is the category theoret-

ical coproduct in the category Pointed Spaces. What is the category theoretical
coproduct in the category Spaces?

2.5 Orientation and incidence number

Let en
α be an n-cell of a CW complex X . Recall that a characteristic map for

en
α is a map of pairs h : (Bn, Sn−1)→ (en

α,
•
e n

α) which maps Bn−Sn−1 homeo-

morphically onto
◦
e n

α = en
α−

•
e n

α. Two characteristic maps for en
α are equivalent

if they are homotopic (as maps of pairs). When n > 0, an equivalence class of
characteristic maps is called an orientation of en

α. An orientation of a 0-cell
is an assignment of 1 or −1 to that cell.

Our first task is to prove (2.5.2) that each cell of X admits exactly two
orientations. This is trivial when n = 0. From here until after the proof of
2.5.1, we assume n ≥ 1.

A characteristic map h : (Bn, Sn−1) → (en
α,

•
e n

α) induces a map h′ :

Bn/Sn−1 → en
α/

•
e n

α. Now en
α/

•
e n

α is obviously homeomorphic to Xn/(Xn−◦
e n

α).
By 1.2.22, the latter is Hausdorff. The function h′ is a continuous bijection
(see Sect. 1.1). Since Bn is compact, so is Bn/Sn−1. We conclude that h′ is a
homeomorphism.

A special case of this occurs when Sn has a CW complex structure con-
sisting of one 0-cell and one n-cell (see 1.2.16). Thus Bn/Sn−1 is homeo-
morphic to Sn. WE PICK, ONCE AND FOR ALL, A HOMEOMORPHISM
kn : Bn/Sn−1 → Sn so that we may pass back and forth unambiguously be-
tween these two standard spaces. Later in this section (see Convention 2.5.16)
we will be more specific about this choice.

If h1 and h2 are two characteristic maps for en
α, where n ≥ 1, we have a

homeomorphism kn ◦ (h′
2)

−1 ◦h′
1 ◦ k−1

n : Sn → Sn. By 2.4.20, its degree is ±1.
Thus it is homotopic either to idSn or to the canonical homeomorphism fn,−1

of degree −1.

Theorem 2.5.1. Let n ≥ 1, and let en
α be a cell of X. Let h1, h2 be charac-

teristic maps of en
α. Then h1 and h2 are equivalent iff kn ◦ (h′

2)
−1 ◦ h′

1 ◦ k−1
n

has degree 1.

The proof is given after that of Lemma 2.5.5.

Corollary 2.5.2. Each cell of a CW complex admits exactly two orientations.

If n ≥ 1 and if h : (Bn, Sn−1) → (en
α,

•
e n

α) determines an orientation of en
α,

then h◦r determines the other orientation, where r : (Bn, Sn−1)→ (Bn, Sn−1)
is the map (x1, . . . , xn) �→ (−x1, x2, x3, . . . , xn).
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Proof. First, we observe that r |: Sn−1 → Sn−1 is not homotopic to id. For n =
1, this is obvious. For n > 1, consider the homeomorphism t12 : Sn−1 → Sn−1

(x1, x2, x3, . . . , xn) �→ (x2, x1, x3, . . . , xn). By 2.4.3, r |= t−1
12 ◦ fn−1,−1 ◦ t12. If

r | were homotopic to id, then fn−1,−1 would be homotopic to id (conjugating
the homotopy by t12), which is false by 2.4.4.

It follows that r : (Bn, Sn−1) → (Bn, Sn−1) is not equivalent to (i.e.,

pairwise homotopic to) the identity map. Clearly (h◦ r)′ : Bn/Sn−1 → en
α/

•
e n

α

is the composition h′ ◦ r′. So kn ◦ (h′)−1 ◦ (h◦ r)′ ◦k−1
n = kn ◦ r′ ◦k−1

n , and this
map does not have degree 1. Thus h and h◦ r determine different orientations
of en

α. By 2.5.1, every orientation is given by one of these. �

The proof of 2.5.1 depends on some lemmas.

Lemma 2.5.3. Let n ≥ 1. Let a = (0, . . . , 0, 1) ∈ Sn and b = (0, . . . , 0,−1) ∈
Sn. Let en

+ and en
− be the closed upper and lower hemispheres, respectively.

Let f, g : Sn → Sn be maps such that a �∈ f(en
−)∪g(en

−) and b �∈ f(en
+)∪g(en

+).
If f and g have the same degree, then f | � g| : Sn−1 → Sn − {a, b}.

Proof. We consider f and g as maps (Sn, Sn−1)→ (Sn, Sn−{a, b}). As in the
first part of the proof of 2.4.18, f and g are (pairwise) homotopic to maps f ′

and g′ which preserve hemispheres, hence, as in the proof of 2.4.5, to suspen-
sions Σf ′′ and Σg′′, where f ′′, g′′ : Sn−1 → Sn−1. These homotopies restrict
to homotopies Sn−1× I → Sn−{a, b}. So f | � inclusion ◦ f ′′ and g| � inclu-
sion ◦ g′′ (as maps Sn−1 → Sn − {a, b}). Now degree(f ′′) = degree(Σf ′′) =
degree(f) = degree(g) = degree(Σg′′) = degree(g′′). So f ′′ � g′′, by 2.4.5,
hence f | � g|. Note that, while 2.4.18 is false for n = 1, the part of the proof
used here works for n = 1. �

Corollary 2.5.4. Let f, g : (Bn, Sn−1) → (en
α,

•
e n

α) be characteristic maps

inducing f ′, g′ : Bn/Sn−1 → en
α/

•
e n

α. For t ∈ (0, 1), let At be the annulus

{x ∈ Bn | t < |x| < 1} and let St = {x ∈ Bn | |x| = t}. Let z ∈ ◦
e n

α.

If there exists t such that f(At) ∪ g(At) ⊂
◦
e n

α − {z}, and if f ′ � g′, then
f | � g |: St → en

α − {z}.

Proof. Since Bn/Sn−1 and en
α/

•
e n

α are homeomorphic to Sn, the result follows

from 2.5.3. In fact, f | � g | as maps from St to
◦
e n

α − {z}. �

Lemma 2.5.5. Let z ∈ ◦
e n

α, let f and g be two maps (Sn−1×I, Sn−1×{1})→
(en

α − {z},
•
e n

α), and let H : Sn−1 × {0} × I → en
α − {z} be a homotopy from

f | Sn−1 × {0} to g | Sn−1 × {0}. Then there is a homotopy K : (Sn−1 × I ×
I, Sn−1 × {1} × I)→ (en

α − {z},
•
e n

α) from f to g extending H.

Proof. The map (Sn−1 × {0} × I) ∪ (Sn−1 × I × {0, 1}) → en
α − {z}, which

agrees with H on Sn−1 × {0} × I, with f on Sn−1 × I × {0} and with g on
Sn−1 × I × {1}, extends, by 1.3.15, to a map L : Sn−1 × I × I → en

α − {z}.
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The set
◦
e n

α−(image of L) =: U is a neighborhood of z in
◦
e n

α. By 2.4.14, there

is a homotopy D : X × I → X such that D0 = id, Dt = id on X − ◦
e n

α

for all t, and D1(e
n
α − U) ⊂ •

e n. Define M : Sn−1 × I × I → en
α − {z} by

M(x, s, t) = L(x, s, 2t) if 0 ≤ t ≤ 1
2 and by M(x, s, t) = D2t−1(L(x, s, 1)) if

1
2 ≤ t ≤ 1. It is a matter of planar geometry to construct a homeomorphism
h : I × I → I × I agreeing with id on I ×{0}, taking (0, t) to (0, 2t) and
(1, t) to (1, 2t) when 0 ≤ t ≤ 1

2 , and taking the rest of frR2(I × I) into I×{1}.
The required K is M ◦ h−1. �

Proof (of 2.5.1). “Only if” is obvious. We prove “if”. By the hypothesis and

2.4.5 h′
1 � h′

2 : Bn/Sn−1 → en
α/

•
e n

α. Let z ∈ ◦
e n

α. There exists t ∈ (0, 1) such

that At is mapped into
◦
e n

α − {z} by h1 and by h2. By 2.5.4, there exists
H : St × I → en

α − {z} such that H0 = h1 | St and H1 = h2 | St. Therefore,
by 2.5.5 and 1.3.17, h1 � h2. �

An oriented CW complex is a CW complex X together with a choice of
orientation on each cell. If A is a subcomplex of X , it is understood to be
given the inherited orientation (each cell oriented as in X): we call (X, A)
an oriented CW pair . A quotient complex X/∼, as in Sect. 1.2, is given the
quotient orientation: the vertices {Aα} are oriented by +1; all other cells
receive their orientation via the quotient map X → X/∼.

Let X be an oriented CW complex, en
α an n-cell and en−1

β an (n− 1)-cell.

First, assume n ≥ 2. Choose characteristic maps hα : (Bn, Sn−1) → (en
α,

•
e n

α)

and hβ : (Bn−1, Sn−2)→ (en−1
β ,

•
e n−1

β ) representing the orientations. Consider
the commutative diagram:

Xn−1

��

�� � �en−1
β

��

�� hβ

Bn−1

��•
e n

α

inclusion

�����������������
sαβ

�� Xn−1/(Xn−1 − ◦
e n−1

β ) �� rβ
en−1

β /
•
e n−1

β
��

h′
β

Bn−1/Sn−2

kn−1

��
Sn−1

hα|
��

Sn−1

Here rβ is induced by inclusion and is clearly a homeomorphism. Unmarked
arrows are quotient maps. sαβ is the indicated composition, and kn−1 is as
before. Since h′

β is a homeomorphism, we obtain a map

kn−1 ◦ (h′
β)−1 ◦ r−1

β ◦ sαβ ◦ hα |: Sn−1 −→ Sn−1

whose degree, denoted by [en
α : en−1

β ], is the incidence number of the oriented

cells en
α and en−1

β . One should think of it as the (algebraic) number of times

en
α is attached to en−1

β . By 2.5.1 we have:
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Proposition 2.5.6. For n ≥ 2, the definition of [en
α : en−1

β ] depends on the
orientations but not on the specific maps hα and hβ. �

Note that the definition of [en
α : en−1

β ] also depends on kn−1. Indeed, the
homeomorphisms {kn | n ≥ 1} have been chosen once and for all. We will say
more about how we want them to have been chosen later (see 2.5.16).

We now extend the definition of incidence number to the case n = 1.
Given an oriented 1-cell e1

α and a 0-cell e0
β oriented by ε ∈ {±1}, choose

a characteristic map hα : (B1, S0) → (e1
α,

•
e 1

α) representing the orientation.
Define the incidence number [e1

α : e0
β ] by:

[e1
α : e0

β] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε if hα(1) = e0
β and hα(−1) �= e0

β

−ε if hα(1) �= e0
β and hα(−1) = e0

β

0 if hα(1) = hα(−1) = e0
β

0 if hα(1) �= e0
β and hα(−1) �= e0

β .

Clearly we have:

Proposition 2.5.7. The definition of [e1
α : e0

β] depends only on the orienta-
tions. �

Proposition 2.5.8. Let en
α and en−1

β be (oriented) cells, n ≥ 1. If en−1
β is not

a subset of en
α, then [en

α : en−1
β ] = 0.

Proof. When n ≥ 2, the map Sn−1 → Sn−1 whose degree defines [en
α : en−1

β ]
is not surjective, so, by 1.3.4 and 1.3.7, it is homotopic to a constant map. By
2.4.3 its degree is 0. When n = 1, the Proposition is obvious. �

We say eβ is a face of eα if eβ ⊂ eα.
Now we turn to numbers associated with maps. Let X and Y be oriented

CW complexes, and let f : X → Y be a map such that, for some n, f(Xn) ⊂
Y n and f(Xn−1) ⊂ Y n−1; of course cellular maps have this property for all
n. For each en

α in X and ẽn
β in Y we wish to define an integer [en

α : ẽn
β : f ]

measuring the (algebraic) number of times f maps en
α onto ẽn

β . First, let n ≥ 1
and consider the commutative diagram:

Bn
hα ��

��

en
α

f | ��

��

Y n �� � �

��

ẽn
β
�� h̃β

��

Bn

��
Bn/Sn−1

h′
α

��

kn

��

en
α/

•
e n

α f ′
αβ

�� Y n/(Y n −
◦
ẽ n

β) �� rβ
ẽn

β/
•
ẽ n

β
��

h̃′
β

Bn/Sn−1

kn

��
Sn Sn.
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Here ẽn
β is a cell of Y ; h̃β is a characteristic map defining the orientation; f ′

αβ

is induced by f , and is well defined since f(Xn, Xn−1) ⊂ (Y n, Y n−1); rβ is a
homeomorphism as before. Let [en

α : ẽn
β : f ] be the degree of the map

kn ◦ (h̃′
β)−1 ◦ r−1

β ◦ f ′
αβ ◦ h′

α ◦ k−1
n : Sn → Sn.

For the case n = 0, let e0
α ⊂ X have orientation ε and let ẽ0

β ⊂ Y have

orientation ε̃. Define [e0
α : ẽ0

β : f ] = εε̃ if f(e0
α) = ẽ0

β, and [e0
α : ẽ0

β : f ] = 0
otherwise. From 2.5.1 we conclude:

Proposition 2.5.9. The definition of [en
α : ẽn

β : f ] depends only on the orien-
tations. �

As with 2.5.8 we have:

Proposition 2.5.10. Let en
α and ẽn

β be oriented n-cells of X and Y respec-
tively. If ẽn

β is not a subset of f(en
α) then [en

α : ẽn
β : f ] = 0. �

The number [en
α : ẽn

β : f ] is called the mapping degree of f with respect to
en

α and ẽn
β .

Next, we discuss product orientations. Let X and Y be oriented CW com-
plexes. We define the product orientation on the CW complex X × Y by
specifying an orientation for each em

α × ẽn
β where em

α , ẽn
β are cells of X and Y

respectively: (i) if m > 0 and n > 0, and if hα : (Im,
•
I m) → (em

α ,
•
e m

α ) and

h̃β : (In,
•
I n) → (ẽn

β ,
•
ẽn

β) are characteristic maps defining the separate orien-

tations, em
α × ẽn

β is to be oriented by hα× h̃β . (ii) If m > 0 and n = 0, so that

ẽ0
β = {yβ}, if hα orients em

α , and if 1 orients ẽ0
β , then em

α × ẽ0
β is to be oriented

by the map Im → em
α × ẽ0

β, x �→ (hα(x), yβ); if −1 orients ẽ0
β, the opposite

orientation is to be used. (iii) If m = 0 and n > 0, the rule of orientation is
similar to that given in (ii). (iv) If m = 0 = n, with e0

α oriented by ε, and ẽ0
β

oriented by ε̃, then e0
α × ẽ0

β is to be oriented by εε̃.
We can use this to define a preferred orientation on the CW complex In as

follows: when n = 0, the canonical orientation is 1; when n = 1, the canonical
orientation on I1 (with two vertices and one 1-cell) is: 1 on each vertex, and
(the equivalence class of) id : I1 → I1 on the 1-cell. The canonical orientation
on In is then defined inductively to be the product orientation on In−1 × I1.
We leave the proofs of the next two statements to the reader:

Proposition 2.5.11. If In is factorized as Ir × Is, and each factor carries
the canonical orientation, then the product orientation on Ir × Is coincides
with the canonical orientation on In. �

Proposition 2.5.12. Let r ≥ 1. Let e be the r-cell of In obtained by con-
straining the ij

th coordinate to be εj ∈ {1,−1}, for 1 ≤ j ≤ n − r. Let the
remaining r coordinates be indexed by p1 < p2 < . . . < pr. The canonical
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orientation on e is given by the characteristic map (Ir,
•
I r) → (e,

•
e) taking

(x1, . . . , xr) to (y1, . . . , yn) where yij
= εj for 1 ≤ j ≤ n− r and ypj

= xj for
1 ≤ j ≤ r. �

Proposition 2.5.13. Let ri :
•
I n →

•
I n be the homeomorphism (x1, . . . , xn) �→

(x1, . . . , xi−1,−xi, xi+1, . . . , xn). Then ri is orientation reversing.

Proof. If n = 1, this is obvious. Next, let n = 2 and i = 1, let Mt be the

matrix
[

cos(tπ) sin(tπ)
sin(tπ) − cos(tπ)

]
, and let an : In → Bn be the homeomorphism given

in Sect. 1.2. Then a−1
2 Ma2 |

•
I 2 gives a homotopy from a−1

2 f1,−1a2 to r1.
For all other cases, embed this matrix in the appropriate n × n matrix. (For
another proof, adapt the first paragraph of the proof of 2.5.2.) �

Now we discuss the incidence numbers of In with its (n− 1)-dimensional
faces. For ε = ±1, let Fi,ε be {(x1, . . . , xn) ∈ In | xi = ε}. Each Fi,ε is an
(n− 1)-cell of In. All cells are canonically oriented.

Proposition 2.5.14. [In : Fi,1] = −[In : Fi,−1].

Proof. This is clear when n = 1. Assume n ≥ 2. Recall our permanent choice
of homeomorphism, an, for identifying In with Bn; see Sect. 1.2. Consider the
following commutative diagram:

Sn−1
a−1

n | �� •
I n

bn ��

ri

��

•
I n/(

•
I n −

◦
F i,1)

��
∼=

Fi,1/
•
F i,1

Fi,1

����������

In−1

hi,1

��������������

hi,−1�����
���

���
��
�

��
In−1/

•
I n−1

kn−1

∼=
��

∼= h′
i,−1

��

∼= h′
i,1

��

Sn−1

Fi,−1

����
��
��
��

Sn−1
a−1

n | �� •
I n cn

�� •I n/(
•
I n −

◦
F i,−1)

��
∼= Fi,−1/

•
F i,−1

Here, hi,ε : In−1 → Fi,ε is the canonical characteristic map
(x1, . . . , xn−1) �→ (x1, . . . , xi−1, ε, xi+1, . . . , xn−1) of Fi,ε, given by 2.5.12, and
ri is as in 2.5.13. All other arrows are the obvious quotients or inclusions or
are induced by such. By 2.5.13, ri is orientation reversing.
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The required incidence numbers are the degrees of f and g where f [resp.
g] is the composition of maps leading from the top left [resp. bottom left] copy
of Sn−1 to the right copy of Sn−1. Note that f = g ◦ (an ◦ ri ◦a−1

n ). By 2.5.13,
ri has degree −1. So, by 2.4.19, deg(f) = −deg(g). �

Proposition 2.5.15. The maps bn and cn in the above diagram are homotopy
equivalences. Hence the incidence numbers in 2.5.14 are ±1.

Proof. Let en(t) = {x ∈ Sn | t ≤ xn+1 ≤ 1}. The space en(0) is the upper
closed hemisphere, while en(1) = {north pole}. The reader can easily con-
struct a homotopy H : Sn × I → Sn such that H0 = id, Ht(e

n(0)) = en(t),
and Ht maps Sn − en(0) bijectively onto Sn − en(t), for all t. The map H1 is
a quotient map (see Sect. 1.1), and since H1 � id, H1 is a homotopy equiv-
alence. Clearly this implies that bn and cn are homotopy equivalences. The
second part then follows from 2.4.20. �

Proposition 2.5.14 makes a relative statement about incidence numbers.
But even though we know, by 2.5.15, that these incidence numbers are ±1, we
cannot say which is which (when n ≥ 2) until we specify the homeomorphism
kn−1 which “was chosen once and for all” earlier in this section. In fact we
are only making our choice now:

Convention 2.5.16. For n ≥ 2, the canonical homeomorphism
kn−1 : Bn−1/Sn−2 → Sn−1 is to be chosen to make [In : Fn,1] = (−1)n+1.

Proposition 2.5.17. [In : Fi,1] = (−1)i+1. Hence7 [In : Fi,−1] = (−1)i.

Proof. This is clear when n = 1. Assume n ≥ 2. The orientation on Fn,1 is
given by In−1 → Fn,1, (x1, · · · , xn−1) �→ (x1, · · · , xn−1, 1); and the orientation
on Fn−1,1 is In−1 → Fn−1,1, (x1, · · · , xn−1) �→ (x1, · · · , xn−2, 1, xn−1). Let
h : In → In be the restriction of the linear automorphism of Rn which is
the identity in all but the last two coordinates and is given by the matrix

[ 0 1
1 0 ] in those coordinates. Then h is orientation reversing on

•
I n (compare the

proof of 2.5.13) but matches up the above orientations on the (n − 1)-faces.
By considering the diagram defining incidence numbers, one sees that this
implies [In : Fn−1,1] = −[In, Fn,1]. The conclusion follows, by induction, from
2.5.14, 2.5.15 and 2.5.16. �

We now interpret the incidence number [en
α : en−1

β ] and the mapping degree
[en

α : ẽn
γ : f ] homologically, where f : X → Y is a cellular map of oriented CW

complexes. It is to be understood that singular homology is taken with Z-
coefficients. We saw in Sect. 2.3 that the coefficient of h̄β∗(λn−1) in ∂h̄α∗(λn)
is the image of 1 under a certain homomorphism Z → Z. We wish to claim

7 The choice in 2.5.16 which leads to the incidence numbers stated in 2.5.17 is not
a universal convention. For example, choices used in [42] lead to [In : Fi,1] =
(−1)n−i.
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that this integer is precisely the incidence number [en
α : en−1

β ]. However, for
this to be true some further once-and-for-all choices must be made correctly.

By an easy exercise in singular homology using excision as outlined in Sect.
2.2, there are canonical isomorphisms

H∆
n (Bn, Sn−1)

∼= ��H∆
n (Bn/Sn−1, v) ��

∼=
H∆

n (Bn/Sn−1)
kn∗ ��H∆

n (Sn)

when n ≥ 1. Let κn ∈ H∆
n (Sn) be the image of the generator λn ∈

H∆
n (Bn, Sn−1) under this composition of isomorphisms. We also have a ho-

momorphism ∂∗ : H∆
n (Bn, Sn−1)→ H∆

n−1(S
n−1) which is an isomorphism for

n ≥ 2 and a monomorphism when n = 1; see 2.2.1. Indeed, the image of λ1

under ∂∗ : H∆
1 (B1, S0) → H∆

0 (S0) ∼= Z ⊕ Z is the homology class of the sin-
gular 0-cycle ±({1} − {−1}), with the + or − depending on which generator
of H∆

1 (B1, S0) has been chosen as λ1.
Now we make our choices. Let κ0 ∈ H∆

0 (S0) be the homology class of
{1}− {−1}. Define the generators λn ∈ H∆

n (Bn, Sn−1) and κn ∈ H∆
n (Sn) by

H∆
0 (S0) �� �� H∆

1 (B1, S0)
∼= �� H∆

1 (S1) ��
∼=

H∆
2 (B2, S1)

∼= �� H∆
2 (S2) �� · · ·

κ0 �� �
λ1

� �� κ1 �� �
λ2

� �� κ2 �� � · · ·

This specifies λn, n ≥ 1, for the first time. We also define λ0 ∈ H∆
0 (B0) to be

the homology class of the singular 0-cycle {0}. With these choices we get:

Proposition 2.5.18. The coefficient of h̄β∗(λn−1) in ∂h̄α∗(λn) is the inci-
dence number [en

α : en−1
β ].

Proof. We leave the case n = 1 as an exercise. For n ≥ 2 the claim can be
read off from the following commutative diagram of singular homology groups
(∆’s omitted):

Hn(Bn, Sn−1) ��

∂∗

��

Hn(en
α,

•

e n
α) ��

∂∗

��

Hn(Xn, Xn−1)

∂∗

��
Hn−1(Sn−1) �� Hn−1(

•

e n
α) �� Hn−1(Xn−1, Xn−2)

��

��
∼=

⊕

γ

Hn−1(e
n−1
γ ,

•

e
n−1
γ )

projection��
Hn−1(Xn−1, Xn−1

−

◦

e n−1
β

)

∼=
��

�� Hn−1(en−1
β

,
•

e n−1
β

) ��

∼=
��

Hn−1(Bn−1, Sn−2)

��

�� Hn−1(Sn−1)

Hn−1(Xn−1/Xn−1
−

◦

e n−1
β

) �� Hn−1(en−1
β

/
•

e n−1
β

) �� Hn−1(Bn−1/Sn−2).

������������

The point here is that, by our choices, λn �→ κn−1 on the left and λn−1 �→
κn−1 on the right. �
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Similarly, one proves (exercise):

Proposition 2.5.19. The coefficient of h̄β∗(λn) in f#(h̄α∗(λn)) is the map-
ping degree [en

α : ẽn
β : f ]. �

Exercises

1. Let X and Y be oriented CW complexes. Give X × Y the product orientation.
Prove
(a) [en

α × ẽm
γ : en−1

β × ẽm
γ ] = [en

α : en−1
β ]

(b) [en
α × ẽm

γ : en
α × ẽm−1

δ ] = (−1)n[ẽm
γ : ẽm−1

δ ]
2. Prove 2.5.19.
3. Prove the n = 1 case of 2.5.18.

2.6 The geometric cellular chain complex

In Sect. 2.3 we defined Cn(X ; R) to be H∆
n (Xn, Xn−1; R) and we called its

elements “cellular chains.” There is a more geometrical way of defining cellular
chains which (this author believes) gives more insight into what homology is
about; we have been preparing for this in the last two sections. Temporarily
we will call the new chains “geometric cellular chains” but we will drop this
distinction (and the “geom” superscript) after this section.

For X an oriented CW complex and n ≥ 0 define Cgeom
n (X ; R) to be

the free R-module generated by the set of (already oriented) n-cells8 of X .
For n < 0, define Cgeom

n (X ; R) to be the trivial R-module 0. Elements of
Cgeom

n (X ; R) are called cellular n-chains in X (over R).
There is a canonical ring homomorphism Z → R taking 1 ∈ Z to 1 ∈ R.

If n ∈ Z we also denote its image in R by n. This applies, in particular, to
incidence numbers and mapping degrees in what follows. In the context of
R-coefficients they are interpreted as elements of R.

For n ≥ 1, define ∂ : Cgeom
n (X ; R)→ Cgeom

n−1 (X ; R) by

∂(en
α) =

∑
β

[en
α : en−1

β ]en−1
β

8 Because of potential confusion, we spell this out. Each n-cell en
α of X has been

equipped with an orientation at the start. When n ≥ 1, this orientation is the

homotopy class [h] of some characteristic map h : (Bn, Sn−1) → (en
α,

•
e n

α). The
ordered pair (en

α, [h]) is a generator of Cn(X; R). If [h ◦ r] is the other orientation
of en

α (see 2.5.2), the ordered pair (en
α, [h ◦ r]) is not in Cn(X; R). Similar remarks

apply to the case n = 0. Thus, although there is a bijection between the n-cells
of X and the generators of Cn(X; R), it can be misleading to think of Cn(X; R)
as simply the free R-module generated by the set of n-cells.
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where α and β index the n-cells and (n− 1) cells, respectively. This is a finite
sum. For n ≤ 0, define ∂ = 0.

Define φ : Cgeom
n (X ; R) → Cn(X ; R) to be the canonical extension of the

function en
α �→ h̄α∗(λn). By 2.3.8 φ is an isomorphism. The discussion at the

end of the last section then shows that the following diagram commutes:

Cgeom
n (X ; R)

φ ��

∂

��

Cn(X ; R)

∂

��
Cgeom

n−1 (X ; R)
φ �� Cn−1(X ; R)

Thus (Cgeom
n (X ; R), ∂) is a chain complex and is canonically chain isomorphic

to (Cn(X ; R), ∂) as defined in Sect. 2.3.
If f : X → Y is a cellular map between oriented CW complexes, define

f# : Cgeom
n (X ; R)→ Cgeom

n (Y ; R) by

f#(en
α) =

∑
β

[en
α : ẽn

β : f ]ẽn
β.

By 2.5.19 the following diagram commutes

Cgeom
n (X ; R)

φ ��

f#

��

Cn(X ; R)

f#

��
Cgeom

n (Y ; R)
φ �� Cn(Y ; R)

Thus f# is a chain map.

Theorem 2.6.1. (Sum Theorem for Degree) Let n ≥ 1 and let

Sn F−→
∨

α∈A
Sn

α
G−→ Sn

be maps. The degree of G ◦ F is
∑
α∈A

deg (G ◦ iα ◦ qα ◦ F ).

Proof. We use the CW structures with one vertex and one n-cell for each
sphere. We have deg(G ◦ iα) = [Sn

α : Sn : G] and deg(qα ◦ F ) = [Sn : Sn
α : F ].

By 2.4.19 ∑
α

deg(G ◦ iα ◦ qα ◦ F ) =
∑
α

[Sn
α : Sn : G][Sn : Sn

α : F ].

At the level of cellular chains we have:

(G ◦ F )#(Sn) =
∑
α

[Sn
α : Sn : G][Sn : Sn

α : F ]Sn.

Thus deg(G ◦ F ) is as claimed. �
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In the exercises, the reader is asked to provide direct proofs of: ∂ ◦ ∂ = 0,
f# ◦ φ = φ ◦ f# and (g ◦ f)# = g# ◦ f# using the definitions of this section
as well as basic facts about degree (Sect. 2.4) and singular homology (Sect.
2.2). These are instructive in that they show why it is not easy, perhaps
impossible, to give a self-contained treatment of cellular homology from the
geometric viewpoint – one which completely avoids singular homology.

We have now reached our goal of defining cellular homology in terms of
oriented cells, incidence numbers and mapping degrees. In the rest of the
chapter we establish the basic properties of homology in these terms AND
WE DROP THE DISTINCTION BETWEEN Cgeom

n (X ; R) AND Cn(X ; R).

Historical Note: Cellular homology as described in Sect. 2.3 was introduced
by N. Steenrod in lectures and was popularized as an appendix to [Milnor-2] which
circulated widely as a preprint for many years before it was published as a book.
The geometric treatment preferred here in Sect. 2.6 (and throughout this book) is
folklore.

Exercises

1. Prove: ∂(Im × In) = (∂Im) × In + (−1)m(Im × ∂In).

Prove the following from the definitions given in this section, without using the
equivalent formulation in Sect. 2.3:

2. The composition Cn+1(X; Z)
∂ ��Cn(X; Z)

∂ ��Cn−1(X; Z) is zero, where
X is an oriented CW complex.

3. If f : X → Y is a cellular map between oriented CW complexes, then ∂ ◦ f# =
f# ◦ ∂.

4. If X
f ��Y

g ��Z are cellular maps between oriented CW complexes, then
(g ◦ f)# = g# ◦ f# and id# = id. Hint : Use 2.6.1.

5. If f : X → Y is homotopic to a constant map then f# : Hn(X; R) → Hn(Y ; R)
is the zero homomorphism when n > 0.

2.7 Some properties of cellular homology

We begin with some properties whose proofs are exercises:

Proposition 2.7.1. If X is path connected, H0(X ; R) ∼= R. �

Proposition 2.7.2. If {Xα | α ∈ A} is the set of path components of X, then

each Xα is a subcomplex of X, X =
∐
α

Xα, and Hn(X ; R) is isomorphic to

⊕
α
Hn(Xα; R) for all n. In particular, H0(X ; R) is a free R-module whose rank

is the cardinal number of A. �
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Corollary 2.7.3. The homology of the one-point CW complex, {v}, is as fol-
lows: H0({v}; R) ∼= R; Hn({v}; R) = 0 for n > 0. �

Proposition 2.7.4. Let 〈W | R, ρ〉 be a presentation of the group G :=
F/N(ρ(R)), and let X be the 2-dimensional CW complex constructed in Exam-
ple 1.2.17. Then, for any choice of orientations on X, H1(X ; Z) is isomorphic
to the abelianization of G, G/[G, G]. �

The last proposition shows how incidence number is related to the notion
of exponent sum in a group relation.

Proposition 2.7.5. If X has dimension d, then Hn(X ; R) = 0 for all n > d.
�

Proposition 2.7.6. If i : Xn+1 ↪→ X, then i∗ : Hj(X
n+1; R)→ Hj(X ; R) is

an isomorphism for j ≤ n and an epimorphism for j = n + 1. �

Proposition 2.7.7. If X has finite type and R is a PID then Hn(X ; R) is
finitely generated for each n.

Proof. Since R is a PID the modules of cycles are (free and) finitely generated.
�

Now we turn to homotopy invariance; it is particularly easy to understand
in the geometric cellular chain complex.

Let f, g : X → Y be cellular maps between oriented CW complexes. We
wish to show that if f � g then f∗ = g∗ : Hn(X ; R) → Hn(Y ; R). By 1.4.3,
there is a cellular homotopy F : X×I → Y from f to g. We regard I as a CW
complex having two vertices and one 1-cell; it carries the canonical orienta-

tion: 1 on each vertex, and (the equivalence class of) (I1,
•
I 1) → (I, {0, 1}),

t �→ 1
2 (t + 1). We give X × I the product orientation.

By considering the definition of incidence number together with 2.5.8 and
2.5.17, the reader can check:

Proposition 2.7.8. If en−1
α and en−1

β are (n − 1)-cells of X, then we have

[en−1
α × I : en−1

β × {j}] = (−1)n+jδαβ. If en−2
γ is an (n − 2)-cell of X, then

[en−1
α × I : en−2

γ × I] = [en−1
α : en−2

γ ]. �

A chain c ∈ Cn(X ; R) has the form
∑
α∈A

mαen
α where A indexes the n-cells

of X , and only finitely many mα’s are non-zero. Define c×I =
∑
α∈A

mα(en
α×I) ∈

Cn+1(X × I; R).

Corollary 2.7.9. ∂(c× I) = (−1)n+1(c× {0} − c× {1}) + (∂c)× I. �
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Recall that Zn(Y ) = ker(∂ : Cn(Y ; R)→ Cn−1(Y ; R)) is the R-module of
n-cycles, Bn(Y ; R) = image(∂ : Cn+1(Y ; R)→ Cn(Y ; R)) is the R-module of
n-boundaries , and Hn(Y ; R) = Zn(Y ; R)/Bn(Y ; R). Cycles z, z′ ∈ Zn(Y ; R)
represent the same element of Hn(Y ; R) iff z − z′ ∈ Bn(Y ; R), in which case
z and z′ are homologous .

Theorem 2.7.10. (Homotopy Invariance) If f, g : X → Y are homotopic
cellular maps, then f∗ = g∗ : Hn(X ; R)→ Hn(Y ; R) for all n.

Proof. Let z ∈ Zn(X ; R) represent {z} ∈ Hn(X ; R). Then f∗({z}) = {f#(z)}
and g∗({z}) = {g#(z)}. We must show that f#(z) and g#(z) are homologous;
i.e., f#(z) − g#(z) ∈ Bn(Y ; R). By 1.4.3 there is a cellular homotopy F :
X × I → Y from f to g.

∂(F#(z × I)) = F#(∂(z × I))

= (−1)n+1(F#(z × {0})− F#(z × {1})) by 2.7.9

= (−1)n+1(f#(z)− g#(z)).

Thus f#(z)− g#(z) = ∂((−1)n+1F#(z × I)) ∈ Bn(Y ; R). �

By 1.4.3, every map is homotopic to a cellular map. If f : X → Y is a map
between oriented CW complexes, we can define f∗ : Hn(X ; R) → Hn(Y ; R)
by f∗ = g∗ where g is any cellular map homotopic to f . This is well defined
by 2.7.10. In fact, we can regard H∗( · ; R) as a covariant functor from the
category of oriented CW complexes and homotopy classes of maps to the
category of graded R-modules and homomorphisms of degree 0.

Corollary 2.7.11. If X and Y are oriented CW complexes and f : X → Y is
a homotopy equivalence, then f∗ : Hn(X ; R)→ Hn(Y ; R) is an isomorphism
for all n. �

Corollary 2.7.12. If X1 and X2 represent the same CW complex X oriented
in two different ways, then the identity map id : X1 → X2 induces an isomor-
phism H∗(X1)→ H∗(X2). �

In this sense, cellular homology is independent of the choices of orientation
on cells. So from now on we will mention an orientation only when discussing
chains.

Corollary 2.7.13. If the space X admits two CW complex structures X1 and
X2, these yield isomorphic homology groups.

Proof. The identity map idX is a homotopy equivalence X1 → X2. �

Our proof of Theorem 2.7.10 was direct. We showed that for any cycle z,
f#(z) and g#(z) differ by the boundary ∂(F#(z × I)). When we come to the
corresponding theorems for cohomology in Sect. 12.1, it will be helpful also
to have a slightly stronger statement:
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Proposition 2.7.14. Let F : X × I → Y be a cellular homotopy from f to
g. Define Dn : Cn(X) → Cn+1(Y ) by Dn(en

α) = (−1)n+1F#(en
α × I). Then

{Dn} is a chain homotopy between f# and g#.

Proof. We use the proof of 2.7.10 and 2.7.9 to get:

∂Dn(en
α) = (−1)n+1∂F#(en

α × I)

= (−1)n+1F#∂(en
α × I)

= F#(en
α × {0} − en

α × {1}) + (−1)n+1F#((∂en
α)× I)

= F#(en
α × {0} − en

α × {1})−Dn−1(∂en
α).

So ∂Dn(en
α) + Dn−1∂(en

α) = f#(en
α)− g#(en

α). �

We end with a generalization of homotopy equivalence which will be
needed later. A cellular map f : (X, A) → (Y, B) between CW pairs9 is
an n-equivalence if there is a cellular map g : (Y, B) → (X, A) such that
g ◦ f |: (Xn−1, An−1)→ (X, A) is homotopic to (Xn−1, An−1) ↪→ (X, A) and
f ◦ g |: (Y n−1, Bn−1)→ (Y, B) is homotopic to (Y n−1, Bn−1) ↪→ (Y, B). The
map g is an n-inverse for f .

It is straightforward to prove:

Proposition 2.7.15. An n-equivalence induces isomorphisms on homology
modules in dimensions ≤ n− 1. �

Exercise

Prove all the unproved statements in this section.

2.8 Further properties of cellular homology

Recall from Sect. 2.1 that whenever

0 −→ C ′ α−→C
β−→C ′′ −→ 0

is a short exact sequence of chain complexes, there is a connecting homomor-
phism ∂∗ : Hn(C′′)→ Hn−1(C

′) for each n, giving rise to an exact sequence

. . . −→ Hn(C′) α∗−→Hn(C)
β∗−→Hn(C′′) ∂∗−→Hn−1(C

′) α∗−→ . . . .

This purely algebraic fact can be used in several ways. Throughout this sec-
tion, let (X, A) be an oriented CW pair. There is a short exact sequence of
chain complexes

9 Some authors have a slightly different definition of n-equivalence.
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0 −→ C∗(A; R)
i#−→ C∗(X ; R)

p−→ C∗(X ; R)/C∗(A; R) −→ 0

where the boundary homomorphism on the quotient chain complex
{Cn(X ; R)/Cn(A; R)} is induced by the boundary on Cn(X ; R). The alterna-
tive notation C∗(X, A; R) is also used for this chain complex. The nth relative
cellular homology module of (X, A), denoted Hn(X, A; R), is the nth homology
module of the chain complex C∗(X ; R)/C∗(A; R). There results the homology
exact sequence of (X, A):

Proposition 2.8.1. The following sequence is exact:

. . . −→ Hn(A; R)
i∗−→ Hn(X ; R)

p∗−→ Hn(X, A; R)
∂∗−→ Hn−1(A; R) −→ . . . .

�

This is only formal until we interpret Hn(X, A; R) geometrically. We may
do so in two ways.

First, let Zn(X, A; R) = {c ∈ Cn(X ; R) | ∂c ∈ Cn−1(A; R)} and let
Bn(X, A; R) = {c ∈ Cn(X ; R) | c is homologous to an element of Cn(A; R)}.
The elements of Zn(X, A; R) and of Bn(X, A; R) are called relative n-cycles
and relative n-boundaries respectively. Clearly, Bn(X, A; R) ⊂ Zn(X, A; R).

Proposition 2.8.2. Hn(X, A; R) ∼= Zn(X, A; R)/Bn(X, A; R).

Proof. Consider the commutative diagram

Cn(X ; R)
∂−−−−→ Cn−1(X ; R)⏐⏐
p

⏐⏐
p

Cn(X ; R)/Cn(A; R)
∂̄−−−−→ Cn−1(X ; R)/Cn−1(A; R)

Here ∂̄ is the boundary homomorphism. Note that Zn(X, A; R) = p−1(ker ∂̄),
and Bn−1(X, A; R) = p−1(image ∂̄). By the Noether Isomorphism Theorem
(i.e., (M/P )/(N/P ) ∼= M/N) the result follows. �

The second interpretation of Hn(X, A; R) is in terms of the oriented quo-
tient CW complex X/A:

Proposition 2.8.3. Hn(X/A; R) ∼=

⎧⎪⎨
⎪⎩

Hn(X, A; R) if n �= 0

H0(X, A; R)⊕R if n = 0.

Proof. There is a unique homomorphism r making the following diagram com-
mute:

Cn(X ; R)

q#

�����
���

���
�� p

����
���

���
���

��

Cn(X/A; R)
r �� Cn(X ; R)/Cn(A; R)
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Here, q : X → X/A is the quotient map, and X/A has the quotient orientation.
Since p and q# are chain maps, and q# is onto for each n, r is a chain map.
Clearly, r induces a bijection of generators when n > 0. When n = 0, ker r
is isomorphic to R, generated by the (oriented) vertex {A} of X/A; the other
generators are mapped bijectively to the generators of C0(X ; R)/C0(A; R).
The result follows. �

Homology of CW pairs works like homology of CW complexes. There is a
pairwise Cellular Approximation Theorem:

Proposition 2.8.4. A map f : (X, A) → (Y, B) between CW pairs which is
already cellular on the subcomplex Z of X is pairwise homotopic, rel Z, to a
cellular map.

Proof. The proof of 1.4.3 achieves this. �

A cellular map f : (X, A) → (Y, B) of oriented CW pairs induces a chain
map f# : Cn(X ; R)/Cn(A; R) → Cn(Y ; R)/Cn(B; R) for each n, and hence
f∗ : Hn(X, A; R)→ Hn(Y, B; R). Theorem 2.7.10 has an analog (with similar
proof: use 2.8.2):

Theorem 2.8.5. (Homotopy Invariance) If f, g : (X, A) → (Y, B) are
pairwise homotopic cellular maps, then f∗ = g∗ : Hn(X, A; R)→ Hn(Y, B; R)
for all n. �

The connecting homomorphism ∂∗ satisfies the following “naturality”
property for algebraic reasons (see Sect. 2.1):

Proposition 2.8.6. Let f : (X, A) → (Y, B) be a cellular map of oriented
CW pairs. Then, for all n, the following diagram commutes:

Hn(X, A; R)
∂∗−−−−→ Hn−1(A; R)⏐⏐
f∗

⏐⏐
(f |)∗

Hn(Y, B; R)
∂∗−−−−→ Hn−1(B; R) .

�

Thus, we have a commutative diagram

. . . �� Hn(A; R)
i∗ ��

(f |)∗

��

Hn(X; R)
j∗ ��

f∗

��

Hn(X, A; R)
∂∗ ��

f∗

��

Hn−1(A; R) ��

(f |)∗

��

. . .

. . . �� Hn(B; R)
i∗ �� Hn(Y ; R)

j∗ �� Hn(Y, B; R)
∂∗ �� Hn−1(B; R) �� . . .

whose horizontal rows are exact.
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Next, we turn to the excision property. Let (X, A) and (Y, B) be oriented
CW pairs where X is a subcomplex of Y and A is a subcomplex of B. The
inclusion i : (X, A)→ (Y, B) is an excision map iff X−A = Y −B. This could
be taken as the definition of excision in our context; it is compatible with the
definition in Sect. 2.2.

Theorem 2.8.7. Excision maps induce isomorphisms on relative homology
groups.

Proof. Let i be an excision map as above. Then Y = X ∪B and A = X ∩B.
By elementary algebra

Cn(X; R)/Cn(A; R) ∼= [Cn(X; R) + Cn(B; R)]/Cn(B; R) = Cn(Y ; R)/Cn(B;R)

and this canonical isomorphism commutes with ∂’s. �

The same algebraic trick used to derive the homology sequence of the ori-
ented CW pair (X, A) can also be used to derive an exact sequence expressing
the homology of a CW complex in terms of the homology of two subcomplexes
which cover it. To see this, let X be an oriented CW complex having two sub-
complexes A and B such that X = A ∪B; then A ∩ B is also a subcomplex.
There is a short exact sequence of chain complexes

0 −→ C∗(A ∩B; R)
i−→ C∗(A; R)⊕ C∗(B; R)

j−→ C∗(A ∪B; R) −→ 0

where i(c) = (c,−c) and j(c, d) = c + d. [Here, of course, we consider
Cn(A; R) ⊂ Cn(A ∪ B; R), etc. The direct sum of two chain complexes is
defined in the obvious way, and Hn(C ⊕C ′) ∼= Hn(C)⊕Hn(C′).] The general
procedure for generating homology exact sequences can be applied here, this
time yielding the Mayer-Vietoris sequence of the complexes A and B:

. . . −→ Hn(A∩B; R)
i∗−→ Hn(A; R)⊕Hn(B; R)

j∗
−→ Hn(X; R)

∂∗−→ Hn−1(A∩B; R) −→ . . . .

This sequence is “natural” in the sense that if f : X → X ′ is cellular, with
f(A) ⊂ A′ and f(B) ⊂ B′, and if X = A∪B and X ′ = A′∪B′, then the Mayer-
Vietoris sequence of A and B maps to that of A′ and B′ by homomorphisms
induced by f , so as to give a commutative diagram.

In closing, we remark that cellular homology can be axiomatized. Suppose
that to each oriented CW pair (X, A) and n ≥ 0 we associate an R-module
hn(X, A) and a homomorphism10 ∂∗ : hn+1(X, A) → hn(A, ∅), and to each
map of CW pairs f : (X, A)→ (Y, B) and n ≥ 0 we associate a homomorphism
f∗ : hn(X, A)→ hn(Y, B) satisfying:

10 Convention: write hn(A) for hn(A, ∅)



2.8 Further properties of cellular homology 69

(i) id∗ = id and (g ◦ f)∗ = g∗ ◦ f∗;
(ii) (f |)∗∂∗ = ∂∗f∗ : hn+1(X, A)→ hn(B);
(iii) the sequence

. . . −→ hn(A)
i∗−→hn(X)

j∗−→hn(X, A)
∂∗−→hn−1(A) −→ . . .

is exact;11

(iv) whenever f, g : (X, A) → (Y, B) are homotopic, then f∗ = g∗ :
hn(X, A)→ hn(Y, B) for all n ≥ 0;

(v) excision maps i : (X, A)→ (Y, B) induce isomorphisms i∗ : hn(X, A)→
hn(Y, B) for all n ≥ 0;

(vi) hn({v}) ∼=

⎧⎪⎨
⎪⎩

0 if n �= 0

R if n = 0

where {v} is the one-point CW complex;

and, finally, suppose φ0 : h0({v})→ H0({v}; R) is an isomorphism (see 2.7.1).
Then for every finite CW pair (X, A) and every n ≥ 0 there is an isomorphism
φ(X,A) : hn(X, A)→ Hn(X, A; R) such that φ({v},∅) = φ0 and all diagrams of
the following kinds commute:

hn(X, A)
f∗−−−−→ hn(Y, B) hn+1(X, A)

∂∗−−−−→ hn(A)⏐⏐
φ(X,A)

⏐⏐
φ(Y,B)

⏐⏐
φ(X,A)

⏐⏐
φA

Hn(X, A; R)
f∗−−−−→ Hn(Y, B; R) Hn+1(X, A; R)

∂∗−−−−→ Hn(A; R).

Properties (i)–(vi) are the Eilenberg-Steenrod axioms for finite CW pairs. This
Uniqueness Theorem, which we shall not prove (see for example [61]) implies
that any “homology theory” h∗ satisfying these axioms – e.g., singular ho-
mology – agrees with cellular homology on oriented finite CW pairs. We have
seen in this chapter that cellular homology H∗( · ; R), with the connecting
homomorphism ∂∗, satisfies them.

Exercises

1. Let (X, A, B) be a triple of CW complexes. Establish an exact sequence of the
form

· · · �� Hn(A, B; R) �� Hn(X, B; R) �� Hn(X, A;R)

�� Hn−1(A, B; R) �� · · ·

2. Discover a Mayer-Vietoris sequence for the triple (X, A,B) in the spirit of Ex-
ercise 1.

11 Here (A, ∅)
i

↪→(X, ∅)
j

↪→(X, A) and h−1(A) = {0}.
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2.9 Reduced homology

An augmented CW complex is a CW complex X together with an additional
cell of dimension −1 called the empty cell . If X is a CW complex, the aug-
mentation of X is the augmented CW complex so obtained. There is only
one empty cell; all augmented CW complexes have at least that cell in com-
mon. The empty cell is considered to admit a unique orientation. Thus if X
is oriented, its augmentation is oriented too.

The cellular chain complex of the augmentation of X is traditionally
called the augmented cellular chain complex of X and will be denoted by
(C̃n(X ; R), ∂̃). Here, C̃n(X ; R) = Cn(X ; R) for all n �= −1, C̃−1(X ; R) = R
(think of the free R-module generated by the empty cell), ∂̃ = ∂ : Cn(X ; R)→
Cn−1(X ; R) for all n �= 0, and12 ∂̃(e0

α) = εα ∈ {±1} ⊂ R, where εα is the cho-
sen orientation13 of e0

α. Clearly ∂̃ ◦ ∂̃ = 0, so (C̃∗(X ; R), ∂̃) is a chain complex.
Its homology modules, H̃n(X ; R), are the reduced cellular homology modules
of X .

Proposition 2.9.1. H̃n(∅; R) = 0 if n �= −1, and H̃−1(∅; R) ∼= R. When
X �= ∅, H̃n(X ; R) ∼= Hn(X ; R) if n �= 0, and there is a short exact sequence

0 −→ H̃0(X ; R)
q∗−→ H0(X ; R) −→ R −→ 0

where q∗ is induced by the chain map q : C̃∗(X ; R) → C∗(X ; R) which is the
identity in dimensions �= −1 and is zero in dimension −1. �

Combining this with 2.7.1 and 2.7.2 gives:

Corollary 2.9.2. H̃0(X ; R) is a free R-module with rank α, where α + 1 is
the (cardinal) number of path components of X. �

Corollary 2.9.3. If X is path connected, H̃n(X ; R) ∼= Hn(X ; R) for all n �= 0
and H̃0(X ; R) = 0. In particular, the reduced homology of a contractible space
is trivial. �

A cellular map f : X → Y between oriented CW complexes induces f# :

C̃∗(X ; R)→ C̃∗(Y ; R); f# is defined as in Sect. 2.7 when n ≥ 0, as id : R→ R
when n = −1, and trivially when n < −1.

Proposition 2.9.4. f# : C̃∗(X ; R)→ C̃∗(Y ; R) is a chain map.

12 This homomorphism C0(X; R) → R is called the augmentation and is usually
denoted by ε.

13 Unless there is a reason to do otherwise, one should give the orientation +1 to
each vertex. In that case the statement ∂̃(e0

α) = 1 can be interpreted as saying
that the empty cell is the boundary of each vertex.
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Proof. By 2.3.4, it is only necessary to check the commutativity of

C̃0(X ; R)
∂̃−−−−→ R⏐⏐
f#

⏐⏐
id

C̃0(Y ; R)
∂̃−−−−→ R.

If f(e0
α) = ẽ0

β, where e0
α is a cell of X oriented by εα and ẽ0

β is a cell of Y

oriented by ε̃β , then ∂̃(e0
α) = εα, while ∂̃f#(e0

α) = εαε̃β ε̃β = εα. �

Thus, a cellular map f : X → Y induces a homomorphism f∗ : H̃∗(X ; R)→
H̃∗(Y ; R). Clearly this satisfies id∗ = id and (g ◦ f)∗ = g∗ ◦ f∗.

Proposition 2.9.5. If f, g : X → Y are homotopic cellular maps between
non-empty oriented CW complexes, then f∗ = g∗ : H̃n(X ; R)→ H̃n(Y ; R) for
all n. �

If A is a subcomplex of the oriented CW complex X , the chain map q :
C̃∗(X ; R) → C∗(X ; R) defined in 2.9.1 clearly induces an isomorphism of
quotient chain complexes C̃∗(X ; R)/C̃∗(A; R) → C∗(X ; R)/C∗(A; R). Thus
there is no need to define relative reduced homology modules. The short exact
sequence of chain complexes:

0 −→ C̃∗(A; R) −→ C̃∗(X ; R) −→ C∗(X ; R)/C∗(A; R) −→ 0

gives the reduced homology exact sequence of (X, A):

. . . −→ H̃n(A; R) −→ H̃n(X ; R) −→ Hn(X, A; R) −→ H̃n−1(A; R) −→ . . .

This sequence is “natural” with respect to cellular maps (X, A)→ (Y, B),
just as in Sect. 2.8.

We get a more elegant version of 2.8.3:

Proposition 2.9.6. Hn(X, A; R) ∼= H̃n(X/A; R) for all n. �

Finally, if X = A∪B where A and B are two subcomplexes we get a short
exact sequence of chain complexes

0 −→ C̃∗(A ∩B; R) −→ C̃∗(A; R)⊕ C̃∗(B; R) −→ C̃∗(A ∪B; R) −→ 0

giving a reduced Mayer-Vietoris sequence

. . . −→ H̃n(A∩B; R) −→ H̃n(A; R)⊕H̃n(B; R) −→ H̃n(X; R) −→ H̃n−1(A∩B; R) −→ . . .

as in Sect. 2.8, which is again “natural” with respect to maps f : X → X ′

taking A to A′ and B to B′.
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We repeat that reduced homology of non-empty CW complexes only differs
from homology in dimension 0; for the empty CW complex the difference
occurs in dimension −1.

A closing word on terminology. If ∂̃0 : C̃0(X ; R)→ C̃−1(X ; R) := R is the
0th boundary homomorphism in the augmented chain complex, it is easy to
check that the reduced homology modules H̃∗(X ; R) are also the homology
modules of the following reduced cellular chain complex :

. . . −→ C2(X ; R) −→ C1(X ; R)
∂−→ ker ∂̃0 −→ 0 −→ . . .

This explains the name “reduced homology.”
Exercise

Let X be a CW complex and let Y be obtained from X by attaching an n-cell
to Xn−1 using the attaching map f : Sn−1 → Xn−1. Write i for Xn−1 ↪→ X and
f̄ = i ◦ f : Sn−1 → X. The following formulas express the changes which occur in
homology when an n-cell is attached (coefficients omitted):

(i) H̃k(Y ) ∼= H̃k(X) when k �= n or n − 1;

(ii) 0 → image(f̄∗) → H̃n−1(X) → H̃n−1(Y ) → 0 is exact;

(iii) 0 → H̃n(X) → H̃n(Y ) → ker(f̄∗) → 0 is exact

where f̄∗ : Hn−1(S
n−1) → Hn−1(X). Describe the unmarked arrows and prove

(i)–(iii). Establish analogous formulas when simultaneous attaching (in the sense of
Sect. 1.2) of a set of n-cells occurs. Deduce that finite generation of homology in each
dimension is preserved when finitely many new cells are attached in this manner.
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Fundamental Group and Tietze
Transformations

In §3.1 we define and study the “combinatorial” fundamental group of a CW
complex and we show how to read off a presentation from the 2-skeleton. As
an application, we prove a version of the Seifert-Van Kampen Theorem. We
end by showing that the abelianization of the fundamental group is the first
homology group. In §3.2 we give a combinatorial treatment of covering spaces
suitable for later group theoretic discussions, and we introduce Cayley graphs
in this context. In the remaining sections we relate this to the fundamental
group as it is usually defined in topology. It is good to understand both points
of view. The final two theorems of the chapter, 3.4.9 and 3.4.10, are extremely
useful in group theory: they give precise information about p−1(A) where
p : X̄ → X is a covering projection and A is a subcomplex of X .

3.1 Combinatorial fundamental group, Tietze
transformations, Van Kampen Theorem

Let X be a CW complex. A non-degenerate edge of X is an oriented 1-cell

e1
β of X . If hβ : (B1, S0) → (e1

β ,
•
e 1

β) is a characteristic map representing the
given orientation, then hβ(−1) and hβ(1) are the initial point and the final
point of e1

β , respectively; they are vertices of X , and might not be distinct. A
degenerate edge is a vertex v of X . Its initial and final points are also v. An
edge of X is a non-degenerate edge or a degenerate edge.

An edge path in X is a finite non-empty sequence of edges τ := (τ1, . . . , τk)
such that the final point of τi is the initial point of τi+1 for all i. The initial
point of τ1 is the initial point of the edge path, and the final point of τk is the
final point of the edge path.

Edges have inverses : if τi is non-degenerate, τ−1
i denotes the same 1-cell

with the opposite orientation; if τi is degenerate, we define τ−1
i = τi. Edge

paths have inverses : define (τ1, . . . , τk)−1 to be the edge path (τ−1
k , . . . , τ−1

1 ).
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Certain edge paths can be multiplied. If the final point of τ is also the initial
point of σ the product edge path is τ.σ := (τ1, . . . , τk, σ1, . . . , σm). Whenever
a triple product is defined it is obviously associative.

Any edge path has a unique “reduction.” Intuitively this is obtained by
removing, step by step, a degenerate edge or an adjacent pair τi, τ−1

i or τ−1
i ,

τi of edges (unless this leads to the “empty edge path,” in which case the
reduction is (v) where v is the initial point of the given edge path). To say
this in a correct way, choose an orientation for each 1-cell of X , and let F be
the free group generated by the set of (oriented) 1-cells. Define a function φ
from the set of edges of X to F as follows: φ sends all degenerate edges to
1 ∈ F ; if τi is a non-degenerate edge whose orientation agrees with the chosen
orientation (so that τi is a generator of F ), φ sends τi to τi and τ−1

i to τ−1
i (the

two meanings of τ−1
i are clear). Extend φ to a function Φ from the set of edge

paths to F , sending τ := (τ1, . . . , τk) to Φ(τ) := φ(τ1)φ(τ2) . . . φ(τk) ∈ F . Call
τ reduced if either Φ(τ) is a k-letter word in F , or k = 1 and τ1 is degenerate.
By convention 1 ∈ F is a 0-letter word. The reduction of an edge path σ is
the unique reduced edge path τ such that Φ(σ) = Φ(τ). Clearly, the definition
of reduction is independent of the orientations we chose for the 1-cells of X
in defining F .

An edge loop at v is an edge path whose initial and final points are v. A
cyclic edge loop is an equivalence class of edge loops under cyclic permutation.

We consider an oriented 2-cell e2
γ . In Sect. 2.6 we defined the “homological

boundary” ∂e2
γ = Σ[e2

γ : e1
α]e1

α; we saw in 2.5.8 that the only possible non-zero
terms in this sum involve 1-cells contained in e2

γ , and the order in which these
1-cells are considered is irrelevant. Now we define the “homotopical boundary”
∆e2

γ to be the reduced cyclic edge loop obtained by taking those same 1-cells
with their incidence numbers, but in strict cyclic order as one goes around the
“edge” of e2

γ in the positive direction. This is made precise in the following
paragraphs.

Let hγ : (B2, S1) → (e2
γ ,

•
e 2

γ) be a characteristic map representing the
chosen orientation on e2

γ , and let f = hγ | : S1 → X1 be the correspond-
ing attaching map. First, suppose f−1(X0) �= ∅. Each path component of

S1 − f−1(X0) is an open interval mapped by f into some
◦
e 1

β . By elementary

analysis there are countably many such open intervals: label them
◦
Ij , j ≥ 1.

Let e1
βj

be the unique 1-cell such that f(
◦
Ij) ⊂

◦
e 1

βj
.

Proposition 3.1.1. f maps
◦
Ij onto

◦
e 1

βj
for at most finitely many j.

Proof. Let the 1-cells of X be {e1
α | α ∈ A}. Pick zα ∈

◦
e 1

α. There is an

open cover of X1 consisting of X1 − {zα | α ∈ A} =: U and each
◦
e 1

α. The

open cover {f−1(U)} ∪ {f−1(
◦
e 1

α) | α ∈ A} of S1 has a finite subcover U =

{f−1(U), f−1(
◦
e 1

α1
), . . . , f−1(

◦
e 1

αn
)}. If the proposition were false, at least one
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of the sets f−1(
◦
e 1

αi
) could be written as

∞⋃
k=1

◦
Ijk

with all jk’s distinct and no

◦
Ijk

covered by any member of U other than f−1(
◦
e 1

αi
); this is because each

◦
Ijk

meets f−1(zαi
). Replacing f−1(

◦
e 1

αi
), in U , by all the intervals

◦
Ijk

, we would
have an open cover of S1 having no finite subcover, a contradiction since S1

is compact. �

For convenience, label the intervals
◦
Ij so that

◦
I1, . . . ,

◦
Ik are those men-

tioned in 3.1.1 (mapped onto 1-cells). Arrange further that
◦
I1, . . . ,

◦
Ik are

labeled in cyclic order with respect to positive rotation on S1. First, assume
there is at least one such interval (i.e., k ≥ 1). For each 1 ≤ j ≤ k, we define

a local incidence number ij = ±1 of e2
γ with e1

βj
along

◦
Ij as the degree of the

self-map of S1 indicated in the following commutative diagram:

cl
◦
Ij

f |−−−−→ e1
βj⏐⏐
pj

⏐⏐
qj

S1 rj−−−−→ e1
βj

/
•
e 1

βj

h′
βj←−−−−∼=

B1/S0 k1−−−−→∼=
S1.

Here, pj is the restriction to cl
◦
Ij of a degree 1 map S1 → S1 which is constant

on S1−
◦
Ij and is injective on

◦
Ij ; qj is the quotient map; rj is the unique map

making the left square commute; h′
βj

and k1 are as in Sect. 2.5. Clearly, f |

is homotopic, rel fr
◦
Ij , to a map which takes

◦
Ij homeomorphically onto

◦
e 1

βj
,

hence rj is homotopic to a homeomorphism. By 2.4.20, ij = ±1, as claimed.
The homotopical boundary of the oriented 2-cell e2

γ is the reduced cyclic

edge loop ∆e2
γ represented by the reduction of the edge loop (τ i1

β1
, . . . , τ ik

βk
),

where τβj
is the edge e1

βj
with the preferred orientation.

Proposition 3.1.2.
(
τ i1
β1

, . . . , τ ik

βk

)
is indeed an edge loop, and is unique up

to cyclic permutation.

Proof. Consider1
◦
Ij where j > k. Since f(

◦
Ij) is a proper subset of

◦
e 1

βj
, f(fr Ij)

is a single point of
•
e 1

βj
. Thus there is a map g : S1 → X1, agreeing with f on

◦
Ij when j ≤ k, such that g

⎛
⎝S1 −

⎛
⎝ k⋃

j=1

◦
Ij

⎞
⎠
⎞
⎠ ⊂ X0. Indeed, adjusting g on

1 It is not to be thought that the labels > k occur in cyclic order: there might be

infinitely many intervals
◦

Ij , perhaps infinitely many in each quadrant of S1.
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each
◦
Ij (1 ≤ j ≤ k) by a homotopy rel fr

◦
Ij , we may assume that g maps

◦
Ij

homeomorphically onto
◦
eβj

when 1 ≤ j ≤ k. It is then obvious that we have
a cyclic edge loop as claimed. �

There remain two cases. If f−1(X0) = ∅, then there is a single 1-cell e1
β

such that f(S1) ⊂ ◦
e 1

β, and we define ∆e2
γ to be the degenerate cyclic edge

loop represented solely by the initial point of e1
β. If f−1(X0) �= ∅ but k = 0,

there is a single vertex v common to all the 1-cells which meet f(S1), and we
define ∆e2

γ to be the degenerate cyclic edge loop (v).
Clearly, a change of orientation on the cell e2

γ causes an inversion of ∆e2
γ .

That ∆e2
γ depends only on the orientation rather than a specific characteristic

map hγ is an exercise.
We can now define equivalence of edge paths. Let σ and τ be edge paths

in the oriented CW complex X having the same initial point and the same
final point. Write σ � τ iff either τ is the reduction of σ, or there is an
(oriented) 2-cell e2

γ such that σ.τ−1 = λ.µ1.ν.ν−1.µ2.λ
−1 where µ1.µ2 is an

edge loop representing the cyclic edge loop ∆e2
γ ; see Fig. 3.1. We will call

either of these an elementary equivalence between σ and τ . The relation �
generates an equivalence relation on the set of edge paths in X , which we call
equivalence.

m

2

1

2eg

nl

s

t

m

Fig. 3.1.

The next three propositions are left as exercises:

Proposition 3.1.3. Products of equivalent edge paths are equivalent. Inverses
of equivalent edge paths are equivalent. �

Proposition 3.1.4. Let the edge path τ have initial point v1 and final point
v2. Then τ is equivalent to both (v1).τ and τ.(v2). �
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Proposition 3.1.5. If τ is an edge path with initial point v1 and final point
v2, then τ.τ−1 is equivalent to (v1) and τ−1.τ is equivalent to (v2). �

Let v be a vertex of X . Our discussion shows that the set of equivalence
classes of edge loops at v is a group whose multiplication is induced by the
product operation, whose identity is the equivalence class of v, and whose
inversion is induced by the inverse operation. This group is the fundamental
group of X based at v. It is denoted by π1(X, v).

Proposition 3.1.6. The definition of equivalence of edge paths is independent
of the orientation chosen for X. In particular, π1(X, v) does not depend on
the orientation of X. �

Proposition 3.1.6 clarifies the role of the chosen orientation of X in this
section. We must choose an orientation in order to define equivalence of edge
loops at v, but the definition of equivalence turns out to be independent of
this choice.

Proposition 3.1.7. π1(X, v) depends only on the 2-skeleton of the path com-
ponent of X containing v. �

Theorem 3.1.8. Let X be an oriented CW complex having only one vertex,
v. Let F be the free group generated by the set W of (oriented) 1-cells of X,
let R be the set of (oriented) 2-cells of X, for each e2

γ ∈ R let τ := τ(γ) be an
edge loop representing ∆e2

γ, and let ρ : R→ F be the function2 e2
γ �→ Φ(τ(γ)).

Then 〈W | R, ρ〉 is a presentation of π1(X, v).

Proof. Let G = 〈W | R, ρ〉. It is enough to define an epimorphism Ψ : G →
π1(X, v) and a function Φ′ : π1(X, v)→ G such that Φ′ ◦ Ψ = idG.

Each edge of X is an edge-loop at v. Define ψ : W → π1(X, v) to take
σ ∈W to the equivalence class of the edge-loop (σ); ψ extends uniquely to an
epimorphism Ψ ′ : F → π1(X, v). Fix e2

γ ∈ R. Let τ := τ(γ) = (τ i1
1 , . . . , τ in

n ),
where each τj ∈W and ij = ±1. Using the notation introduced earlier in this
section, Φ(τ) = φ(τ1)

i1 . . . φ(τn)in ∈ F . If the reduced form of this element of
F is σj1

1 . . . σjk

k (each σm ∈ W , each jm = ±1), then Ψ ′(Φ(τ)) is the equivalence

class of the edge loop (σj1
1 , . . . , σjk

k ). This in turn is the reduction of the edge

loop (τ i1
1 , . . . , τ in

n ), which is equivalent to the edge loop (v). So Ψ ′(Φ(τ)) =
1 ∈ π1(X, v). Thus there is an induced epimorphism Ψ : G→ π1(X, v).

To define Φ′, consider Φ : {edge loops in X at v} → F ; Φ maps an edge
loop and its reduction to the same element of F . If σ and η are two edge
loops such that σ.η−1 = λ.µ1.ν.ν−1.µ2.λ

−1, as above, where µ1.µ2 represents
∆e2

γ , then Φ(σ)Φ(η)−1 = Φ(λ)Φ(µ1.µ2)Φ(λ)−1 which is conjugate to Φ(τ),
since τ and µ1.µ2 differ by a cyclic permutation. Thus Φ induces a function
Φ′ : π1(X, v)→ G which is clearly a left inverse for Ψ . �

2 Recall Φ : {edge paths} → F , above.
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Thus, Example 1.2.17 gives a procedure for constructing a 2-dimensional
CW complex having just one vertex, and any prescribed group as fundamental
group.

Corollary 3.1.9. Let X be an oriented 1-dimensional CW complex having
only one vertex v. Then the (oriented) 1-cells are edge loops whose equivalence
classes freely generate π1(X, v). �

Corollary 3.1.10. Let X be a CW complex having one vertex v and no 1-
cells. Then π1(X, v) = {1}. �

If A is a subcomplex of X , with v ∈ A, the inclusion map i : (A, v)→ (X, v)
induces an obvious homomorphism i# : π1(A, v) → π1(X, v). The example
X = B2, with cells {v}, S1 and B2, and A = S1, shows that ker i# need
not be trivial (by 3.1.8 and 3.1.9). Indeed, this homomorphism i# is a special
case of “the homomorphism induced by a map,” but that definition is best
left until Sect. 3.3.

There is a sense in which π1(X, v) is independent of the base vertex v,
provided that X is path connected. Let τ be an edge path in X with initial
point v and final point v′; τ induces a function hτ : π1(X, v) → π1(X, v′),
[σ] �→ [τ−1.σ.τ ], where [σ] ∈ π1(X, v) denotes the equivalence class of the
edge loop σ at v. Clearly, we have

Proposition 3.1.11. hτ is well defined and is a group isomorphism whose
inverse is hτ−1. �

The CW complex X is simply connected if X is path connected and
π1(X, v) is trivial for some (equivalently, any) vertex v of X .

A tree is a non-empty CW complex, T , of dimension ≤ 1 in which, given
vertices v1 and v2 of T , there is exactly one reduced edge path in T with initial
vertex v1 and final vertex v2.

Proposition 3.1.12. Every tree is simply connected. Every simply connected
CW complex of dimension ≤ 1 is a tree. Every tree is contractible.

Proof. A tree T is clearly simply connected, for if (τ1, . . . , τn) is a reduced
edge loop in T at the vertex v then n = 1. Conversely, let X be simply
connected and of dimension ≤ 1 and let v be a vertex. In the absence of 2-
cells, the equivalence relation on edge loops at v defining π1(X, v) boils down
to reduction: no two distinct reduced edge loops are equivalent. So there is
only one reduced edge loop. It follows that there is only one reduced edge
path from v to each vertex of X .

The fact that trees are contractible follows easily from 1.3.14. �

We say that T is a tree in X if T is a tree and is a subcomplex of X ;
T is a maximal tree if there is no larger subcomplex of X which is a tree. If
X is path connected it follows that a maximal tree in X contains X0 and,
conversely, any tree in X containing X0 is maximal.
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Proposition 3.1.13. Let (X, A) be a CW pair with X and A path connected.
Let TA be a maximal tree in A. There is a maximal tree, TX, in X such that
TX ∩A = TA.

Proof. Let T denote the set of trees T in X such that T ∩ A = TA. This set
T is non-empty and is partially ordered by inclusion. Let {Ti} be a linearly

ordered subset of T and let T̃ =
⋃
i

Ti. Clearly, T̃ ∈ T . By Zorn’s Lemma, T

contains a maximal element, TX , as required. �

Next, we review the rules for altering a presentation of a group. Let 〈W |
R, ρ〉 be a presentation of the group3 G. A Tietze transformation of Type I
replaces 〈W | R, ρ〉 by 〈W | R′, ρ′〉 where: S is a set, ψ : S → N(ρ(R)) ⊂ F (W )
is a function, R′ = R

∐
S, and ρ′ : R′ → F (W ) agrees with ρ on R and with ψ

on S. A Tietze transformation of Type II replaces 〈W | R, ρ〉 by 〈W ′ | R′, ρ′〉,
where: S is a set, W ′ = W

∐
S, ψ : S → F (W ) ⊂ F (W ′) is a function,

R′ = R
∐

S, and ρ′ : R′ → F (W ′) agrees with (inclusion) ◦ρ on R, and4 with
s �→ s.ψ(s)−1 on S.

Example 3.1.14. Starting with 〈a | a3〉, a presentation of the cyclic group
of order 3, a Type I transformation might change this to 〈a | a3, a6〉; a
Type II transformation might change this latter presentation to 〈a, b, c, |
a3, a6, ba, ca2〉.

The following is well-known (see [107] or [106] for a proof):

Theorem 3.1.15. Tietze transformations of either type applied to a presen-
tation of G yield another presentation of G. Conversely, if 〈W1 | R1, ρ1〉 and
〈W2 | R2, ρ2〉 are presentations of G, then there are presentations and Tietze
transformations as follows:

〈W1|R1, ρ1〉
Type II�� 〈W |R′, ρ′〉

Type I �� 〈W |R, ρ〉 ��
Type I

〈W |R′′, ρ′′〉 ��
Type II

〈W2|R2, ρ2〉.

Moreover, if the given presentations are finite, then the intervening presenta-
tions can be chosen to be finite. �

We are now ready to generalize 3.1.8 by explaining how to read off a pre-
sentation of the fundamental group of any path connected CW complex from
the 2-skeleton. Note that (by 3.1.13 applied with A a one-vertex subcomplex)
such complexes always contain maximal trees.

Theorem 3.1.16. Let X be an oriented path connected CW complex, let T
be a maximal tree in X and let v be a vertex of X. Let F be the free group

3 Recall the notation for presentations introduced in 1.2.17.
4 Note that by our conventions S ⊂ F (S) ⊂ F (W ′).
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generated by the set W of (oriented) 1-cells of X. Let R be the set of (oriented)
2-cells of X and let S be the set of (oriented) 1-cells of T . For each e2

γ ∈ R, let
τ := τ(γ) be an edge loop in X representing ∆(e2

γ). Let ρ : R
∐

S → F take
each e2

γ ∈ R to Φ(τ(γ)), and take each σ ∈ S to the one-letter word σ ∈ F .
Then 〈W | R∐S, ρ〉 is a presentation of π1(X, v).

Proof. We claim π1(X, v) ∼= π1(X/T, v̄) ∼= 〈W − S | R, ρ̄〉 ∼= 〈W | R∐S, ρ〉,
where v̄ is the only vertex of X/T , q : F (W )→ F (W −S) is the epimorphism
of free groups sending w to w when w ∈ W − S, and w to 1 when w ∈ S, and
ρ̄ = q ◦ ρ |: R→ F (W − S).

There is an obvious epimorphism α : π1(X, v) → π1(X/T, v̄). The proof
that α is an isomorphism boils down to showing that if ∆e2

γ is represented

by the edge loop (τ i1
1 , . . . , τ in

n ) in X , then the edge loop in X/T obtained by
deleting those edges τj which lie in T represents ∆ē2

γ , where ē2
γ is the 2-cell of

X/T corresponding to e2
γ , which is clear. This is our first isomorphism. The

second isomorphism comes from 3.1.8. The third isomorphism comes from
Tietze transformations

〈W − S | R, ρ̄〉
Type II�� 〈W | R

‘
S, ρ′〉

Type I �� 〈W | (R
‘

S)
‘

R, ρ′′〉 ��
Type I

〈W | S
‘

R, ρ〉

where ρ′ = ρ̄ on R, ρ′ = id on S, ρ′′ = ρ′ on R
∐

S, and ρ′′ = ρ on the second
copy of R. �

Corollary 3.1.17. Let X be a path connected CW complex. If X1 is finite,
then π1(X, v) is finitely generated. If X2 is finite, then π1(X, v) is finitely
presented. �

Another corollary of 3.1.16 expresses the fundamental group of a path
connected CW complex in terms of the fundamental groups of path connected
subcomplexes:

Theorem 3.1.18. (Seifert-Van Kampen Theorem)5 Let the CW complex
X have subcomplexes X1, X2 and X0 such that X = X1 ∪ X2 and X0 =
X1 ∩X2. Assume X1, X2 and X0 are path connected. Let v ∈ X0 and let i1 :
X0 ↪→ X1, i2 : X0 ↪→ X2, j1 : X1 ↪→ X, and j2 : X2 ↪→ X be the inclusions.
Then6 (j1#, j2#) : π1(X1, v) ∗ π1(X2, v)→ π1(X, v) is an epimorphism whose
kernel is the normal closure of {i1#(g)i2#(g)−1 | g ∈ π1(X0, v)}.

Proof. By 3.1.13, there is a maximal tree TX such that TXi
:= Xi ∩ TX is a

maximal tree in Xi for i = 0, 1, 2. Let 〈WX | RX

∐
SX , ρX〉 be a presentation

of π1(X, v) as in 3.1.16. Using restrictions of the items in this presentation,

5 Theorem 6.2.11 is a useful generalization of this.
6 Notation: G ∗ H denotes the free product of G and H .
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form presentations 〈WXi
| RXi

∐
SXi

, ρXi
〉 for π1(Xi, v), i = 0, 1, 2. Abusing

notation, we have obvious homomorphisms

〈WX0 | RX0

∐
SX0 , ρX0〉

i1#−−−−→ 〈WX1 | RX1

∐
SX1 , ρX1〉

i2#

⏐⏐
 ⏐⏐
j1#

〈WX2 | RX2

∐
SX2 , ρX2〉 −−−−→

j2#
〈WX | RX

∐
SX , ρX〉.

Note that WX0 ⊂ WXi
⊂ WX , RX0 ⊂ RXi

⊂ RX , SX0 ⊂ SXi
⊂ SX , for

i = 1, 2. FOR THIS PROOF ONLY we introduce a convention. Let W̃X0 , R̃X0

and S̃X0 be copies of the sets WX0 , RX0 and SX0 respectively. If σ ∈WX0 we
denote the corresponding element of W̃X0 by σ̃, etc.

The desired result is obtained by applying two Tietze transformations:

〈WX | RX

∐
SX , ρX〉

Type II�� 〈WX

∐
W̃X0 | RX

∐
SX

∐
W̃X0 , ρ

′〉
Type I ��

〈WX

∐
W̃X0 | RX

∐
SX

∐
W̃X0

∐
(R̃X0

∐
S̃X0), ρ

′′〉

where ρ′ = (inclusion) ◦ ρX on RX

∐
SX , and, for each σ̃ ∈ W̃X0 , ρ′(σ̃) =

σ̃.σ−1; ρ′′ = ρ′ on RX

∐
SX

∐
W̃X0 , and, for each τ̃ ∈ R̃X0

∐
S̃X0 , ρ′′(τ̃) =

ρX(τ) ∈ F (WX) ⊂ F (WX

∐
W̃X0 ).

The latter presentation can be rewritten as

〈WX1

∐
(WX −WX1)

∐
W̃X0 | RX1

∐
(RX −RX1)

∐
SX1∐

(SX − SX1)
∐

W̃X0

∐
(R̃X0

∐
S̃X0), ρ

′′〉.

If we identify (WX −WX1 )
∐

W̃X0 = WX2 , (RX −RX1)
∐

R̃X0 = RX2 , (SX −
SX1)

∐
S̃X0 = SX2 , and WX0 = the appropriate subset of WX1 , then this

becomes:

〈WX1

∐
WX2 | RX1

∐
SX1

∐
RX2

∐
SX2

∐
W̃X0

, ρ̄〉
where ρ̄ = (inclusion) ◦ ρXi

on RXi

∐
SXi

for i = 1 and 2, and for each
σ̃ ∈ W̃X0 , ρ̄(σ̃) = σ̃.σ−1. This is clearly a presentation of

〈WX1 | RX1

∐
SX1 , ρX1〉 ∗ 〈WX2 | RX2

∐
SX2 , ρX2〉/N

1#(g)i2#(g)−1 | g∈〈WX0 |RX0

∐
SX0 , ρX0〉}.

�

Some notation is useful here. If G1 and G2 are groups and if S is a subset
of the free product G1 ∗G2, then we write 〈G1, G2 | S〉 for a presentation of
G1 ∗G2/N(S). The notation indicates that generating sets for G1 and G2 are
on the left of the vertical bar, and relation data for G1 and G2 are on its right,
together with the additional relations S. In this notation, the conclusion of
the Seifert-Van Kampen Theorem 3.1.18 can be rewritten7:

7 In the Appendix to this section we discuss this and other variants of “presenta-
tion”.

where N is the normal closure of{i
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π1(X, v) ∼=
〈
π1(X1, v), π1(X2, v) | i1#(g)i2#(g)−1, ∀ g ∈ π1(X0, v)

〉
In the special case where i1# and i2# are monomorphisms this becomes the
free product with amalgamation which is defined in Sect. 6.2.

To end this section, we point out a variation on 2.7.4 showing the relation-
ship between π1(X, v) and H1(X ; Z). Let τ := (τ i1

1 , . . . , τ ik

k ) be an edge loop
in X at v where τj has the preferred orientation (X is oriented) and ij = ±1.

Then h̃(τ) :=

k∑
j=1

ijτj is a 1-cycle in X .

Theorem 3.1.19. This function h̃ induces a homomorphism h : π1(X, v) →
H1(X ; Z) whose kernel is the commutator subgroup of π1(X, v). If X is path
connected, h is an epimorphism.

Proof. Clearly, h is a well defined homomorphism. We may assume that X is
path connected: otherwise we could work with the path component containing
v. We first deal with the special case in which X has only one vertex. Then the
result follows from 3.1.8, since the effect of abelianizing the group 〈W | R, ρ〉
in that theorem is to produce the abelian8 group H1(X ; Z).

In the general case, pick a maximal tree, T , in X . Consider the diagram:

π1(X, v)
α−−−−→∼=

π1(X/T, v̄)⏐⏐
h

⏐⏐
h′

H1(X ; Z)
q∗−−−−→ H1(X/T ; Z)

Here, α is the isomorphism discussed in the proof of 3.1.16, h′ is the version
of h for X/T , and q∗ is the homomorphism induced by the (cellular) quotient
map q : X → X/T . The diagram clearly commutes. By the special case, h′ is
an epimorphism whose kernel is the commutator subgroup. It only remains to
show that q∗ is an isomorphism. The discussion of relative homology in Sect.
2.8 and Sect. 2.9 shows that the following diagram commutes and the top line
is exact:

H1(T ; Z) �� H1(X ; Z)
j# ��

q∗
����

���
���

���
H1(X, T ; Z) �� H̃0(T ; Z)

H1(X/T ; Z)

∼=
��

By 3.1.12, j# is an isomorphism, hence also q∗. �

Thus, for path connected X , H1(X ; Z) is the abelianization of π1(X, ∗).
The homological, or abelianized, version of the Seifert-van Kampen theo-

rem is:
8 The free abelian group generated by W is Z1(X; Z), and the abelianization of

∆e2
γ is ∂e2

γ , so the result is Z1(X; Z)/B1(X; Z).
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Proposition 3.1.20. With hypotheses as in 3.1.18, j1∗ + j2∗ : H1(X1; Z) ⊕
H1(X2; Z) → H1(X ; Z) is an epimorphism whose kernel is {i1∗(z) − i2∗(z) |
z ∈ H1(X0; Z)}.

Proof (First Proof). Apply 3.1.18 and 3.1.19. �

Proof (Second Proof). The Mayer-Vietoris sequence (Sect. 2.8) gives an exact
sequence

H1(X0; Z)
(i1∗,−i2∗)−−−−−−→ H1(X1; Z)⊕H1(X2; Z)

j1∗+j2∗−−−−−→ H1(X ; Z)
∂∗−−−−→

H0(X0; Z)
(i1∗,−i2∗)−−−−−−→ H0(X1; Z)⊕H0(X2; Z)

The rightmost arrow is a monomorphism, by 2.7.2 and the definition of i1∗.
Hence ∂∗ = 0. The result follows by exactness. �

Appendix: Presentations

We defined a “presentation of G” in 1.2.17. However, the term is also used in
subtly different (though roughly equivalent) ways.

Given G, a subset S ⊂ G and a set T of products of elements of S∪S−1 each
of which is obviously trivial in G, one may read that 〈S | T 〉 is a presentation
of G. Strictly speaking this is nothing new since T ⊂ F (S). But it can cause
confusion. For example, one says that〈[

0 −1
1 0

]
,

[
0 −1
1 1

] ∣∣∣∣∣
[
0 −1
1 0

]4
,

[
0 −1
1 0

]2 [
0 −1
1 1

]−3
〉

is a presentation of SL2(Z). This really means that there is an isomorphism9

〈a, b | a4, a2b−3〉 → SL2(Z) taking a to

[
0 −1
1 0

]
and b to

[
0 −1
1 1

]
.

Another way of writing “presentations” is this: Let G be a group, W a set
disjoint from G, and R a subset of F (G∪W ). Then elements of F (G∪W ) are
“words” in the “alphabet” G∪W . By saying 〈G, W | R〉 “is a presentation of
the group H” one means: letting 〈S | T ′〉 be a presentation of G (i.e., T ⊂ G
as above), 〈S∪W | T ′∪R′〉 is a presentation of H , where T ′∪R′ ⊂ F (S∪W )
with T ′ mapping bijectively onto T ⊂ G and R′ mapping bijectively onto R.
We give two examples:

Example 3.1.21. If G is a group with subgroups A and B and if φ : A →
B is an isomorphism, the HNN extension of G by φ (see Sect. 6.2) has a
presentation 〈G, t | t−1atφ(a)−1 ∀ a ∈ A〉. Here W = {t}, abbreviated to t,
and R = {t−1atφ(a)−1 | a ∈ A}.
9 There is obviously such an epimorphism; that it is an isomorphism requires proof.
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An obvious variant replaces G by more than one group:

Example 3.1.22. If G1, G2 and A are groups and φi : A � Gi are monomor-
phisms, the free product with amalgamation of G1 and G2 across A (see Sect.
6.2) has a presentation 〈G1, G2 | φ1(a)φ2(a)−1 ∀ a ∈ A〉.

Many authors prefer to write relations as equations. For example, they
would write the presentation given above for SL2(Z) as 〈a, b | a4 = 1, a2 =
b3〉. Our previous presentation 〈a | a3〉 for Z/3Z would instead be written
〈a | a3 = 1〉. And the presentations in the last two examples would be written

〈G, t | t−1at = φ(a) ∀a ∈ A〉

and
〈G1, G2 | φ1(a) = φ2(a) ∀a ∈ A〉.

Exercises

1. Prove 3.1.3–3.1.5.
2. Prove that our definition of ∆e2

γ only depends on the orientation and not on the
particular characteristic map hγ . (Material in Sect. 3.4 may be helpful here.)

3. Describe the abelianizations of the groups in Examples 3.1.21 and 3.1.22 in the
common language of abelian groups.

4. Prove that there are only countably many isomorphism classes of finitely pre-
sented groups.10 We will see explicit examples of finitely generated groups which
are not finitely presented in Sect. 8.3.

5. Show using Tietze transformations that the following presentations define the
same group: (i) 〈a, b, c | ab = ba, c2 = b〉; (ii) 〈x, y | t−1xt = y, t−1yt = x〉. (See
Exercise 3 of Sect. 4.3 for another way of looking at this question.)

3.2 Combinatorial description of covering spaces

Let Y be a CW complex. An automorphism of Y is a homeomorphism h : Y →
Y such that whenever e is a cell of Y so is h(e). The group of all automorphisms
of Y will be denoted by Aut Y : the multiplication is composition, (h′◦h)(y) =
h′(h(y)).

Let G be a group. A G-CW complex is a CW complex Y together with a
homomorphism α : G→ Aut Y . We write g.y for α(g)(y). The homomorphism
α is also called a cell-permuting left action of G on Y . The stabilizer of A ⊂ Y
is GA = {g ∈ G | g(A) = A}. The action is free, and Y is a free G-CW
complex, if the stabilizer of each cell is trivial. The action is rigid , and Y is a
rigid G-CW complex, if the stabilizer of each cell, e, acts trivially on e. There

10 The interest here is that there are uncountably many isomorphism classes of
finitely generated groups – see [106, p. 188].
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is a sense (explained at the end of Sect. 4.1) in which “rigid G-CW complex”
rather than “arbitrary G-CW complex” is the natural equivariant analog of
“CW complex”.11

An action of G defines an equivalence relation on Y : y1 = y2 mod G iff
there is some g ∈ G such that g.y1 = y2. The set of equivalence classes (also
called orbits) is denoted by G\Y : it is given the quotient topology.12

Proposition 3.2.1. Let Y be a free G-CW complex. The quotient map q :
Y → G\Y =: X is a covering projection, and X admits the structure of a
CW complex whose cells are {q(e) | e is a cell of Y }.

Proof. Let Xn = ∪{q(e) | e is a cell of Y having dimension ≤ n}. X0 is

discrete. X =
⋃
n

Xn. If A indexes the n-cells of Y , the G-action on Y induces

a G-action on A. Write B = G\A. Consider the following diagram:

Bn(A)
∐

Y n−1 p−−−−→ Y n⏐⏐
r

⏐⏐
q|

Bn(B)
∐

Xn−1 p′

−−−−→ Xn

Here, Bn(A) is regarded as a G-space, where g ∈ G maps Bn
α to Bn

g.α by
the “identity”. Thus Bn(A)

∐
Y n−1 is a G-CW complex. The map p is the

quotient map described in 1.2.1; it can be chosen to satisfy g.p(x) = p(g.x)
for all x ∈ Bn(A)

∐
Y n−1 by defining p to agree with a characteristic map

hα on Bn
α for one α in each G-orbit of A, and then defining p on the other

Bn
α’s using the group action. The map r agrees with q on Y n−1 and maps Bn

α

homeomorphically onto Bn
β , where β ∈ B is the orbit of α. Since r is a quotient

map (see Sect. 1.1), there is a map p′ making the diagram commute. Moreover,
p′ | Xn−1 = inclusion, p′(Sn−1(B)) ⊂ Xn−1, and p′ maps Bn(B) − Sn−1(B)
homeomorphically onto Xn−Xn−1. The map p′ is a quotient map, since the
other three maps in the diagram are quotient maps. So Xn is obtained from
Xn−1 by attaching n-cells. Since q is a quotient map and Y is a CW complex,
X has the weak topology with respect to {Xn}. Thus X is a CW complex.

Next we describe the inductive step in the proof that q is a covering pro-
jection. Suppose Un−1 is an open subset of Xn−1 having the property that
q−1(Un−1) = q−1(Un−1) ∩ Y n−1 = ∪{g.Vn−1 | g ∈ G}, where Vn−1 is open in
Y n−1, and g1.Vn−1 ∩ g2.Vn−1 = ∅ whenever g1 �= g2. Then certainly Un−1

is evenly covered by q | Y n−1. Let Wn−1 = p−1q−1(Un−1) ∩ Bn(A), let
Sn−1 = p−1(Vn−1) ∩ Bn(A), and let Tn−1 = (p′)−1(Un−1) ∩ Bn(B). Then

11 Looking ahead, and using terminology from Sect. 5.3, we find a useful way of
rigidifying: when Y is a regular G-CW complex, its “first derived” |sd Y | is a
rigid G-CW complex.

12 This action α is a left action of G on Y , hence the notation G\Y ; we reserve Y/G
for right actions.
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Tn−1 is evenly covered by Wn−1 (via r) and r |: Sn−1 → Tn−1 is a homeo-
morphism. The sets Sn−1 and Wn−1 are open in Sn−1(A), while Tn−1 is open
in Sn−1(B). Choose Sn open in Bn(A) so that Sn ∩ Sn−1(A) = Sn−1. Write
Wn =

⋃{gSn | g ∈ G}. Then Wn is open in Bn(A) and Tn = r(Wn) = r(Sn)
is open in Bn(B), while Tn ∩ Sn−1(B) = Tn−1. We leave it as an exercise to
show that Sn can be so chosen that gSn ∩ Sn = ∅ whenever g ∈ G. Define
Vn = p(Sn ∪ Vn−1) and Un = p′(Tn ∪ Un−1). Then Un is open in Xn and is
evenly covered by p(Wn ∪ Vn−1) =

⋃
{gVn | g ∈ G}.

To see that q is a covering projection, let x ∈ X . There is a unique m and

a unique cell em
δ such that x ∈ ◦

e m
δ . We have q−1(

◦
e m

δ ) = ∪{g.
◦
e m

γδ
| g ∈ G}

where em
γδ

is an arbitrarily chosen m-cell over em
δ . Clearly, g1.

◦
e m

γ ∩ g2.
◦
e m

γ = ∅
whenever g1 �= g2. Write Um =

◦
e m

δ . By induction, choose Um ⊂ Um+1 ⊂ . . .

as above. Let U =
⋃

k≥m

Uk. Then U is an open subset of X evenly covered by

q. �

Neither part of 3.2.1 need hold if the action is not free: for example, take
G = Z2, Y = [−1, 1] with 0-cells at ±1 and one 1-cell, and let the non-trivial
element of G act on Y by t �→ −t. However, we have:

Proposition 3.2.2. Let Y be a rigid G-CW complex and let q : Y → G\Y be
the quotient map. Then G\Y admits a CW complex structure whose cells are
{q(e) | e is a cell of Y }.

Proof. Similar to the first part of the proof13 of 3.2.1. �

The map q in 3.2.2 is not, in general, a covering projection (unlike the
situation in 3.2.1): for example, take G = Z2, Y = [−1, 1] with the CW
structure consisting of 0-cells at −1, 0 and 1, and 1-cells [−1, 0] and [0, 1]; let
the non-trivial element of G act on Y by t �→ −t.

We will sometimes refer to the n-cells of X (in 3.2.1 and 3.2.2) as the n-cells
of Y mod G. We say Y is finite mod G if G\Y is a finite CW complex.14

Our next task is to show that when Y is a simply connected free G-CW
complex, and v is a vertex of X := G\Y , then π1(X, v) ∼= G. For this we must
define lifts of edge paths in X to edge paths in Y . If τ1 is an edge of X with
initial point v = q(ṽ), there is a unique edge τ̃1 of Y with initial point ṽ which
maps to τ1, by 2.4.6 and 2.4.7. Call τ̃i the lift of τi at ṽ. By induction we
define the lift of an edge path τ := (τ1, . . . , τk) to be the unique edge path
τ̃ := (τ̃1, . . . , τ̃k) with initial point ṽ such that q(τ̃) = τ .

Pick a vertex ṽ ∈ Y with q(ṽ) = v. Assuming Y simply connected, define
χ : G → π1(X, v) as follows: choose an edge path τ̃ in Y from ṽ to g.ṽ, and
let χ(g) be the element of π1(X, v) represented by the edge loop q(τ̃). Path
connectedness ensures that τ̃ exists.

13 The reader should consider why the argument would fail without rigidity.
14 Alternatively, one says that G acts cocompactly on Y .
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Proposition 3.2.3. χ is well defined and is an isomorphism.

Proof. We first show that χ is well defined. Let σ̃ and τ̃ be edge paths from
ṽ to g.ṽ. Since Y is simply connected, σ̃ and τ̃ are equivalent. (To see this
[using � for equivalence] note that σ � σ.(g.ṽ) � σ.(σ−1.τ) = (σ.σ−1).τ � τ ;
the first and last equivalences are elementary, the other comes from 3.1.3.)
Each elementary equivalence on the way from σ̃ to τ̃ induces an elementary
equivalence on the way from q(σ̃) to q(τ̃). Hence [q(σ̃)] = [q(τ̃)].

χ is obviously a homomorphism. Let χ(g) = 1. If τ̃ is an edge path in Y
from ṽ to g.ṽ, the corresponding edge loop τ at v is equivalent to the degen-
erate edge loop v. If two loops at v differ by an elementary equivalence, their
lifts at ṽ have the same final point. Hence this also holds if they are merely
equivalent. It follows that g.ṽ = ṽ, hence g = 1. So χ is a monomorphism.
But χ is clearly onto, for given an edge loop τ at v in X , let g.ṽ be the final
point of τ̃ . Then χ(g) is the element of π1(X, v) represented by τ . �

We immediately conclude, using 3.1.17:

Theorem 3.2.4. Let Y be a simply connected free G-CW complex such that
there are only finitely many 1-cells [resp. 1-cells and 2-cells] mod G. Then G
is finitely generated [resp. finitely presented]. �

We have seen in 3.2.3 that the quotient of a simply connected free G-CW
complex has fundamental group G. Conversely, given a path connected CW
complex X , we now show how to construct a simply connected free π1(X, v)-
CW complex X̃ having quotient X . This is the “universal cover” construction.
It is common to define X̃ as a quotient space of a function space – an efficient
but non-constructive procedure. We prefer to construct X̃ as a CW complex,
skeleton by skeleton. We shall see in Chaps. 13, 14 and 16 that even the 1-
skeleton and 2-skeleton of X̃, as constructed here, exhibit interesting “end”
invariants of the group π1(X, v), so the work involved in the construction will
be worthwhile.

Let X be a path connected CW complex. Choose an orientation for X , a
maximal tree T ⊂ X , and a vertex v ∈ X as base point. Write π = π1(X, v).
Give π the discrete topology.

Let X̃0 = π×X0, let p0 : X̃0 → X0 be projection on the X0-factor, and let
π act on X̃0 by ḡ.(g, vα) = (ḡg, vα). This π-action is free and p0 is its quotient
map; p0 is a covering projection. Pick as base vertex ṽ := (1, v) ∈ π×X0 = X̃0.

Next, we define the 1-skeleton X̃1. Part of the 1-skeleton is π× T , but we
will attach more 1-cells. Let the (already oriented) 1-cells of X which are not
in T be {e1

β | β ∈ B}. For each β ∈ B, let gβ ∈ π be the element represented by

the edge loop λ.e1
β .µ−1, where λ and µ are the unique reduced edge paths in

T from v to the initial and final points of e1
β; see the proof of 3.1.12. By 3.1.16,

the elements gβ generate π. Pick a characteristic map hβ : (B1, S0)→ (e1
β ,

•
e 1

β)

representing the chosen orientation; let fβ : S0 → X0 be the corresponding
attaching map. For each β ∈ B and each g ∈ π attach a 1-cell e1

β,g to π × T
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by the attaching map fβ,g : S0 → X̃0 ⊂ π × T , −1 �→ (g, hβ(−1)) and 1 �→

(ggβ, hβ(1)). The resulting CW complex is X̃1 =

⎛
⎝(π × T )

∐
β,g

B1
β,g

⎞
⎠ /∼,

where ∼ is defined in the obvious way by the maps fβ,g. Note that π× T is a

subcomplex of X̃1. Now, X1 =

⎛
⎝T 

∐
β

B1
β

⎞
⎠ /∼ where ∼ is defined by the

maps fβ. The map (π×T )
∐
β,g

B1
β,g → T

∐
β

B1
β which is “projection onto T ”

on π × T and is “identity”: B1
β,g → B1

β on B1
β,g induces a map p1 : X̃1 → X1

extending p0. For each ḡ ∈ π, the self-homeomorphism d̃ḡ of (π×T )
∐
β,g

B1
β,g

which is (g, u) �→ (ḡg, u) on π × T and is “identity”: B1
β,g → B1

β,ḡg on B1
β,g

induces a self-homeomorphism dḡ of X̃1. Clearly, p1 ◦ dḡ = p1. Moreover, the

homomorphism ḡ �→ dḡ makes X̃1 into a free π-CW complex containing the

previously defined π-CW complex X̃0 as a π-subcomplex. By 3.2.1, p1 is a
covering projection, and the cells of X1 are the p1-images of the cells of X̃1.
It is easy to check that X̃1 is path connected.

We remark that if X has just one vertex, then T = {v} and our construc-
tion of X̃1 is called the Cayley graph15 of π with respect to the generators
{gβ}: a vertex for each element of π, and an edge joining g to ggβ for each
g ∈ π and each (g, β) ∈ G× B.

Proposition 3.2.5. Let τ be an edge loop at v ∈ X, and let τ̃ be the lift of
τ with initial point (g, v) ∈ X̃1. The final point of τ̃ is (gḡ, v) where ḡ is the
element of π represented by τ . In particular, either every lift of τ is an edge
loop, or none is.

Proof. Let (g, u) ∈ π×X0 = (X̃1)0. A non-degenerate edge τi in T from u to
w lifts to an edge in X̃1 from (g, u) to (g, w). If τβ is the edge e1

β (β ∈ B) with
the preferred orientation, having initial point u and final point w, τβ lifts to

an edge of X̃1 with initial point (g, u) and final point (ggβ, w); τ−1
β lifts to an

edge of X̃1 with initial point (g, w) and final point (gg−1
β , u). Applying these

remarks inductively to τ := (τ i1
1 , . . . , τ ik

k ), we see that τ̃ has initial point (g, v)
and final point (gḡ, v) as claimed.16 �

15 The Cayley graph of a group with respect to a finite set of generators is an
important construction in group theory. We will see that the number of ends of
this graph is a quasi-isometry invariant (Sect. 18.2) and gives information about
the structure of the group (Sect. 13.5). It is the basis for the “word metric” on
the group (Sect. 9.1) and its geometry determines whether or not the group is
“hyperbolic.” Some examples are discussed in the Appendix.

16 To simplify notation, some details are omitted here: when τi is in T the π-

coordinate is unchanged; when τi = τ
iβ

β the π-coordinate is right multiplied by



3.2 Combinatorial description of covering spaces 89

Let hγ : (B2, S1)→ (e2
γ ,

•
e 2

γ) be a characteristic map representing the given
orientation of e2

γ . Let fγ : S1 → X1 be the corresponding attaching map. By
3.2.5, any representative edge loop µγ of the cyclic edge loop ∆e2

γ lifts to an

edge loop in X̃1. From this we deduce:

Proposition 3.2.6. There are maps f̃γ : S1 → X̃1 such that p1 ◦ f̃γ = fγ . If

f̃γ is one such, then the others are dg ◦ f̃γ where g ∈ π.

Proof. Let µγ = (τ i1
1 , . . . , τ im

m ) where τj has the chosen orientation, and ij =
±1. Let K be the CW complex structure on S1 having vertices at the mth

roots of unity (compare 1.2.17). By 1.4.2 and 3.1.1, fγ is homotopic to a map
f ′ : S1 → X1 such that the restriction of f ′ maps the interior of the jth

1-cell of K homeomorphically onto
◦
τ j with orientation indicated by ij ; or else

m = 1, τ1 is degenerate and f ′ is constant. By 3.2.5, f ′ lifts. By 2.4.7, if f̃ ′ is
one lift, then the others are dg ◦ f̃ ′ where g ∈ π. By 2.4.6, the same is true of

f̃γ . �

We now define X̃2 and p2 : X̃2 → X2. For each 2-cell e2
γ of X choose

hγ , as above; choose a lift f̃γ of fγ , and, for each g ∈ π, attach a 2-cell e2
γ,g

to X̃1 by the attaching map dg ◦ f̃γ . The resulting CW complex is X̃2 =(
X̃1 

∐
γ,g

B2
γ,g

)
/∼ where ∼ is defined by the maps dg ◦ f̃γ . Then X2 =

(
X1 

∐
γ

B2
γ

)
/∼, where ∼ comes from the maps fγ . Just as before, the map

X̃1 
∐
γ,g

B2
γ,g → X1 

∐
γ

B2
γ which is p1 on X̃1 and is “identity”: B2

γ,g → B2
γ

on B2
γ,g induces a map p2 : X̃2 → X2 extending p1. And, just as before, the

free π-action on X̃1 extends to make X̃2 into a free π-CW complex for which
p2 is the quotient map. By 3.2.1, p2 is a covering projection, and the cells of
X2 are the p2-images of the cells of X̃2.

Theorem 3.2.7. X̃2 is simply connected.

Proof. Let τ̃ be an edge loop in X̃2 at ṽ. Then τ := p2(τ̃) is an edge loop in
X at v. By 3.2.5, τ represents 1 ∈ π1(X, v). Recall that equivalence of edge
loops is defined in terms of elementary equivalences each of which is either a
reduction or a formal move across a 2-cell (see Fig. 3.1). We say that τ is of
distance ≤ n from the trivial edge loop, (v), if it is possible to pass from τ to
(v) by n elementary equivalences. We prove, by induction on n, that if τ is of
distance ≤ n from (v) then τ̃ is of distance ≤ n from (ṽ). If n = 0, τ = (v) and
τ̃ = (ṽ). The induction is completed by observing that if τ differs from σ by

g
iβ

β . The resulting ḡ is indeed the element of π represented by τ , as we saw in the
proof of 3.1.16.
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one elementary equivalence, then the same is true of the difference between
τ̃ and σ̃. Indeed, when the difference is a reduction, this is clear. When the
difference is an elementary equivalence across a 2-cell e2

γ , this follows from the
fact that if µ is an edge loop representing ∆e2

γ then for each g ∈ π, some lift
of µ represents ∆e2

γ,g. �

A covering transformation (or deck transformation) of a covering projec-
tion p : E → B is a homeomorphism d : E → E such that p ◦ d = p. The
covering transformations form a group of homeomorphisms (with composition
as the group multiplication).

In the present case, p2 : X̃2 → X2 is a covering projection, and the
elements g of π give rise to covering transformations dg : t �→ g.t. Since p2 is
the quotient map of the π-action, these are the only covering transformations.
Note that when g �= ḡ ∈ π, dg �= dḡ.

Here is a general property of covering projections, which we are about to
use (compare 3.3.4):

Proposition 3.2.8. Let p : E → B be a covering projection, let n ≥ 2, and
let g : Sn → B be a map. There is a map g̃ : Sn → E such that p ◦ g̃ = g (call
such g̃ a “lift” of g) and any other lift of g has the form d ◦ g̃ where d is a
covering transformation of p. �

Now we are ready to define p : X̃ → X extending p2. By induction, assume
that for some n ≥ 2, a free π-CW complex X̃n has been defined whose quotient
map is pn : X̃n → Xn. As above, we denote by dg : X̃n → X̃n the covering
transformation corresponding to g ∈ π. By 3.2.1, the cells of Xn are the pn-
images of the cells of X̃n. Choose a characteristic map hδ : (Bn+1, Sn) →
(en+1

δ ,
•
e n+1

δ ) representing the given orientation of each (n + 1)-cell, en+1
δ , of

X . Let fδ : Sn → Xn be the corresponding attaching map. By 3.2.8, there is
a lift f̃δ : Sn → X̃n, and all lifts have the form dg ◦ f̃δ where g ∈ π. Attach

an (n + 1)-cell en+1
δ,g to X̃n by the attaching map dg ◦ f̃δ, for each g ∈ π. The

resulting CW complex is X̃n+1 =

⎛
⎝X̃n 

∐
δ,g

Bn+1
δ,g

⎞
⎠ /∼ where ∼ is defined by

the maps dg ◦ f̃δ. Xn+1 =

(
Xn 

∐
δ

Bn+1
δ

)
/∼ where ∼ comes from the maps

fδ. We define pn+1 : X̃n+1 → Xn+1 extending pn, and we extend the free π-
action on X̃n to a free π-action on X̃n+1 just as before. This is easily seen to

complete the induction. Let X̃ =
⋃
n

X̃n. Define p : X̃ → X by p | X̃n = pn.

By 3.1.7 and 3.2.7, X̃ is simply connected. Summarizing:

Proposition 3.2.9. Given a path connected oriented CW complex X, a vertex
v ∈ X, and a maximal tree T in X, the above construction yields a simply
connected free π1(X, v)-CW complex X̃ and a covering projection p : X̃ → X
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which is the quotient map of the π1(X, v)-action. Moreover, the cells of X are
the p-images of the cells of X̃. �

We will review in Sect. 3.3 the well-known fact that this action can be
defined in a purely topological manner.

Remark on Notation. For n ≥ 2, (X̃)n = (Xn)̃ . But for n = 0 or 1,
these can be different; for example, consider X = B2. In ambiguous cases X̃n

will always mean (X̃)n.
Propositions 3.2.9 and 3.1.8 imply:

Corollary 3.2.10. For any group G, there exists a simply connected free G-
CW complex. �

We will recall in Sect. 3.3 that the simply connected covering space X̃ is,
in a certain sense, unique and is a covering space of all other path connected
covering spaces of X . Anticipating that, we call X̃ the universal cover of X
(remembering that our particular construction of X̃ appears to depend on
many choices).

Knowing X̃, we can easily construct a path connected covering space of X
with any subgroup H of π1(X, v) as fundamental group. Let X̄(H) = H\X̃.
Consider the following diagram:

X̃
p

����
��
��
�� pH

���
��

��
��

�

X ��
qH

X̄(H)

Here, pH is the quotient map. The construction of X̃ gave that space a natural
base point ṽ = (1, v). We give X̄(H) the base point v̄ = pH(ṽ).

Proposition 3.2.11. There is a map qH making this diagram commute. Both
pH and qH are covering projections. X̄(H) admits a CW complex structure
whose cells are the pH-images of the cells of X̃. The cells of X are the qH-
images of the cells of X̄(H). π1(X̄(H), v̄) ∼= H.

Proof. There is obviously a function qH making the diagram commute; pH is
a quotient map by definition, so qH is continuous. It is not hard to show that
an open subset of X evenly covered by p is evenly covered by qH . By 3.2.1,
the CW complex structures on X̄(H) and X are as claimed. The isomorphism
of π1(X̄(H), v̄) and H comes from 3.2.3. �

Here is a well-known corollary.

Theorem 3.2.12. Every subgroup of a free group is free.17

17 This, together with Exercise 6, is the Nielsen-Schreier Subgroup Theorem.
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Proof. Let F be a free group and let H ≤ F be a subgroup. By 3.1.8, there
is a 1-dimensional CW complex X (having exactly one vertex v) such that
π1(X, v) is isomorphic to F . Form the covering space X̄(H); by 3.2.11, it is
a CW complex whose fundamental group is H . Being a covering space of a
1-dimensional complex, X̄(H) is 1-dimensional. By 3.1.16, H is free. �

If we let G = π1(X, v) and consider the subgroup H ≤ G, we may ask: what
special property does X̄(H) exhibit when the index [G : H ] of H in G is finite?
To answer this, we observe that the isomorphism χ of 3.2.3 actually defines a
bijection between G and the set p−1(v) ⊂ X̃, under which g ∈ G is mapped
to g.ṽ ∈ p−1(v). The action of H on p−1(v) partitions p−1(v) into equivalence
classes in bijective correspondence with the cosets {Hg | g ∈ G}. These are
also in bijective correspondence with q−1

H (v) ⊂ X̄(H), where qH : X̄(H)→ X
is as in 3.2.11. This proves:

Proposition 3.2.13. If [G : H ] = n ≤ ∞ then the covering projection qH :
X̄(H) → X is an n to 1 function. If X is a finite CW complex, then X̄(H)
is finite iff H has finite index in G. �

Appendix: Cayley graphs

Cayley graphs arose in our construction of the universal cover, but they de-
serve further discussion. Given a set of generators S for a group G, the asso-
ciated Cayley graph has a vertex for each g ∈ G, and a non-degenerate edge
for each ordered pair (g, s) ∈ G × S, with initial point g and final point gs.
Thus, if we give the orientation +1 to each vertex, the Cayley graph, denoted
here by Γ (G, S), is an oriented graph.

If 1 ∈ S then Γ (G, S) includes a loop at each vertex. If s ∈ S has order
2, then two edges (g, s) and (gs, s) join the vertex g to the vertex gs, one in
either direction.18 The graph Γ (G, S) is a G-graph under the action of G on
the vertex set (also G) by left translation. In fact, as we have noted, this is a
free action with quotient graph G\Γ (G, S) having one vertex and an edge for
each member of S.

The pictures in Fig. 3.2 are intended to give some insight into Cayley
graphs. We name the groups by presentations, but it is the named generators
which determine the Cayley graph:

(a) G = {1}, S = ∅.
(b) G = {1}, S = {1}.
(c) G = 〈x | x2〉, S = {x}.
(d) G = 〈x | x2〉, S = {1, x}.
(e) G = 〈x | x3〉, S = {x}.
18 Some authors disregard orientation in Γ (G,S) and include only one edge from g

to gs when s has order 2.
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Fig. 3.2.

(f) G = 〈x | x3〉, S = {x, x2}.
(g) G = 〈x | x3〉, S = {1, x, x2}.
(h) G = 〈x, y | x5, y2, (xy)3〉, S = {x, y}.

(In this picture the sides of the pentagons are x-edges; the others are y-
edges and should be double since y has order 2; the reader should compare
this picture with the pattern on a soccer ball.)

(i) G = 〈x, y | xyx = yxy〉, S = {x, y}.

The group in (h) is the alternating group A5. The group in (i) is the
(infinite) three-strand braid group B3; only a small portion of the Cayley
graph is shown since these groups are infinite and so have infinite Cayley
graphs.

Exercises

1. Fill in the missing details of the inductive step in the proof of Proposition 3.2.1.
2. Prove that an automorphism of a CW complex maps n-cells onto n-cells, and

that the covering projection in 3.2.1 maps the interior of an n-cell homeomor-
phically onto the interior of an n-cell.
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3. Prove: Let τ be an edge loop at the vertex v ∈ X and let τ̄ be the lift of τ to the
1-skeleton X̄(H)1 with initial point (Hg, v); then the final point of τ̄ is (Hgḡ, v)
where ḡ is the element of π1(X, v) represented by τ .

4. Let ∼ be the equivalence relation on Sn whose equivalence classes consist of pairs
of diametrically opposite points. The quotient space Sn/∼ is real n- dimensional
projective space RP n. This is also the quotient space of the action of Z2 = 〈t | t2〉
on Sn, where t.x = −x. Find a Z2-CW complex structure on Sn and hence a
CW-complex structure on RP n. (RP 2 is called the [real] projective plane).

5. What is the fundamental group of RP n? Answer this using covering space theory
and also using 3.1.8 or 3.1.16.

6. Prove that if F is a free group of rank n and H ≤ F is a subgroup of index j
then H is a free group of rank 1 + j(n − 1). (Compare Theorem 3.2.12.)

7. Describe the universal cover of (S1 ∨ S1) × S1.
8. Describe the universal cover of the presentation complex of 〈x, t | t−1xtx−2〉.

(For more on this see Example 6.2.10.)

3.3 Review of the topologically defined fundamental
group

The fundamental group as defined in Sect. 3.1 is usually called the “edge path
group” or “combinatorial fundamental group” because its definition involves
the CW complex structure of X rather than just the topology of X . In this
section, we review the more usual “topological” definition and its elementary
properties. Proofs of all assertions can be found in [74] or [146].

Let (Y, y) be a pointed space. A loop in Y at y is a map ω : (I1,
•
I 1) →

(Y, y); its inverse is ω−1, the loop t �→ −t
ω�→ ω(−t). The product ω1.ω2 of two

loops ω1 and ω2 is the loop defined by t �→ 2t + 1
ω1�→ ω1(2t + 1) when t ≤ 0

and by t �→ 2t− 1
ω2�→ ω2(2t− 1) when t ≥ 0. Two loops ω1 and ω2 (in Y at y)

are homotopic if the maps of pairs ω1, ω2 : (I1,
•
I 1) → (Y, y) are homotopic.

The trivial loop is the loop taking I1 to y. Products of homotopic loops are
homotopic. Inverses of homotopic loops are homotopic. If ω is a loop, ω.ω−1

and ω−1.ω are homotopic to the trivial loop. If ω1 is trivial, ω2 is homotopic
both to ω1.ω2 and to ω2.ω1.

Let π1(Y, y) be the set of homotopy classes of loops in Y at y. If [ω] denotes
the homotopy class of the loop ω, then the pairing ([ω1], [ω2]) �→ [ω1.ω2]
defines a multiplication on π1(Y, y). This multiplication is associative. If we
define [ω]−1 = [ω−1] and 1 = [trivial loop], π1(Y, y) becomes a group, the
fundamental group of the space Y with base point y. We will see in the next
section that when X is a CW complex the two definitions of fundamental
group agree.

If ω is a loop in Y at y and f : (Y, y) → (Z, z) is a map, then f ◦ ω is a
loop in Z at z. If ω1 and ω2 are homotopic loops in Y at y, then f ◦ ω1 and
f ◦ ω2 are homotopic loops in Z at z.
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Let ω be a loop in Y at y, let f, g : (Y, y)→ (Z, z) be maps, let F : Y ×I →
Z be a homotopy such that F0 = f and F1 = g, and let α : (I1,

•
I 1)→ (Z, z)

be the loop t �→ F (y, 1
2 (t+1)). Then f ◦ω is homotopic to α.(g◦ω).α−1rel

•
I 1.

Define f# : π1(Y, y)→ π1(Z, z) by f#([ω]) = [f ◦ ω]. This f# is well defined,
and if g : (Y, y)→ (Z, z) is such that f � g rel {y}, then f# = g#. Moreover,
f# is a homomorphism.

If (Y, y)
f−→ (Z, z)

g−→ (W, w) are maps, (g ◦ f)# = g# ◦ f#, and
(idY )# = id. Thus π1 is a covariant functor from the category of pointed
spaces and homotopy classes rel base point to the category of groups and
homomorphisms. Nevertheless, in most cases of interest, the homotopy invari-
ance can be expressed without restriction to base point preserving homotopies.
In order to say this precisely, we define a base point y ∈ Y to be good if the
pair (Y, {y}) has the homotopy extension property with respect to any space.
We need not dwell on the pathological situations under which a base point
might fail to be good. The important case for us is an immediate consequence
of 1.3.15, namely:

Proposition 3.3.1. If X is a CW complex and v is a vertex of X, then v is
a good base point for X. �

The desired homotopy invariance theorem is:

Proposition 3.3.2. Let f : (Y, y)→ (Z, z) be a map such that f : Y → Z is
a homotopy equivalence, and let z be a good base point. Then f# : π1(Y, y)→
π1(Z, z) is an isomorphism.19

Proof. Let g : Z → Y be a homotopy inverse for f . Let α be a path in Y
from g(z) to y. Define H : (Z × {0}) ∪ ({z} × I) → Y by H(x, 0) = g(x),
for z ∈ Z, and H(z, t) = α(t). H extends to a map H̄ : Z × I → Y . Let
ḡ = H̄(·, 1). Then ḡ is also a homotopy inverse for f , and ḡ(z) = y. By our
previous remarks, (ḡ◦f)#([ω]) = [β].[ω].[β]−1 and (f ◦ ḡ)#([σ]) = [γ].[σ].[γ]−1

for suitable [β] ∈ π1(Y, y) and [γ] ∈ π1(Z, z). Thus f# is an isomorphism. �

Let p : Ỹ → Y be a covering projection, where Ỹ is path connected. Let
ỹ ∈ Ỹ and let y = p(ỹ). Let G be the group of covering transformations.
Assuming π1(Ỹ , ỹ) trivial, define χ′ : G → π1(Y, y) as follows: choose a path
ω̃ in Ỹ from ỹ to g.ỹ, and let χ′(g) be the element of π1(Y, y) represented by
the loop p ◦ ω̃. Path connectedness ensures that ω̃ exists, and the triviality of
π1(Ỹ , ỹ) ensures that χ′(g) is well defined. By analogy with 3.2.3 we have:

Proposition 3.3.3. χ′ is an isomorphism. Its inverse is explicitly described
as follows: let [ω] ∈ π1(Y, y), let z̃ ∈ Ỹ , and let τ̃ be a path in Ỹ from ỹ to z̃;
(χ′)−1([ω])(z̃) = (τ−1ωτ)˜(1) where (τ−1ωτ)˜ is the unique lift of τ−1ωτ with
initial point z̃. �

19 For variations on 3.3.2, see Exercise 2, and Remark 4.1.6.
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The explicit description of (χ′)−1 in 3.3.3 is important, for it shows how
π1(Y, y) acts on Ỹ on the left. We have already seen this action in the CW
complex context in 3.2.9. There, the action appeared to depend on the CW
complex structure, on orientations of the cells, and on a maximal tree. Now
we see that the action depends on none of these. However, it does depend on
the choice of base point ỹ ∈ Y such that p(ỹ) = y. (For more on this, see
Exercise 1.)

Finally, we recall the important “lifting criterion” for covering spaces, a
special case of which we met in 3.2.8:

Proposition 3.3.4. [Lifting Criterion] Let p : (E, e) → (B, b) be a covering
projection, let Y be a path connected, locally path connected space, and let
y ∈ Y . A map f : (Y, y) → (B, b) lifts to a map f̄ : (Y, y) → (E, e) iff
f#(π1(Y, y)) ≤ p#(π1(E, e)). If f̄ exists, it is unique. �

We have reviewed the abstract part of covering space theory (here and in
2.4.6 and 2.4.7). The other part of the theory consists of existence and classi-
fication theorems. Since we have built the universal cover of a CW complex in
Sect. 3.2, we will get that part of the theory (for CW complexes) at essentially
no cost in effort. It will be given in the next section.

Exercises

1. If p : Ỹ → Y is a covering projection, the group of covering transformations G
(being a group of homeomorphisms) acts on the left on Ỹ ; this is independent
of the choice of ỹ. But the isomorphism χ′ depends on ỹ, so the corresponding
left action of π1(Y, y) on Ỹ , given by 3.3.3, depends on ỹ. For [ω] ∈ π1(Y, y)
and z̃ ∈ p−1(y) define z̃.[ω] = ω̃(1) where ω̃(0) = z̃ and ω̃ covers ω. Prove this
defines a right action of π1(Y, y) on p−1(y) which is independent of ỹ. Write
down explicitly the corresponding right action of G on p−1(y).

2. Prove that a 2-equivalence induces an isomorphism of fundamental groups (this
generalizes 3.3.2).

3. Let f, g : (X, x) → (Y, y) be pointed maps and let H : f � g be a homo-
topy between f and g. Let ω be the loop t 
→ H(x, t). Prove that f# and
g# : π1(X, x) → π1(Y, y) are conjugate homomorphisms, more precisely that
f#([τ ]) = [ω]g#([τ ])[ω]−1.

3.4 Equivalence of the two definitions of the
fundamental group of a CW complex

Now we will show that our two definitions of fundamental group agree. Let
X be an oriented CW complex and let v be a vertex of X . Just until after
Theorem 3.4.1, we will denote by πedge

1 (X, v) the “edge path” fundamental
group defined in Sect. 3.1, and by πtop

1 (X, v) the “topological” fundamental
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group defined in Sect. 3.3. If ω1, ω2 : I1 → X are maps such that ω1(1) =
ω2(−1), their product ω1.ω2 : I1 → X is defined by the same formula used
for loops, namely, t �→ ω1(2t + 1) when t ≤ 0, and t �→ ω2(2t− 1) when t ≥ 0.
We call ω1, ω2, ω1.ω2, etc., “paths” even though the domain is I1 rather than

I. A characteristic map h : (I1,
•
I 1) → (e1

α,
•
e 1

α) of a 1-cell e1
α defines a path

h : I1 → X . For each non-degenerate edge τi (= oriented 1-cell) in X , pick
a characteristic map hτi

for the underlying 1-cell representing the orientation
of τi; regard hτi

as a path in X . For each degenerate edge τi, let hτi
be the

constant path at the point τi. With each edge loop τ := (τ1, . . . , τk) at v,
associate the product path hτ := (. . . ((hτ1 .hτ2).hτ3). . . .).hτk

. Thus hτ is a
loop at v, a parametrization of τ .

Theorem 3.4.1. This association induces an isomorphism α : πedge
1 (X, v)→

πtop
1 (X, v).

Proof. We claim πtop
1 (X̃, v) is trivial. Thus the isomorphism χ′ of 3.3.3 is

defined. By 3.2.3 and 3.2.9, the isomorphism χ is well defined. Let α = χ′◦χ−1.
Then α is indeed induced by the association τ �→ hτ .

G
χ

�����
��
��
��
�

χ′

���
��

��
��

��

πedge
1 (X, v) α

�� πtop
1 (X, v)

It remains to prove the claim. Let ω : (I1,
•
I 1) → (X̃, ṽ) be a loop. By

1.4.3, ω is homotopic to a loop in X̃1. Clearly, any loop in X̃1 is homotopic
to a loop of the form hτ for some edge loop τ in X̃ at ṽ. By 3.2.7, τ can be
transformed into the trivial edge loop by elementary equivalences. If σ is a
reduction of τ , it is clear that the loops hσ and hτ are homotopic. If σ differs
from τ by a formal move across a 2-cell, so that (in the notation of Sect. 3.1)
σ.τ−1 = λ.µ1.ν.ν−1.µ2.λ

−1, then hσ.hτ−1 � hσ.τ−1 � hλ.hµ1.µ2 .hλ−1 , where
µ1.µ2 is an edge loop representing some ∆e2

γ . Careful consideration of the
definition of ∆e2

γ will convince the reader that hµ1.µ2 is homotopic to the
constant loop at the final point of λ. Hence hσ � hτ . Finally, note that if τ is
the trivial edge loop at ṽ, hτ is the constant loop at ṽ. �

From now on, we will write π1(X, v) for both groups, understanding them
to be identified by the isomorphism α of 3.4.1.

Just as with cellular homology, it follows that we may speak of π1(X, v)
without reference to a particular CW complex structure on X , and that,
by 3.1.16, different CW complex structures lead to different presentations of
the same group. To take a simple example, choose for Sn the CW complex
structure consisting of one vertex, v, and one n-cell. Then π1(S

1, v) ∼= Z by
3.1.9, and for n ≥ 2, π1(S

n, v) = {1} by 3.1.10. For this, the combinatorial
approach is simplest. On the other hand, the topological approach allows a
trivial proof that π1 preserves products:



98 3 Fundamental Group and Tietze Transformations

Proposition 3.4.2. Let {(Xα, xα)}α∈A be a family of pointed spaces and let

pβ :
∏
α

Xα → Xβ be the projection map. Then p# : π1

(∏
α

Xα, (xα)

)
→∏

α

π1(Xα, xα) is an isomorphism, where p(x) := (pα(x)). �

Hence, writing T n for the n-fold product of copies of S1 (T n is the n-torus),
we get π1(T

n, v) ∼= Zn.
Of course, we have seen another proof that π1(S

1, v) is Z. Give R the CW
complex structure with vertex set Z and 1-cells [n, n + 1] for each n ∈ Z. Let
Z act on R by n.x = x+n. Then R is a simply connected free Z-CW complex
whose quotient is homeomorphic to S1. By 3.2.3, π1(S

1, v) is isomorphic to
Z. Similar remarks apply to T n since its universal cover is Rn.

Since we are concerned with presentations of groups, it is useful to refor-
mulate 3.1.16 topologically. Let (X, v) be a pointed CW complex. By 3.1.16,
π1(X

1, v) is a free group. Choose an attaching map fγ : S1 → X1 for

each 2-cell e2
γ of X . Then fγ ◦ k̄1 : I1 → X1 is a loop, where I1 k̄1−→ S1

is the quotient map I1 −→ I1/
•
I 1 k1−→ S1 chosen once and for all in

Sect. 2.5. Choose a path λγ in X1 from v to fγ(1) := fγ ◦ k̄1(−1). Let
gγ = [λγ .(fγ ◦ k̄1).λ

−1
γ ] ∈ π1(X

1, v).

Proposition 3.4.3. Let i : (X1, v) ↪→ (X, v). The homomorphism i# :
π1(X

1, v) → π1(X, v) is an epimorphism whose kernel is the normal closure
of {gγ | e2

γ is a 2-cell of X}. �

By 3.3.1 and 3.3.2 we have:

Proposition 3.4.4. Let f : X → Y be a homotopy equivalence between CW
complexes taking the vertex v to the vertex w. Then f# : π1(X, v)→ π1(Y, w)
is an isomorphism. �

We can now improve the theory of covering spaces of CW complexes begun
in Sect. 3.2.

Let X be a path connected CW complex and let v be a vertex of X .
Recall from Sect. 3.2 that for each subgroup H ≤ π1(X, v) there is a cov-
ering projection qH : (X̄(H), v̄) → (X, v) such that π1(X̄(H), v̄) ∼= H . We
now have the language to strengthen that statement. The universal cover X̃
is a free left π1(X, v)-CW complex, hence also a free left H-CW complex.
Moreover, X̃ is simply connected. Therefore there is a canonical isomorphism
χ : H → π1(X̄(H), v̄) defined in Sect. 3.2. On the other hand, qH induces
a homomorphism qH# : π1(X̄(H), v̄)→ π1(X, v).

Proposition 3.4.5. qH# ◦ χ = inclusion : H ↪→ π1(X, v). �

Corollary 3.4.6. qH# is a monomorphism whose image is H. �
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It remains to show that these covering spaces X̄(H) are essentially the
only path connected covering spaces of X . For this we need to know that CW
complexes are locally path connected. This is easily proved in three steps (the
details are an exercise):

Proposition 3.4.7. (i) Bn is locally path connected; (ii) if Y is obtained from
the locally path connected space A by attaching n-cells, then Y is locally path
connected; (iii) every CW complex is locally path connected. �

Proposition 3.4.8. Let q : (E, e)→ (X, v) be a covering projection, where E
is path connected and X is a CW complex. Let H = q#(π1(E, e)) ≤ π1(X, v).
Then there is a homeomorphism h : (E, e)→ (X̄(H), v̄) making the following
diagram commute. In particular, q# is a monomorphism.

(E, e)
h ��

q
���

��
��

��
��

(X̄(H), v̄)

qH�����
��
��
��
�

(X, v)

Proof. Apply 3.3.4 to q and to qH . Uniqueness implies that the resulting lifts
are mutually inverse. �

Pointed covering projections p1 : (E1, e1) → (X, x) and p2 : (E2, e2) →
(X, x), where E1 and E2 are path connected, are said to be equivalent if there
is a homeomorphism h : (E1, e1)→ (E2, e2) such that p1 = h ◦ p2.

So, up to equivalence, there is a bijection between the path connected
pointed covering spaces of the pointed CW complex (X, v) and the subgroups
of π1(X, v), such that the fundamental group of the covering space correspond-
ing to H is mapped isomorphically to H . Proposition 3.4.8 also completes
the explanation given in Sect. 3.2 for the name “universal cover” – a path
connected pointed covering space of (X, v) which covers all path connected
pointed covering spaces of (X, v).

We close with two very useful theorems linking topology and group theory,
one a special case of the other. Their proofs are left as exercises.

Theorem 3.4.9. Let (X, A) be a pair of path connected CW complexes. Let
i : (A, v) ↪→ (X, v) be the inclusion of a subcomplex and let p : (X̃, ṽ) →
(X, v) be the universal cover. (i) There is a bijection between the set of path
components of p−1(A) and the set of cosets

{g.(image i#) | g ∈ π1(X, v)}.

(ii) If Aṽ denotes the path component of p−1(A) containing ṽ, then π1(Aṽ, ṽ)
is isomorphic to ker i#. �
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Theorem 3.4.10. With notation as in Theorem 3.4.9, let (X̄(H), v̄) be the
pointed covering space corresponding to H. (i) There is a bijection between the
set of path components of q−1

H (A) and the set of double cosets

{H.g.(image i#) | g ∈ π1(X, v)}

. (ii) If Av̄ denotes the path component of q−1
H (A) containing v̄, then π1(Av̄, v̄)

is isomorphic to i−1
# (H). �

In summary: (i) π0(q
−1
H (A)) ∼= H\π1(X, v)/image i#, and (ii) Av̄ =

Ā(i−1
# (H)).

Exercises

1. Prove 3.4.7.
2. Theorem 3.3.3 establishes an isomorphism between the group of covering trans-

formations of X̃ and π1(X, v). For a subgroup H ≤ π1(X, v) establish a similar
isomorphism between the group of covering transformations of X̄(H) and the
group N(H)/H where N(H) denotes the normalizer of H , i.e., the largest sub-
group of π1(X, v) in which H is normal. In particular, when H is normal20 in
G the group of covering transformations is isomorphic to G/H .

3. Prove 3.4.9 and 3.4.10.
4. Prove that if G is finitely generated there are only finitely many subgroups of a

given finite index in G.
5. Prove that the intersection of finitely many subgroups of finite index in G has

finite index in G.
6. Prove that if H has finite index in G the set of subgroups conjugate to H is

finite.
7. Describe a CW complex X having one vertex v, one 1-cell and one 2-cell so

that X −{v} is a path connected space whose fundamental group is not finitely
generated.

8. Prove the following transitivity property of regular (= normal) covering projec-
tions: given two cells e1 and e2 mapped to the same cell of X, there is a covering
transformation taking e1 onto e2.

20 When H is normal in G the covering projection q# : X̄(H) → X is said to be
regular or normal .
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Some Techniques in Homotopy Theory

This chapter deals with five topics which help in understanding homotopy
type and how to alter a CW complex within its homotopy type; for example,
to reduce the number of cells in a dimension of interest. The most important
theorems are 4.1.7 and 4.1.8 which are the key ingredients in the Rebuilding
Lemma 6.1.4. That in turn tells us much about topological finiteness prop-
erties of groups (in Chapter 7). The last topic, the Hurewicz Theorem, is of
fundamental importance in algebraic topology.

4.1 Altering a CW complex within its homotopy type

In this section we define “adjunction complexes” and show how to alter them
without altering their homotopy types. As a first application we study Tietze
transformations of group presentations from the topologist’s point of view. If
we are given a path connected CW complex whose fundamental group G is
known to be finitely generated, we will show how to alter the complex within
its homotopy type to a complex whose 1-skeleton is finite, and we will see
what can be done to the 2-skeleton when G is finitely presented.

Let (X, A) be a pair of spaces and let f : A→ Y be a map. The adjunction
space Y ∪f X is the quotient space Y

∐
X/∼ where ∼ is generated by the

relation a ∼ f(a) for all a ∈ A. If, in addition, (X, A) is a CW pair, Y is a
CW complex, and f : A→ Y is a cellular map, then we have:

Proposition 4.1.1. Let q : Y
∐

X → Y ∪f X be the quotient map. Then
Y ∪f X admits a CW complex structure whose cells are {q(e) | e is a cell of Y
or a cell of X which is not in A}.
Proof. This is similar to the first part of the proof of 3.2.1. The n-skeleton is
Y n ∪f | Xn. �

With this CW complex structure, Y ∪f X is called the adjunction complex

of f . For example, if K is a CW complex and f :
∐
α∈A

Sn−1
α → Kn−1 is a
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simultaneous attaching map for the n-cells, then there is a homeomorphism

Kn → Kn−1 ∪f

(∐
α∈A

Bn
α

)
which matches cells bijectively.

Another example is the mapping cylinder of a cellular map f : X → Y .
This is the adjunction complex Y ∪f0 (X × I) where f0 : X × {0} → Y is the
map (x, 0) �→ f(x). We will denote the mapping cylinder of f by M(f). The
map X → X × I sending x to (x, 1) induces an embedding i : X → M(f);
the identity map of Y induces an embedding j : Y → M(f). Both i and
j take each cell of the domain homeomorphically onto a cell of M(f); one
frequently suppresses i and j, identifying X with i(X) and Y with j(Y ),
writing X ⊂ M(f) and Y ⊂ M(f). The map X × I → Y , taking (x, t) to
f(x), and the identity map on Y , together induce the collapse r : M(f)→ Y .

The following diagram commutes:

X
i ��

f   �
��

��
��

� M(f)

r
!!��
��
��
��

Y

Proposition 4.1.2. The map r is a homotopy inverse for j, so r is a ho-
motopy equivalence. Indeed there is a strong deformation retraction D :
M(f)× I →M(f) of M(f) onto Y such that D1 = r.

Proof. The required D is induced by projection: Y × I → Y and the map
X × I × I → X × I, (x, t, s) �→ (x, t(1 − s)). �

The proof of 4.1.2 gives a “canonical” strong deformation retraction of
M(f) onto Y . Thus the same proof gives:

Proposition 4.1.3. Let X = A ∪ B and X ′ = A′ ∪ B′, where A and B are
subcomplexes of X, while A′ and B′ are subcomplexes of X ′. Let f : X → X ′

be a cellular map such that f(A) ⊂ A′ and f(B) ⊂ B′. Then there is a strong
deformation retraction of M(f) onto X ′ which restricts to strong deformation
retractions of M(f | A) onto A′, M(f | B) onto B′, and M(f | A ∩ B) onto
A′ ∩B′. �

Returning to the general adjunction complex Y ∪f X , where (X, A) is a
CW pair, Y is a CW complex, and f : A → Y is a cellular map, we now
show that the homotopy type of Y ∪f X only depends on the homotopy types
of (X, A) and Y , and the homotopy class of f . We need some preliminaries
(4.1.4 and 4.1.5) which have independent interest.

Let n ≥ 0 be an integer and let (X, A) be a pair of CW complexes with
X non-empty. The pair (X, A) is n-connected if for each 0 ≤ k ≤ n every
map (Bk, Sk−1)→ (X, A) is homotopic rel Sk−1 to a map whose image lies in
A. Thus (X, ∅) is never n-connected, and (X, A) is 0-connected iff each path
component of X has non-empty intersection with A. For any x ∈ X , (X, {x})
is 1-connected iff X is simply connected.
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Proposition 4.1.4. (Whitehead Theorem)1 Let (X, A) be a CW pair. The
following are equivalent:

(i) A is a strong deformation retract of X;

(ii) A
i

↪→ X is a homotopy equivalence;
(iii) (X, A) is n-connected for all n.

Proof. (i) ⇒ (ii) is clear; see 1.3.8.
For (ii) ⇒ (iii), let r : X → A be a homotopy inverse for i. Since r | A is

homotopic to idA, 1.3.15 implies that r is homotopic to a map r′ : X → A such
that r′ | A = idA. So we may assume r | A = idA. Let f : (Bk, Sk−1)→ (X, A)
be a map where k ≤ n, and let H : X × I → X be a homotopy from idX to
i ◦ r. Define

F : (Bk × I × {0})∪ (Bk × {0, 1} × I) ∪ (Sk−1 × I × I)→ X

by

F (x, t, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H(f(x), t) on Bk × I × {0}
f(x) on Bk × {0} × I

H(irf(x), 1 − s) on Bk × {1} × I

H(f(x), (1 − s)t) on Sk−1 × I × I.

By 1.3.15, F extends to a map F̂ : Bk×I×I → X . Let G : Bk×I → X be the
map G(x, t) = F̂ (x, t, 1). Then G(x, 0) = f(x), and G(x, 1) = H(irf(x), 0) =
irf(x) ∈ A. If x ∈ Sk−1, G(x, t) = H(f(x), 0) = f(x) ∈ A. It is easy to see
that ((Bk × {1}) ∪ (Sk−1 × I), Sk−1 × {0}) is homeomorphic to (Bk, Sk−1)
(exercise). It follows that f is homotopic rel Sk−1 to a map whose image lies
in A (exercise).

For (iii) ⇒ (i), let f0 = idX . The pair (X, A) is 0-connected, so f0 |:
X0∪A ↪→ X is homotopic, rel A, to a map into A. By 1.3.15, f0 is homotopic
rel A to a map f1 : X → X such that f1(X

0 ∪ A) ⊂ A. The pair (X, A) is
1-connected, so by 1.3.10, f1| : X1 ∪ A → X is homotopic, rel X0 ∪ A,
to a map into A. Again by 1.3.15, f1 is homotopic, rel X0 ∪ A, to a map
f2 : X → X such that f2(X

1 ∪ A) ⊂ A. Proceeding thus by induction, and
observing that the homotopy fn � fn+1 is rel Xn−1∪A, we get a well defined
limit map f : X → X such that f | A = id and f(X) ⊂ A. Combining all the
homotopies, we can get a homotopy idX � f . The details of this last step are
left as an exercise. �

The last two propositions lead us to an important theorem on piecing
together homotopy equivalences:

Theorem 4.1.5. Let X = A ∪ B and X ′ = A′ ∪ B′, where A and B are
subcomplexes of X, while A′ and B′ are subcomplexes of X ′. Let f : X → X ′

1 This is the version we will need most often. The full Whitehead Theorem is stated
in Exercise 1 of Sect. 4.4.
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be a cellular map such that f(A) ⊂ A′ and f(B) ⊂ B′. If f | : A → A′,
f | : B → B′, and f | : A ∩ B → A′ ∩ B′ are all homotopy equivalences,
then f : X → X ′ is a homotopy equivalence. Moreover, there is a homotopy
inverse g : X ′ → X for f , taking A′ to A, B′ to B, and A′ ∩ B′ to A ∩ B,
and homotopies g ◦ f � idX and f ◦ g � idX′ which restrict to homotopies
g ◦ f |� idA, f ◦ g |� idA′ , g ◦ f |� idB, f ◦ g |� idB′ , g ◦ f |� idA∩B, and
f ◦ g |� idA′∩B′ .

Remark 4.1.6. Even the special case in which B ⊂ A and B ′ ⊂ A′ is of interest.
It says that if f : (A, B) → (A′, B′) is a cellular map of pairs such that the
induced maps A → A′ and B → B′ are homotopy equivalences then f is a
homotopy equivalence of pairs. Note, in particular, what this says when B
and B′ are single points.

Proof (of 4.1.5). By 4.1.2 f is a homotopy equivalence iff i : X ↪→ M(f)
is a homotopy equivalence. Write f1 = f |: A → A′, f2 = f |: B → B′,
f0 = f |: A ∩ B → A′ ∩ B′. For k = 0, 1, 2, fk is a homotopy equivalence.
So, by 4.1.2, A ↪→ M(f1), B ↪→ M(f2) and A ∩ B ↪→ M(f0) are homotopy
equivalences. By 4.1.4, the pairs (M(f1), A), (M(f2), B) and (M(f0), A ∩B)
are n-connected for all n. The proof of (iii) ⇒ (i) in 4.1.4 shows that we can
construct a strong deformation retraction of M(f0) to A ∩ B which extends
to strong deformation retractions of M(f1) to A and of M(f2) to B. So X is
a strong deformation retract of M(f). For the second part, combine this with
4.1.3. �

Now we are ready for the main theorems, 4.1.7 and 4.1.8. Suppose (X, A)
and (X ′, A′) are CW pairs, Y and Y ′ are CW complexes, f : A → Y and
f ′ : A′ → Y ′ are cellular maps, g : (X, A) → (X ′, A′) is a map of pairs,
g : X → X ′, g| : A→ A′ and k : Y → Y ′ are homotopy equivalences, and the
following diagram commutes:

X �� � �

g

��

A
f ��

g|
��

Y

k

��
X ′ �� � �A′ f ′

�� Y ′

Theorem 4.1.7. The induced map G : Y ∪f X → Y ′ ∪f ′ X ′ is a homotopy
equivalence.

Proof. Consider the commutative diagram

M(f) ∪X
h−−−−→ Y ∪f X

p

⏐⏐
 ⏐⏐
G

M(f ′) ∪X ′ h′

−−−−→ Y ′ ∪f ′ X ′



4.1 Altering a CW complex within its homotopy type 105

Here and in what follows, we write M(f) ∪X for M(f) ∪i X where i : A →
M(f) is the canonical inclusion – i.e., we literally apply the convention of
writing A ⊂M(f); p is induced by (g |)× id : A× I → A′× I, k : Y → Y ′ and
g : X → X ′; h is induced by the collapse r : M(f)→ Y and idX ; similarly for
h′. By 4.1.5, p is a homotopy equivalence.

To see that h is a homotopy equivalence, consider the commutative dia-
gram

M(f) ∪X
h ��

m
����

���
���

���
Y ∪f X

M(q | X)

collapse

��

See Fig. 4.1. Here, q : Y
∐

X → Y ∪f X is the defining quotient map. The
inclusion m : M(f) ∪X ↪→M(q | X) sends X to the copy of X in M(q | X);
M(f) ⊂M(q | X) because q | A = inclusion ◦f . By 4.1.2, we need only show
that m is a homotopy equivalence. By 1.3.15, (X × {1})∪ (A× I) is a strong
deformation retract of X × I. Any strong deformation retraction of X × I to
(X × {1}) ∪ (A × I) induces a strong deformation retraction of M(q | X) to
M(f) ∪X . �

M(f)
A

M(f)
    

M(q  X)| 

X A

Y

Y

m

h

collapse

X
Y

U

U

f

V

V
V

V

V

V

M(f)     X

Y      X

Fig. 4.1.

Theorem 4.1.8. If the hypotheses of 4.1.7 are weakened from k ◦ f = f ′ ◦ g |
to k ◦ f � f ′ ◦ g |, it is still the case that Y ∪f X and Y ′ ∪f ′ X ′ have the same
homotopy type.
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Proof. Consider the diagram

X �� � �

g

��

A
� � i ��

g|

��

M(f)

k̃

��

r

���
��

��
��

�

Y

k!!��
��
��
��

X ′ �� � �A′ f ′

�� Y ′

Here r is the collapse and k̃ = k◦r. The right square homotopy commutes. By
1.3.15, k̃ is homotopic to a map k̄ such that k̄◦ i = f ′ ◦g |. By 4.1.7, M(f)∪X
is homotopy equivalent to Y ′ ∪f ′ X ′. By the proof of 4.1.7, M(f) ∪ X is
homotopy equivalent to Y ∪f X . �

Here is a useful application of 4.1.7:

Corollary 4.1.9. Let X be a CW complex and A a contractible subcomplex.
The quotient q : X → X/A is a homotopy equivalence.

Proof. Apply 4.1.7 with X = X ′, A = A′, g = id, Y = A, Y ′ = {q(A)}. �

Theorems 4.1.7 and 4.1.8 are powerful technical tools. For example, 4.1.8
implies that if Y is obtained from A by attaching n-cells, then the homotopy
type of Y only depends on the homotopy classes of the attaching maps. We
now discuss an application of this to Tietze transformations.

For each presentation P = 〈W | R, ρ〉 of a group G a procedure was given
in Example 1.2.17 for building a presentation complex XP , having just one
vertex v, such that π1(XP , v) ∼= G (by 3.1.8). The 1-cells and 2-cells of XP

are in bijective correspondence with the sets W and R, respectively, in such
a way that if P ⇒ P ′ := 〈W | R′, ρ′〉 is a Tietze transformation of Type I,
then XP is, in a natural way, a subcomplex of XP ′ , such that all cells of XP ′

which are not cells of XP are 2-cells.

Proposition 4.1.10. Let P ′ be obtained from P by a Tietze transformation of
Type I. Then there is a homotopy equivalence h making the following diagram
commute up to homotopy:

XP
� � ��

inclusion

""�
��

��
��

��
�

XP ∨
( ∨

α∈R′−R

S2
α

)

XP ′

h

������������

Proof. The attaching maps for the 2-cells of XP ′ which are not in XP are
homotopic in XP to constant maps. Apply 4.1.8. �
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Similarly, if P ⇒ P ′′ = 〈W ′ | R′, ρ′〉 is a Tietze transformation of Type II,
then XP is a subcomplex of XP ′′ and we have:

Proposition 4.1.11. The map XP ↪→ XP ′′ is a homotopy equivalence.

Proof. (XP ′′)1 = X1
P ∨
(∨

α

S1
α

)
, i.e. the wedge of X1

P and a bouquet of circles.

For each α, the 2-cell e2
α of XP ′′ which is not in XP has a characteristic map of

the form fα : I2 → XP ′′ where fα(I1 × {−1}) ⊂ XP , fα(±1, t) = fα(±1,−1)
for all t ∈ I1, and fα | I1 × {1} is a characteristic map for S1

α. The strong
deformation retraction of I2 onto I1 × {−1}, (s, t, u) �→ (s, (1− u)(1 + t)− 1)
for 0 ≤ u ≤ 1, induces a strong deformation retraction of X1

P ∪ S1
α ∪ e2

α onto
X1

P . This can be done simultaneously for all α, giving a strong deformation
retraction of XP ′′ onto XP . �

Proposition 4.1.12. For i = 1 and 2, let Pi := 〈Wi | Ri, ρi〉 be presentations
of the group G. There are homotopy equivalent CW complexes YP1 and YP2

obtained from XP1 and XP2 by attaching 3-cells. Moreover, if P1 and P2 are
finite presentations, YP1 and YP2 can be obtained by attaching finitely many
3-cells.

Proof. If in the proof of 4.1.10 we attach a 3-cell to XP ∨
( ∨

α∈R′−R

S2
α

)
, for

each α, by a homeomorphism S2 → S2
α we obtain a 3-dimensional complex

homotopy equivalent to XP . By 4.1.8, we can attach 3-cells to XP ′ itself to
get a 3-dimensional complex homotopy equivalent to XP whose 2-skeleton is
XP ′ .

Applying this remark in the context of 3.1.15 gives us:

P1
Type II�� P ′ Type I �� P ��Type I

P ′′ ��Type II
P2.

In terms of associated CW complexes, this gives:

XP1

Type II�� XP ′

Type I �� XP
� � �� XP ∪

⋃
{e3

α | α ∈ A} := Z1

XP2

Type II�� XP ′′

Type I �� XP
� � �� XP ∪

⋃
{e3

β | β ∈ B} := Z2

Indeed, the proof of 3.1.15 shows that A and B are in bijective correspondence
with the sets W1

∐
R2 and W2

∐
R1 respectively. The spaces XP1 , XP ′ and

Z1 are homotopy equivalent. The spaces XP2 , XP ′′ and Z2 are homotopy
equivalent. By 4.1.8, we can attach 3-cells to XP1 and to XP2 to get YP1 :=
XP1 ∪

⋃{ẽ3
β | β ∈ B} and YP2 := XP2 ∪

⋃{ẽ3
α | α ∈ A}, both homotopy

equivalent to XP ∪
⋃{e3

γ | γ ∈ A
∐B}. The last sentence of the Proposition

is clear. �
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Remark 4.1.13. There are examples in [52] of finite CW complexes X and Y
each having one vertex, such that X∨S2 is homotopy equivalent to Y ∨S2∨S2,
while there is no CW complex Z such that X is homotopy equivalent to Z∨S2.
This is related to the existence of finitely generated projective ZG-modules
which are stably free but not free. (See also [7].) In the proof of 4.1.12, XP has

the homotopy type of both XP ′∨
( ∨

α∈A
S2

α

)
and XP ′′∨

⎛
⎝∨

β∈B
S2

β

⎞
⎠. Dunwoody’s

examples show that one cannot always “cancel” copies of S2.

Theorem 4.1.14. Let X be a path connected CW complex whose fundamental
group G is finitely generated. Then:

(i) X is homotopy equivalent to a CW complex having finite 1-skeleton.
(ii) If G is finitely presented, there is a CW complex X ′, obtained from X by

attaching 3-cells, which is homotopy equivalent to a CW complex having
finite 2-skeleton.

(iii) If G is finitely presented, X is homotopy equivalent to a CW complex Z
whose 2-skeleton is the wedge of a finite CW complex and a bouquet of
2-spheres.

Proof. By 3.1.13, 3.1.12 and 4.1.9, we may assume that X has only one vertex.
Write XP1 = X2, and let P2 be a presentation of G which is finite or finitely
generated as appropriate. Write Pi = 〈Wi | Ri〉. Using 4.1.8 as in the proof of
4.1.12, we get X ∪⋃{3-cells} homotopy equivalent to a CW complex Y such
that Y 2 = XP2 . Similarly, we get X homotopy equivalent to a CW complex Z

such that Z2 = XP2 ∪
∨

β∈B
S2

β where |B| = |W2|+ |R1|. We claim Z1 is finite; a

sketch of the argument follows. Using � for “is homotopy equivalent to”, and
using the notation of the proof of 4.1.12, we get:

XP � XP ′′ ∨

⎛
⎝∨

β∈B
S2

β

⎞
⎠ � XP2 ∨

⎛
⎝∨

β∈B
S2

β

⎞
⎠ .

XP1 � XP ∪
⋃
{e3

α | α ∈ A} � XP2 ∨

⎛
⎝∨

β∈B
S2

β

⎞
⎠ ∪⋃{ẽ3

α | α ∈ A}.

Hence, by 4.1.8,

X � XP2 ∨

⎛
⎝∨

β∈B
S2

β

⎞
⎠ ∪⋃{ẽ3

α | α ∈ A} ∪
⋃
{cells of dimension ≥ 3}.

The “cells of dimension ≥ 3” (other than the ẽ3
α’s) are in bijective correspon-

dence with those of X . �
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Example 4.1.15. The “finitely generated” and “finitely presented” parts of
4.1.14 would be more similar if we could say, in the finitely presented case, that
X is homotopy equivalent to a CW complex having finite 2-skeleton. However,
this is false. For example, let X be an infinite bouquet of 2-spheres. We have
π1(X, v) trivial by 3.1.11; however, H2(X ; Z2) is an infinite-dimensional Z2-
module (vector space), since every 2-chain is a cycle and none is a boundary.
If Y is a finite CW complex, H2(Y ; Z2) is a finite-dimensional Z2-vector space
since C2(Y ; Z2) is finitely generated, hence also Z2(Y ; Z2). Hence, by 2.7.7,
X is not homotopy equivalent to a CW complex with finite 2-skeleton.

The proof of 4.1.14 also proves the following, which will be useful.

Addendum 4.1.16. Let X be a path connected CW complex having mk k-
cells for each k ≥ 0, where 0 ≤ mk ≤ ∞. Let P := 〈W | R, ρ〉 be a presentation
of the fundamental group of X. Then X is homotopy equivalent to a CW
complex Z with the properties: (i) Z2 = XP ∨(bouquet of m2+ |W | 2-spheres);
(ii) Z has m3 + m1 −m0 + 1 + |R| 3-cells; and (iii) Z has mk k-cells for all
k ≥ 4.

Proof. Let T be a maximal tree in X . Then T has m0 vertices and (m0 − 1)
1-cells. So X ′ := X/T has one vertex, (m1 −m0 + 1) 1-cells, and mk k-cells
for k ≥ 2. By the proof of 4.1.14, X ′ is homotopy equivalent to a complex Z
of the form

Z = XP ∨

⎛
⎝∨

β∈B
S2

β

⎞
⎠ ∪⋃{ẽ3

α | α ∈ A} ∪
⋃
{cells of dimension ≥ 3}

where |B| = |W | + m2, |A| = m1 −m0 + 1 + |R|, and, for k ≥ 3, Z has mk

k-cells. By 4.1.9, X is homotopy equivalent to Z. �

Appendix: the equivariant case

Equivariant2 analogs of 4.1.7 and 4.1.8 can be useful. We briefly describe how
to get them.

A G-set is a set equipped with a left G-action by permutations. A G-space
is a space equipped with a left G-action by homeomorphisms. A map f : A→
B between G-spaces is a G-map (or an equivariant map) if f(g.a) = g.f(a)
for all a ∈ A and g ∈ G.

Let Y be obtained from A by attaching Bn(A) using f : Sn−1(A)→ A as
in Sect. 1.2. If A is a G-set, Bn(A) becomes a G-space. If A is also a G-space
and f is a G-map then Y becomes a G-space. Moreover, the stabilizer of each
n-cell of (Y, A) acts trivially on that cell. It follows that if (X, {Xn | n ≥ 0})
2 The word equivariant refers to properties compatible with a given action of a

group on a space.
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is a rigid G-CW complex then for n ≥ 1 the G-space Xn is obtained from the
G-space Xn−1 by attaching Bn(An) where the simultaneous attaching map is
a G-map; here An is the G-set of n-cells. Conversely, any CW complex built
in this way is a rigid G-CW complex.

The terms defined in Sect. 1.3 all have obvious G-analogs: G-homotopy,
G-homotopy equivalence, G-homotopy type, G-strong deformation retract, etc.
The theorems on extending maps and homotopies, 1.2.23 and 1.3.10, and the
Homotopy Extension Theorem 1.3.15 have G-analogs for rigid G-CW com-
plexes.

When an adjunction space Y ∪f X is formed from G-spaces using a G-
map, it becomes a G-space; if X and Y are rigid G-CW complexes and f is
a cellular G-map, the G-version of 4.1.1 says that Y ∪f X is a rigid G-CW
complex. In particular this applies to mapping cylinders. There are routine
G-analogs of 4.1.2 and 4.1.3 for rigid G-CW complexes. The rigid G-CW pair
(X, A) is G-n-connected if for each 0 ≤ k ≤ n and each G-set A, every G-map
(Bk(A), Sk−1(A)) → (X, A) is G-homotopic rel Sk−1(A) to a G-map whose
image lies in A. This replaces the hypothesis of n-connectedness in 4.1.4 (iii)
to give a G-analog of that proposition (for the rigid case). The G-analogs of
4.1.5–4.1.8 for rigid G-CW complexes are then routine.

Exercises

1. Define a map f : S1 → S1 by e2πit 
→ e6πit if 0 ≤ t ≤ 2
3
, and e2πit 
→ e−6πit

if 2
3
≤ t ≤ 1; this wraps the circle three times around itself, twice positively

and once negatively. Let D be the CW complex with one vertex, one 1-cell,
and one 2-cell attached by the map f . Show that D is contractible. (This space
D is called the dunce hat and is a classic example in topology because it is
contractible but not “collapsible” – see [42].)

2. Why did we not describe the dunce hat as the presentation complex given by
〈t | t2t−1〉?

3. Prove a locally finite version of Theorem 4.1.5: i.e., let K be a locally finite cover
of X by subcomplexes, etc.

4. Complete the last step in the proof of 4.1.4.
5. Let X = A∪B be a CW complex where A and B are subcomplexes. Prove that

if A,B and A ∩ B are contractible then X is contractible.3

4.2 Cell trading

We describe a technique which is often used in topology to simplify a CW
complex within its homotopy type. In Chapter 7 we will use it to simplify
K(G, 1)-complexes.

3 This is a very special case of Proposition 9.3.20.
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Proposition 4.2.1. (Cell Trading Lemma) Let (X, A) be an n-connected
CW pair, where

X = A∪
( ⋃

α∈A
en

α

)
∪

⎛
⎝⋃

β∈B
en+1

β

⎞
⎠∪
⎛
⎝⋃

γ∈C
en+2

γ

⎞
⎠∪(cells of dimension > n+2).

There is another CW complex X ′′ having A as a subcomplex such that (X ′′, A)
is homotopy equivalent to (X, A) and

X ′′ = A ∪

⎛
⎝⋃

β∈B
ẽn+1

β

⎞
⎠ ∪

⎛
⎝ ⋃

δ∈A ‘ C
ẽn+2

δ

⎞
⎠ ∪ ( cells of dimension > n + 2).

Moreover, in dimensions > n + 2, X ′′ and X have the same number of cells.

Remark 4.2.2. Since (X, A) is n-connected the characteristic map of each en
α

is homotopic to a map into A. This suggests that in some sense those cells
are unnecessary. Proposition 4.2.1 makes this precise: they can be “traded”
for (n + 2)-cells.

Proof (of 4.2.1). We embed X as a subcomplex of a CW complex X ′; the
required X ′′ will be a quotient complex of X ′ by a quotient map which restricts
to an embedding of A in X ′′. We will have homotopy equivalences

(X, A) ↪→ (X ′, A)→ (X ′′, A).

Consider Sn−1 ⊂ Sn ⊂ Sn+1 ⊂ Bn+2. Let Y be Bn+2 with a CW complex
structure such that: Sn−1 is a subcomplex, Sn is obtained from Sn−1 by
attaching two n-cells dn(+) and dn(−), Sn+1 is obtained from Sn by attaching
two (n + 1)-cells dn+1(+) and dn+1(−), and Bn+2 is obtained from Sn+1 by
attaching one (n + 2)-cell dn+2. See Fig. 4.2.

We first deal with the case where A has only one element α. Define fα :
dn+1(−)→ X to be a map such that fα | dn(+) is a characteristic map for en

α

(identifying dn(+) with Bn) and fα(dn(−)) ⊂ A; fα exists because (X, A) is
n-connected. Let X ′ = X∪fα

Y . Since dn+1(−) is a strong deformation retract
of Y , Proposition 1.3.10 implies that X is a strong deformation retract of X ′.
So (X, A) ↪→ (X ′, A) is a homotopy equivalence.

Abusing notation, we write X ′ = X ∪ dn+1(+) ∪ dn+2. Let A′ be the
subcomplex A ∪ en

α ∪ dn+1(+). Since dn(−) is a strong deformation retract
of dn+1(+), A is a strong deformation retract of A′. Let q : A′ → A be
a retraction such that (inclusion) ◦q : A′ → A′ is homotopic to idA′ . The
required X ′′ is A ∪q X ′.

Applying 4.1.7 to the commutative diagram
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(−)d

d (+)

Y

X’

X

A

. .

e

d     (+)

d     (−)

n+1

n+1

n+1

n

n

n

f  (d     (−))a

a = f  (d  (+))
n

a

S
n−1

Fig. 4.2.

X ′ �� � �

id

��

A′ id ��

id

��

A′

q

��
X ′ �� � �A′

q
�� A

we get a homotopy equivalence X ′ → X ′′ whose restriction to A is q | A = idA.
Thus, by 4.1.5, we have a homotopy equivalence (X ′, A) → (X ′′, A). In the
passage from X to X ′′ we have “lost” an n-cell en

α and “acquired” an (n+2)-
cell ẽn+2

α , namely the image of dn+2 in X ′′.
Now, if A has more than one element, we treat each n-cell en

α this way,

using
∐
α∈A

Yα instead of Y . �

Remark 4.2.3. The Relative Hurewicz Theorem (4.5.1 below) provides a ho-
mological procedure for verifying the n-connectedness hypothesis in 4.2.1
when X and A are simply connected.

4.3 Domination, mapping tori, and mapping telescopes

The mapping torus of a cellular map h : Y → Y is the quotient CW complex
T (h) obtained from the mapping cylinder, M(h), by identifying the “top”
and “bottom”, i.e., (in the notation of Sect. 4.1) T (h) = M(h)/∼, where ∼ is
generated by: i(y) ∼ j(y) for all y ∈ Y . It is a CW complex by 4.1.1. See Fig.
4.3.

The space T (h) has a covering space Tel(h), the mapping telescope of h.

To form Tel(h), take
∐
m∈Z

M(h)m, where each M(h)m = M(h), and identify
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j(y) ∈ M(h)m with i(y) ∈ M(h)m+1 for each m (see Fig. 4.3); Tel(h) is a
free Z-CW complex, where n ∈ Z takes each M(h)m by the “identity” map
to M(h)m+n. Clearly, the quotient Z\Tel(h) is homeomorphic to T (h).

. . .. . .

T(h)

(h)Tel

Fig. 4.3.

Now suppose h is the composition Y
g−→ X

f−→ Y where f and g are
cellular maps. Let k = g ◦ f : X → X .

Proposition 4.3.1. T (h) is homotopy equivalent to T (k).

Proof. We form an intermediate space T (f, g), the quotient CW complex of
M(f)

∐
M(g) obtained by identifying y ∈ Y ⊂M(f) with y ∈ Y ⊂M(g) and

x ∈ X ⊂M(f) with x ∈ X ⊂M(g), for each y ∈ Y and each x ∈ X ; see Fig.
4.4. The restriction of the quotient map M(f)

∐
M(g)→ T (f, g) to M(f) or

to M(g) is an embedding, so we write M(f) ⊂ T (f, g) and M(g) ⊂ T (f, g).
Apply 4.1.7 to the commutative diagram

T (f, g) �� � �

id

��

M(f)
id ��

id

��

M(f)

collapse

��
T (f, g) �� � �M(f)

collapse
�� Y
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to get T (f, g) homotopy equivalent to T (h). Similarly, T (f, g) is homotopy
equivalent to T (k). �

Y

XX

T(h)

T(k)T(f , g)

M(g)

M(f)

Y

Fig. 4.4.

In the same way, there is a CW complex Tel(f, g) intermediate between

Tel(h) and Tel(k). The space Tel(f, g) is the quotient of
∐
m∈Z

(M(f)m

∐
M(g)m),

where each M(f)m = M(f) and each M(g)m = M(g), obtained by identify-
ing x ∈M(g)m with x ∈M(f)m, and y ∈ M(f)m with y ∈ M(g)m+1, for all
m ∈ Z. See Fig. 4.5. As with Tel(h), Tel(f, g) is a free Z-CW complex, where
n ∈ Z takes M(g)m [resp. M(f)m] by the “identity” map to M(g)m+n [resp.
M(f)m+n]. The quotient Z\Tel(f, g) is homeomorphic to T (f, g).

By a proof similar to that of 4.3.1, we see that Tel(f, g) is homotopy equiv-
alent to Tel(h) and to Tel(k). Indeed the proof gives homotopy equivalences
of the nicest kind, namely:

Proposition 4.3.2. There are homotopy equivalences φ, ψ, φ̄ and ψ̄ making
the following diagram commute, where the vertical arrows are the covering
projections obtained by factoring out the free Z-actions:
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. . .. . .

Y X

M(g) M(f) M(g)

  

k+1

(f , g)Tel
XY

k k

Fig. 4.5.

Tel(h)
φ̄←−−−− Tel(f, g)

ψ̄−−−−→ Tel(k)⏐⏐
 ⏐⏐
 ⏐⏐

T (h) ←−−−−

φ
T (f, g) −−−−→

ψ
T (k).

�

When k = g ◦ f : X → X is homotopic to idX , we call g : Y → X a
domination and we say that Y dominates X ; f is then a right homotopy
inverse for g. Moreover, h � h ◦ h (in words: h is a homotopy idempotent 4)
because h = f ◦ g � f ◦ k ◦ g = f ◦ (g ◦ f) ◦ g = h ◦ h. In this case we get

Proposition 4.3.3. T (k) is homotopy equivalent to X × S1.

Proof. First, note that T (idX) = X × S1 and that k � idX . We saw in Sect.
4.1 that there is a homotopy equivalence M(k)→M(idX) which restricts to
the identity on the two copies of X , i(X) ⊂ M(k) and j(X) ⊂ M(k). By
4.1.7, the induced map T (k)→ T (idX) is a homotopy equivalence. �

As with 4.3.2, the proof of 4.3.3 gives more:

Proposition 4.3.4. There are homotopy equivalences ξ and ξ̄ making the fol-
lowing diagram commute, where the vertical arrows are the covering projec-
tions obtained by factoring out the Z-actions:

Tel(k)
ξ̄−−−−→ Tel(idX) = X × R⏐⏐
 ⏐⏐


T (k)
ξ−−−−→ T (idX) = X × S1.

�

4 Homotopy idempotents are discussed in Sect. 9.2.



116 4 Some Techniques in Homotopy Theory

Collecting these results, we get a fundamental theorem about domination:

Theorem 4.3.5. Let X
f−→ Y

g−→ X be cellular maps between CW com-
plexes, such that g ◦ f � idX . Then X is homotopy equivalent to Tel(f ◦ g),
and X × S1 is homotopy equivalent to T (f ◦ g). �

Addendum 4.3.6. Assume X and Y are path connected. For suitable choice
of base points z ∈ T (k) and x ∈ X, there is an isomorphism π1(T (k), z) →
π1(X, x)× Z such that Tel(k) is the covering space corresponding to the sub-
group which goes to π1(X, x)× {0}.

Proof. Combine the commutative diagrams in 4.3.2 and 4.3.4. Pick a base
point for Tel(f, g), and pick all other base points so that all maps are base
point preserving. By 3.3.2, φ#, ψ#, ξ#, φ̄#, ψ̄# and ξ̄# are isomorphisms.
The claim follows by looking at the corresponding commutative diagram of
groups. �

A CW-complex X is finitely dominated if it is dominated by a finite CW
complex.

Corollary 4.3.7. If X is finitely dominated then X × S1 has the homo-
topy type of a finite CW complex and X has the homotopy type of a finite-
dimensional CW complex. �

Source Note: 4.3.1 was observed by Mather in [111].

Exercises

1. Write down a presentation of π1(T (h), y).
2. Describe π1(Tel(h), ȳ) as a subgroup of π1(T (h), y).
3. Let X consist of circles of radius 1 centered at (±2, 0) ∈ R2 together with

the arc [−1, 1] × {0}, and let h : X → X be the “reflection in the y-axis”
homeomorphism. Show that the mapping torus T (h) is homeomorphic to the
space obtained by gluing the boundary of a Möbius strip to a torus along a
meridian circle of the torus. Compute the fundamental group of T (h) from
these points of view, and relate this to Exercise 5 of Sect. 3.1.

4.4 Review of homotopy groups

The nth homotopy group of a pointed space (X, x) is the set of homotopy
classes of maps (Sn, v) → (X, x), where v is a fixed base point for Sn. If f
is such a map, its (pointed) homotopy class is denoted by [f ], and the set of
all such [f ] is denoted by πn(X, x). This is consistent with our previous usage
when n = 0 or 1. Similarly, if (X, A, x) is a pointed pair, with x ∈ A as base
point, and if n ≥ 1, we denote by πn(X, A, x) the set of homotopy classes,
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[f ], of maps f : (Bn, Sn−1, v) → (X, A, x); πn(X, A, x) is the nth (relative)
homotopy group of (X, A, x). The group structure is described in 4.4.5 below.5

4.4.1. The sets πn(X, x) and πn(X, A, x) are pointed sets with the homotopy
class of the constant map at x as base point.

4.4.2. πk(X, x) [resp. πk(X, A, x)] is trivial (i.e., consists of the base point
alone) for all 0 ≤ k ≤ n iff X is n-connected [resp. (X, A) is n-connected].

4.4.3. π0(X, x) is canonically identified with the pointed set of path compo-
nents of X , the base point being the path component containing x.

4.4.4. πn(X, {x}, x) is canonically identified with πn(X, x) via [f ]→ [f̄ ] where
f : (Bn, Sn−1, v) → (X, {x}, x), and f̄ : (Sn, v) → (X, x) is obtained from f
using the canonical homeomorphism Bn/Sn−1 → Sn of Convention 2.5.16.
Thus elements of πn(X, x) can also be regarded as homotopy classes of maps
(Bn, Sn−1)→ (X, x).

4.4.5. There is a standard group structure on πn(X, x) when n ≥ 1 [resp.
πn(X, A, x) when n ≥ 2] which is abelian when n ≥ 2 [resp. n ≥ 3].6 The
identity (or zero) element of this group is the base point chosen in 4.4.1. The
details, especially the reason why the group is abelian, will be needed in the
next section, so we recall them in a convenient form. As usual, we identify

(Bn, Sn−1) with (In,
•
I n). An island on In is a product

n∏
i=1

Ji where each Ji is a

closed non-trivial interval lying in
◦
I 1. Similarly, an island on

•
I n+1 is a product

n+1∏
i=1

Ji where exactly n of the Ji’s are non-trivial closed intervals in I1, and the

remaining Ji is a one-point set. A map f : (
•
I n+1, v)→ (X, x) is concentrated

on the island W if f(
•
I n+1 −W ) = {x}. Any map f : (

•
I n+1, v)→ (X, x) can

be replaced, up to homotopy rel {v}, by a map concentrated on W . If [f1] and
[f2] lie in πn(X, x), assume they are concentrated on disjoint islands W1 and

W2; when n ≥ 2 then [f1][f2] is represented by any map (
•
I n+1, v) → (X, x)

agreeing with f1 on W1 and with f2 on W2, and sending the rest of
•
I n+1 to

{x}, while for n = 1, one requires that the f1-island should lie to the left of
the f2-island. The group properties are easily checked. When n ≥ 2, πn(X, x)
is therefore abelian; then one writes [f1] + [f2] rather than [f1][f2]. Of course
there is no such homeomorphism when n = 1. For relative homotopy groups,
represent [f ] ∈ πn(X, A, x) by f : Bn(= In) → X where f maps the face

5 Details can be found in many books on algebraic topology, for example [146,
Chap. 7, Sect. 2] or [82, Chap. 2].

6 In general, there is no useful group structure on π1(X, A,x) when A has more
than one point.
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Fn,−1 (see Sect. 2.5) into A and maps the rest of
•
I n to {x}. Now require

each (n-dimensional) island W to meet Fn,−1 in an (n−1)-dimensional island

disjoint from
•
Fn,−1. The group operation is defined as before. For an abelian

multiplication the previous argument requires the dimension of Fn,−1 to be
at least 2, i.e., n ≥ 3.

4.4.6. A map f : (X, x)→ (Y, y) [resp. f : (X, A, x)→ (Y, B, y)] induces a ho-
momorphism f# : πn(X, x)→ πn(Y, y) [resp. f# : πn(X, A, x)→ πn(Y, B, y)]
of groups when its domain and range are groups, and a function of pointed
sets when no group structure is present. This satisfies the usual properties of
a covariant functor: (g ◦ f)# = g# ◦ f# and (id)# = id.

4.4.7. All this agrees with what we discussed previously for the fundamental
group π1(X, x) in Sect. 3.3.

4.4.8. Define ∂# : πn(X, A, x) → πn−1(A, x) by ∂#([f ]) = [f | Sn−1]. When
n ≥ 2, ∂# is a homomorphism.

4.4.9. If i : A ↪→ X and j : X(= (X, {x})) → (X, A) are inclusions, the
following homotopy sequence of (X, A, x) is exact:

· · ·
∂#

−−−−−−→ πn(A, x)
i#

−−−−−−→ πn(X, x)
j#

−−−−−−→ πn(X, A, x)
∂#

−−−−−−→ πn−1(A, x) −−−−−−→ · · ·

and if f : (X, A, x) → (Y, B, y) is a map, f induces a commutative diagram
of maps from the homotopy sequence of (X, A, x) to that of (Y, B, y). Note:
when n is low, “kernel” means “pre-image of the base point,” so “exact” still
makes sense.

4.4.10. If p : (X̄, x̄) → (X, x) is a covering projection, then p# : πn(X̄, x̄) →
πn(X, x) is an isomorphism for all n ≥ 2.

4.4.11. A map p : E → B is a fiber bundle iff there is a space F , an open
cover {Uα} of B, and, for each α, a homeomorphism hα making the following
diagram commute:

U × F
hα ��

projection
���

��
��

��
��

p−1(U)

p|##  
  
  
  
 

U

The spaces E, B and F are called, respectively, the total space, base space
and fiber of the fiber bundle. Let e ∈ E be a base point, write b = p(e) and
Fe = p−1(b) (Fe is a copy of F ). If B is paracompact and Hausdorff there
is a natural isomorphism π∗(E, Fe, e) � π∗(B, b) leading to the long exact
sequence

· · · �� πn(Fe, e)
(inclusion)# �� πn(E, e)

p# �� πn(B, b) �� πn−1(Fe, e) �� · · ·
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Exercises

1. Deduce the following Whitehead Theorem from 4.1.4: Let (X, x) and (Y, y) be
path connected pointed CW complexes and let f : (X, x) → (Y, y) be a map
such that f# : πn(X, x) → πn(Y, y) is an isomorphism for all n. Then f is a
homotopy equivalence. More precisely, prove that a “pointed homotopy inverse”
g exists for f such that g ◦f and f ◦g are homotopic to the appropriate identity
maps rel base points. (Such a map f is a pointed homotopy equivalence.)

2. Write down and prove a version of the Whitehead Theorem of Exercise 1 in
which X and Y are only required to have the homotopy types of CW complexes.

3. Give a counterexample to the “Whitehead theorem” in Exercise 1 when X does
not have the homotopy type of a CW complex.

4. Prove that a map between path connected pointed CW complexes f : (X, x) →
(Y, y) is an n-equivalence iff f# : πi(X, x) → πi(Y, y) is an isomorphism for all
i ≤ n − 1.

4.5 Geometric proof of the Hurewicz Theorem

Let (X, A) be a pair of CW complexes and let x be a vertex of A. When
πn(X, A, x) is a group,7 the Hurewicz homomorphism hn : πn(X, A, x) →
Hn(X, A; Z) is defined as follows: if f : (Bn, Sn−1, v) → (X, A, x) is a map,

hn([f ]) =

{∑
α∈A

[Bn : en
α : f ]en

α

}
; here, Bn is given the usual CW structure

(one vertex, one (n−1)-cell, and one n-cell), A indexes the n-cells of X which
are not in A, and {·} marks the homology class of a relative n-cycle. When
A = {x} we write hn : πn(X, x) → Hn(X ; Z), identifying Hn(X ; Z) with
Hn(X, {x}; Z) since n ≥ 1. Note that h1 has already appeared, as h, in 3.1.19.

We say X is n-acyclic if H̃k(X ; Z) = 0 for all k ≤ n; we say (X, A) is
n-acyclic if Hk(X, A; Z) = 0 for all k ≤ n. It is often much easier to prove
n-acyclicity than n-connectedness, so the following is a powerful tool:

Theorem 4.5.1. (Relative Hurewicz Theorem) Let X and A be simply
connected CW complexes and let n ≥ 2. Then (X, A) is (n− 1)-connected iff
(X, A) is (n−1)-acyclic, and if this holds then hn : πn(X, A, x)→ Hn(X, A; Z)
is an isomorphism.

The special case A = {x} is older and is important:

Theorem 4.5.2. (Hurewicz Theorem) Let X be a simply connected CW
complex and let n ≥ 2. Then X is (n− 1)-connected iff X is (n− 1)-acyclic,
and if this holds then hn : πn(X, x)→ Hn(X ; Z) is an isomorphism.

In preparation for the proof, we state two senses in which the Hurewicz
homomorphism is natural. The proof is left as an exercise:

7 i.e., n ≥ 2 if A �= {x}, n ≥ 1 if A = {x}.
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Proposition 4.5.3. (i) The following diagram commutes

· · · �� πn(A, x)
i# ��

hn

��

πn(X, x)
j# ��

hn

��

πn(X, A, x)
∂# ��

hn

��

πn−1(A, x) ��

hn−1

��

· · ·

· · · �� Hn(A; Z)
i∗ �� Hn(X; Z)

j∗ �� Hn(X, A; Z)
∂∗ �� Hn−1(A; Z) �� · · ·

(ii) If f : (X, A, x)→ (Y, B, y) is a map, the following diagram commutes:

πn(X, A, x)
f#−−−−→ πn(Y, B, y)⏐⏐
hn

⏐⏐
hn

Hn(X, A; Z)
f∗−−−−→ Hn(Y, B; Z).

�

It is convenient to prove 4.5.2 first, as one case of that theorem is needed
in the proof of 4.5.1.

Proof (of 4.5.2). We first deal with the special case in which (X, x) is a

bouquet of n-spheres,

(∨
α

Sn
α, w

)
. We are to prove hn : πn

(∨
α

Sn
α, w

)
→

Hn

(∨
α

Sn
α

)
∼=
⊕

α

Z has trivial kernel, since the rest of the theorem is obvi-

ous in this case. We pause for some preparations.
Recall from Sect. 4.4 the definition of an island on Sn; loosely, it is a nicely

placed n-ball. An archipelago in Sn is a finite set of pairwise disjoint islands.

The map f : Sn →
∨

α∈A
Sn

α is concentrated on the archipelago {Wγ | γ ∈ C}

if (i) for each γ ∈ C there is some α ∈ A such that f(Wγ) ⊂ Sn
α, and (ii)

f

(
Sn −

(⋃
γ

Wγ

))
= {w}. �

Proposition 4.5.4. For any map f : (Sn, v) →
( ∨

α∈A
Sn

α, w

)
there is an

archipelago {Wγ | γ ∈ C} in Sn such that f is homotopic rel {v} to a map g
concentrated on {Wγ}.

Proof. For each α ∈ A, pick zα �= v lying in Sn
α. By 1.3.7, there is a neigh-

borhood Nα of zα ∈ Sn
α − {w} and a homotopy Dα : Sn

α × I → Sn
α, rel {v},

such that Dα
0 = id, Dα

1 (Vα) = {w} and Dα
1 (Nα) = Sn

α, where Vα := Sn
α −Nα.
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Let U = ∪{Vα | α ∈ A}. Then U := {U}∪
{∨

α

Sn
α − {v}

}
is an open cover of

∨
α∈A

Sn
α. The homotopies Dα give a homotopy D :

( ∨
α∈A

Sn
α

)
× I →

∨
α∈A

Sn
α,

rel {v}, such that D0 = id, Dt(S
n
α) = Sn

α for all α ∈ A and 0 ≤ t ≤ 1, and
D1(U) = {w}.

We will use
•
I n+1 as the domain of f . We give

∨
α∈A

Sn
α the CW complex

structure consisting of one vertex, w, and an n-cell, Sn
α, for each α. By 2.4.13,

there exists k such that each cell of
•
I n+1

k lies in some element of f−1U . f is

homotopic to D1 ◦ f which maps each n-cell of
•
I n+1

k into Sn
α for some α. By

1.4.4, D1 ◦ f is homotopic to a cellular map f ′ such that f ′ takes the entire

(n− 1)-skeleton of
•
I n+1 to w, and maps each n-cell of

•
I n+1

k into some Sn
α.

The n-cells of
•
I n+1

k are not pairwise disjoint, so they do not form an

archipelago. We remedy this by passing to
•
I n+1

k+2 . The effect is to partition each

n-cell en
γ of

•
I n+1

k into 4n n-cells, 2n of which are disjoint from
•
e n

γ . The union
of these 2n cells is an n-cell ẽn

γ , and there8 is a homotopy H : en
γ×I → en

γ such

that H0 = id, H1(e
n
γ − ẽn

γ ) ⊂ •
e n

γ and H1(ẽ
n
γ ) = en

γ . The required archipelago

is {ẽn
γ | γ ∈ C} where C indexes the n-cells of

•
I n+1

k . The required map g is of
f ′ ◦H1. �

Proposition 4.5.5. Let n ≥ 2, let A be finite and let the map f : Sn →∨
α∈A

Sn
α be concentrated on the archipelago {Wγ | γ ∈ C}. Then f is homotopic

to a map g concentrated on an archipelago {Vα | α ∈ A} such that g(Vα) ⊂ Sn
α

for each α ∈ A.

Proof. Pick an archipelago {Vα | α ∈ A} in Sn. By a simple application of
2.4.15, there is a homeomorphism h : Sn → Sn which is homotopic to the
identity map, such that whenever f is non-constant on the island Wγ and
maps Wγ into Sn

α then h(Wγ) ⊂ Vα. The required map g is f ◦ h−1. �

Proof (of 4.5.2 (concluded)). Let f : (Sn, v) →
( ∨

α∈A
Sn

α, w

)
represent an

element of ker(hn). Since Sn is compact we may proceed as if A were finite.
By 4.5.4 and 4.5.5 there is an archipelago {Vα} so that f(Vα) ⊂ Sn

α for each
α ∈ A. The mapping degree [Sn : Sn

α : f ] is the “degree” with which f maps
Vα onto Sn

α, namely 0 since [f ] ∈ ker(hn). By 2.4.5, f | Vα is homotopic rel
bd Vα to the constant map at v, for each α. Thus the special case is proved.

8 The details here just involve elementary games with product cells in In+1
k+2 .
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We use this to prove the general case of 4.5.2. By induction on n, we may
assume X is (n−1)-connected when n ≥ 2; this is trivial when n = 1. Clearly
hn : πn(X, x)→ Hn(X ; Z) is surjective (exercise). We are to prove ker(hn) is
trivial. Consider the commutative diagram

πn(Xn, x)
i#−−−−→ πn(X, x)

∼=
⏐⏐
h′

n

⏐⏐
hn

Hn(Xn; Z)
i∗−−−−→ Hn(X ; Z)

where i denotes the inclusion map. Here, we have renamed one of the Hurewicz
homomorphisms h′

n to distinguish it from hn. Applying 4.2.1 inductively to
the (n − 1)-connected pair (X, x), we may assume Xn−1 = {x}. The n-
cells [resp. (n + 1)-cells] of X are {en

α | α ∈ A} [resp. {en+1
β | β ∈ B}].

Thus Xn =
⋃
α

en
α =

∨
α

Sn
α. Let gβ : Sn → Xn be the attaching map for

en+1
β . We may assume gβ(v) = x, so gβ defines [gβ ] ∈ πn(Xn, x). We have

h′
n([gβ ]) =

{∑
α

[en+1
β : en

α]en
α

}
. Let f : (Sn, v)→ (X, x) represent an element

[f ] ∈ ker(hn) ≤ πn(X, x). Write f ′ : (Sn, v) → (Xn, x) for the corestriction
of f . In the above diagram, hni#([f ′]) = hn([f ]) = 0, so h′

n([f ′]) ∈ ker i∗.

Thus there are integers nβ such that h′
n([f ′]) =

⎧⎨
⎩∂

⎛
⎝∑

β

nβen+1
β

⎞
⎠
⎫⎬
⎭ =

⎧⎨
⎩
∑

β

nβ

∑
α

[en+1
β : en

α]en
α

⎫⎬
⎭ =

∑
β

nβh′
n([gβ]). But h′

n is an isomorphism by the

special case. So [f ′] =
∑

β

nβ [gβ]. And i#([gβ ]) = 0 since gβ extends across

en+1
β . So i#([f ′]) = [f ] = 0. �

Proof (of 4.5.1). The induction on n begins with n = 2. By 4.5.3 (i) we have
a commutative diagram

π2(A, x) −−−−→ π2(X, x) −−−−→ π2(X, A, x) −−−−→ 0⏐⏐
h′
2

⏐⏐
h′′
2

⏐⏐
h2

H2(A; Z) −−−−→ H2(X, Z) −−−−→ H2(X, A; Z) −−−−→ 0

with exact horizontal lines. By 4.5.2, the Hurewicz homomorphisms h′
2 and

h′′
2 are isomorphisms. So h2 is an isomorphism.

Now we proceed by induction, assuming n ≥ 3. As before, the only diffi-
culty is in proving ker(hn) = 0. The proof of this is totally analogous to the
proof of 4.5.2. We leave the details as an instructive exercise. �
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Example 4.5.6. Consider X = S1 ∨ S2 with vertex v. Its universal cover X̃
is a line with a 2-sphere adjoined at each integer point. By 4.5.2 and 4.4.10,

H2(X̃ ; Z) ∼=
∞⊕

n=−∞
Z ∼= π2(X̃, ṽ) ∼= π2(X, v). Thus X is an example of a finite

CW complex whose second homotopy group is not finitely generated (as an
abelian group). However, since the group of covering transformations of X̃ is
infinite cyclic, H2(X̃; Z) can be regarded as a module over the group ring9

ZC where C denotes the infinite cyclic group of covering transformations
(∼= π1(X, v)). This homology group is finitely generated as a ZC-module,
indeed cyclic, so the same is true of π2(X̃, ṽ) ∼= π2(X, v). It is often desirable
to view higher homotopy groups as modules over the group ring ZG where G
is the fundamental group. In particular, when πn(X, v) is finitely generated
as a ZG-module one can kill it by attaching finitely many (n + 1)-cells to X .

Historical Note: The Relative Hurewicz Theorem appeared first in [88].

Exercises

1. Prove that hn is a homomorphism.
2. Prove that under the hypotheses of 4.5.2 hn is onto.
3. Fill in the missing details in the proof of 4.5.1.
4. Let X and Y be path connected CW complexes. Prove that if f : (X, x) → (Y, y)

induces isomorphisms on fundamental group and on Z-homology of universal
covers, then f is a homotopy equivalence. (Hint : See Exercise 1 of Sect. 4.4.)

5. Let X = A ∪ B be a CW complex where A,B and A ∩ B are contractible
subcomplexes. Prove that X is contractible using the Van Kampen theorem, the
Mayer-Vietoris sequence, the Hurewicz Theorem and the Whitehead Theorem.
(Compare Exercise 5 in Sect. 4.1.)

6. Find an example of a path connected CW complex X where h1 is an isomor-
phism but h2 is not surjective.

9 See Sect. 8.1 for more on group rings.
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Elementary Geometric Topology

The topics discussed here will arise in the course of what follows. This chapter
can be used for reference.

5.1 Review of topological manifolds

A manifold or topological manifold is a metrizable space M such that for some
n, called the dimension of M , every point has a neighborhood homeomorphic
to Rn or to Rn

+. Before sense can be made of this definition, one needs some
fundamental theorems about the topology of Rn (5.1.1–5.1.6). We begin with
Invariance of Domain:

Theorem 5.1.1. Let h : U → Rn be an embedding where U is an open subset
of Rn. Then h(U) is open in Rn.

Remark 5.1.2. There is an elementary but long proof of this theorem in the
literature – see [51, p. 358]. A more sophisticated proof, using singular homol-
ogy, deduces 5.1.1 from the following three important lemmas. The proofs of
the lemmas, and the deduction of 5.1.1 from them, are exercises for readers
who know singular homology; alternatively, see [146, Sect. 4.7].

Lemma 5.1.3. Let A ⊂ Sn be homeomorphic to Bk, where 0 ≤ k ≤ n. Then
H̃∆

i (Sn−A; Z) = 0 for all i. [As usual H̃∆
∗ denotes reduced singular homology.]

�

Lemma 5.1.4. Let S ⊂ Sn be homeomorphic to Sk for 0 ≤ k ≤ n− 1. Then
H̃∆

i (Sn−S; Z) is trivial if i �= n−k−1 and is isomorphic to Z if i = n−k−1.
�

Lemma 5.1.5. (Jordan-Brouwer Separation Theorem) Let C ⊂ Sn be
homeomorphic to Sn−1. Then Sn−C has two path components, each of whose
frontier is C. �
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Much easier than these results is the following proposition which is essen-
tially Exercise 3 in Sect. 2.2:

Proposition 5.1.6. (a) Let m �= n. No non-empty open subset of Rn is home-
omorphic to an open subset of Rm.

(b) Let x ∈ Rn−1 ⊂ Rn
+. No neighborhood of x in Rn

+ is homeomorphic to
Rn. �

Let M be a manifold of dimension n. The boundary of M is {x ∈M | some
neighborhood of x is homeomorphic to Rn

+}; this subset is denoted by ∂M .

The set M −∂M , abbreviated to
◦

M , is the interior of M ; it consists of all the
points of M having neighborhoods homeomorphic to Rn. The manifold M is
closed if M is compact and ∂M is empty. M is open if each path component
of M is non-compact and ∂M is empty.1

Proposition 5.1.6 has a number of consequences. If M is non-empty then
◦

M

is non-empty. Hence, by considering a neighborhood of a point of
◦

M , one sees

that the dimension of M is well defined. Moreover, ∂M∩
◦
M = ∅. A manifold of

dimension n is called an n-manifold ; a manifold of dimension 2 is also called a
surface. Note that since ∂M is topologically characterized, a homeomorphism
between manifolds carries boundary to boundary and interior to interior. If
M carries the structure of a CW complex, the dimension (in the sense of Sect.
1.2) of that CW complex is n.

Here are some easily deduced properties of an n-manifold M : ∂M is an
(n − 1)-manifold; ∂(∂M) = ∅; ∂M is a closed subset of M ; ∂M is nowhere

dense in M ;
◦

M is open in M ;
◦
M is dense in M . Manifolds are locally compact.

Remark 5.1.7. Consider the special cases of 5.1.3 and 5.1.4 in which n = 3. If
A is an arc (i.e., is homeomorphic to B1) and S is homeomorphic to S2, we
have H∆

1 (S3 − A) = 0 = H∆
1 (S3 − S). However, there is an arc A ⊂ S3 (the

Fox-Artin Arc) whose complement is not simply connected; and there is a
2-sphere S ⊂ S3 (the Alexander Horned Sphere) one of whose complementary
components is not simply connected. For more on these, see, for example,
[138].

Let M be a path connected n-manifold and let B ⊂
◦

M be an n-ball. By
5.1.1, int B is an open subset of M , but it does not follow that M − int B is
a manifold.2 An n-ball B in M is unknotted if M − int B is a manifold. If B

1 The reuse of the terms “interior”, “closed” and “open” is unfortunate but en-
trenched. More troublesome is the reuse of “boundary”; in addition to the two
uses of that word in this book (here and in Sect. 2.1) many authors also use it
for what we have called the “frontier”. As we remarked in Sect. 1.2, the word

“boundary” is also used for the subset
•
e of a cell e in a CW complex.

2 For example B might be the closure of the component of (S3 – Alexander Horned
Sphere) which is simply connected – see 5.1.7.
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and C are unknotted n-balls in M there is a homeomorphism3 of M taking B
onto C; this is a consequence of the Generalized Schoenflies Theorem (see [45]).
Unknotted balls are needed for the “connected sum construction”: let M1 and
M2 be path connected n-manifolds, let B1 and B2 be unknotted n-balls4 in
◦

M1 and
◦
M2 respectively with boundaries S1 and S2, and let h : S1 → S2 be a

homeomorphism between these (n− 1)-spheres. The relation x ∼ h(x) for all
x ∈ S1 defines an equivalence relation on cl(M1 − int B1)

∐
cl(M2 − int B2)

and the resulting quotient space is called the connected sum of M1 and M2,
denoted M1#M2. It is a manifold because the balls are unknotted. Up to
homeomorphism this is independent of the choices of B1, B2 and h. See Fig.
5.1.

M M

S S

M  #  M

1 2

1

1 2

2

h

Fig. 5.1.

Example 5.1.8. The closed orientable surface Tg is defined for g ∈ N by: T0 =
S2, T1 = T 2 (the 2-torus), Tg+1 = Tg#T1. This number g is the genus of
the surface. This surface Tg is also called a sphere with g handles . The closed

3 Indeed, B can be carried onto C by an ambient isotopy, i.e., a homotopy through
homeomorphisms starting at idM .

4 It is easy to find unknotted n-balls in Rn, hence in
◦

M for any M .
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non-orientable surface Uh is defined for h ≥ 1 by: U1 = RP 2 (the projective
plane), Uh+1 = Uh#U1. This surface Uh is called5 a sphere with h crosscaps. It
is well-known, see for example [110] or [151], that every closed path connected
surface is homeomorphic to some Tg or some Uh. These surfaces are CW
complexes as follows. Let K(g) be the presentation complex of

〈a1, b1, · · · , ag, bg | [a1, b1][a2, b2] · · · [ag, bg]〉

where [a, b] denotes the commutator aba−1b−1, and let L(h) be the presenta-
tion complex of

〈a1, · · · , ah | a2
1a

2
2 · · · a2

h〉.
The underlying spaces of the CW complexes K(g) and L(h) are Tg and Uh

respectively. In particular we see presentations of the surface groups, namely
the fundamental groups of Tg and Uh. The abelianizations are pairwise non-
isomorphic, so no two of the surfaces Tg and Uh have the same homotopy
type. All these surfaces except T0 = S2 and U1 = RP 2 are aspherical (see
Exercise 7) so their fundamental groups have type F .

Example 5.1.9. If M is a compact surface with non-empty boundary then each
path component of ∂M is a circle, and if C is one of those circles then the space
obtained from M by attaching a 2-cell using as attaching map an embedding
S1 → M whose image is C is again a surface. Thus, by attaching finitely
many 2-cells in this way M becomes a closed surface, i.e., becomes a Tg or a
Uh. Let Tg,d and Uh,d denote the surfaces obtained by removing the interiors
of d unknotted6 2-balls. Then every compact path connected surface whose
boundary consists of d circles is homeomorphic to Tg,d or to Uh,d. When d > 0,
Tg,d and Uh,d contain graphs as strong deformation retracts; hence they are
aspherical with free fundamental groups, by 3.1.9 and 3.1.16.

Exercises

1. Prove 5.1.3–5.1.5. Then prove 5.1.1.
2. Show that when p : X̄ → X is a covering projection, X̄ is a manifold iff X is a

manifold.
3. Show that every path connected 1-manifold is homeomorphic to S1, I , R or

[0,∞).
4. Show that if M is an n-manifold then M#Sn is homeomorphic to M .
5. Show that Tg+1,d is homeomorphic to Tr,k#Tg+1−r,d−k+2.
6. For n-manifolds M1 and M2, show that π1(M1#M2) ∼= π1(M1) ∗ π1(M2) when

n > 2. Discuss the cases n ≤ 2.
7. For g ≥ 3 show that Tg is a (g − 1) to 1 covering space of T2.

5 One expresses Tg+1 = Tg#T1 [resp. Uh+1 = Uh#U1] by saying Tg+1 is obtained
from Tg by attaching a handle [resp. Uh+1 is obtained from Uh by attaching a
crosscap].

6 By the Schoenfliesz Theorem (see [138]) every 2-ball in a surface is unknotted.



5.2 Simplicial complexes and combinatorial manifolds 129

8. Show that Tg is a 2 to 1 covering space of Ug+1.
9. By considering the universal cover of K(2) (see Example 5.1.8) show that the

universal cover of T2 is homeomorphic to R2. Deduce that the universal covers
of all the path connected closed surfaces except S2 and RP 2 are homeomorphic
to R2. (In the terminology of Ch. 7, all such surfaces are aspherical.)

10. Let G act freely and cocompactly on a path connected orientable open surface S.
Prove that H1(S; Z) is finitely generated as a ZG-module if G is finitely presented,
and it is not finitely generated as a ZG-module if G is finitely generated but does
not have type FP2 over Z.

5.2 Simplicial complexes and combinatorial manifolds

This is an exposition of simplicial complexes, their underlying polyhedra, joins,
and combinatorial manifolds. It is intended to be both an exposition and a
place to refer back to for definitions as needed.

An abstract simplicial complex , K, consists of a set VK of vertices and a
set SK of finite non-empty subsets of VK called simplexes; these satisfy: (i)
every one-element subset of VK is a simplex, and (ii) every non-empty subset
of a simplex is a simplex. An n-simplex of K is a simplex containing (n + 1)-
vertices (in which case n is the dimension of the simplex). The empty abstract
simplicial complex, denoted by ∅, has V∅ = S∅ = ∅. We say K is finite if VK is
finite (in which case SK is finite), K is countable if VK is countable (in which
case SK is countable), and K is locally finite if each vertex lies in only finitely
many simplexes. The dimension of K is the supremum of the dimensions of
its simplexes.

If K and L are abstract simplicial complexes, a simplicial map φ : K → L
is a function VK → VL taking simplexes of K onto simplexes of L. If φ has a
two-sided inverse which is simplicial, then φ is a simplicial isomorphism.

One associates a CW complex with the abstract simplicial complex K as

follows. Let W be the real vector space
∏

v∈VK

R; i.e., the cartesian product of

copies of R indexed by VK , with the usual coordinatewise addition and scalar
multiplication. Topologize every finite-dimensional linear subspace U of W by
giving it the appropriate euclidean topology. Give W the weak topology with
respect to this family of subspaces (which is suitable in the sense of Sect. 1.1
for defining a weak topology). This is called the finite topology7 on W . Abusing
notation, let v also denote the point of W having entry 1 in the v-coordinate,
and all other entries 0. For each simplex σ = {v0, · · · , vn} of K, let |σ| be
the (closed) convex hull in W of {v0, · · · , vn}. Let |K|n =

⋃{|σ| | σ is an

n-simplex of K}. Let |K| =
⋃
n≥0

|K|n. Then (|K|, {|K|n}), with the topology

7 The finite topology does not make W a topological vector space, but it makes
each finite-dimensional linear subspace a topological vector space.



130 5 Elementary Geometric Topology

inherited from W , is a CW complex. The details are an exercise; see also [51,
pp. 171–172]. This |K| is the geometric realization of K.

If φ : K → L is a simplicial map, there is an associated map |φ| : |K| → |L|
which maps the vertex of |K| corresponding to v ∈ VK to the vertex of |L|
corresponding to φ(v) ∈ VL, and is affine on each |σ|. Clearly |φ| is continuous,
and if φ is a simplicial isomorphism, |φ| is a homeomorphism.

The notations |σ| and |K| are sometimes used in a slightly different way.
Assume (i) VK is a subset of RN such that the vertices of each simplex of K
are affinely independent. With σ as above, define |σ| to be the (closed) convex

hull of σ in RN . Write |◦σ| for

{ n∑
i=0

tivi | 0 < ti < 1 and
n∑

i=0

ti = 1

}
, the open

convex hull of σ. Assume (ii) that whenever σ �= τ ∈ SK , |◦σ| ∩ |◦τ | = ∅. Define
|K| = ⋃{|σ| | σ ∈ SK} and |K|n =

⋃{|σ| | σ is a k-simplex of K and k ≤ n}.
Then |K| (with topology inherited from RN ) and {|◦σ| | σ ∈ SK} satisfy all
but one of the requirements in Proposition 1.2.14 for (|K|, {|K|n}) to be a
CW complex: the sole problem is that the topology which |K| inherits from
RN might not agree with the weak topology with respect to {|σ| | σ ∈ SK}.
Assume (iii) that {|σ| | σ ∈ SK} is a locally finite family of subsets of the space
|K| (where |K| has the inherited topology). If K satisfies these assumptions
(i), (ii) and (iii), we call K a simplicial complex in RN , and we call |K| its
underlying polyhedron. The cell |σ| of |K| is often called a simplex of |K|;
context prevents this double use of the word from causing problems. Note
that |K| might not be closed in RN ; it is closed iff the set of simplexes |σ| is
a locally finite family of subsets of RN (rather than of |K|).

A space Z is triangulable if there is an abstract simplicial complex K such
that Z is homeomorphic to |K|, and K is called8 a triangulation of Z.

Example 5.2.1. The half-open interval (0, 1] in R is triangulable: take VK ={
1

n
| n ∈ N

}
and SK to be the set of pairs

{
1

n
,

1

n + 1

}
together with VK .

But the subspace VK ∪ {0} of R is not triangulable.

Proposition 5.2.2. If K is a simplicial complex in RN , the weak topology on
|K| with respect to {|σ| | σ ∈ SK} agrees with the topology inherited from RN .
Moreover, (|K|, {|K|n}) is a countable locally finite CW complex.

Proof. |K|weak is a CW complex. Suppose it is not locally finite. Then for
some simplex σ of K, there is an infinite collection {τα} of simplexes of K
with |σ|∩|τα| �= ∅ for all α. Since |σ| is compact, (iii), above, implies that there
are open sets (in RN ) U1, · · · , Uk whose union contains |σ| and meets only
finitely many of {|τα|}. This is a contradiction. So |K|weak is locally compact
and Hausdorff. The “identity” map |K|weak → |K|inherited is continuous, and

8 The word “triangulation” is also used for a homeomorphism h : |K| → Z, or
sometimes just for the CW complex |K|.
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|K|inherited is clearly locally compact and Hausdorff. By 1.2.11, |K|weak is
Hausdorff. By 10.1.8, below, |K|weak is locally compact, and by 10.1.6, below,
this implies that the “identity” is a homeomorphism. Thus the two topologies
agree. �

Remark 5.2.3. Conveniently, |◦σ| as defined above coincides with
◦
e as defined

in Sect. 1.2 when e = |σ| is a cell of the CW complex |K|.

Let K and L be abstract simplicial complexes: L is a subcomplex of K if
VL ⊂ VK and SL ⊂ SK . Then |L| is a subcomplex of |K| in the sense of Sect.
1.2. We say that L is a full subcomplex of K if, in addition, any set of vertices
of L which is a simplex of K is a simplex of L. Then |L| is a full subcomplex
of |K| in the sense of Sect. 1.5.

If L is a subcomplex of K, the simplicial neighborhood of L in K is the
subcomplex N(L), or NK(L), generated by all simplexes of K which have a
vertex in L. Then |N(L)| = N(|L|) in the sense of Sect. 11.4.

If K and L are abstract simplicial complexes, their join, K ∗ L, is the
abstract simplicial complex with9 VK∗L = VK  VL and SK∗L = SK  SL 
{σ τ | σ ∈ SK , τ ∈ SL}. If K [resp. L] = ∅, it is implied that K ∗ L = L
[resp. K].

If X and Y are non-empty spaces, their topological join is the adjunction
space X∗Y = (XY )∪f (X×I×Y ) where f : X×{0, 1}×Y → XY is defined
by f(x, 0, y) = x and f(x, 1, y) = y. To see what this means geometrically,
consider an equivalent definition: X ∗ Y is the quotient space (X × I × Y )/∼
where the equivalence relation ∼ is generated by: (x, 0, y1) ∼ (x, 0, y2) for all
y1, y2 ∈ Y ; and (x1, 1, y) ∼ (x2, 1, y) for all x1, x2 ∈ X . Thus X ∗ Y contains
a “line segment” joining each x ∈ X to each y ∈ Y ; two such “line segments”
meet, if at all, at one end point; these “line segments” vary continuously in x
and in y.

Example 5.2.4. Let X = {((1 − a), a, 0, 0) ∈ R4 | 0 ≤ a ≤ 1} and let Y =
{(0, 0, (1− b), b) ∈ R4 | 0 ≤ b ≤ 1}. Then X ∗ Y can be identified with
{((1 − t)(1 − a), (1 − t)a, t(1 − b), tb) ∈ R4 | 0 ≤ a, b, t ≤ 1}. Fixing a and b
we get a line segment joining ((1− a), a, 0, 0) ∈ X to (0, 0, (1− b), b) ∈ Y , and
the various line segments meet as described above. In this example, X ∗ Y is
the standard 3-simplex in R4.

If A ⊂ X and B ⊂ Y are non-empty closed sets, we consider A ∗ B to be
a subspace of X ∗ Y , namely the image of A× I ×B in X ∗ Y . The quotient
and inherited topologies agree for reasons explained in Sect. 1.1.

If X is the empty space, X ∗Y is defined to be Y . Similarly, if Y is empty,
X ∗ Y is X . If, in the last paragraph, A [resp. B] is empty, this suggests
identifying the resulting A ∗B with the obvious copy of B [resp. A] in X ∗ Y ,
and this will always be understood.

9 If VK ∩ VL = ∅ the � symbol could be replaced by ∪.
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We seek a relationship between |K| ∗ |L| and |K ∗L|. For this, we consider
|K| ⊂ W1 and |L| ⊂ W2, as above, where W1 and W2 are real vector spaces
each having the finite topology. Let W = W1 × W2, again with the finite
topology. Then |K ∗ L| ⊂ W . Identifying W1 with W1 × {0} and W2 with
{0}×W2, we have |K| ⊂ |K ∗L| ⊃ |L|. Define a function φ : |K| × I × |L| →
|K ∗ L| by the formula φ(x, t, y) = (1 − t)x + ty where addition and scalar
multiplication take place in W .

Proposition 5.2.5. If K or L is locally finite then φ is continuous, and φ
induces a homeomorphism Φ : |K| ∗ |L| → |K ∗ L|.

Proof. Regard I as a CW complex in the usual way. By 1.2.19, |K|×I×|L| is a
CW complex, so in order to show that φ is continuous we need only show that
for any σ ∈ SK and τ ∈ SL, φ| : |σ| × I × |τ | →W is continuous. The domain
and the image of this restriction lie in finite-dimensional subspaces of W , so
φ| is certainly continuous. One easily checks that φ respects the equivalence
relation ∼ (see the alternative definition of X∗Y , above) and that the induced
map Φ : |K| ∗ |L| → |K ∗ L| is injective. Moreover, φ(|σ| × I × |τ |) clearly
equals |σ τ | so Φ is surjective. Moreover, this analysis shows that Φ maps
each cell of the CW complex |K| ∗ |L| (see the first definition of X ∗ Y , and
4.1.1) homeomorphically onto a cell of |K ∗ L|. Thus Φ−1 is continuous. �

When K has just one vertex v, the join K ∗L is called the cone on L with
vertex v and base L; it is denoted v ∗L. Similarly, if X is the one-point space
{v}, the topological join X ∗Y is called the cone on Y with vertex v and base
Y ; one writes v ∗ Y for this. A special case of 5.2.5 is

Corollary 5.2.6. Φ : v ∗ |L| → |v ∗ L| is a homeomorphism. �

Here are some basic exercises about topological joins of balls and spheres:

Proposition 5.2.7. There are homeomorphisms of pairs as follows:

(Bm ∗Bn, (Sm−1 ∗Bn) ∪ (Bm ∗ Sn−1)) ∼= (Bm+n+1, Sm+n)

(Bm ∗ Sn, Sm−1 ∗ Sn) ∼= (Bm+n+1, Sm+n).

If p ∈
◦
B m, then p ∈ ∂(Bm ∗Bn) and p ∈ (Bm ∗ Sn)◦. �

If σ, τ ∈ SK and σ ⊂ τ , we say that σ is a face of τ . Consider the set of
all simplexes of K of which σ is a face: the subcomplex generated by these
simplexes is called the star of σ in K and is denoted by stKσ. The link of σ
in K is the subcomplex, lkKσ, of stKσ generated by those simplexes of stKσ
which contain no vertex of σ. See Fig. 5.2.

This section, so far, has consisted of two parts, one on simplicial complexes
and the other on joins. These are brought together in the next proposition. If
σ is a simplex of K, σ̄ denotes the abstract simplicial complex whose vertices
are the vertices of σ and whose simplexes are the faces of σ.
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Fig. 5.2.

Proposition 5.2.8. Let σ be a simplex of the abstract simplicial complex K.
Then σ̄ ∗ lkKσ = stKσ. More precisely, the vertices of σ̄ and of lkKσ form
two disjoint subsets of VK , and the function sending each vertex to itself maps
σ̄ ∗ lkKσ by a simplicial isomorphism onto the subcomplex stKσ of K. �

The importance of 5.2.8 is that, with 5.2.5, it implies |σ| ∗ |lkKσ| is home-
omorphic to |stKσ|. When K is a combinatorial n-manifold (see below) or a
CW n-manifold (see Sect. 15.1), each |lkKσ| will be homeomorphic to a sphere
or a ball of dimension n− dim σ − 1, so that, by 5.2.7 and 5.2.8, |stKσ| will
be an n-ball. To express this better we need some preliminaries.

Let K be a simplicial complex in RN . A simplicial subdivision of K is a
simplicial complex K ′ in RN such that |K| = |K ′| and |K ′| is a subdivision of
|K| (in the sense of Sect. 2.4). Let L be a simplicial complex in RM . A map
f : |K| → |L| is piecewise linear (abbreviated to PL) if there is a simplicial
subdivision K ′ of K such that for each simplex σ′ of K ′, the restriction of f
to |σ′| is affine when regarded as a map into RM . This property of f depends
only on the underlying polyhedra |K| and |L|, in the sense that if K̄ and L̄
are simplicial complexes in RN and RM respectively such that |K| = |K̄| and
|L| = |L̄|, then the above map f is also PL when written f : |K̄| → |L̄|.
Clearly we have:

Proposition 5.2.9. If f : |K| → |L| is a homeomorphism and if f is also a
PL map, then f−1 is a PL map. �

Piecewise linearity is really a local property, like differentiability. By 5.2.9,
the inverse of a PL homeomorphism is a PL homeomorphism.10

Recall that ∆n is the (closed) convex hull of the points p0, · · · , pn ∈ Rn+1

where pi has (i + 1)th coordinate 1 and all other coordinates 0. Let n be the

10 Contrast this with the differentiable map f : R → R, f(x) = x3, which is a
homeomorphism whose inverse is not differentiable at 0.
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simplicial complex in Rn+1 whose vertices are p0, · · · , pn and whose simplexes
are the non-empty sets of vertices. Then ∆n = |n|. It is also the case that

∆n =

{
n∑

i=0

tipi | 0 ≤ ti ≤ 1 and
∑

i

ti = 1

}
. We denote by

•
∆ n the subset

of ∆n consisting of points for which some ti = 0. Then
•
∆ n = |•n| for an

obvious subcomplex
•
n of n. It is convenient to also call ∆n the standard PL

n-ball and to call
•
∆ n the standard PL (n − 1)-sphere. The pairs (∆n,

•
∆ n)

and (Bn, Sn−1) are homeomorphic.
Let K be a simplicial complex in RN . We say K is a combinatorial n-

manifold if for each simplex σ of K, |lkKσ| is PL homeomorphic to ∆n−dim σ−1

or to
•
∆ n−dim σ: in words, the link of each simplex σ is PL homeomorphic to

the standard PL ball or PL sphere of dimension n−dim σ−1. Those simplexes
whose links are PL homeomorphic to a standard ball define a subcomplex,
∂K, of K called the combinatorial boundary of K. We say K is a closed
combinatorial n-manifold if ∂K = ∅ and K is finite.

We leave it to the reader to formulate and prove a PL version of 5.2.7 (e.g.,
•
∆ m ∗∆n is PL homeomorphic to

•
∆ m+n+1).

Proposition 5.2.10. If K is a combinatorial n-manifold, then for every sim-
plex σ of K, |stKσ| is PL homeomorphic to ∆n. In particular, |K| is a topo-
logical n-manifold, and |∂K| = ∂|K|. �

Theorem 5.2.11. Let K be a simplicial complex in RN with the property
that every point x ∈ |K| has a (closed) neighborhood PL homeomorphic to
∆n. Then K is a combinatorial n-manifold. �

If K is a combinatorial manifold, its geometric realization |K| is a piecewise
linear manifold , abbreviated to PL manifold .

Remark 5.2.12. There is an enormous literature behind the last few para-
graphs, expounded in part in [90], [136] and [96]. It is difficult to construct
a topological n-manifold which is not homeomorphic to a piecewise linear n-
manifold, though such manifolds exist in all dimensions ≥ 4. Each topological
manifold of dimension ≤ 3 is homeomorphic to a piecewise linear manifold
which is unique up to PL homeomorphism; see for example [121]. Each closed
topological manifold of dimension ≥ 6 admits the structure of a CW complex;
see Essay III of [96].

Exercises

1. If K is a simplicial complex in RN , let |K|1 be its geometric realization and
let |K|2 be its underlying polyhedron. Prove that there is a homeomorphism
h : |K|1 → |K|2 such that (in the notation of this section) h(v) = v and for each
σ ∈ SK , h maps |σ|1 onto |σ|2 affinely.
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2. Prove 5.2.7, and also a PL version of 5.2.7.
3. Prove that |K| is a CW complex.
4. An abstract simplicial complex K is connected if for any vertices v, w there is

a sequence of vertices v = v0, v1, · · · , vn = w where, for every i, {vi, vi+1} is a
simplex of K. Prove that K is connected iff |K| is path connected.

5. Prove that K is a locally finite [resp. finite] abstract simplicial complex iff |K| is
a locally finite [resp. finite] CW complex.

6. Prove that every n-dimensional locally finite abstract simplicial complex is iso-
morphic to a simplicial complex in R2n+1.

7. Define the simplicial boundary of NK(L) to be the subcomplex
•

NK(L) of NK(L)
consisting of simplexes which do not have a vertex in L. Give an example where

|
•

NK(L)| �= fr|K|(|NK(L)|).
8. Show that In is PL homeomorphic to ∆n.
9. Show that RP n, Sn and T n are homeomorphic to PL n-manifolds.

10. Show that the surfaces Tg,d and Uh,d of 5.1.9 are homeomorphic to PL 2-
manifolds.

11. Construct a non-triangulable CW complex.
12. Prove 5.2.8.
13. Prove that any cone v ∗ Y is contractible.
14. The Simplicial Approximation Theorem says that if K and L are simplicial com-

plexes in some RN , and if K is finite, then given a map f : |K| → |L| there is
a simplicial subdivision K ′ of K and a simplicial map φ : K ′ → L such that f
is homotopic to |φ|. This is proved in many books on algebraic topology, e.g.,
[146]. Using this, prove that every CW complex X has the homotopy type of
some |J | where J is an abstract simplicial complex. (Hint : First assume X is
finite-dimensional and work by induction on dimension, using 4.1.8.)

5.3 Regular CW complexes

In this section we introduce a class of CW complexes in which cells are home-
omorphic to balls.

Suppose that the space Y is obtained from the space A by attaching n-
cells. We say that Y is obtained from A by regularly attaching n-cells if the
characteristic map for each n-cell en

α can be chosen to be a homeomorphism
Bn

α → en
α. A CW complex X is regular if (referring to the definition in Sect.

1.2) each Xn is obtained from Xn−1 by regularly attaching n-cells. In a regular
CW complex, every n-cell is homeomorphic to Bn.

Example 5.3.1. The usual CW complex structure on S1 consisting of one ver-
tex and one 1-cell is not regular, but one easily finds a regular subdivision
having two vertices and two 1-cells. Other examples are given in the Exer-
cises.

Note the agreement of some of our notations in regular CW complexes:

the cell en is an n-ball, so
◦
e n coincides with the manifold interior (en)◦, while

•
e n coincides with ∂en.
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We derive some special properties of regular CW complexes (5.3.2 and
5.3.5).

Proposition 5.3.2. Let e be a cell of the regular CW complex X, and let C(e)
be the carrier of e. Then, as spaces, C(e) = e. In other words, each cell of X
is a subcomplex of X.

For the proof of 5.3.2 we need two lemmas.

Lemma 5.3.3. There is no embedding of Sn in Rn.

Proof. If there were such an embedding h : Sn → Rn then, by 5.1.1 and
1.3.7, h would map every proper open subset of Sn onto an open subset of
Rn, hence h(Sn) would be open in Rn. But h(Sn) is compact, hence closed
in Rn. And h(Sn) �= Rn since the latter is not compact. Thus we would have
a proper non-empty closed-and-open subset of Rn contradicting the fact that
Rn is connected (being obviously path connected). �

Lemma 5.3.4. Let en−1
α and en

β be cells of the regular CW complex X. If
◦
eα ∩

•
eβ �= ∅ then eα ⊂

•
eβ.

Proof. We have
•
e n

β ⊂ Xn−1, and
◦
e n−1

α is open in Xn−1, so
◦
e n−1

α ∩ •
e n

β is open

in
•
e n

β . Now
•
e n

β is homeomorphic to Sn−1, so, by 5.1.1,
◦
e n−1

α ∩ •
e n

β is open

in
◦
e n−1

α . But, since
•
e n

β is compact,
◦
e n−1

α ∩ •
e n

β is also closed in
◦
e n−1

α , and is

non-empty. As in the proof of 5.3.3, this implies
◦
e n−1

α ⊂ •
e n

β , from which the
Lemma follows. �

Proof (of 5.3.2). We work by induction on the dimension, n, of e. If n = 0,

the Proposition is trivial. Consider a cell en−1
α in C(e). Then

◦
e n−1

α ∩ •
e �= ∅,

so, by 5.3.4, en−1
α ⊂ •

e. Since C(e) consists of e together with the carriers of
such en−1

α , the induction hypothesis completes the proof. �

It follows that if hα : (Bn, Sn−1) → (en
α,

•
e n

α) is a characteristic map for
an n-cell in a regular CW complex X , h−1

α carries the CW complex structure
C(en

α) on en
α back to a CW complex structure on Bn; this structure has exactly

one n-cell, and h−1
α (C(

•
e n

α)) is a CW complex structure on Sn−1. This implies

that there is an (n− 1)-cell en−1
β of X with en−1

β ⊂ •
e n

α. In fact, by induction
one deduces that for each n-cell en

α of the regular CW complex X and for each
k < n there is a k-cell ek with ek ⊂ en

α.
Recall that a cell e1 is a face of a cell e2 if e1 ⊂ e2. We have just seen that

in a regular CW complex an n-cell has faces of all lower dimensions. Easy
examples show that non-regular CW complexes need not have this property.

Proposition 5.3.5. Let X be a regular CW complex, and let ek−2
α be a face

of ek
β. Then ek−2

α is a face of exactly two (k − 1)-dimensional faces of ek
β.



5.3 Regular CW complexes 137

Proof. Since
•
e k

β is homeomorphic to Sk−1, this follows from the following
lemma. �

Lemma 5.3.6. Let Y be a regular CW complex structure on an n-manifold.
Every cell of Y is a face of an n-cell of Y . Every (n − 1)-cell of Y is a face
of at most two n-cells of Y . An (n − 1)-cell, e, of Y is a face of exactly one

n-cell of Y iff e ⊂ ∂Y . If e is a face of two n-cells of Y , then
◦
e ⊂

◦
Y .

Proof. We saw in Sect. 5.1 that every cell of Y has dimension ≤ n. If some
cell were not a face of an n-cell, there would be k < n and a k-cell ẽ of Y

which is not a face of any higher-dimensional cell of Y , implying
◦
ẽ open in

Y , contradicting 5.1.6(a). If the (n − 1)-cell e is a face of exactly one n-cell,

then, since Y is regular, each x ∈ ◦
e has a neighborhood in Y homeomorphic

to Rn
+. Thus

◦
e ⊂ ∂Y , and, since ∂Y is closed in Y , e ⊂ ∂Y . On the other

hand, if e is a face of two n-cells, then every x ∈ ◦
e clearly has a neighborhood

homeomorphic to Rn, so, by 5.1.6(b),
◦
e ⊂

◦
Y . The proof that e is not a face of

more than two n-cells is left as an exercise. �

The abstract first derived (or barycentric subdivision) of a regular CW
complex X is the abstract simplicial complex sd X whose vertices are the cells
of X and whose simplexes are those finite sets of cells {e0, · · · , en} which can

be ordered so that, for each i < n, ei is a proper face of ei+1 (i.e., ei ⊂
•
ei+1).

Convention 5.3.7. We will always list the vertices of a simplex of sd X in
order of increasing dimension (of the cells).

Proposition 5.3.8. When X is a regular CW complex, there is a homeo-
morphism h : |sd X | → X such that for every simplex {e0, · · · , ek} of sd X,

h(|{e0, · · · , ek}|◦) ⊂
◦
ek. Moreover, h−1 is cellular.

Proof. Observe that for any cell e of X , sd C(e) is the cone e ∗ [sd C(
•
e)]

where C(·) denotes “carrier”; note the different meanings of e! By induction
on n we define homeomorphisms hn : |sd Xn| → Xn, each extending its
predecessor: the required h agrees with hn on |sd Xn| ⊂ |sd X |. In an ob-
vious sense |sd X0| = X0; let h0 = id. Assume that h0 has been extended
to hn−1 : |sd Xn−1| → Xn−1. Let e be an n-cell of X . Then hn−1 maps

|sd C(
•
e)| homeomorphically onto C(

•
e). By 5.3.2, this is a homeomorphism

between (n − 1)-spheres. By the above remark about cones, it extends to a
homeomorphism |sd C(e)| → C(e) between n-balls. Our hn is defined to agree
with this homeomorphism on |sd C(e)|. �

Corollary 5.3.9. Every regular CW complex is triangulable.11 �

11 In Exercise 11 of Sect. 5.2 the reader was asked for a CW complex (non-regular
in view of 5.3.9) which is not triangulable.
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The homeomorphism h of 5.3.8 defines a subdivision of X in the sense of
Sect. 2.4 whose cells are {h(|{e0, · · · , ek}|)}. Call such a subdivision a first
derived (or barycentric subdivision) of X . Once h is chosen, it is convenient

to denote by êk the point of
◦
ek which is the image under h of the vertex ek of

|sd X | and to call êk a barycenter of ek. In fact, one often identifies |sd X | with
X via h, thinking of the barycenters êk as being the vertices of |sd X |; the
cell (simplex) |{e0, · · · , ek}| of |sd X | is then identified with a certain subset
of ek. See Fig. 5.3.

|sd |X X

h

Fig. 5.3.

We compute incidence numbers in regular CW complexes.

Proposition 5.3.10. Let X be an oriented regular CW complex. For cells
en−1

β and en
α of X, the incidence number [en

α : en−1
β ] is ±1 if en−1

β is a face of
en

α, and is 0 otherwise.

Proof. When n = 1, this is true by definition; see Sect. 2.5. Let n > 1. When
en−1

β not a face of en
α, the incidence number is 0 by 2.5.8. Let Y be the subcom-

plex C(
•
e n

α) of X , and let Z be the CW complex structure on Sn−1 consisting
of one 0-cell ẽ0 and one (n−1)-cell ẽn−1. Then Y is homeomorphic to Sn−1 by

5.3.2. There is a cellular map f : Y → Z taking
◦
e n−1

β homeomorphically onto
◦
ẽ n−1 and taking the rest of Y to ẽ0. Then f#(en−1

β ) = [en−1
β : ẽn−1 : f ]ẽn−1,

and f# takes all other generators of Cn−1(Y ; Z) to 0 ∈ Cn−1(Z; Z). In-
spection of the diagram in Sect. 2.5 defining mapping degrees reveals that
[en−1

β : ẽn−1 : f ] is the degree of a homeomorphism Sn−1 → Sn−1 and is there-
fore ±1, by 2.4.20. Since Hn−1(Y ; Z) ∼= Z, there is a cellular (n − 1)-cycle in
Y which generates Hn−1(Y ; Z) and whose image generates Hn−1(Z; Z) ∼= Z.
Thus, if we use homeomorphisms to identify Y and Z with Sn−1, f has de-
gree ±1. Now the diagram in Sect. 2.5 defining incidence numbers shows that
[en

α : en−1
β ] is this degree, namely ±1. �
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Exercises

1. Find regular CW complex structures which are not triangulations (see 5.3.9) for:
Sn and closed surfaces.

2. Show that the property of being a regular CW complex is preserved under the
following constructions: disjoint union, finite product, subcomplex, and covering
space.

3. Give an example where the universal cover of a non-regular CW complex is
regular.

4. Prove that in an n-manifold no (n − 1)-cell is a face of more than two n-cells.
5. Let X be a presentation complex for the presentation 〈W | R,ρ〉 of G = π1(X, v).

Prove that the universal cover X̃ is a regular CW complex iff no element of W
represents 1 ∈ G, and no proper subword of a relation in ρ(R) is conjugate to
(i.e., cyclically equivalent to) a relation in ρ(R). Prove that if X̃ is not regular,
then there is a sequence of Tietze transformations leading to another presentation
〈W ′ | R′, ρ′〉 of π1(X, v) so that if X ′ is the associated presentation complex X̃ ′

is regular. Prove that if W and R are finite, then this sequence is finite, and each
presentation in the sequence is finite.

6. If Y is a regular G-CW complex show that |sd Y | is a rigid G-CW complex.
7. Show that if Y is a subcomplex of X then sd Y is a full subcomplex of sd X.

5.4 Incidence numbers in simplicial complexes

Recall that ∆n denotes the standard n-simplex (or PL n-ball).
The ith face ∆n−1

i is the convex hull of the vertices {p0, · · · , p̂i, · · · , pn}
where p̂i means “suppress pi”. We denote by fi : ∆n−1 → ∆n−1

i the affine
homeomorphism which maps the vertices of ∆n−1 ⊂ Rn to the vertices of
∆n−1

i in order-preserving fashion. We also regard ∆n as a CW complex via

∆n = |n| (see Sect. 5.2). Note that
•
∆ n =

n⋃
i=0

∆n−1
i .

We wish to identify ∆n with Bn permanently (just as we identified In with
Bn in Sect. 2.2), so for each n we choose, once and for all, a homeomorphism
dn : Bn → ∆n. For n = 0, there is only one choice. For n > 0, the choice is
made by induction to satisfy:

Convention 5.4.1. If, in the CW complex ∆n with n > 0, the n-cell ∆n is

oriented by dn : (Bn, Sn−1)→ (∆n,
•
∆ n) and the (n−1)-cell ∆n−1

0 is oriented

by f0 ◦ dn−1 : (Bn−1, Sn−2)→ (∆n−1
0 ,

•
∆ n−1

0 ), then [∆n : ∆n−1
0 ] = 1.

As in 2.5.17 we have:

Proposition 5.4.2. If, in the CW complex ∆n, the n-cell ∆n is oriented by dn

and the (n−1)-cell ∆n−1
i is oriented by fi◦dn−1, then [∆n : ∆n−1

i ] = (−1)i. �
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Next, consider the geometric realization |K| of an abstract simplicial com-
plex K. If σ is a simplex of K, an ordering v0, · · · , vn of the vertices of σ
specifies an orientation of the cell |σ|, namely the orientation defined by the

characteristic map (∆n,
•
∆ n) → (|σ|, |•σ|) which is the affine homeomorphism

taking the vertex pi of ∆n to the vertex vi of σ. By 2.5.2 we have:

Proposition 5.4.3. Under this rule, two orderings of the vertices of σ deter-
mine the same orientation of |σ| iff they differ by an even permutation. �

Corollary 5.4.4. Let v0, · · · , vn be vertices of a simplex σ of K, and, for 0 ≤
i < j ≤ n, let vi, · · · , vj be vertices of a simplex τ . This ordering v0, · · · , vn

specifies orientations of σ and τ , and an odd permutation of vi, · · · , vj changes
both orientations. �

An ordering of an abstract simplicial complex K is a partial ordering of
the set of vertices VK whose restriction to every simplex of K gives a total
ordering of the vertices of that simplex. A CHOICE OF ORDERING OF
K WILL BE UNDERSTOOD TO SPECIFY AN ORIENTATION OF THE
CW COMPLEX |K| AS FOLLOWS: if σ is an n-simplex with vertices, in
order, v0, · · · , vn the orientation of |σ| is defined (as above) by choosing as

characteristic map (∆n,
•
∆ n) → (|σ|, |•σ|) the affine homeomorphism taking

the vertex pi of ∆n to the vertex vi of σ.
By Proposition 5.4.2, we get:

Proposition 5.4.5. Let K be an ordered abstract simplicial complex and let
σ be an n-simplex of K. If we write |σ| = |{v0, · · · , vn}|, with vertices listed
in order, this orientation convention leads to the following formula for the
boundary homomorphism in the cellular chain complex C∗(|K|; R) : ∂(σ) =

n∑
i=0

(−1)i|{v0, · · · , v̂i, · · · , vn}|. �

This famous formula shows the precise relationship between cellular ho-
mology and “simplicial homology.” There are several versions of the latter,
fully explained in [84, Sect. 2.3 and Sect. 3.2].

Example 5.4.6. If X is a regular CW complex, there is a natural ordering on
sd X explained in Sect. 5.3 with the definition of sd X .

Exercise

1. Prove 5.4.2.



PART II: FINITENESS PROPERTIES OF
GROUPS

In Part II we apply the algebraic topology of Part I to study finiteness prop-
erties and dimensions of groups. This is the aspect of our subject which does
not involve cohomology, or issues “at infinity.”

Topology models a group G by a K(G, 1)-complex, i.e., a path connected
CW complex with contractible universal cover and fundamental group iso-
morphic to G. Any two such have the same homotopy type. However, the
properties of G discussed involve studying how “nice” a K(G, 1)-complex can
be shown to exist for a given G.

We compare these topological properties of G with the corresponding ho-
mological notions, where the role of a K(G, 1)-complex is replaced by that
of a free RG-resoution of the trivial RG-module R. (Here, R is the “ground
ring,” typically Z or a field.)

We prove the important Bestvina-Brady Theorem which gives insight into
the subtle differences between the topological and homological approaches.

To illustrate the ideas in Part II, we apply them in several important situ-
ations: Coxeter groups, Thompson groups, and (briefly) outer automorphism
groups of free groups.



6

The Borel Construction and Bass-Serre Theory

In this chapter we discuss an important topological method for dealing with
the rigid action of a group G on a CW complex X . This “Borel construction”
is presented in Sect. 6.1; once it is in place, the Rebuilding Lemma 6.1.4 shows
us how to alter X , without altering its homotopy type, to have more desirable
properties. The important special case where X is a tree is discussed in §6.2.
The reader may find it helpful to read Sects. 6.1 and 6.2 in parallel.

6.1 The Borel construction, stacks, and rebuilding

If one understands an n-connected rigid G-CW complex Y , in particular if
one understands the quotient G\Y and the stabilizers of the cells of Y , one
may be able to deduce information about the group G. The particular case in
which Y is a tree, called Bass-Serre Theory, is discussed in the next section: in
that case one can sometimes deduce that G is decomposable as a free product
with amalgamation or as an HNN extension. But the method is much more
general, as we now explain.

Starting with a simply connected rigid G-CW complex Y which might not
be free, the method provides a path connected CW complex Z with funda-
mental group G and a map q : Z → G\Y called a “stack.” A stack is like a
fiber bundle1 but the fibers over different cells may have different homotopy
types. The method of improving spaces within their homotopy types intro-
duced in Sect. 4.1 can be applied to the “fibers” over cells, by induction on the
dimensions of the cells, to rebuild Z, thus producing a “better” q′ : Z ′ → G\Y
which is equivalent to q. A first application of this rebuilding process to group
theory is given in the proof of Theorem 6.1.5.

Recall that the left G-CW complex Y is rigid iff for each cell ẽ of Y , the
stabilizer Gẽ acts trivially on ẽ. We saw in 3.2.2 that the quotient G\Y =: V

1 See 4.4.11.
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of a rigid G-action receives a CW complex structure2 from Y whose cells are
the images of the cells of Y under the quotient map p : Y → V .

Starting with a pointed CW complex (X, x0) such that π1(X, x0) ∼= G,
we permanently identify G with π1(X, x0) by some chosen isomorphism, so
that the universal cover X̃, with some base vertex x̃0 over x0, is a free G-CW
complex. The diagonal action of G on the product CW complex X̃ × Y is
defined by g.(x, y) = (g.x, g.y). It is a free action so, by 3.2.1, the quotient
map r : X̃ × Y → G\(X̃ × Y ) =: Z is a covering projection which imposes
a natural CW complex structure on Z. The quotient maps p and r induce a
commutative diagram:

X̃ × Y
projection−−−−−−→ Y⏐⏐
r

⏐⏐
p

Z
q−−−−→ V

Clearly, q is a quotient map. This procedure is (a special case of) the Borel
construction. One easily checks:

Proposition 6.1.1. The map q is cellular and takes each cell of Z onto a cell
of V . For each subcomplex U of V , q−1(U) is a subcomplex of Z. �

Let V have base vertex v. Choose a vertex ṽ of Y as base point, such that
p(ṽ) = v. The base point of X̃ × Y is (x̃0, ṽ), and its r-image is the base
point z of Z. Since X̃ × Y is a simply connected covering space, 3.2.3 implies
π1(Z, z) ∼= G.

Let En be the set of n-cells of V . For each e ∈ En make the following

choices: (i) an n-cell ẽ of Y such that p(ẽ) = e, (ii) a point ũe ∈
◦
ẽ, (iii) a charac-

teristic map hẽ : (Bn, Sn−1)→ (ẽ,
•
ẽ). (Of course, when n = 0, ũw = w̃ for each

w ∈ E0, and there is only one possible hw̃.) Let ue = p(ũe), let he be the char-

acteristic map p◦hẽ for e, and let Xe = q−1(ue). Then q−1(V 0) =
∐

w∈E0

Xw. We

are going to show that q−1(V n+1) is homeomorphic to the adjunction complex

q−1(V n)∪f

⎛
⎝ ∐

e∈En+1

Xe ×Bn+1

⎞
⎠, where f :

∐
e∈En+1

Xe×Sn → q−1(V n) is de-

fined on each Xe×Sn to agree with the map fe in the following commutative
diagram (details to be explained):

2 Throughout this section, Y denotes a simply connected rigid G-CW complex.
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X̃ × {ũe} × Sn
re×id ��

projection

��

Xe × Sn

fe

��

projection �� Sn

he|

��

X̃ × Sn

id×(hẽ|)
��

X̃ × Y n
r|

�� q−1(V n)
q|

�� V n

The map re : X̃ × {ũe} → Xe := q−1(ue) is the quotient map of the action
of Gũe

. Since the given G-action on Y is rigid, Gũe
= Gẽ. Letting xe =

r(x̃0, ũe) ∈ Xe, we have:

Proposition 6.1.2. For each cell e of V , Xe is homeomorphic to Gẽ\X̃,
hence π1(Xe, xe) ∼= Gẽ. �

Since re is a quotient map, so is the map re× id in the diagram; to see
this, apply 1.3.11 (n +1) times to conclude that re× id : X̃ ×{ũe}×Bn+1 →
Xe × Bn+1 is a quotient map, and then restrict. The map re × id is clearly
surjective. Rigidity implies that there is a unique function, hence a map, fe,
making the left half of the diagram commute. It is then obvious that the whole
diagram commutes and that fe is cellular.

For the same reasons, there is a map He : Xe×Bn+1 → q−1(V n+1) making
the following diagram commute:

X̃ × {ũe} ×Bn+1
re×id ��

projection

��

Xe ×Bn+1

He

��

projection �� Bn+1

he

��

X̃ ×Bn+1

id×hẽ

��
X̃ × Y n+1

r|
�� q−1(V n+1)

q|
�� V n+1

Assembling the maps He, e ∈ En+1, we obtain the desired structure the-
orem:

Theorem 6.1.3. The map q−1(V n)
∐⎛⎝ ∐

e∈En+1

Xe ×Bn+1

⎞
⎠ → q−1(V n+1)

which agrees with inclusion on q−1(V n) and with He on Xe × Bn+1 induces
a homeomorphism

sn+1 : q−1(V n) ∪f

⎛
⎝ ∐

e∈En+1

Xe × Bn+1

⎞
⎠→ q−1(V n+1)
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for each n ≥ 0, such that sn+1 maps each cell of the adjunction complex
homeomorphically onto a cell of q−1(V n+1). Moreover, the following diagram
commutes:

q−1(V n)
∐⎛⎝ ∐

e∈En+1

Xe ×Bn+1

⎞
⎠

quotient

��
t

����
��

��
��

��
��

��
��

q−1(V n) ∪f

⎛
⎝ ∐

e∈En+1

Xe ×Bn+1

⎞
⎠

sn+1

��

V n+1

q−1(V n+1)

q|

$$�������������������

where t agrees with q on q−1(V n) and with he◦ projection on Xe ×Bn+1.

Proof. The function sn+1 is clearly a continuous bijection. Moreover, it maps
cells bijectively onto cells. Thus s−1

n+1| is continuous on each cell, which, by

1.2.12, is enough to imply continuity of s−1
n+1 (exercise). The second part is

clear. �

At the risk of repetition, the point of this theorem is that it gives a useful
decomposition of the space Z in the Borel construction.

The Borel Construction is important and will be used in several ways in
this book, so we need vocabulary to describe the result. Let π : A → C be

a cellular map between CW complexes. Let he : (Bn, Sn−1) → (e,
•
e) be a

characteristic map for the cell e of C, and for each such cell e let Fe be a CW
complex. We call π : A → C a stack of CW complexes with base space C,
total space A and fiber Fe over e, if for each n ≥ 1 (denoting the set of n-cells

of C by En) there is a cellular map fn :
∐

e∈En

Fe × Sn−1 → π−1(Cn−1) and a

homeomorphism kn : π−1(Cn−1) ∪fn

( ∐
e∈En

Fe ×Bn

)
→ π−1(Cn) satisfying:

(i) kn agrees with inclusion on π−1(Cn−1), (ii) kn maps each cell onto a cell,
and (iii) the following diagram commutes:
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π−1(Cn−1)
∐( ∐

e∈En

Fe ×Bn

)

quotient

��
u

����
��

��
��

��
��

��
�

π−1(Cn−1) ∪fn

( ∐
e∈En

Fe ×Bn

)

kn

��

Cn

π−1(Cn)

π|

��������������������

where u agrees with π on π−1(Cn−1) and with he◦ projection on Fe × Bn.
Thus, π : A→ C is “built” by induction on the skeleta of C so that over the

interior,
◦
e, of an n-cell e, π is “like”3 the projection: Fe×

◦
e→ ◦

e. An immediate
consequence of Theorem 4.1.7 is:

Proposition 6.1.4. (Rebuilding Lemma) If for each cell e of C we are
given a CW complex F ′

e of the same homotopy type as Fe, then there is a
stack of CW complexes π′ : A′ → C with fiber F ′

e over e, and a homotopy
equivalence h making the following diagram commute up to homotopy over
each cell:4

A
h ��

π
  �

��
��

��
A′

π′

��!!
!!
!!
!

C

�

The content of Theorem 6.1.3 is that q : Z → V is a stack of CW complexes
with base space V , in which the fiber over the cell e is Gẽ\X̃. We can use 6.1.4
to replace Gẽ\X̃ by a more desirable CW complex of the same homotopy type
and thereby produce a more desirable space Z ′ of the same homotopy type as
Z. The first of a number of uses of this method appears in:

Theorem 6.1.5. Let Y be a simply connected rigid G-CW complex. (i) If
Y has finite 1-skeleton mod G and if the stabilizer of each vertex is finitely
generated, then G is finitely generated. (ii) If Y has finite 2-skeleton mod G,
if the stabilizer of each vertex is finitely presented, and if the stabilizer of each
1-cell is finitely generated, then G is finitely presented.

3 Readers may recognize the connection with fiber bundles and with block bundles
in special cases.

4 i.e. the homotopy can be chosen so that for each cell e of C its restriction to
π−1(e) × I has its image in e.
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Proof. By 6.1.1, q−1(V 1) is a subcomplex of Z containing Z1. By hypothesis
in (i), for each w ∈ E0, π1(Xw, xw) is finitely generated. By 4.1.14, each Xw is
homotopy equivalent to a CW complex X ′

w having finite 1-skeleton. By 3.1.13
and 4.1.9, when e ∈ E1, Xe is homotopy equivalent to a CW complex X ′

e

having one vertex. By applying 6.1.4 to the stack q : Z → V , we obtain a
stack q′ : Z ′ → V in which Z ′ is homotopy equivalent to Z, and the fiber of
q′ over e [resp. over w] is X ′

e [resp. X ′
w].

The CW complexes Z ′ and (q′)−1(V 1) have the same 1-skeleton. It is finite

because: (a) Γ 0 is finite and ((q′)−1(V 0))1 is the finite graph
∐

w∈E0

(X ′
w)1; (b)

V 1 is finite and (since X ′
e × B1 is a product and X ′

e has one vertex) there is
only one 1-cell of (q′)−1(V 1) mapped onto each 1-cell of Γ . (Note that (1-cell
of X ′

e)× (vertex of B1) does not give a new 1-cell of the adjunction complex.)
Thus Z ′ has finite 1-skeleton. By 3.1.17, G ∼= π1(Z, z) ∼= π1(Z

′, z′) is finitely
generated. Thus (i) holds.

The proof of (ii) is similar. We replace each Xw by X ′
w, whose 2-skeleton

is the wedge of a finite 2-complex and a bouquet of 2-spheres (see 4.1.14); for
e ∈ E1, we replace Xe by X ′

e having finite 1-skeleton; for e ∈ E2 we replace
Xe by X ′

e having a single vertex. The resulting CW complex Z ′ has finite
1-skeleton (for reasons already explained) and possibly infinite 2-skeleton.
Indeed, its 2-cells are of three kinds: 2-cells of X ′

w where w ∈ E0, cells coming
from (1-cells of X ′

e)×B1 for e ∈ E1, and cells coming from (vertex of X ′
e)×B2

for e ∈ E2. Thus all but finitely many of the 2-cells are 2-spheres (i.e., have
trivial attaching maps) so they contribute nothing significant to the resulting
presentation of G ∼= π1(Z, z) ∼= π1(Z

′, z′). �

Exercise

Prove that if π : A → C is a stack of CW complexes in which every fiber Fe is
contractible, then π is a homotopy equivalence. In fact, π is a hereditary homotopy
equivalence, meaning that for every subcomplex D of C, π| : π−1(D) → D is a
homotopy equivalence. (Hint : The proof of the Rebuilding Lemma allows us to take
A′ = C, π′ = idC and h = π.)

6.2 Decomposing groups which act on trees (Bass-Serre
Theory)

This section is devoted to an important application of Theorem 6.1.3, the
structure of groups which act rigidly on trees. The main theorem is Theo-
rem 6.2.7. We begin by introducing the necessary background topics: graphs
of groups, fundamental group based at a tree, and graphs of pointed CW
complexes. In an appendix we discuss “generalized graphs of groups.”
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If e is an oriented 1-cell of a CW complex, we denote its initial and final
points by o(e) and t(e) respectively (o for “origin” and t for “terminus”). A
graph of groups is a system (G, Γ ) consisting of: an oriented path connected
graph Γ , a group G(w) for each vertex w of Γ , a group G(e) for each (oriented)

1-cell of Γ , and monomorphisms G(o(e))
φ−

e←− G(e)
φ+

e−→ G(t(e)). The group
G(w) [resp. G(e)] is called a vertex group [resp. edge group] of (G, Γ ).

Let T be a maximal tree in Γ . As in Sect. 6.1, let E0 [resp. E1] be the set
of vertices [resp. (oriented) 1-cells] of Γ . Associated with (G, Γ ) and T is a
group, denoted π1(G, Γ ; T ), called the fundamental group of (G, Γ ) based at T ,

namely: the quotient of the free product

(
∗

w∈E0

G(w)

)
∗F (E1) by the normal

subgroup5 generated by (i) elements of the form e−1.φ−
e (x).e.(φ+

e (x))−1 where
e ∈ E1 and x ∈ G(e), and (ii) elements e, where e is a 1-cell of T .

This includes some well-known constructions as special cases:
Case 1: Free products with amalgamation. Here Γ = T = B1, with two

vertices, w(−) and w(+), and one 1-cell e. We are given monomorphisms
φ±

e : G(e)→ G(w(±)). In this case

π1(G, Γ, T ) = 〈G(w(−)), G(w(+)) | φ−
e (x)φ+

e (x)−1 ∀x ∈ G(e)〉.

This is often written6 G(w(−)) ∗
G(e)

G(w(+)).

Case 2: HNN extensions . Here Γ = S1, with one vertex w and one 1-
cell e, T = {w}, and we are given monomorphisms φ±

e : G(e) → G(w). In
this case π1(G, Γ ; T ) = 〈G(w), e | e−1φ−

e (x)e(φ+
e (x))−1 ∀x ∈ G(e)〉. This is

often written7 G(w)∗
φ

where φ : φ+
e (G(e)) → φ−

e (G(e)) is the isomorphism

φ−
e ◦ (φ+

e )−1.
Indeed, the general case of π1(G, Γ ; T ) is simply an iteration of these two

special cases; for if Γ = T then π1(G, Γ ; T ) is just a free product with an amal-
gamation for each edge of T ; and in the general case (Γ �= T ), π1(G, Γ ; T ) is
obtained from this “multiple” free-product-with-amalgamation by performing
an HNN construction for each edge of Γ which is not an edge of T .

Proposition 6.2.1. (Britton’s Lemma) For each w0 ∈ E0, the homomor-

phism γw0 : G(w0)→ π1(G, Γ ; T ) induced by G(w0) ↪→
(
∗

w∈E0

G(w)

)
∗F (E1)

is a monomorphism.

5 As before, F (E1) denotes the free group generated by the set E1.
6 In general, if G1, G2 and A are groups and φi : A � Gi are monomorphisms, one

writes G1 ∗A G2 for 〈G1, G2 | φ1(a)φ2(a)−1 ∀ a ∈ A〉; in this abuse of notation one
is thinking of φ1(A), A and φ2(A) as the same group and one is “amalgamating
G1 and G2 along the common subgroup A.”

7 In general, if G is a group, A and B are subgroups, and φ : A → B is an
isomorphism, one writes G∗φ for 〈G, t | t−1at = φ(a) ∀ a ∈ A〉. This group is the
HNN extension of G by φ; the subgroup G (see 6.2.1) is the base group and t is
called the stable letter . If A = G this is an ascending HNN extension.
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Remarks on the proof. The version for Cases 1 and 2, above, is found in
[106, Chap. IV, Sect. 2]. The general case then follows by the above remarks;
a direct proof is found in [142, p. 46]. All these involve reducing the length
of a supposedly minimal non-trivial word in the kernel, thereby proving the
kernel trivial. A topological proof is indicated in the next section; see Exercise
3 of Sect. 7.1.

Proposition 6.2.1 means that whenever we express a group G non-trivially
as the fundamental group of a graph of groups, we are exhibiting a decompo-
sition of G into “pieces” each of which is a subgroup of G. Our purpose here
is to give such a decomposition (Theorem 6.2.7) whenever G acts rigidly on a
tree.

We will need the “fundamental group of a CW complex based at a tree.”
Whenever T̄ is a tree in a CW complex X , the quotient map k : X → X/T̄
is a homotopy equivalence by 4.1.9. Let v̄ be the vertex of X/T̄ such
that k(T̄ ) = v̄. We define the fundamental group of X based at T̄ , de-
noted π1(X, T̄ ), to be the group π1(X/T̄ , v̄). For any vertex v of T̄ , k in-
duces a canonical isomorphism k# : π1(X, v) → π1(X, T̄ ). The composition
π1(X, v1) −→

k1#

π1(X, T̄ ) −→
k−1
2#

π1(X, v2) is the isomorphism hτ of 3.1.11, where

τ is any edge path in T̄ from v1 to v2. Note that if T̄ + is a maximal tree then
π1(X, T̄ ) and π1(X, T̄ +) are canonically isomorphic.

A graph of pointed CW complexes is a system (X , Γ ) consisting of: an
oriented path connected graph Γ , a pointed path connected CW complex
(X(w), x(w)) for each vertex w of Γ , a pointed path connected CW complex
(X(e), x(e)) for each 1-cell e of Γ , and cellular maps

(X(o(e)), x(o(e)))
p−

e←− (X(e), x(e))
p+

e−→ (X(t(e)), x(t(e))).

The total complex , Tot(X , Γ ), is the adjunction complex obtained from∐{X(w) | w is a vertex of Γ} by adjoining
∐{X(e) × B1 | e is an edge

of Γ} exactly as in 6.1.3, using the maps pe defined by: pe(y,±1) = p±e (y)
for all y ∈ X(e). The resulting map q : Tot(X , Γ ) → Γ is a stack of CW
complexes.

When each p±e# : π1(X(e), x(e)) → π1(X(w), x(w)) is a monomorphism,
then (X , Γ ) gives rise to a graph of groups (G, Γ ), with vertex groups
π1(X(w), x(w)), edge groups π1(X(e), x(e)), and monomorphisms p±e#.

There is a map s : Γ → Tot(X , Γ ) such that s(w) = x(w) for each vertex
w of Γ , and s maps each edge of Γ homeomorphically onto the image of
{x(e)}×B1 in Tot(X , Γ ). In fact, s(Γ ) is a retract of Tot(X , Γ ). The maximal
tree T is mapped by s isomorphically onto a tree s(T ) in Tot(X , Γ ).

Proposition 6.2.2. Let each p±e# be a monomorphism. There is an isomor-
phism j making the following diagram commute for each vertex w of Γ :
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π1(Tot(X , Γ ), x(w))
βw←−−−− π1(X(w), x(w))

∼=
⏐⏐
k#

⏐⏐
γw

π1(Tot(X , Γ ), s(T ))
j−−−−→∼=

π1(G, Γ ; T )

where βw is induced by inclusion, and γw is as in 6.2.1.

Proof. The tree s(T ) can be extended, using 3.1.15, to a maximal tree T +

in Tot(X , Γ ) such that, for each vertex w, T + ∩ X(w) is a maximal tree
in X(w) (considered as a subcomplex of Tot(X , Γ )). The presentation of
π1(Tot(X , Γ ), x(w)) obtained by applying 3.1.16 to Tot(X , Γ ), using T +, is
seen by inspection to be a presentation of π1(G, Γ ; T ). In fact, the proof of
3.1.15 shows that an isomorphism j exists as indicated. This is clear when the
complexes each have one vertex. But that is enough. �

Now we are ready for our application of 6.1.3. Let Y be a rigid G-tree.8 This
is a special case of what was considered in Sect. 6.1, so we carry over all the
notation of that section except that we write Γ in place of V for G\Y , since it is
a graph. In particular, when e ∈ E1, we have fe : Xe×{±1} → q−1(Γ 0) defined
by the commutative diagram preceding Proposition 6.1.2. From that diagram
one deduces several facts about the map fe: (i) fe(Xe×{−1}) ⊂ Xo(e). Define
f−

e : Xe → Xo(e) by f−
e (y) = fe(y,−1). Then (ii) f−

e is a covering projection;

in fact, with obvious abuse of notation, it is the covering projection Gẽ\X̃ →
Go(ẽ)\X̃. Let x′

o(e) = r(x̃0, o(ẽ)). Then (iii) f−
e (xe) = x′

o(e). Similarly, (iv)

we have a pointed covering projection f+
e : (Xe, xe) → (Xt(e), x

′
t(e)) where

x′
t(e) = r(x̃0, t(ẽ)).

Since x′
o(e) and x′

t(e) can be different from xo(e) and xt(e), we do not yet
have a graph of pointed CW complexes. We alter things to make one. For each
e ∈ E1, pick a cellular path α(e) in Xo(e) from x′

o(e) to xo(e), and a cellular

path β(e) in Xt(e) from x′
t(e) to xt(e). Define H : (Xo(e) × {0}) ∪ ({x′

o(e)} ×
I) → Xo(e) by (x, 0) �→ x when x ∈ Xo(e), and by (x′

o(e), λ) �→ α(e)(λ)

when λ ∈ I. By 1.3.15, H extends to H̄ : Xo(e) × I → Xo(e). Let g−e :
(Xo(e), x

′
o(e)) → (Xo(e), xo(e)) be the map g−

e (x) = H̄(x, 1). Similarly, define

g+
e : (Xt(e), x

′
t(e))→ (Xt(e), xt(e)). These g±

e are homotopic to the appropriate
identity maps; by 1.3.16 we may assume they are cellular. On fundamental
groups, we have g−

e# = hα(e) and g+
e# = hβ(e) (in the notation of 3.1.11).

We now have a graph of pointed CW complexes (X , Γ ) : (X(w), x(w)) is
(Xw, xw), (X(e), x(e)) is (Xe, xe), p−e : (Xe, xe) → (Xo(e), xo(e)) is the map

g−e ◦ f−
e , and p+

e = g+
e ◦ f+

e . The induced homomorphisms p±e# are monomor-
phisms, by 3.4.6 and 3.1.11. Thus (X , Γ ) induces a graph of groups (G, Γ )
with G(w) = π1(Xw, xw), G(e) = π1(Xe, xe), φ−

e = p−e# : π1(Xe, xe) →
8 In the literature one finds a “tree on which G acts by simplicial automorphisms

without inversions” a special case of a rigid G-tree.
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π1(Xo(e), xo(e)), and φ+
e = p+

e# : π1(Xe, xe) → π1(Xt(e), xt(e)). By 6.2.2, the

corresponding π1(G, Γ ; T ) is isomorphic to π1(Tot(X , Γ ), s(T )). Since g±
e are

homotopic to the identity maps, 4.1.7 and 6.1.3 imply that π1(Tot(X , Γ ), s(T ))
is isomorphic9 to π1(Z, z), where Z and z = xv are as in Sect. 6.1. And we
saw in that section that π1(Z, z) is isomorphic to G.

In summary, we have expressed G as the fundamental group of a graph of
groups (G, Γ ). But we are not quite done. We would like to identify the vertex
and edge groups with specific subgroups10 of G.

Observe that r−1(Xo(e)) = X̃ × p−1(o(e)). Two of its path components

are X̃ × {(o(e))∼} and X̃ × {o(ẽ)}. We have a covering projection r1 :=
r |: X̃ × {(o(e))∼} → Xo(e), and, using base points (ṽ, (o(e))∼) and xo(e) =
r(ṽ, (o(e))∼), we have an isomorphism χ1 : G(o(e))∼ → π1(Xo(e), xo(e)) as in

3.2.3. Similarly, r2 := r |: X̃ × {o(ẽ)} → Xo(e) is a covering projection, and
we have an isomorphism χ2 : Go(ẽ) → π1(Xo(e), x

′
o(e)).

We picked a path α(e) in Xo(e) from x′
o(e) to xo(e). Let α̃(e) be the lift of this

path to X̃×{(o(e))∼} whose final point is (ṽ, (o(e))∼). Since r maps the initial
point of α̃(e) to r(ṽ, o(ẽ)) = x′

o(e), there must be a unique element a(e) ∈ G

such that the initial point of α̃(e) is (a(e).ṽ, (o(e))∼). Thus a(e).o(ẽ) = (o(e))∼,
and G(o(e))∼ = a(e)Go(ẽ)a(e)−1. Indeed, if a′(e) ∈ G satisfies a′(e).o(ẽ) =
(o(e))∼, there is a path α′(e) from x′

o(e) to xo(e) leading us to a′(e) just as

α(e) led us to a(e).
Let cg denote the conjugation isomorphism h �→ g−1hg. One easily checks:

Proposition 6.2.3. The following diagram commutes:

Go(ẽ)

ca(e)←−−−− G(o(e))∼⏐⏐
χ2

⏐⏐
χ1

π1(Xo(e), x
′
o(e))

hα(e)−−−−→ π1(Xo(e), xo(e))

�

Similarly, corresponding to β(e) is an element b(e) ∈ G and an isomor-
phism cb(e) : G(t(e))∼ → Gt(ẽ) for which the corresponding diagram commutes.

Define a new graph of groups (Ḡ, Γ ) by: Ḡ(w) = Gw̃; Ḡ(e) = Gẽ; φ̄−
e is

the composition Gẽ ↪→ Go(ẽ)

c−1
a(e)−→ G(o(e))∼ ; and φ̄+

e is the composition Gẽ ↪→

Gt(ẽ)

c−1
b(e)−→ G(t(e))∼ . The meaning of the next proposition will become clear in

the proof:

Proposition 6.2.4. (Ḡ, Γ ) and (G, Γ ) are isomorphic graphs of groups.

9 This is explained in more detail after 6.2.5, below.
10 This is obviously desirable, and it will also enable us to avoid reliance on 6.2.1,

which we have not yet proved.
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Proof. The following diagram commutes, as well as a similar diagram in which
t(e) replaces o(e), b(e) replaces a(e), and + replaces −:

Gẽ
� � ��

χ3

��

Go(ẽ)

χ2

��

c−1
a(e) �� G(o(e))∼

χ1

��
π1(Xe, xe)

f−
e# �� π1(Xo(e), x

′
o(e))

hα(e) �� π1(Xo(e), xo(e))

Here, the right hand square comes from 6.2.3. The left hand square obviously
commutes. �

It follows that π1(Ḡ, Γ ; T ) is isomorphic to G. But it does not follow that
an isomorphism between those groups exists such that the canonical homo-
morphism γw : Gw̃ → π1(Ḡ, Γ ; T ) can be identified with Gw̃ ↪→ G for all w.
To achieve this, we place restrictions on our choice of the cells w̃ and ẽ. (Until
now, we have simply carried over the choices made in Sect. 6.1; each w̃ or ẽ
was an arbitrary cell of Y “over” w or e.) We will need the following, which
is proved using Zorn’s Lemma:

Proposition 6.2.5. There is a tree, T̃ , in Y such that p maps T̃ isomorphi-
cally onto T . �

From now on, we choose each w̃ to be in T̃ , and each ẽ to be in T̃ whenever
e is in T . The effect is that whenever e is a cell of T , o(ẽ) = (o(e))∼ and
t(ẽ) = (t(e))∼. For those cells e, xo(e) = x′

o(e) and xt(e) = x′
t(e); and we pick

α(e) and β(e) to be trivial, so that a(e) = 1 = b(e). Thus g±
e = id whenever

the edge e lies in T .
The subcomplex {x̃0}× T̃ ⊂ X̃ × Y is a tree which contains all vertices of

the form (x̃0, w̃). Let T1 = r({x̃0}× T̃ ); T1 is a tree in Z containing all vertices
xw; r maps {x̃0} × T̃ isomorphically onto T1, and q maps T1 isomorphically
onto T .

By 4.1.8 and 6.1.3, there is a homotopy equivalence h : Z → Tot(X , Γ ).
To see this, apply 4.1.8 to the commutative diagram:

∐
e∈E1

Xe ×B1
�� � �

id

��

∐
e∈E1

Xe × S0 f ��

id

��

∐
v∈E0

Xv

id

��∐
e∈E1

Xe ×B1
�� � �

∐
e∈E1

Xe × S0 g◦f ��
∐

v∈E0

Xv

where f [resp. g ◦ f ] agrees with f±
e [resp. g±e ◦ f±

e ] on Xe × {±1}. Indeed, h
identifies T1 with s(T ) in the natural way.

Now we can prove:
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Proposition 6.2.6. There is an isomorphism ψ : π1(Ḡ, Γ ; T )→ G such that
for every vertex w of Γ the following diagram commutes (where γ̄w is analo-
gous to γw0 in 6.2.1):

Gw̃
� � ��

γ̄w

��

G

π1(Ḡ, Γ ; T )

∼=
ψ



����������

Proof. The required ψ is read off from the following commutative diagram:

Gw̃

χ1

∼=

""
"""

"""
"""

"

γ̄w

��

� � �� G

∼= χ

��
π1(Xw, xw)

β′
w ��

βw ��##
###

###
###

##

γw

��

π1(Z, xw)
k# ��

∼= h#

��

π1(Z, T1)
∼=
h#%%$$$

$$$
$$$

$$$
$

π1(Tot(X , Γ ), xw)

∼= k#

��
π1(G, Γ ; T ) ��

α
∼= π1(Tot(X , Γ ), s(T ))

π1(Ḡ, Γ ; T )

∼=
χ′

�������������

Here, χ′ is the isomorphism arising from 6.2.4; β′
w is induced by inclusion.

To see that ψ is independent of w, it is enough to check that the following
diagram commutes, when w1 and w2 are vertices of Γ :

G
χ(1)

��

χ(2)

��

π1(Z, xw1)

k
(1)
#

��

hα#

�����
���

���
��

π1(Z, xw2)
k
(2)
#

�� π1(Z, T1)

Here, α is any path in T1 from xw1 to xw2 . We have seen that hα# = (k
(2)
# )−1◦

k
(1)
# , so we need only prove that the other triangle commutes. If g ∈ G,

and χ(1)(g) is represented by the loop ω in Z at xw1 , the lift, ω̃, in X̃ × Y
with initial point (x̃0, w̃1) has final point (g.x̃0, g.w̃1). The path α lies in T1;
its lift α̃ with initial point (x̃0, w̃1) lies in {x̃0} × T̃ and so has final point
(x̃0, w̃2). Thus the lift of α−1.ω.α with initial point (x̃0, w̃2) has final point
(gx̃0, gw̃2). In other words, χ(2)(g) is represented by α−1.ω.α. This means that
hα# ◦ χ(1)(g) = χ(2)(g). �
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Summarizing, we have shown how to decompose a group acting rigidly on
a tree as the fundamental group of a graph of groups whose vertex groups and
edge groups are stabilizers:

Theorem 6.2.7. Let G act rigidly on the tree Y with quotient p : Y →
G\Y =: Γ . Let T be a maximal tree in Γ and let T̃ be a tree in Y such
that p |: T̃ → T is an isomorphism. For each vertex w of Γ , let w̃ ∈ T̃ be
such that p(w̃) = w. For each 1-cell e of Γ pick a 1-cell ẽ of Y mapped by p
onto e, subject to the rule that if e ⊂ T , then ẽ ⊂ T̃ . Orient each 1-cell e of
Γ , and orient each ẽ to make p | ẽ orientation preserving. Let a(e) ∈ G [resp.
b(e) ∈ G] be such that a(e).o(ẽ) = (o(e))∼ [resp. b(e).t(ẽ) = (t(e))∼] subject
to the rule that if e ⊂ T , a(e) = b(e) = 1. Let (Ḡ, Γ ) be the graph of groups
with vertex groups Gw̃, edge groups Gẽ, and monomorphisms

G(o(e))∼ ��
c−1

a(e)
Go(ẽ) �� � �Gẽ

� � �� Gt(ẽ)

c−1
b(e) �� G(t(e))∼ .

Then, letting γ̄w : Gw̃ → π1(Ḡ, Γ ; T ) denote the canonical homomorphism,
there is an isomorphism ψ : π1(Ḡ, Γ ; T ) → G such that for each vertex w of
Γ , ψ ◦ γ̄w = inclusion: Gw̃ ↪→ G. In particular, γ̄w is a monomorphism. �

Remark 6.2.8. When the edge e is not in T , it is customary to choose ẽ subject
to the rule: o(ẽ) = (o(e))∼. Then a(e) = 1 for all e.

Example 6.2.9. The group SL2(Z) of 2× 2 integer matrices of determinant 1
acts on the open upper half of the complex plane C by Möbius transformations.
With respect to the hyperbolic metric ds

y this action is by isometries and its

kernel is the subgroup {±I}. The orbit of {z | Im(z) > 1} consists of that set
together with a collection of pairwise disjoint open (Euclidean) circular disks
whose closures in R2 are tangent to the real axis R at rational points, one for
each rational. Each such closure is also tangent to exactly two others (where we
treat {z | Im(z) ≥ 1} as the closure of a circular disk of infinite radius “tangent
at ∞”). See Fig. 6.1. The complementary region is thus invariant under the
action of SL2(Z) and contains an invariant Serre tree as illustrated in Fig.
6.1. This tree has vertices of order 2 and order 3 with respective stabilizers
Z4 and Z6. Each edge contains one vertex of each kind and has stabilizer of
order 2. With a little thought about how edge-stabilizers inject into vertex-
stabilizers, one deduces from Theorem 6.2.7 that SL2(Z) is isomorphic to the
free product with amalgamation Z4 ∗Z2 Z6.

We now sketch the inverse construction: how to construct a rigid G-tree
from a graph of groups.

Let (G, Γ ) be a graph of groups, and let T be a maximal tree in Γ .
Orient Γ . Form a graph of pointed CW complexes (X , Γ ) by choosing
pointed CW complexes (X(w), x(w)) and (X(e), x(e)), for every w and
e, and pointed cellular maps p−e : (X(e), x(e)) → (X(o(e)), x(o(e))) and
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Schematic picture of the tree

Fig. 6.1.

p+
e : (X(e), x(e)) → (X(t(e)), x(t(e))) such that for suitable isomorphisms

ψw : π1(X(w), x(w)) → G(w) and ψe : π1(X(e), x(e)) → G(e), p±e# can be

identified with the monomorphisms φ±
e in G. Let G = π1(G, Γ ; T ). By 6.2.2,

G can be identified with π1(Tot(X , Γ ), x(v)) where v is the base vertex of Γ .
Hence we have a free action of G on U := (Tot(X , Γ ))∼. Applying Sect. 3.2,
using 3.4.9 and 6.2.1, U is seen to be a quotient space obtained by gluing
copies of (X(e))∼ × B1 to copies of (X(w))∼ via the lifts of the p’s, where e
and w are variable. If we identify each copy of (X(w))∼ in U to a point, and
each copy of (X(e))∼×B1 to a 1-cell, we obtain a graph Y and a commutative
diagram

U
s−−−−→ Y

r

⏐⏐
 ⏐⏐
p

Tot(X , Γ ) −−−−→
q

Γ

Here, r is the covering projection, s is the quotient map and p is a well defined
map. Since s is easily seen to be a domination, and U is simply connected,
Y is simply connected; i.e., Y is a tree, the Bass-Serre tree of (G, Γ ). The
free G-action on U induces a rigid G-action on Y ; s is a G-map and p is the
quotient map of the G-action. The tree T in Γ gives a tree s(T ) in Tot(X , Γ )
as before; this lifts to a tree s̃(T ) in U which is mapped isomorphically to a
tree T̃ in Y . With choices as in Theorem 6.2.7, the resulting graph of groups
(Ḡ, Γ ) is isomorphic to the original (G, Γ ).

Example 6.2.10. A Baumslag-Solitar group is a group BS(m, n) with presen-
tation 〈x, t | t−1xmtx−n〉 where m, n ≥ 1. Clearly, BS(m, n) is the HNN
extension Z∗φm,n

where φm,n : mZ → nZ is the isomorphism taking m to n.
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Thus BS(m, n) is the fundamental group of a circle of groups (G, Γ ) where Γ
has one vertex and one edge, and both the vertex group and the edge group
are infinite cyclic. The homomorphisms φk : Z → Z, 1 �→ k, are induced
by covering projections S1 → S1 when k ≥ 1. Since all these covering pro-
jections lift to homeomorphisms of R, there is an obvious homeomorphism
h : U → Y × R where Y is the Bass-Serre tree of (G, Γ ) and U is as in the
above construction. Indeed, using h to make Y ×R into a G space, we have a
commutative diagram of G-spaces:

U
h ��

s
  �

��
��

��
Y × R

projection##  
  
  
  
 

Y

This is a topological description of U . But U is also a CW complex, the
universal cover of Tot(X , Γ ), which in this case is the presentation complex of
BS(m, n). Exercise 8 of Sect. 3.2 asked for a description of the cells of the CW
complex U in the case of BS(1, 2). It is instructive to “see” the topological
product Y × R in this CW complex.

The construction of Y from (G, Γ ) is inverse to 6.2.7 in the following sense.
In 6.2.7 we started with G acting on Y , together with a maximal tree T ⊂ Γ ,
and produced a decomposition of G as π1(Ḡ, Γ ; T ) whose vertex and edge
groups are stabilizers of certain vertices and edges (determined by choices of
T̃ , of {ẽ | e ∈ E0 ∪E1} and of orientation of Γ ). Conversely, we have sketched
how one starts with (G, Γ ) and T , and produces an action of G := π1(G, Γ ; T )
on a tree Y , such that (with appropriate choices) the corresponding graph of
groups (Ḡ, Γ ) is isomorphic to (G, Γ ). Indeed, it can be shown that: starting
with the G-tree Y , obtaining (Ḡ, Γ ), and then constructing a π1(Ḡ, Γ ; T )-
tree Ȳ as above, there is an equivariant isomorphism from Ȳ to Y (i.e., an
isomorphism commuting with the actions of the groups). For this reason,
the theories of graphs of groups and of groups acting rigidly on trees are
considered to be equivalent. For more details the reader is referred to [140].
A more algebraic version is described in [141] and [142].

Appendix: Generalized graphs of groups

A generalized graph of groups has the same definition as a graph of groups
(G, Γ ), except that the homomorphisms φ±

e are not required to be monomor-
phisms. If T is a maximal tree in Γ , the fundamental group of (G, Γ ) based
at T is defined as before and is again denoted by π1(G, Γ ; T ). A graph of
pointed CW complexes (X , Γ ) gives rise to a generalized graph of groups
even when the homomorphisms p±e# (at the beginning of this section) are not
monomorphisms, and the obvious analog of 6.2.2 holds. Generalized graphs
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of groups are useful in computing fundamental groups via a generalization of
the Seifert-Van Kampen Theorem 3.1.18, as we now explain.

Let {Xα}α∈A be a cover of the path connected CW complex X by path
connected subcomplexes such that no point of X lies in more than two of the
Xα’s. Let Γ be the graph whose vertex set is A, having an edge eαβγ joining
α �= β for each path component Yαβγ of Xα∩Xβ . Then Γ is a path connected
graph. Orient Γ .

By an obvious extension of 3.1.13, choose a maximal tree T̄ in X such
that each T̄ ∩Xα and each T̄ ∩ Yαβγ is a maximal tree in that subcomplex.
Let φαβγ : π1(Yαβγ , T̄ ∩ Yαβγ) → π1(Xβ , T̄ ∩ Xβ) be induced by inclusion.
Then we have a generalized graph of groups (G, Γ ) whose vertex group at
α is π1(Xα, T̄ ∩ Xα), whose edge group over the edge labeled by Yαβγ is
π1(Yαβγ , T̄ ∩ Yαβγ), and whose structural homomorphisms for that edge are
φαβγ and φβαγ . Pick a maximal tree T in Γ .

Theorem 6.2.11. [Generalized Van Kampen Theorem] Under these hypothe-
ses the fundamental group of X is isomorphic to π1(G, Γ ; T ).

Proof. Let (X , Γ ) be the generalized graph of path connected CW complexes
having Xα over α, Yαβγ over the edge joining α to β so indexed, and inclusions
as structural maps. Let Tot(X , Γ ) be the total complex. The proof of 6.2.2
extends to show that π1(G, Γ ; T ) is isomorphic to the fundamental group of
Tot(X , Γ ). The space Tot(X , Γ ) presents itself naturally as a subcomplex of
X×Γ , consisting of Xα over the vertex α and Yαβγ×eαβγ over each edge eαβγ

joining α to β. Projection on the X factor gives us a map p : Tot(X , Γ ) → X .
Consider the commutative diagram

Tot(X , Γ )

id

��

�� � �∪(Yαβγ × eαβγ)
id ��

id

��

∪(Yαβγ × eαβγ)

p|
��

Tot(X , Γ ) �� � �∪(Yαβγ × eαβγ)
p|

�� ∪Yαβγ

The hypothesis that no point of X lies in more than two of the Xα’s implies
that the spaces Yαβγ are pairwise disjoint and hence the indicated map p| is
a homotopy equivalence. The map of adjunction spaces coming from 4.1.7 is
precisely p, which is therefore a homotopy equivalence. �

Remark 6.2.12. As with ordinary graphs of groups there is an obvious epi-
morphism π1(G, Γ ; T ) � π1(Γ, T ). Since π1(Γ, T ) is free this gives a lower
bound for the number of generators of π1(X, v) in 6.2.11. In fact, since every
epimorphism onto a free group has a right inverse we see that π1(Γ, T ) is a
retract11 of π1(G, Γ ; T ).

11 The definition of retract in any category is analogous to that given in Sect. 1.3
for Spaces.
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Remark 6.2.13. We end by discussing the relationship between graphs of
groups and generalized graphs of groups. Let (G, Γ ) be a generalized graph of
groups, let T be a maximal tree in Γ and let G := π1(G, Γ ; T ). Proceeding as
in the “inverse construction” part of this section, one forms a graph of pointed
CW complexes (X , Γ ), identifying G with π1(Tot(X , Γ ), x(v)); the universal
cover of Tot(X , Γ ) is denoted by U . The space U is built out of covering
spaces, no longer universal covers, of vertex complexes and edge complexes,
and, as before, one obtains a G-tree Y from this situation. The quotient G\Y
is a copy of Γ . The vertex and edge stabilizers of this new graph of groups
(Ḡ, Γ ) are the images in G of the vertex and edge groups of G. This new de-
composition of G may be quite uninteresting. For example, take Γ to be an
edge, take both vertex groups to be trivial and take the edge group to be Z
(as happens when the Seifert-Van Kampen Theorem is applied to S2, using
the two hemispheres as the “vertex spaces”). Then all the groups in Ḡ are
trivial.

Source Notes: The theory described in this section appeared in [141], translated
into English as [142]. A more topological presentation, on which this section is based,
appeared in [140].

Exercises

1. Prove 6.2.5.
2. Referring to Case 1 at the beginning of this section, describe the Bass-Serre tree

in the case of a free product with amalgamation in which the monomorphism
φ+

e is an isomorphism, and in the case where φ+
e and φ−

e are both isomorphisms.
3. Describe the Bass-Serre tree of the circle of groups corresponding to the given

presentation of the Baumslag-Solitar group BS(m,n).
4. In an obvious way, Z can be decomposed as the fundamental group of a graph of

groups, with one vertex and one edge, the vertex and edge groups being trivial.
Thus if α : G → Z is an epimorphism, there is a corresponding decomposition of
G with vertex and edge groups isomorphic to ker(α). Give an example with G
finitely presented such that ker(α) is not finitely generated; give another graph
of groups decomposition of the same group G with one vertex and one edge so
that the vertex and edge groups are finitely generated.

5. Let G = A ∗
C

(B ∗
E

D) be a decomposition of G using free products with amalga-

mation. Under what conditions does this decompose as the fundamental group
of a graph of groups with graph • – • – • and with vertex groups isomorphic to
A, B and D and edge groups isomorphic to C and E?

6. Prove 6.2.2 when X(w) or X(e) has more than one vertex.
7. Let Ḡ = G∗φ be an HNN extension where φ is an automorphism of G. Prove

that Ḡ is a semidirect product of G and Z.
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Topological Finiteness Properties and
Dimension of Groups

This chapter is about topological models for a group G: these are the so-
called K(G, 1)-complexes with fundamental group G and contractible uni-
versal cover. We then proceed to use the method of Sect.6.1 to replace an
arbitrary K(G, 1)-complex by one with fewer cells or lower dimension.

7.1 K(G, 1) complexes

Let n be an integer ≥ −1. A space X is n-connected if1 for every −1 ≤ k ≤ n,
every map Sk → X extends to a map Bk+1 → X . Clearly (−1)-connected is
the same as “non-empty” and “0-connected” is the same as “path connected.”
Note that when n ≥ 0 a space X is n-connected iff for some (equivalently any)
x ∈ X , the pair (X, {x}) is n-connected in the sense of Sect. 4.1. Note also that
when X is non-empty and n ≥ 0, X is n-connected iff for every 0 ≤ k ≤ n,
every map Sk → X is homotopically trivial (i.e., is homotopic to a constant
map).

Proposition 7.1.1. A CW complex is 1-connected iff it is simply connected.
�

Proposition 7.1.2. Let the CW complex X be non-empty and let n ≥ 0. X
is n-connected iff the inclusion Xn ↪→ X is homotopic to a constant map. X
is n-connected for all n iff X is contractible.

Proof. For n = 0, the first sentence is clear. Let X be n-connected. By in-
duction, Xn−1 ↪→ X is homotopically trivial. Hence Xn ↪→ X is homotopi-
cally trivial iff a certain map Xn/Xn−1 → X is homotopically trivial. But
Xn/Xn−1 is a wedge of n-spheres and X is n-connected. So Xn ↪→ X is ho-
motopically trivial. Conversely, if Xn ↪→ X is homotopically trivial, then, by

1 Here and elsewhere we depart from common usage by allowing n = −1. This con-
vention will be seen to be helpful when we discuss homological and homotopical
group theory. Our Sect. 2.7 on reduced homology was written with this in mind.
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1.4.3, every map Sk → X is homotopically trivial whenever k ≤ n, so X is
n-connected. The second sentence follows from 4.1.4 and Remark 4.1.6. �

It follows, in particular, that Sn+1 is n-connected. By 1.4.3, a CW complex
X is n-connected iff Xn+1 is n-connected.

A space X is n-aspherical (n ≥ 0) if X is path connected and for every
2 ≤ k ≤ n, every map Sk → X extends to a map Bk+1 → X . Thus “0-
aspherical” and “1-aspherical” are the same as “path connected.” We say X
is aspherical if X is n-aspherical for all n.

Proposition 7.1.3. A path connected CW complex X is n-aspherical iff its
universal cover X̃ is n-connected. X is aspherical iff X̃ is contractible.

Proof. Let p : X̃ → X be the universal cover, and let 2 ≤ k ≤ n. If X is
n-aspherical and if f̃ : Sk → X̃ is a map then p ◦ f̃ is homotopically trivial.
By 2.4.6, the same is true of f̃ . Conversely, if X̃ is n-aspherical, any map
f : Sk → X lifts to a map f̃ : Sk → X̃ which extends to Bk+1, by 3.2.8. Hence
f also extends to Bk+1. But X̃ is simply connected. So X is n-aspherical iff
X̃ is n-aspherical iff X̃ is n-connected. The second sentence follows from the
first together with 7.1.2. �

Obviously, the product of aspherical [resp. n-aspherical, n-connected] CW
complexes is aspherical [resp. n-aspherical, n-connected].

Let G be a group. A K(G, 1)-complex is a pointed aspherical CW complex2

(X, x) such that π1(X, x) is isomorphic to G.
If (X, x) is a K(G, 1)-complex and y is another vertex of X , then (X, y) is

a K(G, 1)-complex, by 3.1.11. Thus one may omit reference to the base point,
saying “X is a K(G, 1)-complex”.3 With notation as in Sect. 3.2, we have:

Corollary 7.1.4. A covering space of an n-aspherical [resp. aspherical] CW
complex is n-aspherical [resp. aspherical]. If (X, x) is a K(G, 1)-complex and
if H ≤ G, then (X̄(H), x̄) is a K(H, 1)-complex. �

Proposition 7.1.5. For any group G, there exists a K(G, 1)-complex X hav-
ing only one vertex. Moreover, if (Y, y) is a path connected k-aspherical pointed
CW complex such that π1(Y, y) is isomorphic to G, then there exists a K(G, 1)-
complex whose (k + 1)-skeleton is Y k+1.

Proof. We will describe the K(G, 1)-complex X by induction on skeleta. The
2-skeleton (X2, x) is built as in Example 1.2.17, reflecting some chosen presen-
tation of G; X2 is 1-aspherical. By induction, assume Xn has been constructed

2 In the literature, K(G, 1)-complexes are sometimes called Eilenberg-MacLane
complexes of type (G, 1), or classifying spaces for G; see [149] for an explana-
tion of the latter name. The notation BG is sometimes used instead of K(G, 1).

3 Of course, the G-action on X̃ by covering transformations depends on the base
point x̃ and on the isomorphism chosen to identify G with π1(X, x). When we
say (X, x) is a K(G, 1)-complex we tacitly assume these choices have been made.



7.1 K(G, 1) complexes 163

and is (n − 1)-aspherical, where n ≥ 2. Let {fα : Sn → Xn | α ∈ An} be
a set of maps such that every map f : Sn → Xn is homotopic to fα for
some α ∈ An. The (n + 1)-skeleton Xn+1 is obtained from Xn by attaching
Bn+1(An) to Xn using {fα}. By 1.4.3, any map Sn → Xn+1 is homotopic
to some fα and hence to a constant map; so Xn+1 is n-aspherical. This com-
pletes the induction; X is aspherical. For the second part, the construction is
similar, but one starts with (Y n, y) where n = max{k + 1, 2}. �

When (X, x) and (Y, y) are pointed CW complexes, let [(Y, y), (X, x)] de-
note the set of homotopy classes of maps (Y, y) → (X, x). When H and K
are groups, let hom(K, H) denote the set of homomorphisms K → H . Then
there is a natural function

h : [(Y, y), (X, x)]→ hom(π1(Y, y), π1(X, x)) defined by [f ] �→ f#.

Proposition 7.1.6. If X is aspherical, h is a bijection.

Proof. By 3.1.13, X and Y contain maximal trees. The quotient complexes
of X and Y by these trees have the homotopy types of X and Y respectively,
by 4.1.9. So we may assume X and Y have one vertex each.

We show h is surjective. Let φ : π1(Y, y)→ π1(X, x) be a homomorphism.
We will construct a cellular map f : (Y, y)→ (X, x) inducing φ. To define f on
Y 1, we will first define4 a map f̃1 : Ỹ 1 → X̃1 inducing a map f1 : Y 1 → X1.

The isomorphism χ of 3.2.3 provides a canonical identification of π1(Y, y)
[resp. π1(X, x)] with Ỹ 0 [resp. X̃0]. Define f̃1| : Ỹ 0 → X̃0 to agree with φ, via
this identification. For each 1-cell e1

α of Y , pick a lift ẽ1
α, a 1-cell of Ỹ 1. Define

f̃1 to map ẽ1
α to a path in X̃1 in such a way that f̃1 | ẽ1

α extends the previously

defined f̃1 |
•
ẽ 1

α. For each 1-cell ẽ1 of Ỹ 1, there is exactly one α and one
g ∈ π1(Y, y) such that g.ẽ1

α = ẽ1. Define f̃1 on ẽ1 by5 f̃1(z) = φ(g)◦ f̃1◦g−1(z).
Then, indeed, f1 exists making the following diagram commute:

Ỹ 1 f̃1−−−−→ X̃1⏐⏐
pY |
⏐⏐
pX |

Y 1 f1−−−−→ X1

Next, let e2
β be a 2-cell of Y with attaching map gβ : S1 → Y . We have

gβ(S1) ⊂ Y 1; gβ is homotopic in Y 2 to a constant map, since gβ extends to a

map on B2. By 2.4.6, gβ lifts to g̃β : S1 → Ỹ . Since X̃ is simply connected,

f̃1 ◦ g̃β extends to a map on B2, hence so does pX ◦ f̃1 ◦ g̃β = f1 ◦ gβ. As
in 1.2.23, we can use this to extend f1 to e2

β. Doing this for each β, we get

f2 : Y 2 → X2 extending f1. By induction, assume f2 has been extended to

4 Recall Ỹ n means (Ỹ )n.
5 We are not distinguishing in notation between elements of the fundamental groups

and the corresponding covering transformations.
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a cellular map fn : Y n → Xn (n ≥ 2). Let en+1
γ be an (n + 1)-cell of Y and

let gγ : Sn → Y be an attaching map. fn ◦ gγ extends to Bn+1 since X is
n-aspherical. Thus fn+1 : Y n+1 → Xn+1 can be constructed extending fn.
Let f : Y → X be the resulting map. By 3.2.3 and our definition of f̃ on Ỹ 0,
f# = φ.

The proof that h is injective is similar. Let f, f ′ : (Y, y) → (X, x) be
maps such that f# = f ′

# : π1(Y, y) → π1(X, x). We are to build a homotopy
H : Y × I → X such that H({y} × I) = {x}, H0 = f and H1 = f ′. We start
with H so defined on (Y × {0, 1}) ∪ ({y} × I), and we extend H inductively
to (Y ×{0, 1})∪ (Y n× I) for each n, using 1.3.10. The product CW complex
structure on Y × I has been described in Sect. 1.2. To deal with the case

n = 1, we must extend H to e1
α× I for each 1-cell eα of Y . If gα :

•
I 2 → Y × I

is an attaching map for e1
α × I then gα(

•
I 2) ⊂ (Y × {0, 1}) ∪ ({y} × I), so

H ◦ gα is defined. Since f# = f ′
#, H ◦ gα extends to I2. Hence, by 1.3.10, H

extends to (Y × {0, 1}) ∪ (Y 1 × I). The extension to (Y × {0, 1}) ∪ (Y n × I)
when n ≥ 2 proceeds as before, using the fact that X is aspherical. �

Thus, maps into a K(G, 1)-complex are classified up to pointed homotopy
by homomorphisms of the fundamental group into G.

Corollary 7.1.7. If (X, x) and (Y, y) are K(G, 1) complexes, then there is
a homotopy equivalence f : (X, x) → (Y, y) inducing any given isomor-
phism π1(X, x)→ π1(Y, y). In particular, K(G, 1)-complexes are unique up to
pointed homotopy equivalence. �

The proof of 7.1.6 also proves:

Proposition 7.1.8. Let X be n-aspherical. If Y has dimension ≤ n+1, then
h is surjective. If Y has dimension ≤ n, then h is bijective. �

We now consider some useful methods for constructing K(G, 1)-complexes.

Theorem 7.1.9. Let (X , Γ ) be a graph of pointed CW complexes. Assume
each X(w) and each X(e) is aspherical and that each p±

e# is a monomorphism
(on fundamental groups). Then Tot(X , Γ ) is aspherical.

Proof. We saw in Sect.6.2 (following 6.2.9) that U := (Tot(X , Γ ))̃ is a quo-
tient space obtained by gluing copies of X̃(e) × B1 to copies of X̃(w) via
the pointed lifts of the p’s, where e and w are variable. By 4.1.7, U has the
homotopy type of the subcomplex U ′, consisting of the X̃(w)’s with a copy
of {x̃(e)} × B1 replacing each X̃(e) × B1; this is because each X̃(e) is con-
tractible. Then U ′ has the homotopy type of the quotient space U ′′ obtained
by identifying each copy of each X̃(w) to a point; this is because each X̃(w)
is contractible. But U ′′ is a graph and is simply connected since U is simply
connected. Thus U is contractible. �



7.1 K(G, 1) complexes 165

Next we turn to group extensions. Let N � G
π
� Q be a short ex-

act sequence of groups. Let (Y, y) be a K(N, 1) complex and let (Z, z) be a
K(Q, 1)-complex. If Y and Z have particular features, the Borel Construction
(Sect. 6.1) often gives a procedure for building a K(G, 1)-complex with similar
features.

Theorem 7.1.10. There is a K(G, 1)-complex W and a stack W → Z all of
whose fibers are Y .

Proof. As in that section, we start with an arbitrary K(G, 1)-complex (X, x)
and we consider the diagonal left action of G on X̃ × Z̃ given by g(x, z) =
(gx, π(g)z). The quotient space U = G\X̃ × Z̃ is a K(G, 1)-complex fitting
into a commutative diagram

X̃ × Z̃
projection−−−−−−→ Z̃⏐⏐
 ⏐⏐


U
q−−−−→ Z

in which q : U → Z is a stack of CW complexes all of whose fibers are N\X̃, a
K(N, 1)-complex. The Rebuilding Lemma 6.1.4 yields a commutative diagram

U
h ��

q
  �

��
��

��
W

q′

��!!
!!
!!
!!

Z

in which h is a homotopy equivalence (implying that W is K(G, 1)-complex)
and q′ is a stack of CW complexes all of whose fibers are Y . �

Note that if Y and Z are finite [resp. finite-dimensional] then W is a finite
[resp. finite-dimensional] K(G, 1)-complex.

Now we use cell trading to alter a K(G, 1)-complex with precise informa-
tion on how the number of cells in each dimension is changed. Our goal is
Theorem 7.1.13, the proof of which consists of a starting step (7.1.11) and an
inductive step (7.1.12).

Proposition 7.1.11. Let X and Z be homotopy equivalent path connected
CW complexes. For each k, let X and Z have mk and rk k-cells, respectively.
Then Z is homotopy equivalent to a CW complex Y such that Y 1 = X1, Y
has (r2 + m1 + m2 −m0 + 1) 2-cells, (r3 + r1 + m2 − r0 + 1) 3-cells, and rk

k-cells for all k ≥ 4. Here, 0 and ∞ are permitted values of mk and rk.

Proof. Let T be a maximal tree in X . We have (X/T )2 = XP where P :=
〈W | R〉 is a presentation of the fundamental group. By 4.1.16, Z is homotopy
equivalent to a CW complex K whose 1-skeleton is (XP )1 such that K has
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|W | + |R| + r2 2-cells, r3 + r1 − r0 + 1 + |R| 3-cells, and rk k-cells when
k ≥ 4. Let h : (XP )1 → X1 be a homotopy equivalence (which exists by 4.1.9
and 3.1.13). Apply 4.1.7 to the following commutative diagram to get a CW
complex Y homotopy equivalent to K with Y 1 = X1.

K �� � �

id

��

(XP )1

id

��

id �� (XP )1

h

��
K �� � �(XP )1

h �� X1

The tree T has m0 vertices and m0 − 1 1-cells. So |W | = m1 −m0 + 1 and
|R| = m2. Thus Y has (r2+m2+m1−m0+1) 2-cells and (r3+r1−r0+1+m2)
3-cells, Y 1 = X1, and Y has rk k-cells when k ≥ 4. �

Proposition 7.1.12. Let n ≥ 2. Let X be a K(G, 1)-complex having mk k-
cells. Let Z be a K(G, 1)-complex having rk k-cells, such that Zn−1 = Xn−1.
Let s2 = r1 − r0 + 1 and, for n ≥ 3, let sn = 0. Then there exists a K(G, 1)-
complex Y with Y n = Xn, such that Y has rn+1 + mn + sn (n + 1)-cells,
rn+2 + rn + sn (n + 2)-cells, and rk k-cells for each k ≥ n + 3. Here, 0 ≤ mk,
rk ≤ ∞.

Proof. We first deal with the case n = 2. To begin, assume X has only one
vertex (i.e., m0 = r0 = 1). Let P1 and P2 be presentations of G such that
X2 = XP1 and Z2 = XP2 . With notation as in the proof of 4.1.12, there
are homotopy equivalent CW complexes YP1 = XP1 ∪

⋃{ẽ3
β | β ∈ B} and

YP2 = XP2 ∪
⋃{ẽ3

α | α ∈ A} where |B| = |W2| + |R1| and |A| = |W1| + |R2|.
We have

Z = XP2 ∪
∞⋃

k=3

(rk k-cells).

Let Z+ = XP2 ∪
⋃{ẽ3

α | α ∈ A}∪
∞⋃

k=3

(rk k-cells); that is, Z+ is obtained from

Z by attaching the 3-cells ẽ3
α to XP2 as in YP2 . Since Z is 2-aspherical, Z+

is homotopy equivalent to Z ∨
∨
{S3

α | α ∈ A}. By 4.1.7, Z+ = YP2 ∪
∞⋃

k=3

(rk

k-cells) is homotopy equivalent to Y + = YP1 ∪
∞⋃

k=3

(rk k-cells); this is because

YP1 and YP2 have the same homotopy type.

We have Y + = XP1 ∪
⋃
{ẽ3

β | β ∈ B} ∪
∞⋃

k=3

(rk k-cells). Since Y + and Z+

have the same homotopy type, and Z is homotopy equivalent to Z+ ∪ {B4
α |

α ∈ A}, it follows that Z is homotopy equivalent to Y = Y + ∪ (|A| 4-cells).
This latter complex, Y , has XP1 = X2 for its 2-skeleton, has r3 + |W2|+ |R1|
3-cells, has r4 + |W1|+ |R2| 4-cells, and has rk k-cells when k ≥ 5.
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If m0 > 1, we “mod out” maximal trees in X and Z before applying the
above argument, and, at the end, we alter Y so that Y 2 = X2, just as in the
proof of 7.1.11. Then |W1| = |W2| = r1 − r0 + 1, |R1| = m2, and |R2| = r2.
This altered complex Y has (r3 +m2+r1−r0+1) 3-cells, (r4 +r2+r1−r0+1)
4-cells, and rk k-cells when k ≥ 5. This completes the case n = 2.

From now on, we assume n ≥ 3. Since X and Z have the same 2-skeleton,
i : Xn−1 ↪→ Z defines an isomorphism φ : π1(X, x) → π1(Z, x), where x
is a vertex. By 7.1.6, there is a cellular map f : (X, x) → (Z, x) inducing
φ. f | Xn−1 and i are homotopic, by 7.1.8. So, by the Homotopy Extension
Theorem, we may assume that f | Xn−1 = i.

Let g = f | : Xn → Z. The key elements in our construction are to be
found in the following commutative diagram:

Xn g−−−−→ Z

i′

⏐⏐
 ,⏐⏐p′

M(g) −−−−→
q′

M

Here, i′ is the usual inclusion of the domain of g in M(g); Z is identified with
a subcomplex of M(g) as usual. Since g | Xn−1 is an embedding, there is a
natural copy of Z ∪ (Xn−1 × I) as a subcomplex of M(g). Z lies at the “0-
end” of M(g) so that Z ∩ (Xn−1× I) = Xn−1×{0}. The projection: I → {0}
induces a homotopy equivalence q : Z ∪ (Xn−1 × I) → Z. See Fig. 7.1. The
space M is Z ∪q M(g). The map q′ is the restriction to M(g) of the quotient
map Z

∐
M(g) → M . The map p′ is the projection M → Z induced by the

collapse M(g)→ Z.

X

M(g)

0

1

X

M
Z

Z

n

n

U
n−1

Z     (X       x   I)

Fig. 7.1.



168 7 Topological Finiteness Properties and Dimension of Groups

Applying 4.1.7 to the commutative diagram

M(g) �� � �

id

��

Z ∪ (Xn−1 × I)
id ��

id

��

Z ∪ (Xn−1 × I)

q

��
M(g) �� � �Z ∪ (Xn−1 × I) q

�� Z

we see that q′ is a homotopy equivalence. Thus M is a K(G, 1)-complex.
Now, M is set up for cell-trading. We show that (M, Xn) is n-connected.

We have Mn−1 = Xn−1, so, for i < n, cellular maps (Bi, Si−1)→ (M, Xn) are
maps into (Xn, Xn). Since n ≥ 3, any cellular map r : (Bn, Sn−1)→ (M, Xn)
is pairwise homotopic to a map which is constant on Sn−1 (since Xn is (n−1)-
aspherical). Interpreting the latter as a map Sn → M , it extends to Bn+1,
since M is n-aspherical. Thus r is pairwise homotopic to a map into (Xn, Xn).

Consider the cells of M . There are the cells of Xn; there are the rn n-cells
of Z; there are rn+1 + mn (n + 1)-cells (those of Z, and one for each n-cell of
Xn); and there are the cells of Z of dimension ≥ n + 2. By 4.2.1, there is a
CW complex Y homotopy equivalent to M having: the cells of Xn, rn+1 +mn

(n + 1)-cells, rn+2 + rn (n + 2)-cells, and rk k-cells for each k ≥ n + 3. �

Theorem 7.1.13. Let n ≥ 1. Let X be a K(G, 1)-complex having mk k-cells.
Let Z be a K(G, 1)-complex having rk k-cells. Then there exists a K(G, 1)-
complex Y with Y n = Xn such that Y has rk k-cells for each k ≥ n + 3. If
n ≥ 2, if X has finite n-skeleton and if Z has finite p-skeleton, then there is
such a Y having finite p-skeleton.

Proof. By 7.1.7, all K(G, 1)-complexes are homotopy equivalent. By 7.1.11,
there is a K(G, 1)-complex Y1 such that Y 1

1 = X1 and Y1 has rk k-cells when
k ≥ 4. Now apply 7.1.12 by induction on n, starting with n = 2, to get
Y2, Y3, . . . , Yn =: Y as required. If yi

n denotes the number of i-cells in Yn, then
yi

n = mi when i ≤ n, yi
n = ri when i ≥ n + 3, and the recursive formulas for

yn+1
n and yn+2

n are as follows:

y2
1 = r2 + m1 + m2 −m0 + 1

y3
1 = r3 + r1 + m2 − r0 + 1

yn+1
n = yn+1

n−1 + mn + sn

yn+2
n = yn+2

n−1 + yn
n−1 + sn

A straightforward induction, starting with n = 2, establishes the statement:
yn+1

n is a linear combination of r0, . . . , rn+1, m0, . . . , mn; and yn+2
n is a linear

combination of r0, . . . , rn+2, m0, . . . , mn (when n ≥ 2). This implies the last
sentence of the theorem. �
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Exercises

1. If (X, x) and (Y, y) are pointed CW complexes prove that every isomorphism
π1(X, x) → π1(Y, y) is induced by a 2-equivalence (X, x) → (Y, y).

2. Describe in detail the covering projection Y → Tot(X , Γ ) in the proof of 7.1.9.
3. Prove 6.2.1 (Britton’s Lemma) using 7.1.9 and 3.4.9.
4. Write out explicitly what 7.1.9 says when Γ has two vertices and one edge;

your answer should contain the phrases “free product with amalgamation” and
“HNN extension.”

5. Prove that if the CW complex X is n-connected then H̃k(X; R) = 0 for all
k ≤ n. (Hint: Use Exercise 5 in Sect. 2.6.)

6. Prove that all the path connected closed surfaces except S2 and RP 2 are as-
pherical. Hint : compare 7.1.9.

7. Prove that if G is a countable group there exists a countable K(G, 1)-complex.
Hint : The 2-skeleton can be countable; then use the Hurewicz Theorem to attach
countably many cells in each dimension ≥ 3 to the universal cover.

7.2 Finiteness properties and dimensions of groups

Let G be a group. Even though K(G, 1)-complexes always exist and are unique
up to homotopy equivalence, there may or may not exist K(G, 1)-complexes
having special properties. For example, we say that G has type Fn if there
exists a K(G, 1)-complex having finite n-skeleton.

Proposition 7.2.1. Every group has type F0; G has type F1 iff G is finitely
generated; G has type F2 iff G is finitely presented; for n ≥ 2, G has type Fn

iff there exists a finite pointed n-dimensional (n− 1)-aspherical CW complex
(X, x) such that π1(X, x) is isomorphic to G.

Proof. Every group has type F0, by 7.1.5. Let G have type Fn and let (Z, z) be
a K(G, 1)-complex with finite n-skeleton. For n = 1 [resp. n = 2], G is finitely
generated [resp. finitely presented], by 3.1.17. For n ≥ 2, π1(Z

n, z) ∼= G by
3.1.7; Zn is the required (n− 1)-aspherical complex.

Conversely, if G is finitely generated [resp. finitely presented], we saw in
1.2.17 and 3.1.9 how to build a 2-dimensional CW complex X with one vertex
x and π1(X, x) ∼= G, so that X1 [resp. X ] is finite. Attach cells of dimension
≥ 3 as in the proof of 7.1.5 to get the required K(G, 1) having finite 1-skeleton
[resp. 2-skeleton]. If n ≥ 2 and (X, x) is a finite (n−1)-aspherical CW complex
such that π1(X, x) ∼= G, attach cells of dimension ≥ n + 1 as in 7.1.5 to build
a K(G, 1) having finite n-skeleton. �

Here is a restatement of 7.2.1: G has type Fn iff there is an (n−1)-connected
free n-dimensional G-CW complex which is finite mod G. This is clear when
n ≥ 2 and is an exercise when n = 1.

For every n, there are groups of type Fn which do not have type Fn+1. An
efficient method of constructing such groups is given in Sect. 8.3. Such groups
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also occur “in nature,” for example in certain families of S-arithmetic groups,
see [1].

A CW complex each of whose skeleta is finite has finite type. We say that
G has type F∞ if there exists a K(G, 1)-complex of finite type.

Proposition 7.2.2. G has type F∞ iff G has type Fn for all n.

Proof. “Only if” is trivial. To prove “if,” apply 7.1.13 infinitely often, by
induction on n, gradually building a K(G, 1)-complex of finite type. �

Next, we show that the properties Fn are invariant under passage to and
from a subgroup of finite index.

Proposition 7.2.3. Let H ≤ G and let [G : H ] <∞. Let G and H have type
Fn−1. Then G has type Fn iff H has type Fn.

Proof. “Only if” follows from 3.2.13, 7.1.4 and 7.2.1. When n = 1 [resp.
n = 2], “if” is the well-known elementary fact that a group containing a
finitely generated [resp. finitely presented] subgroup of finite index is itself
finitely generated [resp. finitely presented]. It remains to prove “if” when
n ≥ 3.

Let X be a K(G, 1)-complex having finite (n−1)-skeleton. Let p : X̄ → X
be a finite-to-one covering projection, where X̄ is a K(H, 1)-complex: see
3.2.13 and 7.1.4. Note that X̄ has finite (n−1)-skeleton. Since n ≥ 3 and H has
type Fn, Theorem 7.1.13 gives a K(H, 1)-complex Ȳ having finite n-skeleton
such that Ȳ n−1 = X̄n−1. Thus Ȳ n is obtained from X̄n−1 by attaching finitely
many n-cells, and Ȳ n is (n− 1)-aspherical. Let {fα : Sn−1 → X̄n−1 | α ∈ A}
be attaching maps for these n-cells, A being finite. Attach n-cells to Xn−1

by the maps p ◦ fα : Sn−1 → Xn−1. Let the resulting n-dimensional CW
complex be Zn. Let Z̄n be the covering space of Zn corresponding to the
subgroup H (appropriate base points being understood everywhere). Then
Ȳ n is a subcomplex of Z̄n, and Ȳ n−1 = Z̄n−1 = X̄n−1. Since Ȳ n is (n − 1)-
aspherical, so is Z̄n, hence also Zn, by 7.1.4. Thus G has type Fn, by 7.2.1.
�

Corollary 7.2.4. Let H ≤ G and let [G : H ] < ∞. For 0 ≤ n ≤ ∞, G has
type Fn iff H has type Fn.

Proof. Apply 7.2.3 inductively. For the case n =∞ then apply 7.2.2. �

The one-point space is a K(G, 1)-complex where G is the trivial group.
Since the trivial group has finite index in every finite group, we have:

Corollary 7.2.5. Every finite group has type F∞. �

Among the notable groups of type F∞ is Thompson’s group F , discussed
in later chapters. Many torsion free groups of type F∞ turn out to have
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a stronger property, type F , which is discussed below. (The group F is an
exception to this.6)

We now turn to the question of minimizing the dimension of a K(G, 1)-
complex. The geometric dimension of G is ∞ if there does not exist a finite-
dimensional K(G, 1)-complex; otherwise it is the least integer d for which
there exists a d-dimensional K(G, 1)-complex.

Proposition 7.2.6. G has geometric dimension 0 iff G is trivial. G has geo-
metric dimension 1 iff G is free and non-trivial. If G has geometric dimension
d, every subgroup of G has geometric dimension ≤ d.

Proof. The dimension 0 statement is clear. By 3.1.16, every 1-dimensional
CW complex has free fundamental group, so if G has geometric dimension 1,
G is free and non-trivial. Conversely, if G is free and non-trivial, we saw in
Example 1.2.17 how to build a 1-dimensional CW complex whose fundamental
group is G (by 3.1.8). Its universal cover is contractible, by 3.1.12, so it is a
1-dimensional K(G, 1).

Finally, let X be a d-dimensional K(G, 1)-complex, and let H ≤ G. By
3.2.11, X has a covering space X̄ whose fundamental group is H . By 7.1.4, X̄
is a d-dimensional K(H, 1)-complex. �

There is no question of replacing the inequality by equality in the last
part of 7.2.6; just consider the trivial subgroup of the free group Z. Even for
subgroups of finite index there are limitations: we will see in 8.1.5 that a finite
cyclic group has infinite geometric dimension, while its trivial subgroup (of
finite index) has geometric dimension 0. Nevertheless we have:

Theorem 7.2.7. (Serre’s Theorem) Let G be torsion free, and let H be a
subgroup of finite index having finite geometric dimension. Then G has finite
geometric dimension.

Proof. Let Y be a finite-dimensional K(H, 1)-complex and let Hḡ1, . . . , Hḡn

be the cosets of H in G. Let Ỹ be the universal cover of Y . Let X̃ =
n∏

i=1

Ỹi

where each Ỹi = Ỹ . Then X̃ is a finite-dimensional contractible CW complex.
We describe a (left) G-action on X̃ . We have selected the coset representatives
ḡ1, . . . , ḡn. A right action of G on the set {1, · · · , n} is defined by the formula
(i, g) �→ i.g where ḡig ∈ Hḡi.g. Indeed, we can write ḡig = h(g, i)ḡi.g, thus
associating with g ∈ G an n-tuple (h(g, 1), · · · , h(g, n)) of elements of H . The
required left G-action on X̃ is

g.(y1, · · · , yn) = (h(g, 1)y1.g, · · · , h(g, n)yn.g).

This action of G clearly makes X̃ into a rigid G-CW complex. It remains to
prove that the action is free.

6 This is a place where the two uses of the letter F might cause confusion: “type
F” and “the group F”.
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Let g.(y1, · · · , yn) = (y1, · · · , yn). Let m be such that i.gm = i for all i;
since g permutes a finite set such an m exists. Then

gm.(y1, · · · , yn) = (h(gm, 1)y1, · · · , h(gm, n)yn) = (y1, · · · , yn).

So each h(gm, i) = 1 because H acts freely on Ỹ . So ḡig
m = ḡi for all i,

implying gm = 1. Thus g = 1 since G is torsion free. �

Remark 7.2.8. The G-action on
n∏

i=1

Ỹi described in this proof does not restrict

to the diagonal H-action.

One way of showing that a group G has geometric dimension ≤ d is to find
some contractible d-dimensional free G-CW complex, since by 3.2.1 and 7.1.3
the quotient complex will be a d-dimensional K(G, 1)-complex. One way of
showing that G has geometric dimension ≥ d is to show that Hd(X ; R) �= 0 for
some K(G, 1)-complex X and some ring R, applying 7.1.7, 2.5.4 and 2.4.10.
For example, recall that the d-torus T d is the d-fold product of copies of S1. As
explained in Sect. 3.4, T̃ d is homeomorphic to Rd, so T d is a K(Zd, 1)-complex.

Proposition 7.2.9. Hd(T
d; Z) ∼= Z.

Proof. Give R the CW complex structure with vertex set Z and with 1-cells
[m, m+1] for each m ∈ Z. Give Rn the product structure and regard T n as the
quotient complex of Rn by the obvious free action of Zn on Rn (translation
by integers in each coordinate); see 3.2.1. Then T n has just one n-cell, en.

Orient the 0-cells of R by +1. Orient [m, m + 1] by the characteristic map
I1 → [m, m + 1], t �→ 1

2 (t + 2m + 1). Give Rn the product orientation. Then
the Zn-action is orientation preserving and the quotient q : Rn → T n gives
an orientation to T n. It is enough to prove that en ∈ Cn(T n; Z) is a cycle.

Let ẽn = [0, 1]n ∈ Cn(Rn; Z). For 1 ≤ i ≤ n and ε = 0 or 1,
let ẽn−1

i,ε = [0, 1]i−1 × {ε} × [0, 1]n−i. By 2.5.17, [ẽn : ẽn−1
i,0 ] = (−1)i

and [ẽn : ẽn−1
i,1 ] = (−1)i+1. Clearly en = q#(ẽn). Let hi : Rn → Rn

be the translation (x1, . . . , xn) �→ (x1, . . . , xi−1, xi + 1, xi+1, . . . , xn). Then
hi(ẽ

n−1
i,0 ) = ẽn−1

i,1 . Moreover, as chains, hi#(ẽn−1
i,0 ) = ẽn−1

i,1 . Since q ◦ hi = q,

q#(ẽn−1
i,1 ) = q# ◦ hi#(ẽn−1

i,0 ) = q#(ẽn−1
i,0 ).

∂en = ∂(q#(ẽn))

= q#(∂ẽn), by 2.4.3

= q#

(
n∑

i=1

(−1)i(ẽn−1
i,0 − ẽn−1

i,1 )

)
by 2.5.17

=

n∑
i=1

(−1)i(q#(ẽn−1
i,0 )− q#(ẽn−1

i,1 ))

= 0.

�
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Corollary 7.2.10. Zd has geometric dimension d. �

Combining this with 7.2.6 gives:

Corollary 7.2.11. If G has a free abelian subgroup of rank d, then G has
geometric dimension ≥ d. �

In particular, 7.2.11 can be useful for showing that G has infinite geometric
dimension.

We have mentioned (and we will prove in 8.1.5) that every non-trivial finite
cyclic group has infinite geometric dimension. Hence, by 7.2.6:

Proposition 7.2.12. Every group containing a non-trivial element of finite
order has infinite geometric dimension. �

A group G has type F if there exists a finite K(G, 1)-complex. Groups of
type F discussed in this book include: finitely generated free groups, finitely
generated free abelian groups, and torsion free subgroups of finite index in
finitely generated Coxeter groups. Other important examples are: torsion free
subgroups of finite index in arithmetic groups: see [29]; and torsion free sub-
groups of finite index in the outer automorphism group of a finitely generated
free group: see [44].

If G has type F then G has type F∞ and G has finite geometric dimension.
It is natural to ask if the converse is true. We say that G has type FD if some
(equivalently, any) K(G, 1)-complex is finitely dominated.

Proposition 7.2.13. G has type FD iff G has type F∞ and G has finite
geometric dimension.

Proof. “If”: Let X be a K(G, 1)-complex of finite type and let Y be a d-

dimensional K(G, 1)-complex. By 7.1.7 there are maps Y
f−→ X

g−→ Y such
that g ◦ f � idY . By 1.4.3, we may assume f and g are cellular, so that

f(Y ) ⊂ Xd. There are induced maps Y
f ′

−→ Xd g|−→ Y whose composition is
homotopic to idY ; and Xd is finite.

“Only if”: Let X be a K(G, 1)-complex and let X
f−→ Y

g−→ X be ho-
motopic to idX , where Y is a finite CW complex. By 4.3.5, X is homotopy
equivalent to Tel(f ◦ g), which is finite-dimensional, so G has finite geometric
dimension. To show that G is of type F∞ we will show by induction that G is of
type Fn for all n. By 7.2.2 this is enough. Certainly G is of type F0. Assume G
is of type Fn−1. Let X be a K(G, 1)-complex such that Xn−1 is finite and X is
dominated by a finite complex. Then there is a finite subcomplex K of X and
a homotopy D : X × I → X such that D0 = idX and D1(X) ⊂ K. Let L be a
finite subcomplex7 of X such that D((Xn−1 ∪K)× I) ⊂ L. We claim (X, L)
is n-connected. To see this, let φ : (Bk, Sk−1) → (X, L) be a cellular map

7 We are using 1.2.13 and 1.4.3 repeatedly.
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where k ≤ n. Then φ(Sk−1) ⊂ Xn−1, so Dt ◦φ(Sk−1) ⊂ L for all t ∈ I. More-
over, D1 ◦ φ(Bk) ⊂ K ⊂ L. By 1.3.9, there is a strong deformation retraction
F : Bk×I×I → Bk×I, of Bk×I onto (Bk×{1})∪(Sk−1×I). The required ho-
motopy Φ : Bk×I → X , rel Sk−1, of φ into L is Φ(s, t) = D◦(φ× id)◦Ft(s, 0).
By 4.2.1, X is homotopy equivalent to a CW complex Y such that Y n = Ln

is finite. Thus G has type Fn. �

Corollary 7.2.14. Let G be a group and let H be a subgroup of finite index.
If G has type FD, so has H. If H has type FD and if G is torsion free, then
G has type FD. �

Note that the trivial group {1} has type FD (indeed, type F ) while non-
trivial finite groups, in all of which {1} has finite index, do not have type FD,
by 7.2.12.

The question remains: does type FD imply type F? The general question
of when a finitely dominated CW complex X is homotopy equivalent to a
finite CW complex is understood: the only obstruction (Wall’s finiteness ob-
struction) lies in the reduced projective class group K̃0(Z[π1(X)]). See, for
example, [29, Chap. VIII, Sect. 6]. Non-trivial obstructions occur, but it is
unknown at time of writing whether the obstruction can be non-zero when X
is aspherical.

The analog of 7.2.14 for type F is also unknown: obviously if [G : H ] <∞
and if G has type F then H has type F (by 7.1.4 and 3.2.13). But for torsion
free G the converse is unknown.

Proposition 7.2.15. If G has type FD, then G× Z has type F .

Proof. This follows from 4.3.7. In detail, let X
f−→ Y

g−→ X be cellular maps,
where X is a K(G, 1)-complex, Y is a finite CW complex, and g ◦ f � idX .
Then X×S1 is a K(G×Z, 1)-complex which, by 4.3.5, is homotopy equivalent
to the finite mapping torus T (f ◦ g). �

Corollary 7.2.16. If G has type FD, then G is a retract of a group G′ of
type F ; i.e., there are homomorphisms G → G′ → G whose composition is
idG, where the first arrow is an inclusion. �

Proposition 7.2.17. If there is a K(G, 1)-complex which is dominated by a
d-dimensional CW complex then G× Z has geometric dimension ≤ d + 1.

Proof. Let Y dominate X , where X is a K(G, 1)-complex and Y is d-
dimensional. As in the proof of 7.2.15, X × S1 is homotopy equivalent to
a (d+1)-dimensional CW complex, which is therefore a K(G×Z, 1)-complex.
�

Corollary 7.2.18. If there is a K(G, 1)-complex which is dominated by a d-
dimensional CW complex then G has geometric dimension ≤ d + 1. �
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Remark 7.2.19. The conclusion of 7.2.18 can be improved to “G has geometric
dimension ≤ d,” except possibly when d = 2, where the situation is not yet
understood. The proof of this can be found, for example, in [29, Chap. VIII,
Sect. 7]. This proof is accessible to readers of the present chapter and is only
omitted to save space. Note that it uses the Relative Hurewicz Theorem 4.5.1.

Here is a useful necessary and sufficient condition for type Fn+1:

Theorem 7.2.20. Let n ≥ 1, let the group G have type Fn, and let X be a
K(G, 1)-complex with finite n-skeleton. Then G has type Fn+1 iff there is a
K(G, 1)-complex Y with finite (n + 1)-skeleton and Y n = Xn.

Proof. “If” is clear. “Only if” follows from 7.1.13 when n ≥ 2 and is obvious
when n = 1. �

In the next proof we suppress base points in homotopy groups to simplify
notation:

Theorem 7.2.21. Let N � G � Q be an exact sequence of groups. If G has
type Fn and if N has type Fn−1 then Q has type Fn.

Proof. This is obvious for n ≤ 2 so we assume n ≥ 3. Let Y be an (n − 2)-
aspherical finite (n − 1)-dimensional CW complex whose fundamental group
is isomorphic to Q, and let X be a K(G, 1)-complex. As before, we consider
the commutative diagram

X̃ × Ỹ
projection ��

r

��

Ỹ

p

��
Z

q �� Y

where r is the covering projection obtained from the diagonal action of G
on X̃ × Ỹ (G acts on Ỹ via Q). Then q is a fiber bundle whose fiber is
the K(N, 1)-complex N\X̃. It follows from the exact sequence in 4.4.11 that
q# : πn−1(Z) → πn−1(Y ) is an epimorphism. The map q is also a stack of
CW complexes. Since N has type Fn−1, there is a K(N, 1)-complex W having
finite (n − 1)-skeleton, which is of course homotopy equivalent to N\X̃. By
the Rebuilding Lemma 6.1.4 there is a diagram

Z
q

��%
%%

%%
%%

%

h

��

Y

Z ′
q′

&&!!!!!!!
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which commutes up to homotopy, where q′ is a stack of CW complexes with
fibers W , h is a homotopy equivalence, and Z ′ has finite (n − 1)-skeleton.
Since Zn−1 is (n−2)-aspherical with fundamental group isomorphic to G, the
same is true of (Z ′)n−1. Since G has type Fn, 7.2.20 implies that there is a
K(G, 1)-complex X ′ with finite n-skeleton whose (n− 1)-skeleton is (Z ′)n−1.
The inclusion map (Z ′)n−1 ↪→ Z ′ induces an epimorphism on πn−1, hence we
can attach finitely many n-cells to Z ′ to kill πn−1(Z

′). Since q′ induces an
epimorphism on πn−1, the same is true of Y . Thus, using 7.2.20 again, we see
that Q has type Fn. �

This theorem should be compared with Exercise 1 where it is asserted that
if N and Q have type Fn then G has type Fn.

Exercises

1. Let N � G � Q be a short exact sequence of groups. Prove that if N has type
Fn and Q has type Fn then G has type Fn. Hint : see Theorem 7.1.10.

2. Devise similar exercises involving finite geometric dimension, type FD and type
F .

3. Prove that if G is the fundamental group of a finite graph of groups whose
vertex groups have type Fn and whose edge groups have type Fn−1 then G has
type Fn. Hint : Use 7.1.9 and 6.1.4.

4. How many other proofs of 7.2.9 can you find?
5. Sharpen 7.2.13 by specifying the dimensions: (i) “dominated by a finite d-

dimensional complex” implies “geometric dimension ≤ d + 1”; (ii) “Fd and
geometric dimension ≤ d” implies “dominated by a finite d-dimensional com-
plex.”

6. Give an example of a short exact sequence of groups N � G � Q where G
and Q have type F , and N is not finitely generated. (Thus one cannot expect a
theorem in the spirit of 7.2.21 and Exercise 1 of Sect. 7.2 for this case.)

7.3 Recognizing the finiteness properties and dimension
of a group

We can use the Borel Construction to build K(G, 1)-complexes with good
finiteness properties, under various hypotheses. We begin with a generalization
of Theorem 6.1.5:

Theorem 7.3.1. For n ≥ 1, let Y be an (n− 1)-connected rigid G-CW com-
plex having finite n-skeleton mod G. If the stabilizer of each i-cell has type
Fn−i for all i ≤ n− 1, then G is of type Fn.

Proof. We leave the case n = 1 as an exercise. Starting with a K(G, 1)-
complex (X, v), we construct a commutative diagram as in Sect. 6.1
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X̃ × Y
projection−−−−−−→ Y⏐⏐
r

⏐⏐
p

Z −−−−→
q

V

in which q : Z → Γ is a stack of CW complexes with fiber Gẽ\X̃ over e.
Since X̃ is contractible and Y is (n− 1)-connected, Z is an (n− 1)-aspherical
complex whose fundamental group is G. Since Gẽ\X̃ is a K(Gẽ, 1)-complex
and Gẽ has type Fn−i when e is an i-cell of Γ , the Rebuilding Lemma gives a
CW complex Z ′ homotopy equivalent to Z and having finite n-skeleton (the
details are similar to those in the proof of 6.1.5). By 7.2.1, the existence of
such a space Z ′ is equivalent to G having type Fn. �

Remark 7.3.2. We will see applications of this theorem later in the book. One
important case, not covered here, is the case where G is hyperbolic. Then
there is a naturally occurring finite-dimensional simplicial complex R, called
the Rips complex , on which G acts so that G\R is a finite CW complex and
the stabilizer of each cell is finite. It follows from 7.3.1 that hyperbolic groups
have type F∞ and (by 7.3.4 below) that torsion-free hyperbolic groups have
type F . The details of this construction are found in [24].

A similar proof gives the following two theorems:

Theorem 7.3.3. Let Y be a contractible rigid G-CW complex of dimension
≤ m. For each i, let the stabilizers of the i-cells of Y have geometric dimension
≤ di. Then G has geometric dimension ≤ max{di + i | 0 ≤ i ≤ m}. �

Theorem 7.3.4. Let Y be a contractible rigid G-CW complex whose quotient
G\Y is finite. Let the stabilizer of each cell of Y have type F [resp. FD]. Then
G has type F [resp. FD]. �

Exercises

1. Prove the n = 1 case of 7.3.1.
2. Prove 7.3.3.
3. Prove 7.3.4.
4. Sharpen 7.2.13: if G has geometric dimension d and has type Fd then G has

type FD.

7.4 Brown’s Criterion for finiteness

We saw in Sect. 7.2 that a group G has type Fn iff there is an (n − 1)-
connected free n-dimensional G-CW complex which is finite mod G. And in
7.3.1 we extended this by weakening “free” to “rigid” provided the stabilizers
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of cells have appropriate finiteness properties. In practice, it often happens
that the desired hypotheses on stabilizers are satisfied but the G-CW complex
is not finite mod G. Here we show how a weaker hypothesis than “finite mod
G” can yield the same conclusion.

A sequence of groups and homomorphisms G1
f1
2−→ G2

f2
3−→ · · · is ind-

trivial8 if for each i there exists j > i such that the composition f i
j : Gi → Gj

is trivial. This also makes sense when each Gi is a pointed set and each f i
i+1 is

a pointed function. A G-filtration of a path connected G-CW complex Y is a

countable collection of G-subcomplexes K0 ⊂ K1 ⊂ · · · such that Y =

∞⋃
i=0

Ki.

The G-filtration {Ki} is essentially (n − 1)-connected if for 0 ≤ k ≤ n − 1
the sequence {πk(K0, y) → πk(K1, y) → · · · } is ind-trivial, where y ∈ K0 is
a chosen base point and the unmarked morphisms are induced by inclusion.
This definition is independent of y ∈ K0. A necessary condition is that Y be
(n− 1)-connected.

Theorem 7.4.1. (Brown’s Criterion) Let the (n−1)-connected free G-CW
complex Y admit a G-filtration {Ki} where each G\Ki has finite n-skeleton.
Then G has type Fn iff {Ki} is essentially (n− 1)-connected.

Proof. “If”: We begin with n = 1. Consider the commutative diagram

K0
� � ��

��

Ki1

��
G\K0

�� G\Ki1

By essential 0-connectedness we can choose i1 so that K0 lies in the path
component K ′

i1 of Ki1 containing the base point y. Then (K ′
i1)

1 is a path
connected free G-graph which is finite mod G. Hence G has type F1.

Next, let n = 2. We can choose i2 so as to get a commutative diagram of
groups

π1(K
′
i1

, y) trivial ��
��

��

π1(K
′
i2

, y)
��

��
π1(G\K ′

i1 , z1) ��

����

π1(G\K ′
i2 , z2)

����
G

id ��

λ1

$$$$$$$$$$$$$$$$
G

where the vertical exact sequences come from covering space theory, the top
horizontal homomorphism is trivial, and the squares commute. It follows that

8 Also known in the literature as essentially trivial – our term is explained in Chap.
11.
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λ1 exists making the triangles commute. Since G\K ′
i2

is finite, it follows that
G is a retract of a finitely presented group, hence (exercise) G is finitely
presented, i.e., of type F2.

Let (X, x) be a K(G, 1)-complex. For n = 3, we construct a commutative
diagram

(G\K ′
i2

, z2)
� � �� (G\K ′

i3
, z3)

(X2, x)

f1

��

� � �� (X3, x)

f2

��

where f1 induces λ1 on fundamental group, and (using 4.4.10) i3 is such that
π2(G\K ′

i2 , z2)→ π2(G\K ′
i3 , z3) is trivial; compare the proof of 7.1.6.

Proceeding by induction, we get fn : (Xn, x) → (G\K ′
in

, zn) which can
be extended to f : (X, x) → (Z, z), where Z is obtained from G\K ′

in
by

attaching suitable cells of dimension > n. This construction and 7.1.6 give a
map g : (Z, z) → (X, x) such that g ◦ f � idX rel{x}. Thus X is dominated
by a CW complex with finite n-skeleton, so by (the proof of) 7.2.13, G has
type Fn.

“Only if”: Assume G has type Fn. Let X be a K(G, 1)-complex with finite
n-skeleton. By 7.1.7, there is an n-equivalence f : G\Y n → Xn with n-inverse
g : Xn → G\Y n. These lift to G-maps f̃ and g̃ and there is a G-homotopy
H : Y n−1 × I → Y n from the inclusion to the map g̃ ◦ f̃ |. Since each Kn

i is
cocompact, given i there exists j ≥ i such that H restricts and corestricts
to a homotopy H̄ : Kn−1

i × I → Kn
j from the inclusion to a map which

factors through the (n− 1)-connected CW complex X̃n. It follows that {Ki}
is essentially (n− 1)-connected, since πn−1(K

n−1
i , y)→ πn−1(K

n
i , y) is onto.

�

An important generalization of Brown’s Criterion is given in the Exercise
below.

Source Notes: Brown’s Finiteness Criterion first appeared in [30].

Exercise

Extend Brown’s Criterion to the case where the G-action is not free but is such that
the stabilizer of each i-cell has type Fn−i; see [30].



8

Homological Finiteness Properties of Groups

Here we introduce homology of groups and homological finiteness properties.
The first two sections provide homological analogs of some of the topics in
Chapter 7. A free (or projective) resolution of the trivial RG-module R plays
the role of the universal cover of a K(G, 1)-complex. The properties FPn and
cohomological dimension are analogous to Fn and geometric dimension. This
leads us to the Bestvina-Brady Theorem, which gives a method of constructing
groups G for which the homological and topological properties are subtly
different.

8.1 Homology of groups

Let G be a group and, as usual, let R be a commutative ring. The group ring1

RG is
⊕
g∈G

R(g), where R(g) is the free R-module generated by the one-element

set {g}, with the multiplication

⎛
⎝∑

g∈G

rgg

⎞
⎠
⎛
⎝∑

g′∈G

sg′g′

⎞
⎠ =

∑
g,g′∈G

rgsg′(gg′).

Here, our convention is to write
∑
g∈G

rgg rather than (rg)g∈G for an element

of RG. It is straightforward to check that this multiplication is well defined
and makes RG into a ring. This ring is commutative when G is abelian. The

identity element in RG is 1 :=
∑
g∈G

rgg where r1 = 1 ∈ R and rg = 0 for

all g �= 1 ∈ G; this multiple use of the symbol 1 (the multiplicative identity

elements of R, of G, and of RG) will not cause trouble. We write 0 for
∑
g∈G

0g.

1 Strictly, the term “group ring” should only be used when the ring R is Z; for
other ground rings, the more correct term is “group algebra”.
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For a not-necessarily-commutative ring Λ with 1 �= 0 the tensor product
B⊗Λ A of a right Λ-module B and a left Λ-module A has the structure of an
abelian group; it is generated by elements of the form b⊗ a where b ∈ B and
a ∈ A subject to bilinearity relations of the form bλ⊗a = b⊗λa where λ ∈ Λ.
If Λ is commutative, the left action of Λ on B⊗ΛA defined by λ(b⊗a) = bλ⊗a
makes B ⊗Λ A into a Λ-module.

When dealing with the case Λ = RG we must elaborate on this. In general,
RG is not a commutative ring; but R is commutative, so B⊗RGA has a natural
R-module structure, and this will always be understood in what follows.2 It
is often convenient to abbreviate ⊗RG to ⊗G.

The left action of G on R defined by g.1 = 1 for all g ∈ G makes R into
an RG-module. Unless we say otherwise, it is this trivial action which is to
be understood when we regard R as an RG-module.

A free RG-resolution of R is an exact sequence

· · · → F2
∂2−→ F1

∂1−→ F0
ε−→ R→ 0

of left RG-modules in which each Fi is free. Associated with this free resolution

is the chain complex · · · ∂2−→ F1
∂1−→ F0 → 0, whose homology modules in

positive dimensions are trivial. Denoting this by (F, ∂), we see that ε induces
an isomorphism H0(F ) → R. In the spirit of Sect. 2.9, one thinks of the free
resolution as the augmentation of the chain complex (F, ∂).

The basic fact about free resolutions, sometimes called the “Fundamental
Lemma of Homological Algebra,” is that they are unique up to chain homotopy
equivalence. Versions of this purely algebraic theorem can be found in standard
textbooks (e.g., [29, Chap. 1, Sect. 7] or [83, Chap. 4, Sect. 4]). We will state
one such version without proof:

Theorem 8.1.1. Let

· · · → F1 → F0
ε−→ R→ 0

and

· · · → F ′
1 → F ′

0
ε′−→ R→ 0

be free RG-resolutions of R. For every isomorphism φ : H0(F ) → H0(F
′)

there is a chain homotopy equivalence {φi : Fi → F ′
i} inducing φ, and {φi} is

unique up to chain homotopy. �

By convention there is a “canonical” choice for φ in applications of 8.1.1,

namely H0(F )
ε∗−→ R

ε′−1
∗−→ H0(F

′).
Let M be a right RG-module. The homology R-modules of G with coeffi-

cients in M are computed from the R-chain complex

2 The point is that when R = Q, for example, we want to think of B ⊗QG A as a
Q-vector space, not just as an abelian group.
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· · · →M ⊗G F2
id ⊗∂2−→ M ⊗G F1

id ⊗∂1−→ M ⊗G F0 → 0.

They are denoted H∗(G, M). By 8.1.1 (and the convention which follows it)
there is no ambiguity in this definition.

These definitions and Theorem 8.1.1 are motivated by topological ideas.
Let (X, v) be an oriented pointed CW complex whose universal cover is (X̃, ṽ).
Let G = π1(X, v). By 3.2.9 (see also 3.3.3) we may regard X̃ as a free left
G-CW complex. Let p : (X̃, ṽ)→ (X, v) be the covering projection. For each
n-cell en

α of X , pick an n-cell ẽn
α of X̃ such that p(ẽn

α) = en
α; in particular, pick

ṽ for v. Orient ẽn
α so that p |: ẽn

α → en
α is orientation preserving. Each n-cell

of X̃ over en
α has the form gẽn

α, where g ∈ G is unique. The CW complex X̃
is to be oriented so that the covering transformations x �→ g.x are orientation
preserving on cells.

For each g ∈ G and each n, the covering transformation x �→ g.x induces
an isomorphism g# : Cn(X̃; R)→ Cn(X̃; R). Thus we have a left RG-module

structure on Cn(X̃ ; R) given by g.c = g#(c).

Proposition 8.1.2. The oriented n-cells ẽn
α of X̃ freely generate Cn(X̃ ; R)

as an RG-module. The boundary ∂ : Cn(X̃ ; R)→ Cn−1(X̃ ; R) is a homomor-
phism of left RG-modules. If X is aspherical, this gives a free RG-resolution
of R:

· · ·
∂3−−−−−→ C2(X̃; R)

∂2−−−−−→ C1(X̃; R)
∂1−−−−−→ C0(X̃; R)

ε
−−−−−→ R −−−−−→ 0

where ε is defined by ε

(∑
α,g

mα,ggẽ0
α

)
=
∑
α,g

mα,g. �

Note that the underlying R-chain complex of this free resolution is the
augmented cellular chain complex C∗(X̃ ; R) and ε is the augmentation; so
free RG-resolutions of R arise in topology as the augmented chain complexes
of the universal covers of K(G, 1)-complexes. The uniqueness up to RG-chain
homotopy of such resolutions follows from the algebraic Proposition 8.1.1, but
this can also be seen topologically:

Proposition 8.1.3. Let (X, x) and (Y, y) be K(G, 1)-complexes, with pointed
universal covers (X̃, x̃) and (Ỹ , ỹ). Let the groups π1(X, x) and π1(Y, y) be
identified with G via given isomorphisms so that C∗(X̃ ; R) and C∗(Ỹ ; R) are
RG-chain complexes. Then these RG-chain complexes are canonically chain
homotopy equivalent.

Proof. By hypothesis, there is a given isomorphism φ : π1(X, x) → π1(Y, y)
inducing id : G → G. By 7.1.7, there is a cellular homotopy equivalence
f : (X, x) → (Y, y) inducing φ, and f is unique up to pointed homotopy. Let
k : (Y, y) → (X, x) be a cellular homotopy inverse for f . Let F : k ◦ f � idX
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and K : f ◦ k � idY be cellular homotopies relative to the base points x and
y. By repeated use of 3.3.4, one finds cellular homotopies F̃ : k̃ ◦ f̃ � idX̃ and

K̃ : f̃ ◦ k̃ � idỸ relative to the base points x̃ and ỹ; here, F̃ : X̃ × I → X̃

and K̃ : Ỹ × I → Ỹ are lifts of F and K. Hence the chain maps f̃# and k̃#

induced by f̃ and k̃, and the chain homotopies D̃F and D̃K induced by F̃ and
K̃ (as described in 2.7.14) are homomorphisms of RG-modules. Thus f̃# is a
chain homotopy equivalence of RG-chain complexes.3 �

The chain homotopy equivalence constructed in the last proof induces
f̃∗ : H0(X̃ ; R)→ H0(Ỹ ; R). By 8.1.1, it is unique up to chain homotopy.

Proposition 8.1.4. Let (X, v) be a K(G, 1)-complex. Then H∗(G, R) ∼=
H∗(X ; R).

Proof. The chain complex (R⊗G C∗(X̃ ; R), id⊗∂) is isomorphic4 to the chain
complex (C∗(X ; R), ∂). �

Even when one knows that a free resolution “comes from” a K(G, 1)-
complex in the sense of 8.1.2, it is sometimes easier to describe the free reso-
lution than the complex. For example, let G = Zn = 〈t | tn〉, the cyclic group
of order n. Let N = 1 + t + · · ·+ tn−1 ∈ RG. Consider:

· · · t−1−−−−→ RG
N−−−−→ RG

t−1−−−−→ RG
ε−−−−→ R −−−−→ 0.

Here, t−1 and N denote multiplication by those elements, and ε

(
n−1∑
i=0

mit
i

)
=

n−1∑
i=0

mi. Obviously this sequence is exact, hence it is a free RG-resolution of

R. Applying the functor R⊗G · we find that H∗(G, R) is calculated from

· · · 0−−−−→ R
×n−−−−→ R

0−−−−→ R −−−−→ 0.

Thus Hk(G, R) ∼= R/(n) when k is odd, and Hk(G, R) ∼= {r ∈ R | nr = 0}
when k is even.

By taking R = Z, and applying 8.1.4, we conclude:

Proposition 8.1.5. For n ≥ 2, Zn has infinite geometric dimension. �

This plugs the gap in the proof of 7.2.12.

Indeed, there is a K(Zn, 1)-complex (X, v) such that C∗(X̃ ; R)
ε

� R is
a free RZn-resolution of R, but some careful work is needed to describe the
attaching maps. The skeleta of such K(Zn, 1)-complexes are called generalized
lens spaces . For the details, see [42].

3 The word “canonical” indicates that the chain homotopy equivalence is deter-
mined up to chain homotopy by the hypotheses.

4 Compare with 13.2.1.
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Exercises

1. Prove 8.1.1.
2. Let f : π1(X1, v1) → π1(X2, v2) induce φ : G1 → G2 on fundamental group.

Show that f# : C∗(X̃1; R) → C∗(X̃2; R) satisfies5 f#(g.c) = φ(g).f#(c).

8.2 Homological finiteness properties

A module is projective if it is a direct summand of a free module. A projective
RG-resolution of R has the same definition as “free RG-resolution” except
that the modules Fi are only required to be projective. Proposition 8.1.1 also
holds for projective resolutions; see [29, Chap. 1, Sect. 7].

A group G has (i) type FPn over R; (ii) type FP∞ over R; (iii) type FP
over R; (iv) type FL over R; (v) cohomological6 dimension ≤ d over R if
there is a projective RG-resolution of R which is (i) finitely generated in di-
mensions ≤ n; (ii) finitely generated in each dimension; (iii) finitely generated
in each dimension and trivial in all but finitely many dimensions; (iv) same
as (iii) but with all the modules free; (v) trivial in dimensions greater than d.
When R is not mentioned Z is understood: “G has type FPn,” etc. Collec-
tively (i)–(iv) are called homological finiteness properties of G (with respect
to R) as distinct from the parallel properties Fn, F∞, FD and F , which are
called topological finiteness properties of G. Clearly each topological finite-
ness property implies the corresponding homological finiteness property with
respect to Z, and if G has geometric dimension ≤ d then G has cohomo-
logical dimension ≤ d with respect to Z. The only one of these statements
that is not immediate is “FD implies FP ;” this follows from 7.2.13 and the
corresponding statement for resolutions [29, Chap. 8, Sect. 6].

If G has type FP1 over some R then G is finitely generated (see [29]
or [14]). Except possibly for the case d = 2, cohomological dimension ≤ d
implies geometric dimension ≤ d (see Theorem VIII.7.1 of [29]). When G is
finitely presented, “FPn implies Fn,” “FP∞ implies F∞,” “FP implies FD,”
and “FL implies F” are all proved in [29, Chap. 8, Sect. 7]. However, there
are groups of type FP2 which are not finitely presented; examples will be
constructed in Sect. 8.3.

By standard homological algebra, if · · · → F1 → F0 � Z is a projective
ZG-resolution of the trivial ZG-module Z then, for any commutative ring R,
· · · → R ⊗Z F1 → R ⊗Z F0 � R is a projective RG-resolution of the trivial
RG-module R; the R-module structures come from “extension of scalars” (see
12.4.7 for a fuller discussion). Thus any homological finiteness property which
holds over Z holds over all rings R, and the cohomological dimension over Z
is an upper bound for the cohomological dimensions over all rings R. In Sect.

5 The terms semilinear or φ-linear are sometimes used for this property.
6 The connection with cohomology is explained in Sect. 13.10.
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13.8 we will give an example having cohomological dimension 2 over Q and
cohomological dimension 3 over Z.

The cohomological dimension (over R) of the group G is the least integer
d such that G has cohomological dimension ≤ d, if there is such an integer.
Otherwise the cohomological dimension is said to be infinite. Write cdRG ≤ ∞
for this.

We end with a comparison of the properties Fn and FPn. Paraphrasing
7.2.20 we have:

Theorem 8.2.1. Let Z be an (n − 1)-connected n-dimensional free G-CW
complex which is finite mod G. Then G has type Fn; and G has type Fn+1 iff
it is possible to attach finitely many G-orbits of (n + 1)-cells to Z to make an
n-connected free G-CW complex.

The homological analog is:

Theorem 8.2.2. Let Z be an n-dimensional free G-CW complex which is
finite mod G, and which is (n − 1)-acyclic7 with respect to R. Then G has
type FPn; and G has type FPn+1 iff Hn(Z; R) is a finitely generated RG-
module.

Proof. There is an obvious exact sequence of RG-modules

0→ Kn → Cn(Z; R)→ · · · → C0(Z; R)
ε−→ R

and Kn is the image of a free module Fn+1. Let Kn+1 = ker(Fn+1 � Kn).
Proceeding thus by induction we get a free resolution · · · → Fn+1 →
Cn(Z; R) → · · · → C0(Z; R) � R of R which is finitely generated in di-
mensions ≤ n. Thus G has type FPn. If Hn(Z; R) = Zn(Z; R) is finitely gen-
erated over RG, the same procedure gives a free resolution of R of the form
· · · → Fn+1 → Cn(Z; R) → · · · → C0(Z; R) � R which is finitely generated
over RG in dimensions≤ n+1, implying that G has type FPn+1. Conversely, if
G has type FPn+1, a technique in homological algebra (“Schanuel’s Lemma”)
implies that Zn(Z; R) = Hn(Z; R) is a finitely generated RG-module; for
details of this algebra see [29, Chap. 8, 4.3]. �

Remark 8.2.3. The omitted material in this proof is essentially the analog in
homological algebra of cell trading as described in Sect. 4.2. Note that cell
trading was used in the proof of 8.2.1 (since 7.1.13 was used in the proof of
7.2.20).

Remark 8.2.4. There is a homological analog of Brown’s Criterion 7.4.1. See
[30].

7 “n-acyclic” was defined in Sect. 4.5; n-acyclic with respect to R is defined similarly
using R-coefficients rather than Z-coefficients.
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Exercises

1. Prove that G is countable if and only if there is a K(G, 1) of locally finite type.
2. Let the finitely presented group act freely and cocompactly on the CW complex

X. Prove that H1(X; R) is finitely generated as an RG-module. (Hint : prove
that π1(X, x) is finitely generated as a G-group.)

8.3 Synthetic Morse theory and the Bestvina-Brady
Theorem

The main theorem (8.3.12) of this section gives an elegant topological recipe
for constructing examples of groups with prescribed finiteness properties: Fn

but not Fn+1, FPn but not FPn+1, and FPn but not Fn. The examples in
question are torsion free subgroups of right-angled Artin groups, the latter
being of type F . The method uses a crude form of Morse Theory in which
the homotopy type of a CW complex is analyzed by means of a well chosen
real valued function. For this the CW complex should be “affine” as we now
explain.
A. Affine CW complexes:

A (polyhedral) convex cell in RN is a non-empty compact set C ⊂ RN

which is the solution set of a finite number of linear equations fi(x) = 0 and
linear inequalities gj(x) ≥ 0. A face of C is obtained by changing some of
the inequalities to equalities. Thus a face of C is also a convex cell. A vertex
of C is a face consisting of one point. If the affine subspace spanned by C
is n-dimensional then C is a convex n-cell. Note that the intersection or the
product of convex cells is a convex cell.

We list some well-known properties of a convex cell C which are proved in
many books (e.g., [90, Chap. 1]): (i) the faces of C are determined by C and
not by the choice of the fi’s and gj’s used to define C; (ii) C is the convex
hull of its vertices; (iii) the image of C under an affine map RN → RM is a
convex cell; (iv) there is a simplicial complex K in RN such that C = |K|;
(v) writing

•
C for the union of all proper faces of the compact convex n-cell

C, there is a PL homeomorphism (C,
•
C)→ (∆n,

•
∆ n) – i.e., C is a PL n-ball.

An affine homeomorphism C → D between convex n-cells C ⊂ RN and
D ⊂ RM is a homeomorphism which extends to an affine homeomorphism
between the affine subspaces spanned by C and D.

Up to now we have required that the domain of a characteristic map for
an n-cell in a CW complex be Bn or In. It is convenient to change that here:
we allow any compact convex n-cell to be the domain. An affine CW complex
is a regular CW complex X with two further properties: (i) the intersection of
any two cells is either empty or is a face of both; and (ii) there is a maximal
set C of characteristic maps for the cells of X whose domains are compact
convex cells; if eβ is a face of eα, and if hβ and hα are characteristic maps in
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C with domains Cβ and Cα, we require that h−1
α ◦ hβ map Cβ by an affine

homeomorphism onto a face of Cα. Once we choose a characteristic map hα

for each cell eα of X so that this relation among them holds, we can then use
the Axiom of Choice to find a maximal such set C.

Example 8.3.1. If K is a simplicial complex, then in an obvious way |K| is an
affine CW complex.

Subcomplexes of affine CW complexes are affine CW complexes. The prod-
uct of affine CW complexes (with topology understood in the sense of k-
spaces) is an affine CW complex; see 1.2.19.

We may treat the cells of an affine CW complex as if they were compact
convex cells, and the “convex structure” on a cell passes unambiguously to its
faces.
B. Morse Theory:

Let X be an affine CW complex. A Morse function on X is a map f :
X → R which is affine on each cell, is non-constant on each cell of positive
dimension, and takes X0 to a closed discrete subset of R. When J is a closed
subset of R, we write XJ := f−1(J).

Proposition 8.3.2. Let J ⊂ J ′ be closed connected subsets of R such that
XJ′ −XJ contains no vertices of X. Then XJ is a strong deformation retract
of XJ′ .

Proof. The general case is easily adapted from the case we consider: J =
(−∞, 1] and J ′ = (−∞, 2]. If e is an n-cell of X not lying in XJ then the
set e ∩ f−1([1, 2]) inherits a convex structure from e. The subset e ∩ f−1(2)
is a face, and the hypothesis about vertices ensures that e ∩ f−1(2) is an
(n − 1)-dimensional face. The convexity of e makes it possible to carry over
the “radial projection” proof8 of 1.3.9 to get a strong deformation retraction
of e ∩ f−1([1, 2]) onto the part of its boundary obtained by removing the
interior of the face e ∩ f−1(2). When X is n-dimensional, the desired strong
deformation retract is defined by applying the previous sentence to each such
n-cell e, then to the (n− 1)-cells, etc. Indeed, the details are quite similar to
those in the proof of 1.3.12. When X is infinite-dimensional, a modification
along the lines of the proof of 1.3.14 is needed. �

It follows from this proposition that one may analyze the homotopy type
of X by examining how f−1((−∞, t]) changes as t passes9 through a point of

8 If h : C → e is the characteristic map, where C ⊆ RN , the “light source” of 1.3.9
should be chosen appropriately in RN ; the deformation should be performed on
C and then carried over, via h, to e.

9 We call this “synthetic Morse Theory.” In real Morse Theory X is a complete
Riemannian manifold, f is a smooth map with isolated critical points, the role
of the vertices here is played by the critical points of f , the connectivity of a
descending link here corresponds to the index of a critical point, and the strong
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f(X0). This is done by looking at “descending links” of vertices, as we now
explain.

Extending the notion of “link” from simplicial complexes (Sect. 5.2), we
define the link of a vertex v in a convex cell e to be the union of all the faces
of e which do not contain v. We denote this subcomplex of e by lkev. The link
of v in X is lkXv =

⋃{lkev | e is a cell of X containing v}. The ascending
link of v in X (with respect to the Morse function f) is:

lk↑
Xv =

⋃
{lkev | v ∈ e and f | e has a minimum at v}

The descending link lk↓
Xv is defined similarly, replacing “minimum” by “max-

imum.” See Fig. 8.1.

. . f(v)v
f

Ascending link

Ascending simplicial link

Descending link

Descending simplicial link

Fig. 8.1.

Proposition 8.3.3. Let J ⊂ J ′ be closed connected subsets of R such that
inf J = inf J ′ and J ′ − J contains only one point of f(X0), namely t. Then

XJ ∪
⋃{cone on lk↓

Xv | f(v) = t} is a strong deformation retract of XJ′ .

deformation retraction in 8.3.2 would be achieved in real Morse Theory by de-
forming along the gradient flow lines defined by f . However, the basic topological
idea of analyzing change in homotopy type is the same. For real Morse Theory,
see [120].
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Proof. The proof is similar to that of 8.3.2, but the deformations described
there are only applied to cells which do not contain a vertex v such that
f(v) = t. �

Corollary 8.3.4. (i) If each descending link in 8.3.3 is (n − 1)-connected
then (XJ′ , XJ) is n-connected.

(ii) If each descending link in 8.3.3 is (n− 1)-acyclic with respect to the ring
R then (XJ′ , XJ) is n-acyclic with respect to R. �

C. Finiteness properties and Morse Theory:
We apply this to group theory, first in a rather general setting, later in

a situation of special interest. Let (Z, z) be a finite aspherical CW complex
having one vertex and fundamental group G. Let f0 : Z → S1 be a cellular
map (S1 having the usual CW complex structure) which maps every 1-cell of
Z homeomorphically onto S1. Thus f0 induces an epimorphism φ : G → Z.
We regard Z ⊂ R and identify R with the group Transl(R) of all translations
of R (r is identified with t �→ t + r), so that φ defines an action of G on R
by translations. We write X = Z̃, the (contractible) universal cover of Z, and
we denote the lift of f0 by f : X → R, a cellular G-map. The properties of f0

ensure that f is non-constant on every 1-cell of X . We assume that X is an
affine CW complex and that f is affine on each cell of X . Then f is a Morse
function.

Let H = ker(φ). For each integer k ≥ 1 the set X[−k,k] inherits an affine
CW complex structure the cells of which are the intersections with X[−k,k] of
the cells of X as well as the faces of these. Thus X[−k,k] admits the structure
of a free H-CW complex which is finite mod H .

Proposition 8.3.5. If each ascending and descending link is (n−1)-connected
[resp. (n−1)-acyclic with respect to R], then X[−k,k] is (n−1)-connected [resp.
(n− 1)-acyclic with respect to R].

Proof. For the (n − 1)-acyclic case, we apply 8.3.4(ii) to the pair of spaces
(X(−∞,t], X(−∞,k]) for t ≥ k to deduce that X(−∞,k] ↪→ X(−∞,t] induces
isomorphisms on Hk(·; R) for k ≤ n − 1. Taking the direct limit as t →
∞, we find that X(−∞,k] is (n − 1)-acyclic. Similarly, X[−k,∞) is (n − 1)-
acyclic. By the Mayer-Vietoris sequence X[−k,k] is (n − 1)-acyclic. For the
π1-case (omitting base points) and k ≤ t < ∞, the inclusion map induces
π1(X[−k,k]) → π1(X[−k,t]). By 8.3.4 (using the fact that f(X0) is discrete)
and the homotopy exact sequence 4.4.9, this is an isomorphism. Taking the
direct limit with respect to t, it follows that π1(X[−k,k])→ π1(X[−k,∞)) is an
isomorphism. Similarly π1(X[−k,k]) → π1(X(−∞,k]) is an isomorphism. Since
π1(X) is trivial, so is π1(X[−k,k]) by the Seifert-Van Kampen Theorem 3.1.18.
Then, under the appropriate hypothesis, the Hurewicz Theorem 4.5.2 gives
(n− 1)-connectedness of X[−k,k]. �

Corollary 8.3.6. Under the same hypotheses on ascending and descending
links the group H has type Fn [resp. type FPn with respect to R]. �
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D. Review of CAT(0) geometry:
In order to check that a group G is of type F one (usually) constructs a

finite K(G, 1)-complex X . It is often the case that one has a good idea for X ,
but one has difficulty proving that the universal cover X̃ is contractible. The
classical Cartan-Hadamard Theorem in differential geometry says that a sim-
ply connected open manifold equipped with a complete Riemannian metric of
non-positive sectional curvature is contractible. Since this curvature hypothe-
sis is local, it follows that any closed Riemannian manifold with non-positive
sectional curvature has a contractible universal cover. CAT(0) geometry ex-
tends this idea in useful ways. Here, we recall only what we need. A general
reference for CAT(0) geometry is [24].

A proper CAT(0) space is a metric space (M, d) having the following prop-
erties: (i) it is a non-empty geodesic metric space: this means that an isometric
copy of the closed interval [0, d(a, b)] called a geodesic segment joins any two
points a, b ∈ M ; (ii) for any geodesic triangle ∆ in M with vertices a, b, c
let ∆′ denote a triangle in the Euclidean plane with vertices a′, b′, c′ and
corresponding side lengths of ∆′ and ∆ equal; let ω and ω′ isometrically
parametrize geodesic segments from b to c and from b′ to c′ respectively; then
for any 0 ≤ t ≤ d(b, c), d(a, ω(t)) ≤ |a′ − ω′(t)|; and (iii) d is proper, i.e., the
closed ball around any a ∈M of any radius r is compact. A metric satisfying
(i) and (ii) is a CAT(0) metric.

In a CAT(0) space the geodesic segment from a to b is unique and varies
continuously with a and b. This implies (see I.3.13 in [24]):

Proposition 8.3.7. Fix a base point a ∈ M . For any b ∈ M let the path
ω[b,a] : [0, d(b, a)] → M isometrically parametrize the geodesic segment from
b to a. Then the function H : M × I → M , (b, t) �→ ω[b,a](td(b, a)) is a
contraction of M to the point a in which the track of every point b is the
geodesic segment from b to a. �

It follows that if a finite path connected CW complex Z has fundamental
group isomorphic to G, and if Z̃ admits a CAT(0) metric, then Z is a K(G, 1)-
complex and G has type F . We now describe a criterion for this.

In the definition of an affine CW complex X , whenever eβ is a face of eα

with characteristic maps hα : Cα → eα and hβ : Cβ → eβ, it was required
that h−1

α ◦ hβ map Cβ by an affine homeomorphism onto a face of Cα. If we
strengthen this by consistently requiring h−1

α ◦hβ to map Cβ isometrically onto
a face of Cα, then X is a metric CW complex . If, in addition, every convex
domain-cell Cα is a cube In for some n, then X is a cubical complex and each
n-cell is called an n-cube of X . The cubes of X thus have well-defined euclidean
metrics.10 In cubical complexes there is another kind of link. Extending the

10 See I.7.33 of [24] for more on cubical complexes. A path connected cubical complex
X supports a metric as follows: any two points a, b can be joined by a path
consisting of straight segments each lying in a cube and hence having a length;
the length of the path is then the sum of the lengths of the segments, and the
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definition of ∆N−1 (Sect. 2.2), let 1
2∆N−1 denote the convex hull of { 1

2ui}
where u1, . . . , uN are the coordinate unit vectors in RN . We define 1

2∆N−1

to be the simplicial link of the vertex 0 in the cube [0, 1]N ; simplicial links
of the other vertices of the cube are defined similarly. If v is a vertex of the
cubical complex X , the simplicial link of v in X is the union of the simplicial
links of v in all the cubes of X which have v as a vertex. Clearly, this is the
geometric realization of an abstract simplicial complex, namely, |simplkXv|.
Indeed, with respect to a Morse function there are subcomplexes |simplk↑

Xv|
and |simplk↓

Xv| corresponding to lk↑
Xv and lk↓

Xv in the obvious way (see Fig.
8.1) and lkXv and |simplkXv| are homeomorphic by a homeomorphism which
matches ascending [resp. descending] links (exercise).

An abstract graph is an abstract simplicial complex of dimension ≤ 1. A
flag complex is an abstract simplicial complex L with the property that a
finite set of vertices of L is a simplex iff each pair of those vertices is a 1-
simplex. There is an obvious bijection between flag complexes and abstract
graphs given by L �→ L1. Note that an abstract first derived of any regular
CW complex is a flag complex.

The key theorem which connects these concepts is due to Gromov (see
II.5.20 of [24]):

Theorem 8.3.8. Let X be a simply connected cubical rigid G-complex which
is finite mod G. If the simplicial link of every vertex of X is a flag complex,
then X admits a G-invariant CAT(0) metric which agrees with the (given)
Euclidean metric on each cube.

E. Prescribing finiteness properties:
We can now discuss an important special case in which there is a converse

to 8.3.6, namely, that if the ascending and descending links are not (n − 1)-
connected [resp. not (n− 1)-acyclic with respect to R] then the group H does
not have type Fn [resp. does not have type FPn with respect to R]. That
occupies the rest of the section.

Starting again, let L be a non-empty finite flag complex and let G be the
corresponding right-angled Artin group, i.e., the group presented by 〈S | R〉
where S is the set of vertices of L and R = {sisjs

−1
i s−1

j | si and sj span a 1-

simplex of L}. A finite K(G, 1)-complex Z is found as follows. Let T =
∏

w∈L0

S1
w

where each S1
w is a circle with the usual CW complex structure of one vertex

and one 1-cell; T has the product CW complex structure, and is a torus.
Each simplex σ of L defines a subtorus of T consisting of all points whose
coordinates11 not in σ are the base point of S1. The union of all such subtori
is Z. By 3.1.8, the fundamental group of Z is isomorphic to G.

distance between a and b is the inf of the lengths of these paths. This is the
CAT(0) metric referred to in 8.3.8.

11 Each coordinate of a point in T is labeled by a vertex of L. The (abstract) simplex
σ is a finite set of vertices.
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Let X be the universal cover of Z. The CW complex X is a cubical com-
plex. Indeed, if the simplex σ of L has dimension k, the associated subtorus in
Z has dimension k+1, and by 3.4.9 its pre-image in X consists of a collection
of pairwise disjoint copies of Rk+1 with the usual cubical structure; these are
called sheets12 in X .

Proposition 8.3.9. The simplicial link of each vertex of X is a flag complex.

Before proving this we observe that since Sk+1 ∼= Sk ∗S0 there is a canoni-
cal triangulation Kk+1 of Sk+1 defined inductively by Kk+1 = Kk ∗K0 where
K0 consists of two points, and ∗ denotes join.

Proof (of 8.3.9). Let v be a vertex of X which lies in the (k + 1)-dimensional
sheet Σ. Then |simplkΣ(v)| is a canonical triangulation of Sk. This is the part
of |simplkX(v)| in Σ. Each vertex of simplkX(v) is associated with a vertex
ψ(v) of L, and ψ defines a simplicial map simplkX(v)→ L such that the pre-
image of every n-simplex in stLψ(v) consists of n-simplexes and their faces.
Since L is flag it follows that simplkX(v) is flag. �

Together with 8.3.8 this proves:

Corollary 8.3.10. Z is a K(G, 1)-complex. �

The homomorphism φ : G → Z which takes each generator to 1 ∈ Z is
induced by a map f0 : Z → S1 which takes every 1-cell of Z homeomorphically
to S1, and one sees easily that f0 can be chosen so that its lift f : X → R is
affine on each cube. Thus f is a Morse function.

Proposition 8.3.11. Each ascending and descending link of a vertex of X is
homeomorphic to |L|.

Proof. We will show that for every vertex v of X both simplk↑
Xv and simplk↓

Xv
are isomorphic to L as abstract simplicial complexes. Orient the circles S1

w of
Z so that φ takes the corresponding generator of the fundamental group of Z
to 1 ∈ Z. Thus T is oriented, hence also Z; Z has just one vertex z. Let v be
a vertex of X , and let p : X → Z be the universal cover. For each vertex w of
L, v lies in an oriented line λw ⊂ X which p maps (as a covering projection)
to the circle S1

w in T , all other coordinates being the base point. The Morse
function f maps λw homeomorphically in an orientation-preserving fashion to
R. The link of v in λw is a 0-sphere consisting of points u+

w and u−
w mapped

by f above and below f(v) respectively. If the product of S1
w1

and S2
w2

in
T lies in Z then λw1 and λw2 span an oriented plane containing v which is
partitioned into cubes, and the simplicial link of v in this plane is the join of
the corresponding 0-spheres (the canonical triangulation of S1). Clearly, the
ascending link is the join of u+

w1
and u+

w2
while the descending link is the join

12 In terms of CAT(0) geometry these sheets are euclidean convex subspaces which
meet orthogonally in subsheets.
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of u−
w1

and u−
w2

. Thus we get a 1-simplex in simplk↑
Xv and in simplk↓

Xv for
each 1-simplex of L. Proceeding thus, we find isomorphisms from L to both
simplk↑

Xv and simplk↓
Xv. �

Theorem 8.3.12. (Bestvina-Brady Theorem Let L be a finite non-empty
flag complex, let G be the corresponding right-angled Artin group, let φ : G→
Z be the epimorphism taking all generators to 1 ∈ Z, and let H = ker(φ).
Then

(i) H has type Fn iff |L| is (n− 1)-connected;
(ii) H has type FPn with respect to R iff |L| is (n− 1)-acyclic with respect to

R.

For the proof we need:

Lemma 8.3.13. Let v be a vertex of X and let U be the union of the sheets
containing v.

(a) U is an open cone; in fact there is a homeomorphism from U to the space
lkXv × [0,∞)/lkXv × {0} taking v to the quotient point so that f is in-

creasing [resp. decreasing] on cone rays passing through points of lk↑
Xv

[resp. lk↓
Xv].

(b) For any vertex v of X, |simplXv| is a strong deformation retract of the
space X − {v}.

Proof. (a) is clear. For (b) we use 8.3.7. The deformation of all points of X
along geodesics ending at v gives the required strong deformation retract of
X − {v} onto |simplXv|. �

Proof (of Theorem 8.3.12). The “if” statements follow from 8.3.6 and 8.3.11.
We begin with the “only if” part of (i). We have a filtration {X[−k,k]}k∈N of X
by H-subspaces which are compact mod H . We will show that if the space |L|
is not (n−1)-connected then this filtration is not essentially (n−1)-connected,
hence (by 7.4.1) that H does not have type Fn. Fix an integer m > 0. Let v

be a vertex of X with f(v) > m. Let h : Sn−1 → |simplk↓
Xv| be homotopi-

cally non-trivial; by 8.3.11 there is such a map. Write J := (−∞, f(v)). Then

|simplk↓
Xv| ⊂ XJ . By 8.3.13(a), there is a homotopy H : Sn−1 × I → XJ

with H0 = h and H1(S
n−1) ⊂ X{0} = f−1(0); this is because pushing out-

wards from v in each relevant sheet lowers the f -value of points in |simpl↓Xv|.
We claim that H1 is not homotopically trivial in X − {v}, so certainly not
homotopically trivial in X[−m,m]. Since m is arbitrary this will be enough.

Suppose H1 could be extended to H̄ : Bn → X − {v}. Then we would
have H(Sn−1× I)∪ H̄(Bn) lying in X −{v}, so 8.3.13(b) would imply that h
is homotopically trivial in |simplkXv|. The analysis of the links in the proof

of 8.3.11 shows that |simplk↓
Xv| is a (simplicial) retract of |simplkXv|. Thus

h would be homotopically trivial in |simplk↓
Xv|, a contradiction.
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The “only if” part of (ii) is proved similarly: the map h is replaced by an

R-cycle which does not bound in |simplk↓
Xv|. The argument shows that the

filtration {X[−k,k]} is not essentially (n− 1)-acyclic. We deduce that H does
not have type FPn by the following lemma. �

Lemma 8.3.14. Let K be an (n − 1)-acyclic (with respect to R) free G-CW
complex and let {Ki} be a G-filtration where each G\Ki has finite n-skeleton.
If G has type FPn then {Ki} is essentially (n− 1)-acyclic with respect to R.

Proof. Let {F∗, ∂} be a free RG-resolution of R which is finitely generated in
dimensions ≤ n. By 8.1.1 there are mutually inverse chain homotopy equiv-

alences C∗(K; R)
f−→←
g

F∗. Let D be a chain homotopy between g ◦ f and

id. For any j there exists k such that D(Cn−1(Kj ; R)) ≤ Cn(Kk; R). Now
f#(Zn−1(K; R)) ≤ ∂(Fn), so g#f#(Zn−1(K; R)) ≤ g#∂(Fn) = ∂(g#(Fn)).
Since Fn is finitely generated, k can be chosen so large that g#(Fn) ≤
Cn(Kk; R). We write i : Kj ↪→ Kk. Then for any z ∈ Zn−1(Kj ; R),
i#(z) = g#f#(z) + ∂Dz ∈ ∂Cn(Kk; R). �

Remark 8.3.15. Lemma 8.3.14 generalizes 8.2.2, and is a partial homological
version of Brown’s Criterion 7.4.1. For a full version see [30].

Remark 8.3.16. There is yet another kind of finiteness property of groups. We
have seen the properties Fn and FPn over the ring R. We say that G has
type FP ′

n over R if there is an n-dimensional free G-CW complex X which
is (n − 1)-acyclic over R and is finite mod G. Clearly FP ′

n implies FPn, and
FP ′

1 is equivalent to “finitely generated” (as are FP1 and F1). FP ′
2 and FP2

are equivalent (exercise). It is unknown if FPn implies FP ′
n when n ≥ 3.

The proof of 8.3.12(ii) actually gives: |L| is (n− 1)-acyclic ⇒ H has type
FP ′

n ⇒ H has type FPn ⇒ |L| is (n−1)-acyclic. Thus for any n ≥ 2, Theorem
8.3.12 gives a method of constructing groups of type FP ′

n which are not of
type Fn.

Remark 8.3.17. In [10] similar methods are used to construct a group of type
FP (indeed, of type FP ′) which is not finitely presented.

Source Notes: This section is based on [10] as simplified in [36].

Exercise

1. Prove that if v is a vertex of a cubical complex X then lkXv and |simplXv| are
homeomorphic by a homeomorphism which matches ascending [resp. descending]
links.

2. Give an example of a regular CW complex which does not admit the structure
of an affine CW complex. Hint : (i) in that definition might not hold.

3. Prove that FPn and FP ′
n are equivalent for n ≤ 2.
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Finiteness Properties of Some Important
Groups

In this chapter we introduce Coxeter groups, Thompson’s groups, and (in
outline) outer automorphism groups of free groups, and we apply the theory
developed so far to these. The recent literature in group theory contains similar
treatments of many other important classes of groups, so our examples should
be seen merely as case studies.

9.1 Finiteness properties of Coxeter groups

In this section we define Coxeter groups. We show that finitely generated
Coxeter groups are of type F∞, while their torsion free subgroups of finite
index are of type F . In Sects. 13.9 and 16.6 we will refine the methods used
here to produce interesting examples.

A Coxeter system (G, S) consists of a group G and a set S of generators
of G, each of order 2, such that if m : S × S → N ∪ {∞} is the function
m(s1, s2) = the order of s1s2, then G has a presentation 〈S | (s1s2)

m(s1,s2)

∀s1, s2 ∈ S〉, with the convention that when m(s1, s2) =∞ the corresponding
relation is absent. A group G is called a Coxeter group if there exists a Coxeter
system (G, S). WE WILL ALWAYS ASSUME THAT S IS FINITE.

A subgroup of G is a standard (parabolic) subgroup if it is generated by a
subset of S. If T ⊂ S we denote by 〈T 〉 the corresponding standard subgroup.
A standard coset is a coset g〈T 〉 with g ∈ G and T ⊂ S. The length of g ∈ G
is the length of the shortest word in the free group F (S) which represents g
in G; it is denoted by l(g). A shortest word representing an element of G is
said to be reduced .

Proposition 9.1.1. If g = s1 · · · sd with d > l(g), there are indices i < j such
that g = s1 · · · ŝi · · · ŝj · · · sd (i.e., suppress si and sj).

Proof. This is a basic algebraic fact about Coxeter systems, in fact a charac-
terizing property. See, for example, p. 53 of [31]. �
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Corollary 9.1.2. The function T �→ 〈T 〉 from subsets of S to standard sub-
groups of G is a bijection. Moreover, T1 ⊂ T2 iff 〈T1〉 ⊂ 〈T2〉.

Proof. The required inverse is H �→ H ∩ S. If H is a standard subgroup then
H = 〈H∩S〉. If T ⊂ S, then T ⊂ 〈T 〉∩S. It remains to show that 〈T 〉∩S ⊂ T .
If g ∈ 〈T 〉 ∩ S then g = t1 . . . tr where each ti ∈ T , and l(g) = 1, so 9.1.1
implies that g = ti ∈ T for some i. �

Recall from Sect. 5.4 the notion of “ordered abstract simplicial complex”.
Examples come from partially ordered sets (posets): if (A,≤) is a poset the
associated ordered abstract simplicial complex , also denoted by A, has A as its
set of vertices and the strictly ordered (k + 1)-tuples ai0 < ai1 < · · · < aik

in
A as its k-simplexes. This passage from posets to complexes is an important
way of passing from discrete mathematics to topology. We will apply it to the
poset D of finite standard cosets formed from the Coxeter system (G, S); the
partial ordering is by inclusion. The corresponding ordered abstract simplicial
complex D is the Davis complex of (G, S). There is an obvious left action of G
on D by simplicial automorphisms which are order-preserving on simplexes.

Theorem 9.1.3. (Davis’ Theorem) The G-CW complex |D| is rigid, con-
tractible, and finite mod G. The stabilizer of each cell is finite.

Proof. Since G acts by order-preserving simplicial automorphisms, the action
on |D| is rigid. If {g0〈T0〉, · · · , gk〈Tk〉} are the vertices, in order, of a simplex
of D then it is easy to see that it can be written as g0{〈T0〉, · · · , 〈Tk〉}; here
each Ti ⊂ S generates a finite standard subgroup, and 〈Ti〉 ⊂ 〈Ti+1〉. By 9.1.2
it follows that Ti ⊂ Ti+1 for all i. Finiteness mod G follows. The stabilizer
of this simplex is g0〈T0〉g−1

0 which is finite. It only remains to prove that |D|
is contractible. This requires some preliminary discussion. We conclude this
proof after Lemma 9.1.6.

Let F be the full subcomplex of D generated by the finite standard sub-
groups of G. Every simplex of F is a face of one whose initial vertex is
〈∅〉 = {1}, the trivial standard subgroup. In other words, F is the cone {1}∗K
whose vertex is {1} and whose base K is the full subcomplex of D generated
by the non-trivial finite standard subgroups.1 As in 5.2.6, |F | is the topo-
logical cone {1} ∗ |K| and is a finite fundamental domain in |D|, i.e., a finite
subcomplex whose G-translates cover |D|. The subcomplex g|F | is a cone with
vertex {g} and base |gK|.

When 〈T 〉 is a non-trivial finite standard subgroup of G, let FT denote the
subcomplex of F generated by all (ordered) simplexes whose initial vertex is

〈T 〉; this is a full subcomplex of F . Clearly, |FT | =
⋂
s∈T

|F{s}|, and since FT

is a cone with vertex 〈T 〉, |FT | is contractible. Let Fσ(T ) =
⋃
s∈T

F{s}, i.e., the

1 K is sometimes called the nerve of (G, S).
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largest subcomplex of F each of whose simplexes lies in F{s} for some s ∈ T .

Then |Fσ(T )| =
⋃
s∈T

|F{s}|. Note that Fσ(T ) is not defined if T = ∅.

Lemma 9.1.4. When 〈T 〉 is non-trivial and finite, |Fσ(T )| is contractible.

Proof. Whenever U = {s0, · · · , sr} is a subset of T , 〈U〉 is a finite standard
subgroup of 〈T 〉, so FU is a cone. Thus {|F{s}| | s ∈ T } is a cover of |Fσ(T )| by
cones such that each intersection is also a cone. It is a general fact (Exercise
5 in Sect. 4.1) that if a CW complex Z admits a cover by subcomplexes
such that every intersection of members of the cover is contractible then Z is
contractible. Hence |Fσ(T )| is contractible. �

For g ∈ G, let B(g) = {s ∈ S | l(gs) < l(g)}. When g �= 1, B(g) �= ∅.
Proposition 9.1.5. For every g ∈ G, the standard subgroup 〈B(g)〉 is finite.

Proof. Write d = l(g). It is enough to show that every reduced word in 〈B(g)〉
has length ≤ d. Let h = t1 · · · tk be a word of minimal length in the elements
of B(g) and let g = s1 · · · sd be reduced. By 9.1.1, l(h) = k. For k ≤ d, we
claim that g = s1 · · · ŝi1 · · · ŝik

· · · sdt1 · · · tk; i.e., t1 · · · tk can appear at the
right hand end of a reduced representation of g; this is proved by induction
on k using the facts l(g) = d and l(h) = k. The details are left to the reader.
We now show that k ≤ d. Suppose k > d. By the Claim we have g = t1 · · · td,
so gtd+1 = t1 · · · td+1. Since td+1 ∈ B(g), the right side is not reduced, a
contradiction. �

At this point, some notation is useful. Order the members of G, 1 =
g0, g1, g2, . . . so that l(gi) ≤ l(gj) whenever i < j. Let An be the subcomplex
n⋃

i=0

giF of D, i.e., the largest subcomplex each of whose simplexes lies in some

giF .

Lemma 9.1.6. An ∩ gn+1F = gn+1Fσ(B(gn+1)) and therefore |An| ∩ |gn+1F |
is contractible.

Proof. First, B(gn+1) �= ∅, so the right side is defined. The inclusion ⊃ holds
because if s ∈ B(gn+1) then gn+1s = gi for some i ≤ n, and so any simplex of
gn+1F{s} with initial vertex gn+1s must lie in Ai ⊂ An, as well as in gn+1F .
For the inclusion ⊂, let 〈T 〉 be a vertex of F and let gn+1〈T 〉 ∈ An. Then
gn+1〈T 〉 = gi〈T ′〉 for some finite standard subgroup 〈T ′〉 and some i ≤ n,
hence gn+1 is not of minimal length in the coset gn+1〈T 〉, by Exercise 1.
Write gn+1 = kh where k is an element of minimal length in gn+1〈T 〉 and
h ∈ 〈T 〉. Then h �= 1 and, by an application of 9.1.1, l(gn+1) = l(k) + l(h).
Write h = t1 . . . tm where m = l(h) and each ti ∈ T . Then l(htm) = l(h)− 1.
So l(gn+1tm) = l(khtm) = l(k)+ l(htm) = l(gn+1)−1. Thus tm ∈ B(gn+1), so
gn+1〈T 〉 ∈ gn+1Fσ(B(gn+1)). This proves ⊂ for vertices, which is enough since
both sides are full subcomplexes of D. �
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Proof (of Theorem 9.1.3 (concluded)). For each n, |An| =
n⋃

i=0

gi|F | is con-

tractible; this is clear for n = 0, and follows for n > 0 by induction using 9.1.6.

Since |D| =
∞⋃

i=0

gi|F |, |D| is m-connected for all m and hence contractible, by

7.1.2. This completes the proof of Theorem 9.1.3. �

By 7.3.1, 7.2.2, 7.2.5 and 9.1.3 we get:

Theorem 9.1.7. Every finitely generated Coxeter group is of type F∞. Every
torsion free subgroup of finite index is of type F .

This leads to the question: do finitely generated Coxeter groups have tor-
sion free subgroups of finite index? The positive answer rests on two proposi-
tions for which we give references. As usual, GLn(R) denotes the group of all
invertible real n× n matrices.

Proposition 9.1.8. Let (G, S) be a Coxeter system and let S have n ele-
ments. Then G is isomorphic to a subgroup of GLn(R).

Proof. See [31, Chap. 2, Sect. 5]. In fact there is a “canonical representation”
of G in GLn(R). �

Proposition 9.1.9. (Selberg’s Lemma) Every finitely generated subgroup
of GLn(C) has a torsion free subgroup of finite index.

Proof. See, for example, [132, p. 326]. �

By 9.1.8 and 9.1.9 we can round out 9.1.7:

Proposition 9.1.10. A finitely generated Coxeter group has a torsion free
subgroup of finite index. �

Theorem 9.1.11. Let (G, S) be a Coxeter system and let d (≥ 1) be the
largest number such that there is a d-element subset T of S with 〈T 〉 finite.
Then every torsion free subgroup of finite index in G has geometric dimension
≤ d and has type F .

Proof. The dimension of |K| is d−1, so the dimension of |D| is d. The torsion
free subgroup H acts freely on D, and G\|D| is finite. �

Source Notes: The treatment here is based on [46]. I am indebted to John Meier
for help with this section.

Exercise

1. Show that a standard coset in a finitely generated Coxeter group contains a
unique element of minimal length.

2. Show that every standard subgroup of a Coxeter group is a Coxeter group with
respect to the Coxeter system defined by it.
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9.2 Thompson’s group F and homotopy idempotents

There are several groups named for Richard Thompson; the one discussed
here is2

F := 〈x0, x1, . . . | xxi
n = xn+1 ∀ 0 ≤ i < n〉.

Although this elegant presentation has infinitely many generators and rela-
tions, F is clearly generated by x0 and x1. Using Tietze transformations it
can be shown that F admits a finite presentation as follows: for n = 2, 3 or 4
define xn = x

xn−2

n−1 ; then F is presented by

〈x0, x1 | xx0
2 = x3, x

x1
3 = x4〉.

From the infinite presentation we see that F admits a shift homomorphism
φ : F → F , xi �→ xi+1 for all i. Then φ2(x) = φ(x)x0 for all x ∈ F so φ is
an idempotent up to conjugacy. Indeed, the triple (F, φ, x0) is the universal
example of an idempotent up to conjugacy in the sense of the following (whose
proof is immediate):

Proposition 9.2.1. Let G be a group. When an endomorphism ψ : G → G
and an element g0 ∈ G are such that ψ2(g) = ψ(g)g0 for all g ∈ G, then
there is a unique homomorphism ρψ : F → G such that ρψ(x0) = g0 and
ρψ ◦ φ = ψ ◦ ρψ. �

We now prepare to represent F as a group of homeomorphisms of R (Corol-
lary 9.2.3). Here, it is convenient to consider the homeomorphisms of R as act-
ing on the right; thus we write (t)h rather than h(t), so (t)(hk) means ((t)h)k.
Let x̄n be the piecewise linear homeomorphism of R which is the identity on
(−∞, n], has slope 2 on [n, n + 1], and has slope 1 on [n + 1,∞). Let T be
the unit translation homeomorphism of R, t �→ t + 1. Then x̄T

n = x̄n+1. The
group F̄ of homeomorphisms of R generated by {x̄n | n ≥ 0} admits an endo-
morphism φ̄ : F̄ → F̄ , x̄ �→ x̄T . One checks that x̄x̄i

n = x̄n+1 when i < n, so
φ̄2(x̄) = φ̄(x̄)x̄0 . Thus, by 9.2.1, there is an epimorphism ρ : F → F̄ , xn �→ x̄n,
and ρ ◦ φ = φ̄ ◦ ρ. We will now show that ρ is an isomorphism, and at the
same time we will establish a “normal form” for the elements of F .

Consider elements x ∈ F with the following properties:

(1) x = xi1 . . . xik
x−1

jm
. . . x−1

j1
with i1 ≤ . . . ≤ ik, j1 ≤ . . . ≤ jm, where k ≥ 0

and m ≥ 0; and
(2) when xi and x−1

i both occur in this product then xi+1 or x−1
i+1 also occurs.

Note that when (1) holds but not (2) then there is a subproduct of the form
xiφ

i+2(y)x−1
i which is equal to φi+1(y); thus any x satisfying (1) can be re-

expressed to satisfy both (1) and (2). We say that x is in normal form if it is
so expressed. Existence and uniqueness of normal forms come from:

2 Notation: ab means b−1ab and [a, b] means aba−1b−1.
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Proposition 9.2.2. Every x ∈ F can be expressed as a product of the xi’s
and their inverses to satisfy (1) and (2) in exactly one way.

Proof. By 9.2.1 it is enough to show that any x̄ ∈ F̄ has a unique normal form
as above. Let x̄ = x̄i1 . . . x̄ik

x̄−1
jm

. . . x̄−1
j1

be the image under ρ of a normal form

in F (this is what we mean by a normal form in F̄ ). Assume all subscripts
≥ i. Then the right derivative of x̄ at the point t = i is 2n where n is the x̄i

exponent sum in the normal form. This will hold for any other normal form
of x̄.

Suppose there were two different normal forms for x̄, and among all such
choose x̄ and the two different normal forms for x̄ so that the sum L of
their lengths is as small as possible. Certainly L > 0. Let i be the smallest
subscript occurring in either normal form. They cannot both start with x̄i

(by minimality) or end with x̄−1
i . Since they have the same x̄i exponent sum,

one must have the form x̄iȳx̄−1
i while the other, z̄, only has subscripts > i. So

ȳ = z̄x̄i = φ̄(z̄) as homeomorphisms. Hence the formal expressions ȳ and φ̄(z̄)
are equal by our minimality supposition. But then ȳ only involves subscripts
≥ i + 2, and this contradicts the fact that x̄iȳx̄−1

i is a normal form. �

Corollary 9.2.3. The epimorphism ρ : F → F̄ is an isomorphism. �

Since F̄ is obviously torsion free and φ̄ is obviously injective (it comes from
a conjugation) we have:

Corollary 9.2.4. F is torsion free and φ is injective. �

It follows that F1 = φ(F ) is a copy of F with presentation

〈x1, x2, . . . | xxi
n = xn+1 ∀ 1 ≤ i < n〉.

Hence φ(F1) ≤ F1 and we have:

Proposition 9.2.5. F is the ascending HNN extension of F1 by φ | F1 : F1 �

F1 with stable letter x0. �

Repeating with respect to F2 = φ(F1), etc., we see that F is an infinitely
iterated HNN extension where the intersection of all the base groups F1, F2, . . .
is trivial.

Proposition 9.2.6. F contains a free abelian subgroup of infinite rank. Hence
F has infinite geometric dimension.

Proof. We work in F̄ . The homeomorphisms (of R) x̄2ix̄
−1
2i+1 where i =

0, 1, 2, . . . have disjoint supports and hence generate an abelian subgroup. It
is easy to see that they freely generate. The last sentence follows from 7.2.11.
�

In Sect. 9.3 we will show that the group F has type F∞.
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Theorem 9.2.7. Every quotient of F by a non-trivial normal subgroup is
abelian, hence is a quotient of Z2.

Proof. Let N � F . Consider a non-trivial element of N with normal form
xi1 . . . xik

x−1
jm

. . . x−1
j1

. By conjugating and inverting as needed we may as-
sume either i1 < j1 or m = 0 (i.e., no “negative part”). Rewrite this as
xr

i1
xir+1 . . . xik

x−1
jm

. . . x−1
j1

where either k < r + 1 (meaning the whole “pos-
itive part” is xr

i1
) or k ≥ r + 1 and ir+1 > i1. Of course, r ≥ 1. We define

the length3 of this element to be k + m. The length is not changed by in-
version and is not increased by the conjugations referred to above. Thus we
may make the additional assumption that the non-trivial element of N under
consideration has minimal length among all non-trivial members of N . We
call it x = xr

i1
xir+1 . . . xik

x−1
jm

. . . x−1
j1

.

Claim. When xp
n = v mod N , and all the subscripts in the normal form of v

are larger than n, then for all s ≥ 0 we have φs(v) = xp
n mod N .

Proof (of Claim). xp
n = x−s

n vxs
n mod N , and x−s

n vxs
n = φs(v).

We will use the Claim twice. First, writing w = xj1 . . . xjm
x−1

ik
. . . x−1

ir+1

we have xr
i1

= w mod N . By the Claim, φs(w) = xr
i1

mod N for all s ≥ 0.
Given n ≥ 0 there exists s ≥ 0 such that x−1

n φs(w)xn = φs+1(w). Thus
x−1

n xr
i1xn = xr

i1 mod N , so xr
i1 commutes with F mod N .

If n > i1 then xn+r = x−r
i1

xnxr
i1

= xn mod N . By the Claim xn = xn+r+s

mod N for all s ≥ 0. In particular xm = xm+1 mod N when m is large. Finally,
let 0 ≤ p < q. Then for sufficiently large n we have x−n

p xqx
n
p = xq+n = xq+n+1

mod N , and xq+n+1 = x−n
p (x−1

p xqxp)x
n
p . So xq = x−1

p xqxp mod N ; i.e., F/N
is abelian. �

Corollary 9.2.8. If G is a group and ρ : F → G is a homomorphism then
either ρ is a monomorphism or ρ(xn) = ρ(x1) for all n ≥ 1.

Proof. The abelianization F → F/[F : F ] has this property, so the statement
follows from 9.2.7. �

The group F and the shift homomorphism φ play an important role in
understanding homotopy idempotents. Recall that when g : Y → X is a
domination and g ◦ f � idX then f ◦ g : Y → Y is a homotopy idempotent;
i.e., writing h = f ◦ g, h � h2. A homotopy idempotent h : Y → Y splits
(or is splittable) if there exist a space X and maps f and g as above so that
h � f ◦ g and g ◦ f � idX . Otherwise, we say that h does not split (or is
unsplittable).

Assume Y is a path connected CW complex with base vertex y and that
h : Y → Y is a homotopy idempotent. By 3.3.1 we may alter h by a homotopy
to make it a pointed map h : (Y, y)→ (Y, y). If H : h � h2 is a homotopy and

3 More generally the length of a normal form in F is the number of “letters” x±
i

occurring in it, well-defined because of the uniqueness of normal forms.



204 9 Finiteness Properties of Some Important Groups

ω : I → Y is the loop ω(t) = H(ω, t), then on fundamental group we have
h2

#([σ]) = h#([σ])[ω] for all loops σ in Y at y. So h# is an idempotent up to
conjugacy and, by 9.2.1, we have a canonical commutative diagram

F
ρ ��

φ

��

π1(Y, y)

h#

��
F ρ

�� π1(Y, y)

Theorem 9.2.9. Let h : (Y, y) → (Y, y) be such that4 h �
ω

h2 where ω is a

loop at y. The following are equivalent (where h# : π1(Y, y)→ π1(Y, y) is the
induced homomorphism):

(i) h splits;
(ii) h is homotopic to h′ : (Y, y)→ (Y, y) such that5 h′ �

y
(h′)2;

(iii) image(h#) = image(h2
#);

(iv) h#([ω]) = h2
#([ω]).

Proof. (i) ⇒ (ii): Since h splits there is a homotopy commutative diagram of
base point preserving maps

Y �� h

g

��

Y

g

��
X ��

id
X

f
''%%%%%%%

Thus k := g ◦ f : (X, x) → (X, x) is a pointed homotopy equivalence (by
Remark 4.1.6) and k � idX . Let k′ be a pointed homotopy inverse for k.
Then g ◦ (f ◦ k′) �

x
idX . Define h′ := f ◦ k′ ◦ g. Then the following diagram

commutes in Pointed Homotopy

(Y, y) ��
h′

g

��

(Y, y)

g

��
(X, x) ��

idX

(X, x)

f◦k′
((���������

4 In general, given pointed maps f0, f1 : (Z′, z′) → (Z′′, z′′) and a loop ω at z′′ we
say f0 �

ω
f1 iff there is a homotopy K : f0 � f1 such that K(z′, t) = ω(t). By

the Homotopy Extension Property this only depends on [ω] ∈ π1(Z
′′, z′′) (when

we are dealing with pointed CW complexes). If ω is the constant loop at z′′ we
write f0 �

z′′
f1.

5 Such a map h′ is called a pointed homotopy idempotent.
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so h′ is a pointed homotopy idempotent. Since k′ � id, h′ � f ◦ g � h.
(ii) ⇒ (iii): Let h′ �

α
h where h′ is a pointed homotopy idempotent and

α is a loop at y. Then h′
# = (h′

#)2 : π1(Y, y) → π1(Y, y). Hence (exercise)

h2
#(·) = [h(α)]−1h#(·)[h(α)], from which it follows that h# and h2

# have the
same image.

(iii) ⇒ (iv): For some [σ] ∈ π1(Y, y) h#([ω]) = h2
#([σ]) so h2

#([ω]) =

h3
#([σ)] = h#(h2

#([σ])) = h#([ω]−1h#([σ])[ω]) = h([ω]).
(iv) ⇒ (i): We sketch this proof leaving the details as an exercise. Define

X := Tel(h), define g : Y → X by g(y) = i(y) ∈ M(h)0 ⊂ Tel(h), and define
f : X → Y to be the map6 induced by a homotopy H : h �

ω
h2 which agrees

with h on every “integer” copy of Y in X . Then f ◦ g = h. It is to be shown
that if h#([ω]) = h2

#([ω]) then g ◦ f � idX .

Step 1. The hypothesis h#([ω]) = h2
#([ω]) implies (g◦f)# is an epimorphism

on π1 where the base point of X is g(y).
Step 2. For any finite CW complex K we have g# = id : [K, X ] → [K, X ]
where [K, X ] denotes the set of homotopy classes of maps K → X ; this is
because X is the mapping telescope of h � h2 (see Exercise 1).
Step 3. The previous steps imply that for all n (g◦f)# : πn(X, x)→ πn(X, x)
is an isomorphism, hence by the Whitehead Theorem (Exercise 1, Sect. 4.4)
g ◦ f is a homotopy equivalence. It follows that X is finitely dominated.
Step 4. Step 2 holds for finitely dominated CW complexes, hence g ◦ f is
homotopic to idX . �

Remark 9.2.10. Note that ρ depends on [ω] coming from a homotopy H : h �
h2, whereas the issue of whether h splits is not related to a particular H and
ω.

Theorem 9.2.11. (Freyd-Heller Theorem) h splits iff ρ is not a monomor-
phism. In particular, if Z is a K(F, 1)-complex and h : Z → Z is induced by
the shift φ : F → F then h is a homotopy idempotent which does not split.

Proof. This follows from 9.2.8 and 9.2.9. �

Source Notes: Thompson’s Group F was first studied by Richard Thompson;
his work appeared in [112]. The group was later rediscovered, independently, by
Freyd and Heller [65] and by Dydak and Minc [57]. (The paper [65] circulated in
preliminary preprint form for many years before its publication.) The material on
homotopy idempotents in this section is based on [65]. For more on this group see
the source notes for Sect. 9.3. [37] is a useful expository reference.

6 More precisely, if π : X → R is the obvious map and y ∈ Y , write [y, t] for the
point of X whose Y -coordinate is y and which projects under π to t. Then the
formula for f is f([y, t]) = Ht−[t](y).
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Exercises

1. Let X = Tel(h). With notation as in the proof of 9.2.9, prove the following
Lemma: Let j : X → X be a map such that j | Y is homotopic to inclusion
Y ↪→ X. Then, for every finite CW complex K, j# : [K, X] → [K, X] is the
identity function.

2. Show that the following are presentations7 of F (where xn is defined to be
x

xn−2
n−1 ):
(i) 〈x0, x1 | xx0

2 = x3, x
x1
3 = x4〉 and

(ii) 〈x0, x1 | xx0
2 = x3, x

x0
3 = xx1

3 〉.

9.3 Finiteness properties of Thompson’s Group F

In this section we prove that Thompson’s Group F has type F∞ (9.3.19).

A. Binary trees and subdivisions of I:
By a complete rooted binary tree we mean a pointed oriented tree (Y, y0)

where y0 meets two edges and all other vertices meet three edges. The base
point y0 is the root . Each edge is oriented away from the root; in other words,
reduced edge paths starting at y0 are in agreement with the chosen orien-
tations on edges. We impose an additional labeling on the edges of Y : each
vertex is the initial point of exactly two (oriented) edges; one of those edges
is labeled 0 and the other is labeled 1. One should think of Y as embedded in
R2 with all oriented edges pointing downward, the 0-edge to the left and the
1-edge to the right; see Fig. 9.1.

By a finite tree we mean a finite rooted subtree (T, y0) of (Y, y0) with
inherited orientation and labeling such that y0 has degree 2 or 0 (the latter
only in the trivial tree {y0}), while all other vertices have degree 3 or 1 (the
latter vertices being called leaves of T ).

By a binary subdivision of the closed unit interval I we mean a partition
(in the sense of calculus) of I into subintervals whose end points have the form
m
2n where m and n are (non-negative) integers. The set of subintervals in such
a subdivision is to be ordered by the R-ordering of their left endpoints.

Each finite tree T determines a binary subdivision of I and a bijection
between the leaves of T and the subintervals in the subdivision as follows: if
T is the trivial tree, the corresponding subdivision has just the one interval
I, with bijection {y0} → {I}. Assume the subdivision and bijection defined
for all trees having k leaves. Let T ′, with (k + 1) leaves, be obtained from
T by including in T ′ the two edges of Y which touch the ith leaf of T (as
determined by the T -bijection) but which are not in T ; then the subdivision
corresponding to T ′ is obtained from the one corresponding to T by bisecting

7 Because of the word length of relations when written in terms of x0 and x1,
these are known as “the (10,18) presentation” and “the (10,14) presentation” of
F respectively.
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the ith subinterval of the latter; this enlargement replaces the ith leaf of T by
two leaves ordered by “0, 1,” and the ith subinterval of the T -subdivision by
two subintervals of half the size ordered by “left,right.” This together with
the T -bijection defines the T ′-bijection.

If T is a finite tree, there is a unique reduced edge path from y0 to each leaf,
and, using the 0- and 1-labels on edges, this gives an unambiguous description
of a leaf by a finite string of 0’s and 1’s. Using the lexicographic ordering on
these strings and the ordering inherited from R on the subintervals of the
T -subdivision, the T -bijection is clearly order-preserving.

We will call a binary subdivision which arises from a finite tree, as above,
a tree subdivision of I. Not every binary subdivision is a tree subdivision.

B. The group F as dyadic PL homeomorphisms of I:
Let PL2(I) denote the group of all piecewise linear increasing homeomor-

phisms of I whose points of non-differentiability are dyadic rational numbers
(i.e., of the form m

2n ) and all of whose slopes are integer powers of 2. An or-
dered pair of finite binary trees (S, T ) is balanced if S and T have the same
number of leaves. Such an ordered pair defines an element h of PL2(I): the
domain and codomain copies of I are subdivided by S and T as in Part A, and
h is defined to take the ith subinterval of the domain by an affine increasing
homeomorphism to the ith subinterval of the codomain. Of course another
balanced pair (S′, T ′) can define the same h ∈ PL2(I); for example, if (S, T )
defines h, and S ⊂ S′, then there is a finite binary tree T ′ ⊃ T such that
(S′, T ′) also defines h.

Proposition 9.3.1. If h ∈ PL2(I) then h is defined by some balanced pair of
finite binary trees.

Proof. Let K be a dyadic subdivision of I such that h is affine on each interval
in K. Let n be such that the subdivision K ′ with vertices { m

2n | 0 ≤ m ≤ 2n}
subdivides K. Choose k so that the subdivision K ′′ having vertices { j

2k |
0 ≤ j ≤ 2k} subdivides h(K ′). Then K ′ and K ′′ are tree subdivisions, as is
h−1(K ′′), and h : h−1(K ′′)→ K ′′ is a simplicial isomorphism. �

We now define an isomorphism between F and PL2(I). As in Sect. 9.2 we
consider homeomorphisms of I as acting on the right in defining the group
structure. Define x̃0 and x̃1 to be the elements of PL2(I) defined by the
balanced pairs indicated in Fig. 9.1.

One easily checks that x0 �→ x̃0 and x1 �→ x̃1 extends to a homomorphism
ρ̃ : F → PL2(I).

Theorem 9.3.2. ρ̃ : F → PL2(I) is an isomorphism.

Proof. The proof that ρ̃ is a monomorphism is similar to the proof of the
corresponding statement in 9.2.3. That ρ̃ is an epimorphism follows from 9.3.1.
�
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x 0
~

x 1
~

, ,
( ) ( )

Fig. 9.1.

In view of 9.3.2 we will identify F with PL2(I) via ρ̃ from now on.

C. An F -poset:
Let T denote the set of all finite trees; recall that this means: finite rooted

subtrees of the complete rooted binary tree (Y, y0) as described above; in
particular, T is closed under finite union and finite intersection. If T has n
leaves and if 1 ≤ i ≤ n the ith simple expansion of T ∈ T is the smallest
finite tree ei(T ) containing T such that the ith leaf of T is not a leaf of ei(T );
i.e., ei(T ) is the union of T and a “caret” at the ith leaf of T . If i > n it is
convenient to define ei(T ) = T . Thus ei : T → T . An expansion is a finite
composition of simple expansions. The length of an expansion e is ≤ k if e is
the composition of at most k simple expansions. Note that the union of two
finite trees is an expansion of both.

Lemma 9.3.3. If i < j, eiej = ej+1ei. �

Lemma 9.3.4. Given expansions e and e′ there exist expansions ē and ē′ such
that ē ◦ e = ē′ ◦ e′.

Proof. When e and e′ have length ≤ 1 this follows from 9.3.3. The general
case is done by induction on the sum of the lengths of e and e′. �

By 9.3.1, any g ∈ F is defined by some balanced pair (U, V ): g maps the
intervals of the U -subdivision of I affinely onto those of the V -subdivision of
I. If e(U) is an expansion of U it follows that g is also defined by the balanced
pair (e(U), e(V )). Thus if (g, S) ∈ F × T there exist e and T such that
the balanced pair (e(S), T ) defines g. This leads us to define an equivalence
relation on F × T by (g1, S1) ∼ (g2, S2) if there exist an expansion e and
T ∈ T such that (e(Si), T ) is a balanced pair defining gi for i = 1, 2 (same e
and T for S1 and S2). Using 9.3.4 one easily proves:

Lemma 9.3.5. This is indeed an equivalence relation on F × T . �

We write B := F × T /∼.

Lemma 9.3.6. The left action of F on F × T g(h, T ) = (gh, T ) induces a
left action of F on B. �
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We write [h, T ] for the member of the F -set B defined by (h, T ). The F -
action is g[h, T ] = [gh, T ]. That the simple expansion functions ei : T → T
define functions Ei : B → B where Ei([h, T ]) = [h, ei(T )] follows from:

Lemma 9.3.7. If (g1, S1) ∼ (g2, S2) then for all i (g1, ei(S1)) ∼ (g2, ei(S2)).

Proof. There exist e and T such that (e(Si), T ) is a balanced pair representing
gi for i = 1, 2. We write (g1, S1) ∼

k
(g2, S2) if the length of this e is ≤ k. The

lemma is proved by induction on k using 9.3.3. �

Lemma 9.3.8. Each Ei is an F -function; i.e., Ei(g[h, T ]) = gEi([h, T ]). �

Define f : B → N by f([h, T ]) = the number of leaves of T . This is well
defined.

Lemma 9.3.9. Let n ≥ i. The function Ei maps f−1(n) bijectively onto
f−1(n + 1).

Proof. That Ei is injective is clear. The proof that Ei is surjective should be
clear from Example 9.3.10, below. �

Let Bn = f−1([1, n]). Then 9.3.9 says that when n ≥ i, Ei maps B−Bn−1

bijectively onto B−Bn. We call Ei a simple expansion operator on B−Bn−1

and we call its inverse Ci : B−Bn → B−Bn−1 a simple contraction operator.

Example 9.3.10. Let T have more than i leaves. If the ith and (i + 1)th leaves
form a caret (i.e., T = ei(T

′) for some T ′ ∈ T ) then Ci([h, T ]) = [h, T ′]. If
these leaves do not form a caret, let S be any tree with the same number of
leaves as T such that S = ei(S

′) for some S′ ∈ T . Let g ∈ F be represented
by (S, T ). Then [g, S] = [1, T ], so [hg, S] = [h, T ] and Ci([h, T ]) = [hg, S′].

We make B into an F -poset by defining [g, S] ≤ [h, T ] if for some
i1, i2, . . . , ir, with r ≥ 0, Eir

◦ · · · ◦ Ei1([g, S]) = [h, T ]. Each Bn is an F -
sub-poset of B.

Lemma 9.3.11. The F -action on the set B is a free action. �

D. Finiteness Properties of F :
As usual we reuse the symbol B for the associated ordered abstract sim-

plicial complex defined by the poset B.

Proposition 9.3.12. The induced F -action on |B| is a free action.

Proof. The stabilizers of vertices are trivial by 9.3.11. Since the action of F
on [h, S] preserves the number of leaves of S, the stabilizer of each simplex of
S is also trivial. �

Proposition 9.3.13. The poset B is a directed set.
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Proof. Let {b1, . . . , bk} ⊂ B. Write bi = [hi, Si]. Then Si expands to S′
i such

that (hi, S
′
i) ∼ (1F , T ′

i ) for some T ′
i . Write b′i = [hi, S

′
i] = [1F , T ′

i ]. Then bi ≤ b′i

for all i. Let T =

k⋃
i=1

T ′
i and write b = [1F , T ]. Then b′i ≤ b for all i. �

Proposition 9.3.14. If a poset P is a directed set then |P | is contractible.

Proof. Whenever K is a finite subcomplex of P there exists v ∈ P such that
the cone v ∗ |K| is a subcomplex of |P |. Thus the homotopy groups of |P | are
trivial, so, by the Whitehead Theorem, |P | is contractible. �

Corollary 9.3.15. |B| is contractible. �

The function f : B → N extends affinely to a Morse function8(also denoted
by) f : |B| → R. Then |Bn| = f−1((−∞, n]).

Proposition 9.3.16. The CW complex F\|Bn| is finite.

Proof. Let [h, S] ∈ Bn. Its F -orbit contains [1, S] and there are only finitely
many finite trees having at most n leaves. This shows that the 0-skeleton of
F\|Bn| is finite. The rest is clear. �

Proposition 9.3.17. For each integer k there is an integer m(k) such that

if b is a vertex of B and f(b) ≥ m(k), then the downward link lk↓
|B|b is k-

connected.

We postpone the proof of 9.3.17 until the next subsection.

Proposition 9.3.18. For n ≥ m(k), |Bn| is k-connected. Hence {|Bn|} is
essentially k-connected for all k.

Proof. By 9.3.17 and 8.3.4 we conclude that (|Bn|, |Bn−1|) is (k+1)-connected
if n ≥ m(k). When combined with the Whitehead Theorem and 9.3.15 this
proves what is claimed. �

By 7.4.1 and 7.2.2 we conclude:

Theorem 9.3.19. (Brown-Geoghegan Theorem) Thompson’s Group F
has type F∞. �

E. Analysis of the downward links:
It remains to prove 9.3.17. We begin with two topics of general interest

(9.3.20 and 9.3.21).
If U = {Xα} is a cover of the CW complex X by subcomplexes, the nerve

of U is the abstract simplicial complex N(U) having a vertex vα for each Xα,

and a simplex {vα0 , . . . , vαk
} whenever

k⋂
i=0

Xαi
�= ∅. The following property of

nerves is widely used in topology.

8 See Section 8.3.
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Proposition 9.3.20. If the cover U is finite and if

k⋂
i=0

Xαi
is contractible

whenever it is non-empty, then |N(U)| and X are homotopy equivalent.

Proof. There is a vertex vα0,...,αk
of the first derived sd|N(U)| for each sim-

plex {vα0 , . . . , vαk
} of N(U). Pick a point xα0,...,αk

∈
k⋂

i=0

Xαi
. Define a map

α : sd |N(U)| → X taking each vertex vα0,...,αk
to the point xα0,...,αk

; the
contractibility hypothesis makes it possible to extend α so that the simplex

whose first9 vertex is vα0,...,αk
is mapped into

k⋂
i=0

Xαi
. A straightforward gen-

eralization of the proof of 4.1.5 shows that α is a homotopy equivalence. �

The particular nerve to which this will be applied is the abstract simplicial
complex10 Ln whose simplexes are the sets of pairwise disjoint adjacent pairs
in the ordered set (1, 2, . . . , n).

Proposition 9.3.21. For any integer k ≥ 0 there is an integer m(k) such
that |Ln| is k-connected when n ≥ m(k).

Proof. By induction on k we prove a sharper statement:
Claim: given k ≥ 0 there are integers m(k) and q(k) such that when n ≥
m(k) the k-skeleton |Ln|k is homotopically trivial by means of a homotopy
H(k) in which, for every simplex σ of |Ln|k, H(k)(|σ| × I) is supported by
a subcomplex having ≤ q(k) vertices. For k = 0 we can take m(0) = 5 and
q(0) = 3. Assume the Claim holds when k is replaced by k − 1 ≥ 0. For any

k-simplex σ, H(k−1)(|•σ| × I) is supported by a subcomplex J having at most
r = (k +1)(q(k− 1)) vertices. If n ≥ 2r+2 there is a vertex v of Ln such that
J lies in the link of v. Extend H(k−1) to H(k) in two steps: first, H(k) is to be
the identity map on |σ|×{0} and constant on |σ|×{1}; second, (since no new
vertices were involved in this first extension) we can extend H (k) to |σ| × I
by coning at v. Letting m(k) = max{m(k − 1), 2r + 2} and q(k) = r + 1, the
induction is complete. �

We now consider lk↓
|B|b where k is given and f(b) = n.

Proposition 9.3.22. There is a finite cover U of lk↓
|B|b such that all non-

empty intersections of members of U are contractible, and the nerve of U is
isomorphic to Ln.

For this we need a lemma:

9 We are using the ordering Convention preceding 5.3.7.
10 If Γn is the abstract graph whose vertices are {1, 2, . . . , n} and whose 1-simplexes

are the adjacent pairs {j, j + 1} then Ln is often called the matching complex of
Γn.
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Lemma 9.3.23. A set {Ci1(b), . . . , Cir
(b)} of simple contractions of b, writ-

ten so that i1 < . . . < ir, has a lower bound with respect to ≤ iff the pairs
{ij, ij+1} are pairwise disjoint. If there is a lower bound there is a greatest
lower bound.

Proof. If there is a lower bound [h, T ] then by equivariance we need only
consider the case h = 1. Then b is an expansion of [1, T ] and so has the form
[1, S]. Since [1, T ] ≤ Cij

(b) ≤ [1, S] for every j, each Cij
(b) must have the

form [1, Sij
] where eij

(Sij
) = S. The required conclusion follows. Moreover,[

1,
⋂
j

Sij

]
is the greatest lower bound. The converse is clear. �

Proof (of 9.3.22). Consider all the simple contractions b1, . . . , bn−1 of b. The

downward link lk↓
|B|b = |B<b| and is covered by the subcomplexes |B≤bi

|.
By 9.3.23 the nerve of this cover is Ln. Moreover, if

⋂
j

|B≤bij
| �= ∅ then this

intersection is |B≤b̄| where b̄ is the greatest lower bound of the bij
’s. This is

contractible by 9.3.14. �

Proof (of 9.3.17). Combine 9.3.20, 9.3.21 and 9.3.22. �

Other interesting properties of the group F can be found in Sect. 13.11
and in 16.9.7.

Source Notes: The poset B has a richer interpretation as the poset of bases of the
free Cantor algebra (or Jónnson-Tarski algebra) on one generator. For this, see [30]
and [81]. The proof of Theorem 9.3.19 given here is adapted from [30]. For the first
(quite different) proof see [32]. Other interesting proofs are in [150] and [62].

Exercises

1. Give an example of a binary subdivision of I which is not a tree subdivision.
2. In the light of 9.3.1, characterize the group F̄ in Sect. 9.2 intrinsically as a group

of homeomorphisms of R.
3. Prove the lemmas in Sect. C.

9.4 Thompson’s simple group T

All members of PL2(I) (= F ) fix {0, 1} ⊆ I. Thus they induce homeomor-
phisms of the circle S1 (via the quotient map q : I → S1, t �→ e2πit) which
fix the point 1 ∈ S1. In this section we will identify the group of all such
homeomorphisms of the circle with the group F .

A dyadic rotation is a homeomorphism S1 → S1 of the form ρx : eit �→
ei(t+x) where x ∈ I is a dyadic rational number. We write T or PL2(S

1) for
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the group of homeomorphisms of S1 generated by F (identified as above) and
the dyadic rotations. Thus F is the subgroup of T which fixes 1 ∈ S1. This
group T is another Thompson group of great interest. It was the first known
infinite finitely presented simple group.

A dyadic point of S1 is a point of the form e2πix where x is a dyadic rational
number. A dyadic subdivision of S1 consists of a finite set V of dyadic points
of S1 with |V | ≥ 2. This set V defines a set of |V | intervals11 in S1: their
end-points lie in V and their interiors are disjoint from V . Clearly we have:

Proposition 9.4.1. If f ∈ T , there are dyadic subdivisions V1 and V2 of S1

such that f maps V1 bijectively onto V2 preserving cyclic order in S1, and f
has constant derivative on each (open) interval defined by V1 as above. �.

In words: the members of T are the “orientation-preserving, dyadic, piece-
wise linear” homeomorphisms of S1.

The group T is clearly countable. But we can prove much more:

Theorem 9.4.2. The group T is of type F∞.

Proof. Since we have a convention Rn ⊆ Rn+1, we can write ∆n ⊆ ∆n+1

and define ∆∞ := lim−→
n

∆n to be the “infinite simplex.” This is the geometric

realization of the abstract simplicial complex having the obvious orthogonal
basis of unit vectors in R∞ := lim−→

n

Rn as vertices, and all finite subsets of

vertices as simplexes. We identify the (countable) set of vertices of ∆∞ with
the dyadic points of S1 (by some bijection). Since T permutes the dyadic
points, this defines a rigid action of T on ∆∞ by simplicial isomorphisms.
The stabilizer of each n-simplex is clearly isomorphic to F n+1, the (n + 1)-
fold product of copies of F . And ∆∞ has one cell mod T in each dimension.
Thus the theorem follows from 7.3.1 and 9.3.19. �

This proof used our previous knowledge that F has type F∞. There is also
a direct proof of 9.4.2 which runs parallel to the proof of 9.3.19 given here;
see [30].

Theorem 9.4.3. The group T is simple.

Proof. Let g �= 1 ∈ T . We show that T itself is the only normal subgroup of
T containing g. Since g �= 1 there is some a ∈ S1 such that g(a) �= a. Let J
be an open interval in S1 containing a such that g(J) ∩ J = ∅. Choose h ∈ T
so that h is supported on J and h �= 1. Then ghg−1 is supported on gJ . The
interval J can be chosen so small that there is an interval K in S1 disjoint
from J ∪ g(J). Then k := h−1(ghg−1) = (h−1gh)g−1 fixes K pointwise and is
a non-trivial member of NC(g), the normal closure of g in T . If b ∈ K then k

11 |V | denotes the number of members of V .
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fixes a neighborhood of b and hence k is conjugate to an element of F ′. (Recall
that F ′ = {f ∈ F | f = id near 0}.) Thus NC(g) ∩ F ′ is a non-trivial normal
subgroup of F . Hence, by 9.2.7, F ′ ≤ NC(g). Indeed, every conjugate of F ′

lies in NC(g).

Claim. Any q ∈ T has the form q = q1q2 where q1 and q2 lie in conjugates of
F ′.

Proof (of Claim). Assume q �= 1 and let c ∈ S1 be such that q(c) �= c. Choose
open intervals L and M in S1 such that c ∈ M ⊆ L, q(c) ∈ q(M) ⊆ L and
M ∩ q(M) = ∅. Choose p ∈ T supported in L such that p = q on M . Then
qp−1 fixes M pointwise and q = (qp−1)p. The interval L can be chosen so that
its complement contains an open interval (which p fixes pointwise). Thus the
Claim is proved.

The Theorem follows from the Claim since, as we have seen, qp−1 and p
lie in the normal closure of g. �

Remark 9.4.4. The simple group T of type F∞ has torsion; indeed T contains
a copy of every finite cyclic group. But there are simple groups G of type F
which have finite 2-dimensional K(G, 1)-complexes. Such a group can occur
as the automorphism group of a product of two trees, and can have the form
F1 ∗A F2 where F1 and F2 are finitely generated free groups and A has finite
index ≥ 2 in both. These were discovered by Burger and Mozes; see [35].

Source Notes: Thompson’s original work, written up in [112], emphasized T and a
related finitely presented infinite simple group V rather than F . The (larger) group
V can be described roughly as the group of all piecewise linear, piecewise continuous
dyadic bijections of I . Thus F ≤ T ≤ V . See [30] for more on T and V . [37] is also
a useful reference. The proof of 9.4.2 given here is from [32]; see also [30]. The proof
of 9.4.3 given here was suggested by M. Brin.

Exercise

Let T̃ be the group of all PL homeomorphisms of R satisfying h(x + 1) = h(x) + 1,
whose points of non-differentiability are dyadic rationals and whose slopes (deriva-
tives) are powers of 2. Show that there is a short exact sequence Z � T̃ � T . Prove
that T̃ is a torsion free group of type F∞.

9.5 The outer automorphism group of a free group

In the previous sections we have discussed finiteness properties and dimension
in detail for finitely generated Coxeter groups and for two Thompson groups,
as well as for certain torsion free subgroups of these. In this section we give
a brief indication of how to handle the same issues for outer automorphism
groups of free groups.
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An automorphism φ : G→ G of a group G is inner if it is the conjugation
by an element of G; i.e., for some h ∈ G and all g ∈ G, φ(g) = hgh−1. The
group of all automorphisms of G is denoted by Aut(G) and the subgroup of all
inner automorphisms of G by Inn(G). The latter is a normal subgroup and the
quotient group Aut(G)/Inn(G) is denoted by Out(G), the outer automorphism
group of G. In this section we discuss the topological finiteness properties and
geometric dimension of Out(Fn) where, as usual, Fn denotes a free group of
rank n.

Let Γn =

n∨
i=1

S1
i , the wedge of n circles, with wedge point x. We orient the

edges of Γn and we identify Fn with π1(Γn, x), where the edge loops defined
by the (oriented) edges represent the free generators. From now on, n ≥ 2 is
fixed.

A marked graph (of rank n) is a pair (Γ, h) where Γ is a path connected
finite graph each of whose vertices has valence ≥ 3 (i.e., each vertex belongs
to at least three edges) and h : Γn → Γ is a cellular homotopy equivalence.
Two such, (Γ, h) and (Γ ′, h′), are equivalent if there is a homeomorphism k :
Γ → Γ ′ such that k ◦h is homotopic to h′. We write [Γ, h] for the equivalence
class of (Γ, h).

The marked graphs of rank n are to form the set of vertices, K0
n, of a flag

complex Kn: we need only describe the 1-simplexes.
A subcomplex Φ of a graph Γ is a forest if each path component of Φ is a

tree. The quotient graph ΓΦ is then obtained from Γ by “collapsing” each path
component of Φ to a point. The quotient map qΦ : Γ → ΓΦ is called a forest
collapse. By an obvious extension of 4.1.9, qΦ is a homotopy equivalence. Two
vertices [Γ, h] and [Γ ′, h′] form a 1-simplex of Kn iff for some non-trivial forest
collapse Φ of, say, Γ we have [Γ ′, h′] = [ΓΦ, qΦ ◦ h]. Note that a non-trivial
forest collapse changes a graph’s homeomorphism type, so these two vertices
are different. We have thus defined K1

n and hence the flag complex Kn.
Next, we define a right action of Out(Fn) on Kn by simplicial automor-

phisms. Each g ∈ Out(Fn) can be represented by a homotopy equivalence
fg : Γn → Γn, well-defined up to (unpointed) homotopy equivalence. The ac-
tion on K0

n is given by [Γ, h]g = [Γ, h ◦ fg]. Clearly, this takes 1-simplexes to
1-simplexes and so defines a right action of Out(Fn) on Kn.

The following proposition is an exercise:

Proposition 9.5.1. a) The simplicial complex Kn has dimension 2n− 3; in
fact every simplex is a face of a (2n− 3)-simplex.

b) The stabilizer of every simplex is finite.
c) Kn is finite mod Out(Fn). �

A more difficult theorem is:

Theorem 9.5.2. The space |Kn| is contractible. �

We will not prove 9.5.2. Proofs can be found in [44] and [78]. The proof
in [44] runs parallel, in broad outline, to the proof given in Sect.9.1 for the
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corresponding Coxeter group statement 9.1.3. One builds |Kn| as a sequence
of finite subcomplexes |Kn,k|, where |Kn,k+1| is obtained from |Kn,k| by gluing
a contractible complex to |Kn,k| along a contractible subcomplex.

Proposition 9.5.3. The group Out(Fn) has a torsion free subgroup of finite
index.

Proof. Every homotopy equivalence f : (Γn, x) → (Γn, x) induces an auto-
morphism of Fn on fundamental group and an automorphism of Zn on first
homology (with Z-coefficients). This correspondence defines a canonical epi-
morphism Out(Fn) � GLn(Z). The Proposition therefore follows from 9.1.9.
�

Proposition 9.5.4. The group Out(Fn) contains a free abelian subgroup of
rank 2n− 3.

Proof. Let y1, . . . , yn denote free generators of Fn. The automorphisms in
Aut(Fn) yi �→ y1yi and yi �→ yiy1 for 2 ≤ i ≤ n determine the required free
abelian subgroup of Out(Fn). The details are an exercise. �

The previous statements can be summarized as follows:

Theorem 9.5.5. (Culler-Vogtmann Theorem) The group Out(Fn) is of
type F∞. Every torsion free subgroup has geometric dimension ≤ 2n − 3. If
H is a torsion free subgroup of finite index then there is a finite (2n − 3)-
dimensional K(H, 1)-complex, and the geometric dimension of H is precisely
2n− 3. �

Source Notes: Theorem 9.5.5 is due to Culler and Vogtmann [44].

Exercises

1. Prove 9.5.1. Hint : Part a) is a consequence of the following which should be
proved:

Lemma. Let Γ be a finite graph in which every vertex has valence ≥ 3 and
π1(Γ, v) ∼= Fn. Then any maximal tree in Γ has at most 2n− 3 edges. Moreover,
there exists such a graph for which maximal trees have precisely 2n − 3 edges.

2. Prove that Out(F2) has a free subgroup of finite index.
3. Fill in the details of the proof of 9.5.4.



PART III: LOCALLY FINITE ALGEBRAIC
TOPOLOGY FOR GROUP THEORY

Part III is a continuation of Part I. It deals with CW complexes whose skeleta
are locally finite, and with cellular homology theory based on infinite (or
“locally finite”) chains, as distinct from the “finite chain” theory of Chap. 2.
We introduce two cellular cohomology theories to match the two homology
theories. We can then define homology and cohomology of ends. Just as the
homology in Chap. 2 is a homotopy invariant, the new homology is a proper
homotopy invariant; the basics of proper homotopy are presented in Chap.
10.



10

Locally Finite CW Complexes and Proper
Homotopy

10.1 Proper maps and proper homotopy theory

In this section we set up the foundations of proper homotopy theory. Our
exposition runs parallel to Chap. 1: first the general topology of spaces and
proper maps, then proper homotopy theory of locally finite CW complexes.

A map f : X → Y between topological spaces is closed if for each closed
subset A of X , f(A) is closed in Y .

Lemma 10.1.1. If f : X → Y is a closed map, if A ⊂ Y , and if U is an open
subset of X such that f−1(A) ⊂ U , then there is an open set V in Y such
that A ⊂ V and f−1(V ) ⊂ U .

Proof. The required V is Y − f(X − U). �

A map f : X → Y is perfect if f is a closed map and f−1(y) is compact
for all y ∈ Y .

Proposition 10.1.2. Let f : X → Y be a perfect surjection, and let the space
X be locally compact. Then Y is locally compact.

Proof. Let y ∈ Y . Since X is locally compact and f−1(y) is compact, there is
a compact set N ⊂ X such that f−1(y) ⊂ int N . By 10.1.1, there is an open
neighborhood V of y such that f−1(y) ⊂ f−1(V ) ⊂ N . f(N) is compact, and
is a neighborhood of y. �

A map f : X → Y is proper if for each compact subset C of Y , f−1(C) is
compact. Proper maps are mainly of interest when X and Y are locally com-
pact and Hausdorff, because in such spaces there is a rich supply of compact
sets with non-empty interior. For example, if X and Y are path connected
locally compact metric spaces, if a sequence xn in X converges to ∞ (i.e., is
not supported in any ball of finite radius) and if f is proper, then the sequence
f(xn) converges to ∞ in Y .
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Proposition 10.1.3. Let f : X → Y be a proper map where X and Y are
Hausdorff. If Y is either first countable or locally compact then f is perfect.

Proof. We need only prove that f is closed. First, let Y be locally compact.
Let A be a closed non-empty subset of X . Let y ∈ clY f(A), and let N be a
compact neighborhood of y in Y . Then f−1(N) ∩A is compact, so N ∩ f(A)
is compact, hence N ∩ f(A) is closed in Y , so y ∈ f(A).

If Y is first countable, the argument is similar. With A and y ∈ clY f(A) as
before, there is a sequence 〈yn〉 in f(A) converging to y. Let C be the compact
set {yn | n ≥ 1} ∪ {y}. Let xn ∈ A be such that f(xn) = yn. Then 〈xn〉 is a
sequence in the compact Hausdorff space f−1(C). Consider B = {xn | n ≥ 1}.
If B were infinite and had no limit point in f−1(C) then B would be an infinite
compact discrete space which is impossible (compare the proof of 1.2.6). So
either B is finite or B has a limit point in f−1(C). Either way, y ∈ f(A). �

From 10.1.2 and 10.1.3 we get:

Corollary 10.1.4. If f : X → Y is a proper surjection, where X is locally
compact Hausdorff and Y is first countable Hausdorff, then Y is locally com-
pact. �

Corollary 10.1.5. Let f : X → Y be a map, where X and Y are locally
compact Hausdorff. f is proper iff f is perfect.

Proof. If f is proper then, by 10.1.3, f is perfect . Let f be perfect, and
let A be a compact subset of Y . Each y ∈ A has a compact neighborhood
Ny in Y . Since f−1(y) is compact, there is a compact subset My of X such
that f−1(y) ⊂ int My. By 10.1.1, there is an open set Vy in Y such that
y ∈ Vy ⊂ Ny and f−1(y) ⊂ f−1(Vy) ⊂ My. Finitely many members of
{Vy | y ∈ Y } cover A, so finitely many My’s cover the closed set f−1(A), so
f−1(A) is a closed subset of a compact space, so f−1(A) is compact. �

Corollary 10.1.6. A proper bijective [resp. surjective] map between locally
compact Hausdorff spaces is a homeomorphism [resp. a quotient map]. �

We now relate this general topology to CW complexes. Let Y be obtained
from A by attaching n-cells. Let f : Sn−1(A)→ A be a simultaneous attaching
map. We say Y is obtained from A by properly attaching n-cells if f is proper.

Proposition 10.1.7. This definition is independent of the choice of simul-
taneous attaching map. When A is locally compact Hausdorff, Y is locally
compact Hausdorff iff f is proper.

Proof. For the first part, f is proper iff each compact subset of A meets only
finitely many n-cells of Y . This latter condition is independent of f .

For the second part, Y is Hausdorff, by 1.2.2, and Sn−1(A) is clearly
Hausdorff. Assume first that f is proper. By 10.1.3, the map f is perfect. The
space A

∐
Bn(A) is locally compact. So, by 10.1.2, Y is locally compact.
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Conversely, let Y be locally compact. Suppose f is not proper. Then there
is a compact subset K of A such that f−1(K) meets infinitely many Sn−1

α

(for the restriction of f to each Sn−1
α is certainly proper). Since Y is locally

compact, there is a compact subset N ⊂ Y such that K ⊂ int N . Letting q
be as in 1.2.3, q−1(int N) meets infinitely many Bn

α − Sn−1
α , so int N meets

infinitely many
◦
e n

α. Thus N contains an infinite closed subset inheriting the
discrete topology from Y . This contradicts the compactness of N . �

A CW complex is locally finite if each cell is disjoint from all but finitely
many cells of X .

Proposition 10.1.8. A CW complex is locally compact iff it is locally finite.

Proof. Let the CW complex X be locally compact. Suppose X is not locally
finite. Let eα be a cell which meets infinitely many cells. Since eα is compact,
there is a compact subset N of X such that eα ⊂ int N . The weak topology

has the property that for each cell e, an open set either meets
◦
e or is disjoint

from e. So int N meets
◦
eβ for infinitely many indices β. One finishes as in

the proof of 1.2.13 by using this fact to produce an infinite closed discrete
subspace of N , contradicting the compactness of N .

Conversely, let X be locally finite, and let x ∈ X . There is a unique cell

em such that x ∈ ◦
e m, an open subset of Xm. By local finiteness there is an

open neighborhood Vm of x in
◦
e m such that every cell of X which meets Vm

contains x. As in the proof of 1.2.11, extend Vm skeleton by skeleton to form
sets Vn open in Xn, with Vn ⊂ Vn+1 ⊂ . . ., such that each Vn only meets cells
of X containing x. Since X is locally finite, it follows by induction that each cl

Vn is compact. Moreover, local finiteness implies that for some k, Vk =
⋃

n≥m

Vn

so that cl Vk is a compact neighborhood of x in X . �

Note that a CW complex can be locally finite and infinite dimensional. For
a path connected example, consider [0,∞) with the CW complex structure
consisting of a vertex at each n ∈ N, and a 1-cell for each closed interval
[n, n + 1]; to this, attach an n-cell, for each n, by the constant attaching map
taking Sn−1 to the vertex n.

If {Xα | α ∈ A} is a set of locally finite CW complexes, so is
∐
α

Xα

(compare 1.2.18). If X and Y are locally finite CW complexes, so too is
X × Y (compare 1.2.19). If A is a subcomplex of the CW complex X then
the inclusion map A ↪→ X is proper. A locally finite CW pair is a CW pair
(X, A) in which X is locally finite. The analog of 1.2.22 is:

Proposition 10.1.9. If {Aα} is a family of pairwise disjoint finite subcom-
plexes of the locally finite CW complex X, and if there exist pairwise disjoint
open sets Uα ⊂ X such that for each α, Aα ⊂ Uα, then the quotient complex
is locally finite, and the quotient map X → X/∼ is proper and cellular. �
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The building of proper maps with CW complex domains is done by analogy
with 1.2.23:

Proposition 10.1.10. Let (X, A) be a locally finite CW pair, and let the n-
cells of X which are not in A be indexed by A. Let {hα : Bn

α → X | α ∈ A}
be a set of characteristic maps for those n-cells. Let fn−1 : (Xn−1 ∪ A) → Z
and g : Bn(A)→ Z be proper maps, such that fn−1 ◦ (hα | Sn−1

α ) = g | Sn−1
α .

Then the unique map (given by 1.2.23) fn : (Xn∪A)→ Z having restrictions
fn | Xn−1 ∪A = fn−1 and fn ◦ hα = g | Bn

α is proper. �

We now turn to proper homotopy. Consider maps f0, f1 : (X, A)→ (Y, B)
and let X ′ ⊂ X . f0 is properly homotopic to f1 relative to X ′, denoted
f0�

p
f1 rel X ′, if there exists a proper map F : (X × I, A× I)→ (Y, B) which

is a homotopy relative to X ′ from f0 to f1. Of course, this can only happen
if f0 and f1 are themselves proper (see Exercise 2). The main propositions
in Sect. 1.3 all have proper analogs, which, for the most part, we leave to
the reader to state. A proper map f : (X, A) → (Y, B) is a proper homotopy
equivalence if there is a homotopy inverse g : (Y, B)→ (X, A) which is proper
such that g ◦ f�

p
id(X,A) and f ◦ g�

p
id(Y,B). We call such a map g a proper

homotopy inverse for f , and we say that (X, A) and (Y, B) have the same
proper homotopy type. A subspace A ⊂ X is a proper strong deformation
retract of X if there is a proper strong deformation retraction of X to A.

If f : X → Y is a map where X is compact and Y is Hausdorff, then f
is proper; whereas if Y is compact and X is not compact then f cannot be
proper. Thus ordinary homotopy theory and proper homotopy theory only
coincide on compact spaces. In particular, a Hausdorff space has the proper
homotopy type of a point iff it is both compact and contractible. We will see
that the proper analog of contractibility is “having the proper homotopy type
of [0,∞).”

A pair of spaces (X, A) has the proper homotopy extension property with
respect to a space Z if every proper map (X ×{0})∪ (A× I)→ Z extends to
a proper map X × I → Z. The proofs of 1.3.15 and 1.3.16 can be adapted in
an obvious way to give:

Theorem 10.1.11. If (X, A) is a locally finite CW pair, then (X, A) has the
proper homotopy extension property with respect to any space. Indeed, a proper
map F : (X×{0})∪(A×I)→ Z extends to a proper map F̃ : X×I → Z such

that for every cell eα of X which is not in A, F̃1(eα) = F0(eα)∪F (
•
eα× I). �

Next, we discuss cellular approximation. A CW complex X is strongly
locally finite if {C(e) | e is a cell of X} is a locally finite cover1 of X . Clearly
“strongly locally finite” implies “locally finite.” By induction on dimension
one proves:

1 Recall that C(A) is the carrier of A ⊂ X.
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Proposition 10.1.12. If X is finite-dimensional and locally finite, then X is
strongly locally finite. �

Example 10.1.13. Here is an example of a CW complex X which is locally
finite but not strongly locally finite. X0 is a single vertex. Assuming Xn

defined, with one cell ei in each dimension i ≤ n, attach an (n + 1)-cell

trivially at a point of
◦
e n to form Xn+1. Note that X has finite type. In fact

(exercise) X has a subdivision which is strongly locally finite. Thus, while
local finiteness is a topologically invariant property (by 10.1.8), strong local
finiteness is not.

Theorem 10.1.14. [Proper Cellular Approximation Theorem] Let f : X → Y
be a proper map between CW complexes, with X locally finite and Y strongly
locally finite, and let A be a subcomplex of X such that f | A is cellular. Then
f is properly homotopic, rel A, to a proper cellular map.

Proof. To see that the proof of 1.4.3 gives this, use 1.4.4 and the following
useful criterion 10.1.15. �

Proposition 10.1.15. Let X and Y be locally compact Hausdorff spaces, let
F : X × I → Y be a homotopy, and let F0 be proper. Let K be a locally finite
cover of Y by compact sets such that for each x ∈ X there exists Kx ∈ K for
which F ({x} × I) ⊂ Kx. Then F is a proper homotopy.

Proof. Suppose F−1(L) is not compact, where L is a compact subset of Y .
Let p : X × I → X be projection. The closed set A ⊂ X× I is compact iff
p(A) is compact. Thus J := pF−1(L) is not compact. Since I is compact, p is
closed, so J is closed in X . The family {Kx | x ∈ J} is infinite, for otherwise
F0(J) would lie in a compact set Kx1 ∪ . . .∪Kxn

, implying J compact (being

a closed subset of the compact set

n⋃
i=1

F−1
0 (Kxi

)). Let {Kzn
| n ≥ 1} be an

infinite subset of K such that each zn ∈ J . For each n, ({zn}×I)∩F−1(L) �= ∅,
so F ({zn} × I) ∩ L �= ∅, so Kzn

∩ L �= ∅. But, since L is compact and K is
locally finite, only finitely many members of K meet L. This is a contradiction.
�

Here is an example to show that 10.1.14 does not hold when Y is merely
locally finite:

Example 10.1.16. Let X = N, a 0-dimensional CW complex, and let Y be
the CW complex of Example 10.1.13. Let f : X → Y send the vertex n to a

point of
◦
e n. By 1.2.13, f is proper. However, there is no proper cellular map

X → Y . �

We now discuss proper maps and covering spaces. Let f : (X1, v1) →
(X2, v2) be a map of pointed path connected CW complexes. For i = 1
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or 2, write Gi = π1(Xi, vi), and let Hi be a subgroup of Gi. As usual we
write (X̄i(Hi), v̄i) for the pointed path connected covering space of Xi whose
fundamental group is Hi, and qHi

: X̄i(Hi) → Xi for the covering projec-
tion. By 3.3.4, there is a map f̄ making the following diagram commute iff
f#(H1) ≤ H2.

(X̄1(H1), v̄1)
f̄−−−−→ (X̄2(H2), v̄2)⏐⏐
qH1

⏐⏐
qH2

(X1, v1)
f−−−−→ (X2, v2)

Proposition 10.1.17. Let f be proper, and let f#(H1) ≤ H2. The lift f̄ is
proper iff H1 has finite index in f−1

# (H2).

Before proving 10.1.17, we recall a standard topological construction. If
g : Y → B and p : E → B are maps of Hausdorff spaces, the pull-back of p by
g consists of the space g∗E := {(y, e) ∈ Y ×E | g(y) = p(e)} topologized as a
(closed) subspace of the product space Y ×E and maps p′ and g̃ making the
following diagram commute:

g∗E
g̃−−−−→ E⏐⏐
p′

⏐⏐
p

Y −−−−→
g

B

where the maps p′ and g̃ are defined by: p′(y, e) = y and g̃(y, e) = e.

Lemma 10.1.18. If g is proper, so is g̃.

Proof. Let C be a compact subset of E. Then g̃−1(C) is closed in g∗E, and
g̃−1(C) ⊂ g−1(p(C)) × C. Since g is proper, g−1(p(C)) × C is compact. So
g̃−1(C) is compact. �

Lemma 10.1.19. If p is a covering projection, so is p′.

Proof. Let y ∈ Y and let U be a neighborhood of p(y) in B which is evenly
covered by p. Then p−1(U) =

⋃{Uα | α ∈ A} where A is an indexing set and
{Uα | α ∈ A} consists of pairwise disjoint open subsets of E each mapped
homeomorphically onto U by p. We claim that g−1(U) is evenly covered by

p′. Indeed, (p′)−1g−1(U) =
⋃
α

{g̃−1(Uα) | α ∈ A}. These sets g̃−1(Uα) are

pairwise disjoint open subsets of g∗E. It is an exercise in the definitions to
show that p′ maps g̃−1(Uα) bijectively to g−1(U). Projections in a cartesian
product map open sets to open sets, so p′ maps any open subset of g̃−1(Uα)
onto an open subset of g−1(U), hence onto an open subset of Y , since g−1(U) is
open in Y . Thus p′ maps g̃−1(Uα) homeomorphically onto g−1(U) as claimed.
�
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Let base points y ∈ Y and e ∈ E be chosen so that g(y) = p(e) = b, and
let z := (y, e) be the base point of g∗E. We leave as an exercise:

Lemma 10.1.20. If p is a covering projection then we have p′
#(π1(g

∗E, z)) =

g−1
# p#(π1(E, e)). �

Note that the covering space g∗E of Y need not be path connected. For
example, let Y = B = E = S1, let p = g be the covering projection e2πit �→
e4πit (a map of degree 2). Then it is not hard to see that g∗E = S1

∐
S1 and

p′ is the “identity” on each path component.
Now we return to the map f : (X1, v1)→ (X2, v2).

Proof (of 10.1.17). Let P be the path component of f ∗X̄2(H2) containing
the base point. Consider the following diagram (in which base points are
suppressed):

X̄1(H1)
f̄ ��

qH1

��

p
��&

&&
&&

&&
&&

X̄2(H2)

qH2

��

P

p′

##��
��
��
��
�

f̃

��         

X1
f

�� X2

By 10.1.19, 10.1.20 and 3.4.8, p′ : P → X1 is equivalent to qf−1
# (H2) :

X̄1(f
−1
# (H2))→ X1 (in the sense of Sect. 3.4). Since f#(H1) ≤ H2, the lift p

of qH1 exists making qH1 = p′ ◦ p. The top triangle commutes by 3.3.4. Thus,
the whole diagram commutes. The map f̃ is proper by 10.1.18; hence if p is
proper f̄ is proper. By 3.2.13, we conclude that if [f−1

# (H2) : H1] <∞ then f̄ is

proper. On the other hand, if [f−1
# (H2) : H1] =∞, then f̄−1(v̄2) = p−1f̃−1(v̄2)

contains a point-inverse of p, hence an infinite discrete closed subset, implying
that f̄−1(v̄2) is not compact. �

Corollary 10.1.21. With hypotheses as in 10.1.17, let F : X1× I → X2 be a
proper homotopy such that F0 = f . Let F̄ : X̄1(H1) × I → X̄2(H2) be the lift
of F such that F̄0 = f̄ . Then F̄ is a proper homotopy iff f̄ is a proper map.
If F ({v1} × I) = v2 then F̄ ({v̄1} × I) = v̄2.

Proof. The first part follows from 10.1.17. The second part follows from 2.4.6
�

Proposition 10.1.22. Let f : (X1, v1) → (X2, v2) be a map of pointed path
connected CW complexes, and let f : X1 → X2 be a homotopy equivalence
[resp. proper homotopy equivalence.] Then f : (X1, v1)→ (X2, v2) is a homo-
topy equivalence [resp. proper homotopy equivalence] of pairs.
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Proof. See the remark following the statement of 4.1.5. The proof in the proper
case is similar and is an exercise. �

These results, together with 3.3.4, immediately imply:

Theorem 10.1.23. Let f : (X1, v1) → (X2, v2) be a map of pointed path
connected CW complexes. Let H1 ≤ π1(X1, v1) and H2 ≤ π1(X2, v2) be
subgroups. If f : X1 → X2 is a proper homotopy equivalence, and if
f# : π1(X1, v1) → π1(X2, v2) takes H1 isomorphically onto H2, then the lift
f̄ : (X̄(H1), v̄1)→ (X̄(H2), v̄2) is a proper homotopy equivalence. �

One cannot expect a converse to this. For example, the map S1 → S1,
e2πit �→ e4πit is not a homotopy equivalence, but its lift to the universal cover
is the homeomorphism R→ R, t �→ 2t.

In this discussion of covering spaces we have not required that the CW
complexes be locally finite. But 10.1.8 implies:

Proposition 10.1.24. If the CW complex X is locally finite, and X̄(H) is a
covering space of X (with the induced CW complex structure), then X̄(H) is
locally finite. �

Appendix: Metrizability of locally finite CW complexes
The general topology used here will not be needed elsewhere in this book.

For definitions the reader can consult [51] or any book on general topology.
We sketch a proof of

Proposition 10.1.25. Every locally finite CW complex is metrizable.

Proof. It is enough to consider the case where X is path connected. Then X is
countable by 11.4.3 below. By the Urysohn Metrization Theorem it is enough
to show that X is regular and second countable. Since X is locally finite each
Xn is obtained from Xn−1 by properly attaching countably many n-cells. Let
An index the n-cells of X . The nth simultaneous attaching map Sn−1(An)→
Xn−1 provides a perfect surjection Bn(An)

∐
Xn−1

� Xn. Letting A index

all the cells we thus get a perfect surjection h :
∐
α∈A

Bn(α)
� X . The domain

of h is clearly regular and second countable and both these properties are
transmitted by perfect surjections; see p. 235 of [51]. �

Source Notes: The first paper on proper homotopy theory I am aware of is [28].
For more on this see the source notes for Sect. 17.6. Example 10.1.13 is found in
[145].

Exercises

1. If f : X → Y is a proper map and Y is locally compact show that X is locally
compact.
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2. Show that if f : X → Y is a proper map and A is a closed subset of X then
f | : A → Y is proper.

3. Show that a non-locally finite CW complex is not first countable (and hence
non-metrizable).

4. Prove Proposition 10.1.9.
5. Show that X in 10.1.13 has a strongly locally finite subdivision.
6. Show that a locally finite CW complex is locally finite-dimensional.
7. Prove Lemma 10.1.20.
8. Using 10.1.19, prove that if subgroups G1 and G2 have finite index in the group G

then G1∩G2 has finite index in G. What can be deduced about the relationship
between the indices [G : G1], [G : G2] and [G : G1 ∩ G2]?

9. Construct a bijective map: I×[0,∞) → I×[0,∞) which is not a homeomorphism
(compare 10.1.6).

10. If a CW complex X is locally finite show that each Xn is obtained from Xn−1

by properly attaching n-cells.
11. Show that if K is a locally finite simplicial complex in the sense of Sect. 8.2

then |K| is a locally finite CW complex.
12. Prove that a regular locally finite CW complex is strongly locally finite.
13. Give another proof of 8.1.3 by deducing it from 10.1.23.

10.2 CW-proper maps

A CW complex X has locally finite type if Xn is locally finite for each n. For
example, if Z has finite type but is not finite, its universal cover Z̃ has locally
finite type but is not locally finite. Between such spaces it is natural to consider
maps which satisfy a weaker condition than “properness,” namely “proper on
each skeleton” (with an additional condition for non-cellular maps).

A map f : X → Y between CW complexes is CW-proper if for each n there
exists k such that f(Xn) ⊂ Y k and f |: Xn → Y is proper. We define CW-
proper homotopy, CW-proper homotopy equivalence, etc., by analogy with the
proper case. Of course, a cellular map f : X → Y is CW-proper if f |: Xn → Y
is proper for all n.

It is important to remember that IN THE CONTEXT OF FINITE-
DIMENSIONAL CW COMPLEXES THERE IS NO DIFFERENCE BE-
TWEEN “CW-PROPER” AND “PROPER.”

If X is any infinite CW complex having finite type, a constant map X → Y
is always CW-proper but never proper. The proper map in Example 10.1.16
is not CW-proper. We note:

Proposition 10.2.1. Let f : X → Y be a map between CW complexes, where
X has finite type. Then f is CW-proper. �

“CW-proper” is not a topologically invariant notion as the following ex-
ample shows.
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Example 10.2.2. Define the “infinite sphere,” denoted S∞ or lim−→
n

Sn, to be the

CW complex whose 0-skeleton is S0, whose (n− 1)-skeleton is homeomorphic
to Sn−1, and whose n-skeleton is obtained from (S∞)n−1 by attaching two
n-cells using, for both, a homeomorphism Sn−1 → (S∞)n−1 as attaching map.
Clearly, the resulting (S∞)n is homeomorphic to Sn, so the inductive defini-
tion is complete. By 7.1.2, S∞ is n-connected for all n, hence contractible. The
same is true of S∞ × R. The n-skeleton of S∞ is finite, while the n-skeleton
of S∞ × R is infinite. Hence the constant map S∞ → {point} is CW-proper,
while S∞ × R → {point} is not. However, S∞ and S∞ × R are known to be
homeomorphic [79], though this fact from infinite-dimensional topology is far
from obvious.

Theorem 10.2.3. (CW-proper Cellular Approximation Theorem) Let
f : X → Y be a CW-proper map between CW complexes of locally finite type,
and let A be a subcomplex of X such that f | A is cellular. Then f is CW-
proper homotopic, rel A, to a CW-proper cellular map.

Proof. Similar to the proof of 10.1.14. In other words, the theorem follows
from the proof of 1.4.4, using 10.1.15 on each skeleton of X × I. �

Exercises

1. State and prove analogs of 10.1.10 and 10.1.11 in the context of this section.
2. If X1 and X2 have locally finite type, if f : X1 → X2 is a CW-proper map and

if f#(H1) ≤ H2 prove that the lift f̄ : X̄1(H1) → X̄2(H2) is CW-proper iff H1

has finite index in f−1
# (H2).

3. State and prove a CW-proper analog of 10.1.23, and an analog for CW-proper
n-equivalences.
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Locally Finite Homology

In this chapter we introduce a homology theory which agrees with the cellular
homology theory of Chap. 2 on finite CW complexes, but which is a more
sensitive detector of topological properties of infinite CW complexes having
locally finite type. This new homology is not a homotopy invariant but it is a
proper or CW-proper homotopy invariant in appropriate contexts. The “new
homology modulo the old homology” defines homology at the end of a CW
complex.

11.1 Infinite cellular homology

Let X be an oriented CW complex and let R be a ring. Let R(en
α) denote

the free left R-module generated by the (oriented) n-cell en
α. Let C∞

n (X ; R) =∏
α∈A

R(en
α), where A indexes the n-cells of X . It is convenient to denote ele-

ments of C∞
n (X ; R) by

∑
α∈A

mαen
α where mα ∈ R is the α-entry in the cartesian

product, even though it may be the case that mα �= 0 for infinitely many val-
ues of α. Elements of C∞

n (X ; R) are called infinite cellular n-chains1 in X
with coefficients in R. Recall from Sect. 2.3 and Sect. 2.6 that elements of
Cn(X ; R) are written

∑
α∈A

mαen
α where all but finitely many mα = 0. Thus we

consider Cn(X ; R) ⊂ C∞
n (X ; R). We sometimes call the elements of Cn(X ; R)

finite cellular n-chains . In general, the term “n-chain” means “finite n-chain”
unless the context clearly indicates otherwise. When n < 0, C∞

n (X ; R) is
defined to be the trivial R-module 0.

We need a boundary homomorphism for infinite chains. The obvious can-
didate is ∂ : C∞

n (X ; R)→ C∞
n−1(X ; R) defined by

1 Also known as locally finite n-chains when X is locally finite.
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∂

(∑
α

mαen
α

)
=
∑

β

(∑
α

mα[en
α : en−1

β ]

)
en−1

β .

This might not be well defined, but, by 2.5.8, it is a well defined homomor-
phism when Xn is locally finite. FOR THE REST OF THIS SECTION WE
WORK WITH CW COMPLEXES OF LOCALLY FINITE TYPE.

Proposition 11.1.1. The composition

C∞
n (X ; R)

∂−→ C∞
n−1(X ; R)

∂−→ C∞
n−2(X ; R)

is zero, for all n. �

Thus (C∞∗ (X ; R), ∂) is a chain complex. Its homology modules, denoted2 by
H∞

∗ (X ; R), are the cellular homology modules based on infinite chains.
Let f : X → Y be a CW-proper cellular map between oriented CW

complexes of locally finite type. Define f# : C∞
n (X ; R)→ C∞

n (Y ; R) by

f#

(∑
α

mαen
α

)
=
∑

β

(∑
α

mα[en
α : ẽn

β : f ]

)
ẽn

β .

Since f |: Xn → Y n is proper, 2.5.10 implies that f# is well defined, and it is
obviously a homomorphism.

We have commutative diagrams

C∞
n (X ; R)

∂−−−−→ C∞
n−1(X ; R) C∞

n (X ; R)
f#−−−−→ C∞

n (Y ; R),⏐⏐ ,⏐⏐ ,⏐⏐ ,⏐⏐
Cn(X ; R)

∂−−−−→ Cn−1(X ; R) Cn(X ; R)
f#−−−−→ Cn(Y ; R)

where the vertical arrows are inclusions. Clearly (g ◦ f)# = g# ◦ f# :
C∞

n (X ; R) → C∞
n (Y ; R) → C∞

n (Z; R) whenever f and g are CW-proper
cellular maps. And (idX)# = id : C∞

n (X ; R)→ C∞
n (X ; R). Moreover:

Proposition 11.1.2. With f : X → Y as above, the following diagram com-
mutes:

C∞
n (X ; R)

∂−−−−→ C∞
n−1(X ; R)⏐⏐
f#

⏐⏐
f#

C∞
n (Y ; R)

∂−−−−→ C∞
n−1(Y ; R).

�

2 Also known as homology based on locally finite chains and written H lf
∗ (X; R).
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Thus f induces a chain map C∞
∗ (X ; R)→ C∞

∗ (Y ; R) and hence a homo-
morphism of graded R-modules f∗ : H∞∗ (X ; R)→ H∞∗ (Y ; R). Note that when
X has only finitely many cells in dimensions n and n + 1, then C∞

n (X ; R) =
Cn(X ; R), C∞

n+1(X ; R) = Cn+1(X ; R), hence H∞
n (X ; R) = Hn(X ; R).

The analog of 2.7.1 is:

Proposition 11.1.3. When X1 is infinite, locally finite and path connected,
then H∞

0 (X ; R) = 0.

For the proof of 11.1.3, we need some preliminaries. A proper edge ray in
an unoriented, path connected, locally finite graph Y is an infinite sequence
τ := (τ1, τ2, . . .) of edges in Y such that each (τ1, . . . , τk), called the kth initial
segment , is an edge path, and no edge appears infinitely often in τ . The initial
point of τ is the initial point of τ1; τ has no final point. The distance between
vertices u �= v of Y is the least k for which there is an edge path (τ1, . . . , τk)
having initial point u and final point v; this only makes sense when Y is path
connected. (If we define the distance from u to u to be 0, we have a metric on
Y 0.) Let y be a base vertex for Y . The ball of radius n about y is the subgraph
Bn(y) whose vertices are those distant ≤ n from y, and whose 1-cells are those
1-cells of Y which can be oriented so as to have initial point distant < n from
y. Because Y is locally finite Bn(y) is finite.

For a subgraph A of Y , a complementary component is a path component
of Y − A; when A is a finite subgraph there are only finitely many of these.
A complementary component of A is bounded if its closure in Y is compact;
those which are not bounded are unbounded and there is at least one such
when A is finite and Y is infinite. The closure of a complementary component
is a path connected subgraph of Y .

Let Yn be the union of Bn(y) and all the bounded complementary compo-
nents of Y − Bn(y). Then Yn is a finite subgraph of Y and all the com-
plementary components of Yn are unbounded. Pick nk+1 > nk so that
Ynk
⊂ Bnk+1

(y). This completes an inductive definition and proves:

Proposition 11.1.4. If Y is an infinite, locally finite, path connected graph,
there are finite subgraphs Yn1 ⊂ Yn2 ⊂ . . . such that every complementary

component of each Ynk
is unbounded, fr Ynk

∩ fr Ynk+1
= ∅ and Y =

⋃
k

Ynk
.

If v ∈ fr Ynk
, then v is a vertex of Y , and, for suitable orientations, v is the

initial point of a non-degenerate edge of Ynk
and also of a non-degenerate edge

which is not in Ynk
. Every vertex of Y − Ynk+1

can be joined by an edge path
in Y − Ynk−1

to a vertex of fr Ynk
. Every vertex of Y − Ynk

can be joined by
an edge path in Y − Ynk

to a vertex of Y − Ynk+1
. �

Proof (of 11.1.3). Pick subcomplexes Ynk
as in 11.1.4. For each k and each

vertex v of Ynk+1
− Ynk

, use 11.1.4 to pick (by induction) a proper edge ray

τv := (τ i1
1 , τ i2

2 , . . .) with initial point v where τj is an edge of X with the
preferred orientation, ij = ±1, and for each m all but finitely many τj ’s lie
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in X1 − Ynm
. Then c :=

∞∑
j=1

ijτj is3 an infinite cellular 1-chain in X such

that ∂c = v. The key point is that an edge of X occurs in only finitely

many of the chains c. Thus, given any infinite cellular 0-chain d :=
∑
α

mαvα,

d =
∑
α

mα(∂cα) = ∂

(∑
α

mαcα

)
for suitable4 infinite 1-chains cα. �

The analog of 2.7.2 is:

Proposition 11.1.5. If X =
∐
α

Xα, with each Xα of locally finite type and

oriented, then H∞
n (X ; R) is isomorphic to

∏
α

H∞
n (Xα; R). �

In particular, we know H∞
n (X ; R) when we know H∞

n (Xα; R) for each
path component Xα of X .

Proposition 11.1.6. Let [0,∞) have the usual CW complex structure (ver-
tices n, 1-cells [n, n+1] for each n ∈ N). For any orientation, H∞

n ([0,∞); R) =
0 for all n.

Proof. For n = 0 this follows from 11.1.4. For n > 1 it is trivial. For n = 1, it
is obvious that ker(∂ : C∞

1 ([0,∞); R)→ C∞
0 ([0,∞); R)) = 0. �

This should be regarded as the analog of 2.7.3: in proper homotopy theory
a proper ray often has the role played by a base point in ordinary homotopy
theory. We will see in Chap. 16 that the analog of a base point is a (proper)
base ray.

The analogs of 2.7.5 and 2.7.6 are obvious:

Proposition 11.1.7. If X has dimension d, then H∞
n (X) = 0 for all n > d.

�

Proposition 11.1.8. The inclusion Xn+1 ↪→ X induces an isomorphism on
H∞

i for i ≤ n. �

Define Z∞
n (X ; R) := ker(∂ : C∞

n (X ; R) → C∞
n−1(X ; R)) and define

B∞
n (X ; R) := image(∂ : C∞

n+1(X ; R) → C∞
n (X ; R)): these are the R-

modules of infinite n-cycles and infinite n-boundaries respectively. Of course,

3 To conform strictly to our previous notation, we should have written this sum-
mation over all the (oriented) 1-cells of X1, not just the 1-cells τj , assigning
coefficient 0 to the others. We will sometimes abuse notation in this way.

4 We changed notation from X1 to Y in the text leading up to the proof of 11.1.3
to distinguish the oriented graph X1 from the unoriented graph Y . Recall from
Sect. 3.1 that when Y is unoriented an edge is appropriately denoted by τj , but
when the underlying 1-cell already has a preferred orientation it is better to use
τj for that orientation and τ−1

j for the opposite orientation.
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H∞
n (X ; R) = Z∞

n (X ; R)/B∞
n (X ; R). Infinite cycles z, z′ ∈ Z∞

n (X ; R) repre-
sent the same element of H∞

n (X ; R) iff z − z′ ∈ B∞
n (X ; R), in which case z

and z′ are properly homologous.
The analog of 2.7.10 is:

Theorem 11.1.9. Let f, g : X → Y be CW-proper cellular maps between
oriented CW complexes of locally finite type. Assume either (a) f and g are
CW-proper homotopic or (b) f and g are properly homotopic where X is
locally finite and Y is strongly locally finite. Then f∗ = g∗ : H∞

∗ (X ; R) →
H∞

∗ (Y ; R).

Proof. Similar to that of 2.7.10: in place of 1.4.3, use 10.2.3 in Case (a) and
10.1.14 in Case (b). �

Using obvious analogs of the remarks which follow Theorem 2.7.10, we can
regard H∞∗ (· ; R) as a covariant functor from the category C to the category
of graded R-modules and homomorphisms, where C is either the category
of oriented CW complexes of locally finite type and CW-proper homotopy
classes of CW-proper maps, or the category of oriented strongly locally finite
CW complexes and proper homotopy classes of proper maps. In particular we
have this analog of 2.7.11:

Corollary 11.1.10. Let f : X → Y be a map between oriented CW com-
plexes. If either X and Y are of locally finite type and the map f is a CW-
proper homotopy equivalence, or X and Y are strongly locally finite and the
map f is a proper homotopy equivalence, then f∗ : H∞

∗ (X ; R) → H∞
∗ (Y ; R)

is an isomorphism. �

Homeomorphisms are proper homotopy equivalences, so the second part
of 11.1.10 gives a sense in which H∞∗ is a topological invariant.5

The properties of “finite” cellular homology given in Sect. 2.8 hold for
infinite cellular homology with almost no change. Let (X, A) be an oriented
CW pair where X has locally finite type. From the short exact sequence of
chain complexes

0 �� C∞∗ (A; R) �� C∞∗ (X ; R) �� C∞∗ (X ; R)/C∞∗ (A; R) �� 0

one obtains the relative homology modules H∞
n (X, A; R) and an exact se-

quence

. . . �� H∞
n (A; R) �� H∞

n (X; R) �� H∞
n (X, A; R)

∂∗ �� H∞
n−1(A; R) �� . . .

5 To make this precise, the reader should state analogs of 2.7.12 and 2.7.13.



234 11 Locally Finite Homology

Define
Z∞

n (X, A; R) := {c ∈ C∞
n (X ; R) | ∂c ∈ C∞

n−1(A; R)}
and

B∞
n (X, A;R) := {c ∈ C∞

n (X; R) | c is properly homologous to an element of C∞
n (A; R)}.

Then6

H∞
n (X, A; R) ∼= Z∞

n (X, A; R)/B∞
n (X, A; R).

There are obvious versions of the Proper and CW-Proper Cellular Approxi-
mation Theorems for pairs, leading to versions of 11.1.9 and 11.1.10 for pairs.
The analogs of naturality of ∂∗, excision and the Mayer-Vietoris sequence hold
for cellular homology based on infinite chains.

If X has infinitely many vertices, the augmentation of X defined in Sect.
2.9 is not locally finite. Thus there is no useful notion of augmentation for
C∞∗ (X ; R), hence no useful analog of reduced homology.

A proper cellular map f : (X, A) → (Y, B) between CW pairs of locally
finite type is a CW-proper n-equivalence if there is a CW-proper cellular map
g : (Y, B)→ (X, A) such that the compositions g◦f | : (Xn−1, An−1)→ (X, A)
and f◦g| : (Y n−1, Bn−1)→ (Y, B) are CW-proper homotopic to the respective
inclusion maps. The map g is a CW-proper n-inverse for f . When X and Y
are finite-dimensional we use the simpler terms proper n-equivalence, etc.

Proposition 11.1.11. A CW-proper n-equivalence induces isomorphisms on
H∞

k (·; R) for all k ≤ n− 1. �

Source Notes: An interesting treatment of homology and cohomology, which in-
fluenced the presentation here, is [110].

Exercises

1. In 10.1.23 assume instead that f is a CW-proper n-equivalence where n ≥ 2.
Prove that f̄ is a CW-proper n-equivalence.

2. Given a finite subgraph A of an infinite locally finite path connected graph Y
prove that there is a finite subgraph B ⊃ A such that for every vertex v of Y
which is not in B there is a proper edge ray in Y with initial point v which
involves no edges of A.

3. Discover a Mayer-Vietoris sequence for H∞
∗ .

6 The alternative interpretation of Hn(X, A; R) as H̃n(X/A; R) in Sect. 2.7 and
Sect. 2.8 does not carry over, since, in general, Xn/An is not locally finite.
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11.2 Review of inverse and direct systems

In this section we state the definitions and some properties of inverse and
direct systems and limits. This material is part of category theory. Some
readers may prefer to skip or skim this section, referring back to it later as
required.7

A pre-ordered set is an ordered pair (A,≤) where A is a set and ≤ is a
reflexive transitive relation on A; i.e., α ≤ α; and α ≤ β and β ≤ γ imply
α ≤ γ. If ≤ also satisfies the law: α ≤ β and β ≤ α imply α = β, then (A,≤) is
a partially ordered set (abbreviation: poset 8). A directed set is a pre-ordered
set (A,≤) which satisfies the law: whenever α and β are in A, there exists
γ ∈ A such that α ≤ γ and β ≤ γ. Usually, we suppress ≤, saying “A is a
directed set” etc.

Let C be a category. An inverse system {Xα, fβ
α ;A} in C consists of: a

directed set A, an object Xα of C for each α ∈ A, and a morphism9 of
C, fβ

α : Xβ → Xα, for each α ≤ β ∈ A; these satisfy: (i) fα
α = idXα

, and
(ii) whenever α ≤ β ≤ γ, fγ

α = fβ
α ◦ fγ

β : Xγ → Xα. The morphism fβ
α is

called a bond of the inverse system.10 An inverse limit of this inverse system
consists of: an object X of C, and a morphism pα : X → Xα for each α ∈ A;
these satisfy: (i) pα = fβ

α ◦ pβ for all α ≤ β, and (ii) given an object Z and
morphisms gα : Z → Xα for all α ∈ A such that gα = fβ

α ◦gβ whenever α ≤ β,
there is a unique morphism g : Z → X such that gα = pα ◦ g for all α ∈ A.

Our main interest is in the categories Sets, R-modules (where R is a ring),
and Groups.11 We are about to construct inverse limits in those categories,
and give a usable recognition theorem. However, two abstract remarks may
be helpful here: first, because the definition of inverse limit involves a uni-
versal property, two inverse limits of the same inverse system are canonically
isomorphic; secondly, while inverse limits do not always exist,12 they do exist
whenever C has arbitrary products, and any two morphisms of C which have
the same domain and codomain have an equalizer.

If C is the category Sets, there is a particular inverse limit, X , known

as “the” inverse limit, namely: X = {(xα) ∈
∏
α∈A

Xα | fβ
α (xβ) = xα for all

α ≤ β ∈ A}, and pα : X → Xα is the restriction to X of the projection

7 Readers interested in a fuller treatment of the abstract theory can find it in [109,
Chap. 1] or [3]. A more elementary treatment of the R-module case is in [110,
Appendix].

8 Some authors use the term “partially ordered” for “pre-ordered.”
9 It may help to consider the case A = N. The morphisms point from higher-indexed

objects to lower-indexed objects.
10 We will often abbreviate {Xα, fα

β ;A} to {Xα, fα
β } or even to {Xα}.

11 In later chapters we will also deal with the categories Spaces and Homotopy in
this context.

12 For example, inverse limits do not exist (in general) in the category of CW com-
plexes and homotopy classes of maps.
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function. This set X is often denoted by lim←−{Xα, fβ
α}. If C is R-modules or

Groups, and {Xα, fβ
α} is an inverse system in C, “the” inverse limit in C is

constructed by recognizing that lim←−{Xα, fβ
α} is a submodule or subgroup of

the product R-module or group
∏
α∈A

Xα, and each pα is a homomorphism; i.e.,

“the” inverse limit in C is lim←−{Xα, fβ
α} with the appropriate extra structure.

Here is a recognition criterion:

Proposition 11.2.1. Let C be R-modules or Groups. Let Z be an object of
C and let gα : Z → Xα be a homomorphism for each α ∈ A, such that
gα = fβ

α ◦ gβ whenever α ≤ β. Let g : Z → lim←−{Xα, fβ
α} =: X be the unique

homomorphism such that pα ◦ g = gα for all α ∈ A. g is an isomorphism iff⋂
α

ker gα is trivial, and given (xα) ∈ X ⊂
∏
α

Xα there exists z ∈ Z such that

gα(z) = xα for all α ∈ A. �

Note that the conditions in 11.2.1 are equivalent to: (Z, {gα}) is an inverse
limit of {Xα, fβ

α}.
We need a category whose objects are inverse systems of objects in (the

category) C. We get to the “right” definition, pro-C, by first considering two
less suitable competitors.

Let C be an arbitrary category and let A be a directed set. We form
CAinv, the category of inverse systems over A, as follows. The objects of CAinv

are the inverse systems {Xα, fβ
α ;A} in C. A morphism from {Xα, fβ

α ;A} to
{Yα, gβ

α;A} is a set of morphisms of C, hα : Xα → Yα such that hα◦fβ
α = gβ

α◦hβ

for all α ≤ β ∈ A. In topological applications, however, one wants to deal with
inverse systems indexed by different directed sets at the same time; thus the
categories CAinv are inadequate. So we next define a category inv-C. The objects
of inv-C are inverse systems {Xα, fα

α′ ;A} in C, where A is no longer fixed. A

morphism of inv-C from X := {Xα, fα
α′ ;A} to Y := {Yβ , gβ

β′ ;B} consists of: a
function φ : B → A and, for each β ∈ B, a morphism of C, qβ : Xφ(β) → Yβ ,
such that whenever β ≤ β′ ∈ B there exists α ∈ A with φ(β) ≤ α and
φ(β′) ≤ α, making the following diagram13 commute in C:

Xα

!!��
��
��
��

��&
&&

&&
&&

&

Xφ(β)

qβ

��

Xφ(β′)

qβ′

��
Yβ �� Yβ′

There is an obvious definition of composition in inv-C, and the identity mor-
phism of {Xα, fα

α′ ;A} consists of idA, with each qα = idXα
.

13 Here and throughout, the unmarked arrows are bonds.
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The desirable category, pro-C, is a quotient category of inv-C so it has the
same objects. If X and Y are objects of inv-C, define an equivalence relation
on the set of morphisms of inv-C from X to Y by: (φ, {qβ}) ∼ (φ′, {q′β}) iff for
each β ∈ B there exists α ∈ A with α ≥ φ(β) and α ≥ φ′(β) such that the
following diagram commutes in C:

Xα

!!��
��
��
��

��&
&&

&&
&&

&

Xφ(β)

qβ
���

��
��

��
�

Xφ′(β)

q′
β!!  

  
  
  
 

Yβ

The equivalence classes so defined are the morphisms of pro-C from X to Y.
The composition of two morphisms of pro-C is defined to be the equivalence
class of the composition of any of their inv-C representatives. The identity
morphism of X in pro-C is the equivalence class of idX in inv-C. An isomor-
phism in pro-C is called a pro-isomorphism. Two objects are pro-isomorphic
if there is a pro-isomorphism from one to the other.

If A′ ⊂ A where A is pre-ordered, A′ inherits a pre-ordering from A; A′

is cofinal in A if for each α ∈ A, there is α′ ∈ A′ such that α ≤ α′. If A is
directed and A′ is cofinal in A then A′ is directed.

Whenever A′ is cofinal in A, an inverse system X{Xα, fα
β ;A} gives rise to

a cofinal subsystem X ′ := {Xα′ , fα′

β′ ;A′} in which one retains only the sets and
bonds indexed by elements of A′. There is a restriction morphism X → X ′

in inv-C defined by A′ ↪→ A and {idXα′ | α′ ∈ A′}.

Proposition 11.2.2. The restriction morphism induces an isomorphism in
pro-C. �

It is primarily because of 11.2.2 that pro-C, rather than inv-C, is the useful
category.

If C is Sets or R-modules or Groups, a morphism h : X → Y of inv-C
clearly induces a morphism lim←−h : lim←−X → lim←−Y, obtained by the universal
property of inverse limits. Moreover, if h ∼ h′ then lim←−h = lim←− h′. In fact:

Proposition 11.2.3. Let C be Sets or R-modules or Groups (or, indeed, any
category with inverse limits). Then we have covariant functors as follows:
lim←− : CA

inv
→ C for each directed set A; lim←− : inv-C → C; lim←− : pro-C → C. �

The category C can always be considered to be a full subcategory of pro-C:
each object of C is considered as an inverse system indexed by a one-element
directed set. An inverse system in C is stable if it is pro-isomorphic to an
object of C.
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We now turn to direct systems. A direct system {Xα, fα
β ;A} in C consists

of: a directed set A, an object Xα of C for each α ∈ A, and a morphism of
C, fα

β : Xα → Xβ , for each α ≤ β ∈ A; these satisfy: (i) fα
α = idXα

, and

(ii) whenever α ≤ β ≤ γ, fα
γ = fβ

γ ◦ fα
β : Xα → Xγ . Again, fα

β is called a
bond of the direct system. A direct limit of this direct system consists of: an
object X of C and a morphism jα : Xα → X for each α ∈ A; these satisfy:
(i) jα = jβ ◦ fα

β for all α ≤ β, and (ii) given an object Z and morphisms
gα : Xα → Z such that gα = gβ ◦fα

β for all α ≤ β, there is a unique morphism
g : X → Z such that gα = g ◦ jα for all α ∈ A.

Almost everything we have said about inverse systems and limits has a
“dual” statement for direct systems and limits, where, roughly, “dual” means
that all arrows point the opposite way.14 Therefore, our discussion of direct
limits will be shortened. Direct limits exist when C has arbitrary sums (co-
products), and any two morphisms of C which have the same domain and
codomain have a coequalizer.

In the category Sets, “the” direct limit of {Xα, fβ
α} is the quotient set,

X , of
∐
α∈A

Xα under the equivalence relation obtained by identifying xα ∈ Xα

with xβ ∈ Xβ whenever there exists γ ≥ α, β such that fα
γ (xα) = fβ

γ (xβ); here

jβ : Xβ → X is induced by the canonical inclusion iβ : Xβ →
∐
α

Xα. This

set X is denoted lim−→{Xα, fβ
α}. If C is R-modules or Groups, and {Xα, fβ

α}
is a direct system in C, there is an obvious R-module or group structure on
lim−→{Xα, fβ

α} with respect to which each jα is a homomorphism; this15 is a
direct limit in C.

The recognition criterion is:

Proposition 11.2.4. Let C be R-modules or Groups. Let Z be an object of
C and let gα : Xα → Z be a homomorphism for each α ∈ A, such that
gα = gβ ◦ fα

β whenever α ≤ β. Let g : lim−→{Xα, fβ
α} =: X → Z be the unique

homomorphism such that g◦jα = gα for all α ∈ A. Then g is an isomorphism
iff Z = ∪{image gα | α ∈ A}, and for each α ker gα ⊂ ∪{ker fα

β | β ≥ α}. �

We form the categories of direct systems: CAdir, dir-C, and most importantly
ind-C by analogy with the inverse case. In particular, a morphism of dir-C from

X := {Xα, fα′

α ;A} to Y := {Yβ, fβ′

β ;B} consists of: a function φ : A → B and,
for each α ∈ A, a morphism of C, qα : Xα → Yφ(α), such that whenever
α ≤ α′ ∈ A there exists β ∈ B with φ(α) ≤ β and φ(α′) ≤ β making the
following diagram commute in C:
14 Direct limits in C are precisely inverse limits in the opposite category Copp, and

vice versa.
15 The category theoretic sum of the R-modules or groups {Xα | α ∈ A} does not

have
a
α

Xα as its underlying set. Nonetheless, our construction does yield a direct

limit in those categories.
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Xα
��

qα

��

Xα′

qα′

��
Yφ(α)

���
��

��
��

�
Yφ(α′)

!!��
��
��
��

Yβ

The morphisms of ind-C from X to Y are the equivalence classes generated
by (φ, {qα}) ∼ (φ′, {q′α}) iff for each α ∈ A there exists β ∈ A with β ≥ φ(α)
and β ≥ φ′(α) such that the following diagram commutes in C:

Xα

!!��
��
��
��

��&
&&

&&
&&

&

Yφ(α)

qα
���

��
��

��
�

Yφ′(α)

q′
α!!��

��
��
��

Yβ

The terms ind-isomorphism and ind-isomorphic are analogous to their “pro”
counterparts.

If X ′ is a cofinal (direct) subsystem of X , there is a corestriction morphism
X ′ → X in dir-C defined by A′ ↪→ A and {idXα′ | α′ ∈ A′}.

Proposition 11.2.5. The corestriction morphism induces an isomorphism in
ind-C. �

Proposition 11.2.6. Let C be Sets or R-modules or Groups. Then we have
covariant functors as follows: lim−→ : CA

dir
→ C for each directed set A; lim−→ :

dir-C → C; lim−→ : ind-C → C. �

C is considered to be a full subcategory of ind-C.
Sometimes, one can avoid reference to the complicated definition of a mor-

phism in pro-C or ind-C. Using the notation K(A, B) for the set of morphisms
in the category K from the object A to the object B, we have:

Proposition 11.2.7. (a) there is a natural bijection

pro-C({Xα, fα
α′ ;A}, {Yβ, gβ

β′ ;B})→ lim←−
β

lim−→
α

C(Xα, Yβ);

(b) there is a natural bijection

ind-C({Xα, fα′

α ;A}, {Yβ, gβ′

β ;B})→ lim←−
α

lim−→
β

C(Xα, Yβ).

�
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Here, inverse and direct limits are taken in the category Sets. The α or
β under an arrow indicates the appropriate directed set A or B. From now
on this convention will be followed whenever there is ambiguity about the
appropriate directed set.

Corollary 11.2.8. If X and Y are objects of C, pro-C({Xα, fα
α′ ;A}, Y ) is in

natural bijective correspondence with lim−→
α

C(Xα, Y ); and ind-C(X, {Yβ, gβ′

β ;B})

is in natural bijective correspondence with lim−→
β

C(X, Yβ). �

From the universal properties for inverse and direct limits, we get:

Corollary 11.2.9. If X and Y are objects of a category C in which inverse
and direct limits exist, there are natural bijections

pro-C(X, {Yβ, gβ
β′ ;B}) → lim←−

β

C(X, Yβ)→ C(X, lim←−
β

{Yβ, gβ
β′ ;B})

ind-C({Xα, fα′

α ;A}, Y )→ lim←−
α

C(Xα, Y )→ C(lim−→
α

{Xα, fα′

α ;A}, Y ).

�

In the literature, the inverse limit is also called the limit or projective
limit , and the direct limit is also called the colimit or inductive limit . This
explains the notations pro-C and ind-C.

An inverse sequence in a category C is an inverse system whose directed
set is N with the usual ordering. In such an inverse system, every fn

m is fully
determined (by composition) when the bonds fn+1

n : Xn+1 → Xn are speci-
fied. So we simplify notation further, writing fn for fn+1

n , and even writing
“{Xn} is an inverse sequence in C” when the context makes clear what the
bonds are. The definition of direct sequence is dual, and the dual remarks on
notation apply.

Nearly all the inverse and direct systems occurring in this book are se-
quences. When dealing with cofinal subsequences of inverse or direct sequences
we will use a less formal notation. If {Gn} is an inverse or direct sequence and
{nk | k ∈ N} is a subsequence, we write {Gnk

} for the corresponding cofinal
subsequence of {Gn}.

Here is a convenient way of recognizing an isomorphism in pro-C between
inverse sequences in C. Let X{Xm} and Y{Yn} be inverse sequences, {Xmk

}
and {Ynk

} cofinal subsequences, and fnk
: Xmk

→ Ynk
morphisms of C which

commute with the appropriate bonds. We may assume k ≤ mk and k ≤ nk.
Defining φ(k) = mk, the morphisms (bond ◦ fnk

) : Xmk
→ Yk define a

morphism f : X → Y of inv-C. Conversely, any morphism of inv-C, f : X → Y,
yields subsequences and morphisms fnk

: Xmk
→ Ynk

as above.
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Proposition 11.2.10. Let X and Y be inverse sequences. A morphism f :
X → Y of inv-C induces an isomorphism of pro-C iff for suitable subsequences
as above there are morphisms gmk

of C making the following diagram commute
for all k:

Xmk

fnk

��

�� Xmk+1

fnk+1

��
Ynk

�� Ynk+1
.

gmk

))'''''''''

�

Source Notes: The formalism of pro-categories was introduced into algebraic ge-
ometry by Grothendieck as part of his program to prove the Weil Conjectures. An
early source applying these ideas to topology is [3]. This language was co-opted into
shape theory (see Sect. 17.6) at roughly the same time in [128], [108], and [59]. The
transfer to group theory set out in this book was made explicit in [70], [71] and [68].

Exercises

1. Give an example of a preordered set which is not a poset. Hint : Consider the
set of open covers of a space, where V ≤ U means that V refines U .

2. Express the definition of “inverse limit” by means of a universal property.
3. Write out the definition of composition in inv-C in detail.
4. Show that composition of morphisms of pro-C (as indicated in the text) is well

defined.
5. Show by examples that lim

←−
and lim

−→
cannot be interchanged in 11.2.7.

6. State and prove the dual of 11.2.10.

11.3 The derived limit

We define lim←−
1 for inverse sequences and discuss some of the associated alge-

bra. For topological motivation, proceed to Sect. 11.4, referring back to this
section when necessary.

The categories C of most interest here are: Sets (= sets and functions),
Groups (= groups and homomorphisms), Left R-modules (= left R-modules
and homomorphisms) and Right R-modules. We will often combine the last
two under the name “R-modules”; this should be interpreted consistently as
Left R-modules or Right R-modules.

When C is R-modules or Groups, there is another sort of limit, called lim←−
1,

which measures the amount of information lost on passing from an inverse
sequence {Xn} to its inverse limit lim←−{Xn}. For example, the inverse sequences

of Z-modules {Z ×2←− Z ×2←− . . .} and {0 ←− 0 ←− . . .} have trivial inverse
limits, but are not isomorphic in pro-(Z-modules), as can easily be checked.
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It will turn out that lim←−
1 of the first sequence is very large, while lim←−

1 of the
second is trivial.

Let {Mn} be an inverse sequence of R-modules. Consider the shift homo-

morphism s :

∞∏
n=1

Mn →
∞∏

n=1

Mn, (x1, x2, . . .) �→ (x1 − f1(x2), x2 − f2(x3), . . .).

Obviously, the kernel of s is lim←−{Mn}. The cokernel of s,
∏

Mn/image s, is

called lim←−
1{Mn}, the first derived limit . It is an R-module.

We can also define lim←−
1 in the case of groups. If {Gn} is an inverse sequence

of groups, lim←−
1{Gn} is the quotient set of the set

∞∏
n=1

Gn under the equivalence

relation generated by: (xn) ∼ (yn) iff there exists (zn) ∈ ∏Gn such that
yn = znxnfn(z−1

n+1) for all n. In this case we regard lim←−
1{Gn} as a pointed

set whose base point, denoted by [1], is the equivalence class of (1, 1, . . .). We
say that lim←−

1{Gn} is trivial if it is the pointed set {[1]}. When every Gn is

abelian, our definition of lim←−
1 reduces to the previous one for Z-modules, and

lim←−
1{Gn} then acquires the additional structure of a Z-module.

If C is R-modules or Abelian Groups, lim←−
1 defines a covariant functor

CN
inv → C in the obvious way.16 Similarly, GroupsN

inv → Pointed Sets.
We now discuss the vanishing and exactness properties of lim←−

1 both for
R-modules and for groups. Since these properties for R-modules only depend
on the underlying abelian group structure it is enough to consider the case of
groups.

An inverse sequence {Gn} of groups is semistable or Mittag-Leffler or pro-
epimorphic if for each m there exists φ(m) ≥ m such that for all k ≥ φ(m),

image f
φ(m)
m = image fk

m. The point of this notion is:17

Proposition 11.3.1. {Gn} is semistable iff {Gn} is isomorphic in the cate-
gory pro-Groups to an inverse sequence whose bonds are epimorphisms. �

Theorem 11.3.2. If {Gn} is semistable then lim←−
1{Gn} is trivial. If lim←−

1{Gn}
is trivial and each group Gn is countable then {Gn} is semistable.

Proof. A convenient notation for this proof is: if Gr ← Gs is a bond and
gs ∈ Gs, then the image of gs in Gr is denoted by gs

r , and the image of Gs in
Gr is denoted by Gs

r.

16 There is also an induced covariant functor lim
←−

1 : towers-C → C (or towers-Groups
→ Pointed Sets) where towers-C is the full subcategory of pro-C generated by
inverse sequences in C. For the most part, we can avoid using this.

17 This proposition justifies the term “pro-epimorphic” which, unfortunately, is not
in standard use. Later we will need the companion notion “pro-monomorphic.”
It is good to keep this pairing of terms in mind. We will discuss “stable” inverse
sequences in R-modules and in Groups; “semistable and pro-monomorphic” is
equivalent to “stable.” Note the general definition of “stable” in Sect. 11.2.
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Assume {Gn} is semistable and let (xn) ∈
∏
n

Gn. With φ as in the defini-

tion of “semistable,” define ψ : N→ N by ψ(1) = 1 and ψ(k+1) = φ(ψ(k)+1).
We may assume φ is strictly increasing, hence also ψ. By induction we choose
yψ(k) ∈ Gψ(k) : yψ(2) is arbitrary and, for k ≥ 1, yψ(k) satisfies

y
ψ(k+1)
ψ(k)

(
y

ψ(k+2)
ψ(k)

)−1

= x
ψ(k+1)
ψ(k) x

ψ(k+1)+1
ψ(k) · · ·xψ(k+2)−1

ψ(k) .

For ψ(k − 1) ≤ m < ψ(k) define

zm = xmxm+1
m · · ·xψ(k+1)−1

m yψ(k+1)
m .

One checks that xm = zm(zm+1
m )−1; this is clear when ψ(k−1) ≤ m < m+1 <

ψ(k) and it also holds when m + 1 = ψ(k). Thus (xn) is equivalent to [1], so
lim←−

1{Gn} is trivial.

Conversely, assume lim←−
1{Gn} is trivial with each Gn countable, and sup-

pose {Gn} is not semistable. Then there is a sequence (nk) such that, for all
k ≥ 0, G

nk+1
n0 ⊂

�=
Gnk

n0
. Write Hk := Gnk

n0
. By Exercises 2 and 3, lim←−

k

1{Hk}

is trivial and hence lim←−
n

1{Hkn
} is trivial for any subsequence (kn). Choose

xk ∈ Hk − Hk+1. For every strictly increasing function α : N → N there

is z
(α)
k ∈ Hα(k) such that xα(k) = z

(α)
k (z

(α)
k+1)

−1. Since H0 is countable and
there are uncountably many such functions α there must be two, say α and
β, such that α �= β but α(1) = β(1). Let n be the greatest integer such that

α(i) = β(i) for all i ≤ n. Then z
(α)
n = z

(β)
n and z

(α)
n+1 �= z

(β)
n+1, so xα(n) �= xβ(n).

We may assume α(n + 1) > β(n + 1). Then xβ(n) = z
(α)
n (z

(β)
n+1)

−1 where

z
(β)
n+1 ∈ Hβ(n+1) ⊂ Hβ(n)+1, z

(α)
n ∈ Hα(n) ⊂ Hβ(n)+1 and xβ(n) �∈ Hβ(n)+1.

This is a contradiction. �

Remark 11.3.3. A counterexample to the second part of 11.3.2 when the
groups Gn are uncountable can be found in [58].

A diagram of pointed sets and functions (A, a)
f−→ (B, b)

g−→ (C, c) is
exact at (B, b) if image f = kernel g where kernel g is defined18 to be g−1(c).
Homomorphisms of groups G′ → G → G′′ are exact at G if they are exact
as functions of pointed sets, where each group has its identity element as
base point. A short exact sequence of inverse sequences of groups consists of:
inverse sequences {G′

n}, {Gn} and {G′′
n} of groups, and, for each n, an exact

sequence

{1} → G′
n

in−→ Gn
pn−→ G′′

n → {1}
such that, for all n, fn◦ in+1 = in◦f ′

n and f ′′
n ◦pn+1 = pn ◦fn. In the language

of Sect. 11.2, {in} and {pn} are morphisms of (Groups)N
inv.

18 Warning: In Pointed Sets, if kernel g = {b}, it does not follow that g is injective.
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Proposition 11.3.4. In this situation, there is an exact sequence of pointed
sets

{1} −−−−→ lim←−{G
′
n}

lim←−{in}
−−−−−→ lim←−{Gn}

lim←−{pn}
−−−−−→ lim←−{G

′′
n}

δ−−−−→ lim←−
1{G′

n}
lim←−

1{in}
−−−−−→ lim←−

1{Gn}
lim←−

1{pn}
−−−−−−→ lim←−

1{G′′
n} −−−−→ {1}.

Here, δ maps (x′′
n) to the equivalence class of (x′

n) ∈
∏
n

G′
n, where x′

n =

i−1
n (xn.fn(x−1

n+1)), xn being any member of p−1
n (x′′

n). This exact sequence is
natural with respect to morphisms of (Groups)N

inv
.

Proof. This is a long but straightforward check that δ is well defined and
kernel = image in each position. See page 168 of [109] for details. �

Notice the similarity between Proposition 11.3.4 and the derivation of
the long exact sequence in homology from a short exact sequence of chain
complexes (Sect. 2.1). In fact, in the category Abelian Groups or the category
R-modules there is a simple proof of 11.3.4. One regards

· · · −−−−→ 0 −−−−→
∏
n

Gn
s−−−−→

∏
n

Gn −−−−→ 0

as a chain complex whose H1 is lim←−{Gn} and whose H0 is lim←−
1{Gn}. The

hypothesis of 11.3.4 is interpreted as a short exact sequence of such chain
complexes, and the conclusion of 11.3.4 is just the corresponding homology
exact sequence. In particular in the R-module case, this proof establishes that
δ is a homomorphism of R-modules. In fact, we have:

Corollary 11.3.5. If we start with a short exact sequence of inverse sequences
of R-modules in Proposition 11.3.4, the resulting “six-term” exact sequence
consists of R-modules and homomorphisms. �

The next proposition is left as an exercise.19

Proposition 11.3.6. The restriction morphism {Gn} → {Gnk
} in inv-C in-

duces a bijection of pointed sets lim←−
1

n

{Gn} → lim←−
1

k

{Gnk
}. In the case of

R-modules this bijection is an isomorphism. �

We now consider how lim←− and lim←−
1 behave with respect to homology.

Consider an inverse sequence of chain complexes of R-modules (C(i), ∂(i)) and

chain maps C(i+1) φi−→ C(i). Then (C, ∂) := (lim←−
i

{C(i)}, lim←−
i

∂(i)) and (C ′, ∂′) :=

(lim←−
1

i

{C(i)}, lim←−
1

i

∂(i)) are chain complexes.

19 In the case of finitely presented groups a proof of 11.3.6 using a topological in-
terpretation of lim

←−
1 is sketched in Remark 16.1.3.
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Proposition 11.3.7. Let C ′
n = 0 for all n. Then for each n there is a short

exact sequence

0→ lim←−
i

1Hn+1(C
(i))

ā−→ Hn(C)
b̄−→ lim←−

i

Hn(C(i))→ 0

This sequence is natural with respect to morphisms of (R-chain complexes)N
inv

.

Proof. Since C ′
n = 0 for all n we have a short exact sequence of chain com-

plexes

0 �� C �� ∏∞
i=1 C(i) s �� ∏∞

i=1 C(i) �� 0

giving, as in Sect. 2.1, a long exact sequence

· · · ��
∞∏

i=1

Hn+1(C
(i))

sn+1 ��
∞∏

i=1

Hn+1(C
(i)) �� Hn(C)

��
∞∏

i=1

Hn(C(i))
sn �� · · ·

Interpreting ker(sn) and coker(sn+1) as a lim←− and a lim←−
1 we get the required

sequence. �

A similar proof using the short exact sequence

0 ��
∞∏

i=1

C(i) s ��
∞∏

i=1

C(i) ��C′ ��0 gives:

Proposition 11.3.8. Let Cn = 0 for all n. Then for each n there is a short
exact sequence

0→ lim←−
i

1Hn(C(i))
a−→ Hn(C′) b−→ lim←−

i

Hn−1(C
(i))→ 0.

This sequence is natural with respect to morphisms of (R-chain complexes)N
inv

.
�

Remark 11.3.9. Sometimes, one wants explicit descriptions of a and b in 11.3.8.
The homomorphism a is induced by inclusion. To describe b, we start with
(xi) ∈ ker ∂′ = Zn(C′) representing an element of Hn(C′). There exists (ci) ∈∏

i

C
(i)
n−1 such that ∂xi = ci − φi(ci+1). Since 0 = ∂ci − φi(∂ci+1), (∂ci) ∈

lim←−
i

Bn−2(C
(i)) = 0, hence ∂ci = 0 for all i. So (ci) ∈

∏
i

Zn−1(C
(i)), and

φi(ci+1) = ci−∂xi. Thus (ci) defines an element of lim←−
i

Zn−1(C
(i))/Bn−1(C

(i)).

The homomorphism b maps {(xi)} to ({ci}), where {·} denotes a homology
class. The analogous description of ā and b̄ is left to the reader.
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For matters discussed in this book it will not be important to compute
lim←−

1{Gn}. The important question is: is it trivial or non-trivial. For informa-

tion on the structure of lim←−
1{Gn} in the abelian case see [94]. In the non-

abelian case, the pointed set lim←−
1{Gn} is either trivial or uncountable; some

related issues of topological interest are discussed in [99] and [69].
Although the vanishing of lim←−

1 of an inverse sequence of R-modules de-
pends only on the underlying abelian group structure, the fact that the bonds
are homomorphisms of R-modules can play a useful role. For example:

Proposition 11.3.10. Let {Mn} be an inverse sequence in the category R-
modules, where each Mn is finitely generated. If R is a field, then {Mn} is
semistable, hence lim←−

1{Mn} = 0.

Proof. For each m, the R-dimensions of the vector spaces image (Mn →Mm)
are non-increasing as n increases. Since Mm has finite R-dimension, this func-
tion of n becomes constant. Hence {Mn} is semistable. Apply 11.3.2. �

Next, we discuss lim←−
1 of sequences of finitely generated torsion modules.

If M is an R-module, the torsion submodule is tor M{m ∈ M | rm = 0 for
some non-zero r ∈ R}. M is torsion if tor M = M ; M is torsion free if tor
M = 0; M is cyclic if M is isomorphic to R/(r) where 0 �= r ∈ R and (r) is
the ideal generated by r; equivalently, M is cyclic if it is generated by a single
non-zero element.

Proposition 11.3.11. Let R be a PID and let M be a finitely generated R-
module. Then M is isomorphic to F ⊕ tor M , where F is the direct sum of ρ
copies of R, tor M is the direct sum of τ cyclic modules R/(ri), and ri divides
ri+1 when i < τ . The integers ρ and τ are unique, and the elements r1, · · · , rτ

are unique up to multiplication by invertible elements of R. Moreover, tor
M has the following minimal property: any decreasing chain of submodules
contains only finitely many members.

Proof. The first part is well known. For the last part, there exists r ∈ R which
annihilates tor M . So tor M is a module over the ring R/(r). This latter ring
satisfies the descending chain condition (see page 243 of [156]), hence so does
tor M ; see p. 158 of [156]. �

The integer ρ in 11.3.11 is called the rank of the free R-module F . An
infinitely generated free R-module is said to have infinite rank or rank ∞.

Proposition 11.3.12. If {Mn} is an inverse sequence of finitely generated
torsion R-modules, where R is a PID, then {Mn} is semistable. Hence
lim←−
n

1{Mn} = 0.

Proof. This is immediate from the last sentence of 11.3.11. �

Of course when R = Z (an important case) the modules Mn in 11.3.12 are
finite. We note a consequence of 11.3.2:
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Proposition 11.3.13. If {Gn} is an inverse sequence of finite groups, then
lim←−
n

1{Gn} is trivial. �

Turning to direct sequences, the analog of 11.3.4 is much simpler:

Proposition 11.3.14. Let {G′
n}, {Gn} and {G′′

n} be direct sequences of
groups. For each n, let

{1} −−−−→ G′
n

in−−−−→ Gn
pn−−−−→ G′′

n −−−−→ {1}

be a short exact sequence such that in and pn commute with the bonds, i.e., a
short exact sequence of direct sequences. Then there is a short exact sequence
of groups

{1} −−−−→ lim−→{G
′
n}

lim−→{in}
−−−−−→ lim−→{Gn}

lim−→{pn}
−−−−−→ lim−→{G

′′
n} −−−−→ {1}.

This sequence is natural with respect to morphisms of (Groups)N
dir. �

An R-module M is finitely presented if there is a short exact sequence
0 → K → F → M → 0 in which F is free while both F and K are finitely
generated. When R is a PID, M is finitely presented iff M is finitely generated.

Proposition 11.3.15. Let {Mn} and {Nn} be direct sequences of finitely pre-
sented R-modules having isomorphic direct limits. Then {Mn} and {Nn} are
ind-isomorphic. �

The following is well-known (compare 4.1.7 in [146]):

Proposition 11.3.16. Let {(C(i), ∂(i)), φi} be a direct sequence of R-chain
complexes and chain maps, and let (C, ∂) be the direct limit chain complex.
Then for each n, there is an isomorphism c : lim−→

i

Hn(C(i)) → Hn(C), which

is natural with respect to morphisms of (R-chain complexes)N
dir. Explicitly,

if an element of lim−→
i

Hn(C(i)) is represented by {z} ∈ Hn(C(j)) where z ∈

Zn(C(j)), then its image under c is represented by the image of z in C under
the canonical homomorphism C(j) → C. �

Source Notes: lim
←−

1 in the context of non-abelian groups first appeared in [21].
Theorem 11.3.2 appeared in [73] in the abelian case; the general case appeared in
[67].

Exercises

1. Prove 11.3.1.
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2. Let {Gn} and {Hn} be inverse sequences of groups and assume there are epi-
morphisms Gn � Hn which commute with the bonds. Prove that if lim

←−
1{Gn}

is trivial then lim
←−

1{Hn} is trivial.

3. Let the bonds in {Gn} be monomorphisms and let lim
←−

1{Gn} be trivial. Then

every cofinal subsequence also has trivial lim
←−

1. (Note that this is used in our
proof of 11.3.2 and so should be done without using 11.3.2.)

4. Prove 11.3.6.
5. Establish lim

←−
1 : towers-Groups → Pointed Sets and lim

←−
1 : towers-R-modules

→ R-modules as functors.
6. Give a version of Remark 11.3.9 for ā and b̄.
7. Prove 11.3.15.

8. Prove: lim
←−

1

n

(
∞M
n

Z

)
is isomorphic to

 
∞Y
1

Z

!ffi ∞M
1

Z.

9. Prove that if {Gn} and {Hn} are inverse sequences of countable groups, then
{Gn × Hn} is semistable iff {Gn} and {Hn} are semistable.

10. An inverse sequence {Gn} in Groups is pro-trivial if for each m there exists n ≥
m such that the image of fn

m is trivial. Prove that when each Gn is countable,
{Gn} is pro-trivial iff lim

←−
{Gn} and lim

←−
1{Gn} are trivial. Prove that {Gn} is

pro-trivial iff it is isomorphic in pro-Groups to the trivial inverse system {1}.
11. In Sect. 7.4 we defined a direct sequence {Gn} in Groups to be ind-trivial if for

each m there exists n ≥ m such that the image of fm
n is trivial. Prove that when

each Gn is finitely generated, {Gn} is ind-trivial iff lim
−→

n

{Gn} = {1} iff {Gn} is

isomorphic in ind-Groups to the trivial direct system {1}.
12. Let {Gm,n} be an inverse system of groups indexed by the directed set (N×N, <)

where the partial ordering < is generated by (m, n) < (m + 1, n) and (m,n) <
(m, n + 1). Construct a short exact sequence of pointed sets20

lim
←−

n

1 lim
←−
m

{Gm,n} � lim
←−

n

1{Gn,n} � lim
←−

n

lim
←−
m

1{Gm,n}.

11.4 Homology of ends

Let X be an oriented CW complex having locally finite type. So far, we have
made little attempt to compute H∞

∗ (X ; R). We will be interested in doing so
only when X is countably infinite, but even in this case it may happen that
H∞

∗ (X ; R) is uncountable. We will see examples; in the meantime we point
out that C∞

n (X ; R) is uncountable when X has infinitely many n-cells.
It is convenient to define related groups He

∗(X ; R). Consider the short
exact sequence of chain complexes:

20 See [21] and [103] for more on this.
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...

��

...

��

...

��
0 �� Cn(X; R)

i ��

∂

��

C∞
n (X; R)

p ��

∂

��

C∞
n (X; R)/Cn(X; R) ��

∂

��

0

0 �� Cn−1(X; R)
i ��

��

C∞
n−1(X; R)

p ��

��

C∞
n−1(X; R)/Cn−1(X; R) ��

��

0

...
...

...

where i is inclusion and p is projection. We define

He
n−1(X ; R) := Hn(C∞

∗ (X ; R)/C∗(X ; R)).

We call He
∗(X ; R) the homology of the end21 of X .

Applying the usual algebra (see Sect. 2.1) we get:

Proposition 11.4.1. There is an exact sequence

· · · �� Hn(X ; R)
i∗ �� H∞

n (X ; R)
p∗ �� He

n−1(X ; R)

∂∗ �� Hn−1(X ; R) �� · · ·

�

If X has finite type, i∗ is an isomorphism for all n, so He
∗(X ; R) = 0.

If X is n-connected, n ≥ 1, and X1 is infinite, we can apply Exercise 5 of
Sect. 7.1 to get H∞

i (X ; R) ∼= He
i−1(X ; R) for 2 ≤ i ≤ n and, using 11.1.3,

He
0(X ; R) ∼= H∞

1 (X ; R) ⊕ R. More generally, 11.4.1 shows that if one knows
two of H∗(X ; R), H∞

∗ (X ; R) and He
∗(X ; R), the exact sequence gives infor-

mation about the third.
Clearly, He

n(X ; R) ∼= Ze
n(X ; R)/Be

n(X ; R) where

Ze
n(X ; R) = {c ∈ C∞

n+1(X ; R) | ∂c ∈ Cn(X ; R)}
Be

n(X ; R) = B∞
n+1(X ; R) + Cn+1(X ; R) ⊂ C∞

n+1(X ; R).

The elements of Ze
n(X ; R) and Be

n(X ; R) are called n-cycles of the end of X
and n-boundaries of the end of X , respectively.

Proposition 11.4.2. Let X be path connected. Then He
n(X ; R) = 0 for all

n < 0.

21 The reason for the shift of dimension is explained after 11.4.13.
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Proof. For n < −1, this is trivial. For n = −1, it follows from 11.1.3 together
with the above exact sequence when X1 is infinite. When X1 is finite then
X0 is finite, so Ze

−1 = C∞
0 = C0 = Be

−1. �

Just as in Sect. 11.1, CW-proper maps induce homomorphisms on He
∗

possessing the usual functorial properties. We leave their statements to the
reader. Note in particular that He

∗ is a proper homotopy invariant of strongly
locally finite CW complexes.

Countability will be important to us, so we note:

Proposition 11.4.3. A path connected CW complex X having locally finite
type is countable.

Proof. We begin with X1. If X1 is infinite then, by 11.1.4, X1 is the union of
countably many finite subcomplexes. Assume, inductively, that Xn is count-
able. Since Xn+1 is locally finite, each cell of Xn meets only finitely many
(n + 1)-cells. Hence Xn+1 is countable. So X is countable. �

A filtration of a CW complex22 X is a collection of subcomplexes ∅ =

K−1 ⊂ K0 ⊂ K1 ⊂ . . . such that X =
∞⋃

i=0

Ki, and we say that {Ki} filters23

X . When X has locally finite type, we wish to filter X by subcomplexes Ki

having finite type, and to relate the homology modules24 H∗(X −c Ki; R) to
the modules He∗(X ; R). We begin with:

Proposition 11.4.4. If X is strongly locally finite and A is finite then the
CW neighborhood N(A) is finite.

Proof. The collection {C(e) | e is a cell of X} is locally finite, and A is
compact. �

It is not true that if X has locally finite type and A has finite type then
N(A) has finite type. Nor is 11.4.4 true when the word “strongly” is dropped.

Now, let X be a countable CW complex of locally finite type. A finite type
filtration of X is a filtration K0 ⊂ K1 ⊂ . . . by full subcomplexes of finite
type. If X is strongly locally finite, each Ki must then be finite, and we call
{Ki} a finite filtration. In particular, when X is finite-dimensional every finite
type filtration is a finite filtration.

A subset U of a locally compact space Y is a neighborhood of the end if
cl(Y − U) is compact. A sequence {Ui | i ∈ N} of neighborhoods of the end
of Y is a basis for the neighborhoods of the end of Y if for each neighborhood
U of the end, there is some i such that Ui ⊂ U . Note that Y is compact iff
every such collection {Ui} contains ∅.
22 This is the case of “G-filtration” in Sect. 7.4 in which G is the trivial group.
23 Later we will also need filtrations · · · ⊂ Kn ⊂ Kn+1 ⊂ · · · indexed by Z which

will also be called “filtrations.”
24 Recall the discussion of CW complements in Sect. 1.5.
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Proposition 11.4.5. With X as above, let {Ki} be a finite type filtration of
X. Then, for each n, {(X −c Ki)∩Xn} is a basis for the neighborhoods of the
end of Xn.

Proof. First, we show that Ui := (X −c Ki) ∩ Xn = Xn −c Kn
i is a neigh-

borhood of the end of Xn. We have Xn − Ui ⊂ NXn(Kn
i ), by 1.5.5. So

cl(Xn − Ui) ⊂ NXn(Kn
i ). Thus cl(Xn − Ui) is compact, by 11.4.4.

Let U be a neighborhood of the end of Xn. Then cl(Xn − U) is compact.
So cl(Xn−U) ⊂ Kn

i for some i, by 1.2.13. In other words, Xn− int U ⊂ Kn
i ,

so int U ⊃ Xn −Kn
i ⊃ (X −c Ki) ∩Xn = Ui. �

As for the existence of finite type filtrations, we know by 11.4.3 that every
path connected locally finite CW complex is countable and we have:

Proposition 11.4.6. Let X be a countable CW complex of locally finite type.
Well-order the set of vertices of X, and let Ki be the full subcomplex of X
generated by the first i vertices in the well-ordering. Then {Ki} gives a finite
type filtration of X. If X is strongly locally finite, each Ki is finite. �

When X has only finitely many vertices, all but finitely many of the Ki

in 11.4.6 are equal to X . This happens if X is finite, or in cases such as the
one described in 10.1.13.

We use finite type filtrations to compute H∞
∗ (X ; R) and He

∗(X ; R) (when
X is countable of locally finite type). Let {Ki} be such a filtration. De-
fine C∗(X, X −c Ki; R) to be C∗(X ; R)/C∗(X −c Ki; R). The chain complex
(lim←−

i

{C∗(X, X −c Ki; R)}, lim←− ∂) is isomorphic to the chain complex

. . . −−−−→ C∞
n (X ; R)

∂−−−−→ C∞
n−1(X ; R) −−−−→ . . .

and, since each induced bond Cn(X, X −c Ki+1; R)→ Cn(X, X −c Ki; R) is an
epimorphism, 11.3.1 and 11.3.2 imply that lim←−

i

1{Cn(X, X −c Ki; R)} is trivial.

Therefore, 11.3.7 gives us:

Theorem 11.4.7. Let X be a countable oriented CW complex having locally
finite type. Let {Ki} be a finite type filtration of X. For each n, there is a
natural short exact sequence of R-modules

0 −→ lim
←−

1

i

{Hn+1(X, X −c Ki; R)}
ā

−→ H∞
n (X; R)

b̄
−→ lim

←−
i

{Hn(X, X −c Ki; R)} −→ 0. �

Using the companion Theorem 11.3.8, we get a similar short exact sequence
for He

∗(X ; R) as follows. Consider the short exact sequences

0 �� Cn(X −c Ki; R) �� Cn(X ; R) �� Cn(X, X −c Ki; R) �� 0
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We identify lim←−
i

{Cn(X, X −c Ki; R)} with C∞
n (X ; R) as before. Clearly

lim←−
i

{Cn(X −c Ki; R)} is trivial. By 11.3.4, we get a short exact sequence of

chain complexes:

0 −−−−−→ C∗(X; R) −−−−−→ C∞
∗ (X; R) −−−−−→ lim

←−
i

1{C∗(X −c Ki; R)} −−−−−→ 0.

(Here, we are using the fact that lim1 of the “constant” inverse sequence
{Cn(X ; R), id} is trivial, by 11.3.1 and 11.3.2.) Comparing this with the ex-
act sequence at the start of this section, we see that the chain complexes
C∞

∗ (X ; R)/C∗(X ; R) and lim←−
1{C∗(X −c Ki; R)} are isomorphic. Applying

11.3.8 to the chain complex C∗(X −c Ki; R) we get:

Theorem 11.4.8. With hypotheses as in 11.4.7, we have, for each n, a nat-
ural short exact sequence of R-modules:

0 −→ lim←−
i

1{Hn+1(X −c Ki; R)} a−→ He
n(X ; R)

b−→ lim←−
i

{Hn(X −c Ki; R)} −→ 0.

�

Remark 11.4.9. Theorems 11.4.7 and 11.4.8 are the fundamental tools for com-
puting H∞

n (X ; R) and He
n(X ; R). In Remark 11.3.9, we stated the algebraic

meaning of the homomorphisms a and b which occur in 11.3.8. These trans-
late into geometric interpretations of the homomorphisms a and b in 11.4.8,
as we now explain; see Fig. 11.1. Let z be an n-cycle of the end of X . Then
z is an infinite (n + 1)-chain with finite boundary. By 11.4.5, we can write

z =

∞∑
j=0

xj where xj is a finite (n + 1)-chain in X −c Kj . Let ci = ∂

⎛
⎝ ∞∑

j=i

xj

⎞
⎠.

Then ci is a finite n-cycle in X −c Ki, and ∂xi = ci − ci+1. So ({ci}) is an
element of lim←−

i

{Hn(X −c Ki; R)}. The formula for b is b({z}) = ({ci}). The

monomorphism a takes the equivalence class of ({di}) to

{ ∞∑
i=1

di

}
, where

di ∈ Zn+1(X −c Ki). We leave the corresponding interpretation of ā and b̄, in
11.4.7, as an exercise.

By 11.3.2, we get (see Fig. 11.2):

Corollary 11.4.10. Let X and {Ki} be as in 11.4.8. The homomorphism
b : He

n(X ; R)→ lim←−
i

{Hn(X −c Ki; R)} is an isomorphism iff for each i, there

exists j ≥ i such that for each k ≥ j, each finite cellular (n + 1)-cycle in
X −c Kj is homologous in X −c Ki to a finite cellular (n+1)-cycle in X −c Kk.
�
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A locally compact space Y is movable at the end if for each neighborhood
U of the end there is a neighborhood V ⊂ U of the end such that for each
neighborhood W ⊂ U of the end there is a map g : V → W making the
following diagram commute up to homotopy:

U �� � �V

g
��!!
!!
!!
!!

W

''%%%%%%%%

(i.e., there exists H : V × I → U such that H0 = inclusion and H1 = g.)

Example 11.4.11. Rn is movable at the end.
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The locally compact space Y is n-movable at the end if for each neighbor-
hood, U , of the end there is a neighborhood, V ⊂ U , of the end such that for
each neighborhood, W ⊂ U , of the end and each map f : K → V , where K is
a CW complex of dimension ≤ n, f is homotopic in U to a map into W (i.e.,
there exists H : K × I → U such that H0 = f and H1(K) ⊂ W ). Obviously,
movable implies n-movable for all n.

Proposition 11.4.12. Let X and {Ki} be as in 11.4.7, and let r > n. Xr

is n-movable at the end iff Xn+1 is n-movable at the end. If Xn+1 is n-
movable at the end, then {Hn(X −c Ki; R)} is semistable; hence we have
lim←−

i

1{Hn(X −c Ki; R)} = 0. �

Proposition 11.4.13. (i) He
0(R; R) ∼= R⊕R and He

k(R; R) = 0 when k �= 0.
(ii) For n ≥ 2, He

0(Rn; R) ∼= He
n−1(R

n; R) ∼= R, and He
k(Rn; R) = 0 when

k �= 0 or n− 1.
(iii) For all n, H∞

n (Rn; R) ∼= R and H∞
k (Rn; R) = 0 when k �= n. �

Recall the shift of dimension in the definition of He
∗ . It results, for exam-

ple, in the above statement that the homology groups of the end of Rn are
isomorphic to the homology groups of Sn−1. This is appropriate, because for
any finite filtration {Ki} of Rn, the inverse sequence {Rn −c Ki} is isomorphic
in the category pro-Homotopy to the space Sn−1. We will see more of this
kind of analysis in Sect. 17.5.

Example 11.4.14. Here is an example of a CW complex X which is not 1-
movable at the end (see Fig. 11.3). X is the graph in R2 having the points
{(i, j) | i ∈ N, j = 0 or 1} as vertices, and having the segments [(i, j), (i+1, j)]
and [(i, 0), (i, 1)] as edges. Let Ki be the subcomplex [0, i]× [0, 1] ∩X . Then
X −c Ki is the subcomplex [i+1,∞)×[0, 1]∩X . Let Ji = [i+1, i+2]×[0, 1]∩X .
Then X −c Ki = Ji∪ (X −c Ki+1) and Ji∩ (X −c Ki+1) = {i+2}× [0, 1] which
is contractible. The reduced Mayer-Vietoris sequence gives an exact sequence

0 −−−−→ H1(X −c Ki+1; R)⊕H1(Ji; R)
j∗−−−−→ H1(X −c Ki; R) −−−−→ 0

The restriction of j∗ to H1(X −c Ki+1; R) is the homomorphism induced by
X −c Ki+1 ↪→ X −c Ki. Ji is homeomorphic to S1 so that H1(Ji; R) ∼= R. Thus,
all the bonds in the inverse sequence {H1(X −c Ki; R)} are monomorphisms
while none is an epimorphism. Hence this inverse sequence is not semistable.

A useful device for constructing examples X with interesting He∗(X) is the
“inverse mapping telescope” construction, dual to the mapping telescope of
Sect. 4.3. Let

X1
f1←−−−− X2

f2←−−−− X3 ←−−−− . . .
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be an inverse sequence of CW complexes and cellular maps. Let T =
∞∐

i=1

M(fi)/∼ where M(fi) is the mapping cylinder of fi and ∼ is the equiva-

lence relation generated by identifying, for all i, the canonical copies of Xi+1

in M(fi+1) and M(fi) – see Sect. 4.1. If q :

∞∐
i=1

M(fi)→ T is the quotient map,

it is clear that T admits a CW complex structure whose cells are {q(e) | e is a
cell of M(fi) for some i}. Compare the proof of 4.1.1. T is the inverse mapping
telescope of the given inverse sequence. We abuse notation, writing M(fi) for
q(M(fi)) ⊂ T . If each Xi is path connected and locally finite, so is T . As-

sume each Xi is finite and path connected. Let Ki =

i−1⋃
j=1

M(fj). Then {Ki}

is a finite filtration of T . With the obvious identifications we get homotopy
commutative diagrams

X −c Ki←↩ X −c Ki+1,⏐⏐ ,⏐⏐
Xi+1

fi+1←− Xi+2

whose vertical arrows are homotopy equivalences. Hence in the commutative
diagram

. . . ←−−−− Hk(X −c Ki; R) ←−−−− Hk(X −c Ki+1; R) ←−−−− . . .,⏐⏐∼=
,⏐⏐∼=

. . . ←−−−− Hk(Xi+1; R)
fi+1∗←−−−− Hk(Xi+2; R) ←−−−− . . .

the unmarked arrows are induced by inclusion and the vertical arrows are
isomorphisms.

Example 11.4.15. To get an example of the exact sequence of 11.4.8 in which
the lim←−

1 term does not vanish, apply the above construction with Xi = S1 for

all i, and fi the map of degree 2, e2πit �→ e4πit. The resulting T is the dyadic
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solenoid inverse mapping telescope. Clearly He
k(T ; Z) = 0 when k > 0, and

there is a short exact sequence (by 11.4.8):

0 −−−−→ lim←−
1{Z ×2←−Z ×2←− . . .} −−−−→ He

0(T ; Z) −−−−→ Z −−−−→ 0.

Since {Z ×2←− Z ×2←− . . .} is not semistable, and Z is countable, 11.3.2 implies
that the lim←−

1 term is not 0. �

1
f1

2
f2

3
f3

where each Xi is a finite CW complex, then there is a basis {Ti} for the
neighborhoods of the end of T such that each Ti has the homotopy type of
a finite CW complex. This is because Ti is the inverse mapping telescope

of Xi
fi←− Xi+1

fi+1←− Xi+2 ←− . . ., so Ti has the homotopy type of Xi. Hence
H1(Ti; Z) is finitely generated. However, if X is the graph in Example 11.4.14,
the discussion shows that for every neighborhood U of the end of X , H1(U ; Z)
is infinitely generated. Hence, X is quite different from an inverse mapping
telescope.

Source Notes: The general viewpoint of this section is similar to that of [110],
though that book is set in a different category. See also [60].

Exercises

1. Prove that when Ki is a finite filtration of the strongly locally finite CW complex
X, then for each i there exists j with Ki ⊂ intXKj .

2. Give an example of X of locally finite type having a vertex v such that N(v)
does not have finite type.

3. Let A be a subcomplex of a finite-dimensional locally finite CW complex. If A0

is finite prove that A is finite.
4. If X is strongly locally finite and path connected and if A is a finite non-

empty subcomplex of X, prove that {Nn(A)} is a finite filtration of X, where
N1(A) := N(A) and for n ≥ 1 Nn+1(A) := N(NnA)).

5. Give an example where X is locally finite and A is finite but N(A) is not finite.
6. Prove that any countable CW complex is homotopy equivalent to a countable

strongly locally finite CW complex. Prove that any CW complex is homotopy
equivalent to a locally finite-dimensional CW complex (i.e., every point has a
neighborhood which is a finite-dimensional CW complex). Hint : form a “direct
mapping telescope.”

7. What is meant by saying that the exact sequences in 11.4.7 and 11.4.8 are
natural? Prove naturality.

8. Interpret the homomorphisms ā and b̄ of 11.4.7 in the spirit of 11.4.9.
9. Prove 11.4.12.

10. Prove 11.4.13.
11. Discover a Mayer-Vietoris sequence for He

∗(·, R).
12. Consider the short exact sequence in 11.4.7. The middle and right terms only

depend on the (n + 1)-skeleton, so the same is true of the left term. Yet the
modules Hn+1(X, X −c Ki) depend on the (n + 2)-skeleton. Explain why their
lim1 does not.

Observe that if T is the inverse mapping telescope ofX ←−X ←−X ←−. . .,
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13. In Sect. 11.1 we defined Bn(y) to be the ball of radius n about y where y is a
vertex of an infinite locally finite path connected graph Y . Give an example to
show that Bn(y) need not be a full subgraph of Y .

14. Use Example 11.4.14 to construct another example (in addition to 11.4.15)
where the lim1 term in 11.4.8 does not vanish.
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Cohomology of CW Complexes

Here we introduce cellular cohomology, and cellular cohomology based on fi-
nite chains. The first of these is popularly called “ordinary cohomology’ .
There is an intriguing double duality in this. From one point of view ordinary
cohomology is considered to be the “dual” of homology as defined in Chap.
2. From another point of view, which will be made precise when we discuss
Poincaré Duality in Chap. 15, cohomology based on finite chains is “dual” to
homology, while ordinary cohomology is “dual” to the infinite cellular homol-
ogy theory of Sect. 11.1.

As in Chap. 11, having the two cohomology theories enables us to define
cohomology at the end of a CW complex.

12.1 Cohomology based on infinite and finite (co)chains

Just as the cellular boundary homomorphism algebraically sums up the faces
of a cell of an oriented CW complex, there is a “dual” homomorphism called
the “coboundary” which algebraically sums up the cells of which a given cell
is a face. This feature of the “coboundary” is somewhat obscured in many
books, because the authors define the “coboundary” on “cochains” rather
than on chains. So our treatment, although it goes back to the beginnings of
cohomology, may appear slightly eccentric.1 To minimize the eccentricity, we
will give both versions of the coboundary, and we will stay rather close to
standard forms.

Let X be an oriented CW complex. The coboundary homomorphism δ :
C∞

n (X ; R)→ C∞
n+1(X ; R) is defined by

δ

(∑
α

mαen
α

)
=
∑

β

(∑
α

mα[en+1
β : en

α]

)
en+1

β .

1 Expressing cohomology in terms of chains rather than cochains makes Poincaré
Duality more obvious: see Sect. 15.2.
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This is well defined by 2.5.8 and 1.2.13. The reader can check that δ is a
homomorphism.

Clearly, the following diagram commutes:2

C∞
n (X ; R)

δ−−−−→ C∞
n+1(X ; R)

∼=
,⏐⏐φn

∼=
,⏐⏐φn+1

HomR(Cn(X ; R), R)
∂∗

−−−−→ HomR(Cn+1(X ; R), R).

Here, φk(g) =
∑

α

g(ek
α).ek

α and ∂∗(g) = g ◦ ∂. Moreover, each φk is clearly an

isomorphism. It is customary to call the elements of HomR(Cn(X ; R), R) cellu-

R(Cn(X ; R), R)
to Cn(X ; R), a notation we will sometimes refer back to for purposes of clar-
ification. In view of the above equivalence, we will also refer to ∂∗ as the
coboundary homomorphism.

Proposition 12.1.1. The composition

C∞
n (X ; R)

δ−→ C∞
n+1(X ; R)

δ−→ C∞
n+2(X ; R)

is zero for all n.

Proof. This follows from 2.3.3 and the corresponding statement for ∂∗. �

A cochain complex over R is a pair (C, δ) where C is a graded R-module
and δ : C → C is a homomorphism of degree 1, called the coboundary, such
that δ ◦ δ = 0. If ({Cn}, δ) is a cochain complex and if one defines C ′

n = C−n,
then ({C ′

n}, δ) is a chain complex. In this way one obtains from Sect. 2.1
properties of cochain complexes analogous to the stated properties of chain
complexes. Elements of ker δ [resp. image δ] are called cocycles [resp. cobound-
aries ]. In dimension n, ker δ/im δ is the nth cohomology module, denoted
Hn(C).

By Proposition 12.1.1, (C∞
∗ (X ; R), δ) is a cochain complex, the cellular

cochain complex of X ; as explained, this term is also used for the isomorphic
cochain complex (C∗(X ; R), ∂∗). The resulting cellular cohomology modules
are denoted3 by H∗(X ; R).

A cellular map f : X → Y induces a homomorphism f# : C∞
n (Y ; R) →

C∞
n (X ; R) defined by:

f#

⎛
⎝∑

β

mβ ẽn
β

⎞
⎠ =

∑
α

⎛
⎝∑

β

mβ [en
α : ẽn

β : f ]

⎞
⎠ en

α.

2 Some authors (e.g., [29]) use (−1)n+1∂∗ instead of ∂∗ in this diagram, a convention
which would force a corresponding change in our definition of δ.

3 For consistency, we should write H∗
∞(X; R) because these cohomology modules

are based on infinite chains; but tradition forbids this.

lar n-cochains inX with coefficients in R and to abbreviate Hom
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In the alternative language, f# : Cn(Y ; R)→ Cn(X ; R) (i.e.,
f# : HomR(Cn(Y ; R), R)→ HomR(Cn(X ; R), R)) is the dual of
f# : Cn(X ; R)→ Cn(Y ; R). This f# is a cochain map, meaning it commutes
with δ. Clearly, (g ◦ f)# = f# ◦ g# whenever this makes sense for cellular
maps f and g, and of course id# = id.

We now turn to cohomology based on finite chains. We have C∗ (X ; R)⊂
C∞

∗ (X ; R). In general, it is not the case that δ maps Cn(X ; R) intoCn+1(X ; R),
but this is the case when Xn+1 is locally finite, and then we will also write
δ : Cn(X ; R) → Cn+1(X ; R) for the restriction of the previous δ. So when
X has locally finite type, (C∗(X ; R), δ) is a cochain complex called the cellu-

lar cochain complex of X based on finite chains. Let Homf
R(Cn(X ; R), R) or

Cn
f (X ; R) denote4 the subset of HomR(Cn(X ; R), R)(= Cn(X ; R)) consisting

of homomorphisms which take the value 0 on all but finitely many generators
(oriented n-cells of X). Then we have a commutative diagram

Cn(X ; R)
δ−−−−→ Cn+1(X ; R),⏐⏐φn

,⏐⏐φn+1

Cn
f (X ; R)

∂∗

−−−−→ Cn+1
f (X ; R)

where each φk [resp. ∂∗] is the restriction of the previous φk [resp. ∂∗]. Again,
these φk’s are isomorphisms.

The cohomology modules coming from the cochain complex (C∗(X ; R), δ),
or, equivalently, from (C∗

f (X ; R), ∂∗) (when X has locally finite type) are the
cellular cohomology modules based on finite chains with coefficients in R. They
are denoted H∗

f (X ; R).
A cellular CW-proper map f : X → Y between CW complexes of locally

finite type induces a cochain map

f# : Cn(Y ; R)→ Cn(X ; R)

where f# is the restriction of the previous f# (one checks that the previous
formula remains well defined). Just as δ can be interpreted as ∂∗, this f# can
be interpreted as f# : Cn

f (Y ; R)→ Cn
f (X ; R). We write f∗ for both Hn(f#)

and Hn
f (f#).

Here are some basic properties of H∗ and H∗
f whose proofs are similar to

those of the corresponding statements for H∗ and H∞
∗ in Sect. 2.4 and Sect.

10.2. WHENEVER A STATEMENT INVOLVES Hn
f THE CW COMPLEX

IS ASSUMED TO HAVE LOCALLY FINITE (n + 1)-SKELETON.

Proposition 12.1.2. If X is path connected, H0(X ; R) ∼= R. When X1 is
infinite and path connected, H0

f (X ; R) = 0. �

4 Here “f” stands for “finite’ .
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Proposition 12.1.3. If {Xα | α ∈ A} is the set of path components of X

then Hn(X ; R) is isomorphic to
∏
α

Hn(Xα; R), and Hn
f (X ; R) is isomorphic

to
⊕

α

Hn
f (Xα; R). �

Proposition 12.1.4. When X is finite, H∗(X ; R) = H∗
f (X ; R). �

Proposition 12.1.5. The cohomology of the one-point CW complex {p} is:
H0({p}; R) ∼= H0

f ({p}; R) ∼= R, and, for n �= 0, Hn({p}; R) = Hn
f ({p}; R) =

0. �

Proposition 12.1.6. With the usual CW complex structure on [0,∞),
Hn

f ([0,∞); R) = 0 for all n. �

Proposition 12.1.7. If X has dimension d, then Hn(X ; R) = Hn
f (X ; R) = 0

for all n > d. �

Proposition 12.1.8. If i : Xn+1 ↪→ X, then i∗ : Hj(X ; R) → Hj(Xn+1; R)
and i∗ : Hj

f (X ; R)→ Hj
f (Xn+1; R) are isomorphisms for j ≤ n. �

We now turn to homotopy invariance of cohomology.

Theorem 12.1.9. [Homotopy Invariance] If f, g : X → Y are homotopic
cellular maps, then f ∗ = g∗ : H∗(Y ; R) → H∗(X ; R). In particular, cellular
cohomology is a topological invariant.

Proof. Although this theorem is analogous to 2.7.10, we prove it using 2.7.14
instead. The reason is explained in Remark 12.1.11 below.

By 1.4.3 there is a cellular homotopy F : X × I → Y from f to g. Let D
be as in 2.7.14. Consider the diagram:

HomR(Cn(X; R), R) ��
∂∗

HomR(Cn−1(X; R), R)

HomR(Cn+1(Y ; R), R)

D∗
n

��((((((((((((((((
�� ∂∗

HomR(Cn(Y ; R), R)

f#

��

g#

��

D∗
n−1

��((((((((((((((((

Since f# = (f#)∗, etc., it is merely the dual of 2.7.14 to say D∗
n∂∗+∂∗D∗

n−1 =
f# − g#; or equivalently D∗δ + δD∗ = f# − g#. Applying both sides to a
cocycle c in Y we find that f#(c) and g#(c) differ by a coboundary.5 �

5 If the cocycle c is
X

β

mβ ẽn
β (in the proof of 12.1.9) then f#(c) and g#(c) differ

by the coboundary of
X
α,β

mβ[en−1
α × I : ẽn

β : F ]en−1
α . The compact support of

this (n − 1)-dimensional cochain can be found from this formula using 2.5.10. In
applications, one sometimes needs to know a finite subcomplex of X in which
f#(c) and g#(c) are cohomologous.
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By a similar proof (compare 11.1.9) we get:

Theorem 12.1.10. Let f, g : X → Y be CW-cellular maps where X and
Y have locally finite type. Assume either (a) f and g are CW-proper homo-
topic or (b) X is locally finite, Y is strongly locally finite, and f is properly
homotopic to g. Then f∗ = g∗ : H∗

f (Y ; R)→ H∗
f (X ; R). �

It follows that on strongly locally finite CW complexes, H∗
f is a topological

invariant.

Remark 12.1.11. We wish to treat homology and cohomology on an equal
footing. But there are places where that is impossible, and we have just met
one. Our proof of 2.7.10 (homotopy invariance of homology) was direct and
geometrical in the sense that we avoided using a chain homotopy. It was
based on the idea that if c ∈ Cn(X ; R) there is a sensible notion of c × I ∈
Cn(X × I; R). If we were to imitate this proof of 2.7.10 in proving 12.1.9, we
would need a method of associating with each infinite n-chain c ∈ C∞

n (Y ; R)
an infinite (n− 1)-chain (call it c÷ I) in some space (call it Y ÷ I); we would
need F : X × I → Y to induce a map F̃ : X → Y ÷ I; and the proof would
consist of showing that, when c is a cocycle, δF̃#(c÷ I) = ±(f#(c)− g#(c)).
The candidate for Y ÷ I is clear: it is Y I , the space of all maps I → Y with
the compact-open topology; indeed, the adjoint map F̃ : X → Y I is defined
by F̃ (x)(t) = F (x, t). So it would only remain to define c ÷ I ∈ C∞

n (Y I ; R).
However, the space Y I does not admit the structure of a CW complex, so
the notion of a cellular chain in Y I is meaningless. It is possible to repair
this defect by working throughout with singular chains or cubical singular
chains, for then there is a canonical way of associating with each singular n-
simplex [resp. singular n-cube] in Y a singular (n− 1)-simplex [resp. singular
(n−1)-cube] in Y I . Since our aim is to work with cellular chains (and since we
have given an easy proof of 12.1.9 anyway), this “repair” will not be pursued
here. And besides, it is not clear that a similar repair would be possible in
the analogous “proof” of 12.1.10. In summary, this lack of symmetry between
the cellular chain complexes and the cellular cochain complexes, finite and
infinite, is forced on us by the fact that the category of CW complexes and
cellular maps does not possess path-space objects dual to cartesian products
with I.

As in Sect. 2.5 and Sect. 10.2, the various cellular approximation theorems
1.4.3, 10.1.14 and 10.2.3 allow us to regard H∗(·; R) as a contravariant functor
from the category of oriented CW complexes and homotopy classes of maps to
the category, D, of graded R-modules and homomorphisms of degree 0; and
to regard H∗

f (·; R) as a contravariant functor from C to D, where C is either
(a) the category of oriented CW complexes of locally finite type and CW-
proper homotopy classes of CW-proper maps or (b) the category of oriented
strongly locally finite CW complexes and proper homotopy classes of proper
maps. Thus H∗(·; R) is a homotopy invariant, and H∗

f (·; R) is a CW-proper
homotopy invariant in case (a) or a proper homotopy invariant in case (b).
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For oriented CW pairs (X, A) let

C∞
n (X, A; R) = {

∑
mαen

α ∈ C∞
n (X ; R) | mα = 0 whenever en

α is a cell of A},

and6

Cn(X, A; R) = C∞
n (X, A; R) ∩Cn(X ; R).

We have short exact sequences of cochain complexes

0 �� C∞
∗ (A; R) ��

i#
C∞

∗ (X ; R) �� � �C∞
∗ (X, A; R) �� 0

and (if X has locally finite type)

0 �� C∗(A; R) ��
i#

C∗(X ; R) �� � �C∗(X, A; R) �� 0.

The cohomology modules of the cochain complexes (C∞∗ (X, A; R), δ) and
(C∗(X, A; R), δ) are denoted by H∗(X, A; R) and H∗

f (X, A; R) respectively
and called relative cohomology modules. For the usual algebraic reasons (see
Sect. 2.1) we get a commutative diagram whose horizontal rows are exact:

· · · �� Hn(A; R) �� Hn(X; R) �� Hn(X, A; R) �� Hn−1(A; R) �� · · ·

· · · �� Hn
f (A; R) ��

��

Hn
f (X; R) ��

��

Hn
f (X, A; R) ��

��

Hn−1
f

(A; R) ��

��

· · ·

Of course Hn(X, A; R) = Zn(X, A; R)/Bn(X, A; R). Here Zn(X, A; R) =
{c ∈ C∞

n (X ; R) | δc = 0 and the coefficient in c corresponding to each n-cell
of A is 0}; and Bn(X, A; R) = {c ∈ C∞

n (X ; R) | c = δd where d ∈ C∞
n−1(X ; R)

and the coefficient in d corresponding to each (n − 1)-cell of A is 0}.
These are the relative n-cocycles and relative n-coboundaries respectively.
Zn

f (X, A; R) and Bn
f (X, A; R) are defined similarly. Thus Zn(X, A; R) ⊂

Zn(X ; R), Bn(X, A; R) ⊂ Bn(X ; R), etc.
The relative cohomology modules H∗(X, A; R) and H∗

f (X, A; R) have
properties analogous to the corresponding properties of relative homology
modules as described in Sects. 2.6, 2.7 and 11.1.

Remark 12.1.12. Reduced cohomology based on infinite chains makes sense,
and is entirely dual to the theory described in Sect. 2.9. Reduced cohomol-
ogy based on finite chains does not always make sense because the reduced
coboundary δ̃ : R → C0(X ; R) maps 1 to the sum of all the vertices – an
infinite chain when X is infinite.
6 This is abuse of notation: in Sect. 11.3, Cn(X, A; R) meant Cn(X; R)/Cn(A; R),

whereas here Cn(X, A; R) denotes the module of chains whose A-coefficients are
all zero; these are really two ways of describing the same idea.
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Exercises

1. Establish the Milnor exact sequence for the cohomology of X where X =
[
i

Ki

each Ki being finite, K1 ⊂ K2 ⊂ · · · , namely,

0 → lim
←−

i

1Hn−1(Ki; R) → Hn(X; R) → lim
←−

i

Hn(Ki; R) → 0.

2. Prove 12.1.2–12.1.8.
3. Discover Mayer-Vietoris sequences for H∗(·; R) and H∗

f (·; R).
4. Guided by Sect. 2.9, write out the theory of reduced cohomology based on

infinite chains.
5. Prove that an n-equivalence induces an isomorphism on Hk(·; R) for all k ≤

n − 1.
6. Prove that a CW-proper n-equivalence induces an isomorphism on Hk

f (·; R) for
all k ≤ n − 1.

7. Show δ(Cn(X, A)) ⊂ Cn+1(X, A). Show Zn(X, A) = ker(δ : Cn(X, A) →
Cn+1(X, A)) and Bn(X, A) = image (δ : Cn−1(X, A) → Cn(X, A)).

12.2 Cohomology of ends

Let X be an oriented CW complex having locally finite type. We define coho-
mology modules of the end of X in much the same way as we defined homology
of the end in Sect. 11.4.

Consider the short exact sequence of cochain complexes and cochain maps:

...
...

...

0 �� Cn+1(X; R)
i ��

��

C∞
n+1(X; R)

p ��

��

C∞
n+1(X; R)/Cn+1(X; R) ��

��

0

0 �� Cn(X; R)
i ��

δ

��

C∞
n (X; R)

p ��

δ

��

C∞
n (X; R)/Cn(X; R) ��

δ

��

0

...

��

...

��

...

��

Let Hn
e (X ; R) = Hn(C∞∗ (X ; R)/C∗(X ; R)); we call H∗

e (X ; R) the cohomology
of the end of X . As usual there is a long exact sequence7

7 Since i is a cochain map, an argument could be made for writing i∗ rather than
i∗ for the induced homomorphism; similarly for p. However, our notation is cus-
tomary.
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· · · �� Hn+1(X; R)
i∗ �� Hn+1

f (X; R)
δ∗ �� Hn

e (X; R)
p∗

�� Hn(X; R) �� · · ·

Clearly, Hn
e (X ; R) = Zn

e (X ; R)/Bn
e (X ; R) where

Zn
e (X ; R) = {c ∈ C∞

n (X ; R) | δc ∈ Cn+1(X ; R)}

and
Bn

e (X ; R) = Bn(X ; R) + Cn(X ; R) ⊂ C∞
n (X ; R).

The elements of Zn
e (X ; R) and Bn

e (X ; R) are called n-cocycles of the end of
X and n-coboundaries of the end of X , respectively. Obviously Hn

e (X ; R) = 0
when n < 0.

Just as in Sect. 11.4, CW-proper maps or proper maps induce homomor-
phisms on H∗

e under sensible hypotheses, and these possess the usual functorial
properties. We omit the details.

We now give the cohomology analogs of 11.4.7 and 11.4.8.
Let {Ki} be a finite type filtration of X . We have a direct sequence of

cochain complexes {(C∗(X, X −c Ki; R), δ)} with bonds (inclusion)# whose
direct limit is isomorphic to the cochain complex (C∗(X ; R), δ). From 11.3.16,
we get:

Theorem 12.2.1. Let X be a countable oriented CW complex having locally
finite type. Let {Ki} be a finite type filtration of X. There is an isomorphism
c̄ : lim−→

i

{Hn(X, X −c Ki; R)} → Hn
f (X ; R). �

Similarly, we have the direct sequence of cochain complexes
{(C∞

∗ (X −c Ki; R), δ)} whose direct limit is isomorphic to the cochain complex
C∞

∗ (X ; R)/C∗(X ; R), giving:

Theorem 12.2.2. With hypotheses as in 12.2.1, there is an isomorphism
c : lim−→

i

{Hn(X −c Ki; R)} → Hn
e (X ; R). �

For future reference we note a useful fact about the “bottom” of the long
exact sequence; the proof is an exercise:

Proposition 12.2.3. When X is path connected and infinite the monomor-
phism p∗ : H0(X ; R)→ H0

e (X ; R) splits. �

If Y is a locally compact Hausdorff space, it is customary to define the
singular cohomology modules of Y with compact supports to be H∗

c (Y ; R) =
lim−→
K

{H∗
∆(Y, Y −K; R)} where H∗

∆ denotes singular cohomology (see Exercise

5) and the directed set is the set of all compact subsets K of Y directed by
inclusion. The reader should compare this with Theorem 12.2.1.
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Remark 12.2.4. Many theorems in this chapter and elsewhere in this book
are stated for a CW complex X of locally finite type. In such a context a
statement about X which only involves H∞

n , He
n−1, Hn

f or Hn
e holds provided

Xn+1 is locally finite because these invariants only depend on Xn+1.

Convention 12.2.5. Throughout this book it is understood that whenever
H∞

n , He
n−1, Hn

f or Hn
e appears in a statement, the relevant CW complex

has locally finite (n + 1)-skeleton.

Exercises

1. Write down the isomorphisms c̄ in 12.2.1 and c in 12.2.2.
2. Explain why there is no shift of dimension in the definition of H∗

e (X; R) while
there is such a shift in the definition of He

∗(X; R).
3. Discover a Mayer-Vietoris sequence for He

∗(·; R).
4. Up to what value of k does a CW-proper n-equivalence induce an isomorphism

on (a) He
k(·; R) and (b) Hk

e (·; R)?
5. Discover “singular cohomology” by applying the methods of Sect. 12.1 to the

singular chain complex of Sect. 2.2.

12.3 A special case: Orientation of pseudomanifolds and
manifolds

Before continuing with the general theory we pause to discuss infinite chains
and cochains in an important case.

A CW n-pseudomanifold is a locally finite regular CW complex X having
the following properties: (i) every cell of X is a face of an n-cell; (ii) every
(n−1)-cell of X is a face of at most two n-cells; (iii) if en

α �= en
β are cells in the

same path component of X , there is a finite sequence en
α = en

α0
, en

α1
, · · · , en

αk
=

en
β of n-cells of X such that each en

αi
∩ en

αi+1
is an (n − 1)-cell of X . Such a

sequence is called a gallery. The subcomplex of X consisting of those (n− 1)-
cells which are faces of exactly one n-cell, together with their faces, is called
the boundary of X and is denoted ∂X . Note that X is not required to be path
connected.

Proposition 12.3.1. If K is a combinatorial n-manifold then |K| is a CW
n-pseudomanifold, and the two notions of boundary coincide. �

The cone on a path connected finite n-dimensional pseudomanifold X is a
finite (n + 1)-dimensional pseudomanifold but is not a topological manifold if
X is not a sphere or a ball.8

8 If X is an n-pseudomanifold, it is clear that X−Xn−2 is a topological n-manifold.
For that reason a pseudomanifold is sometimes described as a “manifold with a
codimension two singularity;” however, if X satisfies (i) and (ii) and X − Xn−2

is a manifold, it does not follow that X is a pseudomanifold.
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Remark 12.3.2. In the older literature, an n-pseudomanifold is a path con-
nected CW complex X = |K| for some abstract simplicial complex K, which
satisfies (i)–(iii) above. We have dropped the requirement of path connect-
edness, but have added the requirement of local finiteness. In the literature
of buildings, a simplicial complex X = |K| (not necessarily locally finite)
satisfying (i)–(iii) and with ∂X = ∅ is called a thin chamber complex .

Let X be a CW n-pseudomanifold. Orient the cells of X in the sense of
Sect. 2.5. Let R be an integral domain.9 A relative cycle c ∈ Z∞

n (X, ∂X ; R)
is called a fundamental cycle (over R) if the coefficient in c of every n-cell
is a unit of R. We say that X is R-orientable if X has a fundamental cy-
cle over R. Of course, B∞

n (X, ∂X ; R) = 0, so there is only a formal differ-
ence between Z∞

n (X, ∂X ; R) and H∞
n (X, ∂X ; R). If c is a fundamental cycle,

the corresponding homology class in H∞
n (X, ∂X ; R) is called a fundamental

class (over R). Clearly, X is R-orientable iff each path component of X is
R-orientable.

Proposition 12.3.3. Let c ∈ Z∞
n (X, ∂X ; R), let en

α and en
β be n-cells in the

same path component of X, and let rα, rβ be the coefficients of en
α and en

β in
c. Then rα = ±rβ.

Proof. First assume en
α ∩ en

β = en−1
γ . Then en−1

γ is not a face of any other

n-cell. Since ∂c = 0 we get rα[en
α : en−1

γ ] + rβ [en
β : en−1

γ ] = 0. By 5.3.10 this
implies rα = ±rβ . The general case now follows by induction, using Axiom
(iii) in the definition of a pseudomanifold. �

Proposition 12.3.4. Let X be path connected. If c and c′ are fundamental
cycles over R then, for some unit u ∈ R, c = uc′.

Proof. Let the coefficient of en
α in c [resp. c′] be the unit uα [resp. u′

α]. Then
c and uα(u′

α)−1c′ have the same en
α-coefficient, so the coefficient of en

α in
c− uα(u′

α)−1c′ is zero. By 12.3.3, this implies c = uα(u′
α)−1c′. �

Obviously, if u �= 1 and c is a fundamental cycle, then uc �= c. Hence the
last proposition implies that when X is path connected and R-orientable the
fundamental cycles on X are in bijective correspondence with the units of R.

A choice of fundamental cycle c on X (if X is R-orientable) is called an
R-orientation of X , and X is R-oriented by c. Summarizing:

Proposition 12.3.5. Let X, as above, be path connected and R-orientable.
If two fundamental cycles have the same en

α-coefficient for some α, then they
are identical. Hence, one fully specifies an R-orientation for X by specifying
a unit of R as the coefficient of a single n-cell. �

9 Recall that an integral domain is a commutative ring with the property that
rs = 0 implies r = 0 or s = 0.
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Every CW n-pseudomanifold X is Z2-orientable and has a unique Z2-
orientation. The terms “Z-orientable,’ “Z-orientation,” and “Z-oriented” are
usually abbreviated to orientable, orientation, and oriented 10. If X is ori-
entable, the underlying CW complex X can be oriented (in the sense of Sect.

2.5) so that
∑
α∈A

en
α is a fundamental class, where A indexes the n-cells of X .

Whenever X is path connected and orientable, X has two orientations, since
Z has two units.

Example 12.3.6. The CW manifolds
•
I n+1 (homeomorphic to Sn) and Rn are

orientable. The projective plane and the Möbius band (equipped with regular
CW complex structures) are not orientable.

Now we use the fact that R is an integral domain:

Proposition 12.3.7. Let X be path connected. If H∞
n (X, ∂X ; R) �= 0 then X

has a fundamental cycle over R; i.e., X is R-orientable.

Proof. Let z =
∑
α

rαen
α be a non-zero relative cycle in X . Since ∂z = 0,

rα = ±rβ when en
α and en

β share an (n − 1)-face. Since X is path connected,
the gallery property then implies rα = ±r for all α, where r �= 0 ∈ R. Thus
z = rz0 where every coefficient in z0 is ±1. Now 0 = ∂z = r∂z0. If ∂z0 �= 0
then some en−1

β has non-zero coefficient sβ in ∂z0, so rsβ = 0, contradicting
the fact that R is an integral domain. So z0 is a fundamental cycle. �

Corollary 12.3.8. Let X be path connected. The following are equivalent:

(i) X is R-orientable;
(ii) H∞

n (X, ∂X ; R) is isomorphic to R;
(iii) H∞

n (X, ∂X ; R) �= 0. �

The hypothesis that R be an integral domain is only needed for the (iii)
⇒ (i) part of 12.3.8.

Proposition 12.3.9. Let X be path connected. If ∂X �= ∅, Hn(X ; R) = 0 and
H∞

n (X ; R) = 0. If X is non-compact, Hn(X, ∂X ; R) = 0. �

The property of R-orientability of n-pseudomanifolds is a proper homotopy
invariant of pairs in the following sense.

Proposition 12.3.10. Let X and Y be CW n-pseudomanifolds, and let f :
(X, ∂X) → (Y, ∂Y ) be a cellular proper homotopy equivalence (of pairs). If
c ∈ Z∞

n (X, ∂X ; R) is a fundamental cycle for X then f#(c) ∈ Z∞
n (Y, ∂Y ; R)

is a fundamental cycle for Y .

10 The two meanings of “oriented” and “orientation” – here and in Sect. 2.5 – should
be noted.
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Proof. We may assume that X is path connected: otherwise work with each
path component separately. Clearly, f#(c) ∈ Z∞

n (Y, ∂Y ; R). Hence, by 12.3.3,
f#(c) = r.d where r ∈ R, d ∈ C∞

n (Y ; R) and every coefficient in d is ±1. Let
g : (Y, ∂Y ) → (X, ∂X) be a proper homotopy inverse for f . We know that
g# ◦ f#(c) is homologous to c, and hence equals c. So r.g#(d) = c. Thus r is
a unit of R, so f#(c) is a fundamental cycle. �

As a special case, suppose X ′ is a regular oriented CW complex which is
a subdivision of X . Let c be a fundamental cycle (over R) for X . The identity
map11 i : X → X ′ is cellular. By 12.3.10, i#(c) is a fundamental cycle (over
R) for X ′. The cycle c defines an R-orientation on X ; the inherited orientation
on X ′ is that defined by i#(c).

As another special case, let X = Y in 12.3.10, and let X be path con-
nected and orientable. We say that f (in 12.3.10) is orientation preserving
[resp. orientation reversing] if for some fundamental class c ∈ Z∞

n (X, ∂X ; Z)
f#(c) = c [resp. f#(c) = −c].

Proposition 12.3.11. If H∞
n−1(X, ∂X ; Z2) = 0 then X is orientable.

The support of a k-chain c is the set of k-cells appearing in c with non-zero
coefficient.

Proof (of 12.3.11). Let c =
∑

α

en
α where α ranges over all the n-cells of

X . Then ∂c = 2d + e, where d has support outside ∂X , e has support in
∂X , and every coefficient in d and in e is ±1. So 0 = 2(∂d) + ∂e, imply-
ing that 2(∂d), hence also ∂d, has support in ∂X . So d ∈ Z∞

n−1(X, ∂X ; Z).
Since H∞

n−1(X, ∂X ; Z2) = 0, there exist b ∈ C∞
n (X ; Z), a ∈ C∞

n−1(X ; Z), and
f ∈ C∞

n−1(∂X ; Z) such that ∂b = d + 2a + f , and a has support outside ∂X .
Now ∂(b ± 2en

α) = d + 2a + f ± 2.∂en
α which has the form d + 2a′ + f ′; so

we may assume that every non-zero coefficient in b is 1. Collecting terms, we
have ∂c = 2.∂b− 4a + e− 2f , so ∂(2b− c) = 4a− e + 2f . All coefficients in
2b−c are ±1 so each coefficient in ∂(2b−c) is 0, ±1 or ±2. Hence a = 0. Thus
2b− c ∈ Z∞

n (X, ∂X ; Z). If X were non-orientable, we would have 2b = c, by
12.3.9. But 2b �= c, so X is orientable. �

A special case of Poincaré Duality says that if X = |K|, where K is a
combinatorial n-manifold, then H∞

n−1(X, ∂X ; Z2) is isomorphic to H1(X ; Z2);
this is proved in 15.1.9. We use this here to get an important consequence of
12.3.1 and 12.3.11.

Corollary 12.3.12. If X = |K|, as above, and if H1(X ; Z2) = 0, then X
is orientable. In particular, every simply connected combinatorial manifold is
orientable. �

Note that 12.3.12 does not necessarily hold for pseudomanifolds.
Again, let X be a CW n-pseudomanifold whose cells are oriented.

11 As sets of points X = X ′, so there is an identity map from X to X ′.
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Proposition 12.3.13. If X is non-orientable then H∞
n−1(X, ∂X ; Z) contains

an element of order 2.

Proof. We refer to the proof of 12.3.11. We have 2d ∈ B∞
n−1(X, ∂X ; Z) and

d ∈ Z∞
n−1(X, ∂X ; Z). If d were itself a boundary, we would have b and f with

∂b = d+ f . So ∂(2b− c) = 2f − e. Since there is no fundamental cycle, c = 2b,
contradicting the definition of c. So d defines an element of order 2. �

Proposition 12.3.14. If X is path connected and orientable, Hn
f (X, ∂X ; Z)∼=

Z. If X is non-orientable, Hn
f (X, ∂X ; Z) ∼= Z2. In both cases, if en

α is an ori-
ented n-cell then the cohomology class of the n-cocycle en

α generates.

Proof. If en
α and en

β share an (n − 1)-face d then δd = ±eα ± eβ, so eα is
cohomologous to ±eβ. Since X is path connected, it follows that every element
of Zn

f (X, ∂X ; Z) is cohomologous to ken
α for some k ∈ Z. Thus Hn

f (X, ∂X ; Z)

is cyclic. If X is orientable then the n-cells can be oriented so that
∑
α

en
α

is a fundamental cycle, and in that case the coefficient sum in a (relative)
coboundary is zero. So ken

α is not a coboundary when k �= 0. Thus, in the
orientable case Hn

f (X, ∂X ; Z) is freely generated by en
α.

Let X be non-orientable and let P be the set of infinite n-chains c having
the following properties: (i) every coefficient in ∂c is 0, 1 or −1; and (ii)
when en

α and en
β are in the support of c, they can be joined by a gallery

consisting of n-cells in the support of c. The set P is partially ordered by
c1 ≤ c2 if the support of c1 lies in the support of c2. The hypotheses of Zorn’s
Lemma are satisfied, so there is a maximal element cmax ∈ P . Since X is
non-orientable, there is an n-cell of X which is not in the support of cmax.
Hence, using a gallery, there exist an (n−1)-cell d and n-cells en

α, en
β such that

en
α∩en

β = d, en
α is in the support of cmax, and en

β is not in the support of cmax. If

[en
β : d] = −[en

α : d] then there will be another (n−1)-face d̄ of en
β which is also

a face of some en
γ in the support of cmax, so that [en

β : d̄] = [en
γ : d̄]; otherwise

cmax + en
β would be in P , contradicting maximality. Thus in this case en

α is
cohomologous to en

β , and en
γ is cohomologous to −en

β , so en
α is cohomologous to

−en
α. On the other hand, if [en

β : d] = [en
α : d] one could change the orientation

on en
β , and return to the previous case. So when X is non-orientable the

cohomology class of en
α has order ≤ 2. The sum of the coefficients in a relative

coboundary is even, so Hn
f (X, ∂X ; Z) ∼= Z2. �

Now we turn to covering spaces. A covering space of a combinatorial n-
manifold is a combinatorial n-manifold, but a covering space of a CW n-
pseudomanifold need not be a CW n-pseudomanifold. On the other hand, if
the universal cover, X̃, is a CW n-pseudomanifold, then so is every covering
space of X , including X itself.

For the rest of this section X is a path connected oriented CW complex
such that X̃ is an n-pseudomanifold. Pick a base vertex v. Let G = π1(X, v).
Orient the cells of (X̃, ṽ) as in Sect. 8.1 so that each covering transformation
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preserves the orientations of the n-cells of X . Let p : (X̃, ṽ) → (X, v) be the
universal covering projection. When X̃ is orientable, let H be the subgroup
of G consisting of orientation preserving covering transformations. Clearly H
has index ≤ 2 in G.

Proposition 12.3.15. Let the n-pseudomanifold X̃ be orientable. Then X is
orientable iff H = G.

Proof. Let c =
∑
g,α

rα,ggẽn
α be a fundamental cycle (over Z) in X̃ . Then rα,g =

±1. First, let H = G. Then rα,g = rα,1 for all g ∈ G. Let d =
∑

α

rα,1e
n
α ∈

C∞
n (X ; Z). We claim d is a fundamental cycle in X . To see this, let ẽn−1

β be a

face of g1ẽ
n
α1

and g2ẽ
n
α2

. Then rα1,g1 [g1ẽ
n
α1

: ẽn−1
β ] + rα2,g2 [g2ẽ

n
α2

: ẽn−1
β ] = 0.

Hence, rα1,1[e
n
α1

: en−1
β ] + rα2,1[e

n
α2

: en−1
β ] = 0. Since this holds for any en−1

β

in
◦
X, the claim follows.
Now, let X be orientable and suppose H �= G. Then H is a (normal)

subgroup of index 2. By the previous paragraph, the covering space X̄(H) is
orientable. We have a two-to-one covering projection qG+ : X̄(H)→ X . Each
cell en

α of X is covered by two cells ēn
α,1 and ēn

α,2 of X̄(H). If we orient these via

qG+ , we see that a fundamental class c =
∑
α

rαen
α in X yields a fundamental

class d =
∑

α

rα(ēn
α,1 + ēn

α,2) in X̄(H), and qG+#(d) = 2c. Since H �= G, there

is an orientation reversing covering transformation γ : X̄(H) → X̄(H). Thus
2c = qG+#(d) = qG+# ◦ γ(d) = −qG+#(d) = −2c, a contradiction. �

Corollary 12.3.16. If X̃ is orientable and X is non-orientable, X has an
orientable path connected double cover qG+ : X̄(H)→ X. �

The awkward feature of 12.3.15 and 12.3.16 is the hypothesis that the uni-
versal cover be orientable. Unlike manifolds – see 12.3.12 – simply connected
pseudomanifolds are not always orientable; e.g., the cone on the projective
plane. However, by 12.3.12 and 12.3.16 we get:

Corollary 12.3.17. Every non-orientable path connected CW n-manifold has
an orientable path connected double cover. �

Exercises

1. Give an example of a 2-pseudomanifold which is not a manifold, and of a 2-
pseudomanifold whose boundary is not a pseudomanifold.

2. Prove that an orientable pseudomanifold is R-orientable for any commutative
ring R.
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3. Prove that the cone on a path connected finite pseudomanifold is a pseudoman-
ifold.

4. Give a counterexample to the converse of 12.3.11.
5. Give an example of a non-pseudomanifold covering space of a pseudomanifold.
6. Show that if K is a combinatorial manifold triangulating the surface Tg,d then

K is orientable, and if K triangulates the surface Uh,d then K is non-orientable.
7. Give a counterexample to 12.3.7 when 2 is a 0-divisor.

8. In a pseudomanifold X, let c =
X

α

uαen
α where each uα = ±1. Then ∂c = 2d + e

where d is supported outside ∂X and e is supported in ∂X. Show that d ∈
Z∞

n−1(X, ∂X; Z) and that {d} = 0 or has order 2 in Hn−1(X, ∂X; Z) depending
on whether or not X is orientable. Show that if X is non-orientable and path
connected then the torsion subgroup of H∞

n−1(X, ∂X; Z) has order 2. Describe
explicitly a cycle whose homology class is non-zero.

12.4 Review of more homological algebra

For details of the algebra reviewed here see, for example, [83].
Let R be a (not necessarily commutative) ring12 with 1 �= 0. The tensor

product B⊗RA of a right R-module B and a left R-module A has the structure
of an abelian group; it is generated by elements of the form b⊗a, where b ∈ B
and a ∈ A, subject to bilinearity and relations of the form br ⊗ a = b ⊗ ra
where r ∈ R. If R is commutative, the left action of R on B ⊗R A defined by
r(b⊗ a) = br⊗ a makes B⊗R A into an R-module, and B⊗R A is understood
to carry this left R-module structure. If R is not commutative, B ⊗R A is
understood to be an abelian group only, unless an R-action is specified.13

If ({Cn}, ∂) is an R-chain complex and B is a right R-module, then
({B ⊗R Cn}, id ⊗ ∂) is a Z-chain complex whose homology groups are de-
noted by H∗(C; B) and are called the homology groups of C with coefficients
in B. Of course, if R is commutative we get an R-chain complex and homology
R-modules.

Dually, if C and A are left R-modules, then HomR(C, A) has the structure
of an abelian group. If R is commutative, the left action of R on HomR(C, A)
defined by (r.f)(c) = r.f(c) makes HomR(C, A) into an R-module (since r.f ∈
HomR(C, A)). If R is not commutative, HomR(C, A) is understood to be an
abelian group only, unless an R-action is specified.

If ({Cn}, ∂) is an R-chain complex and A is a left R-module, then
({HomR(Cn, A)}, ∂∗) is a Z-cochain complex whose cohomology groups are
denoted by H∗(C; A); they are the cohomology groups of C with coefficients
in A. Again, if R is commutative we get an R-cochain complex and cohomol-
ogy R-modules.

12 For this section only we suspend our standing convention (Sect. 2.1) that R
denotes a commutative ring. In this section the status of R will change several
times.

13 For group rings RG we elaborate on this convention in Sect. 8.1.
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FROM HERE UNTIL AFTER REMARK 12.4.6, R IS UNDERSTOOD
TO BE A PID. In particular, R is a commutative ring without zero divisors,
and every submodule of a free R-module is free. When R is commutative, the
distinction between left and right R-modules is not worth making, since a left
module M becomes a right module under the R-action m.r = rm, and vice
versa.

For any R-module A, there exist short exact sequences

0 → F1
i−→ F0

j−→ A → 0 in which F0 and F1 are free R-modules. For
any R-module B, let TorR(B, A) be defined to make an exact sequence

0 −−−−−−→ TorR(B, A) −−−−−−→ B ⊗R F1
id ⊗i−−−−−−→ B ⊗R F0

id ⊗j−−−−−−→ B ⊗R A −−−−−−→ 0.

Up to canonical isomorphism, TorR(B, A) is independent of the choice of F0

and of the epimorphism F0 → A. Both · ⊗R · and TorR(·, ·) are covariant
functors of two variables, which commute with direct sums and direct limits.
A useful fact is:

Proposition 12.4.1. If A or B is torsion free, then TorR(B, A) = 0.

Theorem 12.4.2. (Universal Coefficient Theorem in homology) With
({Cn}, ∂) and B as above, and each Cn free, there is a natural short exact
sequence of R-modules

0 −−−−−→ B ⊗R Hn(C)
β

−−−−−→ Hn(C; B) −−−−−→ TorR(B, Hn−1(C)) −−−−−→ 0.

This sequence splits, naturally in B but unnaturally in C. �

Dually, if B and A are R-modules, let ExtR(A, B) be defined to make an
exact sequence

0 �� HomR(A, B)
j∗ �� HomR(F0, B)

i∗ �� HomR(F1, B)

�� ExtR(A, B) �� 0.

As with TorR, ExtR(A, B) is independent of the choice of F0 and of the
epimorphism F0 → A. Both HomR(·, ·) and ExtR(·, ·) are functors of two
variables, contravariant in the first and covariant in the second. They convert
direct sums into direct products, so they commute with finite direct sums.
Since R is a domain, HomR(A, R) is torsion free for all A.

A useful fact is:

Proposition 12.4.3. If A is free then ExtR(A, B) = 0. �
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The next statement is proved in [146, Sect. 5.5.2]:

Proposition 12.4.4. ExtR(R/(r), R) ∼= R/(r); ExtR(R/(r), R/(q)) ∼= R/(s)
where s = (r, q), the greatest common divisor of r and q. �

Theorem 12.4.5. (Universal Coefficient Theorem in cohomology)
With ({Cn}, ∂) and B as above, and each Cn free, there is a natural short
exact sequence of R-modules

0 −−−−−→ ExtR(Hn−1(C), B) −−−−−→ Hn(C; B)
α

−−−−−→ HomR(Hn(C), B) −−−−−→ 0.

This sequence splits, naturally in B but unnaturally in C. �

Remark 12.4.6. By examining the proofs of 12.4.2 and 12.4.5, one sees that the
monomorphism β in 12.4.2 is given by β(b⊗{z}) = {z⊗b}, where {·} denotes
homology class; and the epimorphism α in 12.2.5 is given by α({f})({z}) =
f(z), where f ∈ HomR(Cn, B), z ∈ Zn(C), and {·} denotes cohomology or
homology as appropriate.

Let X be a CW complex. Let R be a commutative ring and let M be
an R-module. We define the homology and cohomology modules of X with
coefficients in M .

(i) Hn(X ; M) is the homology of the chain complex

({M ⊗R Cn(X ; R)}, id⊗ ∂);

(ii) Hn(X ; M) is the cohomology of the cochain complex

({HomR(Cn(X ; R), M)}, ∂∗).

When X has locally finite type

(iii) Hn
f (X ; M) is the cohomology of the cochain complex

({M ⊗R Cn(X ; R)}, id⊗ δ);

(iv) H∞
n (X ; M) is the homology of the chain complex

({HomR(Cn(X ; R), M)}, δ∗).

Similar definitions are made for pairs.

Remark 12.4.7. We can make the Z-module R⊗Z Cn(X ; Z) into an R-module
by defining r.(r′⊗c) = (rr′)⊗c. This construction is called extension of scalars.
It gives a “canonical” isomorphism of R-chain complexes R ⊗Z Cn(X ; Z) →
Cn(X ; R) (Exercise 1). The resulting homology R-modules are therefore also
“canonically” isomorphic. We have denoted both homology constructions
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by H∗(X ; R). However, there is a delicate point here. The derivation from
{Cn(X ; R), ∂} makes H∗(X ; R) into an R-module naturally, as described in
Chap. 2. The derivation of H∗(X ; R) from {R ⊗Z Cn(X ; Z), id ⊗ ∂} would
only give the homology groups (= Z-modules) with coefficients in the (right
R-module) R, were it not for the fact that extension of scalars induces an R-
module structure on these homology groups. This becomes important when
using the Universal Coefficient Theorem. The extension of scalars also gives an
R-module structure to TorZ(R, B), where R is a PID and B is any R-module.
Thus the exact sequence of Z-modules

0 �� R⊗Z Hn(X ; Z) �� Hn(X ; R) �� TorZ(R, Hn−1(X ; Z)) �� 0

is in fact an exact sequence of R-modules. For example, one deduces from
this that H1(X ; Q) is isomorphic to Q ⊗Z H1(X ; Z) as a Q-vector space
and not merely as an abelian group. Similarly, we make the Z-module
HomZ(Cn(X ; Z), R) into an R-module by the rule (r.f)(c) = r.f(c). A par-
allel discussion can then be given concerning cohomology, ending with the
conclusion that we have an exact sequence of R-modules

0 �� ExtZ(Hn−1(X; Z); R) �� Hn(X; R) �� HomZ(Hn(X; Z); R) �� 0.

Similar remarks hold for H∗
f and H∞

∗ .

Another version of the Universal Coefficient Theorem will be useful. A
proof is given in [146, Sect. 5.5.10]:

Theorem 12.4.8. Let R be a PID, and let B be a finitely generated R-module.
Let ({Cn}, ∂} be a free R-chain complex. There is a natural short exact se-
quence of R-modules

0 �� B ⊗R Hn(C)
β �� Hn(C; B) �� TorR(B, Hn+1(C)) �� 0.

This sequence splits naturally in B but unnaturally in C. �

If ({C ′
m}, ∂′) and ({C ′′

n , ∂′′}) are R-chain complexes, their tensor product

is the Z-chain complex ({Cp}, ∂) where Cp =
⊕

m+n=p

C′
m ⊗R C′′

n and ∂ : Cp →

Cp−1 is defined by ∂(c′⊗ c′′) = (∂c′)⊗ c′′ +(−1)deg c′c′⊗ (∂c′′). This is easily
seen to be a chain complex. The homology of this tensor product is given by
the Künneth Formula:

Theorem 12.4.9. Let R be a PID. Assume either that each C ′
m is free or

that each C ′′
n is free. There is a natural short exact sequence of R-modules

0 →
M

m+n=p

Hm(C′) ⊗R Hn(C′′) → Hp(C) →
M

m+n=p−1

TorR(Hm(C′), Hn(C′′)) → 0.

This sequences splits. �
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Exercises

1. Write down the “canonical” isomorphism R⊗ZCn(X; Z) → Cn(X; R) in Remark
12.4.7.

2. When R is a PID and M is an R-module, apply 12.4.2 to get two short exact
sequences whose middle terms are Hn

f (X; M) and Hn(X; M) respectively.
3. Prove 12.3.14 using Universal Coefficient Theorems.

12.5 Comparison of the various homology and
cohomology theories

All our homology and cohomology theories have turned out to be indepen-
dent of how the CW complex was oriented. FROM NOW ON, WE WILL
ONLY REFER TO A CHOICE OF ORIENTATION OF CELLS WHEN DIS-
CUSSING CHAINS.

We begin with two immediate consequences of the Universal Coefficient
Theorem in cohomology:

Theorem 12.5.1. Let X be a CW complex, let R be a PID, and let M be an
R-module. There is a short exact sequence of R-modules

0 −−−−−−→ ExtR(Hn−1(X; R), M) −−−−−−→ Hn(X; M) −−−−−−→ HomR(Hn(X; R), M) −−−−−−→ 0.

This is natural with respect to homotopy classes of maps. It splits, but unnat-
urally, with respect to M . �

Theorem 12.5.2. Let X be a CW complex having locally finite type, and let
R and M be as in 12.5.1. There is a short exact sequence of R-modules

0 −−−−−−→ ExtR(Hn+1
f

(X; R), M) −−−−−−→ H∞
n (X; M) −−−−−−→ HomR(Hn

f (X; R), M) −−−−−−→ 0.

This is natural with respect to CW-proper homotopy classes of CW-proper
maps. For strongly locally finite CW complexes, it is natural with respect to
proper homotopy classes of proper maps. It splits, but unnaturally, with respect
to M . �

We wish to compare properties of H∗
e (X ; R) with those of the inverse

sequence {H∗(X −c Ki; R)}, where {Ki} is a finite type filtration. This will
require some algebraic preliminaries.

An inverse sequence {Mn} of R-modules is (i) pro-finitely generated , (ii)
semistable, (iii) stable, (iv) pro-trivial, (v) pro-torsion free, (vi) pro-torsion
if it is pro-isomorphic14 to an inverse sequence (i) whose modules are finitely
generated, (ii) whose bonds are epimorphisms, (iii) whose bonds are isomor-
phisms,15 (iv) whose modules are trivial, (v) whose modules are torsion free,

14 Recall the convenient characterization of pro-isomorphism in 11.2.10.
15 Note that (iii) is compatible with “stable” as defined in Sect. 11.2.
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(vi) whose modules are torsion, respectively. We leave the proof of the follow-
ing as an exercise:

Proposition 12.5.3. The above definitions are equivalent to the following in-
trinsic definitions:

(i) ∀m, ∃n ≥ m such that image (Mn →Mm) is finitely generated;
(ii) ∀m, ∃n such that ∀ k ≥ n, image (Mk →Mm) = image (Mn →Mm);
(iii) there is a cofinal subsequence {Mni

} such that image (Mni+2 →Mni+1) is
mapped by the bond isomorphically onto image (Mni+1 →Mni

) for all i;
(iv) ∀m, ∃n such that Mn →Mm is zero;
(v) ∀m, ∃n such that tor Mn ⊂ ker(Mn →Mm);
(vi) ∀m, ∃n such that image (Mn →Mm) is torsion. �

Let M̄ denote M/tor M . Then M �→ M̄ defines a covariant functor from
R-modules to R-modules. When convenient, we will use the alternative name
M mod torsion for M̄ . By 11.3.14 we have:

Proposition 12.5.4. For any direct sequence {Mi}, the canonical homomor-
phism (lim−→

n

{Mn})− → lim−→
n

{M̄n} is an isomorphism. �

Proposition 12.5.5. Let R be a PID. Let {Mn} be a pro-finitely generated in-
verse sequence of R-modules. Then {Mn} is semistable iff {M̄n} is semistable.

Proof. We may assume that each Mn is finitely generated. By 11.3.11,
{Mn, fm

n } can be replaced by {M̄n⊕tor Mn, f̄m
n ⊕(fm

n | tor Mn)}. By 11.3.12,
{tor Mn} is semistable. The desired conclusion is immediate. �

Proposition 12.5.6. Let R be a PID. Let {Mn, fm
n } be a pro-finitely gener-

ated inverse sequence of R-modules. Then {Mn} is semistable iff the direct
limit of the dual direct sequence {HomR(Mn, R), (fm

n )∗} is a countably gener-
ated free R-module.

Proof. Let {Mn} be semistable. Let Nn =
⋂

m>n

image fm
n . Then Nn is finitely

generated. Let gn+1
n : Nn+1 → Nn be the restriction of fn+1

n . Then each gn+1
n

is onto and {Nn, gm
n } is pro-isomorphic to {Mn, fm

n }. In the inverse sequence
{N̄n, ḡm

n }, each N̄n is free and finitely generated and each ḡn+1
n is a splittable

epimorphism. Thus {HomR(N̄n, R), (ḡm
n )∗} is a direct sequence of finitely gen-

erated free modules whose bonds are splittable monomorphisms (see Exercise
6). The direct limit of such a sequence is clearly countably generated and free.
But HomR(N̄n, R) is isomorphic to HomR(Nn, R), for all n, by means of iso-
morphisms which identify (ḡn+1

n )∗ with (gn+1
n )∗. And {HomR(Nn, R), (gm

n )∗}
is ind-isomorphic to {HomR(Mn, R), (fm

n )∗}, a fact obtained by dualizing the
corresponding pro-isomorphism statement above. By 11.2.6, the direct limit
of the last sequence must also be countably generated and free.
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Conversely, let lim−→{HomR(Mn, R), (fm
n )∗} =: L be free. By hypothesis

and 11.2.6, we may assume each Mn is finitely generated. By 11.3.11, each
HomR(Mn, R) is finitely generated and free. Clearly, L is free on a countable
set of generators, so L is the direct limit of a sequence {Ln, hm

n } in which each
Ln is finitely generated and free, and each hm

n is a splittable monomorphism
– just take more and more R-summands of L. By 11.3.15, {HomR(Mn, R)}
and {Fn} are ind-isomorphic. Hence, dualizing again, the inverse sequences
{HomR(HomR(Mn, R), R)} and {HomR(Ln, R)} are pro-isomorphic. The first
of these is obviously isomorphic to {M̄n}, while the second is an inverse
sequence whose bonds are (splittable) epimorphisms, hence semistable. By
12.5.5, {Mn} is semistable. �

Proposition 12.5.7. Let R be a PID. A pro-finitely generated inverse se-
quence of R-modules {Mn} is pro-torsion free iff the direct limit of the corre-
sponding direct sequence {ExtR(Mn, R)} is trivial.

Proof. This proof uses homological algebra not needed elsewhere in this book.
We may assume that each Mn is finitely generated. By 11.3.11 and 12.4.3,
lim−→{ExtR(Mn, R)} = 0 iff lim−→{ExtR(tor Mn, R)} = 0. The PID R has a field
of quotients F obtained by inverting all non-zero elements of R (see page 69
of [101].) Clearly HomR(tor Mn, F ) = 0. The underlying abelian group of F
is divisible, so F is an injective R-module (see [83, Chap. 1, Sect. 7.1]), hence
ExtR(tor Mn, F ) = 0 [83, Chap. 3, Sect. 2.6]. Thus HomR(tor Mn, F/R) is
isomorphic to ExtR(tor Mn, R); this follows by applying [83, Chap. 3, Sect.
5.2] to the short exact sequence 0 → R → F → F/R → 0. By 11.3.15,
lim−→ HomR(tor Mn, F/R) = 0 iff for each m there exists n ≥ m such that the
composition tor Mn → tor Mm → F/R is zero. By 11.3.11, this is equivalent
to saying that the inverse sequence {tor Mn} is pro-trivial. This in turn is
equivalent to saying that {Mn} is pro-torsion free. �

Proposition 12.5.8. Let R be a PID. Let the inverse sequence of R-modules
{Mn} be pro-finitely generated.

(a) {Mn} is pro-torsion iff lim−→{HomR(Mn, R)} = 0.

(b) {M̄n} is stable and R-rank (lim−→{Mn}) = ρ < ∞ iff lim−→{HomR(Mn, R)}
is a free R-module of rank ρ <∞.

Proof. The proofs are similar to that of 12.5.6. �

Let X be a countable CW complex having locally finite type. Let {Ki} be
a finite type filtration of X .

Proposition 12.5.9. If Hn(X ; R) is finitely generated and R is a PID, then
Hn(X −c Ki; R) is finitely generated for all i. Hence {Hn(X −c Ki; R)} is
pro-finitely generated.
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Proof. Replacing X by Xn+1, we may assume X is strongly locally finite.
Then, by 11.4.4, N(Ki) is finite. By 1.5.5, X = N(Ki) ∪ (X −c Ki). And
N(Ki) ∩ (X −c Ki) is finite. The Mayer-Vietoris sequence gives exactness in

Hn(N(Ki) ∩ (X −c Ki); R)→ Hn(N(Ki); R)⊕Hn(X −c Ki; R)→ Hn(X ; R).

By 2.7.7, the left term is finitely generated. Hence Hn(X −c Ki; R) is finitely
generated. �

Theorem 12.5.10. Let X be a countable CW complex having locally finite
type, let R be a PID, let Hn(X ; R) and Hn−1(X ; R) be finitely generated, and
let {Ki} be a finite type filtration of X.

(i) Hn
e (X ; R) mod torsion is free iff {Hn(X −c Ki; R)} is semistable;

(ii) Hn
e (X ; R) is torsion free iff {Hn−1(X −c Ki; R)} is pro-torsion free;16

(iii) Hn
e (X ; R) is torsion iff {Hn(X −c Ki; R)} is pro-torsion;

(iv) Hn
e (X ; R) mod torsion is free with finite rank ρ iff {Hn(X −c Ki; R) mod

torsion} is stable with free inverse limit of finite rank ρ.

Proof. By 12.5.9, {Hk(X −c Ki; R)} is pro-finitely generated for k = n − 1
and n.

(i) By the previous propositions and Sect. 12.2, {Hn(X −c Ki; R)} is
semistable iff lim−→

i

{HomR(Hn(X −c Ki), R)} is free iff lim−→
i

{Hn(X −c Ki; R)}

mod torsion is free iff Hn
e (X ; R) mod torsion is free. (ii) By 12.5.7, the fol-

lowing are equivalent:

1. {Hn−1(X −c Ki; R)} is pro-torsion free
2. lim−→

i

ExtR(Hn−1(X −c Ki; R), R) = 0

3. Hn
e (X ; R) is torsion free.

(iii) and (iv) are proved similarly using 12.5.8. �

Corollary 12.5.11. Let X be a path connected CW complex having locally
finite type, and let R be a PID. Then H0

e (X ; R) is countably generated and
free. If H1(X ; R) is finitely generated, then H1

e (X ; R) is torsion free.

Proof. By 11.4.3, X is countable. Applying 12.5.10 with n = 0 we find that
H0

e (X ; R) is torsion free. To show that H0
e (X ; R) is free, we apply 12.5.6 so we

must show that {H0(X −c Ki; R)} is semistable. By 2.7.2, each H0(X −c Ki; R)
is free with finite rank equal to the number of path components of X −c Ki.
Identifying generators with path components, one sees (by considering things
at the chain level) that, for j > i, the image of H0(X −c Kj; R) → H0(X −c
Ki; R) is freely generated by those path components of X −c Ki which meet
X −c Kj . The proof of 12.5.9 shows that there are only finitely many path
components. Thus {H0(X −c Ki; R)} is semistable.

For the second part, we apply 12.5.10 with n = 1. In particular, we have
observed that {H0(X −c Ki; R)} is pro-torsion free. Hence H1

e (X ; R) is torsion
free. �

16 This holds even if Hn(X; R) is infinitely generated.
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Exercises

1. Prove the naturality statements in 12.5.1 and prove 12.5.2.
2. Prove 12.5.3, 12.5.4, 12.5.8, 12.5.10 (iii) and (iv).
3. Compute H∗

e (T ;Z) where T is the dyadic solenoid inverse mapping telescope
(Example 11.4.15).

4. Establish the following exact sequence: 0 → B ⊗R Hn
e (X; R) → Hn

e (X; B) →
TorR(B, Hn+1

e (X; R)) → 0 using 12.4.8 (where B is finitely generated over the
PID R).

5. Prove that the inverse sequence of modules {Mn} is stable iff it is pro-isomorphic
to a module.

6. Prove that the dual of an inverse sequence of splittable epimorphisms is a direct
sequence of splittable monomorphisms, and vice versa.

7. Let X = |K| where K is a combinatorial n-manifold with empty bound-
ary. Assume X is path connected and non-compact and that Hn(X; Z) ∼=
Hn−1(X; Z) = 0. Using 12.5.10, what can be concluded about
{Hn−1(X −c Ki; Z)} and {Hn−2(X −c Ki; Z)} when X is orientable? non-
orientable?

12.6 Homology and cohomology of products

Let X and Y be oriented CW complexes of locally finite type. We give X×Y
the product orientation. Let R be a PID. The R-module Cp(X × Y ; R) is

freely generated by the cells ei
α × ẽj

β such that ei
α and ẽj

β are cells of X
and Y respectively and i + j = p. Letting Ep be the set of all (oriented)

p-cells of X × Y , the function Ep →
⊕

i+j=p

Ci(X ; R) ⊗R Cj(Y ; R) defined by

ei
α × ẽj

β �→ ei
α ⊗ ẽj

β extends uniquely to a homomorphism

ζp : Cp(X × Y ; R)→
⊕

i+j=p

Ci(X ; R)⊗R Cj(Y ; R).

And the R-bilinear map

Ci(X ; R)× Cj(Y ; R)→ Ci+j(X × Y ; R)

defined by (ei
α, ẽj

β) �→ ei
α × ẽj

β induces a homomorphism

Ci(X ; R)⊗R Cj(Y ; R)→ Ci+j(X × Y ; R).

As i and j vary with i + j = p, the latter homomorphisms fit together to
provide an inverse for ζp. Thus ζp is an isomorphism of R-modules. Moreover,
by the formulas for incidence numbers in 2.5.17, one obtains the coboundary
formula

δ(ei
α × ẽj

β) = (δei
α)× ẽj

β + (−1)iei
α × (δẽj

β)
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and one checks that δζ = ζδ. Hence ζ defines an isomorphism from the cochain
complex (C∗(X × Y ; R), δ) to the tensor product of the cochain complexes
(C∗(X ; R), δ) and C∗(Y ; R), δ) as defined in Sect. 12.4. There is a similar
boundary formula satisfying ∂ζ = ζ∂, so ζ also defines an isomorphism of chain
complexes from (C∗(X × Y ; R), ∂) to the tensor product17 of (C∗(X ; R), ∂)
and (C∗(Y ; R), ∂). Applying the Künneth Formula 12.4.9, we get:

Proposition 12.6.1. There are natural short exact sequences of R-modules

0 →
M

i+j=p

Hi
f (X; R)⊗R Hj

f (Y ; R) → Hp

f (X ×Y ; R) →
M

i+j=p+1

TorR(Hi
f (X; R), Hj

f (Y ; R)) → 0

and

0 →
M

i+j=p

Hi(X; R) ⊗ Hj(Y ; R) → Hp(X × Y ; R) →
M

i+j=p−1

TorR(Hi(X; R), Hj(Y ; R)) → 0.

These sequences split. �

Exercises

1. Prove that ∂(ei
α × ẽj

β) = (∂ei
α) × ej

β + (−1)iei
α × (∂ẽj

β).
2. Prove that ∂ζ = ζ∂.

17 In our context all this is straightforward, but in more abstract versions the exis-
tence of these isomorphisms follows from the Eilenberg-Zilber Theorem.



PART IV: TOPICS IN THE COHOMOLOGY
OF INFINITE GROUPS

The emphasis here is on understanding the topological content of certain kinds
of cohomological statements. In particular, the cohomology of a group with
group-ring coefficients really can be seen as encoding facts about homology-
at-infinity of the universal cover of a suitable K(G, 1)-complex. This is the
theme of Chapter 13. We also treat ends of pairs of groups in some detail; there
are two interesting definitions, giving different results, and we explain both.
Finally, we give an “old-fashioned” highly geometric treatment of Poincaré
Duality, to bring out the notion of “dual cell”, which is often lost in more
sophisticated treatments of the subject.



13

Cohomology of Groups and Ends Of Covering
Spaces

This chapter is about the cohomology modules H∗(G, RG) and their connec-
tion with asymptotic homological invariants of the group G. The first inter-
esting case involves the classical subject of ends of spaces and ends of groups.
Our treatment of homology and cohomology of ends in Part III enables us to
begin building a theory of “higher ends” of groups which will occupy much of
the rest of the book.

13.1 Cohomology of groups

We carry over notation and conventions from Sect. 8.1.
Let M be a left RG-module and let {Fn} be a free RG-resolution of R.

The cohomology R-modules of G with coefficients in M are computed from
the R-cochain complex

· · · �� ∂∗
2

HomRG(F1, M) ��
∂∗
1

HomRG(F0, M) �� 0

where ∂∗
n(f)(x) := f∂n(x); they are denoted H∗(G, M). By 8.1.1 they are well

defined.1

Analogous to 8.1.4 we have

Proposition 13.1.1. Let (X, v) be a K(G, 1)-complex. Then H∗(G, R) ∼=
H∗(X ; R). �

The group-cohomology of most interest in this book is Hn(G, RG), where
the action of G on RG is induced by left translation in G. When the group
G is of type FPn we will explain how the R-module Hn(G, RG) encodes
asymptotic homological information about G in dimensions < n.

1 As remarked in Sect.12.1, some authors define ∂∗
n(f)(x) = (−1)n+1f∂n(x). The

cocycles and coboundaries are not altered by this.



286 13 Cohomology of Groups and Ends Of Covering Spaces

13.2 Homology and cohomology of highly connected
covering spaces

In this section we relate the homology and cohomology of covering spaces of
a K(G, 1)-complex to the homology and cohomology of G with appropriate
coefficient modules.

Let (X, v) be a pointed path connected CW complex.2 We write G for
π1(X, v). We saw in Sect. 3.4 that path connected pointed covering spaces
of (X, v) correspond to subgroups of G. We will need special RG-modules
associated with subgroups.

Let H ≤ G. We write H\G = {Hg | g ∈ G}. When A is a set, RA
or R(A) denotes the free R-module generated by A. Taking A = H\G, we
make R(H\G) into a right RG-module via the action (Hg).ḡ = Hgḡ. We

write RÂ =
∏
a∈A

R(a) where R(a) is the free left R-module generated by the

one-element set {a}; this is a cartesian product of R-modules; RAˆ is the
completion of RA. We make R(H\G)̂ into a right RG-module via the obvious
extension of the right G-action on R(H\G). As before we will use infinite
summation notation for elements of R(H\G)̂ .

Consider the short exact sequence of right RG-modules:

0 −−−−→ R(H\G)
i−−−−→ R(H\G)̂

p−−−−→ R(H\G)e −−−−→ 0

where R(H\G)e := R(H\G)̂/R(H\G).
If H ≤ G and pH : (X̃, ṽ) → (X̄(H), v̄) is the corresponding covering

projection (see Sect. 3.2), we orient the cells of X̄(H) so as to make pH

and qH : X̄(H) → X orientation preserving on cells. As in Sect. 8.1, we
choose a cell ẽn

α “over” each en
α. A typical n-cell of the covering space X̄(H)

is Hgẽn
α = pH(gẽn

α). We will be discussing infinite chains in X̄(H), so we note
that if X has locally finite type or locally finite n-skeleton then the same is
true of every X̄(H) (see 10.1.24).

For each k we have a commutative diagram of R-modules

R(H\G) ⊗G Ck(X̃; R) �� i⊗id ��

φk

��

R(H\G)̂ ⊗G Ck(X̃; R)
p⊗id �� ��

φ∞
k

��

R(H\G)e ⊗G Ck(X̃; R)

φe
k

��
Ck(X̄(H); R) �� �� C∞

k (X̄(H); R) �� �� C∞
k (X̄(H); R)/Ck(X̄(H); R)

2 Note that Convention 12.2.5 applies throughout; i.e., X is assumed to have locally
finite skeleta where appropriate.
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in which φ∞
k is defined3 on generators by: φ∞

k

⎛
⎝
⎛
⎝∑

Hg

mHg,αHg

⎞
⎠⊗ ẽk

α

⎞
⎠ =

∑
Hg

mHg,αHgẽk
α. The top line is exact because of 12.4.1 and the exact sequence

preceding it, since Ck(X̃ ; R) is free.4 The bottom line is obviously exact.
Clearly, φk, the restriction of φ∞

k , is well defined, hence also φe
k.

Proposition 13.2.1. {φk} is a chain isomorphism. Each φ∞
k and φe

k is a well
defined monomorphism. If X has locally finite type then {φ∞

k } and {φe
k} are

chain maps. If X has finite type then {φ∞
k } and {φe

k} are chain isomorphisms.

For the proof of 13.2.1, we need:

Lemma 13.2.2. Let ek
α and ek−1

β be cells of X, and let g, ḡ ∈ G. Then [Hgẽk
α :

Hḡẽk−1
β ] =

∑
h∈H

[gẽk
α : hḡẽk−1

β ].

Proof.

∂(gẽk
α) =

∑
h∈H

[gẽk
α : hḡẽk−1

β ]hḡẽk−1
β + other terms.

(pH)#∂(gẽk
α) =

∑
h∈H

[gẽk
α : hḡẽk−1

β ]Hḡẽk−1
β + other terms.

In the last line, “other terms” is a chain independent of Hḡẽk−1
β . But

(pH)#(gẽk
α) = Hgẽk

α, so

∂(pH)#(gẽk
α) = [Hgẽk

α : Hḡẽk−1
β ]Hḡẽk−1

β + other terms,

where, again, “other terms” is independent of Hḡẽk−1
β . The result follows. �

Proof (of 13.2.1). A calculation gives:

∂φ∞
k

⎛
⎝∑

Hg

mHg,αHg ⊗ ẽk
α

⎞
⎠ =

∑
β

∑
Hg

∑
Hḡ

mHg,α[Hgẽk
α : Hḡẽk−1

β ]Hḡẽk−1
β

φ∞
k−1∂

⎛
⎝∑

Hg

mHg,αHg ⊗ ẽk
α

⎞
⎠ =

∑
β

∑
Hg

∑
ḡ∈G

mHg,α[ẽk
α : ḡẽk−1

β ]Hḡẽk−1
β .

3 Recall that C∞
n (Z; R) makes sense for any CW complex Z. But Z must have

locally finite n-skeleton for the boundary homomorphism to make sense on
C∞

n (Z; R).
4 When M is a right RG-module, the abelian group M⊗GZG is canonically isomor-

phic to M . Thus the operations ·⊗G Ck(X̃; R) and ·⊗R Ck(X; R) have essentially
the same effect. That is why 12.4.1 can be used here.
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Lemma 13.2.2 implies that these are the same. So {φ∞
k } and {φk} are chain

maps as claimed; hence also {φe
k}. Obviously φ∞

k and φk are monomorphisms;
φ∞

k is onto if (and only if) α varies over a finite set, whereas φk is always onto.
�

Corollary 13.2.3. Let X be a K(G, 1)-complex. Then, for all k,

Hk(X̄(H); R) ∼= Hk(G, R(H\G)).

If X has finite type then

H∞
k (X̄(H); R) ∼= Hk(G, R(H\G)̂ )

and
He

k−1(X̄(H); R) ∼= Hk(G, R(H\G)e).

Proof. C∗(X̃; R) gives a free RG-resolution of R. Apply 13.2.1. �

Proposition 13.2.4. Let X be (n − 1)-aspherical. Then for all k ≤ n − 1,
Hk(X̄(H); R) ∼= Hk(G, R(H\G)). If Xn is finite, the other conclusions of
13.2.3 hold for k ≤ n− 1.

Proof. By 7.1.5 there is a K(G, 1)-complex Y with Y n = Xn. The first claim
follows from 13.2.1. If Xn is finite, ∂ : C∞

k (Ȳ (H); R) → C∞
k−1(Ȳ (H); R) is

well defined for k ≤ n. The rest of the proof of 13.2.1 therefore works for
k ≤ n− 1. Similarly for Ce

k(Ȳ (H); R). �

Note in particular the special cases of 13.2.3 and 13.2.4 in which H = {1}
or H = G. We conclude that when X is a K(G, 1)-complex, Hk(G, R) ∼=
Hk(X ; R) for all k (see 8.1.4), and Hk(G, RG) = 0 for all k > 0, while
H0(G, RG) ∼= R. Similar conclusions follow from the weaker hypothesis of
13.2.4 when k ≤ n− 1.

The next proposition is (a special case of) Shapiro’s Lemma:

Proposition 13.2.5. Let H ≤ G. Then, for all k,

Hk(G, R(H\G)) ∼= Hk(H, R).

Proof. Let X be a K(G, 1)-complex. By 13.2.1, we have Hk(X̄(H); R) ∼=
Hk(G, R(H\G)) and (applying 13.2.1 with H replacing G) Hk(X̄(H); R) ∼=
Hk(H, R). �

In the commutative diagram preceding Proposition 13.2.1, the fact that
the top line is exact gives:

Proposition 13.2.6. There is an exact sequence

· · · → Hn(G, R(H\G)) → Hn(G, R(H\G)̂ ) → Hn(G, R(H\G)e) → Hn−1(G, R(H\G)) → · · · .

�
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Corollary 13.2.7. For k > 1, Hk(G, RG )̂ ∼= Hk(G, RGe). If G is infinite
and finitely generated then H1(G, RGe) ∼= H1(G, RG )̂⊕R.

Proof. For k > 1, the claim follows from 13.2.6 and the preceding remarks.
The claim for k = 1 also follows from 13.2.6, because, by 13.2.3 (with n = 0)
and 11.1.3, H0(G, RG )̂ = 0 when G is infinite and finitely generated. �

We now turn to cohomology. The details are similar to the homology case,
so we will leave them as exercises.

For each k, there is a commutative diagram of R-modules

HomG(Ck(X̃; R), R(H\G)) �� �� HomG(Ck(X̃; R), R(H\G)̂ ) �� �� HomG(Ck(X̃; R), R(H\G)e)

Ck(X̄(H); R) �� ��

ψk

��

C∞
k (X̄(H); R) �� ��

ψ∞
k

��

C∞
k (X̄(H); R)/Ck(X̄(H); R)

ψe
k

��

in which ψ∞
k is defined by: ψ∞

k

⎛
⎝∑

α,Hg

mα,HgHgẽk
α

⎞
⎠ (ẽk

β) =
∑
Hg

mβ,HgHg. The

top line is exact (by 12.4.3, for reasons similar to those given in the homology
case), since Ck(X̃ ; R) is free. The bottom line is obviously exact. Clearly
ψk, the restriction of ψ∞

k , is well defined, hence also ψe
k. Note that we are

converting R(H\G)̂ , R(H\G) and R(H\G)e into left RG-modules by the
usual rule g.x := x.g−1.

Proposition 13.2.8. {ψ∞
k } is a cochain isomorphism. Each ψk and ψe

k is a
well defined monomorphism. If X has locally finite type, {ψk} and {ψe

k} are
cochain maps. If X has finite type, {ψk} and {ψe

k} are cochain isomorphisms.
�

Corollary 13.2.9. Let X be (n − 1)-aspherical. Then for all k ≤ n − 1,
Hk(X̄(H); R) ∼= Hk(G, R(H\G)̂ ). If Xn is finite then Hk

f (X̄(H); R) ∼=
Hk(G, R(H\G)) and Hk

e (X̄(H); R) ∼= Hk(G, R(H\G)e) for k ≤ n− 1. �

In particular, when X is a K(G, 1)-complex, Hk(G, R) ∼= Hk(X ; R) for all
k (see 8.1.4), and Hk(G, RG )̂ = 0 for all k > 0, while H0(G, RG )̂ ∼= R. The
same holds for k ≤ n− 1 when X is merely (n− 1)-aspherical.

Another case of Shapiro’s Lemma with proof similar to that of 13.2.5 is:

Proposition 13.2.10. Let H ≤ G. For all k, Hk(G, R(H\G)̂ ) ∼= Hk(H, R).
�

Proposition 13.2.11. Let H ≤ G. H0(G, R(H\G)) = 0 [resp. ∼= R] iff H
has infinite [resp. finite] index in G. In particular, H0(G, RG) = 0 [resp. ∼= R]
iff G is infinite [resp. finite].
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Proof. Let (X, v) be a K(G, 1)-complex having one vertex. By 8.1.2 we see
that H0(G, R(H\G)) is the module of cocycles in HomG(C0(X̃ ; R), R(H\G)).
Since X̃1 is path connected, any such cocycle f must satisfy f(gṽ) = gf(ṽ) =
f(ṽ) for all g ∈ G because (see Sect. 8.1) g preserves orientation on 0-cells. If
H\G is infinite, this implies f(ṽ) = 0, hence f = 0. If H\G is finite, any such
f(ṽ) is an R-multiple of the sum of the generators of R(H\G). �

Just as in the homology case, we have:

Proposition 13.2.12. There is an exact sequence

· · · ← Hn(G, R(H\G)̂ ) ← Hn(G, R(H\G)) ← Hn−1(G, R(H\G)e) ← Hn−1(G, R(H\G)̂ ) ← · · ·

�

Corollary 13.2.13. For k > 1, Hk(G, RG) ∼= Hk−1(G, RGe). If G is infi-
nite, H0(G, RGe) ∼= H1(G, RG)⊕R. �

Proof. The first part is clear. For the last part, the short exact sequence splits.
�

Proposition 13.2.14. Let H ≤ G where H has type Fn. If H has finite index
in G then for k ≤ n, Hk(G, RG) ∼= Hk(H, RH).

Proof. By 7.2.4, G has type Fn iff H has type Fn. Let X be as in 13.2.9
with Xn finite and π1(X, v) ∼= G. By 13.2.9, Hk(G, (RG)e) ∼= Hk

e (X̃; R) ∼=
Hk(H, (RH)e) for k ≤ n− 1. Now apply 13.2.13. �

Remark 13.2.15. A defect of the cellular cochain complexes is that they do
not exhibit at the level of chains the important cup product , a homomor-
phism Hk ⊗ H l → Hk+l which makes H∗ into a graded ring. We are pre-
senting topology for group theory. In so far as the reader needs cohomology
of groups to be equipped with a cup product the exposition given here is
inadequate. However, our cohomology modules are canonically isomorphic to
corresponding cohomology modules defined in terms of singular cochains, as
is expounded in most advanced books on algebraic topology, so the reader
who needs cup products can proceed using those sources. A treatment more
directly applicable to group theory can be found for example in [29].

Next, we consider Hn(G, RG) as a right RG-module. The R-module
Hn(G, RG) is calculated from the cochain complex {HomG(Fn, RG), ∂∗}. The
right module RG is to be changed into a left RG-module via the action
ḡ.(Σngg) = Σngg(ḡ)−1. With this understood, there is a right RG-module
structure on HomG(Fn, RG) given by (f.ḡ)(y) = (ḡ)−1(f(y)). This struc-
ture is preserved by ∂∗ and hence induces a right RG-module structure on
H∗(G, RG).

On the other hand, when X is an oriented K(G, 1)-complex the free left
action of G on X̃ (oriented as in Sect. 8.1) induces a left action on C∗(X̃ ; R)
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which can be converted as usual into a right action by the formula c.ḡ =
(ḡ)−1c. When X has locally finite type, this action is preserved by δ. Taking
Fn = Cn(X̃; R), a straightforward check yields:

Proposition 13.2.16. If G has type F∞, then ψ∗ is an isomorphism of
right RG-cochain complexes. Hence the two right RG-module structures on
H∗(G, RG) (coming from the resolution and from the covering transforma-
tions) coincide. �

We end this section with two propositions which will be needed later. They
show what information is retained at the “outer limit” of finiteness properties
of groups.

Let X be a K(G, 1)-complex with finite n-skeleton.By 13.2.9,Hk(G, RG)∼=
Hk

f (X̃n; R) for all k ≤ n− 1. For k = n we have:

Proposition 13.2.17. If R is a PID there is a free R-module F such that
Hn

f (X̃n; R) ∼= Hn(G, RG)⊕F . Thus Hn(G, RG) is free over R iff Hn
f (X̃n; R)

is free over R.

Proof. We will find F such that Hn−1(G, RGe)⊕F ∼= Hn
f (X̃n; R); by 13.2.13

this is enough. For any PID R, Hn−1(G, RGe) ∼= Hn−1
e (X̃n; R) by 13.2.9.

From Sect. 12.2 we get an exact sequence

Hn(X̃n; R) ��
i∗

Hn
f (X̃n; R) ��

δ∗

Hn−1
e (X̃n; R) ��

p∗

Hn−1(X̃n; R).

We have Hn−1(X̃n; R) = 0 and H̃n−1(X̃
n; R) = 0 (exercise). Thus p∗ is a

monomorphism and, by 12.5.1, Hn(X̃n; R) ∼= Hom(Zn(X̃n; R), R). The latter
is a countable product of copies of R since Zn(X̃n; R) is a free R-module. Thus
F := image i∗ is a countably generated submodule of a product of copies of R,
and is therefore free by Lemma 13.2.18 below. Thus Hn

f (X̃n; R) decomposes
as claimed. �

Lemma 13.2.18. If R is a PID and M is a countably generated submodule
of a product of copies of R, then M is a free R-module.

Proof. We may assume M ≤ P =
∞∏
1

R. We take R to be Z: the case of a

general PID is done similarly and is an exercise. Enumerate a countable set
of generators of M : m1, m2, . . .. Let m1 have height α1; in other words, m1 =
α1h1 where α1 is a non-zero integer and h1(h11, h12, · · · ) ∈ P with the integers
h1i relatively prime. It follows that there are finitely many integers ti and ni

such that t1h1n1 + · · · + trh1nr
= 1. Define p1 : P → Z by p1(x1, x2, · · · ) =

r∑
i=1

tixni
. Then p1(h1) = 1, so P ∼= 〈h1〉⊕ker p1 and m1 ∈ 〈h1〉. If M ⊂ 〈h1〉 we

are done. Otherwise, let mk be the first member of M not in 〈h1〉: we assume
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mk = m2 for simplicity of notation. Let β2 = p1(m2). Then m2 − β2h1 �= 0
and it lies in ker p1. Let α2 be the height of m2 − β2h1. We have m2 =
(m2 − y2h1) + y2h1 = α2h2 + y2h1 where h2 lies in ker p1 and has height 1.
So m2 ∈ 〈h1, h2〉, and since h2 ∈ ker p1, h1 and h2 freely generated 〈h1, h2〉.
Thus 〈h1〉 ↪→ 〈h1, h2〉 is a split monomorphism. We have h2 = (h21, h22, · · · ) ∈
ker p1 where the integers h2i are relatively prime. As before, we find s1h2,m1 +

· · · + sqh2,mq
= 1 and we define p2 : P → Z by p2(x1, x2, · · · ) =

q∑
i=1

sixmi
.

Then p2(h2) = 1, so p2 |: ker p1 → Z is surjective and ker p1
∼= 〈h2〉 ⊕ ker p2.

Proceeding as before, either M ⊂ 〈h1, h2〉 or we find h3 with 〈h1, h2〉 ↪→

〈h1, h2, h3〉 a split monomorphism. In this way we find a copy of

∞⊕
1

Z lying

in P and containing M . Hence M is free. �

Proposition 13.2.19. Let X be a K(G, 1)-complex with finite n-skeleton. As
R-modules, Hn

e (X̃n; R) is torsion free iff Hn+1(G, RG) is torsion free.

Proof. By 13.2.13, Hn+1(G, RG) is torsion free iff Hn(G, RGe) is torsion free.
By 13.2.8 and 13.2.9, there is a short exact sequence of cochain complexes

0 �� A �� C∞
n (X̃ ; R)/Cn(X̃ ; R) �� C∞

∗ (X̃n; R)/C∗(X̃n; R) �� 0

where Ak = 0 when k ≤ n and Ak = HomG(Ck(X̃ ; R), RGe) when k > n.
The corresponding long exact sequence is in part:

0 −−−−→ Hn(G, RGe) −−−−→ Hn
e (X̃n; R) −−−−→ C∞

n+1(X̃ ; R)/Cn+1(X̃; R)

from which the result follows. �

Exercises

1. Prove that G is countable if and only if there is a K(G, 1) of locally finite type.
2. Prove 13.2.14 without the Fn hypothesis.
3. Starting with C∗(X̃; Z), write down a functorial isomorphism between H1(G, Z)

and the group of all homomorphisms G → Z.
4. Give a second solution to the previous exercise by using the Universal Coefficient

Theorem 12.2.5 and Theorem 3.1.20.
5. Prove the following extension of Corollary 13.2.9: if Xn is finite then the module

Hn(G, R(H\G)) can be computed as kernel/image in

C∞
n+1(X̄(H); R)

δ
←−−−−− Cn(X̄(H); R)

δ
←−−−−− Cn−1(X̄(H);R).

6. State and prove the homological analog of the previous exercise, i.e., an exten-
sion of Proposition 13.2.4.

7. Prove 13.2.18 when R is a PID (as distinct from the case R = Z covered in the
proof).
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8. Prove that if there is a finite n-dimensional K(G, 1)-complex then Hn(G, ZG)
is finitely generated as a ZG-module.

9. Let the finitely presented group act freely and cocompactly on the CW complex
X. Prove that H1(X; R) is finitely generated as an RG-module. (Hint : prove
that π1(X, x) is finitely generated as a G-group.)

10. The proofs given for 13.2.6 and 13.2.12 are topological. Derive these results from
the Bockstein sequences.

13.3 Topological interpretation of H∗(G, RG)

Here we discuss the R-modules Hn(G, RG), especially the cases R = Z and
R = Q. In the latter case, Hn(G, QG) is a Q-vector space, and thus the only
invariant is its Q-dimension. In the case R = Z, Hn(G, ZG) is an abelian
group, and when G has type Fn the structure of that abelian group is of topo-
logical interest. In particular, we want to relate this group to the homology
of the end of the universal cover of a suitable K(G, 1)-complex. In Chaps. 16
and 17 we will give a parallel study of homotopy properties of the end, thus
exhibiting important invariants of G which cannot be expressed in terms of
homological algebra.

We saw in 13.2.11 that H0(G, RG) is trivial if G is infinite, and is isomor-
phic to R if G is finite. We dispose of the finite case:

Proposition 13.3.1. If G is finite, Hn(G, RG) = 0 for all n > 0.

Proof. By 7.2.5, there is a K(G, 1)-complex X of finite type. Since G is finite,
3.2.13 implies that X̃ also has finite type, so Hn

f (X̃ ; R) = Hn(X̃ ; R) = 0 for
all n > 0. Apply 13.2.9. �

Next, we give a theorem relating the structure of the R-module Hn(G, RG),
where G has type Fn, to homological properties of the end of the universal
cover of a K(G, 1)-complex.5

Theorem 13.3.2. Let n ≥ 0 and let G be a group of type Fn; when n = 0
assume G is countable. Let X be an (n−1)-aspherical CW complex with finite
n-skeleton whose fundamental group is isomorphic to G. Let {Ki} be a finite
filtration of X̃n. Let R be a PID.

(i) For k ≤ n, Hk(G, RG) mod torsion is a countably generated free R-module
iff {Hk−1(X̃

n −c Ki; R)} is semistable.
(ii) For k ≤ n + 1, Hk(G, RG) is a torsion free R-module iff the module
{Hk−2(X̃

n −c Ki; R)} is pro-torsion free.
(iii) For k ≤ n, Hk(G, RG) is a torsion R-module iff {H̃k−1(X̃

n −c Ki; R)} is
pro-torsion.

5 Recall from Sect. 2.9 that H̃∗ denotes reduced homology.
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(iv) For k ≤ n, Hk(G, RG) mod torsion is a free R-module with finite rank ρ
iff {H̃k−1(X̃

n −c Ki; R) mod torsion} is stable with free (over R) inverse
limit of finite rank ρ.

Moreover, if G has type F∞, if X is a K(G, 1)-complex of finite type, and
if {Ki} is a finite type filtration of X̃, the conclusions (i)–(iv) hold, with X̃
replacing X̃n, for all k.

Proof. Combine 12.5.11 (applied to the appropriate skeleton), 13.2.9 and
13.2.13. For the case k = n + 1 in (ii), use 13.2.19. There are a few details to
be worked out in (iii) and (iv) when k = 1 (details concerning the behavior
of H̃0); we leave these as an exercise. �

The hypothesis that G be countable when n = 0 is merely to ensure that
there is a finite filtration of (X̃)0. Parts (iii) and (iv) hold for finite groups
because H−1(∅; R) ∼= R.

For later use, we reorganize 13.3.2 in a different way; there is no new
content:

Theorem 13.3.3. Let n, G, X, {Ki} and R be as in 13.3.2.

(i) Hk(G, RG) = 0 for all k < n and Hn(G, RG) is a countably generated
free R-module iff {H̃k(X̃n −c Ki; R)} is pro-trivial for all k ≤ n − 2 and
Hn−1(X̃

n −c Ki; R) is semistable.
(ii) Hk(G, RG) = 0 for all k ≤ n and Hn+1(G, RG) is a torsion free R-module

iff {H̃k(X̃n −c Ki; R)} is pro-trivial for all k ≤ n− 1.
(iii) Hk(G, RG) = 0 for all k ≤ n iff {H̃k(X̃n −c Ki; R)} is pro-trivial for all

k ≤ n− 2 and {H̃n−1(X̃
n −c Ki; R)} is pro-torsion.

(iv) Hk(G, RG) = 0 for all k ≤ n − 1 and Hn(G, RG) is a free R-module of
finite rank ρ iff {H̃k(X̃n −c Ki; R)} is pro-trivial for all k ≤ n − 2 and
{H̃n−1(X̃

n −c Ki; R) mod torsion} is stable with free (over R) inverse
limit of finite rank ρ.

Moreover, if G has type F∞, if X is a K(G, 1)-complex of finite type, and
if {Ki} is a finite type filtration of X̃, the conclusions (i)–(iv) hold, with X̃
replacing X̃n, for all k. �

Source Notes: 13.3.2 and 13.3.3 appear in [70] and [71].

Exercise

What does 13.3.3 say when X̃n = X̃ = Rn?
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13.4 Ends of spaces

Throughout this section Y denotes a path connected, strongly locally finite
CW complex. A proper ray in Y is a proper map ω : [0,∞)→ Y . Two proper
rays ω1 and ω2 in Y define the same end of Y if ω1|N and ω2|N are properly
homotopic; here, N = {0, 1, 2, · · · } considered as a discrete subspace of [0,∞).
This is an equivalence relation; an end of Y is an equivalence class of proper
rays. The set of ends of Y is denoted by E(Y ).

One should think of a proper ray as a way of reaching out towards infinity
in Y , and one should think of an end as a sort of component at infinity, so
that “having one end” means “connected at infinity.” However, as we shall see
in Sect. 16.1, there are other (different but also useful) notions of “connected
at infinity.”

A proper map f : Y → Z between path connected, strongly locally finite
CW complexes induces a function f# : E(Y ) → E(Z). Properly homotopic
proper maps induce the same function,6 and one obtains a covariant functor
from the category of path connected, strongly locally finite CW complexes
and proper homotopy classes to the category Sets (of sets and functions). A
proper 1-equivalence Y → Z induces a bijection E(Y )→ E(Z).

From 10.1.14 we obtain:

Proposition 13.4.1. The inclusion Y 1 ↪→ Y induces a bijection E(Y 1) →
E(Y ). �

Combining this with 11.1.4 we get:

Corollary 13.4.2. The set of ends of Y is non-empty iff Y is infinite. More
precisely, if Y is infinite and y ∈ Y there is a proper ray in Y whose initial
point is y. �

Corollary 13.4.2 would have to be modified if we were discussing ends of
spaces Y which are not path connected. See Exercise 3.

The number of ends of Y is ∞ [resp. m ≥ 0] if E(Y ) is infinite [resp. has
m members]. We often say that Y has m ends or Y has infinitely many ends.

Example 13.4.3. The quotient CW complex obtained by identifying the points
“0” in m copies of [0,∞) has m ends. The space {(x, y) ∈ R2 | y = 0 or x ∈ Z}
with the obvious structure of a graph has ∞ ends. The space illustrated in
Fig. 11.3 has one end. By 13.4.2 a path connected CW complex Y has 0 ends
iff Y is finite.

From 1.5.5 and 11.4.4 we get:

6 Indeed, weakly properly homotopic maps (see Sect. 17.7) induce the same function
on the set of ends; in other words E(Y ) is a shape invariant, not just a strong
shape invariant.
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Proposition 13.4.4. If Y is infinite and K is a finite subcomplex then Y −c K
is non-empty and has finitely many path components. �

Following tradition we say that a path component of Y −c K is bounded if
it is compact, and unbounded otherwise.

The next two propositions are exercises:

Proposition 13.4.5. If Y has one end then given any finite subcomplex K
of Y there is a finite subcomplex L such that any two points of Y −c L lie in
the same path component of Y −c K. �

Proposition 13.4.6. Two proper rays ω1 and ω2 in Y define the same end
iff for every finite subcomplex K of Y there exists k ∈ N such that ω1([k,∞))
and ω2([k,∞)) lie in the same path component of Y −c K. �

Pick a finite filtration {Li} of Y . A proper ray ω in Y picks out an element
(Zi) of7 lim←−

i

{π0(Y −c Li)}; in the notation of 13.4.6, Zi is the path component

of Y −c Li containing ω(k(i)) and Zi ⊃ Zi+1 for all i. From 13.4.6 we deduce:

Proposition 13.4.7. This correspondence induces a bijection
E(Y )→ lim←−

i

{π0(Y −c Li)}. �

By 13.4.4, {π0(Y −c Li)} is an inverse sequence of finite sets. If each
is regarded as a discrete space and the inverse limit is interpreted in the
category Spaces then, via the bijection of 13.4.7, E(Y ) becomes a compact
totally disconnected metrizable space called the space of ends of Y . A proper
1-equivalence Y → Z induces a homeomorphism E(Y )→ E(Z) between spaces
of ends. This is developed in the Appendix at the end of the section.

Proposition 13.4.8. Let Y have m ends where 0 ≤ m ≤ ∞. For all i, Y −c Li

has finitely many path components. When m < ∞, there exists i0 such that
whenever a finite subcomplex K contains Li0 , Y −c K has exactly m unbounded
path components. When m = ∞, the number of unbounded path components
of Y −c Li is a weakly monotonic unbounded function of i.

Proof. The first sentence follows from 13.4.4 (or from the discussion preceding
11.1.4). The rest follows from 13.4.7; to see this, observe that a compact path
component of Y −c Li lies in Lj for some j. �

Addendum 13.4.9. When m is finite and i ≥ i0, there is a path connected
finite subcomplex K of Y containing Li such that Y −c K has exactly m path
components. When m is infinite K can still be chosen so that all the path
components of Y −c K are unbounded.

7 Recall that the set of path components of a space W is denoted by π0(W ). In the
obvious way, π0 is a functor from Spaces to Sets.
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Proof. For m finite, the subcomplex Y −c Li has m unbounded path com-
ponents and finitely many bounded path components. Enlarge Li (by the
addition of a finite graph, say) to get a finite path connected subcomplex
K ′. Then Y −c K ′ has m unbounded path components, as well as, perhaps,

bounded path components C1, · · · , Cr. The required K is K ′ ∪

⎡
⎣ r⋃

j=1

N(Cj)

⎤
⎦.

This proof also gives the second part. �

The next proposition will be used in the proof of Theorem 13.5.9.

Proposition 13.4.10. Let Y have m ends, where m < ∞. Let K and L be
finite subcomplexes of Y such that each of Y −c K and Y −c L has m unbounded
path components C1, · · · , Cm and D1, · · · , Dm, respectively, indexed so that
there is a proper ray in each Ci ∩Di. Then each Ci −c (Ci ∩Di) is compact.

Proof. By 13.4.9, we may assume Y −c K and Y −c L have no bounded
path components. If m = 1, Y −c (C1 ∩ D1) = K ∪ L which is compact.
The subcomplex C1 −c (C1 ∩ D1) is therefore a closed subset of a compact
set. Now let m ≥ 2. First, consider the special case K ⊂ L. Suppose Di

fails to cover all but a compact subset of Ci. Then there is a point x in the
set Ci −c [(Ci ∩ Di) ∪ N(L)]. This x must lie in Dj for some j �= i. But
Dj∩Cj �= ∅. So the path connected set Dj meets Ci and Cj and misses N(L);
hence it misses N(K), a contradiction. For the general case, let J be finite
with K ∪ L∪ J and Y −c J having no bounded path components. If Ei is the
appropriate unbounded path component of Y −c J , then Ci −c (Ci ∩ Ei) and
Di −c (Di ∩ Ei) are compact, so Ci −c (Ci ∩Di) is compact. �

We saw in 2.7.2 that when Z is an oriented CW complex we may regard
H0(Z; R) as the free R-module generated by the set π0(Z). We need more
precision. Suppose the vertex v has orientation ε = ±1. This v determines an
element of π0(Z), namely, the path component C(v) containing v; and it also
determines an element of H0(Z; R), namely, the homology class represented
by the 0-cycle εv. The function hZ : π0(Z) → H0(Z; R), C(v) �→ ε{v}, is
well defined, injective, and satisfies the universal property for free R-modules
generated by sets.8 Moreover, hZ is natural in the sense that if f : Z1 → Z2

is a cellular map then the following diagram commutes:

π0(Z1)

f#

��

��
hZ1 �� H0(Z1; R)

f∗

��
π0(Z2) ��

hZ2 �� H0(Z2; R).

These remarks are used in the proof of:

8 When R = Z, hZ can be regarded as the 0-dimensional case of the Hurewicz
homomorphism; compare Sect. 4.5.
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Proposition 13.4.11. Let R be a PID. Y has m ends iff H0
e (Y ; R) is a free R-

module of rank m. Y has infinitely many ends iff H0
e (Y ; R) is free of countably

infinite rank.

Proof. We saw in 12.5.11 that H0
e (Y ; R) is free. First, let m be finite. By

12.5.10 (iv), H0
e (Y ; R) has rank m iff {H0(Y −c Li; R)} is stable with free

inverse limit of rank m, iff {π0(Y −c Li)} is stable9 with inverse limit having
m elements. Apply 13.4.7. The case m =∞ is now immediate. �

The above commutative diagram and 13.4.7 suggest natural functions

E(Y ) �� �� �� lim←−{π0(Y −c Li)} ��
hE(Y ) �� lim←−{H0(Y −c Li; R)}.

We will take these up in Sect. 16.1.

Appendix: Topology of the space of ends

A space is totally disconnected if each of its components consists of one point.
A space is 0-dimensional if there is a basis for the neighborhoods of each
point consisting of sets which are both closed and open (equivalently: whose
frontiers are empty). We set as an exercise:10

Proposition 13.4.12. A compact metrizable space is 0-dimensional iff it is
totally disconnected. �

In using 13.4.12, note that, by first countability, bases for the neighbor-
hoods of points can always be taken to be countable.

Every compact metrizable totally disconnected space has cardinality ≤
cardinality of R. Here are some examples: a finite discrete space, a “convergent
sequence with limit point” {0}∪{ 1

n | n ≥ 1}, the “middle-third” Cantor set.11

Proposition 13.4.13. If Z is a compact totally disconnected metrizable space,
there is an inverse sequence {Zn} of finite discrete spaces whose inverse limit
is homeomorphic to Z.

Proof. Pick a metric for Z. By 13.4.12, for each n ≥ 1 there is a finite cover
Zn of Z by pairwise disjoint closed-and-open sets of diameter ≤ 1

n , and these
Zn’s can be chosen inductively so that each member of Zn+1 lies in a member
of Zn. Choose any such set of inclusions to define the bond Zn+1 → Zn.
Giving each Zn the discrete topology, we get the desired inverse sequence. �

We leave as an exercise:

9 In the category Sets: see Sect. 11.2.
10 Or see [92, pp. 20–22].
11 i.e., the set of numbers in I having triadic expansion each of whose numerators

is 0 or 2.
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Proposition 13.4.14. (a) The inverse limit space of an inverse sequence of
finite discrete spaces is compact totally disconnected and metrizable.

(b) If two such sequences have homeomorphic inverse limit spaces then
they are pro-isomorphic.12 �

The compact totally disconnected metrizable space Z is perfect if no one-
point subset is open13 in Z. The “middle-third” Cantor set is an example. In
fact, as a further exercise the reader should prove:

Proposition 13.4.15. (a) Such a space Z is perfect iff Z is homeomorphic
to the inverse limit of an inverse sequence {Zn} of finite discrete spaces such
that for every n and every z ∈ Zn there exists k such that the pre-image of z
in Zn+k contains more than one point.

(b) Any two inverse sequences {Zn} and {Z ′
n} as in (a) are pro-isomorphic.

An immediate corollary of 13.4.15 is the following classical theorem:

is homeomorphic to the “middle third” Cantor Set. �

In view of 13.4.16, we will call any such space a Cantor Set .
The space E(Y ) of ends of Y is a compact totally disconnected metrizable

space. One asks: which spaces can occur as E(Y )? We leave the following
answer as an exercise:

Proposition 13.4.17. For any compact totally disconnected metrizable space
Z there is a tree T such that E(T ) is homeomorphic to Z. �

Exercises

1. Prove that Y has one end iff for some ring R {H0(Y −c Li; R)} is stably R.
2. Prove that if Y1 and Y2 are infinite and path connected then Y1×Y2 has one end.
3. When Y is not path connected what becomes of 13.4.2? Distinguish the cases of

finitely many and infinitely many path components.
4. Write out the proof that h : π0(Y ) → H0(Y ; R) satisfies the universal defining

property of a free R-module.
5. Prove 13.4.12. Extend it to the locally compact case.
6. Prove 13.4.14–13.4.16.
7. Prove 13.4.17. Hint : Compare 17.5.6.
8. The bijection in 13.4.7 is natural (or functorial). What does this mean? Prove it.

12 In pro-Sets or, equivalently, in pro-Spaces.
13 i.e., Every point is a “limit point.”

Theorem 13.4.16. Every perfect compact totally disconnected metrizable space
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13.5 Ends of groups and the structure of H1(G, RG)

Let G be a finitely generated group. Let X be a path connected CW complex
with fundamental group isomorphic to G and having finite 1-skeleton. The
number of ends of G is the number of ends of the (strongly) locally finite
graph X̃1. That this is well defined follows from 13.5.5, below.

By the remark preceding 3.2.5, we have:

Proposition 13.5.1. If G is generated by {g1, · · · , gk}, the number of ends
of G is the number of ends of the corresponding Cayley graph of G. �

Proposition 13.5.2. If H has finite index in G, then H and G have the same
number of ends.

Proof. X and its finite covering space X̄(H) have the same universal cover.
�

Let R be a PID. Next we show in 13.5.5 that the number of ends of G
determines and is determined by the R-module H1(G, RG), and therefore
does not depend on the choice of X or R.

Proposition 13.5.3. The R-module H1(G, RG) is countably generated and
free.

Proof. Apply the first two parts of 13.3.2 and the following lemma. �

Lemma 13.5.4. Let Y be a path connected countable CW complex of locally
finite type, and let {Li} be a finite type filtration of Y . Then {H0(Y −c Li; R)}
is semistable.

Proof. By 12.5.9, each H0(Y −c Li; R) is finitely generated and free. The image
of each bond H0(Y −c Lj; R)→ H0(Y −c Li; R) is a direct summand generated
by the finite number of path components of Y −c Li which meet Y −c Lj . Fixing
i, this finite number decreases with j until it eventually stabilizes. �

Theorem 13.5.5. The number of ends of a finite group is 0. The number
of ends of an infinite finitely generated group G is well defined and equals
1 + rankR(H1(G, RG)).

Here, “rankR” means rank as a free R-module (see 13.5.3); the value∞ is
permitted. This is well defined.14

Proof. For a finite group, the result follows from 3.2.13 and 13.4.2. Assume
G is infinite. Let ρ be a non-negative integer. We use both the result and
the notation of 13.3.2: H1(G, RG) has rank ρ iff {H̃0(X̃

1 −c Ki; R)} is stable
with free inverse limit of rank ρ, iff {H0(X̃

1 −c Ki; R)} is stable with free

14 Rank is certainly well defined when R is a PID, as is the case here. More general
conditions, which include the case R = ZG, are given in [42, p. 36].
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inverse limit of rank 1+ρ (by 2.9.1), iff lim←−
i

{π0(X̃
1 −c Ki)} has 1+ρ elements.

Apply 13.4.7. Similarly H1(G, RG) has infinite rank iff lim←−
i

{π0(X̃
1 −c Ki)} is

infinite,15 and again 13.4.7 gives the result. �

Example 13.5.6. The groups Zn (n > 1) have one end. The group Z has two
ends. A free group of rank n > 1 has infinitely many ends. To see this, consider
the universal covers of T n, S1 and the n-fold wedge of circles; the last is an
infinite tree every vertex of which has valence 2n. These are examples of every
case which can arise; more precisely, we have:

Theorem 13.5.7. The number of ends of a finitely generated group is 0, 1, 2
or ∞. Hence for G infinite and finitely generated, the R-module H1(G, RG)

is isomorphic to 0 or R or

∞⊕
1

R.

Proof. Suppose G has m ends where 3 ≤ m < ∞. Let Γ be the Cayley
graph of G with respect to a finite set of generators. By 13.5.5, G is infinite,
hence Γ is infinite. By 13.4.9, there is a finite path connected subgraph K
of Γ such that16 Γ −c K has exactly m path components Z1, . . . , Zm, all
unbounded, and for any finite subgraph L of Γ containing K the graph Γ −c L
has exactly m unbounded path components, one lying in each Zi. Since G is
infinite and acts freely, and N(K) is finite (by 11.4.4), there exists g ∈ G
such that N(g(K)) = g(N(K)) ⊂ Z1. Let Z ′

1, . . . , Z
′
m be the unbounded

path components of Γ −c (K ∪ g(K)), where Z ′
i ⊂ Zi. Then Z ′

i = Zi when
i > 1. Now, Z2 ∪ Z3 ∪ N(K) is path connected. So Z ′

2 ∪ Z ′
3 ∪ N(K) is a

path connected subset of Γ −c g(K), implying that Z ′
2 and Z ′

3 lie in the same
unbounded path component of Γ −c g(K). But each unbounded component
of Γ −c g(K) contains an unbounded component of Γ −c (K ∪ g(K)). This is
a contradiction, since m <∞. �

Just as we define the “number of ends” of G rather than the “set of ends”
of G, so we define the homeomorphism type of the ends of G to be that of
the space Z if E(Z) is homeomorphic to E(Γ ) with Γ as above. The proof of
13.5.7 clearly gives:

Addendum 13.5.8. The homeomorphism type of the ends of G is either that
of a discrete space having at most two points or that of a Cantor set. �

Perhaps it is because these spaces have different cardinal numbers that it
is usual to speak only of the “number of ends” of G, and we will do so when
the homeomorphism type is irrelevant.

15 By 12.2.1 and 13.2.9, H1(G, RG) is countable when G is finitely generated; how-
ever, lim

←−
i

{π0(X̃
1 −c Ki)} is either finite or uncountable.

16 Here and elsewhere in this chapter we use CW complements in order to stay in
the world of CW complexes. Ordinary complements would do just as well.
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A finitely generated group has 0 ends iff it is finite. One asks: which
finitely generated groups have 1 end, 2 ends, ∞ ends? Equivalently, when

is H1(G, RG) 0, R or
∞⊕
1

R?

Theorem 13.5.9. A finitely generated group G has two ends iff G has an
infinite cyclic subgroup of finite index.

Proof. Since the space R has two ends, the group Z has two ends. By 13.5.2,
the same holds for any group G in which Z has finite index.

Conversely, let G have two ends. Let Γ be the Cayley graph with respect to
a finite set of generators. By 13.4.9, there is a path connected finite subgraph
K such that Γ −c K has exactly two path components, Z+ and Z−, both of
which are unbounded. The group G acts on the (two-element) set of ends of
Γ , so some subgroup of index ≤ 2 fixes the two ends. Thus, we may assume
that G fixes the ends.

We first show that G has an element of infinite order. Since G is infinite,
there is some g ∈ G such that g(N(K))∩N(K) = ∅. So g(N(K)) ⊂ Z+∪Z−.
Path connectedness implies that g(N(K)) lies in Z+ or Z−; say g(N(K)) ⊂
Z+. We claim g(N(Z+)) ⊂ Z+. Suppose not. Then for some x ∈ N(Z+),
g(x) ∈ Z−∪N(K); this x is in Z+ because g(N(K)) ⊂ Z+. There is a proper
ray ω in Z+ with ω(0) = x. Since the image of ω misses K, the image of
the proper ray g ◦ ω misses g(K); and g ◦ ω(0) = g(x). There is a proper ray
τ in Z− ∪ N(K) with τ(0) = g(x). The proper rays g ◦ ω and τ both miss
g(K), and they define opposite ends (since g fixes ends). Hence, g(K) does
not separate Γ . This is a contradiction. Thus g(N(Z+)) ⊂ Z+. Indeed, g(Z+)
is a proper subcomplex of Z+ since g(K) ⊂ Z+. It follows that gn(Z+) �= Z+

for all n ≥ 1, and hence that g has infinite order.
Let G0 be the infinite cyclic subgroup of G generated by g. Claim: There

is a finite subgraph L of Γ such that
∞⋃

n=−∞
gn(L) = Γ . The Theorem follows

from this, for if g1, · · · , gk are the elements of G whose corresponding vertices
in Γ lie in L, then every vertex of Γ corresponds to gngi for some n and i,
implying that G0 has index ≤ k in G.

To prove the Claim let L = Γ −c (Z− ∪ g(Z+)). By 13.4.10, g(Z+) covers
all but a compact piece of Z+. Hence L is finite. One sees that x ∈ L iff
x ∈ K ∪N(Z+) and x /∈ N(gZ+). For any y ∈ Γ there is a greatest integer n
such that y ∈ gn(K ∪N(Z+)). Then y ∈ gn(L). So Γ =

⋃
ngn(L) as claimed.

�

Another characterization of finitely generated groups with two ends is
given in 13.5.16 below.

The classification of groups with infinitely many ends is more difficult:
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Theorem 13.5.10. (Stallings’ Theorem) A finitely generated group G has
∞ ends iff either17 (i) G = A ∗

C
B where C is finite having index ≥ 2 in A

and in B, with one of these indices being ≥ 3; or (ii) G = A ∗
φ

where φ is an

isomorphism between finite subgroups having index ≥ 2 in A.

The proof is given in the next section.
Next, we consider pairs of groups. Apart from its own interest this exten-

sion of the theory will give us some more information18 about ends of groups
(in 13.5.12, 13.5.15 and 13.5.16).

Let H be a subgroup of G. The number of ends of the pair (G, H) is the
number of ends of the locally finite graph X̄(H)1. By 13.4.11, this number
(≤ ∞) is the rank of the free R-module H0

e (X̄(H); R) which, by 13.2.9, is
isomorphic to H0(G, R(H\G)e). Thus the number of ends of (G, H) does not
depend on the choice of X or R. By 3.2.13, the pair (G, H) has 0 ends iff
[G : H ] <∞.

Proposition 13.5.11. If N is a normal subgroup of G then the number of
ends of the pair (G, N) is equal to the number of ends of the group G/N .

Proof. Let f : (X, x)→ (Y, y) be a cellular map between 2-dimensional com-
plexes having the following properties: each of X and Y has just one vertex,
the base point; f | : X1 → Y 1 is an isomorphism of finite graphs (i.e., a home-
omorphism taking each 1-cell of X onto a 1-cell of Y ); there are isomorphisms
α : G → π1(X, x) and β : G/N → π1(Y, y) so that β−1 ◦ f# ◦ α is the quo-

tient homomorphism19 G→ G/N . We described in Sect. 3.2 how to build Ỹ 1,
X̃1 and, hence, X̄(N)1. Inspection of that description shows that X̄(N)1 and
Ỹ 1 are isomorphic graphs; indeed the pointed map X̄(N) → Ỹ covering f
restricts to an isomorphism of 1-skeleta. Hence X̄(N) and Ỹ have the same
number of ends. �

Corollary 13.5.12. The number of ends of a finitely generated group G is the
number of ends of any path connected free20 G-CW complex whose quotient
by the action of G is a finite CW complex.

Proof. Let Z̄ be the free G-CW complex and Z the finite quotient. Write
H = π1(Z, z). By covering space theory (see Sect. 3.4), there is a short exact
sequence of groups N � H � G such that Z̄ = Z̄(N). By 13.5.11, the number
of ends of G is the number of ends of Z̄. �

It follows from 13.5.11 and 13.5.7 that if N is normal in G then the number
of ends of the pair (G, N) is 0, 1, 2 or ∞. For arbitrary subgroups H this is
not true:

17 This notation is explained in the footnotes to Sect. 6.2.
18 For another useful fact about ends of groups see Exercise 3 of Sect. 16.8.
19 Using the methods of Sect. 3.1, it is not hard to produce such.
20 One may even allow finite cell stabilizers here. See Exercise 2 in Sect. 17.2.
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Example 13.5.13. For each n ≥ 3 we describe a pair of groups (G, H) having
n ends. Let X be a closed path connected orientable surface of genus g and let
Y be a compact subsurface (i.e., clX(X−Y ) is also a surface) whose boundary
consists of n circles; Y is to be placed in X so that no boundary circle of Y
is homotopically trivial in clX(X − Y ), something which can be achieved for
given n by choosing g large enough. (Clearly, there is a triangulation of X
in which Y and clX(X − Y ) are subcomplexes, but we will leave such mat-
ters implicit here.) These conditions ensure that the inclusion of any of the n
boundary circles into Y or into the appropriate path component of clX(X−Y )
induces a monomorphism on fundamental group. Let G = π1(X, x) and let
H = π1(Y, x). This decomposition of X into path connected subsurfaces ex-
presses G as the fundamental group of a graph of groups in which H is a vertex
group. By 6.2.1 the obvious homomorphism H → G is a monomorphism. We
identify H with its image, regarding (G, H) as a pair of groups.

Consider the covering projection qH : X̄(H)→ X , with base point x̄ over
x. By 3.4.10 the path component Yx̄ of q−1

H (Y ) is a copy of Y which “carries”
the entire fundamental group H = π1(X̄(H), x̄). Let C1, . . . , Cn be the bound-
ary circles in Yx̄, and let Ui be the path component of clX̄(H)(X̄(H) − Yx̄)
containing Ci. The inclusion Ci ↪→ Ui induces a monomorphism on funda-
mental group by construction, and the same is true of Ci ↪→ Yx̄. Thus the
decomposition of X̄(H) into path connected surfaces expresses H as the fun-
damental group of a graph of groups in which H itself is a vertex group. It
follows that Ci ↪→ Ui induces an isomorphism on fundamental group, and
Ui �= Uj when i �= j.

If we attach a disk to Ui along Ci by a homeomorphic attaching map, we
get a simply connected surface with empty boundary. If Ui were compact this
would be a 2-sphere, implying Ui is a disk, which is impossible since Ci is
not homotopically trivial in Ui. The only remaining possibility is that Ui is a
simply connected open surface. By 12.3.8, 4.5.2 and 4.1.4 it follows that Ui is
contractible. It is a classical theorem that every contractible open surface is
homeomorphic to R2. Therefore, the pairs (Ui, Ci) and (S1× [0,∞), S1×{0})
are homeomorphic. Hence, X̄(H) has n ends; that is, (G, H) has n ends.

We remarked that the number of ends of (G, H) is 0 iff H has finite index
in G. At the other extreme we may ask what happens when H is finite:

Example 13.5.14. Consider the infinite dihedral group G = 〈a, b | a2, b2〉, and
let H be the subgroup of order 2 generated by a. The graphs X̃1 and X̄(H)1

are shown in Fig. 13.1: clearly (G, {1}) has two ends while (G, H) has one end
even though {1} has finite index in H .

However, finite normal subgroups are better behaved:

Proposition 13.5.15. If N is a finite normal subgroup of G, then the number
of ends of (G, N) is equal to the number of ends of G. Hence G and G/N have
the same number of ends.
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Fig. 13.1.

Proof. If G is finite, both numbers are 0. Assume G is infinite. Then pN :
X̃1 → X̄(N)1 is a finite-to-one covering projection, hence a proper map. The
induced function21 pN# : E(X̃1) → E(X̄(N)1) is clearly surjective. We must

show it is injective. Let ω and τ be proper rays in X̃1 with initial point such
that the proper rays pN ◦ ω and pN ◦ τ define the same end of X̄(N)1. It is
easy to see that pN ◦ τ is properly homotopic (in X̄(N)1) to a proper ray
σ of the form ν0.β1.ν1.β2. · · · ; here, “.” means path product in the sense of
Sect. 3.4, νk is a loop at pN ◦ ω(k), and βk is the path pN ◦ ω | [k, k + 1].
Some details of definition should be filled in here, but the idea is adequately
captured by the pictures in Sect. 16.1. By 2.4.6 and 2.4.7, we may assume, by
properly homotoping τ if necessary, that pN ◦ τ = σ. Then the proper rays ω
and τ are such that for all k ∈ N, τ(k) is a translate of ω(k) by an element of
N . It is convenient to assume, as we may, that X has only one vertex. Then
using the isomorphism χ of Sect. 3.2, we may identify G with the 0-skeleton
of X̃0 (having chosen a base point). Since N is finite, there is some m ∈ N
such that every element of N can be joined to the vertex 1 by a path of length
≤ m (i.e., involving ≤ m edges). Hence the vertices g and gh (where g ∈ G
and h ∈ N) can be joined by a path of length ≤ m. Since N is normal, the
vertices g and hg can be joined by a path of length ≤ m. In particular this is
true of ω(k) and τ(k) for each k, so ω and τ define the same end of X̃. �

With 13.5.9 this gives:

Corollary 13.5.16. If there is an exact sequence of groups N � G � Q with
N finite and Q isomorphic to Z or Z2 ∗ Z2 then G has two ends. �

Again, let H be a subgroup of the (finitely generated) group G. By 13.2.11,
H0(G, R(H\G)) is trivial if H has infinite index in G, and is isomorphic to R
if H has finite index. Analogous to 13.5.3 is:

Proposition 13.5.17. The R-module H1(G, R(H\G)) is free.

Proof. By 13.2.12 we have an exact sequence

H
1
(G, R(H\G)̂ )

i
← H

1
(G, R(H\G))

j
← H

0
(G, R(H\G)

e
)

k
← H

0
(G, R(H\G)̂ )

r
← H

0
(G, R(H\G))

21 Recall that E(Y ) denotes the set of ends of Y .
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If [G : H ] =∞, H0(G, R(H\G)) = 0 and k : R→ H0(G, R(H\G)e)) is a split
monomorphism: this follows from 13.2.9 and 12.2.3. By 13.2.9 and 13.4.11,
H0(G, R(H\G)e) is free. Hence its direct summand image j = ker i is free. If
[G : H ] <∞, r is an isomorphism R→ R, so j is a monomorphism, hence in
this case too image j = ker i is free. Using 13.2.9, 12.4.3 and 12.5.1, one sees
that H1(G, R(H\G)̂ ) ∼= H1(X̄(H); R) ∼= HomR(H1(X̄(H); R), R) =: M .
Since H1(X̄(H); R) is a quotient of some free R-module F0, M embeds in
HomR(F0, R); see Sect. 12.4. The latter is a product of copies of R, and image
i is a countably generated submodule. So, by 13.2.18, image i is free. Thus
H1(G, R(H\G)) ∼= ker i⊕ image i is free. �

Addendum 13.5.18. Let H have infinite index in G. The number of ends of
(G, H) is ≤ 1 + rankR(H1(G, R(H\G))) with equality iff the homomorphism
i is trivial. �

This should be compared with 13.5.3; by 13.2.10, when H is trivial so is
i. We now consider other cases where i is trivial.

Proposition 13.5.19. Let H, generated by h, be an infinite cyclic subgroup of
the one-ended finitely generated group G. Then the number of ends of (G, H)
equals 1 + rankZ(H1(G, Z(H\G))).

Proof. First, assume G is finitely presented. Then X can be taken to have
finite 2-skeleton and, by 13.2.9 and 13.5.18, we are to show that

i : H1
f (X̄(H); Z)→ H1(X̄(H); Z)

is zero. By 13.2.10 and Exercise 3 in Sect. 13.2, there is an obvious iden-
tification of H1(X̄(H); Z) with hom(H, Z). Suppose i �= 0. Then there is
θ ∈ Z1

f (X̄(H); Z) such that i({θ}) = φ : H → Z with φ non-trivial. Then φ is

a monomorphism. The subgroup H has infinite index in G by 13.5.9, so X̄(H)
is non-compact. Let L be a finite subcomplex of X̄(H)1 supporting θ, let C
be an unbounded path component of X̄(H)1 −c L, and let v be a vertex of C.
Write jC : C ↪→ X̄(H). We have a commutative diagram

H1
f (C; Z) ��

j∗C

��

H1
f (X̄(H); Z)

i

��
hom(π1(C, v), Z) ∼= H1(C; Z) �� H1(X̄(H); Z) ∼= hom(H, Z).

Since j∗C({θ}) = 0, φ is mapped to 0 so φ ◦ jC# : π1(C) → Z is trivial

and therefore jC# is trivial. Hence, writing pH : X̃ → X̄(H) as usual for
the covering projection, we see that p−1

H (C) consists of a pairwise disjoint
collection of copies of C indexed by H ; this follows from 3.4.9. Let B be the
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frontier of C in X̄(H)1. Then B is a subcomplex of N(L) and is therefore
finite. Thus there is a copy of B in X̃1 separating one of the copies of C in
X̃1 from another. But X̃1 has one end, so it cannot be separated by a finite
subcomplex in such a way that more than one complementary path component
is infinite – a contradiction.

When G is merely finitely generated, the argument is essentially the same,
but H1

f (X̄(H); Z) must be replaced by the cohomology group described in

Exercise 5 of Sect. 13.2, since now X1 is finite but X2 is not. �

More generally, we have:

Proposition 13.5.20. Let H be a subgroup of infinite index in the finitely
generated group G. Assume that whenever there is a short exact sequence
N � H � Z then the pair (G, N) has one end. Then the number of ends of
(G, H) equals 1 + rankZ(H1(G, Z(H\G))).

Proof. The proof is the same as that of 13.5.19. In that proof, we used only
the facts that H had infinite index in G and that the covering space X̄(ker φ)
had one end. The details are an exercise. �

Finally, we state a generalization of 13.5.7 whose (similar) proof is left as
an exercise:

Theorem 13.5.21. If H has infinite index in its normalizer in G, then the
number of ends of (G, H) is 1, 2 or ∞. �

Analogs of Stallings’ Theorem 13.5.10 for pairs of groups can be found in
[139].

In Sect. 14.5, we will return to ends of pairs of groups, introducing another
approach.

Source Notes. The first systematic study of ends of pairs of groups seems to be [86].
The material on ends of pairs of groups in this section is mostly in [139] and [140],
except for 13.5.18–13.5.20, which is in [152]. Example 13.5.13 is in [140]. Martin
Roller showed me Example 13.5.14. The theory of ends of groups is extended to
(discrete) groups which are not finitely generated in [49], and to compactly generated
locally compact topological groups in [130] and, earlier, in [86].

Exercises

1. Prove the “if” part of 13.5.10.
2. Prove that a finitely generated torsion free group is accessible.
3. How many ends does G1 × G2 have?
4. Prove that if the finitely generated group G has a finitely generated normal

subgroup of infinite index, then G has one end.
5. Prove 13.5.20.
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6. Prove: If an infinite group G acts freely on a path connected strongly locally
finite CW complex Y , then Y has 1, 2 or ∞ ends.

7. Prove that if an infinite group G acts freely on a path connected strongly locally
finite CW complex Y which has two ends, then Y is finite mod G, and G has two
ends.

8. Let G be the Klein Bottle group 〈a, b | bab−1 = a−1〉 and let H be the infinite
cyclic subgroup generated by b. Show that 13.5.19 is false for this case when the
ring R is Z2 rather than Z. (This is easier if a simple special case of Poincaré
Duality given in 15.1.9 is used.)

9. Give another proof of the Z-part of Corollary 13.5.16 by expressing G as an HNN
extension.

10. Give an example to show that H1(G, ZG) is not necessarily free when G is not
finitely generated. Hint : consider a free resolution when G is free of countably
infinite rank.

11. Show that Thompson’s group F has one end.
12. Prove 13.5.21.

13.6 Proof of Stallings’ Theorem

The easy part of Stallings’ Theorem 13.5.10 is the “if” part: that the indicated
decompositions imply infinitely many ends; that part is an exercise. In this
section we deal with the “only if” part. We are given G with infinitely many
ends. We will show that G acts rigidly on a tree with finite edge stabilizers
as expected from the statement of 13.5.10. Then 6.2.7 will give the required
decomposition of G.

A. Trees and Posets

There is a useful correspondence between trees and partially ordered sets
of a particular kind. A tree poset is a poset (E,≤) equipped with an involution
τ �→ τ̄ (i.e., ¯̄τ = τ) satisfying the following axioms:

(i) ∀τ , τ �= τ̄ ;
(ii) ∀σ ≤ τ , τ̄ ≤ σ̄;
(iii) ∀σ, τ , σ ≤ µ ≤ τ for only finitely many µ;
(iv) ∀σ, τ at least one of the following holds: σ ≤ τ , σ ≤ τ̄ , σ̄ ≤ τ , σ̄ ≤ τ̄ ;
(v) ∀σ, τ , it is not the case that σ ≤ τ and σ ≤ τ̄ .

The example to have in mind involves a tree T . Let E be the set of all
non-degenerate edges of T . We write τ1 ≤ τk if there is a reduced edge22 path
(τ1, . . . , τk). The set (E,≤) with involution τ �→ τ−1 is a tree poset.

Indeed, this relation τ1 ≤ τk makes sense on any graph Γ . Then (i) and
(ii) hold and one has:

(a) Γ is path connected iff for two edges σ and τ at least one of the following
is true: σ ≤ τ , σ ≤ τ̄ , σ̄ ≤ τ , σ̄ ≤ τ̄ .

22 Recall that an edge is an oriented 1-cell.
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(b) Γ , being path connected, is simply connected iff σ ≤ τ and τ ≤ σ imply
σ = τ .

Having just defined a function Φ : Trees −→ Tree Posets we now define
its inverse. Let (E,≤) be a tree poset. We write σ < τ if σ ≤ τ with σ �= τ ,
and we write σ � τ if σ ≤ µ ≤ τ implies µ = σ or µ = τ . We define σ ∼ τ by:
either σ = τ or σ � τ̄ . We leave the next proposition as an exercise:

Proposition 13.6.1. The relation ∼ is an equivalence relation on E. �

Let t(τ) denote the equivalence class of τ under23 ∼. The classes t(τ) are
the vertices of a simplicial complex K. Two vertices form a 1-simplex of K
if they are t(τ) and t(τ̄) for some τ ∈ E. This K is a 1-dimensional abstract
simplicial complex, and we write T := |K|.

Theorem 13.6.2. The graph T is a tree. The function (E,≤) �→ T from Tree
Posets to Trees is inverse to Φ.

Proof. For distinct edges σ and τ of T we have σ � τ iff there is a two-edge
edge path (σ, τ). By 13.6.1 it follows that, for general σ and τ , σ ≤ τ iff there
is a reduced edge path in T starting with σ and ending with τ . So the two
partial orderings are equivalent.

To see that T is a tree one checks the conditions (a) and (b) above. �

For any group G the function Φ provides a bijection between G-trees and
G-(tree posets).

The plan of the proof of Stallings’ Theorem is to use Bass-Serre theory
to exhibit the splitting of an infinite-ended finitely generated group G. For
this we need a suitable G-tree. We will find, instead, a G-(tree poset), whose
pre-image under Φ will be the required G-tree.

B. Building a tree poset

Let G be a finitely generated group having more than one end. Let Γ be
the Cayley graph of G with respect to some finite set of generators. By 12.4.5,
Γ is an infinite locally finite left G-graph. When restricted to G = Γ 0, this
G-action is by left multiplication. There is also the action of G on G by right
multiplication (which does not extend to an action on Γ ). We will express
things in terms of subsets of G, but the reader should bear in mind that each
such subset U defines the full subgraph of Γ generated by U .

In this section the letters U , V , W , X always label subsets of G. We write

U
a
⊆ V if U−V is finite; in words, U is almost a subset of V . We write U =

a
V

if U
a
⊆ V and V

a
⊆ U ; in words, U is almost equal to V . The set U is almost

invariant if, for all g ∈ G, U =a Ug, and in that case we write [U ] for the
set of all almost invariant subsets V which are almost equal to U . We write

[V ] ≤ [W ] if V
a
⊆W .

23 Think of this as the “terminus” of τ ; compare Sect. 6.2.
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There is an obvious bijection between the subsets of G and the Z2-vector
space, C∞

0 (Γ ; Z2), of 0-chains in Γ . We identify each set U with the corre-
sponding infinite 0-chain in Γ . Thus the coboundary δU picks out the (unori-
ented) 1-simplexes of Γ which have one vertex in U and the other in G− U .
We leave as an exercise:

Lemma 13.6.3. The set U is almost invariant iff δU is a finite 1-chain in
Γ . �

It is convenient to write U c := G− U .

Corollary 13.6.4. There are almost invariant sets U such that both U and
U c are infinite.

Proof. Since Γ has more than one end, we can pick a finite path connected
subgraph ∆ of Γ and let Z1, . . . , Zm be the unbounded path components of
Γ −c ∆ with m ≥ 2. Let U = Z0

1 , the set of vertices of Z1. By 13.6.3, U is
almost invariant, and U c contains Z0

2 ∪ · · · ∪ Z0
m. �

We now make a first attempt at constructing a tree poset. Using 13.6.4,
choose an almost invariant set U such that U and U c are infinite. Let E =
{[gU ], [gU c] | g ∈ G}. Then (E,≤) is a G-poset which admits the well-defined
involution [V ]→ [V c] (here V stands for some gU or gU c). We want to choose
U so that (E,≤), equipped with this involution, is a tree poset. Clearly (i),
(ii) and (v) in that definition hold. In the next two subsections we verify (iii)
when G has infinitely many ends, and (iv) when U is carefully chosen.

C. Verification of (iii)

We denote by |U | the full subgraph of Γ generated by U ⊆ G. Thus
|U c| = Γ −c |U |. By almost all g ∈ U we mean all but finitely many g ∈ U .

Proposition 13.6.5. Let U0 and U1 be almost invariant. Then for almost all
g ∈ G at least one of the following is true: gU1 ⊆ U0, gU c

1 ⊆ U0, gU1 ⊆ U c
0 ,

gU c
1 ⊆ U c

0 .

Proof. If U0 or U c
0 is empty the Proposition is trivial, so we assume they are

non-empty. For i = 0 or 1 let ∆i be a finite path connected full subgraph
of Γ containing the support of δUi. Then for almost all g ∈ U0 we have (i)
∆0 ∩ g∆1 = ∅ and (ii) g∆0

1 ⊆ U0. Fix such a g ∈ U0. By (i) there is a path
component E(g) of |U1| or of |U c

1 | such that ∆0 ⊆ gE(g).
Let E be any path component of |U1| or of |U c

1 |. Then E ∩ ∆1 �= ∅, so
gE ∩ g∆1 �= ∅, so gE ∩ |U0| �= ∅ by (ii). If gE ∩ |U c

0 | �= ∅ then by path
connectedness gE ∩ ∆0 �= ∅, so gE ∩ gE(g) �= ∅, so E = E(g). Thus, when
E �= E(g) we have gE ⊆ |U0|. It follows that |U c

0 | meets just one gE, namely,
gE(g), and this implies |U c

0 | ⊆ g|U1| or |U c
0 | ⊆ g|U c

1 |. Thus for almost all
g ∈ U0, either gU1 ⊆ U0 or gU c

1 ⊆ U0. Applying the same argument to U c
0 we

get the required conclusion. �
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Proposition 13.6.6. Let H = {g ∈ G | gU =a U}. If G has infinitely many
ends then H is finite.

Proof. Recall that both U and U c are infinite. We will show that if H is
infinite then G has an infinite cyclic subgroup of finite index, implying G has
two ends by 13.5.9.

We may assume that H ∩ U is infinite and that 1 ∈ U . By (the proof of)
13.6.5 we have gU ⊆ U −{1} or gU c ⊆ U −{1} for almost all g ∈ U . Fix such
an element g ∈ H ∩ U . Since gU =a U we have gU ⊆ U − {1}. Thus for all
n > 0 we have gnU ⊆ U − {1}, so g has infinite order. We will show that 〈g〉
has finite index in G.

Since 1 ∈ U , gn ∈ U for all n > 0, and since 1 �∈ gnU , g−n ∈ U c.
We next observe that ∩{gnU | n > 0} = ∅, for if h ∈ gnU for all n > 0
then g−n ∈ Uh−1, contradicting the fact that U =

a
Uh−1 (since all the

elements g−n are different). From this we get U = ∪{gnU−gn+1U | n ≥ 0} =
∪{gn(U − gU) | n ≥ 0}. But U − gU is finite, so U lies in the union of finitely
many cosets 〈g〉h. Similarly for U c. So 〈g〉 has finite index in G. �

Proposition 13.6.7. Let G have infinitely many ends. If V , W and X are

infinite almost invariant sets with infinite complements, then {g ∈ G | V
a
⊆

gW
a
⊆ X} is finite.

Proof. We may assume V
a
⊆ X and, enlarging V if necessary, that V �⊂ X .

Let V
a
⊆ gW

a
⊆ X . Then either gW �⊂ X or V �⊂ gW . It is enough to show

that {g ∈ G | gW
a
⊆ X and gW �⊂ X} and {g ∈ G | V

a
⊆ gW and V �⊂ gW}

are finite.
By 13.6.5 one of the following is true for almost all g : gW ⊆ X , gW ⊆ X c,

gW c ⊆ X , gW c ⊆ Xc. If gW
a
⊆ X and gW �⊂ X , the only possibility is

gW c ⊆ Xc. In that case gW =
a

X . By 13.6.6, this only holds for finitely

many g. The case V
a
⊆ gW and V �⊂ gW is treated similarly. �

The content of 13.6.7 is that (iii) in the definition of a tree poset holds for
(E,≤) when G has infinitely many ends.

D: Verification of (iv)

The previous arguments involve a chosen infinite almost invariant set U
such that U c is also infinite. By 13.6.3, δU has finite support in Γ . We call
such a set U narrow if (among all such U) the number, k, of 1-simplexes in
the support of δU is as small as possible.

Proposition 13.6.8. If U1 ⊇ U2 ⊇ · · · are narrow sets, and if V :=
⋂
n

Un

is non-empty, then the sequence stabilizes, i.e., for some N , Un = UN for all
n ≥ N .
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Proof. If an edge e lies in the support of δV then one vertex of e lies in every
Un, while there is an integer N such that the other vertex of e does not lie in
Un when n ≥ N . Thus e is in the support of δUn when n ≥ N . The support
of δV lies in the support of such δUn. In particular, V is almost invariant by
13.6.3.

From now on n ≥ N . The Z2-0-chain Un can be written as (Un + V ) + V ,
hence δUn = δ(Un + V ) + δV . No edge appears in both δ(Un + V ) and δV
because if it did then one vertex would be in the set V and the other in the
set Un−V , hence that edge could not be in the support of δUn, contradicting
the previous paragraph.

Let W be an infinite set which is either Un−V or V ; one of those must be
infinite since Un is infinite and, as chains, Un = (Un+V )+V . Then W is almost
invariant, and one easily shows that W c is infinite too. It follows that the
number of edges in the support of δW is ≤ k, because δUn = δ(Un +V )+ δV .
By minimality that number is k and W is narrow. Since δV and δ(Un + V )
have no edge in common, and since V �= ∅, it must be the case that W = V
and the chain Un + V = 0. Thus Un = V . �

The stabilizing set UN in 13.6.8 will be called a minimal narrow set.
If U is narrow, so is U c, so any g ∈ G lies in a narrow set, hence, by 13.6.8,

there is a minimal narrow set containing g.

Proposition 13.6.9. Fix g0 ∈ G. Let U be a minimal narrow set containing

g0. For any narrow set V at least one of the following holds: U
a
⊆ V , U

a
⊆ V c,

U c
a
⊆ V , U c

a
⊆ V c.

Proof. Write W1 = U ∩ V , W2 = U ∩ V c, W3 = U c ∩ V , and W4 = U c ∩ V c.
We are to prove that one of the Wi is finite. The support of δWi lies in the
union of the supports of δU and δV . Since the sets Wi are pairwise disjoint,
any edge appearing in δU or in δV meets exactly two of the sets Wi. So the
number of edges lying in the support of at least one δWi is ≤ 4k. Suppose
all the Wi’s are infinite. Then there are at least k edges in the support of
each δWi, hence precisely k in each support. Thus one of the Wi, say Wj , is
a minimal narrow set containing g0. Hence Wj = U . If j = 1 then U ⊆ V , so
W2 = ∅, a contradiction; and there is a similar contradiction if j = 2, 3 or 4.
It follows that some Wi is finite. �

The content of 13.6.9 is that if we choose U to be a minimal narrow
set containing some chosen element g0 ∈ G, then for any g ∈ G one of the
following holds: [U ] ≤ [gU ], [U ] ≤ [gU c], [U c] ≤ [gU ], [U c] ≤ [gU c]. It follows
that (iv) holds for (E,≤).

We summarize:

Theorem 13.6.10. Let G be a finitely generated group with infinitely many
ends. There is an almost invariant set U ⊆ G with respect to which the G-poset
(E,≤) is a G-(tree poset). �
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E. Completion of the proof of Stallings’ Theorem

Let T be the G-tree determined by (E,≤) in 13.6.10 via the function Φ.
The stabilizer of [U ] ∈ E is {g ∈ G | gU =a U}; this is finite by 13.6.6. So
edge stabilizers in T are finite.

From the definition of E it is clear that there are at most two G-orbits.
These are represented by the two possible orientations of a 1-cell of T . If no
member of G takes one to the other then the G-action on T is rigid. Otherwise
we can replace the tree T by its barycentric subdivision sd T , which is also a
tree, and the G-action on sd T is rigid. Thus there is no loss of generality in
assuming that T is a rigid G-tree with just one orbit of 1-cells. This expresses
G as either a free product with amalgamation A∗

C
B or an HNN extension A∗

φ

where the subgroups involved are finite.

If G ∼= A∗
φ

with A ≥ C1

∼=−→
φ

C2 where C1 is finite, the case A = C1, and

hence also A = C2, can be ruled out since, by 13.5.16, either would imply that
G has two ends. .

If G ∼= A∗
C
B, the case [A : C] = [B : C] = 2 can be ruled out also, since

13.5.16 would imply that G has two ends.
It remains to rule out the case C = A, the case in which G fixes a vertex

of T . Suppose this happens. Then T consists of a wedge of copies of I whose
0-points are identified. That wedge point is fixed by G. It follows that T is a
rigid G-tree; no barycentric subdivision is needed.

In this tree, the relation σ < τ implies σ � τ . By (the proof of) 13.6.5,
we have gU ⊆ U or gU c ⊆ U for almost all g ∈ U . Since {g | gU =

a
U} is

finite there exists g ∈ U such that gU is not almost equal to U or U c, and
gU ⊆ U or gU c ⊆ U ; and there exists h ∈ U c such that hU is not almost
equal to U or U c, and hU ⊆ U or hU c ⊆ U . Consider the case gU ⊆ U . Then
g2U ⊆ gU ⊆ U , so [g2U ] ≤ [gU ] ≤ [U ], hence gU =a U or g2U =a gU : both
give contradictions. The other three cases give similar contradictions.

Thus the proof of 13.5.10 is complete. �

Remark 13.6.11. There is an important companion theorem to 13.5.10. A
finitely generated group G is accessible if G can be decomposed as the fun-
damental group of a finite graph of groups whose edge groups are finite and
whose vertex groups have at most one end. A theorem of Dunwoody [54] says
that every finitely presented group is accessible. Examples of finitely gener-
ated groups which are not accessible are found in [56]. When G is accessible
the process of decomposition described in 13.5.10 can be done iteratively in
such a way that it terminates.

A group is slender if all its subgroups are finitely generated. For example,
finitely generated abelian groups are slender. This notion occurs in connection
with JSJ decompositions. In more detail:

Remark 13.6.12. Let G be a finitely presented group. Stallings’ Theorem is
about decomposing G as the fundamental group of a graph of groups where
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the edge groups are finite. This is commonly described as splitting G over
finite subgroups. When G has one end, no such splitting is possible, but one
can seek splittings of G whose edge groups are infinite. Typically, the edge
groups in such a decomposition of G are required to belong to a named class
of slender edge groups; for example (and this is an important special case)
all the edge groups might be required to be infinite cyclic. Such splittings
are called JSJ decompositions24 of G provided stringent conditions involving
permissible vertex groups and permissible relations between the edge groups
and the vertex groups are met – see, for example, the papers cited below for
details. The point is that, for various classes of slender groups, JSJ decompo-
sitions of G exist, and are essentially unique. The first theorem of this kind
(for arbitrary finitely presented groups) was given by Rips-Sela [133], with
subsequent versions by various authors, e.g., in [55] and in [66].

Source Notes: This proof of Stallings’ Theorem is due to Scott and Wall [140],
based in part on previous proofs by Dunwoody [53] and D. Cohen [41]. Stallings’
original proof appeared in [147].

Exercises

1. Prove the “if” part of 13.5.10.
2. Prove 13.6.1.

3. Let U be as in 13.6.9. Define U1 := {g ∈ G | U
a

⊆ gU or Uc
a

⊆ gU}. Prove that for
all g ∈ G one of the following holds: U1 ⊆ gU1, U1 ⊆ gUc

1 , Uc
1 ⊆ gU1, Uc

1 ⊆ gUc
1 .

13.7 The structure of H2(G, RG)

In 13.2.11, we saw that the R-module H0(G, RG) is R or 0, depending on
whether G is finite or infinite, and that when G is finite Hn(G, RG) = 0 for
all n > 0. We saw in Sect. 13.5 that when G is infinite and finitely generated,

the R-module H1(G, RG) is 0 or R or

∞⊕
1

R, and we were able to describe the

groups G for which the latter two cases occur – hence, by default, the other
case too. Throughout this section G is a finitely presented group and R is a
PID. We will consider H2(G, RG). By 13.3.2 and 2.7.2 we have:

Proposition 13.7.1. The R-module H2(G, RG) is torsion free. �

We will study H2(G, RG) by studying H1
e (X̃ ; R) where X̃ is a simply

connected free G-CW complex whose quotient, X , is finite. The method will

24 So called because the idea was inspired by results in 3-manifold topology due
independently to W. Jaco and P. Shalen and to K. Johannson in which the slender
groups are free abelian groups of rank 2 – the fundamental groups of suitable tori.
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require that G have an infinite cyclic subgroup, which we will call J . Therefore,
we first consider free J-actions in their own right, not assuming the quotients
are compact.

With J an infinite cyclic group, let Y be a simply connected free J-CW
complex of locally finite type; then Y is countable, by 11.4.3. The group J
is generated by an automorphism j : Y → Y . Now J also acts freely on R,
with the generator j acting as the translation x �→ x + 1. Applying the Borel
Construction (Sect. 6.1), we get a commutative diagram

R ←−−−− R× Y −−−−→ Y

p1

⏐⏐
 ⏐⏐
r

⏐⏐
p2

S1 q1←−−−− Z
q2−−−−→ J\Y

in which Z is the quotient of R × Y by the diagonal action of J . This gives
us two ways of looking at Z, when we regard q1 and q2 as stacks of CW
complexes.

First, we consider the resulting decomposition of Z over S1, thought of as
a CW complex with one vertex, v, and one 1-cell, e.

Proposition 13.7.2. Z is the mapping torus of j : Y → Y .

Proof. Apply 6.1.3. The space q−1
1 (v) is a copy of Y , and Z is obtained by

attaching Y ×B1 via the attaching maps id on Y × {−1} and j on Y × {1}.
�

Next, consider the following commutative diagram:

.

.

.

.

.

.

.

.

.

.

.

.

· · · �� Hn+1
f

(Z; R)

��

�� Hn
f (Y ; R) �� id−j∗

��

Hn
f (Y ; R) ��

��

Hn
f (Z; R) ��

��

· · ·

· · · �� Hn
e (Z; R)

��

�� Hn−1
e (Y ; R) ��

id−j∗

��

Hn−1
e (Y ; R) ��

��

Hn−1
e (Z; R) ��

��

· · ·

· · · �� Hn(Z; R) ��

��

Hn−1(Y ; R) ��
id−j∗

��

Hn−1(Y ; R) ��

��

Hn−1(Z; R)

��

�� · · ·

.

.

.

��

.

.

.

��

.

.

.

��

.

.

.

��

Here, the vertical exact sequences are as in Sect. 12.2. By 13.7.2, Z is the
adjunction complex Y ∪

f
(Y × I) where f : Y × {0, 1} → Y is defined by
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f(y, 0) = y and f(y, 1) = j(y). There is a short exact sequence of cochain
complexes

0 ←−−−− C∗
f (Y ; R)

i#1 −(i0◦j)#←−−−−−−− C∗
f (Y × I; R)

q#

←−−−− C∗
f (Z; R) ←−−−− 0

where i0 : y �→ (y, 0), i1 : y �→ (y, 1), and q : Y × I → Z is the quotient map.
Identifying H∗

f (Y × I; R) with H∗
f (Y ; R) via the isomorphism i∗0, we get the

top horizontal exact sequence. The other horizontal sequences25 are formed
similarly. One checks:

Proposition 13.7.3. The above diagram commutes. �

Next, we examine the decomposition of Z over J\Y .

Proposition 13.7.4. There is a homeomorphism h : R × (J\Y ) → Z which
is fiber preserving; i.e., q2 ◦ h is projection on the J\Y factor.

For readers familiar with bundles, this says that the fiber bundle q2 with
fiber R is trivial. A short proof would read: this is a principal bundle which
has a section. What follows is an elementary proof.

Proof (of 13.7.4). There is certainly a fiber preserving homeomorphism h0 :
R×(J\Y )0 → q−1

2 ((J\Y )0). Moreover, we can choose h0 to be order preserving
on each fiber (R×{point}), in the sense that whenever ṽ is a vertex of Y and
v = p2(ṽ), the homeomorphism

R× {ṽ} r|−−−−→ q−1
2 (v)

h−1
0−−−−→ R× {v}

is order preserving. As an induction hypothesis, assume we are given a fiber
preserving homeomorphism hn : R× (J\Y )n → q−1

2 ((J\Y )n) such that when-
ever x̃ ∈ Y n and x = p2(x̃), the homeomorphism

R× {x̃} r|−−−−→ q−1
2 (x)

h−1
n−−−−→ R× {x}

is order preserving. By 1.2.23, it is enough to extend hn to a homeomorphism
hn+1 with similar properties. Once again we use 6.1.3, which tells us that

q−1
2 ((J\Y )n+1) = q−1

2 ((J\Y )n) ∪
f

( ∐
e∈En+1

R×Bn+1

)
where En+1 is the

set of (n+1)-cells of J\Y and f :
∐

e∈En+1

R×Sn → q−1
2 ((J\Y )n) is a suitable

map. Thus the proof is easily completed by using Lemma 13.7.5 below. �

Lemma 13.7.5. Let H : Sn × R → Sn × R be a homeomorphism of the
form H(x, t) = (x, Hx(t)) where each homeomorphism Hx : R → R is order
preserving. Then H extends to a homeomorphism Ĥ : Bn+1×R→ Bn+1×R
of the form Ĥ(x, t) = (x, Ĥx(t)) where each Ĥx is order preserving.

25 The horizontal exact sequences in the diagram are special cases of what is called
the Wang sequence.
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Proof. Note that when n > 0 the hypothesis on each Hx holds iff it holds on
one Hx; but we also need this lemma for n = 0. The required Ĥ is given by
the formula Ĥ(x, t) = (x, (1 − |x|)t + |x|H x

|x|
(t)) if x �= 0, and by Ĥ(0, t) = t.

�

The idea behind the above proof is simple: any convex linear combination
of order-preserving homeomorphisms of R is an order-preserving homeomor-
phism. Therefore, we are “coning” each Hx, gradually deforming it to the
identity as we approach the point 0 ∈ Bn+1. This process is continuous in x.

Proposition 13.7.6. If W is a countable CW complex of locally finite type,
then for all n, Hn

f (W ; R) ∼= Hn+1
f (W × R; R).

Proof. This follows from 12.6.1. Here is a short direct proof. Let {Ki} be a
finite type filtration of W . Then {Ki×[−i, i]} is a finite type filtration of W×R.
Fix i, and let Xi = (W ×R) −c (Ki× [−i, i]). We can write Xi = Ai∪Bi where
AiW × [0,∞) −c (Ki × [0, i]) and BiW × (−∞, 0] −c (Ki × [−i, 0]). We have
Ai∩Bi = (W −c Ki)×{0}. The pair (W × [i+1,∞), W× [i+1,∞)) is a strong
deformation retract of the pair (W×[0,∞), Ai); so H∗(W×[0,∞), Ai; R) = 0.
Similarly, H∗(W × (−∞, 0], Bi; R) = 0. By the appropriate Mayer-Vietoris
sequence, there is a natural isomorphism

δ∗ : Hn(W, W −c Ki; R)→ Hn+1(W × R, Ai ∪Bi; R).

By taking the direct limit and applying 12.2.1, we get the desired result. �

By 13.7.4 and 13.7.6 we get:

Corollary 13.7.7. For each n, Hn
f (J\Y ; R) ∼= Hn+1

f (Z; R). �

Proposition 13.7.8. Assume Y 2 does not have two ends. If j∗ : H1
e (Y ; R)→

H1
e (Y ; R) agrees with the identity on a non-trivial R-submodule, A, then either

A ∼= R or J\Y has more than one end.

Proof. Recall that Y is assumed to be simply connected. The space J\Y is
not compact (i.e., does not have 0 ends) because Y does not have two ends;
see 13.5.9. Assuming J\Y has one end, we must show A ∼= R. We have an
exact sequence

H1(J\Y ; R) ←−−−−− H1
f (J\Y ; R) ←−−−−− H0

e (J\Y ; R)
α

←−−−−− H0(J\Y ; R) ←−−−−− 0.

By 13.4.11, H0
e (J\Y ; R) ∼= R, so 12.2.3 implies α is an isomorphism. The R-

module H1(J\Y ; R) is isomorphic to R, by 3.1.19 and 12.5.1. So H1
f (J\Y ; R)

embeds in R, which implies, by 11.3.11, that H1
f (J\Y ; R) ∼= R or 0. Consider

the diagram
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H2
f (Y ; R)

id−j∗←−−−− H2
f (Y ; R) ←−−−− H1

f (J\Y ; R) ←−−−− H1
f (Y ; R),⏐⏐ ,⏐⏐

H1
e (Y ; R)

id−j∗←−−−− H1
e (Y ; R) ≥ A,⏐⏐

0 = H1(Y ; R)

Here, the horizontal exact sequences come from 13.7.3, 13.7.4 and 13.7.6. From
the exactness, we conclude that A is a non-trivial quotient of a submodule
of H1

f (J\Y ; R). Hence H1
f (J\Y ; R) ∼= R, and A must be generated by one

element. By 12.5.11, A is torsion free, so by 11.3.11, A ∼= R. �

A similar proof gives:

Proposition 13.7.9. Assume Y 2 has one end. If j∗ : H1
e (Y ; R)→ H1

e (Y ; R)
agrees with the identity on a non-trivial R-submodule A, then A is a free
R-module.

Proof. Consider the first exact sequence given in the proof of 13.7.8. The
monomorphism α splits by 12.2.3, and we have seen that H1(J\Y ; R) is iso-
morphic to R. Moreover, H0

e (J\Y ; R) is free, by 12.5.11. Thus H1
f (J\Y ; R) is

R-free. From the diagram of 13.7.3 we see that H1
f (Y ; R) = 0; this is where we

use the hypothesis that Y is one-ended. It follows from the second diagram in
the proof of 13.7.8 that A embeds in a free R-module and hence is R-free. �

Now we return to the finitely presented group G acting freely on X̃ with
finite quotient X . The covering transformations give H1

e (X̃; R) the structure
of a right RG-module; compare 13.2.16.

Proposition 13.7.10. Let there exist j ∈ G of infinite order, and a sub-RG-
module A of H1

e (X̃ ; R) on which j∗ : H1
e (X̃ ; R) → H1

e (X̃ ; R) agrees with the
identity. Then, as an R-module, A is either trivial or is isomorphic to R or
is infinitely generated. If, in addition, X̃ has one end then, as an R-module,

A is trivial or is isomorphic to R or to

∞⊕
1

R.

Proof. By hypothesis, X̃ is non-compact. If X̃ has two ends, then, by 13.5.9
and 12.2.2, H1

e (X̃; R) ∼= H1
e (R; R) = 0, implying A is trivial. Assume X̃ does

not have two ends, and suppose A is a finitely generated R-module which is
neither 0 nor R. By 12.5.11, A is free of finite rank > 1. By 13.7.8, J\X̃ = X̄(J)
has more than one end. Let K be a finite path connected subcomplex of
X̄(J) which separates X̄(J). Certainly, K can be chosen so that the inclusion
induces an epimorphism i# : π1(K, v̄) → π1(X̄(J), v̄). Temporarily, we will
assume that K can be chosen so that i# is an isomorphism. Then 3.4.9 implies
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p−1
J (K) is the universal cover of K, where pJ : X̃ → X̄(J) is the covering

projection. Since K̃ has two ends, H1
f (K̃; R) ∼= R.

Let L1, · · · , Lr be the path components of X̄(J) −c K. At least two of
these are unbounded, say L1 and L2. Write L− = (N(L1)) ∪ K and L+ =
N(L2 ∪ · · · ∪ Lr) ∪ K. Then L+ ∪ L− = X̄(J) and L+ ∩ L− = K. Writing
M± = p−1

J (L±), we have M+ ∪M− = X̃ and M+ ∩M− = K̃. See Fig. 13.2.

M

KL

L

L

+
~
KM

_

1

2

3

S

Fig. 13.2.

In the following diagram, the row is the Mayer Vietoris sequence, and the
column is exact:

H2
f (M+; R)⊕H2

f (M−; R)
α←−−−− H2

f (X̃; R) ←−−−− H1
f (K̃; R) ∼= R,⏐⏐β

A ≤ H1
e (X̃ ; R),⏐⏐

0 = H1(X̃; R)

The key point is that since A is finitely generated over R and is invariant
under the action of G, β(A) ⊂ ker α. [Proof: Let finite cocycles c1, · · · , ck

represent R-generators of β(A) and let a finite subcomplex S of X̃ support
c1, · · · , ck. Since X is compact and J has infinite index in G, there exist
g+ and g− in G such that g+(S) ∩ M− = ∅ and g−(S) ∩ M+ = ∅. Thus
(inclusion)∗ : H2

f (X̃ ; R) → H2
f (M±; R) maps β(A) to 0, so αβ(A) = 0. It

follows that there is an epimorphism R→ A, a contradiction.]
If K cannot be chosen so that i# is an isomorphism, we alter the argument

slightly. Since i# is a split epimorphism, the theory of Tietze transformations
(Sect. 3.1) can be used to attach finitely many 2-cells e2

1, · · · , e2
s to K ⊂ X̄(J)
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to form a new pair of complexes (X̄ ′(J), K ′), where the inclusion induces
an isomorphism i′# : π1(K

′, v̄) → π1(X̄
′(J), v̄). These 2-cells are attached to

X̄(J) along loops in K which are homotopically trivial in X̄(J). So, just as in

4.1.10, X̄ ′(J) is homotopy equivalent to X̄(J)∨
(

s∨
i=1

S2
i

)
. Thus, using 4.1.8, we

can attach s 3-cells to X̄ ′(J) to produce X̄ ′′(J) homotopy equivalent to X̄(J).
Let K ′′ be the union of K and these 2- and 3-cells. Then the inclusion induces
an isomorphism i′′# : π1(K

′′, v̄) → π1(X̄
′′(J), v̄). Of course, K ′′ separates

X̄ ′′(J). Let X̃ ′′ be the universal cover of X̄ ′′(J). Since X̄(J) ↪→ X̄ ′′(J) is a
proper homotopy equivalence, 10.1.23 implies that X̃ ↪→ X̃ ′′ is also a proper
homotopy equivalence. The argument now proceeds as before, using (X̃ ′′, K ′′)
in place of (X̃, K).

The last sentence of the Proposition follows from 13.7.9. �

By 13.7.1 and 13.7.10 we get:

Proposition 13.7.11. Let G be finitely presented. Then H2(G, RG) is tor-
sion free. If there is an element j ∈ G of infinite order acting as the identity
on H2(G, RG), then the R-module H2(G, RG) is either 0 or R or is infinitely
generated. If, in addition, G has one end, then this R-module is either 0 or R

or

∞⊕
1

R. �

When R = Z we can improve the first part of 13.7.11, getting rid of the
hypothesis on j:

Theorem 13.7.12. (Farrell’s Theorem) Let the finitely presented group G
act freely on X̃ with compact quotient. Assume G has an element of infinite
order.26 Then the abelian group H1

e (X̃; Z) is trivial or is isomorphic to Z
or is infinitely generated. Hence the abelian group H2(G, ZG) is trivial or is
isomorphic to Z or is infinitely generated.

Proof. By 12.4.8 and 12.2.2, there is a monomorphism of Z2-modules β :
Z2 ⊗Z H1

e (X̃ ; Z) → H1
e (X̃; Z2). In fact, by naturality of the universal coeffi-

cient sequence, β is a monomorphism of Z2G-modules. Assume H1
e (X̃ ; Z) is a

finitely generated abelian group. Then it is Z-free (see 12.5.10) of finite rank,
say, r, and we are to show r = 0 or 1. Let A = image(β). Then A is a finite
Z2G-submodule. If j ∈ G is an element of infinite order, then some power of j
agrees with the identity on A. By 13.7.10, it follows that A is 0 or Z2. Hence
r = 0 or 1. The last sentence now follows from 13.2.9 and 13.2.13. �

26 At time of writing, the question of whether every infinite finitely presented group
contains an element of infinite order is open. M. Kapovich and B. Kleiner have
announced a new proof of 13.7.12 without the hypothesis that G contains an
element of infinite order.
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Theorem 13.7.12 leaves open the question of whether H2(G, ZG) is always
a free abelian group. For finitely presented groups G the answer is unknown
in general. We will give a positive answer in 16.5.1 under the hypothesis that
G is semistable at each end. The corresponding question when R is a field k
has been fully answered for torsion free finitely presented groups G in [64]:
the k-vector space H2(G, kG) has dimension 0 or 1 or ∞.

Source Notes: Farrell’s Theorem appeared in [63].

Exercises

1. Give an example of a finitely generated (but not finitely presented) group G such
that H2(G, ZG) is not free. Hint : compare Exercise 10 in Sect. 13.5.

2. Prove that the countably infinite product of copies of Z is not a free abelian
group.

13.8 Asphericalization and an example of H3(G, ZG)

In this section we will construct a finite aspherical 3-pseudomanifold whose
universal cover is a non-orientable 3-pseudomanifold. Its fundamental group
G will thus have type F and geometric dimension 3. We will show that
H3(G, ZG) ∼= Z2. (Until now we have not seen a group G of type Fn for
which Hn(G, ZG) is not free abelian.)

For this we require a general procedure, “asphericalization,” for making
complexes aspherical. It is of independent interest.27

Recall from Sect. 5.2 the abstract simplicial complex n with |n| = ∆n.
A pair (K, π) is a simplicial complex over n if K is an abstract non-empty
simplicial complex, and π : K → n is a simplicial map which is injective on
each simplex of K. Here is a source of examples:

Proposition 13.8.1. Let Y be a regular CW complex of dimension ≤ n and
let π : sd Y → n map the vertex ek

α of sd Y (ek
α being a cell of Y ) to pk ∈ Vn.

Then (sd Y, π) is a simplicial complex over n. �

Note that if K =
•
∆ 2 there is no π such that (K, π) is a simplicial complex

over 1. In general, the existence of π depends on the simplicial structure of K
rather than on the topology of |K|.

An aspherical model over ∆n is a map f : X → ∆n = |n| where

(i) X is an aspherical CW complex;
(ii) for every non-empty subcomplex J of n, f−1(|J |) is a non-empty sub-

complex of X each of whose path components is aspherical;

27 A more refined procedure called “hyperbolization” turns suitable complexes into
hyperbolic complexes. See [47].
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(iii) for every base vertex v, the inclusion map induces a monomorphism
π1(f

−1(|J |), v)→ π1(X, v).

Given (K, π) and (X, f) as above, the asphericalization of |K| by (X, f) is
the pull-back X�|K| := f∗(|K|) in the diagram

X�|K| −−−−→ |K|⏐⏐
 ⏐⏐
|π|

X
f−−−−→ ∆n.

Example 13.8.2. Take |K| to be R where the integers are vertices. Take n = 1,
∆1 having vertices p0 and p1. Define π to take evens to p0 and odds to p1.
Take X to be a compact orientable surface with three boundary components
B0, B1 and B2. Let f−1(p0) = B0 and f−1(p1) = B1 ∪B2. The space X�|K|
is illustrated in Fig. 13.3.

| |KDX

p0 p
1

1D. .

p| |

B 0

B 1

B 2

−2 −1 0 1
. . . .

X

f

. . . . . .

Fig. 13.3.

We can also regard X�|K| as the pull-back |π|∗(X). As such it has a
natural CW complex structure, being assembled out of copies of the various
f−1(|σ|) for σ ∈ K in order of increasing dimension.

Proposition 13.8.3. Let f : X → ∆n be an aspherical model over ∆n and let
(K, π) be a simplicial complex over n. Then X�|K| is non-empty and each
of its path components is aspherical. Moreover, for any non-empty subcom-
plex L of K and any base vertex w of X�|L|, the inclusion map induces a
monomorphism π1(X�|L|, w) → π1(X�|K|, w), where (L, π|) is considered
as a simplicial complex over n.
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For σ ∈ K let σ̄ [resp.
•
σ] denote the subcomplex of K consisting of σ and

its faces [resp. the proper faces of σ]. A simplex of K is principal if it is not
a proper face of another simplex of K.

Proof (of 13.8.3). First we handle the special case in which K is a simplex,
i.e., K = σ̄ for some σ ∈ K. Then for any non-empty subcomplex L of σ̄,
X�|L| = f−1(|π|(|L|)). By Properties (i)–(iii), above, the Proposition holds.

For the case where K is finite we do induction on N , the number of sim-
plexes of K. If K is a point, we are done, by the special case. For larger N , let
K0 be the subcomplex of K obtained by removing a principal simplex of K.
Then X�|K| is the adjunction complex obtained from (X�|K0|) (X�|σ̄|)
by gluing along the obvious copies of X�|•σ| in both. If X�|•σ| is empty
(which happens iff σ is a 0-simplex) then by induction and/or the special case,

X�|K| is non-empty and every path component is aspherical. If X�|•σ| is non-

empty, π1(X�|
•
σ|, w) → π1(X�|K0|, w) and π1(X�|

•
σ|, w) → π1(X�|σ̄|, w)

are monomorphisms by induction and/or the special case; so 7.1.9 implies that
every path component of X�|K| is aspherical.

Now let L be a non-empty proper subcomplex of K. There is a principal
simplex τ of K such that L is a subcomplex of the complex K1 obtained
by removing τ from K. For any suitable vertex w, the following diagram
commutes, where all arrows are induced by inclusion:

π1(X�|L|, w)
α ��

γ
����

���
���

���
��

π1(X�|K1|, w)

β%%���
���

���
���

�

π1(X�|K|, w).

Now, α is a monomorphism by induction, and β is a monomorphism by 6.2.1
(since X�|K| is the adjunction space of X�|K1| and X�|τ̄ | by gluing across

X�|•τ |), so γ is a monomorphism. The extension of this argument to the case
where K is infinite is left as an exercise. �

Addendum 13.8.4. If K is path connected and n-dimensional then X�K
is path connected.

Proof. If K = σ̄ then σ is n-dimensional, so X�|K| = X . If K �= σ̄ and
K is finite, one shows easily that K is the union of two connected proper
subcomplexes K1 and K2. By induction on the number of principal simplexes
of K, the subcomplexes X�K1 and X�K2 are path connected, and their
intersection is non-empty by Property (ii), above. So X�K is path connected.
Again, the infinite case is left as an exercise. �

We can now construct the promised 3-pseudomanifold. Let X be a compact
3-manifold whose boundary is U4, the surface obtained from S2 by attaching
four crosscaps (see 5.1.8); in Exercise 1 the reader is asked to construct such
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a space X . Identifying S2 with
•
∆ 3, we think of ∂X as being obtained by

attaching one crosscap to the interior of each of the four 2-simplexes of
•
∆ 3.

Then ∂X contains the 1-skeleton of ∆3. Form an aspherical model over ∆3,
f : X → ∆3; f is the “identity” on the 1-skeleton of ∆3, f maps the interior
of each 2-cell-with-crosscap onto the interior of the corresponding 2-cell of ∆3,

and f maps
◦
X onto

◦
∆ 3.

Let J be a triangulation of some compact 3-manifold with connected non-
orientable boundary. Form a simplicial complex L from J by coning over ∂J ;
i.e., v ∗ ∂J is identified with J along ∂J to define L. Then |L| = {v} ∪c |J |,
where c : |∂J | → {v} is the constant map. This L is a 3-pseudomanifold
without boundary. Let K = sd L, and let π : K → 3 be as in Proposition
13.8.1 (reading Y = |L|). Then (K, π) is a simplicial complex over 3. The key
point is that the base of the dual cone of v in L (the link of v in K) is a
non-orientable surface.

By 13.8.3 and 13.8.4, W := X�K is a compact path-connected aspheri-
cal CW 3-pseudomanifold without boundary, containing a vertex the base of
whose dual cone is a non-orientable surface. So the universal cover W̃ has ver-
tices whose dual cones have the same property. Hence W̃ is a non-orientable
pseudomanifold (exercise). Writing G = π1(W, w), we see that G has type F
and geometric dimension 3. By 12.3.14 and 13.2.9, H3(G, ZG) ∼= Z2.

Remark 13.8.5. There is a construction called “relative asphericalization” in
which a subcomplex of the given complex is already aspherical and is not
to be changed during the construction. An unpublished theorem of M. Davis
says that any compact aspherical polyhedron is a retract of a closed orientable
manifold. Hence, any group of type F is a retract of an orientable Poincaré
Duality group as defined in Sect. 15.3. See [87] for more details.

Source Notes: The asphericalization construction goes back to Gromov. See also
[47]. The example here is from [12].

Exercises

1. Describe a compact 3-manifold with connected non-orientable boundary.
2. Why is id : ∆2 → ∆2 not an aspherical model over ∆2?
3. Prove 13.8.3 and 13.8.4 when K is infinite.
4. Prove that W̃ is non-orientable. State a more general theorem implied by your

proof (about pseudomanifolds having non-orientable links).
5. Show that π1(W, w) has cohomological dimension 3 over Z and cohomological

dimension 2 over Q.

13.9 Coxeter group examples of Hn(G, ZG)

We have seen that for an infinite finitely presented group G the cohomology
Hk(G, ZG) is torsion free when k ≤ 2, and in Sect. 13.8 we saw an example
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where H3(G, ZG) is of order 2. Now we show that the methods used in Sect.
9.1 can be refined to give Coxeter groups G with H∗(G, ZG) quite varied.

A Coxeter system (G, S) is right angled 28 if whenever s1 �= s2, m(s1, s2) =
2 or∞. The corresponding abstract graph Γ (G, S) has S as its vertex set and,
for s1 �= s2, {s1, s2} is a 1-simplex iff m(s1, s2) = 2. This in turn defines the
corresponding flag complex L(G, S), and the function (G, S) �→ L(G, S) is a
bijection between right angled Coxeter systems (for which S is finite) and
finite flag complexes. By Exercise 2 of §9.1 we have

Proposition 13.9.1. Let (G, S) be a right angled Coxeter system and let
T ⊂ S. 〈T 〉 is finite iff T spans a simplex of L(G, S). In fact this corre-
spondence gives an isomorphism of abstract simplicial complexes between the
poset of non-trivial finite special subgroups of G and the abstract first derived
sd L(G, S). �

For the rest of this section d ≥ 2 is an integer, L is a finite connected closed
combinatorial (d− 1)-dimensional manifold which is also a flag complex, and
(G, S) is the corresponding right angled Coxeter system, so that L = L(G, S).
Define K = sd L, the first barycentric subdivision. By 13.9.1, we may identify
this K with K in Sect. 9.1, the base of the cone F . When 〈T 〉 is a non-
trivial finite standard subgroup of G, T is a simplex of L. Let K(T ) denote
the corresponding subcomplex of K, an abstract first derived of this simplex.
Recall that NK(K(T )) denotes the simplicial neighborhood of K(T ) in K.
We use the notation of Sect. 9.1.

Lemma 13.9.2. Fσ(T ) = NK(K(T )).

Proof. Let τ be a simplex of Fσ(T ). Then τ is a simplex of F{s} for some s ∈ T ,
so τ is a face of a simplex µ whose initial vertex is 〈{s}〉. Thus τ is a face of
a simplex which shares a vertex with K(T ), so τ is a simplex of N(K(T )).

Conversely, let τ be a simplex of N(K(T )). Then τ is a face of a simplex ν
having a vertex in K(T ). Write ν = {〈T0〉, · · · , 〈Tk〉} and let 〈Ti〉 be a vertex
of K(T ). Then Ti ⊂ T by 9.1.2, so ν is a face of a simplex µ whose initial
vertex is 〈{s}〉 for some s ∈ T . Thus τ is a face of a simplex of F{s}, so τ is a
simplex of F{s}, and F{s} is a subcomplex of Fσ(T ). �

Proposition 13.9.3. When 〈T 〉 is a non-trivial finite standard subgroup of
G, |Fσ(T )| is a PL (d− 1)-ball.

Proof (Sketch). This requires knowledge of piecewise linear topology, in par-
ticular, of regular neighborhoods in PL manifolds; we have set things up so
that references are easily given. By 13.9.2, Fσ(T ) is the simplicial neighbor-
hood of K(T ) in the closed combinatorial (d − 1)-manifold K = sd L, and
K(T ) is an abstract first derived of a simplex of L. Thus (see [136, Chap. 3]),

28 A right angled Coxeter group is a group G for which there exists a right angled
Coxeter system (G, S).
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|Fσ(T )| is a regular neighborhood of |K(T )|. Since |K(T )| is collapsible, any
regular neighborhood of it in the PL (d− 1)-manifold |L| is a PL (d− 1)-ball
([136, Chap. 3, Sect. 27]). �

Recall from 9.1.6 that An =

n⋃
i=0

giF and An ∩ gn+1F = gn+1Fσ(B(gn+1)).

Define
•
An to be the subcomplex of An satisfying |

•
An| = fr|D||An|.

Proposition 13.9.4. Each
•
An is a finite connected closed combinatorial

manifold of dimension d− 1.
•
An is orientable iff |L| is orientable.

Proof. The proof is by induction on n, starting with
•
A0 = K = sd L. Assume

the Proposition for
•
An. Let Bn+1 = gn+1Fσ(B(gn+1)). The full subcomplex

of D generated by
•
An and gn+1F contains

•
An+1. By 13.9.3, |Bn+1| is a PL

(d− 1)-ball. Denoting its interior by |
◦
Bn+1|, we have

|
•
An+1| = cl|D|(|

•
An| − |

◦
Bn+1|) ∪ cl|D|(gn+1|K| − |

◦
Bn+1|).

Because |Bn+1| is a regular neighborhood in the closed PL manifolds |
•
An| and

gn+1|K|, the two closures in this union are PL (d − 1)-manifolds with a PL
(d − 2)-sphere as their common boundary; this follows from piecewise linear

topology as in [136, Chap. 3]. The desired conclusions follow for
•
An+1. �

Of course we have seen a simpler way of describing the expression of |
•
An+1|

as the union of two closures in the last proof: |
•
An+1| is the connected sum of

the manifolds |
•
An| and gn+1|K|, i.e., |

•
An+1| = |

•
An|#gn+1|K|. See Fig. 13.4.

(    − 2)−sphered

.
n + 1g |    |F

n + 1g |     |K

nA|         |

A n

.
|         |

n + 1B

.
|                |

Fig. 13.4.

It is clear that |
•
An| is a strong deformation retract of |

•
An|∪gn+1|F |. Thus

there is a homotopy equivalence r making the following diagram commute up
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to homotopy:

|
•
An|

� � �� cl|D|(|D| − |An|)

|
•
An| ∪ gn+1|F |

r

��

|
•
An+1|

� � ��
��

i

��

cl|D|(|D| − |An+1|)
��

��

Write f = r ◦ i : |
•
An+1| = |

•
An|#gn+1|K| → |

•
An|; see Fig. 13.4. This is just

the kind of map f appearing in the Appendix to this section. The following
theorem combines a number of previous results: the fact that the last diagram
commutes up to homotopy, 12.2.2, 13.2.13, 13.2.14, 9.1.10, as well as 13.9.7 in
the Appendix below:

Theorem 13.9.5. Let d ≥ 2, let L be a non-empty finite connected closed
combinatorial manifold of dimension d−1 which is also a flag complex, and let
(G, S) be the corresponding right angled Coxeter system (i.e., L = L(G, S)).
If |L| is orientable then29 we have isomorphisms of abelian groups:

Hk(G, ZG) ∼=

⎧⎨
⎩
⊕
G

H̃k−1(|L|; Z) if k �= d

Z if k = d

If |L| is non-orientable (so that d ≥ 3), the same holds except in dimensions

d−1 and d, where Hd(G, ZG) ∼= Z2 and Hd−1(G, ZG) ∼=
⊕
G

Hd−2(|L|; Z)⊕F

where F is a free abelian group of countably infinite rank. �

Corollary 13.9.6. The group G has one end, H2(G, ZG) is free abelian, and
every torsion free subgroup of finite index in G has geometric dimension d.

Proof. By 13.5.2 and 13.5.5, G has one end. We have H2(G, ZG) free abelian
because H1(|L|; Z) is (finitely generated and) free abelian. Let H be a torsion
free subgroup of finite index (see 9.1.10). By 9.1.11, H has geometric dimension
≤ d; and by 13.9.5, H has geometric dimension ≥ d. �

Appendix: Homology of connected sums

Let M1 and M2 be path connected n-manifolds where n ≥ 1. Recall that
M1#M2 is obtained by removing the interior of an unknotted n-ball Bn

i in

29 H̃∗ denotes reduced cohomology. Note that H̃−1(|L|) = 0 because |L| is non-
empty, and H̃0(|L|) = 0 because L is path connected.
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each
◦

M i (thus Ni := Mi − int Bn
i is a manifold), and picking an embedding

h : ∂Bn
1 → N2 whose image is ∂Bn

2 ; then M1#M2 is the adjunction space
N2 ∪h N1. We denote by S the image of ∂Bn

1 in M1#M2 : S is the (n − 1)-
sphere along which N1 is glued to N2 to get M1#M2. If M1 and M2 are
PL manifolds and h is a PL homeomorphism, then M1#M2 is clearly a PL
manifold.

There is a map f : M1#M2 → M1 such that f | N1 = idN1 and f(N2) =
Bn

1 ; see Fig. 5.1. In this Appendix we compute f ∗ : H∗(M1)→ H∗(M1#M2).
Throughout, we suppress the coefficient ring Z.

From the appropriate Mayer-Vietoris sequences we get a commutative di-
agram:30

0 = Hi(S, S) �� Hi(N1, S) ⊕ Hi(N2, S) ��
∼=

Hi(M1#M2, S) �� Hi−1(S, S)=0

0 = Hi(S, S) �� Hi(N1, S) ⊕ Hi(Bn
2 , S)

id⊕f∗

��

�� ∼=
Hi(M1, S)

f∗

��

�� Hi−1(S, S)=0

We also have isomorphisms:

Hi(Nj , S) ��
∼=

excision
Hi(Mj , B

n
j )

∼= �� H̃i(Mj)

which are sufficiently canonical to give a commutative diagram:

H i(M1#M2, S)
∼= �� H̃i(M1)⊕ H̃i(M2)

Hi(M1, S)

f∗

��

∼= �� H̃i(M1)⊕H i(B, S).

id⊕f∗

��

Substituting this into the Mayer-Vietoris sequences for (M1#M2, S) and
(M1, S), we get a commutative diagram, exact in the horizontal directions:

H̃i(S) �� H̃i(M1#M2) �� H̃i(M1)⊕ H̃i(M2) ��
α

H̃i−1(S)

H̃i(S) ��

id

��

H̃i(M1) ��

f∗

��

H̃i(M1)⊕H i(Bn
2 , S)

id⊕f∗

��

�� β
H̃i−1(S).

id

��

From this we get:

Proposition 13.9.7. (a) If M1 and M2 are orientable then M1#M2 is ori-
entable; f∗ : Hn(M1) → Hn(M1#M2) is an isomorphism, and for i ≤ n− 1
the following diagram commutes

30 To simplify notation we reuse the symbol f for various restrictions/corestrictions
of the map f .
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H̃i(M1#M2) ��
∼=

H̃i(M1)⊕ H̃i(M2)

H̃i(M1) ��
∼=

f∗

��

H̃i(M1)

i1

��

Here, i1 is inclusion as the first coordinate.
(b) If M1 and M2 are both non-orientable (implying n ≥ 2), then M1#M2

is non-orientable; f∗ : Hn(M1) → Hn(M1#M2) is an isomorphism, and for
i ≤ n − 2 the diagram in Part (a) commutes. For i = n − 1, the following
diagram commutes and the horizontal lines are exact:

Hn−1(S) ��
j

Hn−1(M1#M2) ��
∼=

Hn−1(M1)⊕Hn−1(M2) �� 0

0 �� Hn−1(M1)

f∗

��

�� ∼= Hn−1(M1) ��

i1

��

0

Here, Hn−1(S) ∼= Z and the image of j is 2Hn−1(S). �

Proof. We make some comments, leaving the rest to the reader.

(i) Hn(M2) is infinite cyclic if M2 is orientable, and has order 2 if M2 is non-
orientable. Indeed, the map f∗ : Hn(Bn

2 , S)→ Hn(M2) can be regarded
as id : Z→ Z or the epimorphism Z→ Z2 in these two cases.

(ii) The homomorphism H̃n−1(S) → Hn(M1) ⊕Hn(M2) has trivial kernel
in the orientable case, and has kernel of index 2 when both M1 and M2

are non-orientable.
(iii) There is a cell en

α in M1 such that f−1f(en
α) = en

α. Treating en
α as a

cocycle the statement about isomorphisms in dimension n becomes clear.

�

Exercises

1. Fill in the details of the proof of 13.9.7.
2. Work through the (suppressed) case (c) of 13.9.7: M1 orientable and M2 non-

orientable.
3. Which of the hypotheses on L rules out G being finite?
4. Rewrite this section for the cases d = 1 and d = 0.
5. Prove that if |L| is a (d − 1)-dimensional homology sphere, then G is a Poincaré

Duality group of dimension d (whether or not |L| bounds a compact contractible
manifold).

6. Is the example in Sect. 13.8 included in the construction in Sect. 13.9?
7. Give a counterexample to the converse of 16.5.2.



330 13 Cohomology of Groups and Ends Of Covering Spaces

13.10 The case H∗(G, RG) = 0

Here we consider what it means for all the cohomology with group ring coef-
ficients to be trivial. An example will be discussed in the next section.

Theorem 13.10.1. Let G be of type FP∞ over R and let Hn(G, RG) = 0 for
all n. Then cdRG =∞.

The proof uses two lemmas from homological algebra; for their proofs the
reader is referred to Chapter 8 of [29]:

Lemma 13.10.2. The cohomological dimension, cdRG, is the infimum of
numbers n such that, for all i > n and all RG-modules M , H i(G, M) = 0. If
there is no such number, cdRG =∞. �

Lemma 13.10.3. If G has type FPn over R and if Hn(G, RG) = 0 then
Hn(G, Φ) = 0 for any free RG-module Φ. �

For the proof of 13.10.1 we also need a long exact sequence in cohomology.
Let

0→M ′ →M →M ′′ → 0

be an exact sequence of left RG-modules. It is a well-known fact of homological
algebra (compare 12.4.3) that when Φ is a free RG-module the sequence

0→ HomZG(Φ, M ′)→ HomZG(Φ, M)→ HomZG(Φ, M ′′)→ 0

is also exact. In this way the free resolution {Fn} gives a short exact sequence
of cochain complexes, and hence (see Sect. 2.1) a long exact Bockstein sequence

0→ H0(G, M ′)→ H0(G, M)→ H0(G, M ′′)→ H1(G, M ′)→ · · ·

Proof (of 13.10.1). Suppose cdRG = d < ∞. Then, by 13.10.2, there is a
module M such that Hd(G, M) �= 0 while Hd+1(G, K) = 0 for all modules
K. There is a free module Φ mapping onto M ; call its kernel K. Applying the
Bockstein sequence to

0→ K → Φ→M → 0

we get exactness in:

Hd(G, Φ)→ Hd(G, M)→ Hd+1(G, K)→ Hd+1(G, Φ).

By 13.10.2 and 13.10.3 this gives Hd+1(G, K) �= 0, a contradiction. �

Another consequence of H∗(G, RG) = 0 follows from Theorem 13.3.3:

Theorem 13.10.4. Let G be a group of type F∞, let X be a K(G, 1)-complex
of finite type, let {Ki} be a finite type filtration of X̃, and let R be a PID.
Then H∗(G, ZG) = 0 iff {H̃k(X̃n −c Ki; R)} is pro-trivial for all k. �

Loosely, this is saying that G is “acyclic at infinity” and that, in view
of Theorem 13.10.1, this can only happen when G (of type F∞) is infinite-
dimensional. �
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Exercises

1. When G is of type F∞ and has finite cohomological dimension, prove that the
cohomological dimension of G = sup{n | Hn(G, ZG) �= 0}.

2. The Bockstein sequence is given here for cohomology. Write down the details of
a homology version.

13.11 An example of H∗(G, RG) = 0

We saw in 9.3.19 that Thompson’s group F has type F∞, hence also type
FP∞ over any commutative ring R.

Theorem 13.11.1. H∗(F, RF ) = 0.

Proof. The proof requires a return to the notation of Sect. 9.3. We sketch it,
leaving the reader to fill in the details.31

For b ∈ B let λ(b) be the smallest integer such that an expansion of b of
length λ(b) has the form [1F , T ]. Let ν(b) be the largest integer such that a
chain b0 < b1 < · · · < bν(b) = b exists in B. Let

B(p) = {b ∈ B | λ(b) + ν(b) ≥ p}.

Then B(p) is a directed sub-poset of B, so |B(p)| is contractible. The set
B − B(p) is finite, for if b �∈ B(p) then, for some b′, we have [1, y0] < b′ and
b′ > b where ν(b′) < p; there are only finitely many such b′. For large n,
Hi(F, RF ) ∼= H i

c(|Bn|; R) ∼= lim−→
p

Hi(|Bn|, |Bn| ∩ |B(p)|; R); this follows from

9.3.18 and 12.2.1. By appropriate analogs (for B(p)) of 9.3.21 and 9.3.22, given
k there is m(k), the same for all p, such that, when n ≥ m(k), |Bn| ∩ |B(p)|
is k-connected. �

Remark. We saw in 9.2.6 that F has infinite geometric dimension. We get
another proof of this by 13.11.1 and 13.10.1.

Remark. The group T of Sect. 9.4 also satisfies H∗(T, ZT ) = 0. See [30].

Source Note. This proof of 13.11.1 appears in [30]. The first proof in [33] is quite
different.

31 Or see §4F of [30].
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Filtered Ends of Pairs of Groups

Proper and CW-proper homotopy theory as described in Chap. 10 can be
regarded as the homotopy theory of maps which preserve a finite (or finite
type) filtration. In this chapter we introduce a generalization in which the
filtration is by complexes which are not necessarily of finite type. Although
all the main ideas have already been seen in our discussion of proper homotopy,
there is need for an exposition of the foundations of the generalized theory.
The corresponding homology and cohomology theories of filtered ends are
discussed. The immediate occasion is our discussion of an alternative way of
counting ends of pairs of groups. That appears in Sect. 14.5.

14.1 Filtered homotopy theory

A topological filtration of a space X is a family {Ki}i∈Z of subsets of X

satisfying Ki ⊂ Ki+1 for all i,
⋃
i

Ki = X , and
⋂
i

Ki = ∅. Because the indexing

directed set is Z, the filtering family {Ki} and the family of complements
{X −Ki} can both be viewed as either inverse sequences or direct sequences.
The pair (X, {Ki}) is a filtered space. A filtered map is a map f : X → Y
which induces morphisms of pro-Spaces and of ind-Spaces with respect to
both of these families. In detail, f is a filtered map iff

1. (pro-map with respect to {Ki}): ∀i, ∃j such that f(Kj) ⊂ Li;
2. (pro-map with respect to {X−Ki}): ∀i, ∃j such that f(X−Kj) ⊂ Y −Li;
3. (ind-map with respect to {Ki}): ∀i, ∃j such that f(Ki) ⊂ Lj ;
4. (ind-map with respect to {X−Ki}): ∀i, ∃j such that f(X−Ki) ⊂ Y −Lj .

A filtered space (X,K) is topologically well filtered if for each i there
exist j and k such that clXKk ⊂ intXKi ⊂ clXKi ⊂ intXKj . In that case⋂
i

cl Ki = ∅ and
⋃
i

int Ki = X .
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Lemma 14.1.1. Let (X,K) be a topologically well filtered space and let C
be a compact subset of X. There exist i and j such that C ⊂ int Ki and
C ⊂ X − cl Kj. �

If X is Hausdorff and K consists of compact sets then some K is empty
(see Exercises). Using this we see that filtered maps generalize proper maps:

Proposition 14.1.2. Let (X,K) and (Y,L) be topologically well filtered Haus-
dorff spaces where each Ki and each Lj is compact. A map f : X → Y is
filtered iff it is proper.

Proof. Use Lemma 14.1.1 and the fact that compact subsets of Hausdorff
spaces are closed. Note that two of the four conditions in the definition of
filtered map hold trivially. �

If (X,K) is a topologically well filtered space, (X × I,K× I) is a topolog-
ically well filtered space where K × I := {Ki × I}. A filtered homotopy is a
filtered map (X× I,K× I)→ (Y,L). The definitions of filtered homotopic rel-
ative to a subspace, filtered homotopy equivalence, filtered homotopy inverse,
etc., are analogous to the proper case.

We now turn to CW complexes, WHICH IN THIS SECTION ARE AL-
WAYS ASSUMED TO HAVE LOCALLY FINITE TYPE. Recall from Sect.
11.4 that a “filtration” on a CW complex X is a topological filtration of X
by subcomplexes1 and that if A is a subcomplex of X its CW neighborhood
N(A) or NX(A) is the union of all cell carriers which meet A. A well filtered
CW complex is a filtered CW complex (X,K) with the property that for each
n and i there exist j and k such that NXn(Kn

k ) ⊂ Ki and NXn(Kn
i ) ⊂ Kj .

It follows that for each n the filtered space (Xn, {Kn
i }) is topologically well

filtered. Note that if K is a finite type filtration then, by 1.5.5 and 11.4.4,
(X,K) is a well filtered CW complex.

If (X,K) and (Y,L) are well filtered CW complexes, a CW-filtered map
f : (X,K) → (Y,L) is a map f : X → Y such that for each n there exists k
such that f(Xn) ⊂ Y k and f | : (Xn,Kn) → (Y,L) is a filtered map, where
Kn := {Kn

i | Ki ∈ K}. Referring back to the topological definitions, we find
a condition f(X −Ki) ⊂ Y −Lj, whereas in the context of CW complexes it
would be more natural to encounter the condition f(X −c Ki) ⊂ Y −c Lj . The
reader can check that for well filtered CW complexes the definitions are not
changed by substituting CW complement for complement.

By analogy with 10.2.3 we have:

Theorem 14.1.3. (CW-Filtered Cellular Approximation Theorem)
Let f : (X,K)→ (Y,L) be a filtered map between well filtered CW complexes,
and let A be a subcomplex of X on which f is cellular. Then f is filtered
homotopic, rel A, to a CW-filtered cellular map. �

1 Though, as promised in a footnote in Sect. 11.4, the filtrations here are indexed
by Z.
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The terms CW-filtered homotopy, etc., are defined in the obvious way.
Two topological filtrations K and L of a space X are equivalent if each

member of K lies in a member of L and vice versa. It then follows that the
“identity map” idX : (X,K) → (X,L) is filtered and is therefore a filtered
homotopy equivalence.

Given a topological filtration K of a CW complex X , we sometimes need
an equivalent filtration of X by subcomplexes. There are two reasonable
candidates. Define the CW envelope of a subset A of X to be the small-
est subcomplex E(A) containing A, and define the CW envelope of K to be
E(K) := {E(Ki) | Ki ∈ K}. Define the CW spine of A ⊂ X to be the
largest subcomplex S(A) lying in A and define the CW spine of K to be
S(K) := {S(Ki) | Ki ∈ K}.

Proposition 14.1.4. If X is a strongly locally finite CW complex and (X,K)
is topologically well filtered then E(K) and S(K) are filtrations of X.

Proof. The only non-trivial part in the envelope case involves showing that⋂
i

E(Ki) = ∅. Suppose otherwise. Since this intersection is a subcomplex of X

it contains a vertex v. It is not hard to see that E(Ki) =
⋃
{C(e) | e∩Ki �= ∅}.

Thus for every i there is a cell ei such that ei∩Ki �= ∅ and v is a vertex of C(ei).
Since X is strongly locally finite there can only be finitely many different

carriers containing v, so D
⋃
i

C(ei) is compact. By 14.1.1, D ⊂ X − cl Kj for

some j. But D∩Ki �= ∅ for all i, which is a contradiction. The proof for S(K)
is similar. �

We are assuming that our CW-complexes have locally finite type, so usu-
ally 14.1.4 will be applied to a skeleton (which is strongly locally finite by
10.1.12).

When (X,K) is as in 14.1.4, i.e., X is strongly locally finite and (X,K)
topologically well filtered, we say that K is CW-compatible if (X, E(K)) is a
well filtered CW complex and E(K) is equivalent to K. Clearly, this happens
iff S(K) is equivalent to K. To illustrate this we give two examples involving
the following general set-up. We are given a map h : X → M where L is
a topological filtration of the space M ; then h−1L := {h−1(Li) | Li ∈ L)
is a topological filtration of X , and (X, h−1L) is topologically well filtered
whenever (M,L) is well filtered.2

Example 14.1.5. Let X be a rigid G-CW complex such that G\X is finite, let
M = R where a left action of G on R by translations is given, let L = {Li}
where i ∈ Z and Li := (−∞, i), and let h : X → R be a G-map. Then h−1L
is CW-compatible. A particular case is this. Assume G has type Fn, X is
the n-skeleton of the universal cover of a K(G, 1)-complex which has finite

2 Note that even if (M,L) is a well filtered CW complex and h is a cellular map,
the spaces h−1(Li) might not be subcomplexes of X.
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n-skeleton, χ : G→ R is a character (i.e., a homomorphism into the additive
group of real numbers), and the G-action3 on R is g.r = r+χ(g). Pick a vertex
vi in each G-orbit of vertices, define h(vi) = 0, and extend h equivariantly to
map X0 into R; then (since the action on X is free and R is contractible) one
can proceed skeleton by skeleton to define a G-map h : X → R. The filtered
homotopy theory in this case leads to the Sigma invariants of G; this will be
developed in Sect. 18.3.

Example 14.1.6. Let p : X → Y be a covering projection with (Y,L) a well
filtered CW complex. Assume X has the CW structure such that p maps
each open cell homeomorphically onto an open cell. Then (X, p−1L) is a well
filtered CW complex, so, trivially, p−1L is CW-compatible. For example, given
a pair of groups (G, H) and a free action of G on a path connected graph X
such that G\X is finite, choose a finite filtration L of H\X . The well filtered
graphs (H\X,L) and (X, p−1L) yield two notions of the “number of ends of
the pair of groups (G, H),” where p : X → H\X is the quotient covering
projection. The first of these was discussed in Sect. 13.5; the second will be
discussed in Sect. 14.5.

Next, we give a practical way of recognizing filtered homotopy equivalences
(Theorem 14.1.8). For this we need a new concept.

A cellular map f : X → Y between CW complexes is CW-Lipschitz if for
each n there exists m such that for every cell e of Xn the carrier C(f(e)) has
at most m cells. Two cellular maps X → Y are CW-Lipschitz homotopic if
there is a CW -Lipschitz homotopy X×I → Y between them. A CW-Lipschitz
homotopy equivalence is a cellular map f : X → Y for which there exists a
cellular CW-Lipschitz map g : Y → X so that g◦f and f ◦g are CW-Lipschitz
homotopic to the appropriate identity maps. Here is an important source of
examples:

Example 14.1.7. If X and Y are finite connected CW complexes and f : X →
Y is a cellular map, then any lift to universal covers f̃ : X̃ → Ỹ is CW-
Lipschitz. Hence if f is a homotopy equivalence, f̃ is a CW-Lipschitz homotopy
equivalence.

Theorem 14.1.8. Let f : (X,K)→ (Y,L) be a CW-filtered map between well
filtered CW complexes. If f is a CW-Lipschitz homotopy equivalence then f
is a CW-filtered homotopy equivalence.

In particular, applying 14.1.2, this gives a useful condition for a map to
be a proper homotopy equivalence.

For the proof we need two lemmas.

Lemma 14.1.9. Let (X,K) be a well filtered CW complex and let F : X×I →
X be a (cellular) CW-Lipschitz homotopy with F0 = idX . Then F is CW-
filtered.

3 i.e., identify R with the group Transl(R) of translations of R, so that χ : G →
Transl(R) is an action of G on R by translations.
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Proof. We need only check that F | Xn × I is filtered for given n. Let m be
such that for every cell e of Xn the carrier C(F (e × I)) contains at most m
cells. Since F (e×I) is path connected and e is a cell of this carrier, F (e×I) ⊂
Nm

Xn(C(e)). Thus for all i we have4 F (Ki × I) ⊂ Nm
Xn(Ki) and

F ((Xn −c Ki)× I) ⊂ Nm
Xn(Xm −c Ki).

Since (X,K) is well-filtered, there exists j such that Nm
Xn(Ki) ⊂ Kj. Moreover,

given i, this j satisfies

F ((Xn −c Kj)× I) ⊂ Nm
Xn(X −c Kj) ⊂ X −c Ki.

The verification of the remaining conditions for a map to be filtered is similar.
�

Lemma 14.1.10. Let f : (X,K) → (Y,L) be a (cellular) CW-filtered map
and let g : Y → X be a cellular map such that g ◦ f and f ◦ g are CW-filtered
maps which are CW-filtered homotopic to the appropriate identity maps. Then
g is a CW-filtered map.

Proof. Given Li we seek Kj such that g(Li) ⊂ Kj . There exists k such that
fg(Li) ⊂ Lk and there exists j such that f(X−Kj) ⊂ Y −Lk. So g(Li) ⊂ Kj .
Similarly, given Ki we seek Lj such that g(Y −c Lj) ⊂ X −Ki. There exists
k such that f(Ki) ⊂ Lk and there exists j such that fg(Y − Lj) ⊂ Y − Lk.
So g(Y − Lj) ⊂ X −Ki. The rest of the proof is similar. �

Proof (of Theorem 14.1.8). Let g be a CW-Lipschitz homotopy inverse for f .
By 14.1.8 g◦f and f ◦g are CW-filtered homotopic to the appropriate identity
maps. Hence, by 14.1.10, g is a CW-filtered map. �

Recall from Sect. 2.7 the definition of “n-equivalence.” There are analogs
of “CW-filtered homotopy equivalence” and “CW-Lipschitz homotopy equiv-
alence” in which the phrase “homotopy equivalence” is replaced by “n-
equivalence.” The definitions are obvious.

Addendum 14.1.11. Theorem 14.1.8 remains true if “homotopy equiva-
lence” is everywhere replaced by “n-equivalence.” �

Here is an application of 14.1.11. Consider the “particular case” discussed
in Example 14.1.5. An action of G on R by translations is given, i.e., a homo-
morphism χ : G→ R (identified with Transl(R)) and G is known to have type
Fn. We choose an n-dimensional (n − 1)-connected rigid G-CW complex X
which is finite mod G, and we have a G-map h : X → R (either given to us or
constructed as in 14.1.5). The space R is filtered by L = {Li := (−∞, i)}i∈Z.

Proposition 14.1.12. If h1 : X1 → R and h2 : X2 → R both satisfy these
conditions (for X and h above), there is a cellular map f : X1 → X2 which is
a CW-filtered (n− 1)-equivalence (X1, h

−1
1 L)→ (X2, h

−1
2 L).

4 Recall from Sect. 1.5 that Nm(A) denotes N(Nm−1(A)) and N1(A) = N(A).
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Proof. By 7.1.8 and the n-equivalence version of Example 14.1.7, there is a
CW-Lipschitz (cellular) (n − 1)-equivalence f : X2 → X1, and f is CW-
filtered as a map (X2, f

−1h−1
1 L) → (X1, h

−1
1 L). As explained in Example

14.1.5, these are CW-compatible topological filtrations, so we can proceed as
if we had well-filtered CW complexes and conclude that f is a CW-filtered
(n − 1)-equivalence. It only remains to show that f−1h−1

1 L and h−1
2 L are

equivalent filtrations. Since both h2 and h1 ◦f are G-maps from X2 → R, and
X2 is finite mod G, it follows that there is a finite upper bound to the set
{|h2(x) − h1 ◦ f(x)| | x ∈ X}. This implies the two filtrations are equivalent.
�

The last proposition shows that those algebraic topology invariants of
(X, h−1L) which only depend on the n-skeleton are invariants of the character
χ : G→ R. This discussion is continued in Sect. 18.3.

Source Note. The idea of filtered homotopy theory as a useful generalization of
proper homotopy theory appears in [60].

Exercises

1. Let (X,K) be a filtered space where each Ki is compact. Show that if X is
Hausdorff then some Ki is empty.

2. Give an example of subcomplexes K ⊂ L of X where K ⊂ intXL but NX (K) �⊂ L.
3. Prove that if the filtration {Ki} on a CW-complex X of locally finite type makes

(Xn, {Kn
i }) into a topologically well filtered space for each n, then (X,K) is a

well filtered CW complex. (Hint : Use 1.5.1).
4. Show that if f : (X,K) → (Y,L) is a filtered map between topologically well

filtered Hausdorff spaces and if each K ∈ K is compact, then f is a proper map.
5. Let A be a subset of the CW complex X. Show that CW envelope and CW spine

are related by: E(A) = S(A)∪
S
{C(e) | e is a cell of X,

◦
e∩A �= ∅ and C(e) �⊂ A}.

14.2 Filtered chains

Let X be an oriented CW complex of locally finite type, let K be a filtration
of X so that (X,K) is a well filtered CW-complex, and let A index the n-cells

of X . An infinite cellular n-chain c =
∑
α∈A

rαen
α is locally finite with respect to

K if for each i, the coefficient rα ∈ R is non-zero for only finitely many cells
en

α in Ki. Since (X,K) is well filtered, ∂c is also locally finite with respect
to K. We define the R-module CK

n (X ; R) to be the submodule of C∞
n (X ; R)

consisting of chains which are locally finite with respect to K. Elements of
CK

n (X ; R) are filtered locally finite n-chains in X (with respect to K). They
form a chain complex whose homology modules are denoted HK

∗ (X ; R), the
filtered locally finite homology modules of (X,K).
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Filtered maps induce chain maps on filtered locally finite chains. There is
a theory of HK∗ (X ; R), analogous to that of Sect. 11.1 for H∞∗ (X ; R), giving
a covariant functor H ·

∗(·; R) on the filtered homotopy category.
If A is a subcomplex of X there is a short exact sequence

0→ C
K|
∗ (A; R)→ CK

∗ (X ; R)→ CK
∗ (X ; R)/C

K|
∗ (A; R)→ 0

as in Sect. 11.1, from which the usual homology exact sequence for H ·
∗(·; R)

follows directly. And, just as in Sect. 11.4, there is a short exact sequence

0→ C∗(X ; R)→ CK
∗ (X ; R)→ CK

∗ (X ; R)/C∗(X ; R)→ 0

which leads us to define the homology modules of the K-end of X : HK,e
n−1(X ; R)

denotes the nth homology of CK
∗ /C∗. There is a corresponding homology exact

sequence analogous to that in 11.4.1:

· · · �� Hn(X; R)
i∗ �� HK

n (X; R)
p∗ �� HK,e

n−1(X; R)
∂∗ �� Hn−1(X; R) �� · · ·

Note that HK,e
−1 (X ; R) can fail to be zero.

We saw in Sect. 14.1 that the inclusions Xn −c Ki−1 ←↩ Xn −c Ki define
an inverse sequence and a direct sequence. The inverse sequence plays the role
previously played by a basis for the neighborhoods of the end in Sect. 11.4.
By analogy with 11.4.7 and 11.4.8 we have:

Proposition 14.2.1. There are short exact sequences

0 → lim
←−
i≥j

1{Hn+1(X, X −c Ki; R)}
ā

−→ HK
n (X −c Kj ; R)

b̄
−→ lim

←−
i≥j

{Hn(X, X −c Ki; R) → 0

0 → lim
−→

j→−∞

lim
←−
i≥j

1Hn+1(X, X −c Ki; R) → HK
n (X; R) → lim

−→
j→−∞

lim
←−
i≥j

Hn(X, X −c Ki; R) → 0

and, for any j:

0 → lim
←−
i≥j

1{Hn+1(X −c Ki; R)}
a

−→ HK,e
n (X; R)

b
−→ lim

←−
i≥j

{Hn(X −c Ki; R) → 0.

�

If K is a finite type filtration then HK
∗ (X ; R) and HK,e

∗ (X ; R) reduce to
H∞

∗ (X ; R) and He
∗(X ; R) respectively.

Turning to cohomology, an infinite cellular n-chain c =
∑
α∈A

rαen
α is locally

cofinite with respect to K if c is supported by some Ki (i.e., rα = 0 when
en

α is not a cell of Ki). Since (X,K) is well filtered, δc is also locally cofinite
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with respect to K. We define the R-module CK,cof
n (X ; R) to be the submodule

of C∞
n (X ; R) consisting of chains which are locally cofinite with respect to

K. Elements of CK,cof
n (X ; R) are filtered locally cofinite n-chains in X (with

respect to K). They form a cochain complex whose cohomology modules are
denoted H∗

K(X ; R), the filtered locally cofinite cohomology modules of (X,K).

Filtered maps induce cochain maps on C ·,cof
∗ . There is a theory of H∗

K(X ; R)
analogous to that of Sect. 12.1 for H∗

f (X ; R). Just as in Sect. 12.2, the short
exact sequence

0→ CK,cof
∗ (X ; R)→ C∞

∗ (X ; R)→ C∞
∗ (X ; R)/CK,cof

∗ (X ; R)→ 0

leads us to define the cohomology of the K-end of X : Hn
K,e(X ; R) denotes

the nth cohomology of C∞
∗ /CK,cof

∗ , from which follows an exact sequence
analogous to that in Sect. 12.2:

← Hn+1(X ; R)
i∗← Hn+1

K (X ; R)
δ∗

← Hn
K,e(X ; R)

p∗

← Hn(X ; R)← · · · .

By analogy with 12.2.1 and 12.2.2 we have:

Proposition 14.2.2. There are isomorphisms lim−→
i≥0

{Hn(X, X −c Ki; R)} →

Hn
K(X ; R) and lim−→

i≥0

{Hn(X −c Ki; R)} → Hn
K,e(X ; R). �

If K is a finite type filtration then H∗
K(X ; R) and H∗

K,e(X ; R) reduce to
H∗

f (X ; R) and H∗
e (X ; R) respectively.

For reference, we summarize the invariance properties:

Proposition 14.2.3. The homology and cohomology theories HK∗ (X ; R),

HK,e
∗ (X ; R), H∗

K(X ; R) and H∗
K,e(X ; R) are filtered homotopy invariants. �

The more complete version of 14.2.3 in which the categories and functors
are described explicitly is left to the reader.

Remark 14.2.4. A filtered map f : (X,K)→ (Y,L) between well filtered CW
complexes is properly filtered if for each n and each Ki ∈ K the restriction
f | Ki : Kn

i → Y is a proper map. All the definitions in filtered homo-
topy theory have properly filtered analogs, and there is a Properly Filtered
Cellular Approximation Theorem analogous to 14.1.3. One can define filtered
locally finite cohomology [resp. filtered locally cofinite homology ] by using the
coboundary δ on filtered locally finite chains [resp. the boundary ∂ on filtered
locally cofinite chains] and the resulting modules are invariants of properly
filtered homotopy theory rather than of filtered homotopy theory. When X
is an oriented manifold these arise as the Poincaré duals of HK

∗ (X ; R) and
H∗

K(X ; R) – see Exercise 5 of Sect. 15.2.
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Example 14.2.5. We continue the discussion of Example 14.1.5. In Sect. 13.2

we met the right RG-module (RG)ˆ. Elements of (RG)ˆ are written as
∑
g∈G

rgg

with each rg ∈ R. Those where all but finitely many rg are zero form the ring
RG, but the ring multiplication given in Sect. 8.1 does not extend to make
the module (RG)ˆ into a ring. However, any non-zero character χ : G → R
defines

(RG)ˆχ :=

{∑
g∈G

rgg
∣∣ for any t ≥ 0, rq �= 0 for only

finitely many g with χ(g) ≤ t

}
.

One checks that the multiplication in RG does extend to (RG)ˆχ, making
the latter a ring called the Novikov ring defined by χ. Regarding this ring
as a right G-module (via right multiplication by elements of G) and using
the notation of 14.1.5, it is clear that the homology of the chain complex
{(RG)ˆχ⊗G C∗(X̃ ; R), id⊗ ∂̃} is canonically isomorphic to Hh−1L

∗ (X̃; R). This

is often written as H∗(X ; (RG)ˆχ).

Exercises

1. Work through Sects. 14.1 and 14.2 for the case where X = Ki for some i.
2. What is the correct analog of 11.1.3 for filtered locally finite homology?
3. Give an example where HK,e

−1 (X; R) is non-zero.
4. Give an example of a non-well-filtered (X,K) with K a filtration of X, and a

chain c which is locally finite with respect to K while ∂c is not locally finite with
respect to K.

5. Prove 14.2.1 and 14.2.2.

14.3 Filtered ends of spaces

The theory of ends of CW complexes described in Sect. 13.4 generalizes to
well filtered CW complexes. We explain this here, and will apply it to group
theory in the next sections.

Let (Y,L) be a well filtered path connected CW complex of locally finite
type. A filtered ray in (Y,L) is a filtered map ω : [0,∞) → Y where [0,∞)
has the filtration5 {[0, i]}. Two filtered rays define the same filtered end of
(Y,L) if their restrictions to N ⊂ [0,∞) are filtered homotopic. This is an
equivalence relation, and an equivalence class is called a filtered end of (Y,L).
We indicate how the propositions in Sect. 13.4 generalize to this setting.

5 for i ∈ Z; [0, i] is empty when i < 0.
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A filtered map induces a function between the corresponding sets of filtered
ends. Indeed there is an obvious covariant functor from the category of well
filtered (Y,L)’s and filtered homotopy classes to the category Sets which sends
(Y,L) to the set of filtered ends of (Y,L). A filtered 1-equivalence induces a
bijection on filtered ends. In particular, by 14.1.3, the inclusion Y 1 ↪→ Y
induces a bijection of filtered ends.

If ω is a filtered ray there is a corresponding point of lim←−
i

{π0(Y −c Li)}

whose ith entry is the path component of Y −c Li containing all but a compact
subset of the image of ω. This depends only on the filtered end defined by ω
and establishes:

Proposition 14.3.1. This association defines a functorial (with respect to
filtered homotopy classes) bijection between the set of filtered ends of (Y,L) and
the set lim←−

i

{π0(Y −c Li)}. In particular, the set of filtered ends of (Y,L) is non-

empty iff there is a nested sequence of non-empty subcomplexes U1 ⊃ U2 ⊃ · · ·
with Ui a path component of Y −c Li. �

By analogy with the group theoretic case we say that an inverse sequence
{Si} of sets is semistable if for each i there exists j ≥ i such that for all k ≥ j
the image of Sk in Si equals the image of Sj in Si. As with 11.2.1, {Si} is
semistable iff it is isomorphic in pro-(Sets) to an inverse sequence whose bonds
are surjections. In the situation of 13.4.7 the inverse sequence {π0(Y −c Li)}
consisted of finite sets and hence was semistable. But that need not be the
case here, so we must discuss the condition under which semistability holds.

A subset A of Y is L-bounded if A ⊂ Li for some i, and is L-unbounded
otherwise. To a certain extent L-bounded subcomplexes of Y play the same
role that finite subcomplexes play in the proper case (by 14.1.1, finite subcom-
plexes are L-bounded) but with the important difference that the CW com-
plement of an L-bounded subcomplex may be L-unbounded even though all
its path components are L-bounded; in that case, although Y is L-unbounded,
(Y,L) has no filtered ends. We say that (Y,L) is regular if for each i the union
of all L-bounded path components of Y −c Li is L-bounded.

Proposition 14.3.2. (Y,L) is regular iff the inverse sequence of sets
{π0(Y −c Li)} is semistable.

Proof. For each i, we write π0(Y −c Li) = Bi ∪ Ui where Bi is the set of L-
bounded path components and Ui is the set of L-unbounded path components.
If (Y,L) is regular then for each i there exists j such that the elements of Bi

are not in the image of Bj ∪ Uj → Bi ∪ Ui, while every element of Ui is in
the image of Bk ∪ Uk for all k ≥ I; then Ui is the image of Bk ∪ Uk for all
k ≥ j, and that implies semistability. Conversely, assume semistability. Then,
given i, there exists j such that for all k ≥ j the image of Bk ∪ Uk → Bi ∪Ui

is the same. We claim that this image is disjoint from Bi. To see this, note
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that, for k ≥ i, Uk is mapped into Ui, and each member of Bi (i.e., each L-
bounded path component of Y −c Li) is disjoint from Y −c Lm for some m ≥ j
dependent on i; so it is not in the image of Bm ∪Um → Bi ∪ Ui, which is the
same as the image of Bj ∪ Uj → Bi ∪ Ui. The claim implies each L-bounded
path component of Y −c Li lies in Lj, and that is the meaning of regularity.
�

It follows that regularity is preserved by filtered 1-equivalences. Here is an
example which is not regular:

Example 14.3.3. Let Y be the subset of R2 consisting of all points (x, y) such
that either y = 0 and x ≥ 0, or x ∈ N and 0 ≤ y ≤ x. If we take points (x, y)
with integer entries as vertices and the obvious closed intervals of length 1 as
edges, Y becomes a locally finite graph. Let Li = {(x, y) ∈ Y | y ≤ i}, and
write L = {Li}. Then (Y,L) is well filtered, Y −c Li is L-unbounded for all i,
and each path component of Y −c Li is L-bounded.

The number of filtered ends of (Y,L) is m ≥ 0 [resp. is ∞] if the set of
filtered ends has m members [resp. is infinite]. For 0 ≤ m ≤ ∞, we also say
that (Y,L) has m filtered ends. By 14.3.1 this number is preserved by filtered
0-equivalences.

An inverse sequence {Si} of sets is stable if there is a cofinal subsequence
{Sni
} such that image (Sni+2 → Sni+1) is mapped bijectively onto image

(Sni+1 → Sni
) for all i. “Stable” implies “semistable.” If {Si} is stable then

lim←−
i

{Si} has the same cardinal number as image (Sni+2 → Sni+1) for any i. If

{Si} is semistable but not stable then lim←−
i

{Si} is infinite.

By 14.3.1 and 14.3.2 we have:

Proposition 14.3.4. Let (Y,L) be regular and let m < ∞. The number of
filtered ends of (Y,L) is m iff {π0(Y −c Li)} is stable with inverse limit of
cardinality m. �

Analogous to 13.4.8 is:

Corollary 14.3.5. Let (Y,L) be regular with m filtered ends where 0 ≤ m ≤
∞. Then m = 0 iff Y is L-bounded. When m is finite, there exists i0 such that
whenever an L-bounded subcomplex K contains Li0 then Y −c K has exactly
m L-unbounded path components. When m =∞, the number of L-unbounded
path components of Y −c Li is a weakly monotonic unbounded function of i,
whose value may be ∞ for some (finite) i. �

Addendum 14.3.6. Let m be finite and let i ≥ i0. If (Y,L) is essentially 0-
connected6 there is a path connected L-bounded subcomplex K of Y containing
Li such that Y −c K has exactly m path components.

6 See Sect. 7.4.
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Proof. Similar to that of 13.4.9; essential 0-connectedness ensures we can en-
large Li to make an L-bounded path connected subcomplex K ′. �

The analog of 13.4.11 is:

Proposition 14.3.7. Let R be a PID and let L be regular. For m <∞, (Y,L)
has m filtered ends iff H0

L,e(Y ; R) is a free R-module of rank m; (Y,L) has ∞
filtered ends iff H0

L,e(Y ; R) is not finitely generated.

Proof. First, assume m <∞. By 14.3.4, the following are equivalent:

(i). (Y,L) has m filtered ends;
(ii). {π0(Y −c Li)} is stable with inverse limit having m elements;
(iii). {H0(Y −c Li; R)} is stable with free inverse limit of rank m;
(iv). H0

L,e(Y ; R) is free of rank m.7

If (Y,L) has ∞ filtered ends then {H0(Y −c Li; R)} is pro-isomorphic to
an inverse sequence of splittable epimorphisms and rankR(H0(Y −c Li; R)) is
either infinite for sufficiently large i, or is finite for all i but goes to ∞ with i.
In both cases the direct sequence {HomR(H0(Y −c Li), R)} is ind-isomorphic
to a direct sequence of splittable monomorphisms whose direct limit is not
finitely generated. By 14.2.2, H0

L,e(Y ; R) is not finitely generated. Conversely,

if H0
L,e(Y ; R) is not finitely generated then (Y,L) has ∞ ends, by the first

part of this proof. �

Exercises

1. Construct a well filtered graph (Y,L) such that for each i, Y −c Li has an L-
unbounded path component whose intersection with Y −c Li+1 is the union of
L-bounded path components.

2. State and prove filtered analogs of 13.4.9 and 13.4.10.
3. Give an example for 14.3.5 where some Y −c Li has infinitely many L-unbounded

path components.
4. Show that (X, h−1L) in Example 14.1.5 is regular.

14.4 Filtered cohomology of pairs of groups

This section is the filtered analog of Sect. 13.2. We only discuss cohomology,
leaving the corresponding treatment of homology as an exercise.

Let H be a subgroup of the group G. The set of (right) cosets of H in G is
H\G := {Hg | g ∈ G}. Define RH(G)̂ to be the submodule of RGˆ consisting

of all
∑
g∈G

rg .g such that the set of all g with rg �= 0 lies in finitely many cosets.

In particular, R{1}(G)̂ = RG. We have a short exact sequence

7 By 12.5.8, 12.5.1 and 14.2.2.
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0→ RH(G)̂
i−→ RGˆ−→ RH(G)e −→ 0

where i is inclusion and the right term is by definition the quotient (right)
RG-module.

To keep things simple, let (X, v) be a K(G, 1)-complex of finite type (hence
G has type8 F∞). Let K := {Ki} be a finite type filtration of the covering
space X̄(H). The covering projection is pH : X̃ → X̄(H): let Li = p−1

H (Ki).

Then L = {Li} is a filtration of X̃, and both (X̄(H),K) and (X̃,L) are regular
well filtered CW complexes. By analogy with Sect. 13.2, and with notation
as in Sect. 14.2, we have a commutative diagram of R-modules, where R is a
PID:

HomG(Ck(X̃; R), RH(G)̂ ) �� �� HomG(Ck(X̃; R), RG )̂ �� �� HomG(Ck(X̃; R), RH(G)e)

CL,cof
k

(X̃; R) �� ��

ψH
k

��

C∞
k (X̃; R)

ψ∞
k

��

�� �� C∞
k (X̃; R)/CL,cof

k
(X̃; R)

ψ
H,e
k

��

in which both lines are exact and all three vertical arrows are cochain isomor-
phisms; compare Sect. 13.2. Hence:

Proposition 14.4.1. ψH
∗ and ψH,e

∗ induce isomorphisms

H∗
L(X̃ ; R)→ H∗(G, RH(G)̂ )

and
H∗

L,e(X̃; R)→ H∗(G, RH(G)e)

respectively. �

By a proof similar to that of 13.2.11 one shows:

Proposition 14.4.2. Let H ≤ G. Then H0(G, RH(G)̂ ) = 0 [resp. ∼= R] iff
H has infinite [resp. finite] index in G. �

From the top line of the above commutative diagram we get a long exact
sequence

· · · ← Hn(G, RG )̂ ← Hn(G, RH (G)̂ ) ← Hn−1(G, RH(G)e) ← Hn−1(G, RG )̂ ← · · ·

We know that Hn(G, RG )̂ = 0 for n > 0 and H0(G, RG )̂ ∼= R. Assum-
ing H has infinite index in G, 14.4.2 implies that the sequence starts with
a monomorphism H0(G, RG )̂ → H0(G, RH(G)e) which splits using 14.4.1;
compare 12.2.3. Hence:

Proposition 14.4.3. For k > 1, Hk(G, RH(G)̂ ) ∼= Hk−1(G, RH(G)e). If H
has infinite index in G, H0(G, RH(G)e) ∼= H1(G, RH(G)̂ )⊕R. �

8 By 12.2.4 and 12.2.5, appropriate modifications of this section apply to groups of
type Fn.
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Exercise

1. Write out the analogous homology. What plays the role of RH(G)̂ ?

14.5 Filtered ends of pairs of groups

Let G be a finitely generated group, let H be a subgroup and let R be a PID.
We discussed the number of ends of the pair (G, H) in Sect. 13.5, but there
is a competing definition of equal interest: “filtered ends of pairs.”

Let X be a path connected CW complex with fundamental group iso-
morphic to G and having finite 1-skeleton. As in Sect. 13.5, we will only be
concerned with the 1-skeleton of X and of its covering spaces, all locally finite
graphs. We will use the filtered cohomology of Sects. 14.3 and 14.4 only in
the lowest dimensions (see the footnote in that section – here it applies for
groups of type F1).

Choose a finite filtration K := {Ki} for the locally finite graph X̄(H)1.
We have the covering projection pH : X̃1 → X̄(H)1. Let Li = p−1

H (Ki), and

let L = {Li}. Then (X̃1,L) is a regular well filtered graph. The number of
filtered ends of (G, H) is the number of filtered ends of (X̃1,L). By 14.3.7, this
number is either∞ or, if finite, is the rank of the free R-module H0

L,e(X̃
1; R),

which, by 14.4.1, is isomorphic to H0(G, RH(G)e). Thus the number of filtered
ends of (G, H) does not depend on the choice of X or R.

Let ẽ(G, H) and e(G, H) denote the number of filtered ends and the num-
ber of ends of (G, H), respectively. For comparison with 13.5.18, we note a
consequence of 14.4.3, 14.4.1 and 14.3.7:

Proposition 14.5.1. Let H have infinite index in G. If ẽ(G, H) < ∞ then
ẽ(G, H) = 1+rankR(H1(G, RH(G)ˆ); ẽ(G, H) =∞ iff H1(G, RH(G)ˆ) is not
finitely generated.9 �

By 14.3.5 we have:

Proposition 14.5.2. ẽ(G, H) = 0 iff e(G, H) = 0 iff H has finite index in
G. �

Proposition 14.5.3. ẽ(G, H) ≥ e(G, H); hence, if ẽ(G, H) = 1 then we have
e(G, H) = 1.

Proof. By the (proof of the) Homotopy Lifting Property 2.4.6 the obvious
function from filtered ends of (G, H) to ends of (G, H) is surjective. For the
last part apply 14.5.2. �

9 In [100] the number of ends of the pair (G, H) is defined to be 0 when H has finite
index in G and, by the formula in 14.5.1, with R = Z2, when H has infinite index
in G. It follows that ẽ(G, H) equals the number of ends of (G, H) in that sense.
In [23] the number ẽ(G, H) is called “the number of coends” of H with respect
to G. Yet another definition of “the number of ends of (G, H)” is studied in [2].
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Proposition 14.5.4. If K ≤ H ≤ G, where [H : K] < ∞, then ẽ(G, H) =
ẽ(G, K). In particular, if H is finite, ẽ(G, H) is the number of ends of G.

Proof. In this case the covering projection X̄(K)1 → X̄(H)1 is proper, so one
gets the same filtration of X̃1 from X̄(K)1 as from X̄(H)1. �

Example 14.5.5. In Example 13.5.14, e(G, H) = 1 while ẽ(G, H) = 2.

Example 14.5.6. If G = Z×Z and H = Z×{0}, then ẽ(G, H) = e(G, H) = 2.

Example 14.5.7. For the pair (G, H) in Example 13.5.13 with e(G, H) = n ≥
3, we have ẽ(G, H) = ∞. To see this, note that in 13.5.13 we showed that for
each i the inclusion Ui ↪→ X̄(H) induces a monomorphism on fundamental
group whose image has infinite index in H . By 3.4.9, ẽ(G, H) =∞.

If N is normal in G it can happen that ẽ(G, N) is greater than e(G, N),
which, by 13.5.11, is the number of ends of the group G/N :

Example 14.5.8. Let φ : H → H be a monomorphism which is not an epimor-
phism. Let G = H∗φ be the resulting ascending HNN extension. Then G has
a presentation 〈H, t | t−1xtφ(x)−1, ∀x ∈ H〉. The standard homomorphism
G→ Z taking H to 0 and t to 1 has kernel N , and H is a proper subgroup of
N . Now assume that H is finitely presented, and let Z be a finite CW com-
plex such that π1(Z, v) ∼= H . Let h : (Z, v) → (Z, v) be a map inducing φ on
fundamental group. Then G is the fundamental group of T (h), the mapping
torus of h, and N is the fundamental group of Tel(h), the mapping telescope
of h. The latter has two ends, so e(G, N) = 2. Inspection of the picture of
Tel(h) in Sect. 4.3 shows that there is a basis for the neighborhoods of the end
whose path components Ui “on the left side” have the property that for all
i the map Ui+1 ↪→ Ui induces φ : H → H on fundamental group. It follows,
by 3.4.9, that ẽ(G, N) =∞. (For example, take G to be the Baumslag-Solitar
group B(1, 2) and H ∼= Z; then N ∼= the dyadic rational numbers.)

In this example N is not finitely generated. However, when N is finitely
generated and normal in G, ẽ(G, N) = e(G, N):

Proposition 14.5.9. If N is a finitely generated normal subgroup of G then
ẽ(G, N) is the number of ends of G/N . Hence ẽ(G, N) = e(G, N).

Proof. We know that ẽ(G, N) = 0 iff G/N is finite, so we may assume N
has infinite index in G. Let (X, x) be a pointed 2-dimensional CW complex
whose 1-skeleton is finite and whose fundamental group is (identified with)
G. A finite subcomplex C of the 1-skeleton X̄(N)1 “carries” N in the sense
that C ↪→ X̄(N) induces an epimorphism of fundamental groups. Since G/N is
infinite there are covering transformations moving C into any path component
of X̄(N)1 −c C. This implies (by 3.4.9) that pN# : π0(X̃ −c p−1

N (C)) →
π0(X̄(N)1 −c C) is a bijection. The same holds when C is replaced by any
larger compact set. Note that the 2-cells play no role in this statement. So
ẽ(G, N) = e(G, N). �
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Two subgroups H1 and H2 of G are commensurable if H1 ∩H2 has finite
index in both. The commensurator of a subgroup H of G is CommG(H) :=
{g ∈ G | gHg−1 and H are commensurable}. This is a subgroup of G which
contains H . In general, the role of the normalizer for e(G, H) is played instead
by the commensurator for ẽ(G, H). The analog of 13.5.21 is:

Theorem 14.5.10. If H is finitely generated and has infinite index in the
commensurator CommG(H), then ẽ(G, H) = 1, 2 or ∞.

Before proving 14.5.10 we explain the role of the commensurator. With
notation as above we take X̃1 to be Γ , the Cayley graph of G with respect
to a finite set of generators. The vertices of Γ are labeled by elements g of G,
and the vertices of H\Γ by cosets Hg. As before, we choose a finite filtration
{Ki} of H\Γ and we filter Γ by L = {p−1

H (Ki)} where pH : Γ → H\Γ is the
covering projection.

Proposition 14.5.11. If g ∈ CommG(H) then there is a finite set F ⊂ gH
such that gH ⊂ HF .

Proof. The subgroup K = gHg−1 ∩H has finite index in gHg−1, so there is
a finite set F0 ⊂ H such that gHg−1 = KgF0g

−1 ⊂ HgF0g
−1. The required

F is gF0. �

Corollary 14.5.12. If L is an L-bounded subgraph of Γ and g ∈ CommG(H),
then gL is also L-bounded.

Proof. By 14.5.11, gH ⊂ HF , so for any ḡ ∈ G we have gHḡ ⊂ HFḡ. This
implies that g takes the vertices of L into an L-bounded set. It follows easily
that gL is L-bounded. �

Proposition 14.5.13. If H has infinite index in CommG(H), then for any
finite set F ⊂ G there exists g ∈ CommG(H) such that gHF ∩HF = ∅.

Proof. Suppose F exists such that for every g ∈ CommG(H) gHF ∩ HF �=
∅. Then, for each such g, there exists f, f̄ ∈ F and h, h̄ ∈ H such that
g = h̄(f̄ f−1)h−1. For pairs (f, f̄) arising in this way we then have f f̄−1 ∈
CommG(H), hence, by 14.5.11, there exists a finite set F0(f, f̄) ⊂ H such
that f̄ f−1H ⊂ Hf̄f−1F0(f, f̄). This implies Hf̄f−1H ⊂ Hf̄f−1F0(f, f̄), so
every g in CommG(H) lies in Hf̄f−1F0(f, f̄) for some such f and f̄ . But this
contradicts our infinite index hypothesis. �

As with 14.5.12 we have a corollary whose proof is left as an exercise:

Corollary 14.5.14. If H has infinite index in CommG(H) and if L is an L-
bounded subgraph of Γ then there exists g ∈ CommG(H) such that gL∩L = ∅.
�
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Proof (of Theorem 14.5.10). Suppose (G, H) has m filtered ends where 3 ≤
m < ∞. Since H is finitely generated, Brown’s Criterion 7.4.1 makes 14.3.6
applicable, so there is an L-bounded path connected subgraph L of Γ such
that for any L-bounded subgraph L′ of Γ containing L the graph Γ −c L′ has
exactly m L-unbounded path components; moreover, each path component
Z1, · · · , Zm of Γ −c L is L-unbounded and contains an L-unbounded path
component of Γ −c L′. By 11.4.4 (applied to H\Γ ), N(L) is L-bounded so,
by 14.5.14, there exists g ∈ CommG(H) such that N(gL) = g(N(L)) lies in
some Zi, say Z1. By 14.5.12, N(gL) is L-bounded. Let Z ′

1, · · · , Z ′
m be the L-

unbounded path components of Γ −c (L∪g(L)), where Z ′
i ⊂ Zi. Then Z ′

i = Zi

when i > 1. Now Z2 ∪ Z3 ∪ N(L) is path connected. So Z ′
2 ∪ Z ′

3 ∪ N(L)
is a path connected subset of Γ −c g(L), implying that Z ′

2 and Z ′
3 lie in the

same L-unbounded path component of Γ −c g(L). But each L-unbounded path
component of Γ −c g(L) contains exactly one L-unbounded path component
of Γ −c (L ∪ g(L)). This is a contradiction, since m <∞. �

The classification of pairs of groups having two filtered ends, analogous to
13.5.9, is:

Theorem 14.5.15. Let H be a finitely generated subgroup of G having infinite
index in CommG(H). Then ẽ(G, H) = 2 iff there are subgroups G1 and H1 of
finite index in G and H respectively such that H1 is normal in G1 and G1/H1

is infinite cyclic.

For the proof of 14.5.15 we need a variation on 14.5.13:

Lemma 14.5.16. For each finite set F ⊂ G there is a finite set F0 ⊂
CommG(H) such that whenever g ∈ CommG(H)−HF0H then gHF ∩HF =
∅.

Proof. Suppose F exists such that for every finite set F0 ⊂ CommG(H) there
is some g ∈ CommG(H) −HF0H with gHF ∩HF �= ∅. Then ghf = h̄f̄ for
some h, h̄ ∈ H and f, f̄ ∈ F , so g = h̄f̄f−1h−1 with f̄f−1 ∈ CommG(H) −
HF0H . By 14.5.11 there is a finite set F1(f, f̄) ⊂ H such that f̄ f−1H ⊂
HF1(f, f̄), hence g ∈ Hf̄f−1H ⊂ HF1(f, f̄). Let F2 be the union of all the
(finitely many) sets F1(f, f̄). Then g ∈ HF2 ⊂ HF2H . In summary, there
is a finite set F2 ⊂ H such that for every finite set F0 ⊂ CommG(H) the
set (CommG(H) −HF0H) ∩HF2H is non-empty. Taking F0 = F2, this is a
contradiction. �

With Γ as above we have:

Corollary 14.5.17. If L is an L-bounded subgraph of Γ there is a finite set
F0 ⊂ CommG(H) such that whenever g ∈ CommG(H)−HF0H then gL∩L =
∅. �
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Proof (of 14.5.15). Let ẽ(G, H) = 2. The proof is somewhat analogous to that
of 13.5.9. We begin with (Γ,L) as in the proof of 14.5.10. As in that proof, the
fact that H is finitely generated implies that there is an L-bounded path con-
nected subgraph L of Γ such that Γ −c L has exactly two L-unbounded path
components Z+ and Z−. The group CommG(H) acts on the (two-element)
set of filtered ends, so a subgroup CommG(H) of index ≤ 2 fixes the two ends.
Passing to a subgroup of index 2 if necessary, we assume H ≤ CommG(H).
For this L, let F0 ⊂ CommG(H) be as in 14.5.17. The infinite index hypothe-
sis ensures (by 14.5.11) that there exists g ∈ CommG(H) −HF0H , i.e., that
this set is non-empty: we pick one such g. As in the proof of 13.5.9, one shows
that there is a finite set P ⊂ G such that G = 〈g〉HP .

Let H1 =
⋂
n∈Z

gnHg−n. Claim : H1 has finite index in H . Assuming the

Claim, there is a finite set Q ⊂ H such that G = 〈g〉H1QP . Let G1 = 〈g〉H1.
Clearly G1 is a subgroup of G, and H1 is normal in G1 with G1/H1 infinite
cyclic.

It remains to prove the Claim. We may assume L is H-invariant (replac-
ing it by HL if necessary), hence Z+ is also H-invariant. For any n ∈ Z
and h ∈ H there is an integer k such that gnhkg−n ∈ H ; this is because
gn ∈ CommG(H). Hence gnhkg−nZ+ = Z+. Now gnhg−n ∈ CommG(H),
so, by 14.5.17, gnhg−n ∈ HF0H ; otherwise gnhg−n(Z+) would either prop-
erly contain or be properly contained in Z+, both of which are incompati-
ble with the fact that gnhkg−n ∈ H . Thus for all n ∈ Z and all h ∈ H ,
gnhg−n ∈ HF0H which, by 14.5.11, lies in HF1 for some finite set F1 ⊂ F0H .
Let F (n) be the smallest subset of F1 such that gnHg−n ⊂ HF (n). Then, for
every f ∈ F (n), Hf∩gnHg−n �= ∅. We may alter F (n) so that F (n) ⊂ gnHg−n.
Writing Kn = H ∩ gnHg−n, it follows easily that gnHg−n = KnF (n). So
K−n = g−nKngn has index ≤ |F (n)| ≤ |F1| in H . Thus there is an upper
bound |F1| to the indices of the subgroups Kn in H . By Exercise 4 in Sect.
3.4, there are only finitely many subgroups of a finitely generated group hav-
ing a given index. So there are only finitely many distinct subgroups Kn, and

H1 :=
⋂
n∈Z

Kn is a finite intersection. By Exercise 5 in Sect. 3.4, H1 has finite

index in H . The Claim is proved.
The proof of the converse is similar to that of 14.5.10. �

Remark 14.5.18. Analogous to 13.5.10, one might expect a splitting theorem
saying that if G and H are finitely generated and ẽ(G, H) ≥ 2 then G splits
as A∗

C
B or A∗

C
where C is commensurable with H ; compare our sketch of

the proof of 13.5.10. Without further hypotheses this is false. Using the lan-
guage of manifolds, let M be a closed orientable aspherical 3-manifold, N a
closed orientable surface and f : N →M a “good” map inducing a monomor-
phism φ : π1(N, v) → π1(M, v). Let G = π1(M, v) and H = image(φ). Then
ẽ(G, H) = e(G, H) = 2. In [137] there are examples where f does not lift to
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an embedding into any compact covering space of M . This implies G does not
split as above.

Example 14.5.19. Let n ≥ 3 be an integer. In 13.5.13 we saw a pair (G, H)
for which e(G, H) = n and ẽ(G, H) = ∞. Here we discuss a pair (G, H)
such that e(G, H) = ẽ(G, H) = n. Let M be a compact 3-manifold whose
boundary T = ∂M is a torus. Let f : S1 → S1 be a map of degree n− 1, let
F = id×f : T → T (where T is identified with S1×S1) and let N = M(F ) be
the mapping cylinder of F . Let X = M ∪T N in which ∂M is identified with
i(T ) ⊆M(F ). With base point x ∈ T , we write A := π1(M, x), B := π1(N, x),
H : π1(T, x), and G := π1(X, x). Then G is isomorphic to A∗H B in a natural
way. Now assume H is malnormal10 in A, as happens, for example, when H
is a prime hyperbolic knot group. Then [100] e(G, H) = ẽ(G, H) = n. The
proof is sketched as an exercise.

Source Notes. Filtered ends of pairs, under another name and presented in an
algebraic setting, are due to P. Kropholler and M. Roller [100]. Remark 14.5.18 was
made to me by G. Swarup.

Exercises

1. Use Addendum 14.1.11 to give an alternative proof that the number of filtered
ends of (G, H) does not depend on the choice of X.

2. Prove that CommGH is a subgroup of G.
3. Let H1, . . . , Hn be subgroups of G such that for each i either Hi has finite index

in Hi+1 or Hi+1 has finite index in Hi. Prove that H1 and Hn are commensurable.
4. Prove Corollary 14.5.14.
5. Fill in the missing steps in the proof of 14.5.15.
6. Find a counterexample to 14.5.9, when N is not finitely generated, where

e(G, N) = 1 and ẽ(G, N) = ∞.
7. Give an example of (G, H) and (G, K) where e(G, H) = e(G, K) and ẽ(G, H) �=

ẽ(G, K).
8. Fill in the proof that (G, H) in Example 14.5.19 has the properties claimed as

follows: First, use the Normal Form Theorem (stated in the proof of 18.3.19) to
prove

Lemma. Let H be malnormal in A, let B be abelian and let c ∈ G = A ∗H B.
(i) If c ∈ B then c−1Hc = H;
(ii) If c �∈ B then (c−1Hc) ∩ H = {1};
(iii) If c ∈ A ∪ B or c = c1c2 where c1 ∈ A − H and c2 ∈ B − H then

(c−1Ac) ∩ H = H;
(iv) If c ∈ G is not covered by (iii) then (c−1Ac) ∩ H = {1}.

Then, using 3.4.9 and 3.4.10, study the covering space qH : (X̄(H), x̄) → (X, x)
by partitioning X̄(H) into the path components of q−1

H (M), q−1
H (N) and q−1

H (T ).

10 The subgroup A is malnormal in H if whenever c ∈ H − A, c−1A ⊂ ∩A = {1}.
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Poincaré Duality in Manifolds and Groups

Poincaré Duality on an orientable n-manifold gives a canonical isomorphism
between homology and cohomology. This isomorphism links dimension k with
dimension n − k. Ordinary homology is Poincaré dual to cohomology based
on finite chains, and ordinary cohomology is Poincaré dual to homology based
on infinite chains. The geometric treatment given here exhibits these duality
isomorphisms at the level of chains in an intuitively satisfying way. Histori-
cally, it is how things were first done. A more sophisticated treatment in which
Poincaré Duality is presented as “cap product with a fundamental class” can
be found in many modern books on algebraic topology.

We end the chapter with a discussion of Poincaré Duality groups and
duality groups.

15.1 CW manifolds and dual cells

Let e be a cell of a regular CW complex X . The dual cone of e, denoted by
edual, is the smallest subcomplex of the abstract first derived sd X containing
all simplexes of the form {e, e1, · · · , ek}. The base of edual, denoted by b(edual),
is the subcomplex of edual consisting of all simplexes {e1, · · · , ek} such that
the cell e is a proper face of the cell e1. See Fig. 15.1. Clearly, edual is the cone
e ∗ b(edual) with vertex e ∈ Vsd X and base b(edual).

One may think of edual as “orthogonal” to the cell e so that, when |sd X |
is identified with X (see Sect. 5.3), the cell e and the subspace |edual| together
“span” a compact neighborhood of the barycenter ê. To explain this, recall
from 5.3.2 that as sets C(e) = e. So there is a subcomplex sd C(e) of sd X
with |sd C(e)| = e. The inclusions sd C(e) ↪→ sd X and b(edual) ↪→ sd X
together define a simplicial map α : (sd C(e)) ∗ b(edual) → sd X which is
clearly a simplicial isomorphism onto a full subcomplex of sd X . Its topological
significance is:
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Fig. 15.1.

Proposition 15.1.1. The image of the closed embedding

|α| : |(sd C(e)) ∗ b(edual)| → |sd X | = X

is a neighborhood of every point of
◦
e.

Proof. We use the notation and results of Sect. 1.5. Clearly, the image of |α|
is N|sd X|(ê). Let Y = |sd X | −c {ê}. Then Y , being a subcomplex, is closed

in |sd X |, and
◦
e∩ Y = ∅. By 1.5.5, |sd X | = (image |α|) ∪ Y . So the open set

|sd X | − Y contains
◦
e and lies in the image of |α|. �

We call the regular CW complex X a CW n-manifold if for each k, and
each k-cell e of X , |b(edual)| is homeomorphic either to Sn−k−1 or to Bn−k−1.
If X has this property and e is a k-cell, then, by 5.2.7, |edual| is an (n−k)-ball
which we call the dual cell of e. Thus X is n-dimensional and locally finite.

Proposition 15.1.2. The underlying space of a CW n-manifold X is a topo-
logical n-manifold. Moreover, the boundary of this manifold, ∂X, is the sub-
complex consisting of all cells e of X for which |b(edual)| is homeomorphic to
a ball rather than a sphere.

Proof. Let x ∈ X . By 10.1.25 X is metrizable. Let e be the unique cell of X

such that x ∈ ◦
e. By 15.1.1 and 5.2.7, x has a neighborhood homeomorphic to

Rn or to Rn
+, and the latter iff |b(edual)| is homeomorphic to a ball. It follows

that ∂X is a subcomplex, for ∂X is closed in X and therefore if
◦
e lies in ∂X

so does e. By 5.3.2, every face of e also lies in ∂X . �
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Combining 15.1.2 with 10.1.8 and 10.1.12 we get:

Corollary 15.1.3. If X is a CW manifold, the regular CW complex X is
strongly locally finite. �

The term CW n-manifold is not standard but it is precisely what is needed
for our treatment of duality in the following sections. Of course, the reader
will wish to know how CW n-manifolds arise. A sufficient condition is:

Proposition 15.1.4. If K is a combinatorial n-manifold then |K| is a CW
n-manifold. �

If X is a CW n-manifold and e is a k-cell of the subcomplex ∂X , e has a
dual (n − k)-cell |edual| in X , and e has a dual (n − k − 1)-cell in ∂X which
we will denote by |edual|∂ .

Theorem 15.1.5. Let X be a CW n-manifold. There is a regular CW complex
structure X∗ on X whose set of (n− k)-cells is

{|edual|
∣∣ e is a k-cell of X} ∪ {|edual|∂

∣∣ e is a (k − 1)-cell of ∂X}

.

Proof. We show that X∗ satisfies (i)–(v) of Proposition 1.2.14. First we note

that, by 5.2.7, for every cell e of X which is not in ∂X we have |edual|◦ ⊂
◦
X ,

and for every cell e of ∂X we have (|edual|∂)◦ ⊂ ∂X . If x ∈ X , there is exactly
one simplex σ = {e0, e1, · · · , ek} of sd X such that x ∈ |σ|◦, where, as usual,

e0 � e1 � · · · � ek. If x ∈
◦
X, this implies that x ∈ |edual|◦ iff e = e0. If

x ∈ ∂X , then |σ| ⊂ ∂X and x ∈ (|edual|∂)◦ iff e = e0. This proves (i). The
next two parts, (ii) and (iii), are clear; (iv) follows from 15.1.3. For (v), let
F ⊂ X be such that F ∩ |edual| is closed in the ball |edual| for every cell
e of X , and F ∩ |edual|∂ is closed in |edual|∂ for every cell e of ∂X . Then all
these intersections are compact, hence they are closed subsets of the Hausdorff
space X . Since they form a locally finite collection of closed sets in the locally
compact space X , their union, namely F , is closed in X . �

The CW complex X∗ is called the dual complex of X . Clearly we have:

Proposition 15.1.6. In the CW n-manifold X, let eβ be a face of eα. Then
|edual

α | is a face of |edual

β |. �

By 15.1.5, we have two CW complex structures X and X∗ on the same
underlying n-manifold. If these CW complexes X and X∗ are oriented, we get
an isomorphism of graded R-modules φk : Ck(X ; R) → Cn−k(X∗, ∂X∗; R)
defined by φk(e) = |edual|, and a similar isomorphism φ∞

k : C∞
k (X ; R) →

C∞
n−k(X∗, ∂X∗; R). In Sect. 15.2 we investigate when the orientations on

X and X∗ can be chosen so that δ ◦ φk = (−1)kφk−1 ◦ ∂ and δ ◦ φ∞
k =
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(−1)kφ∞
k−1 ◦∂. Whenever this can be done, one has important duality isomor-

phisms Hk(X ; R) → Hn−k
f (X∗, ∂X∗; R), Hk

f (X ; R) → Hn−k(X∗, ∂X∗; R),

H∞
k (X ; R)→ Hn−k(X∗, ∂X∗; R) and Hk(X ; R)→ H∞

n−k(X∗, ∂X∗; R). Note
that when R has characteristic 2 it follows from 5.3.10 and 15.1.5 that such
relations hold for any choice of orientations on X and on X∗, since in that
case 1 = −1. Thus, we have in fact proved the Poincaré and Lefschetz Duality
theorems for these coefficients. Rather than state the details, we simply point
out that 15.2.3 and 15.2.4 have already been proved here when 2 = 0 in R.
One special case is needed immediately:

Proposition 15.1.7. If X is a path connected CW n-manifold, then we have
H∞

n (X, ∂X ; Z2) ∼= Z2.

Proof. By the last paragraph, H∞
n (X∗, ∂X∗; Z2) is isomorphic to H0(X ; Z2).

Apply 12.1.2 and 11.1.10. �

This proposition yields a useful feature of CW manifolds:

Corollary 15.1.8. If en
α �= en

β are cells of a path connected CW n-manifold X,
there is a finite sequence en

α = en
α0

, en
α1

, · · · , en
αk

= en
β of n-cells of X such that

each en
αi
∩ en

αi+1
is an (n− 1)-cell of X. Hence X is a CW n-pseudomanifold.

Proof. Let A index the n-cells of X . Say α, β ∈ A are “equivalent” iff α = β
or en

α and en
β are related in the manner described. This is an equivalence

relation on A. For each equivalence class B ⊂ A,
∑
β∈B

en
β ∈ Z∞

n (X, ∂X ; Z2) by

5.3.6. Since B∞
n (X, ∂X ; Z2) = 0, it follows from 15.1.7 that there is only one

equivalence class: i.e., B = A. The last sentence of the Corollary follows by
5.3.6. �

Another special case of Z2-Lefschetz Duality was used in Sect. 12.3:

Proposition 15.1.9. If X is a CW n-manifold, H∞
n−1(X

∗, ∂X∗; Z2) is iso-
morphic to H1(X ; Z2). �

Exercises

1. Let K be an abstract simplicial complex, let σ be a simplex of K and let x ∈

|
◦
σ| ⊂ |K|. Prove that |stKσ| is a neighborhood of x in |K|. (Hint : use 15.1.1.)

2. Prove 15.1.4.

15.2 Poincaré and Lefschetz Duality

Let X be an orientable CW n-manifold. Orient the cells of X , in the sense
of Sect. 2.5. Choose a fundamental cycle

∑
εδe

n
δ for X , thereby specifying



15.2 Poincaré and Lefschetz Duality 357

an orientation on (the pseudomanifold) X . We wish to orient the cells of the
dual complex X∗ in a desirable way, and thereby prove the duality theorems
15.2.3 and 15.2.4. We will also discuss an equivariant version, and a version
involving twisted coefficients.

Let ek
α be a k-cell of X . Then |edual

α | is an (n − k)-cell, and is the union
of certain (n − k)-simplexes of |sd X |. More precisely, if e0 ⊂ e1 ⊂ · · · ⊂
ek−1 ⊂ ek = ek

α ⊂ ek+1 ⊂ · · · ⊂ en = en
γ are cells of X , consider the following

simplexes1 of sd X : σn = {ê0, · · · , ên}, σk = {ê0, · · · , êk}, and σn−k =
{êk, · · · , ên}. Note that |σk| ⊂ ek

α and |σn−k| ⊂ |edual
α |.

As usual, we use the natural ordering for each simplex of sd X . By 5.4.3,
this ordering determines an orientation on each simplex of sd X . IN THIS
SECTION ONLY, we introduce the notation that (|σn|, 1) denotes |σn| with
this orientation, and (|σn|,−1) denotes |σn| with the opposite orientation. By
5.4.3, we may think of (|σn|,−1) as being obtained from (|σn|, 1) by applying
an odd permutation to the vertices. Similar notation will be used for σk, σn−k,
etc.

Here is the rule for orienting |edual
α |. We pick ξ, η ∈ {1,−1} in the follow-

ing way. Let e0, · · · , ek = ek
α, · · · , en = en

γ be as above. Let (|σk|, ξ) represent

the orientation which |σk| inherits from the chosen orientation on ek
α, and let

(|σn|, ηεγ) represent the orientation which |σn| inherits from the chosen orien-
tation on en

γ . Orient |edual
α | so that |σn−k| inherits the orientation (|σn−k|, ξη)

from |edual
α |.

Proposition 15.2.1. This orientation on |edual
α | is well defined.

Proof. If, instead, we look at d0 ⊂ d1 ⊂ · · · ⊂ dk−1 ⊂ ek = ek
α ⊂ · · · ⊂ en =

en
γ , and let τn = {d̂0, · · · , d̂k−1, êk, · · · , ên} and τk = {d̂0, · · · , d̂k−1, êk}, we

are led to (|τk|, ξ′) and (|τn|, η′εγ) as the inherited orientations from ek
α and

en
γ . By 5.4.4, ξ′η′ = ξη, so we get the same orientation for |edual

α |, namely, that

which yields (|σn−k|, ξ′η′).
Next, consider e0 ⊂ e1 ⊂ · · · ⊂ ek = ek

α ⊂ · · · ⊂ ei−1 ⊂ di ⊂ ei+1 ⊂
· · · ⊂ en = en

γ , where i < n. Let µn = {ê0, · · · , êi−1, d̂i, êi+1, · · · , ên} and

let µn−k = {êk, · · · , êi−1, d̂i, êi+1, · · · , ên}. The 0th through kth vertices of µn

are those of σk; and the n-simplexes σn and µn differ only in one vertex.
Hence (|µn|,−ηεγ) represents the orientation which |µn| inherits from en

γ .

So (|µn−k|,−ξη) is to be the inherited orientation from |edual
α |. This is the

previously defined orientation, since σn−k and µn−k also differ by exactly one
vertex.

Now consider e0 ⊂ · · · ⊂ ek = ek
α ⊂ · · · ⊂ en−1 ⊂ en

γ′ where γ′ �= γ. Let

µn = {ê0, · · · , ên−1, ên
γ′} and let µn−k = {êk, · · · , ên−1, ên

γ′}. A similar argu-
ment shows that (|µn|,−ηεγ′) represents the orientation which |µn| inherits
from en

γ′; here we use the fact that εγen
γ + εγ′en

γ′ is part of a fundamental

1 Note the identification introduced after 5.3.9.
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cycle in X . So, as before, (|µn−k|,−ξη) is to be the inherited orientation from
|edual

α |, and again this is compatible with that of (|σn−k|, ξη).
Finally, the subcomplex edual

α of sd X is a pseudomanifold (exercise) so
the cases dealt with in the last two paragraphs are sufficient to complete the
proof – just pass from one (n−k)-simplex to another using the pseudomanifold
property, altering one vertex at a time. �

This orientation on |edual
α | is the dual orientation. The fundamental fact

is:

Proposition 15.2.2. Let ek−1
β ⊂ ek

α. With these orientations we have [ek
α :

ek−1
β ] = (−1)k[|edual

β | : |edual
α |].

Proof. We saw in 15.1.6 that |edual
α | is a face of |edual

β |. Consider e0 ⊂ e1 ⊂
· · · ⊂ ek−1 = ek−1

β ⊂ ek = ek
α ⊂ · · · ⊂ en = en

γ . Let σn = {ê0, · · · , ên}
as before; similarly σk and σn−k. Let τk−1 = {ê0, · · · , êk−1} and τn−k+1 =
{êk−1, · · · , ên}. Let ξ, η ∈ {−1, 1} be as above, and let ξ′ = ±1 be such that
(|τk−1|, ξ′) is the orientation inherited from ek−1

β . Then

[ek
α : ek−1

β ] = ξξ′[|σk| : |τk−1|]
= (−1)kξξ′, by 5.4.5,

[|edual
β | : |edual

α |] = (ηξ)(ηξ′)[|τn−k+1| : |τn−k|]
= ξξ′, by 5.4.5.

�

An immediate consequence of 15.2.2 is:

Theorem 15.2.3. Let X be an oriented CW complex which is also an ori-
ented CW n-manifold. Give X∗ the dual orientation. Let φk : Ck(X ; R) →
Cn−k(X∗, ∂X∗; R) and φ∞

k : C∞
k (X ; R)→ C∞

n−k(X∗, ∂X∗; R) be the isomor-

phisms described by e �→ |edual| in Sect. 15.1. Then δ ◦ φk = (−1)kφk−1 ◦ ∂
and δ ◦ φ∞

k = (−1)kφ∞
k−1 ◦ ∂. �

When X∗ has the dual orientation with respect to X , we call φk and φ∞
k

duality isomorphisms.

Corollary 15.2.4. The isomorphisms φk and φ∞
k induce isomorphisms

Hk(X ; R)→ Hn−k
f (X∗, ∂X∗; R),

Hk
f (X ; R)→ Hn−k(X∗, ∂X∗; R),

H∞
k (X ; R)→ Hn−k(X∗, ∂X∗; R),

Hk(X ; R)→ H∞
n−k(X∗, ∂X∗; R).

�
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Remark 15.2.5. We saw in Sect. 15.1 that if 2 = 0 in R, then 15.2.3 and 15.2.4
hold for non-orientable CW manifolds too.

The statements in 15.2.3 and 15.2.4 are known as Lefschetz Duality. The
special case in which ∂X = ∅ is known as Poincaré Duality. Note that |sd X |
is a common subdivision of X and X∗ and the identity maps |sd X | → X and
|sd X | → X∗ are cellular maps which are proper homotopy equivalences rel
boundary, so one can restate 15.2.4 in terms of the single CW complex |sd X |
to give isomorphisms Hk(|sd X |; R)→ Hn−k

f (|sd X |, ∂|sd X |; R), etc.
We now apply Theorem 15.2.3 to covering spaces. Let X be a path con-

nected (not necessarily orientable) CW n-manifold whose cells are oriented.
Pick a base vertex v and write G = π1(X, v). Orient the cells of the univer-
sal cover (X̃, ṽ) as usual so that each covering transformation preserves the
orientations of the cells of X . By 12.3.12, X̃ is orientable. Let H ≤ G be the
subgroup of all orientation preserving covering transformations. We saw in
12.3.15 that G = H or [G : H ] = 2 depending on whether X is orientable or
non-orientable. The dual orientation for |edual

α | (in X̃∗) depends on the given
orientation for the cell eα and on the pseudomanifold orientation of X̃. Thus
if g ∈ H , g preserves the dual orientations on the cells of X̃∗. In other words:

Proposition 15.2.6. When we regard C∗(X̃; R), C∗(X̃∗, ∂X̃∗; R), C∞
∗ (X̃ ; R)

and C∞
∗ (X̃∗, ∂X̃∗; R) as RH-chain complexes, then the duality isomorphisms

φ̃∗ and φ̃∞∗ are RH-module isomorphisms (RG-module isomorphisms if X is
orientable). �

In the aspherical case we have:

Corollary 15.2.7. Let X be orientable and aspherical with ∂X = ∅. Then
Hk

f (X̃∗; R) = 0 when k �= n and (since H0(X̃; R) is canonically identifiable

with the trivial RG-module R) φ0∗ : R → Hn
f (X̃∗; R) is an isomorphism of

RG-modules. �

With this corollary we have reached the essence of Poincaré Duality for
aspherical CW complexes. Up to now it has appeared to hold because it holds
locally (cells and dual cells); only the hypothesis of orientability was global.
But Corollary 15.2.7 has a “converse” (again in the aspherical case) which
involves no local hypotheses at all. Let Y be an n-dimensional locally finite
aspherical CW complex. Write G = π1(Y, w) and orient the cells of (Ỹ , w̃) as
usual. Assume that Hk

f (Ỹ ; R) = 0 when k �= n. Then

· · · �� Cn−1(Ỹ ; R)
δ �� Cn(Ỹ ; R) �� Hn

f (Ỹ ; R) �� 0

is a free RG-resolution of the RG-module Hn
f (Ỹ ; R). If we further assume that

Hn
f (Ỹ ; R) is isomorphic to the trivial RG-module R, and if we call a choice

of isomorphism a formal R-orientation of Y , we get from 8.1.1 a Poincaré
Duality property:
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Proposition 15.2.8. A formal R-orientation on Y induces a canonical chain
homotopy equivalence (Ck(Ỹ ; R), ∂)→ (Cn−k(Ỹ ; R), δ). �

Corollary 15.2.9. A formal R-orientation on Y induces canonical isomor-
phisms Hn−k

f (Y ; R)→ Hk(Y ; R) and Hn−k(Y ; R)→ H∞
k (Y ; R).

Proof. By 13.2.1, the chain complexes (R⊗GCk(Ỹ ; R), id⊗∂) and (Ck(Y ; R), ∂)
are isomorphic; similarly the cochain complexes (R ⊗G Cn−k(Ỹ ; R), id ⊗
δ) and (Cn−k(Y ; R), δ) are isomorphic. By 13.2.8, the cochain complexes
(HomG(Cn−k(Ỹ ; R), R), ∂∗) and (C∞

n−k(Y ; R), δ) are isomorphic; similarly the

chain complexes (HomG(Ck(Ỹ ; R), R), δ∗) and (C∞
k (Y ; R), ∂) are isomorphic.

These isomorphisms together with 15.2.8 give the required conclusion. �

Our focus is on groups and we will see in the next section that this study
of Y leads us naturally to Poincaré Duality groups. Here are some remarks
comparing 15.2.4 with 15.2.9.

(i) In 15.2.4 X is an oriented manifold, not necessarily aspherical. In 15.2.9
Y has a formal orientation and is aspherical. If X is in fact aspherical and if we
take R = Z and X = Y , the notions of orientation and formal Z-orientation
coincide in an obvious sense; and, once we identify the cohomology of X∗ with
that of X = Y , the only question to ask is: are the isomorphisms in 15.2.4 and
15.2.9 the same? Up to sign the answer is yes, as can be seen using a more
conventional modern treatment of Poincaré Duality in terms of cap product
with a fundamental class, as is found in many books, e.g., [146], [50], [74].

(ii) 15.2.9 shows that Poincaré Duality is a global property which hap-
pens to be visualizable locally in the manifold case (provided the manifold is
orientable – a global property!).

(iii) The duality asserted in 15.2.4 and in 15.2.9 is invariant under proper
homotopy. It is a deep issue in topology to decide whether the space Y (with
properties as above) is always proper homotopy equivalent to a manifold. Even
when Y is assumed to be compact, this is an open question at time of writing.
Indeed the more general non-aspherical version of this issue involves defining
“Poincaré Duality spaces” (of which our Y when compact is an example) and
using surgery theory to provide L-theoretic obstructions to a positive answer.
At present, non-vanishing obstructions are known only in non-aspherical cases.

We end with a brief discussion of duality for non-orientable CW n-
manifolds. As before, let H be the group of orientation preserving covering
transformations. Let tR denote the right RG-module whose underlying R-
module is R, where the G-action is given by r.g = r [resp. −r] if g ∈ H
[resp. g �∈ H ]. Here “t” stands for twisted . Assume X is non-orientable (oth-
erwise tR is the trivial RG-module R). Then we have seen that the dual-
ity isomorphisms φ̃∗ and φ̃∞

∗ are not RG-module isomorphisms. Neverthe-
less, φ̃k : Ck(X̃; R) → Cn−k(X̃∗, ∂X̃∗; R) satisfies: φ̃k(gẽk

α) = g |ẽdual
α | [resp.

−g |ẽdual
α |] if g ∈ H [resp. if g �∈ H ]. Hence we have isomorphisms of R-modules
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tR⊗G Ck(X̃ ; R)→ R⊗G Cn−k(X̃∗, ∂X̃∗; R)

and
R⊗G Ck(X̃ ; R)→ tR⊗G Cn−k(X̃∗, ∂X̃∗; R)

given by r⊗c �→ r⊗ φ̃k(c). The homology R-modules of {tR⊗GCk(X̃; R), id⊗
∂} are denoted by H∗(X ; tR), with similar definitions for H∗

f (X∗, ∂X∗; tR),
etc. In particular we have twisted (Poincaré and) Lefschetz Duality:

Proposition 15.2.10. Let X be a non-orientable CW n-manifold. The above
isomorphisms induce isomorphisms Hk(X ; tR) → Hn−k

f (X∗, ∂X∗; R) and

Hk(X ; R)→ Hn−k
f (X∗, ∂X∗; tR). �

Remark 15.2.11. It should be repeated that there is a version of Poincaré
and Lefschetz Duality, using singular homology/cohomology and cap product,
which works on topological manifolds, with no reference to a CW complex
structure. See [146], [50], [74]. For a rather different treatment see [110]. From
one point of view this is the “right” approach for experts to use. One of our
purposes has been to bring out the geometrical content of an older approach
which has tended to be ignored in modern books, but which many topologists
understand in a “folk” sense.

Exercises

1. Show that the following diagrams commute where the horizontal lines come from
Sect. 11.4 and Sect. 12.2, and the vertical isomorphisms are induced by the duality
isomorphisms.

Hk(X) ��

∼=
��

H∞
k (X) ��

∼=
��

He
k−1(X) ��

∼=
��

Hk−1(X)

∼=
��

Hn−k
f (X∗, ∂X∗) �� Hn−k(X∗, ∂X∗) �� Hn−k

e (X∗, ∂X∗) �� Hn−k+1
e (X∗, ∂X∗)

Hk
f (X) ��

∼=
��

Hk(X) ��

∼=
��

Hk
e (X) ��

∼=
��

Hk+1
f (X)

∼=��
Hn−k(X∗, ∂X∗) �� H∞

n−k(X∗, ∂X∗) �� He
n−k−1(X

∗, ∂X∗) �� Hn−k−1(X∗, ∂X∗)

(Note that this gives Lefschetz/Poincaré Duality “at the end.”)
2. Let X be an open CW n-manifold such that H∗(X; R) is finitely generated. Prove

that H∗
e (X; R) is finitely generated.

3. By definition a CW n-manifold is a regular CW complex. Give an example where
X̃ is a CW n-manifold but X is not regular. Extend the proofs of 15.2.3, 15.2.4
and 15.2.6 to cover this case.
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4. Suppose that in 15.2.4 ∂X = ∂0X ∪ ∂1X where each ∂iX is the union of some
path components of ∂X, and ∂0X ∩ ∂1X = ∅. Find a duality theorem giving an
isomorphism Hk(X, ∂0X; R) → Hn−k

f (X∗, ∂1X
∗; R). Find similar isomorphisms

for the other cases treated in 15.2.4.
5. Establish the duality theorems for filtered homology and cohomology indicated

in Remark 14.2.4.
6. Show that if X is a contractible open n-manifold and n ≥ 2 then2 He

k(X; R) is
trivial when k �= n− 1, while He

n−1(X; R) and He
n−1(X; R) are isomorphic to R.

15.3 Poincaré Duality groups and duality groups

We defined the homological finiteness property “G has type FP over R” in
Sect. 8.2. Such a group G is an n-dimensional orientable Poincaré Duality
group over R if Hn(G, RG) is isomorphic (as a right RG-module – see 13.2.16)
to the trivial RG-module R, and Hk(G, RG) = 0 when k �= n. A choice of
such an isomorphism is an R-orientation on G. Topological motivation for
this comes from Sect. 15.2, where we saw that fundamental groups of closed
orientable aspherical CW n-manifolds are examples. Motivated by 15.2.7 and
15.2.9 we establish “Poincaré Duality” for these groups:

Theorem 15.3.1. The following are equivalent:

(i) G is an n-dimensional orientable Poincaré Duality group over R;
(ii) (a) G has type3 FP , and

(b) For each k and each right RG-module M there is an isomorphism
Hn−k(G, M) → Hk(G, M) which is natural when Hn−k(G,−) and
Hk(G,−) are regarded as covariant functors: Right RG-modules→ R-
modules.

The statement (ii) in 15.3.1 is normally given as the definition of an n-
dimensional orientable Poincaré Duality group over R. It is convenient for our
exposition to adopt our equivalent definition instead.

Before proving 15.3.1, we discuss the meaning of (ii)(b). If β : M →M ′ is
a homomorphism of right RG-modules and

0 �� Fn
∂ �� · · · ∂ �� F0

ε �� R �� 0

is a projective resolution of R, then we have a chain map β⊗ id : M ⊗G F∗ →
M ′ ⊗G F∗ inducing a homomorphism H∗(G, M) → H∗(G, M ′). This is the
sense in which H∗(G,−) is a covariant functor. The discussion for H∗(G,−)
is similar: when M and M ′ are turned into left RG-modules in the usual
way, β is also a homomorphism of left RG-modules, so β# : HomG(F∗, M)→
HomG(F∗, M ′) induces a homomorphism H∗(G, M)→ H∗(G, M ′), etc.

2 Thus, from a homological point of view, X “looks like” Sn−1 at infinity. We will
see in Sect. 16.6 that this is not necessarily true from a homotopical point of view.

3 It can be shown that (ii)(b) implies (ii)(a); see pages 140-141 of [14].
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Proof (of 15.3.1). Let 0 ��Fn
∂ �� · · · ∂ ��F1

ε ��R ��0 be a projec-
tive RG-resolution of the trivial RG-module R. Some statements in this proof
are more obvious when the modules Fk are free; we will assume they are free,
leaving the projective case to the reader. Each Fk is a finitely generated pro-
jective left module, and, as in Sect. 13.2, RG is, in the first instance, a right
RG-module, so F ∗

k := HomG(Fk, RG) becomes a projective left RG-module
via (g.f)(x) = f(x)g−1.

(i) ⇒ (ii): By (i) we have an exact sequence

0 �� R �� F ∗
n
�� ∂∗

· · · �� ∂∗

F ∗
0
�� 0

which is another finitely generated projective resolution of R. For each right
RG-module M there are R-isomorphisms αk : M ⊗G F ∗

k → HomG(Fk, M)

given by αk(m ⊗ f)(x) = mf(x), where
∑

α

rigi :=
∑

i

rig
−1
i , and they fit

together to give an isomorphism of chain complexes (over R) {M ⊗G F ∗∗ , id⊗
∂∗} → {HomG(F∗, M), ∂∗}. Thus Hk(G, M) ∼= Hn−k(G, M), and naturality
is clear.

(ii)⇒ (i): From the resolution we see that Hk(G, RG) = 0 when k > 0 and
H0(G, RG) is isomorphic to the trivial RG-module R. By (ii), Hk(G, RG) = 0
when k �= n and Hn(G, RG) is isomorphic to R at least as an R-module.
Left multiplication by g ∈ G, λg : RG → RG, is a homomorphism of right
RG-modules and thus induces λg∗ : Hn(G, RG) → Hn(G, RG), which is the

identity by the naturality hypothesis. Thus by 13.2.16, λg : C∗(X̃; R) →
C∗(X̃; R) induces this, so right multiplication by g−1 in C∗(X̃ ; R) induces
the identity on H∗(G, RG). Hence Hn(G, RG) is isomorphic to the trivial
RG-module R. �

Recall that a right R-module M is flat if the exactness of A → B → C
always implies the exactness of M ⊗R A→M ⊗R B →M ⊗R C. A group G
of type FP is an n-dimensional duality group over R if Hk(G, RG) = 0 when
k �= n while Hn(G, RG) is non-trivial4 and flat as an R-module. We write
D = Hn(G, RG) and call it the dualizing module.

In parallel with 15.3.1 we have:

Theorem 15.3.2. The following are equivalent:

(i) G is an n-dimensional duality group over R;
(ii) (a); G has type5 FP

(b) For each k and each right RG-module M there is an isomorphism
Hn−k(G, M) → Hk(G, M ⊗R D) which is natural when Hn−k(G,−)
and Hk(G,− ⊗R D) are regarded as covariant functors: Right RG-
modules → R-modules. Here G acts on M ⊗R D “diagonally” via
(m⊗ d).g = m.g ⊗ d.g .

4 Here, “non-trivial” is redundant by 13.10.1.
5 As with 15.3.1, it can be shown that (ii)(b) implies (ii)(a); see [14, pp. 140–141].
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The proof of 15.3.2 runs parallel to the proof we have given for 15.3.1, but
involves some more general homological algebra. It can be found in [14, pp.
140–141] and [29, Chap. 8, Sect. 10].

The statement (ii) in 15.3.2 is usually given as the definition of an n-
dimensional duality group. As with the Poincaré Duality case, our equivalent
definition is more convenient here. Note that when D is the trivial RG-module
R, 15.3.2 reduces to 15.3.1.

For the rest of this section we assume that R is a PID. Then “flat” is
equivalent to “torsion free” (see for example III.9.1.3 of [76]). Let G have type
FD (equivalently G is finitely presented and has type FP ). By 7.2.13, there
is a K(G, 1)-complex X of finite type. Let {Ki} be a finite type filtration of
X̃. Then 13.3.2 and 13.3.3 give:

Proposition 15.3.3. Under these hypotheses G is an n-dimensional duality
group iff for all k �= n − 1 {H̃k(X̃ −c Ki; R)} is pro-trivial and {Hn−1(X̃ −c
Ki; R)} is pro-torsion free and not pro-trivial. �

The more general notion of n-dimensional Poincaré Duality group, G, over
R is defined as in the orientable case, above, except that Hn(G, RG) is only
required to be isomorphic to R as an R-module. Then G is a duality group,
so 15.3.2 applies. In this case we get a sharpening of 15.3.3:

Proposition 15.3.4. Under the hypotheses of 15.3.3, G is an n-dimensional
Poincaré Duality group iff for all k �= n − 1 {H̃k(X̃ −c Ki; R)} is pro-trivial
and {Hn−1(X̃ −c Ki; R)} is stable with free inverse limit of rank 1 (i.e., stably
R).

We turn to examples. The primary examples6 of n-dimensional [orientable]
Poincaré Duality groups are the fundamental groups of closed [orientable]
aspherical n-manifolds (CW n-manifolds in our treatment) – see 15.2.7. By
15.3.4, the “homology at infinity” of an n-dimensional [orientable] Poincaré
Duality group is that of an (n− 1)-sphere [on which G acts trivially]. In Sect.
16.6 we will see examples which are not simply connected at infinity.

By 15.3.3, finitely generated non-trivial free groups are 1-dimensional du-
ality groups over R and those of rank ≥ 2 are not Poincaré Duality groups.
A group G for which there exists a finite 2-dimensional K(G, 1)-complex is a
2-dimensional duality group over R iff G has one end, by 13.5.7. For example,
the simple groups G mentioned in 9.4.4 have one end (by Theorem 6.3 of [14])
and are therefore 2-dimensional duality groups. It is proved in [11] that if X̃
is the “spine of Outer Space” Kn of Sect. 9.5, then the condition in 15.3.4
is satisfied, hence every torsion free subgroup of finite index in Out(Fn) is a
(2n− 3)-dimensional duality group.

Many other examples of duality groups are known, some discussed in [29].

Source Notes: 15.3.1 and 15.3.2 are found in [14].

6 Indeed, the only known examples at time of writing.
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Exercises

1. Prove 15.3.3.
2. What can be deduced from 15.3.3 about He

∗(X̃; R)?



PART V: HOMOTOPICAL GROUP
THEORY

In Part IV, we presented topics from homological group theory as “homology
at the end” of universal covers of suitable K(G, 1)-complexes. Here we do the
same with homotopy. The difference is that while there is a well established,
and totally algebraic, subject called Homology of Groups based on the idea
of a resolution, there is no corresponding established algebraic theory called
Homotopy of Groups. We attempt to organize the beginnings of Homotopy
Theory of Groups, making full use of topological methods. At each step we
develop the necessary topology at the level of proper homotopy theory and
then apply it to universal covers of suitable CW complexes.∗∗

In Chap. 16 we deal with the lowest dimensional cases: connectedness at
infinity and various inequivalent definitions of fundamental group at infinity.
We prove Wright’s Theorem which places severe restrictions on when a locally
finite CW complex can be a non-trivial covering space. We also treat some im-
portant examples in detail: Whitehead’s Contractible 3-manifold, and Davis’
examples of closed manifolds whose universal covers are not simply connected
at infinity.

And in Chap. 17 we discuss basic topics in higher-dimensional homotopical
group theory.

∗∗ To keep the two ideas apart, we tend (in Part V) to use Y for a general strongly
locally finite CW complex and X̃ for the universal cover of a finite CW complex
X.



16

The Fundamental Group At Infinity

16.1 Connectedness at infinity

Let Y be a strongly locally finite path connected CW complex. In this section
we discuss various meanings of the vague sentence “Y is connected at infinity”.
One possible meaning is that Y has one end. As we saw in Sect. 13.4, this
means that for any two proper rays ω and τ in Y , ω | N and τ | N are
properly homotopic. Another possible meaning is that Y is strongly connected
at infinity by which we mean that any such ω and τ are themselves properly
homotopic. A third possible meaning is that the infinite 1-chains over the ring
R defined by any such (cellular) ω and τ are properly homologous, in which
case we will say that Y is strongly R-homology connected at infinity. Then the
distinctions multiply: if Y has more than one end we can ask: is Y strongly
connected or strongly R-homology connected at a particular end? To deal
with all these matters we need a vocabulary. So we begin again.

We define a strong end of Y to be a proper homotopy class of proper rays
in Y . We denoted the set of ends of Y by E(Y ). Now we denote the set of
strong ends of Y by SE(Y ). The function γ : SE(Y )→ E(Y ), sending a proper
homotopy class of proper rays to the end it determines, is surjective; its failure
to be injective is related to fundamental group questions, as we now explain.

In order to discuss inverse sequences of fundamental groups, we need a
replacement for the base point. A base ray in Y is a chosen proper ray ω :
[0,∞) → Y . We write (Y, ω) for the space Y equipped with the base ray
ω. This ω is well parametrized with respect to the finite filtration {Li} of
Y if ω([i,∞)) ⊂ Y −c Li for all i. Any proper ray can be reparametrized
by a proper homotopy to achieve this with respect to a given {Li}. Given
(Y, {Li}, ω) with ω well parametrized, consider the inverse sequence of groups

{π1(Y −c Li, ω(i))},

where the suppressed bond:

π1(Y −c Li+1, ω(i + 1))→ π1(Y −c Li, ω(i))
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is [τ ] → [ω[i,i+1].τ.ω
−1
[i,i+1]]. Here, “.” denotes path-multiplication, and ω[a,b] :

I → Y denotes the path t �→ ω((1 − t)a + tb), i.e., the [a, b]-segment of the
ray ω. For fixed ω, let SE(Y, ω) ⊂ SE(Y ) be the set of strong ends of Y which
define the same end as ω. We define a canonical bijection:

η : SE(Y, ω)→ lim←−
1{π1(Y −c Li, ω(i))}

as follows. Take a proper ray τ in Y defining the same end as ω. Then there
is a proper homotopy H : τ | N ∼= ω | N. Let σi be the path H | {i} × I from
τ(i) to ω(i). There is a sequence n1 < n2 < · · · such that, for all i, σni

lies
in Y −c Li and ni ≥ i. Let µi be the loop ω[i,ni].σ

−1
ni

.τ[ni,ni+1].σni+1 .ω
−1
[i,ni+1]

,

which is based at ω(i). See Fig. 16.1. Then ([µi]) defines an element of the set
lim←−

1{π1(Y −c Li, ω(i))}.
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Proposition 16.1.1. The correspondence τ �→ ([µi]) induces a bijection η :
SE(Y, ω)→ lim←−

1{π1(Y −c Li, ω(i))}.
Proof. We indicate the definition of η−1, leaving it to the reader to check that
η and η−1 are well defined and are mutually inverse. The omitted details are
tedious but instructive.

For each i ≥ 0, let νi be an edge loop in Y −c Li based at ω(i). Consider the
sequence of paths ν0, ω[0,1], ν1, ω[1,2], . . .. There is a proper ray ζ : [0,∞)→ Y
whose restriction to each closed interval [n, n + 1] agrees (up to parametriza-
tion) with the nth path in that sequence (n ≥ 0). Then η−1 is well defined: it
takes ([νi]) to the strong end defined by ζ. See Fig. 16.2. �

Recall from Sect. 11.3 that an inverse sequence {Gn} of groups is semistable
if for each m there exists φ(m) ≥ m such that for all k ≥ φ(m) image

f
φ(m)
m = image fk

m, and that, by 11.3.2, when each Gn is countable this is
equivalent to the triviality of lim←−

n

1{Gn}. Summarizing:
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Proposition 16.1.2. The following are equivalent:

(i) Every proper ray defining the same end as ω is properly homotopic to ω;
(ii) {π1(Y −c Li, ω(i))} is semistable;
(iii) lim←−

1{π1(Y −c Li, ω(i))} is trivial. �

It follows from this and the discussion in Sect. 11.3 that whenever SE(Y, ω)
contains more than one strong end, it contains uncountably many strong ends.
Example 11.4.15 provides an inverse mapping telescope with one end but
uncountably many strong ends.

Remark 16.1.3. Using 16.1.1 we can easily prove 11.3.6 in the case of an in-
verse sequence {Gn} of finitely presented groups. For each n let (Xn, vn) be
a pointed finite connected CW complex with π1(Xn, vn) ∼= Gn. Choose a cel-
lular map (Xn+1, vn+1)→ (Xn, vn) inducing the bond Gn+1 → Gn. Let Y be
the inverse mapping telescope and ω the obvious base ray with ω(i) equal to
(the equivalence class of) vi. The following diagram commutes, and by 16.1.1,
η and η′ are bijections.

lim←−
1{π1(Y −c Li, ω(i))}

α

��

SE(Y, ω)

η
**��������������

η′

++##
###

###
###

###

lim←−
1{π1(Y −c Lni

, ω(ni))}

Hence α is a bijection as claimed in 11.3.6. In the case of arbitrary groups Gn,
a similar argument works using filtered ends, filtered strong ends, etc., in the
spirit of Sect. 14.3.
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We write e(ω) for the end determined by the proper ray ω, and [ω] for the
proper homotopy class of ω. There is a short exact sequence of pointed sets

(SE(Y, ω), [ω]) � � �� (SE(Y ), [ω])
γ �� �� (E(Y ), e(ω)).

Define πe
0(Y, ω) to be the pointed set (SE(Y ), [ω]). Then 13.4.6 and 16.1.1

allow us to rewrite this:

Proposition 16.1.4. The functions η and γ define functions a and b in a
natural short exact sequence of pointed sets:

lim←−
1{π1(Y −c Li, ω(i))} a

� πe
0(Y, ω)

b
� lim←−{π0(Y −c Li, ω(i))}.

�

This1 should be compared with the n = 0 case of 11.4.8: indeed, one can
also describe a and b directly in the spirit of Remark 11.4.9.

Turning to homology, let Y be oriented and let R be a ring. By 10.1.14,
the proper ray ω can be taken to be cellular. With the usual CW complex
structure and orientation on [0,∞), an oriented 1-cell of [0,∞) has the form

[n, n + 1]. Let ω̄ =
∞∑

n=0

ω#([n, n + 1]). We call ω̄ the chain defined by ω. This

ω̄ is a 0-cycle of the end of Y in the sense of Sect. 11.4. If τ is another cellular
proper ray in Y , we say ω and τ are properly R-homologous if ω̄−τ̄ ∈ Be

0(Y ; R);
i.e., if ω̄− τ̄ differs from the boundary of an infinite 2-chain by a finite 1-chain.
A strong R-homology end of Y is a proper R-homology class of chains defined
by a proper ray in Y . We denote the set of strong R-homology ends of Y
by SHE(Y ; R). Thus SHE(Y ; R) ⊂ He

0 (Y ; R). From 11.4.8, we have an exact
sequence of R-modules

0→ lim←−
1{H1(Y −c Li; R)} a−→ He

0 (Y ; R)
b−→ lim←−{H0(Y −c Li; R)} → 0.

Using the geometric explanation of b given in Remark 11.4.9, together with
13.4.7 and the proof of 13.4.11, one sees that there is a commutative diagram
in Sets:

SE(Y )
α ��

γ

��

SHE(Y ; R)
� � ��

β

�����
���

���
���

He
0(Y ; R)

−b

��
E(Y ) �� �� �� lim←−{π0(Y −c Li)} ��

hE(Y )

�� lim←−{H0(Y −c Li; R)}.

Here α takes the proper homotopy class of ω to the proper R-homology class
{ω̄} of ω̄, and β takes {ω̄} to e(ω). The bottom line was defined at the

1 We caution the reader against trying to deduce too much from exactness in the
category Pointed Sets: see the footnote following the proof of 11.3.2.
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end of Sect. 13.4. The minus sign in “−b” occurs because the proper ray
is parametrized away from its initial point and towards infinity.

Let SHE(Y, ω; R) ⊂ He
0 (Y ; R) be the set of strong R-homology ends

which define the same end as ω. Then SHE(Y, ω; R) is a subset of the in-
verse image under −b of an element of lim←−{H0(Y −c Li; R)}. By subtracting
{ω̄} ∈ He

0(Y ; R) we translate SHE(Y, ω; R) into ker b. Indeed, identifying
the lim←−

1 expression with ker b via a, this gives us an injection η̄ defined by
η̄({τ̄}) = {τ̄} − {ω̄}, making the following diagram commute:

SE(Y, ω) �� η �� ��

α|
��

lim←−
1{π1(Y −c Li, ω(i))}

hR

��
SHE(Y, ω; R) �� η̄ �� lim←−

1{H1(Y −c Li; R)}

where hR is induced by the composition

π1(Y −c Li, ω(i))
h
� H1(Y −c Li; Z)

1⊗·
−→ R⊗Z H1(Y −c Li; Z)

∼=−→ H1(Y −c Li; R)

(see 3.1.20 and 12.4.2).
The function η̄ can also be defined by analogy with the definition of η,

above.

Proposition 16.1.5. If Y has one end, η̄ is a bijection.

Proof. The proof is analogous to that of 16.1.1. Alternatively, when R = Z or
more generally when the homomorphism 1 ⊗ · is surjective, the function hR

is surjective by 3.1.19 and 11.3.4, and so the injection η̄ is a bijection. �

Proposition 16.1.6. η̄ is a homomorphism of R-modules, hence an isomor-
phism when Y has one end.

Proof. Let the proper ray τ define the same end as ω. It is implicit in the
proof of 16.1.1 that τ is properly homotopic to a proper ray which has the
form of an “infinite product” ν0.ω[0,1].ν1.ω[1,2]. . . . where νi is a loop at ω(i).
If τ ′ is another such, represented by ν ′

0.ω[0,1].ν
′
1.ω[1,2]. . . ., then the proper ray

ζ represented by ν0.ν
′
0.ω[0,1]ν1.ν

′
1.ω[1,2]. . . . has the property that η̄({ζ̄}) =

η̄({τ̄}) + η̄({τ̄ ′}). The rest is clear. �

We say Y is strongly connected at the end e(ω) if any two proper rays in
Y defining e(ω) are properly homotopic (see 16.1.2). We say Y is strongly
homology connected at the end e(ω) if the chains defined by any two proper
cellular rays in Y defining e(ω) are properly R-homologous. When Y has
one end we say Y is strongly connected at infinity or strongly R-homology
connected at infinity when it has the appropriate property at its end.
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When Y has one end, Y is strongly R-homology connected at infinity
iff {H1(Y −c Li; R)} is semistable iff (by 11.3.2) lim←−

1{H1(Y −c Li; R)} is
trivial. But when Y has more than one end, care is needed in making the
corresponding statement (16.1.8 below). Note first that, by 13.4.7, an end e
of Y can be regarded as an element (Zi) of lim←−{π0(Y −c Li)}; here Zi denotes

a path component of Y −c Li, and Zi ⊃ Zi+1 for all i:

Proposition 16.1.7. Y is strongly R-homology connected at the end e iff
lim←−

1{H1(Zi; R)} is trivial.

Proof. One defines a bijection η′ : SHE(Y, ω; R)→ lim←−
1{H1(Zi; R)} by anal-

ogy with the definition of η. The inverse of η′ is defined as in the proof of
16.1.1. The details are an exercise. �

Proposition 16.1.8. Let H1(Y ; R) be finitely generated. The following are
equivalent when R is a PID:

(i) Y is strongly R-homology connected at every end;
(ii) H1

e (Y ; R) is a free R-module;
(iii) {H1(Y −c Li; R)} is semistable;
(iv) lim←−

1{H1(Y −c Li; R)} is trivial.

Proof. The equivalence of (ii), (iii) and (iv) comes2 from 12.5.10 and 11.3.2.
The equivalence of (i) and (iii) follows from 16.1.22 in the Appendix as ex-
plained in 16.1.21. �

Example 16.1.9. Let T be the dyadic solenoid inverse mapping telescope of
11.4.15. T has one end, and H1(T ; R) is a finitely generated R-module. T is
not strongly Z-homology connected at infinity though (like all one-ended Y ;
see 3.5.9) T is strongly Q-homology connected at infinity.

Example 16.1.10. Let φ : 〈a, b〉 → 〈a, b〉 be the endomorphism of a free group
on two generators given by φ(a) = aba−1b−1, φ(b) = a2b2a−2b−2. Let f :
S1∨S1 → S1∨S1 be the obvious map inducing φ on fundamental group. The
Case-Chamberlin inverse mapping telescope C is obtained from the inverse
sequence

S1 ∨ S1 f←− S1 ∨ S1 f←− · · · .
C is strongly Z-homology connected at infinity, but is not strongly connected
at infinity.

We leave as an exercise:

Proposition 16.1.11. If Y is strongly connected at the end e then Y is
strongly R-homology connected at e. �

2 The hypotheses that H1(Y ; R) be finitely generated and that R be a PID are only
needed for the equivalence of (ii) and (iii).
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Combining 16.1.8 and 16.1.11 we get:

Proposition 16.1.12. Let Y be strongly connected at each end, let R be a
PID, and let H1(Y ; R) be finitely generated. Then H1

e (Y ; R) is a free R-
module. �

Dependence on skeleta is given by:

Proposition 16.1.13. Let i(n) : Y n ↪→ Y be the inclusion map. Let ω be a
cellular base ray (in Y 1 ⊂ Y ) which is well parametrized with respect to {Li}.

(i) i
(1)
# : E(Y 1)→ E(Y ) is a bijection;

(ii) i
(2)
# : SHE(Y 2; R)→ SHE(Y ; R) is a bijection;

(iii) i
(2)
# : SE(Y 2, ω)→ SE(Y, ω) is a bijection;

(iv) i
(2)
# : SHE(Y 2, ω; R)→ SHE(Y, ω; R) is a bijection.

Proof. These follow from the Cellular Approximation Theorems 1.4.3 and
10.1.14. Indeed, (i) is essentially 13.4.1. �

Thus the invariance question reduces to low dimensional skeleta. More
precisely, we leave as an exercise:

Proposition 16.1.14. Let Y and Z be path connected locally finite
2-dimensional CW complexes, let f : Y → Z be a proper 2-equivalence, and
let ω be a base ray in Y . Then f induces isomorphisms (in the appropri-
ate categories) E(Y ) → E(Z), SE(Y ) → SE(Z), SHE(Y ; R) → SHE(Z; R),
SE(Y, ω)→ SE(Z, f ◦ ω), and SHE(Y, ω; R)→ SHE(Z, f ◦ ω; R). �

The exact sequences in this section are natural. We remarked in Sect.
11.3 that it is possible to express lim1 as a functor on towers-Groups or on
towers-(R-modules). However, here we have identified our lim1 terms with
topologically simpler objects via the canonical bijections η and η̄, so we may
avoid this functor. By 10.1.14, we have:

Proposition 16.1.15. Let f : Y → Z be a proper map between strongly
locally finite, infinite, path connected CW complexes. Then the function
on proper rays τ �→ f ◦ τ induces functions f# : E(Y ) → E(Z), f# :
SE(Y ) → SE(Z), and f# : SHE(Y ; R) → SHE(Z; R). Indeed, E(·), SE(·)
and SHE(·; R) can be regarded as covariant functors from the proper homo-
topy category to the category Sets. �

A proper map f : Y → Z together with a base ray ω in Y define a
base ray preserving proper map f : (Y, ω) → (Z, ω′) where ω′ = f ◦ ω. A
base ray preserving proper homotopy is a proper base ray preserving map
H : (Y × I, ω(·, 0)) → (Z, ω′), i.e., Ht(ω(s, 0)) = ω′(s) for all t ∈ I and
s ∈ [0,∞). Thus one defines the base ray preserving proper homotopy category.
There are similar definitions for pairs.
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Addendum 16.1.16. The function on rays τ �→ f ◦ τ induces functions
of pointed sets f# : SE(Y, ω) → SE(Z, f ◦ ω) and f# : HSE(Y, ω; R) →
HSE(Z, f ◦ ω; R), where the base points of these sets are defined by ω and
f ◦ ω. In fact, SE(·, ω) and HSE(·, ω; R) define covariant functors from the
base ray preserving proper homotopy category to the category Pointed Sets. �

Corollary 16.1.17. The short exact sequence in 16.1.4 is natural with respect
to base ray preserving proper homotopy classes of proper maps.3 �

Recall that proper edge rays are defined in Sect. 11.1. Sometimes it is
convenient to describe ends combinatorially. A proper parametrization of the
proper edge ray τ := (τ1, τ2, . . .) is a map hτ : [0,∞) → Y such that for
each integer k ≥ 0, hτ | [k, k + 1] is a characteristic map for the edge τk

(after reparametrizing to [−1, 1]) in the non-degenerate case, and is constant
at the point τk in the degenerate case. This hτ is a proper ray because no edge
appears infinitely often in (τ1, τ2, . . .). Using 10.1.14 and the proof of 3.1.1, it
is easy to show:

Proposition 16.1.18. Every proper ray in Y is properly homotopic to the
proper parametrization of some proper edge ray in Y . All proper parametriza-
tions of a proper edge ray are properly homotopic. �

Proper edge rays σ := (σ1, σ2, . . .) and τ := (τ1, τ2, . . .) in Y define the
same end of Y if there are edge paths λn in Y where: λn and σn have the
same initial point, the final point of λn is the initial point of τn, and for any
finite subcomplex K of Y only finitely many of the edge paths λn meet K.
This is equivalent to saying that proper parametrizations of these proper edge
rays define the same end.

By 3.4.1 we have:

Proposition 16.1.19. Proper parametrizations of (σ1, σ2, . . .) and (τ1, τ2, . . .)
are properly homotopic iff there exist edge paths λn as above such that
for any finite subcomplex K of Y all but finitely many of the edge loops
σn.λn+1.τ

−1
n .λ−1

n are equivalent4 in Y −c K to trivial edge loops. �

Appendix. Semistability and trees of modules

The combinatorial definition of proper rays in 16.1.18 and 16.1.19 is useful
in the case of a locally finite tree T . Choose a base vertex w for T . For each
e ∈ E(T ) there is a unique proper edge ray τe with initial point w such that
every initial segment of τe is a reduced edge path and the proper ray hτe

determines the end e. The space E(T ) is compact, and we clearly have:

3 If one is prepared to consider lim1 as a functor from towers-Groups to Pointed
Sets, or from towers-(R-modules) to R-modules (see Sect. 11.3), one can check
that the bijections η and η̄ are natural.

4 In the sense of Sect. 3.1; see Fig. 2.1.
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Proposition 16.1.20. If a sequence 〈en〉 converges to e ∈ E(T ) then as n→
∞ more and more of the edges of τen

agree with the edges of τe. �

For each vertex v of T let τv denote the unique reduced edge path with
initial vertex w and final vertex v. The set of vertices T 0 becomes a poset
under the relation u ≤ v iff u is a vertex of an edge in τv. Each v �= w has a
unique immediate predecessor π(v), the last vertex before v on τv. We write
d(v, w) for the distance from v to w (as defined in Sect. 11.1).

Let {Mv}v∈T 0 be a family of R-modules. The poset T 0 is not usually a
directed set, but it contains many directed subsets. In fact, for each e ∈ E(T )
the set {τe(n)}n∈N is such, where τe(n) denotes the nth vertex of τe (i.e., the
final point of the nth initial segment). We will assume given a homomorphism
Mv → Mπ(v) for all vertices v �= w. Then {Mτe(n)} is an inverse sequence of
R-modules for each e ∈ E(T ).

Associated with this is the total inverse sequence {Nn} where Nn :=
⊕{Mv | d(v, w) = n} and the bond Nn → Nn−1 is defined by the bonds
Mv →Mπ(v) for all v with d(v, w) = n.

Recall that a vertex of the tree T is a leaf if it is a face of only one 1-cell.
We will assume that T has no leaves.

Example 16.1.21. To prove 16.1.8 we take T to be “the tree of path com-
ponents of complements.” With notation as above, a vertex of T is a path
component of some Y −c Li, and there is an edge joining the path component
C of Y −c Li to the path component D of Y −c Li+1 iff D ⊂ C. Then T has
no leaves iff every path component of every Y −c Li is unbounded, as we may
always assume, by 13.4.9. In applying the following Theorem 16.1.22 to this,
the module MC corresponding to the “vertex” C will be H1(C; R), and the
bond H1(D; R)→ H1(C; R) will be induced by inclusion. The module Nn will
be H1(Y −c Ln; R). Then 16.1.8 follows from:

Theorem 16.1.22. Let the locally finite pointed tree (T, w) have no leaves
and let {Mv}v∈T 0 be a family of R-modules with given homomorphisms Mv →
Mπ(v) for all v �= w. The total inverse sequence {Nn} is semistable [resp. pro-
trivial] iff for every e ∈ E(T ) the inverse sequence {Mτe(n)} is semistable
[resp. pro-trivial].

The proof involves the compactness of the space E(T ). Semistability will
be analyzed by means of “eventual images.” If {Un} is an inverse sequence of

R-modules the eventual image in Um is EI(Um) :=
⋂

n≥m

image(Un → Um).

Thus {Un} is semistable iff for each m there exists k ≥ m such that EI(Um) =
image(Uk → Um).

Proof (of 16.1.22). “Only if” is clear. We prove “if” for the semistable case,
leaving the (similar) proof of the pro-trivial case as an exercise.

We may assume Mw = 0, hence N0 = 0. For each n let d(n) be the least
integer ≤ n such that EI(Nd(n)) = image(Nn → Nd(n)). Then d(n) ≥ 0 and
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EI(Nk) � image(Nn → Nk) when n ≥ k > d(n). Thus {Nn} is semistable iff
d(n)→∞ as n→∞.

Suppose d(n) �→ ∞ as n → ∞. Then there exists m0 and a cofinal sub-
sequence {Nnk

} such that d(nk) < m0 for all k. We may assume n1 > m0.
Then for all k ≥ 1 EI(Nm0) � image(Nnk

→ Nm0). It follows easily that
EI(Nm0) � image(Nn → Nm0) for all n ≥ m0. Letting Vn denote the set of
vertices of T whose distance from w is n, the last sentence can be rewritten:
for each n ≥ m0

⊕
v∈Vm0

⋂
i≥n

image

((⊕
u∈Vi

v≤u

Mu

)
→Mv

)
�
⊕

v∈Vm0

image

(( ⊕
u∈Vn

v≤u

Mu

)
→Mv

)
.

So for some v0 ∈ Vm0 ,

E :=
⋂
i≥n

image

(( ⊕
u∈Vi

v0≤u

Mu

)
→Mv0

)
� image

(( ⊕
u∈Vn

v0≤u

Mu

)
→Mv0

)
.

Since Vm0 is finite we may assume (passing to a subsequence if necessary)
that v0 is independent of n. This inequality of modules shows that for each
n ≥ m0 there is un ∈ Vn such that image(Mun

→ Mv0) does not lie in E
(which is independent of n).

The tree T has no leaves, so for each n ≥ m0 there exists en ∈ E(T ) such
that τen

(n) = un. Since E(T ) is compact we may assume (again passing to
a subsequence) that the sequence of en’s converges to some e ∈ E(T ). By
16.1.20, for each m there exists r(m) such that, when n > r(m), τe(m) =
τen

(m) < τen
(n) = un. Thus if m ≥ m0, image(Mτe(m) → Mv0) does not lie

in E. But (referring to the inverse sequence {Mτe(m)}) EI(Mτe(m0)) ⊂ E. So
EI(Mτe(m0)) � image(Mτe(m) →Mv0) for all m ≥ m0, contradicting the fact
that {Mτe(m)} is semistable. �

Exercises

1. Fill in the omitted details in 16.1.1.
2. Give an elementary proof (i.e., not using 16.1.1) that Y is strongly connected at

e(ω) iff {π1(Y −c Li, ω(i))} is semistable.
3. Check the details of 16.1.4.
4. Give an example where SHE(Y ; R) is a proper subset of He

0(Y ; R).
5. Prove that a CW-proper 1-equivalence induces a bijection of ends.
6. Draw a picture of a proper ray representing η̄({τ̄}) − η̄({τ̄ ′}).
7. What is meant by saying that the exact sequence in 16.1.4 is natural? Prove

naturality.
8. Develop a theory of “strong ends” and “homology strong ends” in filtered homo-

topy.
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16.2 Analogs of the fundamental group

Let Y be a strongly locally finite path connected CW complex, let e be an
end of Y , and let the proper ray ω represent e. When K is a finite subcomplex
of Y we denote by K(e) the path component of Y −c K containing all but
a compact subset of ω([0,∞)). We say that Y is simply connected at e if for
every finite subcomplex K of Y there is a finite subcomplex L ⊃ K such that
every map f : S1 → L(e) extends to a map F : B2 → K(e). If Y has only one
end and satisfies this condition we say that Y is simply connected at infinity.
For example, Rn is simply connected at infinity when n ≥ 3, but not when
n = 2. The line, R, is simply connected at both ends, but R×S1 is not simply
connected at either end.

In this section we discuss various ways of associating a “fundamental
group” with e. The three definitions we discuss are not, in general, equiv-
alent. Indeed, for the second and third definitions it is not true (without
further hypotheses) that triviality implies simple connectivity at e. Neverthe-
less all three deserve to be known and the relationships among them should
be understood.

Let {Li} be a finite filtration of Y , and let ω be well parametrized with
respect to {Li}. The fundamental pro-group of Y based at ω (with respect
to {Li}) is the inverse sequence {π1(Y −c Li, ω(i))} described in detail in
Sect. 16.1. If {Mi} is another finite filtration of Y with respect to which ω
is also well parametrized, then there is an obvious pro-isomorphism from this
sequence to {π1(Y −c Mi, ω(i))}. Thus we may ignore dependence on {Li}.
We will discuss dependence on ω in a moment.

The triviality of the fundamental pro-group is equivalent to simple con-
nectivity at e(ω); more precisely:

Proposition 16.2.1. The following are equivalent:

(i) Y is simply connected at e;
(ii) {π1(Y −c Li, ω(i))} is pro-trivial;
(iii) lim←−{π1(Y −c Li, ω(i))} and lim←−

1{π1(Y −c Li, ω(i))} are trivial.

Proof. For (iii) ⇔ (ii), use Exercise 10 of Sect. 11.3; (i) ⇔ (ii) is clear. �

By 16.1.2, it follows that if Y is simply connected at e then Y is strongly
connected at e.

Dependence on skeleta (compare 16.1.13) is given by:

Proposition 16.2.2. i
(2)
# : {π1(Y

2 −c L2
i , ω(i))} → {π1(Y −c Li, ω(i))} is an

isomorphism in pro-Groups. �

So the invariance question reduces to the 2-skeleton:

Proposition 16.2.3. Let f : Y → Z be as in 16.1.14, let {Li} and {Mj} be
finite filtrations of Y and Z respectively. Then ω can be reparametrized by a
proper homotopy so that f# : {π1(Y −c Li, ω(i))} → {π1(Z −c Mj, f ◦ ω(j))}
is an isomorphism in pro-Groups.
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Proof. Let H : g ◦ f |� inclusion and H̄ : f ◦ g |� inclusion be proper cellular
homotopies. Give Y the cellular base ray ω. By reparametrizing ω if necessary
we can assume that Ht◦ω [resp. H̄t◦f ◦ω] is well parametrized with respect to
{Li} [resp. {Mj}] for all t. Let αi be the path in Y given by αi(t) = Htω(i),
and let βj be the path in Z given by βj(t) = H̄tfω(j). The isomorphisms

π1(Y −c Li, gfω(i))
αi#−→ π1(Y −c Li, ω(i)) given by [σi] �→ [α−1

i .σi.αi] fit
together to give an isomorphism in pro-Groups

α# : {π1(Y −c Li, gfω(i))} → {π1(Y −c Li, ω(i))}.

There is a similar definition for β#. The proper homotopy H is needed for the
proof that α# is an isomorphism. We have morphisms in pro-Groups

f# : {π1(Y −c Li, ω(i))} → {π1(Z −c Mj , fω(j))}

and
g# : {π1(Z −c Mj, fω(j)} → {π1(Y −c Li, gfω(i)}

where, again, some details of definition are left to the reader. The upshot is
that α# ◦g# ◦f# = id and β# ◦f# ◦g# = id. Together with 16.2.2 this proves
what was claimed. �

The proper ray ω plays the role of the base point. If F : ω � τ is a cellular
proper homotopy between cellular base rays (which is well parametrized5 with
respect to {Li}), F induces a “change of base ray” isomorphism

{π1(Y −c Li, ω(i))} → {π1(Y −c Li, τ(i))}

entirely analogous to what is described in Sect. 3.3; the details are omitted.
This means that up to pro-isomorphism the fundamental pro-group only de-
pends on the strong end defined by ω. However, if Y is not strongly connected
at e, the fundamental pro-groups with respect to different base rays defining
e may not be pro-isomorphic, indeed may not even have isomorphic inverse
limits. Here is a one-ended example6 where with one base ray the inverse limit
is infinite cyclic, while with another base ray the inverse limit is trivial:

Example 16.2.4. Let W = S1
1 ∨S1

2 , a wedge of two circles with wedge point v.
Let f : W →W be a map taking each circle to itself (hence f(v) = v), agreeing
with the map f1,2 (of degree 2 – see Sect. 2.4) on S1

1 and with the identity
map on S1

2 . Writing a and b for generators of the fundamental groups of the
two circles based at v, f induces the homomorphism φ defined by a �→ a2,
b �→ b. The one-ended space in question is the inverse mapping telescope of

5 The references to “well parametrized” can always be dispensed with by passing
to a subsequence {Lni}.

6 The connection between examples of this kind and strong shape theory is ex-
plained in Sect. 17.7.
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{W �� f
W �� f · · · } , which we denote by Y . The sequence (v, v, . . .) defines

a base ray ω in Y using straight lines in the mapping cylinders whose union
is Y . By restricting the map f to S1

1 we find a copy of T , the dyadic solenoid
inverse mapping telescope (see 11.4.15) as a subset of Y , and the image of ω
actually lies in T . Letting Ln denote the union of the first n mapping cylinders
in Y , we have a finite filtration {Li} of Y . Clearly, lim←−{π1(Y −c Li, ω(i))} is

isomorphic to Z (generated by S1
2), since lim←−{π1(T −c Li, ω(i))} is trivial.

Now lim←−
1{π1(T −c Li, ω(i))} is non-trivial by 11.4.15 and thus, by 14.1.1,

there is a proper ray τ in T which is not properly homotopic to ω in T . Since
T is a retract of Y , such a ray τ is not properly homotopic to ω in Y . We
claim lim←−{π1(Y −c Li), τ(i)} is trivial. The proof of the contrapositive, that if

lim←−{π1(Y −c Li), τ(i)} is non-trivial then τ is properly homotopic to ω in Y ,
is set out in Exercise 4.

Now for our second definition of “fundamental group associated with e:”
with notation as before, the Čech fundamental group of Y based at ω is
π̌1(Y, ω) := lim←−{π1(Y −c Li, ω(i))}. In view of Example 16.2.4, its isomor-
phism class depends on ω. We regard π̌1(Y, ω) as a topological group: each
π1(Y −c Li, ω(i)) is regarded as a discrete topological group and the inverse
limit is interpreted in the category Topological Groups. When thus topolo-
gized, π̌1(Y, ω) carries the same information as the fundamental pro-group if
(and only if) Y is strongly connected at e. More precisely, in that case the
inverse sequence {π1(Y −c Li, ω(i))} can be recovered, up to pro-isomorphism,
from the topological group π̌1(Y, w). Indeed, let {Gi} be a semistable inverse
sequence of countable groups with inverse limit G. Topologized as above, G
is a complete first countable zero-dimensional7 topological group. Choose a
basis U1 ⊃ U2 ⊃ · · · for the neighborhoods of 1 ∈ G which are closed and
open subgroups of G. The following proposition is explained more fully in
Sect. 16.7:

Proposition 16.2.5. Under these hypotheses the inverse sequence of (dis-
crete) groups {G/U1 ← G/U2 ← · · · }, where each bond is the obvious quotient
epimorphism, is pro-isomorphic to {Gi}. �

Note that π̌1(Y, ω) has already appeared in 16.2.1. Its invariance properties
(up to isomorphism of topological groups) are covered implicitly by 16.2.2
and 16.2.3. Notice the similarity between 16.2.5 and the fact (following from
13.4.15) that the space of ends E(Y ) determines {π0(Y −c Li)} up to pro-
isomorphism.

Our third definition is by analogy with He
1(Y ; R). We define the strong (or

Steenrod) fundamental group πe
1(Y, ω): its elements are the base ray preserving

proper homotopy classes of proper maps (S1× [0,∞), {v}× [0,∞))→ (Y, ω),
where v is a base point of S1, and {v}× [0,∞) denotes the base ray t �→ (v, t)
in S1 × [0,∞). Multiplication of two such proper maps restricts to ordinary

7 These terms are defined in Sect. 16.7.
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loop multiplication on S1×{t} for each t ∈ [0,∞); similarly for inversion. One
obtains a group structure on πe

1(Y, ω) just as in Sect. 3.3. The trivial element
is represented by the map (e2πiθ, t) �→ ω(t).

As in Sect. 3.3, πe
1 is a covariant functor from the base ray preserving

proper homotopy category to the category Groups. By analogy with 11.4.8,
we define b : πe

1(Y, ω)→ lim←−{π1(Y −c Li, ω(i))} as follows. Let

α : (S1 × [0,∞), {v} × [0,∞))→ (Y, ω)

be a proper map. We can alter α by a proper homotopy, rel{v} × [0,∞), so
that α(S1 × [i,∞)) ⊂ Y −c Li for all i. Then α | S1 × {i} =: αi is a loop
in Y −c Li at ω(i). The required b maps [α] to ([αi]) where [ · ] denotes a
base ray preserving proper homotopy class or a pointed homotopy class, as
appropriate. It is a routine exercise (compare 11.4.8) to prove:

Proposition 16.2.6. The function b is well defined and is an epimorphism
of groups. It fits into a natural short exact sequence of groups:

lim←−
1{π2(Y −c Li, ω(i))} a

� πe
1(Y, ω)

b
� lim←−{π1(Y −c Li, ω(i))}

�

It is clear from 16.2.6 and 16.2.1 that the vanishing of πe
1(Y, ω) need not

imply that Y is simply connected at e, but it does imply that π̌1(Y, ω) is
trivial.

Let e ∈ E(Y ), and for each i let Zi be the corresponding path component
of Y −c Li (compare 16.1.7). We say Y is 1-acyclic at e (with respect to R) if
for each i there is j such that every cellular 1-cycle (over R) in Zj bounds a
cellular 2-chain in Zi. If Y has only one end this is abbreviated to 1-acyclic
at infinity. By analogy with 16.2.1 we have:

Proposition 16.2.7. Let R be a PID and let H1(Y ; R) be finitely generated.
The following are equivalent:

(i) Y is 1-acyclic at every end with respect to R;
(ii) H1

e (Y ; R) = 0;
(iii) {H1(Y −c Li; R)} is pro-trivial;
(iv) lim←−{H1(Y −c Li; R)} and lim←−

1{H1(Y −c Li; R)} are trivial.

Proof. Similar to that of 16.1.8 (including its footnote). Again (i)⇒ (iii) uses
16.1.22. �

By analogy with 16.1.11 and 16.1.12 we have:

Proposition 16.2.8. If Y is simply connected at e ∈ E(Y ) then Y is 1-acyclic
at e (with respect to R). �

Proposition 16.2.9. Let Y be simply connected at each end and let H1(Y ; R)
be finitely generated, where R is a PID. Then H1

e (Y ; R) = 0. �
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Source Notes. Čech homotopy groups first appeared in [40]. For proper homotopy
they are developed in [60]. Example 16.2.4 is adapted from a shape theoretic example
of Borsuk [20]. Some delicate issues involving the various fundamental groups at
infinity are discussed in [26].

Exercises

1. Prove that the inverse sequence {Hn} in Example 16.2.4 has trivial inverse limit.
2. Prove that π̌1(Y, ω) is either discrete and countable or non-discrete and uncount-

able.
3. What is meant by saying that the exact sequence in 16.2.6 is natural? Prove

naturality.
4. Fill in the missing proof in Example 16.2.4 by proving that if lim

←−
{π1(Y −c

Li, τ (i))} is non-trivial then τ is properly homotopic to the ray ω described
in that example. Here are the steps:
(a) By performing a proper homotopy in T if necessary, it may be assumed that

f(τ (i + 1)) = τ (i), for each i, and that the ray τ consists of straight lines
in the mapping cylinders whose union is Y . Hint : The bonding maps in the
dyadic solenoid inverse sequence (restrictions of f to the copies of S1

1) are
covering projections.

(b) If (λi) is a non-trivial element of lim
←−

{π1(Y −c Li, τ (i))}, where we think of

λi as a loop in W based at τ (i) ∈ S1
1 , then all but finitely many of the loops

λi cannot be homotoped, rel base point, off S1
2 . Hint : The dyadic solenoid

(see Sect. 17.7) is a topological group, hence lim
←−

{π1(T −c Li, τ (i))} is trivial
for any τ .

(c) The loop λi is a product αi.µi.β
−1
i where αi and βi are paths in S1

1 from τ (i)
to v, and µi is a loop in W based at v, such that, in the free groups π1(W,v),
the element [µi] is a word in the alphabet defined by a and b which begins
and ends with a non-trivial power of b.

(d) There is a homotopy Hi : αi � f ◦αi+1 rel{−1, 1} and these homotopies can
be pieced together to give the desired proper homotopy τ �

p
ω.

16.3 Necessary conditions for a free Z-action

Continuing with the set up and notation of Sect. 16.2, we discuss further
properties of the fundamental pro-group {π1(Y −c Li, ω(i))}. We saw that it
is pro-trivial iff Y is simply connected at the end e(ω); and that it is semistable
iff Y is strongly connected at e(ω). “Semistable” means “pro-isomorphic to
a sequence of epimorphisms” (11.3.1). Here we discuss the dual notion “pro-
isomorphic to a sequence of monomorphisms” and the combination of the two,
which is called “stable.” The main result is Wright’s Theorem 16.3.4.

First, some terminology. An inverse sequence {Gn} of groups is (i) pro-
monomorphic, (ii) stable, (iii) stably H (for a given group H), (iv) pro-trivial ,
(v) pro-free, (vi) pro-finitely generated if it is pro-isomorphic to an inverse
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sequence (i) whose bonds are monomorphisms, (ii) whose bonds are isomor-
phisms, (iii) whose groups are isomorphic to H and whose bonds are isomor-
phisms, (iv) whose bonds are trivial, (v) whose groups are free, (vi) whose
groups are finitely generated. This list and the following proposition should
be compared with Proposition 12.5.3 and the list preceding it.

Proposition 16.3.1. The above definitions (i)–(vi) are equivalent to the fol-
lowing intrinsic definitions:

(i) there is a cofinal subsequence {Gni
} such that image (Gni+2 → Gni+1) is

mapped by the bond monomorphically into image (Gni+1 → Gni
);

(ii) there is a cofinal subsequence {Gni
} such that image (Gni+2 → Gni+1) is

mapped by the bond isomorphically onto image (Gni+1 → Gni
);

(iii) same as (ii) with each image (Gni+1 → Gni
) isomorphic to H;

(iv) ∀m ∃n such that the bond Gn → Gm is trivial;
(v) ∀m ∃n such that the bond Gn → Gm factors through a free group;
(vi) ∀m ∃n such that image (Gn → Gm) lies in a finitely generated subgroup

of Gm. �

More useful, also an exercise, is:

n

iff ∃ m0 such that ∀ n ≥ m0 ∃ k ≥ n such that ker(Gk → Gm0) ⊂ ker(Gk →
Gn). �

Let e be an end of Y and let the proper ray ω represent e. We say that
Y has a pro-monomorphic fundamental pro-group at e if {π1(Y −c Li, ω(i))}
is pro-monomorphic. This depends only on e rather than on the proper ray ω
because of the following consequence8 of 16.3.2.

Proposition 16.3.3. {π1(Li(e), ω(i))} is pro-monomorphic iff ∃ m0 such
that ∀ n ≥ m0 ∃ k ≥ n so that any loop in Lk(e) which bounds9 in Lm0(e)
bounds in Ln(e). �

We are interested in the question: for Y simply connected, what prevents
Y from being the universal cover of a finite CW complex? The next theorem
addresses a more basic question: when can Z act freely on Y ?

Theorem 16.3.4. ( Wright’s Theorem) Let Y be a strongly locally fi-
nite and simply connected free Z-CW complex with one end. If Y has pro-
monomorphic fundamental pro-group at infinity then the fundamental pro-
group at infinity is pro-free and pro-finitely generated.

8 As in Sect. 16.2, Li(e) denotes the path component of Y −c Li containing all but
a compact subset of ω([0,∞)).

9 For spaces A ⊂ B, we say a loop f : S1 → A bounds in B if (inclusion ◦f) : S1 →
B is homotopically trivial.

Proposition 16.3.2.The inverse sequence of groups {G } is pro-monomorphic
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Proof. We start with the main ideas. With reindexing, we may rewrite the
condition in 16.3.3 as: ∀i ≥ 2 any loop in Y −c Li which bounds in Y −c L1

bounds in Y −c Li−1. We may assume each Y −c Li is path connected. At the
end of this proof we will define two subcomplexes A and B of Y such that
Y −c (A ∪ B) is finite and contains L1, and every loop in A or in B bounds
in Y −c L1. We choose q ≥ 2 so that N(Y −c (A ∪ B)) ⊂ Lq. For i ≥ q, we
write Ai := A ∩ (Y −c Li) and Bi := B ∩ (Y −c Li). Then Y −c Li = Ai ∪ Bi;
it is the union of subcomplexes Cj where each Cj is a path component of
Ai or of Bi. No point of Y −c Li lies in more than two of the sets Cj , so by
6.2.11, the fundamental group of Y −c Li is isomorphic to π1(Gi, Γi; Ti) for
some generalized graph of groups (Gi, Γi) and maximal tree Ti in Γi, where
the vertex groups become trivial in Y −c L1 and hence also in Y −c Li−1.
By 6.2.12, there is an epimorphism π1(Gi, Γi; Ti) � π1(Γi; Ti) whose kernel is
generated by the vertex groups. So there is a commutative diagram:

π1(Y −c Li, ω(i))

��

�� �� π1(Γi; Ti)

��))))
)))

)))
)))

))

φi

��

= F (Ei)

��
π1(Y −c Li−1, ω(i− 1)) �� �� π1(Γi−1; Ti−1) = F (Ei−1)

Here, the diagonal arrow has been explained, and φi is chosen to make the
lower triangle commute. Letting Ei denote the set of edges of Γi which are
not in Ti, we can identify π1(Γi; Ti) with F (Ei), the free group generated by
Ei. Abelianizing, and denoting the free abelian group functor by FA, we get
a commutative diagram:

H1(Y −c Li; Z) �� ��

��

H1(Γi; Z)

%%$$$
$$$

$$$
$$$

$

φ′
i

��

= FA(Ei)

��
H1(Y −c Li−1; Z) �� �� H1(Γi−1; Z) = FA(Ei−1).

By 12.5.9, each H1(Y −c Li; Z) is finitely generated, so each FA(Ei) is free
abelian of finite rank equal to the rank of F (Ei) as a free group. Hence {F (Ei)}
is pro-finitely generated and pro-free.

It only remains to define A and B with the stated properties.
Let the automorphism j : Y → Y generate an infinite cyclic group acting

freely on Y . The proof involves carefully choosing some positive integers m,
n, p and s.

Choose m ≥ 2 so that j−1(L1) ∪ L1 ∪ j(L1) ⊂ Lm. Let

A = Y −c
⋃
i∈Z

ji(Lm−1).

Claim 1 : Every loop in A bounds in Y −c L1.
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Proof (of Claim 1). Let f : S1 → A be a loop; f bounds in Y , so f bounds
in Y −c jk(L1) for some k; so f is a loop in Y −c jk(Lm) which bounds in
Y −c jk(L1); so f bounds in Y −c jk(Lm−1), hence also in Y −c (jk−1(L1) ∪
jk(L1) ∪ jk+1(L1)). Thus when f bounds in Y −c jk(L1) it also bounds in
Y −c jk±1(L1). By induction f bounds in Y −c L1, and the claim is proved.

Choose n so that, for all i with |i| ≥ n, ji(Lm+1) ∩ Lm+1 = ∅. Let K =
n−1⋃
i=0

ji(Lm+1) and let h = jn. Then for any k,

hm(K) ∩ hk(K) = jnm(K) ∩ jnk(K);

so hm(K) ∩ hk(K) = ∅ when |m − k| ≥ 2. Let P be a finite path connected
subcomplex of Y containing h(K) ∩K. Choose p so that

h−1(P ) ∪K ∪ P ⊂ Lp

and so that every loop in h−1(P ) ∪K ∪ P bounds in Lp.

Claim 2 : For every q and r, every loop in

q+r⋃
i=q

hi(K) bounds in

q+r⋃
i=q

hi(Lp).

Proof (of Claim 2). For any q and r, any loop in

q+r⋃
i=q

hi(K) is a loop in

hq−1(P )∪hq(K)∪· · ·∪hq+r(K)∪hq+r(P ). Since P is path connected, this can
be written as a product of loops each of which is in hi−1(P ) ∪ hi(K) ∪ hi(P )
for some i and which therefore bounds in hi(Lp). The Claim follows.

Choose s > 0 so that hk(Lp) ⊂ Y −c L1 for all k such that |k| ≥ s.

Then
⋃

|i|≥ns

ji(Lm+1) =
⋃
|i|≥s

hi(K). By Claim 2 any loop in
⋃

|i|≥ns

ji(Lm+1)

bounds in
⋃
|i|≥s

hi(Lp), and hence bounds in Y −c L1, by definition of s. Let

B =
⋃

|i|≥ns

ji(Lm+1). Then we have proved:

Claim 3 : Every loop in B bounds in Y −c L1.

Now, Y −c (A∪B) ⊂
(

ns−1⋃
i=−ns+1

ji(Lm+1)

)
so A∪B covers all but a finite

subcomplex of Y . Thus A and B have the required properties. �

Theorem 16.3.4 imposes severe restrictions on the kind of space which can
be an infinite cyclic covering space:

Remark 16.3.5. In the next section we describe Whitehead’s contractible open
3-manifold, W , which has one end but is not simply connected at infinity (and



16.4 Example: Whitehead’s contractible 3-manifold 387

therefore is not proper homotopy equivalent to, much less homeomorphic to,
R3). We will see that W has pro-monomorphic fundamental group at infinity,
but that {π1(W −c Li, ω(i))} is not pro-finitely generated. So Theorem 16.3.4
implies that no non-trivial group G acts freely on W ; indeed, G could have no
element of infinite order by 16.3.4, and no non-trivial element of finite order
by 7.2.12.

Remark 16.3.6. Theorem 16.3.4 would not be changed if Y was assumed only
to have finitely many ends; by Exercises 6 and 7 of Sect. 13.5, Y would have
to have one end or two ends, and when Y has two ends G would have to be a
two-ended group, in which case the fundamental group at each end would be
pro-trivial.

Example 16.3.7. Let M be a compact path connected n-manifold with path

connected (hence non-empty) boundary. Pick a ray ω in
◦

M approaching x ∈
∂M . Then the fundamental pro-group of

◦
M based at ω is stably π1(∂M, x). If

M is simply connected and if Z acts as covering transformations on
◦

M , then
16.3.4 implies that π1(∂M, x) must be a free (and finitely generated) group.

Example 16.3.8. If, in the last example, M is contractible then (see Exercise
6 of Sect. 15.2) the homology of ∂M with Z-coefficients is the same as that

of Sn−1; one says that ∂M is a “homology (n − 1)-sphere.” If
◦

M is a non-
trivial covering space then Z must act as covering transformations, by 7.2.12.
Hence, by 16.3.4, π1(∂M, x) must be a free group. Assume n ≥ 3. Then
H1(M ; Z) = 0, so ∂M must be simply connected.10 Thus, if a non-simply
connected homology sphere bounds a compact contractible manifold M , then
◦

M is not a non-trivial covering space.

Source Notes: Wright’s Theorem appeared in [155].

Exercises

1. Prove 16.3.2.
2. Give a counterexample to 16.3.4 when Y has infinitely many ends. Hint : Let P

be a finite CW complex and let Q = P × [0,∞)/P × {0} be the “open cone” on
P . Let X = S1 ∨ Q and consider Y = X̃.

3. What change in the hypotheses of 16.3.4 would make it true for CW complexes
Y with infinitely many ends?

16.4 Example: Whitehead’s contractible 3-manifold

Every contractible open 1-manifold is homeomorphic to R and every con-
tractible open 2-manifold is homeomorphic to R2. But there are uncountably

10 See Remark 16.4.14, which applies here too.
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many contractible open 3-manifolds no two of which are homeomorphic. For
group theory the interesting question is: can any of these, other than R3, be
universal covers of closed 3-manifolds? If there were such a closed 3-manifold
it would be an object of intense interest in 3-dimensional topology, and its fun-
damental group G would be a remarkable Poincaré duality group of dimension
3 over Z.

Here, we describe the original example in [153] of a contractible open
subset W of R3 which is not simply connected at infinity. The properties of
W ensure that no non-trivial group acts freely on W ; in other words, the only
covering projections W → V are homeomorphisms. By varying the details of
the construction of W one can obtain uncountably many examples, no two of
which are homeomorphic; we will not pursue that; see [113].

A background discussion is useful here. A fake 3-sphere is a closed simply
connected 3-manifold not homeomorphic to S3; the Poincaré Conjecture says
that there are no fake 3-spheres. A fake 3-ball is obtained from a fake 3-
sphere by removing the interior of an unknotted 3-ball. Thus, the boundary
of a fake 3-ball is a 2-sphere. If the Poincaré Conjecture were false, then,
given any 3-manifold M , one could obtain a new 3-manifold M ′ by deleting
the interiors of a locally finite pairwise disjoint collection of unknotted 3-
balls in M and gluing11 in fake 3-balls instead. Then M and M ′ would have
the same proper homotopy type but would not be homeomorphic, and we
would say that M and M ′ are the same modulo the Poincaré Conjecture.
It has been known for many years that every contractible open 3-manifold
which is strongly connected at infinity is the same as R3 modulo the Poincaré
Conjecture (see [80] or [27]) and hence is simply connected at infinity. So
our W and all the uncountably many other exotic examples must have non-
semistable fundamental pro-groups.

To begin the construction of W we note:

Proposition 16.4.1. For n ≥ 2 every contractible open n-manifold has one
end.

Proof. This follows from Poincaré Duality together with 13.4.11 and the exact
sequence in Sec. 12.2. �

For ease of exposition we will not make explicit the CW complex struc-
tures on the spaces to be discussed. Once W has been constructed it will
not be difficult to see that W admits the structure of a simplicial complex.
Indeed, while we draw our pictures smoothly, they can also be realized as
subcomplexes of suitable simplicial complex structures on S3.

We begin with the trefoil knot K ⊂ S3 illustrated in Fig. 16.3. Let N(K)
be a compact neighborhood of K such that (N(K), K) is homeomorphic to
(S1×B2, S1×{0}), i.e., a solid torus “fattening” of K. We may choose N(K)
so that CK := cl(S3 − N(K)) is a compact manifold with boundary; for

11 See the definition of “connected sum” in Sect. 5.1.
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example, make N(K) a regular neighborhood in the sense of piecewise linear
topology, or a tubular neighborhood in the sense of differential topology.

Fig. 16.3.

We will assume two standard facts from elementary knot theory; proofs
can be found in [43] or [135]. Apart from these two propositions, our treatment
of W will be self-contained, if informal.

Proposition 16.4.2. For v ∈ ∂(N(K)) the inclusion map induces a monomor-
phism π1(∂(N(K)), v)→ π1(CK , v). �

Proposition 16.4.3. π1(CK , v) is not abelian. �

Consider Fig. 16.4. It consists of a solid torus T1 (i.e., a copy of S1×B2) in

R3 ⊂ S3 and a solid torus12 T2 ⊂
◦
T 1. Let h : T1 → T2 be a homeomorphism,

and let T3 = h(T2); then T3 sits in T2 as T2 sits in T1. Iterating this, we get
a nested sequence of solid tori T1 ⊃ T2 ⊃ · · · whose intersection is a compact
non-empty set Z ⊂ S3. Define W := S3 − Z. Note that if we remove a point
of Z we may also regard13 W as an open subset of R3. This W is Whitehead’s
Contractible 3-manifold which we now study.

Consider the two solid tori T and L illustrated in Fig. 16.5.

Proposition 16.4.4. There is a homeomorphism f : R3 → R3 such that
f(T ) = L and f(L) = T ; f extends to a homeomorphism of S3.

12 T2 is drawn as a circle, but should be viewed as “fat,” i.e., as a solid torus.
Similarly in Fig. 16.5.

13 We will frequently identify R3 with S3 − {point}.
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L 12

T1

T2

.u

Fig. 16.4.

L

T

Fig. 16.5.

Proof. Take two circles of string embedded in R3 as illustrated in Fig. 16.5.
Stretch and reshape the string L to occupy the space originally occupied by
T . Then the string T can easily be moved to occupy the space originally
occupied by L. Since faraway points of R3 need not move during this process,
the homeomorphism extends to S3. �

Proposition 16.4.5. Let T ′
1 = cl(S3−T1). Then T ′

1 is also a solid torus, and
T ′

1 ∩ T1 = ∂T1.

Proof. S3 = ∂B4 is homeomorphic to ∂(B2 × B2) = (B2 × S1) ∪ (S1 × B2),
and (B2 × S1) ∩ (S1 ×B2) = S1 × S1. �

Proposition 16.4.6. Let L1,2 = cl(T1−T2) so that ∂L1,2 = ∂T1∪∂T2. There
is a homeomorphism of S3 mapping L1,2 to itself, mapping ∂T1 to ∂T2, and
mapping ∂T2 to ∂T1.

Proof. Interpret Fig. 16.5 as consisting of two solid tori T and L. By 16.4.5,
there is a homeomorphism k : S3 → S3 taking T to T2 and L to cl(S3 − T1);
in other words, k maps the copy of S3 in Fig. 16.5 to the copy of S3 in Fig.
16.4 as indicated. By 16.4.4, there is a homeomorphism of S3 mapping T2 to
cl(S3 − T1) and mapping cl(S3 − T1) to T2. This homeomorphism must then
map L1,2 to itself, interchanging the boundary components. �
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T1

L’12

R

D

Fig. 16.6.

Now consider Fig. 16.6. It is obtained from Fig. 16.4 by cutting the solid
torus T1 along the disk D, twisting through one full rotation, and then reglu-
ing. This is a homeomorphism of T1 which maps the solid torus T2 onto the
solid torus R. Thus L′

1,2 := cl(T1 − R) is homeomorphic to L1,2 by a homeo-
morphism j taking ∂R to ∂T2 and ∂T1 to itself. Now if we ignore T1 in Fig.
16.6, we see that R is N(K), the “fattening” of a trefoil knot14 in S3; of
course, the homeomorphism j does not extend to S3, since T2 is unknotted in
S3. The following diagram commutes:

π1(∂R, u′) ��

����
���

���
���

π1(cl(S
3 −R), u′)

π1(L
′
1,2, u

′)

$$$$$$$$$$$$$$

where all arrows are induced by inclusion and u′ is a base point. Thus 16.4.2
and 13.8.1 imply:

Proposition 16.4.7. If u ∈ ∂T2 and v ∈ ∂T1, then the homomorphisms
π1(∂T1, v)→ π1(L1,2, v) and π1(∂T2, u)→ π1(L1,2, u) induced by the inclusion
maps are monomorphisms. �

Proposition 16.4.8. The monomorphisms in 16.4.7 are not epimorphisms.

Proof. cl(S3 − R) = L′
1,2 ∪ cl(S3 − T1) and L′

1,2 ∩ cl(S3 − T1) = ∂T1. If
π1(∂T1, v)→ π1(L

′
1,2, v) were onto then, by 3.1.19, π1(cl(S

3−R), v) would be
abelian; but, by 16.4.3, this is false. Thus, by 16.4.6, neither homomorphism
in 16.4.7 is onto. �

Now we are ready to study W . Let L0,1 = cl(S3 − T1) and for i ≥ 1 let

Li,i+1 = cl(Ti − Ti+1). For k ≥ 1 we write Lk =
k−1⋃
i=0

Li,i+1. Then {Lk} is a

finite filtration of W .

Proposition 16.4.9. The inclusion L1 ↪→ L2 is homotopically trivial.

14 Provided the twist is done in the correct direction.
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Proof. Fig. 16.5 makes it obvious that the inclusion T ↪→ cl(S3 − L) is ho-
motopically trivial. By 16.4.4, it follows that the inclusion L ↪→ cl(S3 − T ) is
homotopically trivial. So, by means of the homeomorphism k, the inclusion
cl(S3 − T1) ↪→ cl(S3 − T2) is homotopically trivial. �

By 16.4.5, the homeomorphism h : T1 → T2 used in the definition of
W extends to a homeomorphism of pairs (S3, T1) → (S3, T2) and therefore
maps L1 homeomorphically onto L2. Now h(T2) = T3 so h(L1) = L2 and
h(L2) = L3. Thus the following diagram commutes:

L1
� � ��

h|
��

L2

h|
��

L2
� � �� L3

and the vertical arrows are homeomorphisms. So L2 ↪→ L3 is homotopically
trivial. Proceeding by induction we get:

Corollary 16.4.10. The inclusion Lk ↪→ Lk+1 is homotopically trivial for
every k ≥ 1. �

Hence, by 7.1.2, we have

Proposition 16.4.11. W is contractible. �

Choose a base ray ω in W well parametrized with respect to {Lk}. Then for
any k we have clW (W −Lk) = Lk,k+1∪Lk+1,k+2∪· · · . We may assume ω(i) ∈
Li,i+1 ∩ Li+1,i+2; then 16.4.7 and 16.4.8 tell us that for i ≥ 1 the homomor-
phisms induced by inclusion π1(Li,i+1 ∩Li+1,i+2, ω(i))→ π1(Li,i+1, ω(i)) and
π1(Li,i+1 ∩ Li+1,i+2, ω(i)) → π1(Li+1,i+2, ω(i)) are monomorphisms but not
epimorphisms. We form a graph of groups as follows: the oriented graph Γ1 has
underlying space [1,∞) with vertices at the integer points and edges oriented
in the positive direction. The vertex group at the vertex i is π1(Li,i+1, ω(i)),
the edge group corresponding to the edge [i, i+1] is π1(Li,i+1∩Li+1,i+2, ω(i)).
Using change of base point via ω as usual, the monomorphisms from edge
groups to vertex groups are those non-epimorphisms just specified. We take
the maximal tree T1 = Γ1 and form π1(G1, Γ1; T1). For each integer k ≥ 1
let Γk denote the subgraph of Γ1 corresponding to [k,∞). Then there is an
obvious graph of groups (Gk, Γk), and π1(Gk, Γk; Tk) can be identified with a
proper subgroup of π1(Gk−1, Γk−1; Tk−1) for all k ≥ 2. The inverse sequences
{π1(clW (W − Lk), ω(k))} and {π1(Gk, Γk; Tk)} can be identified.

Proposition 16.4.12. These inverse sequences are not semistable and are
not pro-finitely generated.

Proof. The first statement follows from Exercise 2 and the second from Exer-
cise 3. �
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Summarizing, and applying Remark 16.3.5:

Theorem 16.4.13. W is a contractible open subset of R3 which has pro-
monomorphic fundamental pro-group at infinity but is not strongly connected
at infinity. The inverse sequence of groups {π1(W − Lk, ω(k))} is not pro-
finitely generated. Hence no non-trivial group acts as a group of covering
transformations on W . �

Remark 16.4.14. In this book almost all spaces have been CW complexes.
Thus what we have actually proved is that when W is given a CW complex
structure, no non-trivial group acts freely on W by automorphisms in the
sense of Sect. 3.2. However, the reader familiar with the theory of absolute
neighborhood retracts and topological manifolds can check that our proof
of 16.4.13 (and the supporting material such as 16.3.4) goes through, with
appropriate adaptation, to prove 16.4.13 as stated.15

Remark 16.4.15. For deeper examples of this type, including examples of con-
tractible open 3-manifolds on which Z acts as a group of covering transfor-
mations but which do not cover closed 3-manifolds, see [124].

Exercises

1. Why is the first sentence in the proof of 16.4.9 true?
2. If G ∼= A∗

C
B is a free product with amalgamation16 and neither C � A nor

C � B is onto, show that A � G and B � G are not onto.
3. Let G ∼= A∗

C
B where A is finitely generated. Prove that if B lies in a finitely

generated subgroup of G then G is finitely generated.
4. Show that W × R is homeomorphic to R4.

16.5 Group invariants: simple connectivity, stability, and
semistability

We can apply the previous sections to define properties of finitely pre-
sented groups. If (X1, v1) and (X2, v2) are finite path connected pointed 2-
dimensional CW complexes whose fundamental groups are isomorphic to G
and if φ : π1(X1, v1) → π1(X2, v2) is an isomorphism then it follows easily
from 7.1.7 (the details were set as an exercise in Sect. 7.1) that φ is induced by
a 2-equivalence f : (X1, x1)→ (X2, x2). By 10.1.23 (the details are an exercise
in Sect. 11.1) such a 2-equivalence lifts to a proper 2-equivalence f̃ : X̃1 → X̃2.

15 Alternatively, a deep classical result of 3-dimensional topology says that every
3-manifold is triangulable, but it is overkill to use this.

16 Exercises 3 and 4 follow from Britton’s Lemma 6.2.1. See also the proof of 18.3.19
for normal forms in A∗

C
B.
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By 16.1.14 , f̃ induces bijections on the set of ends, the set of strong ends,
and the set of strong homological ends. Thus the cardinal numbers of these
sets are invariants17 of G. The map f̃ also induces isomorphisms on He

1(·; R)
and H1

e (·; R) so that their isomorphism classes as R-modules (indeed, as RG-
modules) are also invariants of G, but we already knew this via the discussion
of resolutions in Chap. 8. When ω is a proper base ray in X̃1, we discussed in
Sect. 16.2 how the fundamental pro-group, the Čech fundamental group, and
the strong fundamental group based at ω depend on the choice of ω. Thus (see
16.2.4) one must be careful in asserting that these, or even their isomorphism
classes, are invariants of G. However, no such caution is needed for certain
related invariants, as we now explain.

Let G be a finitely presented group. We saw in Example 1.2.17 that there
is a finite path connected pointed CW complex (X, v) with π1(X, v) ∼= G. We
say that G is semistable at each end if X̃ is strongly connected at each end.
When G has one end and X̃ is strongly connected at its end, we say18 that G
is semistable at infinity.

The connection with homological invariants is:

Theorem 16.5.1. If G is semistable at each end then H2(G, ZG) is a free
abelian group.

Proof. By 16.1.8 and 16.1.11, H1
e (X̃ ; Z) is free abelian. By 13.2.9 and 13.2.13,

H1
e (X̃ ; Z) ∼= H1(G, ZGe) ∼= H2(G, ZG). �

Similarly, we say that G is simply connected at each end if X̃ is simply
connected at each end. When G has one end and X̃ is simply connected at its
end, we say that G is simply connected at infinity.19

Theorem 16.5.2. If G is simply connected at each end then H2(G, ZG) = 0.

Proof. By 16.2.7, H1
e (X̃ ; Z) = 0. But once again H1

e (X̃; Z) ∼= H2(G, ZG). �

We saw in 13.5.2 that the number of ends of a finitely presented group
does not change on passing to a subgroup of finite index (which is also finitely
presented by 3.2.13). Similarly, we have:

Proposition 16.5.3. Let H be a subgroup of finite index in the finitely pre-
sented group G. Then H is semistable at each end [resp. simply connected at
each end] iff G is semistable at each end [resp. simply connected at each end].
�

17 Indeed, the homeomorphism types of the spaces of ends are invariants of G; see
13.5.8.

18 At the time of writing it is unknown if there is a finitely presented group which
is not semistable at each end.

19 It follows that a finite group is simply connected at each end but is not simply
connected at infinity. This is analogous to saying that each path component of
the empty space is simply connected, which is true because there are none.



16.5 Group invariants: simple connectivity, stability, and semistability 395

Corollary 16.5.4. Every two-ended group is simply connected at each end.
�

Remark 16.5.5. If G is semistable at infinity then the fundamental pro-group,
the Čech fundamental group, and the strong fundamental group are well-
defined by G (i.e., independent of X and ω) up to isomorphism in the ap-
propriate category; see Sect. 16.2. Thus, just as we can speak of “the number
of ends” of G and “the homeomorphism type of the ends” of G, so in the
semistable case we can speak of “the pro-isomorphism type of the fundamen-
tal pro-group” of G, “the isomorphism type of the Čech fundamental group”
of G, etc.

We say G is stable at each end if X̃ has stable fundamental pro-group at
each end. Since “stable” is equivalent to “semistable and pro-monomorphic,”
this is well-defined. For one-ended groups we use the term stable at infinity.
Recall that if the stable fundamental pro-group is isomorphic to Z, as in
the next theorem, we say G is stably Z at infinity. Here is a remarkable
consequence of Wright’s Theorem 16.3.4:

Theorem 16.5.6. Let the one-ended finitely presented group G be stable at
infinity and assume G contains an element of infinite order. Then G is either
simply connected at infinity or stably Z at infinity.

Proof. By 16.3.4, the stable inverse sequence {π1(X̃ −c Ki, ω(i))} must be
pro-isomorphic to a finitely generated free group, so {H1(X̃ −c Ki; Z)} is pro-
isomorphic to a finitely generated free abelian group of the same rank. By
13.3.2(iv) H2(G, ZG) is free abelian of that same rank, and, by 13.7.12, that
rank is 0 or 1. �

Example 16.5.7. We will see in 16.9.7 that Thompson’s group F is simply con-
nected at infinity. The same is true of Thompson’s group T ; see [30]. Certain
right angled Coxeter groups are shown to be simply connected or semistable at
infinity in 16.6.1; for Coxeter groups in general, see [117]. The group Out(Fn)
is simply connected at infinity when n ≥ 3 (see [11]), and is semistable at each
end when n = 2 (being virtually free).

Source Notes: The question of whether every one-ended finitely presented group
is semistable at infinity was first addressed in [70] and [114], though the issue had
been remarked on in passing by Houghton, earlier, in [86]. There is now a substantial
literature showing that the answer is positive for many classes of groups; see, for
example, the bibliography of [119]. “Simply connected at infinity” has a much longer
history in geometric topology. See, for example, [144], [93] and [95].

Exercises

1. Give a counterexample to the converse of 16.5.2.
2. For the pseudomanifold W in Sect. 13.8, prove that G = π1(W,w) is semistable

at infinity. (It follows that H2(G, ZG) is free abelian.)
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16.6 Example: Coxeter groups and Davis manifolds

All finitely generated Coxeter groups are (finitely presented20 and) semistable
at each end; the latter is proved in [117]. Here we will discuss this only for the
right angled Coxeter groups described in Theorem 13.9.5. Recall that these
are defined as follows: Starting with an integer d ≥ 2 and a non-empty finite
connected closed combinatorial (d−1)-manifold L which is also a flag complex,
we let (G, S) be the corresponding right angled Coxeter system (whose nerve
K is sd L). In this section G is understood to be such a group. Here, we show
that G is semistable and that there is a torsion free subgroup H of finite index
in G for which there is a closed 4-manifold K(H, 1)-complex whose universal
cover is contractible but is not simply connected at infinity, and hence is not
homeomorphic to R4.

Theorem 16.6.1. The group G is semistable at infinity; and G is simply
connected at infinity iff |L| is simply connected.

Proof. By 16.5.3, these properties are the same for G and for any torsion free
subgroup of finite index; hence they can be checked in |D|. The homotopy
commutative diagram in the paragraph preceding Theorem 13.9.5 shows that
the inclusion map of the (n + 1)th neighborhood of the end into the nth

neighborhood of the end induces an epimorphism on fundamental group. In
fact, if d = 2, the inverse sequence of fundamental groups is stably Z. If d ≥ 4,
the inclusion induces Gn ∗G0 → Gn where Gn denotes the n-fold free product
of copies of G0 = π1(|L|, v); the epimorphism is the identity on Gn, and kills
the final free summand G0. This is because π1(M1#M2, x) is isomorphic to
π1(M1, x)∗π1(M2, x) when the manifolds have dimension ≥ 3. The case d = 3
is an exercise. The last sentence of the proposition is the special case when
G0 is trivial. �

Now let L be the boundary of a finite contractible combinatorial 4-manifold
J . It follows from Lefschetz duality (see 15.2.4) that the homology of the 3-
manifold |L| is the same as that of S3. A closed manifold having the same
homology groups as Sn is a homology n-sphere, so this |L| is a homology 3-
sphere which bounds the compact contractible 4-manifold |J |. Examples exist
in which |L| is not simply connected, a well-known example being the “Mazur
sphere” – see [135, p. 356]. We will assume |L| is not simply connected.21

We built D out of copies of F , the cone on K where K = sd L. Now
for every n we replace gnF in D by a copy of J , called gnJ , identifying
gn(∂J) = gnK with gnK in D. There results an abstract simplicial G-complex
D0, finite mod G,whose vertex-stabilizers are finite, (where (G, S) corresponds
to L as above); D0 is a combinatorial 4-manifold. From the proof of 9.1.3 we
get:

20 See Theorem 9.1.7.
21 Compare Example 16.3.8.
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Theorem 16.6.2. |D0| is a contractible CW 4-manifold on which G acts
rigidly with finite cell-stabilizers so that G\|D0| is finite.

By 9.1.10, G has a torsion free subgroup H of finite index. By 16.6.1 and
16.6.2 we have:

Corollary 16.6.3. H\|D0| is a closed aspherical 4-manifold whose universal
cover is not homeomorphic to R4.

One can build such examples in any dimension ≥ 4 since non-simply con-
nected homology spheres bounding compact contractible n-manifolds exist
for all n ≥ 4. We call such closed aspherical manifolds Davis manifolds. They
first appeared in [46], and until then it was unknown if a contractible open
n-manifold not homeomorphic to Rn could be the universal cover of a com-
pact manifold. Compare this with Whitehead’s manifold in dimension 3: it is
contractible but, by 16.4.13, it is not the universal cover of a closed manifold.

Exercises

1. Fill in the missing details of 16.2.4 for the cases d = 2 and d = 3.
2. Prove that if |L| is a (d − 1)-dimensional homology sphere, then G is a Poincaré

duality group of dimension d (whether or not |L| bounds a compact contractible
manifold); see Sec. 15.3.

16.7 Free topological groups

The Čech fundamental group is a topological group. To study it in the next
section we review some basics here.

A group G equipped with a topology is a topological group if multiplication
G × G → G and inversion G → G are continuous. A sequence {gn} in G is
a Cauchy sequence if given a neighborhood U of 1 ∈ G there exists N ∈ N
such that for all i, j ≥ N g−1

i gj ∈ U . A topological group is complete if every
Cauchy sequence converges. Discrete groups are complete, and the countable
product of complete groups is a complete group. Closed subgroups of complete
groups are complete. Thus if G := {G1 ← G2 ← · · · } is an inverse sequence
of discrete groups, its inverse limit is a complete group.

A topological group G is zero-dimensional if there is a basis for the neigh-
borhoods of 1 ∈ G consisting of closed-and-open subgroups. The complete
group lim←−G, above, is zero-dimensional and first countable (being a metriz-
able space).

If G is a complete first countable zero-dimensional group and U1 ⊃ U2 ⊃
· · · is a basis for the neighborhoods of 1 with each Ui a closed-and-open
subgroup, then H(G) := {G/U1 � G/U2 � · · · } is a semistable inverse
sequence of discrete groups. IndeedH is a sort of inverse for lim←− in the following
sense:
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←−
If G is complete, first countable, and zero-dimensional, then the topological
groups lim←−H(G) and G are isomorphic. �

So although H depends on {Un}, up to isomorphism the choice of {Un}
does not matter.

There is a forgetful functor Groups → Pointed Sets and hence the notion
of the free group generated by the pointed set (S, s). This consists of a group
F (S, s) and a pointed function i : (S, s) → (F (S, s), 1) satisfying the usual
universal property that for any group H and pointed function f : (S, s) →
(H, 1) there is a unique homomorphism f̄ : F (S, s)→ H such that f̄ ◦ i = f .
Note the difference from the usual notion of “free group generated by a set.” In
the pointed case, the free group F (S, s) has rank (cardinality of S)−1 rather
than cardinality of S.

We need a topological analog of this. Let C be the category of metrizable
0-dimensional pointed spaces and pointed maps. Let D be the category of
complete first countable zero-dimensional topological groups and continuous
homomorphisms. There is a forgetful functor D → C. As usual, we define
the free object in D generated by an object (Z, z) of C to consist of a group
F (Z, z) in D and a map i : (Z, z) → (F (Z, z), 1) satisfying the appropriate
universal property. Uniqueness of F (Z, z) up to isomorphism follows at once.
For existence, we will be satisfied with a special case:

Proposition 16.7.2. The free object in D generated by a compact object
(Z, z) in C exists.

Proof. First note that the “free group generated by a pointed set” is a functor
F : Pointed Sets → Groups. By 13.4.13, (Z, z) = lim←−

n

(Zn, zn) where each

(Zn, zn) is a finite pointed set. The required group F (Z, z) is lim←−
n

{F (Zn, zn)}

where the functor F is applied to the whole inverse sequence {(Zn, zn)}. The
universal property to be checked is summarized in the diagram

(Z, z) � � ��

f ���
��

��
��

��
(F (Z, z), 1)

∃!f̄��





(H, 1)

As explained, H = lim←−
n

{Hn} where the groups Hn are discrete and the bonds

are epimorphisms. Since each Zn is finite there is a morphism of pro-Pointed
Sets {(Zn, zn)} → {(Hn, 1)} whose inverse limit is f ; it can be represented by
a sequence fm(n) : (Zm(n), zm(n)) → (Hn, 1) of pointed functions commuting
with the bonds. The required f̄ is lim←−

n

{f̄m(n) : F (Zm(n), zm(n))→ Hn}. �

Proposition 16.7.1. If G is semistable thenH(limG) and G are pro-isomorphic.
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Remark 16.7.3. The proof of 16.7.2 also shows that the free object of towers-
Groups generated by an object of towers-(Finite Pointed Sets) exists and is
semistable.

Source Notes: Proposition 16.7.1 appears in [4].

Exercises

1. Prove 16.7.1.
2. Assuming G semistable, prove G is stable iff lim

←−
G is discrete iff lim

←−
G is countable.

3. Give an example where the underlying group of F (Z, z) is not isomorphic to the
free group generated by the pointed set underlying (Z, z).

4. Suppose we are given for each n a commutative diagram of countable abelian
groups whose horizontal rows are exact:

An+1
��

��

Bn+1
��

��

Cn+1
��

��

Dn+1
��

��

En+1

��
An

�� Bn
�� Cn

�� Dn
�� En

If {An}, {Bn}, {Dn} and {En} are stable (with verticals as bonds), prove that
{Cn} is stable.

16.8 Products and group extensions

We first make a general computation of the Čech fundamental group of a prod-
uct (16.8.1). Then we apply that in 16.8.5 to compute the Čech fundamental
group of any group G which fits into a short exact sequence N � G � Q of
infinite finitely presented groups.

If (A, a) and (B, b) are pointed spaces their smash product is the pointed
space (A∧B, p) where A∧B := A×B/{a}×B∪A×{b} and p is the image of
{a}×B ∪A×{b} in A∧B. Compactness and 0-dimensionality are preserved
under smash product. If A and B are Cantor sets, so is A ∧B, by 13.4.16.

The smash product occurs naturally in computing the Čech fundamental
group of Y×Z where Y and Z are infinite strongly locally finite path connected
CW complexes. It is clear (see Exercise 2 in Sect. 13.4) that Y × Z has one
end. Pick base points e1 and e2 for the spaces of ends E(Y ) and E(Z), and
pick a base ray ω in Y × Z.

Theorem 16.8.1. If Y and Z are simply connected, then Y × Z is strongly
connected at infinity and π̌1(Y ×Z, ω) is isomorphic to the free complete first
countable zero-dimensional topological group generated by the smash product
(E(Y ), e1) ∧ (E(Z), e2) of the two spaces of ends.
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The proof is given after 16.8.3.
If Y and Z have r and s ends respectively, where r and s are finite, then

16.8.1 implies that π̌1(Y × Z, ω) is discrete and is free of rank (r − 1)(s− 1).
If Y has one end, 16.8.1 says that Y × Z is simply connected at infinity (by
16.2.1 and 16.1.2).

When A and B are discrete disjoint non-empty spaces, their topological
join is the graph22 A ∗ B whose set of vertices is A

∐
B and which has an

edge joining each point of A to each point of B. If a and b are base points for
A and B, then the subgraph of A ∗B consisting of all edges having a or b as
a vertex is a maximal tree in A ∗B which we call the canonical maximal tree.
If we orient the graph A∗B, then 3.1.16 allows us to regard the edges outside
the maximal tree as free generators of the fundamental group. A better way
of saying this is:

Proposition 16.8.2. The inclusion (A ∧B, p) ↪→ (π1(A ∗B, a), 1) is the free
group generated by the pointed set (A ∧B, p). �

Let {Li} and {Mi} be finite filtrations of Y and Z, chosen (adapting the
proof of 13.4.9) so that every path component of Y −c Li and Z −c Mi is
unbounded. Let y ∈ L1 and z ∈M1 be base points for Y and Z. Choose finite
sets Ai = {aij} and Bi = {bik} where aij [resp. bik] lies in the path component
Uij of Y −c Li [resp. Vik of Z −c Mi] (one for each path component). Choose
paths σij in Y [resp. τik in Z] from y to aij ∈ Ai [resp. from z to bik ∈ Bi] for
each point aij ∈ Ai and bik ∈ Bi. Define a map fi : Ai∗Bi → Y ×Z −c Li×Mi

as follows: fi(aij) = (aij , z), fi(bik) = (y, bik), fi maps the mid-point of the
edge joining aij to bik to (aij , bik), and fi follows the paths σij and τik as
appropriate. This should be done so that fi embeds Ai ∗Bi as a subcomplex.

Proposition 16.8.3. The space Y × Z −c Li ×Mi is path connected and the
embedding fi induces an isomorphism of fundamental groups.

Proof. The paths σij and τik give path connectedness. The cover of

Y × Z −c Li ×Mi

by the sets Y × Vik and Uij × Z has the property that no point lies in more
than two of those sets. By 6.2.11, the fundamental group of Y ×Z −c Li×Mi

is isomorphic to π1(Gi, Ai ∗ Bi; Ti) where Gi is a generalized graph of groups
for the graph Ai ∗ Bi, Ti being the canonical maximal tree in that graph.
The diagram of vertex and edge groups for a typical edge is (suppressing base
points):

π1(Y )× π1(Vik)← π1(Uij)× π1(Vik)→ π1(Uij)× π1(Z).

Since Y and Z are simply connected, the fundamental group collapses to that
of Ai ∗Bi and the proposition follows. �

22 Here, as always in graphs, edges intersect only in vertices. For more on joins, see
Sect. 5.2.
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Proof (of 16.8.1). Write Wi := Y × Z −c Li ×Mi. Choose the points aij so
that fi(ai1) lies on ω for all i. The following diagram commutes:

(Ai ∧Bi, pi)
� �

�� π1(Ai ∗Bi, ai1)
∼= �� π1(Wi, fi(ai1))

(Ai+1 ∧Bi+1, pi+1)

��

� � �� π1(Ai+1 ∗Bi+1, ai+1,1) ∼=
��

����

π1(Wi+1, fi+1(ai+1,1))

��

where the vertical arrows have obvious meanings. The result now follows from
16.8.2 and 16.8.3 on taking inverse limits. �

We can apply 16.8.1 to group extensions. Let N � G � Q be a short
exact sequence of infinite finitely presented groups. Let Y and Z be finite
path connected CW complexes whose fundamental groups are isomorphic to
N and Q respectively.

Theorem 16.8.4. There is a finite CW complex X whose fundamental group
is isomorphic to G such that X̃ is proper 2-equivalent to Ỹ × Z̃.

To avoid repetition we postpone the proof until Sect. 17.3, where we prove
the more general version 17.3.4. From 16.8.4 and 16.8.1 we deduce:

Corollary 16.8.5. The group G has one end, is semistable at infinity, and
(the isomorphism type of) its Čech fundamental group is freely generated by
the smash product of (the homeomorphism types of) the ends of N and Q in
the sense of 16.8.1. In particular, if N or Q has one end, then G is simply
connected at infinity. �

Source Notes: For another use of the free topological group generated by a pointed
compact metric space – a “1, 2 or infinity” theorem for the fundamental group of a
group, see [72].

Exercises

1. What does 16.8.1 become if Y or Z is finite?
2. What survives of 16.8.1 if Y or Z is not simply connected?
3. Prove that if there is an exact sequence N � G � Q of infinite finitely generated

groups, then G has one end.

16.9 Sample theorems on simple connectivity and
semistability

In this section we give some group theoretic conditions (Theorems 16.9.1 and
16.9.5) which imply that a finitely presented group is semistable at infinity
or is simply connected at infinity. The methods are elementary but illustrate
how such questions are often dealt with in the literature. We begin with a
strengthening of the first part of Corollary 16.8.5.
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Theorem 16.9.1. Let N � G
π
� Q be a short exact sequence of infinite

finitely generated groups. If G is finitely presented then G is semistable at
infinity. Hence H2(G, ZG) is free abelian.

Before proving this we set things up. To begin, we choose a presentation
〈hi, qj | rk, qjwijq

−1
j h−1

i 〉 of G where i, j and k range over finite sets of indices,
and the set of generators {hi, qj} is closed under inversion. In detail: the gen-
erators hi and qj are “N -generators” and “Q-generators” respectively, chosen
so that the set {π(qj)} generates Q and the set {hi} generates N . Since N is
normal, each q−1

j hiqj is a word in the N -generators, denoted by wij . Starting
with any finite presentation of G, one can get to this special presentation by
Tietze transformations.

Let (X, v) be the corresponding presentation complex. Orient the cells
of X . The (oriented) 1-cells are {e1(hi), e

1(qj)}. The (oriented) 2-cell corre-
sponding to the relation qjwijq

−1
j h−1

i is e2
ij . There are finitely many other

2-cells corresponding to the relations rk but they will play no role in the
proof. The universal cover is (X̃, ṽ). We choose lifts ẽ1(hi), ẽ

1(qi), oriented
compatibly with their images in X , having initial point ṽ. All other 1-cells of
X̃ are translates of these and carry translated orientations. We choose lifts
ẽ2

ij , oriented compatibly with e2
ij , so that ∆(ẽ2

ij) is represented by the edge

loop (ẽ1(qj), qjw̃ij , hiẽ
1(qj)

−1, ẽ1(hi)
−1). See Fig. 16.7.
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Fig. 16.7.

An edge in X̃1 is either an “N -edge” g.ẽ1(hi) or a “Q-edge” g.ẽ1(qj); to
simplify notation we will usually use the letter σ to denote an N -edge and the
letter τ to denote a Q-edge (with the preferred orientation). Since the set of
generators is closed under inversion, all edge rays can be chosen so that the
exponent of every σ or τ in every such ray is 1 rather than −1.
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For each vertex u of X̃ we select a proper Q-edge ray with initial point u
as follows. We have the covering projection23 pN : X̃ → X̄(N); for each vertex
ū of X̄(N) we select a proper edge ray, containing no edges which are loops,
with initial point ū; we do this so that whenever C is a finite subcomplex of
X̄(N) only finitely many of these edge rays involve an edge of C. The required
Q-edge rays in X̃ are the lifts of these rays in X̄(N). We call them “selected”
edge rays: they are proper; there is exactly one for each vertex w; and they
are Q-edge rays because pN maps N -edges in X̃ to edges in X̄(N) which are
loops. If {Lr} is a finite filtration of X̄(N), then by 14.1.6 (X̃, {p−1

N (Lr)}) is
a well filtered CW complex and the selected proper edge rays are filtered rays
in this sense. The set of selected edge rays is N -invariant. Initial segments of
chosen or selected edge rays are “selected edge paths.”

We now describe some proper homotopies:
(i) Sliding τ along (σ1, σ2, . . .): Here τ is a Q-edge and (σ1, σ2, . . .) is a

proper N -edge ray with the same initial vertex as τ . We describe a homotopy
[0,∞) × [0, 1] → X̃ whose domain subdivision is illustrated in Fig. 16.8(a).
The homotopy itself, illustrated in Fig. 16.9(a), is obtained by patching to-
gether characteristic maps for 2-cells. Its restriction to [0,∞)×{0} is a proper
parametrization of (σ1, σ2, . . .), and each [k, k + 1]× [0, 1] is mapped into the
CW neighborhood of the edge σk, so this is a proper homotopy by 10.1.15.

(ii) Sliding σ along (τ1, τ2, . . .): Here σ is an N -edge and (τ1, τ2, . . .) is a
selected Q-edge ray with the same initial vertex as σ. We describe a homo-
topy [0,∞) × [0, 1] → X̃ whose domain subdivision is illustrated in Fig.
16.8(b). The homotopy itself is illustrated in Fig. 16.9(b). The restriction to
[0,∞) × {0} is a proper parametrization of (τ1, τ2, . . .) and its restriction to
[0,∞) × {1} is an N -translate of this, and is therefore a proper parametriza-
tion of another selected Q-edge ray. The homotopy [0,∞) × [0, 1] → X̄(N)
obtained by composing with pN is proper, by 10.1.15, so the homotopy (into
X̃) is proper, by 10.1.17.

(iii) Sliding (σ1, σ2, . . .) along (τ1, τ2, . . .): Here (τ1, τ2, . . .) is a selected
Q-edge ray and (σ1, σ2, . . .) is an N -edge ray having the same initial vertex.
The desired homotopy [0,∞)× [0,∞)→ X̃ is obtained by writing the domain

as
⋃
k

[0,∞) × [k, k + 1] and stacking the homotopies described for sliding

each σk along (τ1, τ2, . . .) in (ii). If {Lr} is a finite filtration of X̄(N), this
homotopy into X̃ is filtered with respect to the filtration {p−1

N (Lr)} of X̃ and
the filtration {[0, r]× [0,∞)}. And for each r its restriction to [0, r] × [0,∞)
is certainly proper (compare (i)). So this is a proper homotopy.

We will also restrict these to “slides of edges along edge paths” (σ1, . . . , σm)
in (i) or (τ1, . . . , τm) in (ii).

23 As always, X̄(N) = N\X̃ .



404 16 The Fundamental Group At Infinity

(a )

(b )

Fig. 16.8.

s1

s2

t 1 t
2

’t 1 ’t 2

(a )

(b )

2−cell

2−cell

2−cell
2−cell

2−cell
s

t

Fig. 16.9.

Proposition 16.9.2. Given a finite subcomplex K of X̃ there is a finite sub-
complex M such that if the given σ’s and τ ’s in (i)–(iii) all lie in X̃ −c M ,
then the proper homotopies constructed in (i)–(iii) all take place in X̃ −c K.

Proof. Choose k so that pN (K) ⊂ Lk. Let m > 0 be such that whenever
(τ̄1, τ̄2, . . .) is the image under pN of a selected proper edge ray in X̃, then
the edges τ̄m, τ̄m+1, . . . all lie in X̄(N) −c N(Lk); here we use the fact that Lk

meets only finitely many of the chosen edge rays. There are only finitely many
pairs (ẽ1(hi), α) where α is a Q-edge path in X̃ of length ≤ m having initial
vertex ṽ; choose n ≥ 1 so large that for every such pair the slide of ẽ1(hi)
along α takes place in Nn(ṽ). Let24 M = Nn(K); M is finite by 11.4.4. �

We pause for a useful fact about CW neighborhoods:

24 Recall from Sect. 11.4 that the nth CW neighborhood of K is Nn(K) =
N(Nn−1(K)) where N0(K) = K.
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Lemma 16.9.3. Let A and B be subcomplexes of a CW complex Y , and let s
be a positive integer. If B ⊂ Y −c Ns(A), then N(B) ⊂ Y −c Ns−1(A). Hence
Ns(B) ⊂ Y −c A, so A ⊂ Y −c Ns(B).

Proof. Suppose N(B) is not a subset of Y −c Ns−1(A). Then N(B) and
Ns−1(A) share a vertex u. So there is a cell e of Y whose carrier C(e) con-
tains both u and a vertex w of B. Since C(e) ⊂ N s(A), N s(A) ∩ B �= ∅, a
contradiction. The last part of the Lemma now follows by induction. �

Proof (of 16.9.2 (concluded)). For homotopies of type (i) the assertion follows
from 16.9.3, for (σ1, σ2, . . .) lies in X̃ −c M , the homotopy takes place in the
union of the CW neighborhoods of these edges and n ≥ 1. A homotopy of type
(ii) is a slide of σ along (τ1, τ2, . . .). Let g.ṽ be the initial vertex. The slide of σ
along the selected edge path (τ1, τ2, . . . , τm) takes place in Nn(gṽ), which lies
in X̃ −c K, by 16.9.3. The rest of the slide also takes place in X̃ −c K because
its image under pN takes place in X̄(N) −c Lk ⊂ X̄(N) − pN (K). The claim
for homotopies of type (iii) follows immediately. �

Proof (of 16.9.1). We will show that 16.1.2(ii) holds, i.e., that we can “push
loops to infinity.” Initially we will ignore base ray issues to keep things simple.

Let K be a finite subcomplex of X̃ and let M = Nn(K) as in 16.9.2. Only
finitely many selected Q-edge rays contain an edge of M . Let M ′ be a finite
subcomplex containing N(M) such that whenever a selected Q-edge ray has
initial point in X̃ −c M ′ then it contains no edges of M .

The graph X̃1 is the Cayley graph of G with respect to {hi, qj}. The vertex
ṽ lies in a path connected subgraph Γ (N) which is the Cayley graph of N
with respect to {hi}. Enlarging M ′ if necessary, we may assume by 13.4.9
that for each g ∈ G the graph gΓ (N) −c (M ′ ∩ Γ (N)) has only infinite path
components; this is justified because gΓ (N)∩M ′ = ∅ for all but finitely many
of the graphs gΓ (N).

Let α := (α1, . . . , αr) be an edge loop in X̃ −c M ′. Let hα : S1 → X̃ −c M ′

be a parametrization of α (see Sect. 3.4). We construct in pieces a proper
homotopy [0,∞) × S1 → X̃ −c K extending hα as follows. If αs is a Q-edge,
let F (s) : [0,∞) × [0, 1] → X̃ be obtained as in (i) by sliding αs along
an infinite N -edge ray in X̃ −c M ′ with the same initial vertex as αs. If αs

is an N -edge, let F (s) : [0,∞) × [0, 1] → X̃ be obtained as in (ii) by sliding
αs along the selected infinite Q-edge ray with the same initial vertex as αs.
By 16.9.2, these homotopies F (s) can be chosen to take place in X̃ −c K.

Moreover the “top,” F
(s)
1 , of the homotopy, [0,∞) × {1} → X̃ has its image

in X̃ −c M because in one case it parametrizes a proper N -edge ray in the

CW neighborhood of the “bottom” F
(s)
0 , and N(M) ⊂ M ′, so it misses M ,

by 16.9.3; and in the other case it parametrizes a selected Q-edge ray with
initial point in X̃ −c M ′. The homotopies F (s) are illustrated in Fig. 16.10.

We consider three situations. (a) If αs and αs+1 are N -edges then F (s)

and F (s+1) can be properly fitted together, since F
(s)
1 and F

(s+1)
0 are proper
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parametrizations of the same selected Q-edge ray. (b) If αs and αs+1 are Q-

edges then F
(s)
1 and F

(s+1)
0 parametrize proper N -edge rays in X̃ −c M with

the same initial point. (c) If one of αs and αs+1 is an N -edge and the other is
a Q-edge, then one of the proper rays at the final point of αs parametrizes a
proper N -edge ray and the other a selected proper Q-edge ray. See Fig. 16.10.
In (c) we can link up these two proper rays by a proper homotopy in X̃ −c K
of type (iii). In (b) we can do this twice, linking both of the infinite N -edges
by proper homotopies of type (iii) to the selected Q-edge which begins at that
initial point. The fitting together of all these homotopies gives the required
proper homotopy [0,∞)× S1 → X̃ −K extending hα.

We have ignored base rays. In choosing the selected Q-edge rays it is easy
to arrange that if (τ1, τ2, . . .) is selected, then so is (τs, τs+1, . . .) for every
s ≥ 1; this simply requires care in the choice of rays in X̄(N). Assume this is
done. Then if we are given a selected Q-edge ray as base ray and if the base
point of α is on that base ray, our proper homotopy extending hα “moves”
the base point to infinity along a parametrization of the given base ray. Thus
(ii) of 16.1.2 is satisfied and X̃ is strongly connected at each end.

F (1)

F (2)

F (3)

F (4)

F
(6)

F
(7)

F (5)

a 1

a2

a3

a4

a5
a

6

a7

Ninfinite   −edge ray

Qselected infinite    −edge ray

Fig. 16.10.

It only remains to prove that X̃ has one end. Indeed, this was an exercise
in Sect. 16.8. To see it directly, join two “far out” vertices of X̃ by an edge
path α in X̃ , choose proper N -edge rays starting at those two points, and
properly deform α, sending its end points along those N -edge rays in the
manner described above for edge loops. Thus the points can be joined “far
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out,” and X̃ has one end and is therefore strongly connected at infinity, i.e.,
G is semistable at infinity.

The final sentence of the theorem now follows, by 16.5.1. �

In view of 16.9.1 one might expect that the second part of 16.8.5 could also
be strengthened by weakening the hypothesis on N from “finitely presented”
to “finitely generated.” This is not so:

Example 16.9.4. Let F2 be the free group of rank 2 and let G = F2×F2. Then
G has one end by 16.8.1, and H2(G, ZG) �= 0 by 13.2.9 and 12.6.1; hence
G is not simply connected at infinity. But there is a short exact sequence
N � G � Z with N a finitely generated group having one end. To see this
we will now construct G in another way. Let F2 be generated by a and b, let
xi = aiba−i and let B �F2 be the subgroup (freely) generated by {xi | i ∈ Z}.
The inner automorphism φ : F2 → F2, g �→ aga−1 maps B onto B. Let
N = F2 ∗B F2 and let ψ : N → N be the automorphism determined by φ. Let
Ḡ = N∗ψ = 〈N, t | t−1xt = ψ(x) ∀ x ∈ N〉. Then N ↪→ Ḡ � Q is exact where
Q ∼= Z is generated by the image of t. By Tietze transformations one sees
(exercise) that Ḡ is isomorphic to G. Clearly N is finitely generated. That N
has one end is left as an exercise.

Other examples to illustrate the sharpness of 16.8.5 can be found in [116].
In particular one can have N � G � Q with N finitely generated and one-
ended but not finitely presented, Q ∼= Zn and G ∼= (Zn ∗Z)× (Zn ∗Z) for any
n ≥ 1: this G is not simply connected at infinity.

We turn to ascending HNN extensions.

Theorem 16.9.5. Let H be finitely presented, let φ : H � H be a monomor-
phism, and let G = H∗φ be the resulting ascending HNN extension. If H is
infinite then G has one end and is semistable at infinity. If H has one end
then G is simply connected at infinity.

Proof. Let {hi} be a finite set of generators for H . The group G has the
finite presentation 〈H, t | t−1hitφ(hi)

−1, ∀ i〉 (where a finite presentation of
H with generators {hi} is understood – see Sect. 3.1 Appendix). Let (X, v)
be a corresponding presentation complex. Orient the cells of X and of X̃
compatibly. We use terminology similar to that in the proof of 16.9.1. In
particular, X̃ has H-edges and t-edges.

There is a finite subcomplex Z of X so that (Z, v) ↪→ (X, v) induces the
inclusion H ↪→ G, and each vertex g.ṽ of X̃ lies in a translate gZ̃ of the
universal cover, Z̃, of Z (where Z̃ is a subcomplex of X̃). There is a canonical
homomorphism ψ : G → Z defined by sending H to {0} and t to 1 ∈ Z. The
level of a vertex g.ṽ of X̃ is the integer ψ(g); indeed, ψ(g) is the t-exponent
sum of any word in the generators representing g. Giving R the usual CW
complex structure, ψ extends to a cellular map f : X̃ → R, taking each H-edge
to a vertex, each t-edge to an edge of R, and each 2-cell into the convex hull
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of the f -image of its boundary. Any subset of f−1(−∞, k) [resp. f−1(k,∞)]
will be said to be below level k [resp. above level k].

Let K be a finite subcomplex of X̃ . There are integers m− and m+ such
that K is below level m+ and above level m−. Let α := (α1, . . . , αr) be an
edge loop.

Lemma 16.9.6. If every αs is above level m+ then α is equivalent in X −c K
to a trivial edge loop.

Proof. If every αs is an H-edge then the whole loop lies in a simply connected
subcomplex gZ̃, and the f -image of such a subcomplex is an integer > m+,
so gZ̃ ⊂ X̃ −c K. If some αs is a t-edge, then the edge loop contains an
edge path (t−1, αp, . . . , αq, t) (indices written modulo r); this is because the
t-exponent sum around any loop is zero (as many t-edges oriented one way as
the other). That subpath can be changed to (t−1, αp, t, t

−1, αp+1, t, · · · , αq, t)
and slid “upwards” rel its end points (compare the proof of 16.9.1) to a path
of H-edges. Proceeding thus, the edge loop α is shown to be equivalent in
X̃ −c K to an H-edge loop, and, as we have seen, that is enough. �

Proof (of 16.9.5 (concluded)). As in the proof of 16.9.1, for each vertex g.ṽ
of X̃ we select the proper edge ray with that initial vertex whose vertices are
g.ṽ, gt.ṽ, gt2.ṽ, . . .. And, just as in that proof, we use the conjugation relations
to slide an H-edge along the selected ray (or finite segments thereof) at its
initial vertex. Let n be such that the slide of any edge ẽ(hi) (with initial vertex
ṽ) along the first m+−m−+2 edges of the selected infinite edge ray beginning
at ṽ takes place in Nn(ṽ). By 16.9.3, the slide of any H-edge in X̃ −c N(K)
along the first m+ −m− + 2 edges of the selected edge ray beginning at its
initial point takes place in X̃ −c K, and if that H-edge is above m− − 2 then
it is moved to an H-path above m+.

Choose M to be a finite subcomplex of X̃ containing Nn(K) such that for
each g ∈ G every path component of gZ̃ −c (gZ̃∩M) is infinite. Assuming (for
now) that H has one end, we are to show that any edge loop α in X̃ −c M is
equivalent in X̃ −c K to a trivial edge loop.

If α is above level m− − 2 then we can slide it in X̃ −c K above level m+,
and then we are done, by 16.9.6. If α is below level m− then we can slide it up
to a loop at level m− − 1, where it lies in a simply connected subcomplex gZ̃
at that level, so again we are done. Thus, after suitable adjustment, the only
case left is when α contains an edge path of the form (t−1, αp, . . . , αq, t) where

(αp, . . . , αq) is an H-edge path at level m− − 1 with end points in X̃ −c M .

Then (αp, . . . , αq) lies in some gZ̃ at level m− − 1. The fact that this gZ̃ is
one-ended and simply connected allows us to replace (αp, . . . , αq) by an edge

path in gZ̃ lying in gZ̃ −c (gZ̃∩M). In this way, our edge loop is homotopic in
X̃ −c K to an edge loop which can be slid forward to level m+ + 1 in X̃ −c K.
By 16.9.6, that is enough.
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These ideas can easily be modified to show that G has one end and, as-
suming H infinite rather than one-ended, that G is semistable at infinity.
�

If H in 16.9.5 is finite then G has two ends and is simply connected at
both ends. By 16.5.1 and 16.5.2, it follows from 16.9.5 that H2(G, ZG) is free
abelian or trivial as appropriate.

Example 16.9.7. By 9.2.5 and 16.9.5, Thompson’s group F is simply connected
at infinity.

Remark 16.9.8. In this section we have considered decomposition properties
of a finitely presented group G which imply that G is semistable at each end
(and hence that H2(G, ZG) is free abelian). There are other theorems of this
type in the literature, stronger than the ones given here and more difficult
to prove. For some of these, see [119], [118] and the references therein. For a
homological result see [102]. In connection with 16.9.5, we point out that (at
time of writing) it is unknown whether semistability holds if H is assumed
only to be finitely generated, G being finitely presented.

Source Notes: 16.9.1 appeared in [114]; 16.9.5 appeared in [115]; Example 16.9.4
is taken from [129]. I am indebted to Michael Mihalik for help with the writing of
this section.

Exercises

1. Prove that the group N in Example 16.9.4 has one end.
2. Find the Tietze transformations mentioned in Example 16.9.4.
3. Fill in the details at the end of the proof of 16.9.5.
4. In the proof of 16.9.1 the relations rk played no role, so a more general theorem

was proved. State that theorem.
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Higher homotopy theory of groups

In Chap. 16 we concentrated on π0 and π1 issues at the end of a CW complex.
Here we continue with a discussion of higher homotopy invariants.

17.1 Higher proper homotopy

Let Y be a countable strongly locally finite path connected CW complex, let
{Li} be a finite filtration of Y , and let n ≥ −1 be an integer. We say Y is
n-connected at infinity if for each −1 ≤ k ≤ n and each i there exists j ≥ i
such that every map Sk → Y −c Lj extends to a map Bk+1 → Y −c Li. Thus
Y is (−1)-connected at infinity iff Y is infinite; Y is 0-connected at infinity
iff Y has one end, and Y is 1-connected at infinity iff Y is simply connected
at infinity. We say Y is n-acyclic at infinity with respect to the ring R if
{H̃k(Y −c Li; R)} is pro-trivial for each −1 ≤ k ≤ n. By 1.4.3 and 2.7.6 these
properties only depend on the (n + 1)-skeleton of Y .

When A is a subcomplex of Y and n ≥ 0, we say (Y, A) is properly n-
connected if (Y, A) is n-connected and for every 0 ≤ k ≤ n and every i there
exists j ≥ i such that every map (Bk, Sk−1) → (Y −c Lj , A −c (Lj ∩ A)) is
homotopic rel Sk−1 in Y −c Li to a map whose image lies in A. For example,
(Y, A) is properly 0-connected iff A is non-empty and the function E(A) →
E(Y ) induced by inclusion is surjective.

Proposition 17.1.1. (Proper Whitehead Theorem) Let Y be finite-
dimensional. The following are equivalent:

(i) A is a proper strong deformation retract of Y ;

(ii) A
i

↪→ Y is a proper homotopy equivalence;
(iii) (Y, A) is properly n-connected for all n such that Y −A contains an n-cell.

Proof. The proof is similar to the proof of the Whitehead Theorem 4.1.4. In
an exercise, the reader is asked to consider why one needs Y to be finite-
dimensional. �



412 17 Higher homotopy theory of groups

This last proposition is used in a proper version of Theorem 4.1.5:

Theorem 17.1.2. If in Theorem 4.1.5 X and X ′ are finite-dimensional and
locally finite, f : X → X ′ is proper, and f | A, f | B and f | A∩B are proper
homotopy equivalences, then f is a proper homotopy equivalence. Moreover,
the map g in 4.1.5 can be chosen to be a proper homotopy inverse for f so
that all the indicated homotopies are proper. �

Just as 4.1.5 leads to proofs of 4.1.7 and 4.1.8, the last theorem implies:

Theorem 17.1.3. If in Theorems 4.1.7 and 4.1.8 all the spaces are finite-
dimensional locally finite CW complexes and all the given maps are proper,
then the homotopy equivalences in the conclusions of those theorems are proper
homotopy equivalences. �

Corollary 17.1.4. If Y is obtained from A by properly attaching n-cells then
the proper homotopy type of Y only depends on the proper homotopy class of
the simultaneous attaching map. �

For n ≥ −1, we say Y is properly n-connected if Y is n-connected and
n-connected at infinity. A proper analog of 7.1.2 is:

Proposition 17.1.5. Let Y be infinite, let ω : [0,∞)→ Y be a cellular proper
ray and an embedding, and let n ≥ 0. Y is properly n-connected iff the inclu-
sion Y n ↪→ Y is properly homotopic to a map into ω([0,∞)).

Proof. The case n = 0 is clear. Let Y be properly n-connected. By induction,
assume Y n−1 ↪→ Y is properly homotopic to a map into the ray ω([0,∞)).
Then 17.1.4 implies that Y n has the proper homotopy type of the locally finite
CW complex ({p}× [0,∞))∪ (Sn×N) ⊂ Sn× [0,∞), where p ∈ Sn is a base
point; here, Sn and [0,∞) have the usual CW complex structures. Thus, since
Y is properly n-connected, the inclusion Y n ↪→ Y has the desired property.
The converse is clear. �

We say Y is properly n-acyclic with respect to R if Hk(Y ; R) = 0 when
k ≤ n, and Y is n-acyclic at infinity with respect to R. This is related to
“properly n-connected” by the following analog of 4.5.1:

Theorem 17.1.6. (Proper Hurewicz Theorem ) Let n ≥ 2 and let Y
be properly 1-connected. Then Y is properly n-connected iff Y is properly n-
acyclic with respect to Z.

Proof. Simply observe that the proof of 4.5.1 gives this; use 17.1.3 and 17.1.5
in place of 7.1.2 and 4.1.8 in that proof. �

Source Notes: The material here is developed in analogy with the corresponding
shape theory – see the bibliography in [109] for details.
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Exercises

1. Let ω : [0,∞) → Y be a cellular proper ray in Y which is also an embedding.
Prove that Y is properly n-connected iff the pair (Y,ω([0,∞))) is properly n-
connected.

2. Rewrite this section in the CW-proper context (Sect. 10.2).
3. Rewrite this section in the filtered homotopy context (Sect. 14.1).
4. Why is “finite-dimensional” needed in 16.5.1?
5. State and prove the Proper Rebuilding Lemma, i.e., the proper version of 6.1.4.
6. State and prove the Proper Relative Hurewicz Theorem. Hint : Compare 4.5.1.
7. Here we gave proper analogs of 4.1.3 through 4.1.8. Are there proper analogs of

the other propositions in Sect. 4.1? What might their statements be?

17.2 Higher connectivity invariants of groups

Let G be a group of type Fn where n ≥ 0. Let (X, x) be a K(G, 1)-complex
with finite n-skeleton. We say that G is (n − 1)-connected at infinity [resp.
(n − 1)-acyclic at infinity with respect to R] if X̃n is (n − 1)-connected at
infinity [resp. (n − 1)-acyclic at infinity with respect to R]. As in Sect. 16.5,
one sees that these are properties of G rather than of X .

A group G is (−1)-connected at infinity iff G is (−1)-acyclic with respect
to some (equivalently, any) ring iff G is infinite. A finitely generated group
G is 0-connected at infinity iff G is 0-acyclic at infinity with respect to some
(equivalently, any) ring iff G has one end. If a finitely presented group G is
simply connected at infinity then G is 1-acyclic at infinity with respect to
any ring. By 13.3.3 (ii), G is (n − 1)-acyclic at infinity with respect to R iff
Hk(G, RG) = 0 when k ≤ n and the R-module Hn+1(G, RG) is torsion free.

By 17.1.6 we have:

Theorem 17.2.1. Let the group G have type Fn and assume G is simply
connected at infinity. Then G is (n− 1)-connected at infinity iff G is (n− 1)-
acyclic at infinity with respect to Z. �

Example 17.2.2. Hence Thompson’s group F is n-connected at infinity for all
n. This follows from 9.3.19, 13.10.1, 13.3.3 and 16.9.7.

Now let G have type F∞. We have seen that connectivity properties of
G such as n-connectedness, n-acyclicity and semistability at infinity can be
read off from a contractible free G-CW complex of locally finite type which
is of finite type mod G. In real situations the naturally occurring contractible
G-CW complexes are sometimes not free, but rather are rigid with finite cell-
stabilizers. The connectivity properties of G can often be read off in that
situation. One useful case is:

Theorem 17.2.3. Let Y be a contractible rigid G-CW complex which is fi-
nite mod G, and let the stabilizer of each cell be finite. Then G is semistable
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at each end or n-connected at infinity or n-acyclic at infinity iff Y has the
corresponding property. Moreover, for any ring R, H∗(G, RG) is isomorphic
to H∗

f (Y ; R).

Proof. The CW complex Y is strongly locally finite by 10.1.12. Apply the
Borel Construction using a K(G, 1)-complex X of finite type to get the usual
commutative diagram

X̃ × Y
projection−−−−−−→ Y⏐⏐
 ⏐⏐


Z −−−−→
q

Γ := G\Y.

Here, the diagonal action of G on the contractible CW complex X̃ × Y is
free, so Z is a K(G, 1)-complex. Then q : Z → Γ is a stack of CW complexes
which, by 6.1.4, can be rebuilt to give a commutative diagram

Z ′ h ��

q′
���

��
��

��
� Z

q
��**
**
**
*

Γ

in which q′ : Z ′ → Γ is a stack of CW complexes and h is a homotopy
equivalence. Here, the fiber Fe of q over the cell e of Γ is a K(Ge, 1)-complex
where Ge is finite, and the fiber F ′

e of q′ over e is a K(Ge, 1)-complex of
finite type (see 7.2.5). From Sect. 6.1 and Sect. 7.3 one sees that the map

Z̃ ′ h̃−→ X̃ × Y
projection−→ Y is a stack of CW complexes in which the fiber

over a cell ẽ of Y is homeomorphic to the universal cover of F ′
e (where ẽ lies

over the cell e of Γ ). Thus that fiber is a contractible CW complex of finite
type. It follows that the indicated map Z̃ ′ → Y is a CW-proper homotopy
equivalence.1 Indeed this holds hereditarily just as in that exercise, and that
is crucial: the connectivity properties under discussion are invariants of CW-
proper homotopy, and they hold for G iff they hold for Z̃ ′, hence iff they hold
for Y . The claim about H∗(G, RG) holds for the same reason. �

A similar proof gives the following useful variation on 17.2.3:

Theorem 17.2.4. Let Y be an (m−1)-connected m-dimensional G-CW com-
plex which is finite mod G, where the stabilizer of each cell is finite and m ≥ 2.
Then G satisfies the conclusions of Theorem 17.2.3 for all n ≤ m− 1. �

There is an analog of 7.3.1 in the present context; for a proof see [34]:

1 To see this, compare with the exercise in Sect. 6.1: the hint given there applies
here too.
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Theorem 17.2.5. Let Y be an (m−1)-connected rigid G-CW complex having
finite m-skeleton mod G. If the stabilizer of each i-cell has type Fm−i and is
(m− i− 1)-connected at infinity, then G is (m− 1)-connected at infinity. �

A homological version of 17.2.5 can also be found in [34].

Remark 17.2.6. 17.2.5 is not a generalization of 17.2.4 but rather covers a
different kind of hypothesis. In 17.2.4 the stabilizers are finite and hence are
not (−1)-connected at infinity.

Exercises

1. Prove that the connectivity properties discussed in this section do not change on
passing to a subgroup of finite index or to a quotient by a finite normal subgroup.

2. State and prove a version of 17.2.4 for the case m = 1; compare 13.5.12.

17.3 Higher invariants of group extensions

Let N � G � Q be a short exact sequence of infinite groups. One expects
G to have better connectivity properties at infinity than N and Q. In this
section we establish theorems of that type.

Let (X, x) [resp. (Y, y), (Z, z)] be a K(G, 1)-complex [resp. K(N, 1)-
complex, K(Q, 1)-complex]. We saw at the end of Sect. 7.1 how to build a
commutative diagram

X̃ × Z̃
projection−−−−−−→ Z̃⏐⏐
 ⏐⏐


W
q−−−−→ Z

in which q is a stack of CW complexes all of whose fibers are homeomorphic
to the quotient CW complex N\X̃, and W is a K(G, 1)-complex.2 We can
use this to get information about H∗(G, ZG) in terms of H∗(N, ZN) and
H∗(Q, ZQ) under suitable finiteness hypotheses.

We choose a cellular homotopy equivalence g : N\X̃ → Y . By 6.1.4 (see
also the last part of Sect. 7.1 on group extensions) there is a commutative
diagram

W �� k

q
��%

%%
%%

%%
% W ′

q′

����
��
��
��

Z

with k a cellular homotopy equivalence and q′ a stack of CW complexes in
which every fiber is homotopy equivalent to Y .

2 Indeed, q is a fiber bundle.
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We first consider the case in which N and Q have type F . Then we may
take Y and Z to be finite CW complexes and in that case W ′ is a finite
K(G, 1)-complex. We have a commutative diagram in which the unmarked
arrows are projections:

W̃ ′ k̃ ��

q̃′

��&
&&

&&
&&

&&
X̃ × Z̃

g̃×id ��

��

Ỹ × Z̃

����
��
��
��
��

Z̃

Proposition 17.3.1. The map (g̃× id) ◦ k̃ is a proper homotopy equivalence.

Proof. The maps q̃′ : W̃ ′ → Z̃ and projection: Ỹ × Z̃ → Z̃ are stacks of CW
complexes with every fiber Ỹ , and the projection map: X̃×Z̃ → Z̃ is a stack of
CW complexes with every fiber X̃. Let f : Y → N\X̃ be a homotopy inverse
for g, lifting to f̃ : Ỹ → X̃. The construction of k using f (see 6.1.4) shows
that, before identifications are made, (g̃ × id) ◦ k̃ is built from compositions
of the form

Ỹ ×Bn f̃× id−−−−→ X̃ ×Bn g̃× id−−−−→ Ỹ ×Bn

and hence (g̃ × id) ◦ k̃ is a proper homotopy equivalence by the Proper Re-
building Lemma (Exercise 5 of Sect. 17.1). �

From 17.3.1, 12.6.1 and 13.2.9 we obtain:

Theorem 17.3.2. Let R be a PID, and let N and Q have type F . Then G
has type F and for all p there are split short exact sequences

0 →
M

i+j=p

H
i
(N, RN) ⊗R H

j
(Q, RQ) → H

p
(G, RG) →

M
i+j=p+1

TorR(H
i
(N, RN), H

j
(Q, RQ)) → 0.

�

Applying this with 13.3.3(ii) we get:

Corollary 17.3.3. With respect to the PID R, if N is s-acyclic at infinity
and Q is t-acyclic at infinity, then G is (s + t + 2)-acyclic at infinity. �

More generally, if the infinite groups N and Q have type Fn we may take
Y and Z to have finite n-skeleta, implying that W ′ is a K(G, 1)-complex with
finite n-skeleton, so G has type Fn. In that case the appropriate analog of
17.3.1 is:

Proposition 17.3.4. Under these hypotheses the map (g̃ × id) ◦ k̃ : W̃ ′ →
Ỹ × Z̃ is a CW-proper n-equivalence.
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Proof. The proof is similar to that of 17.3.1. That proof depends on 17.1.3,
which in turn is merely an observation about the proof of 4.1.7 (in which
17.1.1 and 17.1.2 play the roles of 4.1.4 and 4.1.5). Here we are asserting that
a parallel observation, using appropriately modified versions of 17.1.1 and
17.1.2, proves what is claimed. �

As above, this gives:

Theorem 17.3.5. Let R be a PID, and let N and Q be infinite and have type
Fn. Then G has type Fn and for all p ≤ n − 1 there are split short exact
sequences

0 →
M

i+j=p

H
i
(N, RN) ⊗R H

j
(Q, RQ) → H

p
(G, RG) →

M
i+j=p+1

TorR(H
i
(N, RN), H

j
(Q, RQ)) → 0.

Moreover, there is a free R-module F such that

H
n
(G, RG)⊕F ∼=

0
@ M

i+j=n

H
i
(N, RN) ⊗R H

j
(Q, RQ)

1
A⊕

0
@ M

i+j=n+1

TorR(H
i
(N, RN), H

j
(Q, RQ))

1
A .

Proof. The CW complexes Ỹ n and Z̃n are locally finite, and (Ỹ n × Z̃n)n =
(Ỹ × Z̃)n. By 12.6.1, for every p we have a split short exact sequence

0 →
M

i+j=p

H
i
f (Ỹ

n
; R)⊗RH

j
f
(Z̃

n
; R) → H

p
f
(Ỹ

n
×Z̃

n
; R) →

M
i+j=p+1

TorR(H
i
f (Ỹ

n
; R), H

j
f
(Z̃

n
; R)) → 0.

By a straightforward use of chain homotopies, 17.3.4 implies that for p ≤ n−1
Hp

f ((W̃ ′)n; R) ∼= Hp
f ((Ỹ ×Z̃)n; R) = Hp

f (Ỹ n×Z̃n; R). By 13.2.9, H i
f (Ỹ n; R) ∼=

Hi(N, RN) when i ≤ n − 1, Hj
f (Z̃n; R) ∼= Hj(Q, RQ) when j ≤ n − 1, and

Hp
f ((W̃ ′)n; R) ∼= Hp(G, RG) when p ≤ n − 1. This establishes the theorem

for p ≤ n− 1. By 13.2.11 and 12.1.2, the extremes i = n and j = n cause no
trouble in the Tor term.

Now let p = n. Again we wish to identify H∗
f of various CW complexes

with H∗(Γ, RΓ ) for Γ = G, N or Q. The term Hn(G, RG) ⊕ F comes from
13.2.17. In the other cases where 13.2.9 does not give these identifications,
namely, the extremes i or j = n in the tensor product and i or j = n or
n + 1 in the Tor terms, the relevant modules are all trivial (by 12.1.2, 12.5.1,
12.5.10(ii), 13.2.11 and 13.3.2). �

Theorem 17.3.6. Let N � G � Q be a short exact sequence of infinite
groups of type Fn, and let R be a PID. Working with respect to R, let N be
s-acyclic at infinity and let Q be t-acyclic at infinity where s ≤ n − 1 and
t ≤ n− 1. Then G is u-acyclic at infinity where u = min{s + t + 2, n− 1}. If
s ≥ 0 or t ≥ 0 (i.e., if N or Q has one end) then G is u-connected at infinity.
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Proof. By 13.3.2, when s ≤ n−1, N is s-acyclic at infinity iff H i(N, ZN) = 0
for i ≤ s + 1 and Hs+2(N, ZN) is torsion free; a similar statement holds
for Q, replacing s by t. It follows from 16.8.5 that Hp(G, ZG) = 0 for p ≤
min{s+t+3, n−1} and Hp(G, ZG) is torsion free for p ≤ min{s+t+4, n−1}.
So Hp(G, ZG) = 0 for p ≤ u+1, and Hu+2(G, ZG) is torsion free, as required
for the first part. The second part then follows by 16.8.5 and 17.2.1. �

With 17.1.6 this gives:

Corollary 17.3.7. If N is s-connected at infinity and Q is t-connected at
infinity then G is u-connected at infinity. �

Source Notes: A version of this material appeared in [70] and [71].

Exercises

1. What happens to the material in this section when N or Q is finite?
2. Together with 16.5.1 and 16.5.2, Corollary 16.8.5 implies that (for G as in that

theorem) H2(G, ZG) is free abelian, and is trivial when N or Q has one end.
Deduce these conclusions directly from 17.3.5.

3. Give an example of H ≤ G where H and G/H are infinite while G has more than
one end; compare 16.8.5.

17.4 The space of proper rays

Let Y be a strongly locally finite CW complex which is path connected. In
this section and the next we discuss spaces which model the end of Y in the
sense that their ordinary algebraic topology invariants are isomorphic to the
invariants “at the end of Y ” which we have been discussing.

To begin, we must define higher homotopy groups at the end of Y . The
nthstrong (or Steenrod) homotopy group of Y with respect to the proper base
ray ω, denoted πe

n(Y, ω), is defined by analogy with πe
0(Y, ω) in Sect. 16.1

and πe
1(Y, ω) in Sect. 16.2: its elements are the base ray preserving proper

homotopy classes of proper maps (Sn × [0,∞), {v} × [0,∞)) → (Y, ω) where
v is a base point for Sn, and {v}× [0,∞) is the base ray t �→ (v, t) as in Sect.
16.2. Multiplication (compare Sect. 4.4) is as in the πe

1-case.
Extending 16.1.4 and 16.2.6, we have:

Proposition 17.4.1. If L := {Li} is a finite filtration of Y and if ω is well
parametrized with respect to L, then there is a natural short exact sequence

lim←−
1{πn+1(Y −c Li, ω(i))} a

� πe
n(Y, ω)

b
� lim←−{πn(Y −c Li, ω(i))}.

Proof. Similar to the corresponding homological proof indicated in Remark
11.4.9. The details are an exercise. �
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Let PR(Y ) denote the space of all proper rays in Y with the compact-open
topology. The strong homotopy groups of Y are canonically isomorphic to the
homotopy groups of PR(Y ). To see this, define σ : πe

n(Y, ω)→ πn(PR(Y ), ω)

by σ([f̂ ]) = [f ], where f̂ : (Sn× [0,∞), {v}× [0,∞))→ (Y, ω) is a proper map
and f : (Sn, v)→ (PR(Y ), ω) is its adjoint.

Proposition 17.4.2. σ is an isomorphism when n ≥ 1 and a bijection when
n = 0.

The proof of 17.4.2 would be immediate if it were true that the adjoint of
a map K → PR(Y ) is always a proper map K× [0,∞)→ Y , but this can fail
to be true even when K is a circle. To get around this, we consider a finite
filtration L of Y as above and we assume ω is well parametrized. We say that a
map g : K× [0,∞)→ Y is L-proper if, for each i ≥ 1, g(K× [i,∞)) ⊂ Y −c Li.
Let PRL(Y ) be the subspace of PR(Y ) consisting of L-proper rays3 in
Y . There are corresponding homotopy groups πn(Y,L, ω) whose elements
are the base ray preserving L-proper homotopy classes of L-proper maps
(Sn × [0,∞), {v} × [0,∞))→ (Y, ω).

Proof (of 17.4.2). There are obvious functions

πe
n(Y, ω) ��

α
πn(Y,L, ω)

β �� πn(PRL(Y ), ω)
γ �� πn(PR(Y ), ω)

To see that β is an isomorphism observe that the adjoint of a map
K → PRL(Y ) is an L-proper map K × [0,∞) → Y and vice versa.4 Since
L-proper implies proper, α and γ are well-defined; they are isomorphisms be-
cause a proper map g : K × [0,∞) → Y can be reparametrized by a proper
homotopy to be L-proper, and if J is a closed subset of K such that g is
L-proper on J × [0,∞) then this proper homotopy can be chosen to be rel J .
Clearly σ = γ ◦ β ◦ α−1. �

In view of the similarity between He
∗ and πe

∗ exhibited by 17.4.1 and 11.4.8,
one might guess that H∆

∗ (PR(Y ); R) is isomorphic5 to He
∗(Y ; R) by analogy

with 17.4.2, but that is not the case in general:

Example 17.4.3. (This uses standard facts about the topology of surfaces – see
5.1.7 and 5.1.8.) The surface of genus i with two boundary circles is denoted
by Ti,2. There is an obvious embedding of Ti,2 in Ti+1,2 illustrated in Fig.
17.1, and there is a CW complex structure Li for Ti,2 such that Li becomes

a subcomplex of Li+1 under this embedding. Let Y =

∞⋃
i=1

Li. Then {Li} is a

finite filtration of the one-ended CW complex Y . By using the exact sequence

3 The L-proper rays are precisely the rays well parametrized with respect to L.
4 β is defined by [f ] 
→ [f̂ ] where f and f̂ are adjoint.
5 PR(Y ) is not a CW complex: recall that H∆

∗ denotes singular homology.
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in 16.2.6, one shows that πe
1(Y, ω) is trivial for every well parametrized proper

ray ω. Hence, by 17.4.2, π1(PR(Y ), ω) is trivial for every base point ω. It
follows6 from 3.1.19 that every path component of PR(Y ) has trivial first
homology with coefficients Z. Hence H∆

1 (PR(Y ); Z) = 0. But, either from the
definition of He

1 or by 11.4.8, one sees that He
1(Y ; Z) ∼= Z.

L 2

L 3

L 1

T
3,2

T
2,2

Y . . .

Fig. 17.1.

Remark 17.4.4. The space PR(Y ) is, up to homotopy equivalence, the “ho-
motopy inverse limit” of the inverse sequence {Y −c Li} where L := {Li} is a
finite filtration of Y . See, for example, [21] or [60] for more on this subject.

Source Notes: The homotopy inverse limit was introduced in [21]. The material in
this section is adapted from the shape theory literature, in the spirit of [131], [59],
[60].

Exercises

1. Find a map S1 × [0,∞) → Y which is not proper but whose restriction to every
{x} × [0,∞) is proper.

6 Strictly, we only proved 3.1.19 for CW complexes, but it is well known to hold
for all spaces with respect to singular homology.
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2. For any finite pointed CW complex K, establish a short exact sequence of pointed
sets

{p} → lim
←−

1[ΣK, Ln] → [K, PR(Y )] → lim
←−

[K, Ln] → {p}

where [X, Y ] denotes the set of pointed homotopy classes of maps X → Y .
3. Fill in the missing details in Example 17.4.3.

17.5 Z-set compactifications

Let Y be a locally compact metrizable space which is path connected; thus
if Y is a CW complex it is locally finite. Here we discuss how Y may be
compactified so that the compactifying space “models” the end of Y . By a
compactification of Y we mean7 a compact metrizable space W containing (a
space homeomorphic to) Y – we write Y ⊂ W – so that Y is a dense open
subset of W . The nowhere dense compact set C := W−Y is the compactifying
space. In general, a closed subset D ⊂W is a Z-set in W if for every open set
U in W the inclusion map U−D ↪→ U is a homotopy equivalence. If the com-
pactifying space C is a Z-set in W , we say that W is a Z-set compactification
of Y .

Example 17.5.1. If W is a compact manifold (see Sect. 5.1), every closed sub-
set C ⊂ ∂W is a Z-set in W . Thus the manifold W is a Z-set compactification
of the manifold W − C. In particular, C can be ∂W , so W is a Z-set com-

pactification of the open manifold
◦

W .

When Y is a (locally finite) CW complex, the existence of a Z-set com-
pactification imposes restrictions on Y :

Proposition 17.5.2. If such a Y admits a Z-set compactification W , then
for any finite filtration L := {Li} each Y −c Li is finitely dominated and
{Y −c Li} is equivalent in pro-Homotopy to an inverse sequence of finite CW
complexes.

Proof. Write C = W − Y . The subspace Ai := (Y −c Li) ∪ C is a compact
neighborhood of C in W since W −c N(Li) is compact8 (by 1.5.4). Thus
Y −c Li ↪→ Ai is a homotopy equivalence. Letting f : Ai → Y −c Li be a
homotopy inverse, there is a finite subcomplex Ji of Y −c Li containing f(Ai)
(by 1.2.13). Since the composition

Y −c Li ↪→ Ai
f ′

−→ Ji ↪→ Y −c Li

7 The only compactifications discussed in this book are metrizable compactifica-
tions which we abbreviate to “compactification.” In other contexts, W would be
compact Hausdorff; for example, the Stone-Čech compactification βY .

8 Y is a CW complex but W , in general, is not. Even when W has the structure
of a CW complex, the (dense open) subset Y is not a subcomplex. Nonetheless,
W −c N(Li) makes sense.
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is homotopic to the identity map (where f ′ is the corestriction of f), Ji dom-
inates Y −c Li. Thus each inclusion Y −c Li+1 ↪→ Y −c Li factors up to
homotopy through Ji, so 11.2.2 implies that {Y −c Li} is pro-isomorphic to
{Ji} for suitable bonding maps Ji+1 → Ji. �

With W as in 17.5.2, let p ∈ C = W − Y be a base point. Since C is a
Z-set there is a proper base ray ω in Y which extends to a map [0,∞]→ W ,
sending ∞ to p, and ω can be chosen to be well parametrized with respect to
L. Then a variant on the proof of 17.5.2 shows:

Proposition 17.5.3. Under these conditions the fundamental pro-group
{π1(Y −c Li, ω(i))} is pro-finitely presented.9 �

We will see examples in Sect. 16.4 where the fundamental pro-group is not
pro-finitely presented, and hence the space does not admit a Z-set compact-
ification. But here we will discuss some of the principal sources (other than
17.5.1) of locally compact spaces Y which have Z-set compactifications. We
begin with a rather general construction which yields interesting examples
as special cases. Let C∞ be a compact subset of the space of proper rays
PR(Y ). For each t ∈ [0,∞) let10 Ct ⊂ C([0,∞), Y ) be defined by: ωt ∈ Ct

iff ωt | [0, t] = ω | [0, t] for some ω ∈ C∞ and ωt([t,∞)) = ωt(t). Thus Ct is
the set of restrictions of members of C to [0, t] prolonged to be constant on
[t,∞). Let Dt0 =

⋃{Ct | 0 ≤ t ≤ t0} and D∞ =
⋃{Ct | 0 ≤ t < ∞}. Write

W = D∞ ∪ C∞ ⊂ C([0,∞), Y ). All these spaces inherit the compact-open
topology.

Proposition 17.5.4. W is a Z-set compactification of D∞, with C∞ as com-
pactifying space.

Proof. There is an obvious retraction ri : Di+1 → Di under which, for i ≤
t ≤ i + 1, ωt �→ ωi. The inverse limit in Spaces of the inverse sequence

{D0
�� r0

D1
�� r1 · · · } is homeomorphic to W . For all t there are continuous

surjections C∞ → Ct and Ct × I → Dt, so each Di is compact. The space
Dt is homeomorphic to a subset of C(I, Y ) and is therefore metrizable. So W
is compact and metrizable, being a closed subset of the compact metrizable

space

∞∏
i=0

Di. Clearly D∞ is open in W . The map ω �→ ωt of C∞ onto Ct is

homotopic in W to the inclusion C∞ ↪→ W . Using this, it is straightforward
to show that C∞ is a Z-set in W . �

The interest of 17.5.4 is that in at least two important cases C∞ can be
chosen so that D∞ is homeomorphic to Y , making W a Z-set compactification
of Y :
9 Pro-finitely presented means pro-isomorphic to an inverse sequence of finitely

presented groups.
10 Recall from Sect. 1.1 that C(X, Y ) denotes the space of all maps X → Y , with

the compact-open topology.
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Example 17.5.5. Let Y admit a proper metric d so that the usual weak topol-
ogy on Y is induced by d. Assume that d is a CAT(0) metric or, more generally,
a unique-geodesic metric space. Choose a base point v ∈ Y and let C∞ be the
space of geodesic rays starting at v. Then for 0 ≤ t <∞, Dt is homeomorphic
to the space of geodesic segments starting at v and of length ≤ t, hence also
to Bt(v), the ball of radius t in Y centered at v. It follows that each Dt is
compact and hence that D∞ ∪ C∞ is compact. The “terminal point map”
D∞ → Y is a homeomorphism. Thus, up to identification of Y with D∞, the
space of geodesic rays is a Z-set compactifying space for Y . In the language
of CAT(0) geometry, C∞ is the “boundary” of Y with the “cone topology”.11

Example 17.5.6. Here we show that every compact metrizable space C can
play the role of W − Y for a Z-set compactification of a locally finite CW
complex Y . Let C be homeomorphic to the inverse limit in Spaces of an inverse
sequence W1 ← W2 ← · · · of finite CW complexes.12 Let Y be the inverse

mapping telescope of W0 := {v} �� f0
W1

�� f1
W2

�� f2 · · · ; we have added

a one-point space {v} to make Y contractible. The space Y is

∞∐
i=0

M(fi)/∼

(see Sect. 11.4). Now M(fi) is Wi ∪fi
(Wi+1 × I) as in Sect. 4.1, so for each

wi+1 ∈ Wi+1, the path t �→ (wi+1, t) in Wi+1×I defines a path in M(fi) from
fi(wi+1) to wi+1. Call the corresponding path in Y a “canonical segment”
from fi(wi+1) to wi+1; we can form “canonical rays” in Y as infinite products
of canonical segments just as in Sect. 3.3 (where we formed finite products
only). All these canonical rays start at v and the ith restriction to [i, i + 1] is
a canonical segment. Let C∞ ⊂ PR(Y ) be the space of all canonical segments
in Y . Then it is clear that the space D∞ in 17.5.4 is homeomorphic to Y in
this instance, while C∞ is homeomorphic to lim←−

i

Wi, hence to C.

Remark 17.5.7. In the last two examples the space of proper rays C∞ is com-
pact. In general, the Arzela-Ascoli Theorem [51] is a useful criterion for rec-
ognizing compact subsets13 of C([0,∞), Y ).

Remark 17.5.8. In 17.4.3 we described a space Y such that H∆
1 (PR(Y ); Z) = 0

and He
1(Y ; Z) �= 0. That example Y does not admit a Z-set compactification.

11 Strictly, this definition depends on the base point v. An equivalent definition
independent of base point is given in [24].

12 A well-known theorem [61, Chap. 10, Sect. 10], says that every compact metrizable
space C has this property. Of course, many different inverse sequences {Wi} have
homeomorphic inverse limits. For example, if C ⊂ Rn then C is the intersection
of compact polyhedral neighborhoods Wi (see Sect. 5.2), so W1 ←↩ W2 ←↩ · · · has
inverse limit C. Or the Wi’s can be nerves of ever finer finite open covers of C.
See Sect. 9.3E for more on nerves.

13 Note that Y is metrizable by 10.1.25, a necessary condition in the Arzela-Ascoli
Theorem.
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Examples of the opposite phenomenon, H∆
k (PR(Y ); Z) �= 0 and He

k(Y ; Z) =
0, which are inverse mapping telescopes as in 17.5.6 (and so admit Z-set
compactifications) have been given in [97] and [98]. A particular case is as
follows: Y is an inverse mapping telescope of {W1 ← W2 ← · · · } where

n ≥ 2 is fixed, Wi :=

i∨
j=1

Sn (the wedge of i copies of Sn) and Wi+1 → Wi

is the identity on Wi ⊂ Wi+1 while sending the remaining copy of Sn to the
base point. Specifically: H∆

2n−1(PR(Y ); Z) �= 0 and He
2n−1(Y ; Z) = 0. In this

case, C∞ is the n-dimensional analog of the Hawaiian Earring, a “compact
countable wedge” of copies of Sn. This strange behavior arises from the fact
that the singular homology of an n-dimensional space can fail to vanish in
dimensions > n.

Remark 17.5.9. A well-known (metrizable) compactification of Y is the one-
point (or Alexandroff ) compactification Ŷ = Y ∪ {p} where p �∈ Y is a point.
The topology of Ŷ is the smallest topology containing the open sets of Y and
the complements in Ŷ of all compact subsets of Y . If Y = [0, 1) then Ŷ is
homeomorphic to [0, 1]. If Y = R then Ŷ is homeomorphic to S1. A more
delicate compactification of Y is the end-point (or Freudenthal) compactifi-
cation14 Ȳ = Y ∪ E(Y ). As in Sect. 16.1, we regard each end e as an element
(Zi(e)) of lim←−{π0(Y −c Li)} where {Li} is a finite filtration of Y . The topology

of Ȳ is the smallest topology containing all open sets of Y and all sets of the
form Zi(e) ∪ {e}. For fixed e, the sets Zi(e) ∪ {e} then form a basis for the
neighborhoods of e in Ȳ . If Y has one end, then Ŷ = Ȳ . If, for example,
Y = (0, 1) then Ȳ is homeomorphic to [0, 1].

Source Notes: The concept of Z-set comes from infinite dimensional topology –
see, for example, [38] or [8]. The relevance to group theory was pointed out in [68].
Other relevant sources are [39], [12] and [9]. A weaker definition, possibly useful in
group theory, is given in [143].

Exercises

1. Show that a non-empty compact subset of Rn is never a Z-set.
2. Show that the space Y in 17.4.3 does not admit a Z-set compactification.
3. Let W be a compact contractible manifold (see Sect. 5.1) with non-empty15

path connected boundary ∂W . Show that if the fundamental group of ∂W is not

Z or {1}, then
◦

W is not the universal cover of a finite CW complex. Hint : use
16.5.5 and 7.2.12. Remark : There exist such manifolds W with non-trivial perfect
fundamental groups, e.g., homology spheres.

4. Show that the one-point and end-point compactifications of Y really are (metriz-
able) compactifications.

14 Recall from Sect. 13.4 that E(Y ) denotes the set of ends of Y .
15 By 12.3.7, if ∂W is empty W cannot be contractible.
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5. Assume16 that in Example 17.5.6 the bonds Wi+1 → Wi are Serre fibrations.
Prove that the canonical map C → PR(Y ) is a weak homotopy equivalence.
(Part of this exercise is to decide what the “canonical map” is.)

6. In Example 17.5.6, take each Wi to be S1 × S1 with the product of two degree 2
covering projections as bonds. Prove that H∆

1 (PR(Y ); Z) = 0 and He
1(Y ; Z) �= 0.

17.6 Compactifiability at infinity as a group invariant

Let G be a group of type F , let (X, x) be a finite K(G, 1)-complex (an identifi-
cation of G with π1(X, x) is chosen), and let (X̃, x̃) be the (pointed) universal
cover. Then X̃ is a contractible finite-dimensional locally finite G-CW com-
plex which is finite mod G. We choose a proper base ray ω in X̃ starting at x̃.
One might wish to say that the strong homotopy groups πe∗(X̃, ω) are invari-
ants of G, but the issue of dependence on ω makes this doubtful, as discussed
in Sect. 16.3. However, if G is semistable at infinity, then all proper rays are
properly homotopic and one can say that the isomorphism class of πe

k(X̃, ω)

is an invariant of G for each k. By 17.4.2, this is isomorphic to πk(PR(X̃), ω).
The (isomorphism class of the) homology H∆

k (PR(X̃); R) is also an in-

variant of G which can be different from He
k(X̃; R) ∼= Hk+1(G, RGe) (see

13.2.3).
In another direction we ask:

Question 17.6.1. Let {Ki} be a finite filtration of X̃. Is {X̃ −c Ki} equivalent
in pro-Homotopy to an inverse sequence of finite CW complexes?

Note that the condition in 17.6.1 only depends on G, not on the choice of
X or {Ki}.

Indeed, 17.5.3 suggests a simpler question:

Question 17.6.2. If G is semistable at infinity, is the fundamental pro-group
of X̃ (with respect to ω) pro-finitely presented?

There are interesting strengthenings of 17.6.1:

Question 17.6.3. Can X be chosen so that X̃ admits a Z-set compactification?

As posed, X is to be a finite CW complex but it is better to allow more
generality in 17.6.3; namely, X can be a compact connected ANR (see Sec.
17.7) with fundamental group G and contractible universal cover. There is
literature relevant to this which is beyond the scope of this book; e.g., [144],
[39], [126], [75].

16 This exercise involves the algebraic topology of spaces which are not CW com-
plexes: for the definitions of “Serre fibration” and “weak homotopy equivalence”
see [146].
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Question 17.6.4. Can X be chosen so that X̃ admits a Z-set compactification
W such that the free G-action on X̃ by covering transformations extends to
a G-action on W by homeomorphisms?

The answer to 17.6.4 is yes, with important consequences, when X̃ is a
CAT(0) space on which G acts freely with X := G\X̃ compact. Then X is
a compact ANR as above. A classical example is the compactification of the
hyperbolic plane by the circle at infinity, with G the fundamental group of a
surface of genus ≥ 2. The answer is also yes in the case of the Rips complex
of a hyperbolic group [24].

Exercise

Prove that the right angled Coxeter groups discussed in Sec. 13.9 provide posi-
tive examples for Question 17.6.3; in fact, also for 17.6.4, since they are CAT(0)
groups; see [122].

17.7 Strong shape theory

This book is influenced by strong shape theory and shape theory. Here we
briefly explain, confining ourselves to versions of those theories for compact
metrizable spaces (also called compacta).

A space is locally contractible if for any point p and any neighborhood U of
p there is a neighborhood V of p, V ⊂ U , such that V ↪→ U is homotopically
trivial. Roughly speaking, a compactum is considered to be “locally patholog-
ical” if it is not locally contractible. For example, the dyadic solenoid and the
Case-Chamberlin compactum (which are the inverse limits corresponding to
the mapping telescopes described in 11.4.15 and 16.1.10) are not locally con-
tractible; nor is the compactum described in 17.5.8. We say “roughly speaking”
because a concept somewhat more restrictive than local contractibility turns
out to be better. A metrizable space X is an absolute neighborhood retract
(abbrev. ANR) if whenever Y is a metrizable space, Z is a closed subset of Y ,
and f : Z → X is a map, then there exists a continuous extension F : U → X
of f to some open subset U of Y containing Z. An ANR X is an absolute
retract (abbrev. AR) if in this definition of ANR the neighborhood U can
always be taken to be all of Y .

Examples and Properties 17.7.1. The metrizable space X is an AR iff
X is a contractible ANR. Every open subset of an ANR is an ANR. Finite
products of ANR’s are ANR’s and retracts of ANR’s are ANR’s. By a variation
of the Tietze Extension Theorem ([51]) R is an AR. Thus every open subset
of Rn, as well as every retract of such an open set, is an ANR. If every point
of X has an ANR neighborhood, then X is an ANR. Thus every manifold is
an ANR. Every ANR is locally contractible. Every locally finite CW complex
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is an ANR (by 10.1.25 they are metrizable). A Z-set compactification of a
locally compact AR is a (compact) AR. References for ANR’s are [19] and
[89]. A theorem of J.H.C. Whitehead says that every ANR has the homotopy
type of a CW complex; a reference for this is [109, Appendix 1].

For compacta which are not ANR’s, the strong shape category and the
shape category are often better “places to do algebraic topology” than the
homotopy category. All three categories (as considered here) have compacta
as objects; the morphisms in Homotopy are homotopy classes of maps; the
morphisms in the other two categories need not be described yet. There are

canonical functors Homotopy
A−→ Strong Shape

B−→ Shape which are the
identity on objects; if X and Y are compacta then, in general, the induced
function A# : Homotopy(X, Y )→ Strong Shape(X, Y ) is neither injective nor
surjective, while B# : Strong Shape(X, Y ) → Shape(X, Y ) is surjective but
not, in general, injective (see Example 17.7.2). However, shape theory, strong
shape theory and homotopy theory all agree on compact ANR’s in the sense
that A# and B# are bijections when X and Y are ANR’s.

We can avoid giving the technically complicated definitions of morphisms
in Shape and Strong Shape by the following trick. Let SS be the category
whose objects are pairs (W, C) where W is a compact AR and C is a (closed)
Z-set in W ; a morphism (W1, C1)→ (W2, C2) in SS is by definition a proper
homotopy class of proper maps Y1 → Y2 where Yi = Wi − Ci. There is a
canonical functor: SS→ Strong Shape which takes (W, C) to C and is a bijec-
tion on each set of morphisms. Thus SS and Strong Shape are philosophically
the same, even though in SS an object is an embedded compactum and in
Strong Shape it is an abstract compactum.

There is also a category S having a similar relation to the category Shape.
Its objects are the same as those of SS, namely pairs (W, C) as above. Define
two proper maps f, g : Y1 → Y2 to be weakly properly homotopic if for any
compact subset L of Y2 there is a compact subset K of Y1 and a homotopy
H : f � g such that H((Y1 − K) × I) ⊂ Y2 − L. A morphism (W1, C1) →
(W2, C2) in S is by definition a weak proper homotopy class of proper maps
Y1 → Y2 where Yi = Wi − Ci.

When Y = W−C can be given the structure of a strongly locally finite CW
complex, then He

n(Y ; R) is the nth Steenrod homology of C with coefficients in
R, denoted HS

n (C; R). Picking a finite filtration {Li} of Y , lim←−
i

Hn(Y −c Li; R)

is the nth Čech homology of C with coefficients in R, denoted Ȟn(C; R). We
remarked in Sect. 11.4 that He

n(·; R) is a proper homotopy invariant, hence
HS

n (·; R) is a strong shape invariant. Now we add that lim←−
i

Hn(Y −c Li; R)

is a weak proper homotopy invariant (though He
n(Y ; R) is not) and hence

Ȟn(·; R) is a shape invariant (though HS
n (·; R) is not). Clearly, some details

concerning independence of Y and {Li} have been omitted here. The following
commutative diagram of categories and functors summarizes the situation,
where H denotes the category whose objects are pairs (W, C) as above, and
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whose morphisms from (W1, C1) → (W2, C2) are homotopy classes of maps
C1 → C2:

H

A′

��

H∆
∗ (·;R)

��'
''

''
''

''
''

''
''

''
''

SS

B′

��

HS
∗ (·;R) �� R-modules

S

Ȟ∗(·;R)

���������������������

Here, the functors A′ and B′ are the identity on objects. A map f : C1 → C2

defines (using the fact that W2 is an ANR and C2 is a Z-set) a (non-unique)
proper map f̄ : W1 − C1 → W2 − C2, so that if another map g is homotopic
to f then ḡ is properly homotopic to f̄ . This indicates how to define A′ on
morphisms of H . The definition of B′ on morphisms is obvious since properly
homotopic maps are certainly weakly properly homotopic.

Although the morphisms in SS and in S are different, it is a theorem that
two objects are isomorphic in one category iff they are isomorphic in the other
(“shape equivalent iff strong shape equivalent”) – see [60].

Example 17.7.2. To illustrate the differences between H , SS and S we give
two examples of the set of morphisms (W1, C1)→ (W2, C2). The dependence
on W1 and W2 is only a convenience, as we have explained; we are really
considering morphisms C1 → C2 in Homotopy, Strong Shape and Shape.
Therefore we will sometimes omit reference to the W ’s. In both examples C1

is a single point. First, let C2 be the dyadic solenoid. Then there is only one
shape morphism C1 → C2; this is because the solenoid is connected. However,
the solenoid has c path components (where c is the cardinality of R) and
there are indeed c morphisms from C1 → C2 both in Homotopy and in Strong
Shape – in fact, A# is a bijection in this case.17 In the second example, C2

is the Case-Chamberlin compactum, which is also connected. Again, there
is only one shape morphism C1 → C2. There are c strong shape morphisms
C1 → C2; these can be partitioned into those which are in the image of A#

(there are c of them), and those not in the image of A# (there are c of those
too). A geometric translation of these strange statements is this: embed this
(1-dimensional) compactum C2 in S3 so that it becomes a Z-set in W2 := B4.
We are asserting that there are c strong ends of B4 − C2 representable by
proper rays ω : [0,∞) → B4 − C2 which can be extended continuously to
paths [0,∞] → B4; and there are also c strong ends whose representative

17 The similarity occurs because the solenoid is the inverse limit of fibrations.
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proper rays cannot be so extended (“empty strong shape components” of
C2, i.e., not representable by points of C2). For details, see [69]. For another
example of this kind of behavior at the π1-level, see [157].

Remark 17.7.3. Here is a more practical, but equivalent, definition of mor-
phisms in the category S. Given objects (W1, C1) and (W2, C2), let {Uα} and
{Vβ} be the directed sets of all compact ANR neighborhoods of C1 in W1

and C2 in W2 respectively. A morphism in S from (W1, C1) to (W2, C2) is a
morphism of pro-Homotopy {Uα} → {Vβ}. Indeed, there are cofinal towers in
these large inverse systems, and to discuss a morphism one would normally

first choose such towers {Uαn
} and {Vβn

} where
⋂
n

Uαn
= C1 and

⋂
n

Vβn
= C2;

but there are no “canonical” towers, so it is easier to define things functorially
using the whole inverse systems. Note that since C1 and C2 are Z-sets, we
could equally well use {Uαn

− C1} and {Vβn
− C2} to describe a morphism.

Central to this book is the proper homotopy category of locally finite
CW complexes, especially the full subcategory of those which are contractible
universal covers of finite CW complexes (so that their fundamental groups
have type F ). When such a universal cover X̃, corresponding to the group
G of type F , admits a Z-set compactification, then the “homotopical group
theory” of G as described in this chapter is essentially the strong shape theory
of the compactifying space. We have set things up here so that that statement
is more or less a tautology.

Source Notes. Some sources on shape theory: [58], [109], [108] and [60].

Exercises

1. Write a version of this section for groups of type Fn.
2. State a version of 17.6.2 when G has more than one end and is semistable at each

end.
3. Let (X, x) be a finite K(G, 1)-complex with universal cover (X̃, x̃). Assume that

X̃ has a Z-set compactification W = X̃ ∪ C where the compactifying space C
is connected and locally path connected. Prove that X̃ is strongly connected at
infinity. Hint : Use the properties of ANR’s in 17.7.1.



PART VI: THREE ESSAYS

This final part of the book consists of three unrelated essays intended to
point the reader towards some interesting topics which have natural con-
nections with our main themes: l2-Poincaré duality, quasi-isometry, and the
Bieri-Neumann-Strebel “geometric” invariant of a finitely generated group.
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Three Essays

18.1 l2-Poincaré duality

Here we use R-coefficients. A countable CW complex Y has bounded geometry
if there is a number N such that every cell meets at most N other cells; Y
has bounded geometric type if every skeleton has bounded geometry. These are
stronger conditions than “locally finite” and “locally finite type”; in particular,

once Y is oriented, C∞
n (Y ; R)

∂n−→←−
δn−1

C∞
n−1(Y ; R) make sense. Throughout this

Appendix, Y is assumed to have bounded geometric type.

Let C
(2)
n (Y ) be the vector subspace of C∞

n (Y ; R) consisting of l2-chains ,

i.e., chains
∑
α

rαen
α such that

∑
α

r2
α < ∞. Since Y is countable, {en

α} is an

orthonormal basis for the separable Hilbert space C
(2)
n (Y ), the inner prod-

uct being

(∑
α

rαen
α,
∑

α

sαen
α

)
=
∑
α

rαsα. Because Y has bounded geometric

type, ∂ and δ take l2-chains to l2-chains and are bounded linear operators.

Write Z
(2)
n (Y ) and Zn

(2)(Y ) for ker ∂n and ker δn respectively; elements are

the l2-cycles and l2-cocycles. Write B̄
(2)
n (Y ) and B̄n

(2)(Y ) for the closures of
image ∂n+1 and image δn−1 respectively; elements are the l2-boundaries and

l2-coboundaries . Clearly C
(2)
n (Y )

∂n−→←−
δn−1

C
(2)
n−1(Y ) are adjoint operators in the

sense that (omitting subscripts on ∂ and δ from now on) (c, δd) = (∂c, d). As
usual, if W is a closed linear subspace of a Hilbert space V , then W⊥ denotes
{v ∈ V | (v, w) = 0 for all w ∈W} and we write V = W ⊥W⊥ for the direct

sum decomposition. It is easy to see that Z
(2)
n = (B̄n

(2))
⊥, that Zn

(2) = (B̄
(2)
n )⊥,

and that C
(2)
n (Y ) = B̄

(2)
n (Y ) ⊥ B̄n

(2)(Y ) ⊥ (Z
(2)
n (Y ) ∩ Z

(n)
(2) (Y )). We write

H(2)
n (Y ) = Z

(2)
n (Y ) ∩ Zn

(2)(Y ) and we call its elements (cycles which are

also cocycles) harmonic chains . Clearly, Z
(2)
n (Y ) = B̄

(2)
n (Y ) ⊥ H(2)

n (Y )
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and Zn
(2)(Y ) = B̄n

(2)(Y ) ⊥ H(2)
n (Y ). The (reduced) l2-homology and l2-

cohomology of Y are the vector spaces H
(2)
n (Y ) = Z

(2)
n (Y )/B̄

(2)
n (Y ) and

Hn
(2)(Y ) = Zn

2 (Y )/B̄n
(2)(Y ) respectively. The quotient maps give canonical

isomorphisms H
(2)
n (Y )

∼=←− H(2)
n (Y )

∼=−→ Hn
(2)(Y ) which give canonical

Hilbert space structures to H
(2)
n (Y ) and Hn

(2)(Y ). By these isomorphisms we
may think of harmonic chains as unique “best” representatives of homology
classes and of cohomology classes.1

Define ∆ : C
(2)
∗ (Y ) → C

(2)
∗ (Y ) to be ∆ := δ ◦ ∂ + ∂ ◦ δ. This is the

combinatorial Laplacian operator . The name “harmonic” is explained by:

Proposition 18.1.1. Let c be an l2-chain. Then c is harmonic iff ∆c = 0. �

The equation ∆c = 0 is a close mathematical relative of the classical
Laplace Equation.

Note that when Y is finite all this reduces to ordinary cellular chains,
giving for a finite CW complex a best representative (co)-cycle in each (co)-
homology class when the coefficient ring is R.

Now let X be an oriented CW n-manifold which has bounded geometry.
By assuming X has only countably many path components, we ensure it is
a countable CW complex (by 11.4.3). Orient the cells of X and give dual
orientations to the cells of X∗. Assume ∂X = ∅. We saw that the Poincaré
duality isomorphisms φk send cycles to cocycles and cocycles to cycles. So they

induce a canonical Hilbert space isomorphism H(2)
k (X) → H(2)

n−k(X∗), hence

also a canonical Hilbert space isomorphism ∗k : H(2)
k (|sd X |)→H(2)

n−k(|sd X |)
called the combinatorial Hodge star operator .

Remark 18.1.2. In Exercise 2 we claim that H
(2)
∗ is a functor on the category of

CW complexes having bounded geometry and CW Lipschitz maps. Universal
covers of finite CW complexes have bounded geometry. It follows that when

G is a group of type F∞, then H
(2)
∗ (G) is well defined.2 In Sect. 18.2 we will

see that l2-homology is a quasi-isometry invariant of such groups.

A full discussion of this subject is beyond the scope of this book. For a
thorough treatment of l2-homology see [104].

Exercises

1. Prove that ∗n−k ◦ ∗k = (−1)k(n−k) identity.

2. Prove that H
(2)
n and Hn

(2) are functors from the category of CW complexes having
bounded geometry and CW Lipschitz maps to the category of real Hilbert spaces
and bounded linear operators.

3. Prove that H
(2)
∗ (R) = 0, while the 0th unreduced l2-homology of R is non-zero.

1 There is also non-reduced l2-homology and l2-cohomology, Z
(2)
n (Y )/B

(2)
n (Y ) and

Zn
(2)(Y )/Bn

(2)(Y ). We will not discuss this.
2 Compare 8.1.1 and the convention which follows it to interpret this precisely.
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18.2 Quasi-isometry invariants

Quasi-isometry is a geometrical relation among finitely generated groups
which is weaker than isomorphism. Here we cover just enough of the sub-
ject to prove that many of the homological and homotopical properties of
groups discussed in previous chapters are invariant under quasi-isometry.

Let G be a finitely generated group, and let {g1, . . . , gs} be a subset which
generates G. Recall that the length of g ∈ G with respect to this set of
generators is the least integer m such that g = h1 · · ·hm where each hi ∈
{g±1

1 , · · · , g±1
s }. We write l(g) for the length of g; by convention l(1) = 0. The

word metric on the set G is defined by d(g, h) = l(h−1g). This is easily seen
to make G into a metric space.

When (X, d) and (X ′, d′) are metric spaces, a function f : X → X ′ is an
isometric embedding if d′(f(x), f(y)) = d(x, y) for all x, y ∈ X . This implies f
is injective; if in addition f is surjective it is called an isometry. An isometric
embedding is an embedding (in the topological sense) and an isometry is a
homeomorphism. The isometries X → X form a subgroup of the group of all
homeomorphisms X → X . (The action of G on itself by left multiplication is
an action by isometries when G carries the word metric.)

A (not necessarily continuous) function f : X → X ′ is a quasi-isometric
embedding if there are positive constants λ and ε such that for all x, y ∈ X

1

λ
d(x, y)− ε ≤ d′(f(x), f(y)) ≤ λd(x, y) + ε.

If in addition there is a constant C ≥ 0 such that for every z ∈ X ′ there is
some x ∈ X with d′(f(x), z) ≤ C, the quasi-isometric embedding f is said to
be quasi-surjective, and then f is called a quasi-isometry. We say X and X ′

are quasi-isometric if there exists a quasi-isometry X → X ′. The following is
an exercise:

Proposition 18.2.1. If d and d′ are word metrics on a group G with respect
to two finite sets of generators, then idG is a quasi-isometry between (G, d)
and (G, d′). �

Two finitely generated groups G and H are quasi-isometric if for some
(equivalently, any) choice of finite generating sets the metric spaces G and H
(with respect to the word metrics) are quasi-isometric.

In order to decide when two groups are not quasi-isometric it would be use-
ful to know some quasi-isometry invariants. In particular, we will see that the
finiteness properties of groups and many of the homological and homotopical
properties of groups discussed in this book are indeed quasi-isometry invari-
ants. Thus, for example, a finitely generated non-finitely presented group is
not quasi-isometric to a finitely presented group, and a one-ended group is not
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quasi-isometric to a group which does not have one end. We show in 18.2.6
that commensurable groups are quasi-isometric.3

The spaces of choice in this book are CW complexes. They do not neces-
sarily carry natural metrics, but they do carry natural pseudometrics. Recall
that a pseudometric on a set Z is a function ψ : Z×Z → [0,∞] which satisfies:
(i) ψ(x, x) = 0; (ii) ψ(x, y) = ψ(y, x); and (iii) ψ(x, z) ≤ ψ(x, y) + ψ(y, z).
What makes this different from a metric is that ∞ is permitted as a value,
and ψ(x, y) can be 0 when x �= y. A pseudometric space (Z, ψ) consists of a
set Z and a pseudometric ψ on Z. The example we have in mind is the CW
pseudometric ρ on a CW complex X : ρ(x, y) is defined to be the least integer
k such that there is a path in X joining x and y which meets the interiors of

(k + 1) different cells of X . Thus ρ(x, y) ∈ N∪ {∞}; it is 0 iff x ∈ ◦
e and y ∈ ◦

e
for some cell e of X . If x and y lie in different path components of X then
ρ(x, y) is defined to be ∞.

Our definitions of quasi-isometric embedding, quasi-isometry, etc. are valid
for pseudometric spaces too – just replace the metric by the pseudometric –
so we will use the language of quasi-isometry in connection with pseudometric
spaces.

Proposition 18.2.2. Let Y be a path connected rigid G-graph which is finite
mod G. Assume that the stabilizer of each vertex is finite. Let ρ denote the
CW pseudometric on Y and let d be the word metric on G with respect to
some finite set of generators. Then (Y, ρ) is quasi-isometric to (G, d).

Proof. Pick a base vertex v ∈ Y and a compact fundamental domain C ⊂ Y
for the G-action on Y so that v ∈ C. For the pseudometric ρ, as for metrics,
we write Br(y) = {y′ ∈ Y | ρ(y, y′) < r}. Choose r so that C ⊂ Br(v).
Let A = {g ∈ G | gBr(v) ∩ Br(v) �= ∅}. One easily sees that A is finite and
generates G. By 18.2.1, we are permitted to use A as our given set of generators
in terms of which d is defined. The required quasi-isometry F : G→ Y is given
by f(g) = gv, as we now prove.

Let δ1 = max{ρ(v, av) | a ∈ A}. The G-action on Y clearly preserves the
pseudo-distance ρ. It follows that, for any g ∈ G, ρ(v, gv) ≤ δ1d(1, g); indeed,
this would be clear with respect to any finite set of generators. For g ∈ G
choose an edge path (τ1, . . . , τk) in Y from v to gv with k minimal. Thus the
τi’s are non-degenerate edges which are not edge loops, and ρ(v, gv) = 2k+1.
Working along this edge path, one finds a1, ..., as ∈ A such that the edge
path is covered by Br(v), Br(a1v), Br(a1a2v), ..., Br(a1a2...asv) with s ≤ k. It
follows that d(v, gv) ≤ s + δ1 ≤ k + δ1, giving d(v, gv) − δ1 < ρ(v, gv). Thus
f is a quasi-isometric embedding. By cocompactness, f is a quasi-isometry.

�

Proposition 18.2.3. Let Y be a path connected rigid G-CW complex which is
finite mod G. Let ρ and ρ1 be the CW pseudometrics on Y and Y 1 respectively,

3 We remind the reader that all groups for which quasi-isometry is discussed must
be finitely generated.
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and let i : Y 1 ↪→ Y denote the inclusion map. Then i is a quasi-isometry
between (Y 1, ρ1) and (Y, ρ).

Proof. We first prove that (Y 1, ρ1) and (Y 1, ρ|) are quasi-isometric. There are
only finitely many different isomorphism types of carriers C(e) of cells e of
Y . If ω is a path in Y joining two points of Y 1 and if e1, · · · , er are the cells
of Y whose interiors meet the image of ω, then, by 1.4.3, ω is homotopic rel

end points to a path in

r⋃
i=1

C(ei) ∩ Y 1 so that the homotopy is controlled as

described in 1.4.4. The last two sentences imply the existence of λ ≥ 1 such
that for all x, y ∈ Y 1, ρ(x, y) ≤ ρ1(x, y) ≤ λρ(x, y). Thus id: Y 1 → Y 1 is a
quasi-isometry as claimed.

The inclusion i : (Y 1, ρ|) ↪→ (Y, ρ) is an isometric embedding and by 1.5.1
is quasi-surjective, hence is a quasi-isometry. �

Combining the last two results we get:

Theorem 18.2.4. If Y is a path connected rigid G-CW complex which is
finite mod G and has finite vertex stabilizers, then (Y, ρ) is quasi-isometric to
(G, d). �

Corollary 18.2.5. If H is a subgroup of finite index in the finitely generated
group G, then G and H are quasi-isometric. �

In Sect. 14.5 we defined commensurability for subgroups of a given group.
More generally, two groups G and H are commensurable if there is a finite
sequence of groups G = G0, G1, . . . , Gn = H such that for each i < n either
Gi is isomorphic to a subgroup of finite index in Gi+1, or Gi+1 is isomorphic
to a subgroup of finite index in Gi. This is compatible with the definition of
commensurability given in Sect. 14.5 (Exercise 2).

Corollary 18.2.6. Commensurable finitely generated groups are quasi-
isometric. �

Two quasi-isometric embeddings f1, f2 : (Z1, ψ1) → (Z2, ψ2) are quasi-
homotopic if there exists C ≥ 0 such that for all z ∈ Z1, ψ2(f1(z), f2(z)) ≤ C;
i.e., f1 and f2 are pointwise “boundedly close.” We define the category Quasi-
homotopy to have pseudometric spaces as objects and quasi-homotopy classes
of quasi-isometric embeddings as morphisms. It is tempting to use the term
“quasi-homotopy equivalence” for a quasi-isometric embedding which becomes
invertible in this category, but we already have a term for this by the following
(whose proof is an exercise):

Proposition 18.2.7. A quasi-isometric embedding becomes invertible in Quasi-
homotopy iff it is a quasi-isometry. �

Now let X and Y be path connected CW complexes. Their CW pseudomet-
rics restrict to metrics on X0 and Y 0. Let f0 : X0 → Y 0 be a quasi-isometric
embedding with respect to these metrics.
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Proposition 18.2.8. If Y is an n-dimensional and (n − 1)-connected rigid
G-CW complex which is finite mod G, then f0 extends to a CW-Lipschitz
map f : Xn → Y . The restriction of f to Xn−1 is unique up to CW-Lipschitz
homotopy.

Proof. The map f0 is CW-Lipschitz. One extends this map skeleton by skele-
ton to get the cellular map f . The connectivity assumptions on Y make the
extensions possible, and the fact that some group G acts rigidly with finite
quotient ensures that the number of cells of Y involved in each extension to a
cell of X is bounded. The same remarks apply to the uniqueness claim. The
details are a standard exercise in homotopy theory similar to proofs in Sect.
1.4. �

Addendum 18.2.9. If g0 : X0 → Y 0 is another quasi-isometric embedding
which is quasi-homotopic to f0, and if g is the extension of g0 as in 18.2.8,
then f | Xn−1 and g | Xn−1 are CW-Lipschitz homotopic. �

Proposition 18.2.10. The map f : Xn → Y in 18.2.8 is proper.

Proof. {N(v) | v ∈ X0} is a cover4 of X . Suppose there is a finite subcomplex
L of Y such that f−1(L) is not compact. By 11.4.4 and 10.1.12 there is an
infinite set {vi} of vertices of X such that N(vi) ∩ f−1(L) �= ∅ for all i. Thus
f(vi) ∩N(L) �= ∅ for all i. But this contradicts the fact that f0 : X0 → Y 0 is
a quasi-isometric embedding. �

Theorem 18.2.11. Let G and H be finitely generated groups of type Fn. Let
X be a K(G, 1) with finite n-skeleton, and let Y be a K(H, 1) with finite n-
skeleton. If G and H are quasi-isometric then there is a proper n-equivalence
X̃n → Ỹ n.

Proof. We may assume X and Y have one vertex each so we may identify
X̃0 and Ỹ 0 with G and H . By 18.2.8–18.2.10, there is a proper map X̃n →
Ỹ n which is a CW-Lipschitz n-equivalence. By 14.1.11, this is a proper n-
equivalence.

�

It follows from 18.2.11 that many group theoretic invariants discussed in
previous chapters are quasi-isometry invariants. Before listing some of these
we prove:

Theorem 18.2.12. If G and H are finitely generated quasi-isometric groups
and if G has type Fn, then H has type Fn.

Proof. Let X and Y be K(G, 1) and K(H, 1) complexes respectively, each
having one vertex. Since G and H are finitely generated they are countable, so,
by exercises in Sections 4.5 and 11.4, we may assume X and Y are countable

4 See Sect. 11.4 for the definition of N(v).
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and locally finite. By 11.4.6, we may choose finite filtrations {Xi} and {Yj}
for X and Y . Let X̄i [resp. Ȳj ] denote the pre-image of Xi [resp. Yj ] in the

universal cover X̃ [resp. in Ỹ ]. Thus we have a G-filtration of X̃ and an H-
filtration of Ỹ . Each X̃i is finite mod G and each Ȳj is finite mod H . By 7.4.1,
{X̄i} is essentially (n− 1)-connected.

The construction of the map f in the proof of 18.2.8 can be carried over
to get a map f : X̃ → Ỹ such that for each i there exists j such that f(X̄i) ⊂
Ȳj and the induced map X̄i → Ȳj is CW Lipschitz. Just as in 18.2.8, we
may conclude that f defines an isomorphism in the category ind-Homotopy.
Such maps preserve essential (n − 1)-connectedness, so the filtration {Ȳj} is
essentially (n− 1)-connected, implying (by 7.4.1) that H has type Fn. �

In view of 18.2.11 and 18.2.12, we can list some quasi-isometry invariants
of a finitely generated group G:

1) G has type Fn or type F∞;
2) the number of ends of G;
3) Hn(G, ZG) when G has type Fn;
4) G is semistable at each end when G is finitely presented;
5) G is stable at each end when G is finitely presented;
6) G is simply connected at each end when G is finitely presented;
7) G is (n− 1)-connected at infinity when G has type Fn;
8) G is (n− 1)-acyclic at infinity with respect to a ring R when G has type

Fn.

We turn to dimension. Geometric dimension and cohomological dimension
are not quasi-isometry invariants: the trivial group has dimension 0 while
non-trivial finite groups have infinite dimension. We saw in Exercise 1 of Sect.
13.10, that if a group G is of type F∞ and has finite cohomological dimension
then the cohomological dimension of G is equal to sup{n | Hn(G, ZG) �= 0}.
And the cohomological dimension of G is finite iff its geometric dimension is
finite (see Theorem VIII.7.1 of [29]). Together with 7.2.13, these comments
lead to an additional quasi-isometry invariant:

9) G has type FD.

By Remark 18.1.2 and 18.2.8, we can add another quasi-isometry invariant:

10) H
(2)
∗ (G) when G has type F∞.

There is considerable interest in which properties of finitely generated
groups are quasi-isometry invariants. The list goes far beyond what is given
here.

Remark 18.2.13. It is proved in [22] that there are uncountably many quasi-
isometry classes of finitely generated groups.
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Remark 18.2.14. There are finitely generated quasi-isometric groups G1 and
G2 such that for all H1 ≤ G1 the number of ends of the pair (G1, H1) is 1 or
0, while there is a subgroup H2 ≤ G2 such that (G2, H2) has two ends. We
outline an example. A theorem in [6] asserts that if G is a connected simple Lie
group which has Kazhdan’s Property T and has infinite cyclic fundamental
group, if Γ is a cocompact lattice in G and if Γ̃ := p−1(Γ ), where p is the
universal covering projection, then Γ̃ has Property T and is quasi-isometric
to Γ × Z. We set G2 := Γ × Z and H2 := Γ × {0}, a normal subgroup. Then
(G2, H2) has two ends, by 13.5.11. However, a theorem of Niblo and Roller
[125] asserts that whenever a group G1 has Property T and H1 is a subgroup,
then the number of ends of (G1, H1) is 1 or 0, depending on whether H1 has
infinite or finite index in G1. So we may set G1 := Γ̃ . Note that this implies
that G2 does not have Property T .

Appendix: Quasi-isometry and geometry

Staying within the spirit of this book, we compared the word metric of a
group G with the CW pseudometrics of suitable CW complexes on which G
acts nicely. The reader should be aware that it is more usual to compare the
word metric on G with metric spaces on which G acts. We briefly outline this.

Let ω : I → X be a path in the metric space (X, d). The length of ω is

l(ω) = sup
P

n∑
i=1

d(ω(ti−1), ω(ti)) where P ranges over all partitions 0 = t0 <

t1 < · · · < tn = 1 of I (for all n); thus 0 ≤ l(ω) ≤ ∞. The metric d is a length
metric if for all x, y ∈ X d(x, y) = inf{l(ω) | ω is a path in X from x to y}.
For more on length metrics see Chap. 1, Sect. 3 of [24].

An action of a group G on a metric space X by isometries is proper if for
each x ∈ X there exists r > 0 such that {g ∈ G | gBr(x) ∩ Br(x) �= ∅} is
finite. The action is cocompact if there is a compact set C ⊂ X such that
∪{gC | g ∈ G} = X . The set C is a fundamental domain for the action.

These definitions set us up for a basic quasi-isometry relation between G
and metric spaces on which G acts; a proof can be found in [24, p. 140]:

Theorem 18.2.15. (Švarc-Milnor Lemma) If G acts properly and cocom-
pactly by isometries on a length metric space X, then G is finitely generated
and for any x ∈ X the function f : G→ X, g �→ gx, is a quasi-isometry. �

Exercises

1. What goes wrong if one tries to define quasi-isometry for groups which are not
finitely generated?

2. Let H1, H2 be subgroups of a group G. Prove that they are commensurable in
the sense of Sect. 14.5 iff they are commensurable in the sense of this section.
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3. Prove 18.2.1 .
4. Prove 18.2.5.
5. Prove 18.2.7.

18.3 The Bieri-Neumann-Strebel invariant

This is an introductory essay on the Sigma Invariants of group actions. Our
aim is to convey the flavor by proving some of the basic theorems in a simple
case – an action ρ of a finitely generated group G by translations on a finite-
dimensional Euclidean space V . We treat only the “0-connected case”, where
the invariant Σ1(ρ) (a certain open subset of the unit sphere in V ) is closely
related to what is often called the “Bieri-Neumann-Strebel invariant” of G.
This subject, and its higher generalizations, use filtered homotopy theory in
a natural way.

A. Statement of the Boundary Criterion:
We start by stating the Boundary Criterion, a theorem whose proof ex-

hibits the most important ideas.
Let V be a finite-dimensional real vector space equipped with an inner

product 〈·, ·〉. Each translation Tv : V → V , u �→ u+ v, is then an isometry of
V and we denote the group of all translations by Transl(V ). Let G be a finitely
generated group. We consider a cocompact action of G on V by translations,
i.e., a homomorphism ρ : G→ Transl(V ) with compact fundamental domain.
We do not assume that the action ρ is proper or that its orbits are discrete.

Let Γ be the Cayley graph of G with respect to some finite generating set
{gi} of G. Let h : Γ → V be a G-map. Since Γ is a free G-graph the existence
of such a map h is clear. We call h a control map.

There are various ways of filtering V , and each gives rise, via h−1, to a
filtration of Γ .

The filtration F : This is the filtration of V by closed balls Bn(0) of
radius n centered at 0.

The filtrations Fu: Each unit vector u ∈ V defines a filtration of V by
means of closed half-spaces whose boundaries are perpendicular to u. More
precisely, let Hu(0) := {v ∈ V | 〈u, v〉 ≤ 0} and for r ∈ R let Hu(r) =
Hu(0) + ru. (The vector u “points out of” these spaces.) We define Fu to be
the filtration {Hu(n) | n ∈ Z} of V .

The connection between these is seen in:

Theorem 18.3.1. (Boundary Criterion ) The following are equivalent:

(i) For every unit vector u, (Γ, h−1Fu) has one filtered end;
(ii) ∃ λ ≥ 0 and n0 ≥ 0 such that for every n ≥ n0 any two points of

h−1(Bn(0)) can be joined by a path in h−1(Bn+λ(0)).
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B. The Sigma Invariants:
Before proving this theorem we make some remarks:
1. The set of directions (= unit vectors) u for which (Γ, h−1Fu) has one

filtered end is denoted by Σ1(ρ), the first sigma invariant of the action ρ.
2. The condition (ii) in 18.3.1 implies that the filtration h−1F of Γ is

essentially 0-connected. Comparing with Brown’s Criterion 7.4.1, one might
therefore expect a connection between this condition and ker(ρ) being finitely
generated. This connection is given in 18.3.12 below.

3. We write N = ker(ρ). This is a normal subgroup of G containing the
commutator subgroup G′. Thus there is a canonical bijection5 between the
unit vectors in V and the equivalence classes [χ] of non-zero characters χ :
G → R such that χ(N) = 0, where two characters are equivalent if one is a
positive multiple of the other. The bijection is u �→ [〈u, ·〉]. In the literature,
Σ1(ρ) is often defined in terms of characters, namely, Σ1(ρ) = {[χ] | χ is
a non-zero character on G, χ(N) = 0, and Γχ is path connected}, where Γχ

denotes the subgraph of Γ generated by the vertices g ∈ G such that χ(g) > 0.
It will follow from 18.3.5 that this definition of Σ1(ρ) is equivalent to the one
given in 1. above.

4. In the special case where V = V0 := G/G′ ⊗Z R and ρ(g) (ḡG′ ⊗ 1) =
gḡG′⊗1, Σ1(ρ) is denoted by Σ1(G) and is called the Bieri-Neumann-Strebel
invariant of G.

5. In the literature one finds the sphere of G defined as

S(G) := {[χ] | χ : G→ R is a non-zero character}
and Σ1(G) is then defined as

{[χ] ∈ S(G) | Γχ is path connected}.
This is more functorial insofar as no choice of inner product is involved. That it
is equivalent to the definition in 4. is easily seen: every character χ determines
a linear map λχ : V0 → R and there is a natural bijection between {[χ]}
and the oriented codimension 1 subspaces of V0 (sending [χ] to (ker(λχ), “+
side”)). The chosen inner product on V0 then determines the corresponding
unit vector in V0.

6. It is shown in [16] that our definition of Σ1(ρ) admits a substantial
generalization in which ρ is an action of G on a proper CAT(0) space M . An
analog of the Boundary Criterion holds (as do analogs of all the theorems
in Sect. F below); the role of half-spaces in V is played by horoballs in M .
The proofs are more difficult because the induced action of G on the CAT(0)
boundary of M (see 17.5.5) is non-trivial in general, whereas in the case
of V all translation actions induce trivial actions on S∞(V ), the sphere at
infinity6of V .

5 It is a bijection because we are assuming the action ρ is cocompact. Compare this
with the non-cocompact action of Z on R2, where n takes (x, y) to (x + n, y).

6 The sphere at infinity of V is the space of geodesic (= straight) rays in V which
start at 0, with the compact-open topology. If dimV = n, then S∞(V ) ∼= Sn−1.
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7. There are analogs of Σ1(ρ), namely, Σn(ρ) for all integers n ≥ 0. In
the case of Σn, filtered path connectedness is replaced by filtered (n − 1)-
connectedness. Analogs of the Boundary Criterion and of the theorems in
Sect. F also hold. The entire theory is set out in [16].

8. Example. Take G = Zn. Then, obviously, Σ1(G) = S∞(Rn).
9. Example. Take G = Z∗Z with generators a and b for the two copies of

Z. Then Σ1(G) ⊂ S∞(R2). We will now show that Σ1(G) is a proper subset
of S∞(R2), leaving it as an exercise to show that Σ1(G) is actually empty.7

Take Γ to be the Cayley graph of G with respect to the generators
{a, b, a−1, b−1} and define h : Γ → R2 as above. If n ≥ 1 it is not hard
to see that the vertex 1 and the commutator [a, bn+1] cannot be joined by a
path over Bn(0). So Condition (ii) in 18.3.1 fails.

10. Example. With notation as in 6.2.10, let G = BS(1, 2). Then we have
G/G′ ∼= Z so Σ1(G) ⊂ S∞(R) = ±∞. Identifying U with Y × R as in 6.2.10,
the G-tree Y is “rooted” in the sense that one of its ends is fixed by the G-
action. Sending that end to −∞ gives a G-map Y → R, and hence the required
control map Γ → R is the restriction to the 1-skeleton of U = Y ×R→ Y → R.
Then −∞ ∈ Σ1(G) while +∞ �∈ Σ1(G).

11.The sigma invariants have interesting openness properties; these are
stated in 18.3.15–18.3.17.

C. Preliminaries for the proof of 18.3.1:
The properties (i) and (ii) in 18.3.1 are easily seen to be independent of our

choice of generating set {gi} and G-map h. So we make convenient choices:

• {gi} is to be invariant under inversion and is not to contain 1 ∈ G. This
ensures that Γ , while not being a simplicial graph, is a regular CW com-
plex.

• h(1) = 0, and h maps each edge of Γ homeomorphically onto a line segment
in V .

The CW neighborhood8 of 1 in Γ is generated by the edges joining 1 to the
vertices gi. The h-images of these edges form a finite set, S, of line segments
in V joining 0 to points of V . While some of these may be degenerate (joining
0 to 0) there are enough non-degenerate line segments that for every u some
member of S does not lie in Hu(0).

Define hu : Γ → R by hu(x) = 〈h(x), u〉.

Proposition 18.3.2. For any unit vector u in V and any vertex g ∈ Γ there
is a ray in Γ starting at g on which the map hu is strictly increasing.

Or, one may drop the “which start at 0” condition, and instead take the quotient
space which identifies parallel rays. This makes the action by translations clear,
and clearly trivial.

7 Compare 18.3.18.
8 One might wish to speak of the “star” of 1, but, because of our choice of generating

set, Γ is not a simplicial graph: there are two edges joining 1 to each gi.
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Proof. The discussion shows that this is true when g = 1; translation by g
preserves this property. �

Corollary 18.3.3. The filtered space (Γ, h−1Fu)is regular in the sense of
Sect. 14.3 and has at least one filtered end.

Proof. The existence of a filtered end follows directly from 18.3.2. Regularity
holds because, by 18.3.2, complements have no h−1Fu-bounded path compo-
nents. �

Proposition 18.3.4. (Γ, h−1Fu) is CW compatible.

Proof. This follows from the fact that S is finite. �

Proposition 18.3.5. If (Γ, h−1Fu) has one filtered end then for all r ∈ R the
subspace Γ − h−1(Hu(r)) is path connected.

Remark 18.3.6. This convenient strengthening of “having one filtered end” is
not an invariant of filtered homotopy; rather, it holds because of our choices.

Proof (of 18.3.5). By hypothesis, ∀ n ∈ Z ∃ m ≥ n such that any two points
in Γ − h−1(Hu(m)) can be joined9 by a path in Γ −h−1(Hu(n)). Let x and y
be points of Γ − h−1(Hu(n)) = h−1

u ((n,∞)). It follows from 18.3.2 that there
are paths in this space from x and y into h−1

u ((m,∞)) = Γ − h−1(Hu(m)).
The end points of these paths can then be joined in Γ − h−1(Hu(n)). �

D. Proof of (i) ⇒ (ii) in 18.3.1:
The proof requires some careful analysis, so we begin with a sketch to

motivate the details. The control map h is at the center of the discussion; we
will say that a subset A of Γ is over a subset Ā of V if A ⊂ h−1(Ā). For
example, the filtration h−1F of Γ is by sets over the balls Bn(0), and the
filtration h−1Fu is by sets over the half-spaces Hu(n). So, using 18.3.5, we
are to prove that if Γ is path connected over the complement of every Hu(r),
then λ and n0 exist as in (ii). Starting with x and y over some Bn(0), there
is certainly an edge path ω in Γ joining x to y. We consider the minimum R
such that ω is over BR(0) and then we modify ω near places where it is over
∂BR(0) to get a new path from x to y which is over BR−δ(0) for some δ > 0.
An important feature is that δ should be independent of ω, x and y. Then, by
repeated modification, we get edge paths joining x to y over BR−kδ(0) until
the process breaks down. This happens at Bn+λ(0) for some λ. Analysis of the
method shows that λ is independent of x, y and ω; there might be problems
if n were too small, but the method shows that there is n0 such that all works

9 Recall from Sect. 14.1 that we need not confine ourselves to subgraphs as distinct
from subspaces, and to CW complements as distinct from complements, since our
filtration is CW compatible.
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well when n ≥ n0. The key point is: in selecting our modifications of paths we
always pick them to be G-translates of a finite set of “template paths”.

We begin the details with some constructions and propositions (18.3.7–
18.3.10).

For each unit vector u ∈ V define T (u) := {γ ∈ G | γ = gj for some j, and
hu(γ) > 0}. If γ ∈ T (u) then the line segment in S defined by γ does not lie
in Hu(0). For each gi and each γ ∈ T (u) we choose a path τ(u, gi, γ) from γ to
giγ which is mapped by hu into the closed interval [min{hu(γ), hu(giγ)},∞).
(Such a path exists by 18.3.5 applied to H−u(s) for a suitable s ∈ R.) There is
then a neighborhood Wu of u in the unit sphere of V such that for all u′ ∈ Wu

the image of τ(u, gi, γ) under hu′ lies in the open interval (min{0, hu′(gi)},∞).
Since the unit sphere is compact we have (see Fig. 18.1 for this and what
follows):

Proposition 18.3.7. There is a finite set {uk} of unit vectors such that for
every u and gi there is some uk such that for every γ ∈ T (uk) the image under
hu of τ(uk, gi, γ) lies in the open interval (min{0, hu(gi)},∞). �

We note that in 18.3.7 finitely many paths suffice for all unit vectors u in
the following sense:

Corollary 18.3.8. There exists ε > 0 such that for each unit vector u and
each generator gi there exists k such that for each γ ∈ T (uk) the image under
hu of the path τ(uk, gi, γ) lies in the closed interval [min{0, hu(gi)} + ε,∞).
�

Let C(0, u, θ) denote the closed infinite cone (in V )

{y ∈ V | 〈 y

|y| , u〉 ≥ cos θ} ∪ {0}

having vertex at 0, axis pointing in the direction u, and angle of amplitude 0 ≤
θ < π

2 . Given 0 < ε < K, the corresponding frustum of this cone is denoted
by F (0, u, θ, ε, K) := {y ∈ C(0, u, θ) | ε ≤ 〈y, u〉 ≤ K}. The translation of
C(0, u, θ) having vertex v is C(v, u, θ) := C(0, u, θ)+v, and the corresponding
translated frustum is F (v, u, θ, ε, K) := F (0, u, θ, ε, K) + v.

Since there are only finitely many paths τ(uk, gi, γ), each with compact
image, we can strengthen 18.3.8:

Proposition 18.3.9. There exist 0 < ε < K and 0 < θ < π
2 such that for

each unit vector u and each generator gi there exists k such that for each
γ ∈ T (uk) the path τ(uk, gi, γ) is over F (v, u, θ, ε, K), where v = h(gi) if
hu(gi) < 0 and v = 0 if hu(gi) ≥ 0.

�

The point of all this work is illustrated in Fig. 18.2. A “two-edge path”
from γ to gi through 1 can be replaced by a “modified path,” namely, the
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Fig. 18.1.

edge path τ(uk, gi, γ) from γ to giγ followed by an edge joining giγ to gi. This
“modified path” lies over F (v, u, θ, ε, K).

Finally (before proving (i) ⇒ (ii) in 18.3.1) we must say what it means
for a point of V to be “far away” from the situation we have been studying.
An edge of Γ joining 1 to gi is over a (possibly degenerate) line segment σi

in S which, together with u, defines a half-infinite strip (or half-line in the
degenerate case) Qi ⊂ H−u(v); see Fig. 18.1. Clearly we have:

Proposition 18.3.10. If w ∈ Qi and the distance from w to σi is sufficiently
large, then F (v, u, θ, ε, K) ⊂ B|v−w|− ε

2
(w). �
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Fig. 18.2.

Proof (of (i) ⇒ (ii) in 18.3.1). We start from the setup described in the
proof-sketch above. We may assume R > n, so the piecewise linear path
h ◦ τ meets ∂BR(0) in finitely many points. We may consider ω as an edge
path (ω1, . . . , ωm) from x to y. The first vertex g on this path such that
h(g) ∈ ∂BR(0) is the common vertex of two successive edges, say ωi−1 and
ωi. If g′ is the other vertex of ωi−1, then h(g′) lies in the interior of BR(0).
Let u be the unit vector in V such that the line segment from h(g) to 0
points in the direction u. We wish to replace the two-edge segment (ωi−1, ωi)
from g′ through g to g′′ by a modified segment. To do this, we translate this
two-edge path using g−1 to get a two-edge path from γ := g−1g′ through 1
to gi := g−1g′′. Applying the previous propositions to this latter two-edge
path, and translating back the resulting modified path using g, we obtain a
replacement of (ωi−1, ωi) by an edge path whose first contact with ∂BR(0) (if
any) is further along the path ω; see Fig. 18.3. By 18.3.10, all of that modified
path except its final edge is over BR− ε

2
(0). Proceeding thus, we eventually

replace ω by a path over BR− ε
2
(0). This process can clearly be continued as

described in the proof-sketch. The precise identification of n0 and λ is left to
the reader. �

E. Proof of (ii) ⇒ (i) in 18.3.1:
This is much easier and only an indication is needed. Given points x and

y over V −Hu(r), they lie over some ball BR(w) ⊂ V −Hu(r). By (ii) they
can be joined by a path over BR+λ(w) ⊂ V −Hu(r − λ). So (i) holds. �

F. Properties of Σ1:
For a translation action ρ as above we have defined
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Σ1(ρ) := {u | (Γ, h−1Fu) has one filtered end}.
However, the definition of Σ1(ρ) usually given in the literature is slightly dif-
ferent. In the next proposition we prove the equivalence of the two definitions:

Proposition 18.3.11. u ∈ Σ1(ρ) iff there exists λ ≥ 0 such that for any n,
any two points in Γ − h−1(Hu(n)) can be joined by a path in the subspace
Γ − h−1(Hu(n− λ)).

Proof. If u ∈ Σ1(ρ) there exists λ ≥ 0 such that points in Γ − h−1(Hu(λ))
can be joined by a path in Γ − h−1(Hu(0)). There are elements of G which
translate Γ − h−1(Hu(0)) into Γ − h−1(Hu(n)) for any n. Both directions of
the “iff” follow easily from this. �

The Boundary Criterion 18.3.1 says that (ii) holds iff Σ1(ρ) = S∞(V ).
For translation actions having discrete orbits, this leads us to a topological
condition equivalent to finite generation of the kernel:

Theorem 18.3.12. Let ρ(G) have discrete orbits in V . The normal subgroup
N := ker(ρ) is finitely generated iff Σ1(ρ) = S∞(V ).

Proof. In the commutative diagram

Γ

����
��
��
��

h

��
N\Γ

f
�� V
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it is not hard to see that the map f is proper when the orbits are discrete.
Thus the filtration h−1F of Γ is by sets each of which is compact mod N .
It is an exercise to show that this filtration is CW compatible. By Brown’s
Criterion and 18.3.1, the “if” part follows.

We now prove “only if” Since N is finitely generated we can choose the
generators {gi} to include a generating set for N . The images of the gi’s in
Q := G/N form a generating set for Q. Let ΓN and ΓQ be the corresponding
Cayley graphs for N and Q respectively. There is an obvious map p : Γ → ΓQ

and, for each vertex q ∈ ΓQ, p−1(q) is a copy of ΓN lying in Γ . There is a
commutative diagram

Γ
p

��!!
!!
!!
!

h

  �
��

��
��

�

ΓQ
hQ

�� V

Given two points in Γ − h−1(Hu(r)), they map to points in ΓQ− h−1
Q (Hu(r))

where they are clearly joinable by a path. That path lifts to a path in Γ
joining one of the two points to a point in the fiber over ΓQ containing the
other point. Since ΓN is path connected the two points can therefore be joined
in Γ − h−1(Hu(r)). Thus Σ1(ρ) = S∞(V ). �

Theorem 18.3.13. (Σ1-Criterion) A unit vector u in V lies in Σ1(ρ) iff
there is an equivariant cellular map φ : Γ → Γ such that, for all x ∈ Γ ,
hu ◦ φ(x) − hu(x) > 0.

Proof. We use the notation of Part D. If u ∈ Σ1(ρ) choose γ ∈ T (u). Define
φ(g) = gγ for every g ∈ G. This is equivariant. Extend φ equivariantly to the
edges of Γ so that the edge joining 1 to gi is mapped to the path τ(u, gi, γ).
Then φ is as claimed. Conversely, if such an equivariant map φ exists, let x
and y be two points of Γ − h−1(Hu(r)), let ω be an edge path in Γ from
x to y, and let τ be an edge path from 1 to φ(1). Then the product edge
path τ.φ ◦ τ. . . . φn−1 ◦ τ runs from 1 to φn(1) and its translates run from x
to φn(x), and from y to φn(y). The path φn ◦ ω joins φn(x) to φn(y). There
exists λ > 0 such that τ is over Hu(−λ). By equivariance of φ, the appropriate
combination of the paths just mentioned joins x to y in Γ − h−1(Hu(r − λ)).
By 18.3.11, u ∈ Σ1(ρ). �

Remark 18.3.14. Because of equivariance and compactness, the condition ap-
pearing in 18.3.13 can be equivalently stated as: there is an equivariant cellular
map φ : Γ → Γ and ε > 0 such that for all x ∈ Γ hu ◦ φ(x)− hu(x) > ε. This
is useful in deducing the following corollaries.

Corollary 18.3.15. Σ1(ρ) is an open subset of S∞(V ). �

Corollary 18.3.16. In the space Hom(G, Transl(V )) of translation actions
of G on V , with compact-open topology, the condition Σ1(ρ) = S∞(V ) is an
open condition.
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Proof. Combine 18.3.1 and 18.3.13. �

Corollary 18.3.17. In the subspace consisting of translation actions ρ whose
orbits are closed discrete subsets of V , the property “ker(ρ) is finitely gener-
ated” is an open condition.

Proof. Use 18.3.12 and 18.3.16. �

G. Relation between Σ1(G) and Σ1(ρ):
We now coordinate the sets Σ1(ρ) ⊂ S∞(V ) as ρ varies over all translation

actions on V . Choose an inner product for V0 = G/G′ ⊗Z R. There is a
canonical G-action of G on V0, namely, ρ0 : G → Transl(V0) defined by
ρ0(g)(ḡ(G/G′)) ⊗ 1 = gḡ(G/G′) ⊗ 1. For any ρ : G → Transl(V ) there is a

canonical linear G-epimorphism V0
π
� V with kernel Vπ. This map takes the

complementary space V ⊥
π isomorphically onto V and thus imposes a preferred

inner product on V . Using this inner product in the definition of Σ1(ρ) we
obtain a canonical embedding S∞(V ) ↪→ S∞(V0) and Σ1(ρ) ↪→ Σ1(G). In
these terms we see from 18.3.12, for example, that, when ρ has discrete orbits,
ker(ρ) is finitely generated iff S∞(V ) ⊂ Σ1(G); this is how the theorem is
usually stated in the literature. It follows that if one understands Σ1(G),
then one sees Σ1(ρ) as the intersection of Σ1(G) with the appropriate great
sphere in S∞(V0).

H. An application to group theory:
Here is an elegant application of this theory:

Theorem 18.3.18. Let G be finitely presented and let the rank of G/G′ (as
a Z-module) be at least 2. If G has no non-abelian free subgroup, then there
is a finitely generated normal subgroup L � G with G/L infinite cyclic.

Proof. Let (X, x) be the presentation complex for some finite presentation
of G. We may assume that the 1-skeleton of X̃ is a Cayley graph with the
properties listed in Sect. C.

Claim. S∞(V0) = Σ1(G) ∪ (−Σ1(G)). To prove this Claim we recall that
V0 = (G/G′) ⊗Z R, ρ is the canonical translation action, and as usual (see
Sect. B) we write Σ1(G) rather than Σ1(ρ) in this context. So for any non-
zero character χ : G → R we are to show that either [χ] or −[χ] := [−χ] lies
in Σ1(G). Let u be the unit vector in V0 corresponding to [χ]. For some r ≥ 0
we write V0 = Hu(r) ∪H−u(−r). The control map on the 1-skeleton extends
to a G-map h : (X̃, x̃) → (V0, 0). Let K := ker(χ) and N := ker(ρ). There is
a commutative diagram
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X̃
pN

��!!
!!
!!
!! h

  �
��

��
��

�

X̄N hN

��

��

V0

〈u,·〉
��

X̄K hK

�� R

The spaces Y − := h−1
K ((−∞, r]) and Y + := h−1

K ([−r,∞)) cover X̄K , and
their intersection is Y0 := h−1

K ([−r, r]). Choosing a base point y0 ∈ Y0, we
apply the Seifert-Van Kampen Theorem 3.1.18. The spaces Y ±, Y0 are path
connected, for if r is the rank of the abelian group χ(G) then the 1-skeleton of
X̄K consists of the 1-skeleton of Rr with perhaps some other 1-cells attached;
it is clear that for any linear map Rr → R the preimage of any interval has
path connected intersection with the 1-skeleton of Rr; hence our assertion
that Y ± and Y0 are path connected.

Applying 3.1.18, there are three cases to consider:
Case 1: π1(Y

+, y0) → π1(X̄K , y0) = K is surjective. Then h−1(H−u(−r))
is path connected by 3.4.9, implying [χ] ∈ Σ1(G). Similarly, if “plus” and
“minus” are interchanged, −[χ] ∈ Σ1(G).
Case 2: The image of π1(Y

+, y0) in π1(X̄K , y0) has finite index. Then by
enlarging r we get back to Case 1. The same holds for the image of π1(Y

−, y0).
Case 3: The images of π1(Y

±, y0) in π1(X̄K , y0) both have infinite index.
But this cannot happen, since, by the discussion in Remark 6.2.13 together
with 18.3.19, below, it would imply that K contains a non-abelian free group,
something ruled out by the hypotheses.

Thus, the Claim is proved.
To complete the proof of the Theorem we note that S∞(V0) is a sphere of

dimension ≥ 1, by our hypothesis on G/G′. By 18.3.15, the sets ±Σ1(G) form
an open cover of this connected sphere, so they have non-empty intersection.
This intersection, being open, must contain some [χ0] with χ0 a rational char-
acter (i.e., one whose image is an infinite cyclic subgroup of R). By 18.3.12,
L := ker(χ0) is finitely generated. �

The only missing piece in the last proof is a standard fact from combina-
torial group theory:

Proposition 18.3.19. If G = G1∗G0 G2 is a free product with amalgamation,
where G0 has index ≥ 2 in G1 and has index ≥ 3 in G2, then G contains a
free non-abelian subgroup.

Proof (Sketch of Proof). The Normal Form Theorem for free products with
amalgamation (see [106, p. 187]) says that a product c1 . . . cn is non-trivial in
G if (i) each ci is in G1 or G2, (ii) ci and ci+1 are not both in G1 or both
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in G2, (iii) when n > 1 no ci ∈ G0, and (iv) when n = 1, c1 �= 1. Choose
a ∈ G1 − G0 and b, c ∈ G2 − G0 representing different cosets of G0 in G2.
The Normal Form Theorem implies that ab and ac generate a free non-abelian
subgroup of G. �

Remark 18.3.20. It is known [25] that Thompson’s group F has no non-abelian
free subgroup. It follows then from 18.3.18 that there exists a short exact
sequence N � F � Z with N finitely generated. By 16.9.1, we can conclude
that F is semistable at infinity (something we already knew by 16.9.7). The
existence of N implies, by 18.3.12, that Σ1(F ) is non-empty, indeed, contains
a diametrically opposite pair of points. In fact, Σ1(F ) has been computed,
see [17].

Source Notes:

The theorems in this section first appeared in [17]. The proofs here are adapted
from [13]. The original definition of Σ1(G) used a finite generation property of the
commutator subgroup (when regarded as an operator group over certain submo-
moids of the group). The definition given here is due to Bieri-Renz [BR88] and led
to higher-dimensional versions of Σn(G) for n > 1, both homotopical and homo-
logical; see [18] and the references therein. Later, the whole theory, for all n, was
extended in [16] and [15] to the case where the translation action on the vector space
V is replaced by an isometric action on a proper CAT(0) space.

Exercises

1. Prove that the group N in Remark 18.3.20 has one end.
2. Let M be a proper metric space and let L be a subgroup of Isom(M), the group

of isometries of M with compact-open topology. Prove that the following are
equivalent:

(i) L is a discrete closed subset of Isom(M);
(ii) Each orbit is a discrete closed subset of M and each point-stabilizer is a

finite subgroup of L;
(iii) The action of L on M is proper.
(A subgroup L with these properties is called a lattice.)

3. Let V be a finite-dimensional real vector space equipped with an inner product.
Show that Transl(V ) is a closed subgroup of Isom(V ).

4. Fill in the details of 18.3.4.
5. Show that if G is a finitely generated abelian group of rank n then Σ1(G) =

S∞(Rn).
6. Show that if G is a finitely generated free group then Σ1(G) = ∅.
7. Extend the discussion of Σ1(BS(1, 2)) to the case of BS(m, n). Is the result

different?
8. Express the statement u ∈ Σ1(ρ) in terms of filtered locally finite homology, as

in Sect. 14.2.
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Čech homology, 427
cell, 10, 12, 17, 18
cell-permuting , 84
cellular

chain, 40, 60
cohomology, 260, 261
homology, 41
map, 28

Cellular Approximation Theorem, 30
CW proper, 228
CW-filtered, 334
proper, 223
properly filtered, 340

chain
cellular, 40, 60
filtered, 338
finite, 229
infinite, 229
locally finite, 230
singular, 37

chain complex, 35

cellular, 40
chain homotopic, 36
chain homotopy, 36
chain homotopy equivalence, 36
chain homotopy inverse, 36
chain map, 36
character, 336

rational, 451
characteristic map, 10, 12, 17
classifying space, 162
closed

ball, 9
embedding, 5
function, 4
manifold, 126
subset, 3

closure, 3
coboundary, 259, 260, 264

of the end, 266
cochain, 260
cochain complex, 260
cochain map, 261
cocompact, 86, 440
cocycle, 260, 264

of the end, 266
coefficient, 38, 261
cofinal subsystem, 237
cohomological dimension, 186
cohomology, 260

cellular, 261
cohomology of the end, 265
colimit, 240
collapse, 102
combinatorial boundary, 134
combinatorial Hodge star operator, 434
combinatorial Laplacian, 434
combinatorial manifold, 134
commensurable, 348, 437
commensurator, 348
compact, 7, 8
compact support, 266
compact-open topology, 9
compactification, 421

Alexandroff, 424
end-point, 424
Freudenthal, 424
one-point, 424
Z-set, 421

compactifying space, 421



Index 465

compactly generated space, 8
compactum, 426
compatible, 335
complementary component

in a graph, 231
complete, 397
completion, 286
complex

cellular chain, 40
cellular cochain, 260
chain, 35
cochain, 260
cubical, 191
CW, 15
dual, 355
flag, 192
metric, 191
simplicial, 129
thin chamber, 268

component, 9
path, 8

concentrated, 117, 120
cone, 132
connected, 9

simplicial complex, 135
strongly, 373

connected at infinity
homology, 369
strongly, 369

connected sum, 127
connecting homomorphism, 36, 65
continuous, 4
contractible, 25

locally, 426
control map, 441
convex cell, 187
convex hull

open, 130
corestriction, 4, 239
countable CW complex, 17
covering projection, 45
covering projections, equivalence of, 99
covering space, 45
covering transformation, 90
Coxeter group, 197, 395, 396, 426
Coxeter system, 197
crosscap, 128
cube, 21, 191
cubical complex, 191

Culler-Vogtmann Theorem, 216
cup product, 290
CW complement, 32
CW complex, 15

affine, 187
oriented, 54
pointed, 51
regular, 135

CW manifold, 354
CW neighborhood, 32
CW pair

oriented, 54
CW-compatible, 335
CW-filtered homotopy, 335
CW-filtered map, 334
CW-Lipschitz, 336
CW-Lipschitz homotopy equivalence,

336
CW-proper, 227
CW-proper homotopy, 227
CW-proper homotopy equivalence, 227
cycle, 36, 64

infinite, 232
of the end, 249

cyclic edge loop, 74
cyclic module, 246

Davis complex, 198
Davis manifold, 397
Davis’s Theorem, 198
deck transformation, 90
define the same end, 295, 376
deformation retract, 25
degenerate, 73
degree, 43
dense, 4
descending, 32
descending link, 189
diagonal action, 144
diameter, 9
dimension, 16

cohomological, 185, 186
geometric, 171
of a manifold, 125
of a simplex, 129
of a simplicial complex, 129

direct limit, 238
direct sequence, 240
direct system, 238



466 Index

directed set, 235
discrete, 3
distance in a graph, 231
dominate, 115
domination, 115
dual

cell, 354
complex, 355
cone, 353
orientation, 358

duality group, 363
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inverse limit, 235
inverse mapping telescope, 255
inverse of a map, 4
inverse of edge, 73
inverse of edge path, 73
inverse sequence, 240
inverse system, 235
inverse systems

category of, 236
island, 117, 120
isometric embedding, 435
isometry, 435

join
simplicial, 131
topological, 131, 400

JSJ decomposition, 314
Jónnson-Tarski algebra, 212

K(G, 1)-complex, 162
k-space, 8
Künneth Formula, 276

L-bounded subset, 342
L-proper, 419
l2-chain, 433
l2-boundary, 433
l2-coboundary, 433
l2-cocycle, 433
l2-cohomology, 434
l2-cycle, 433
l2-homology, 434
Laplacian, 434
lattice, 452
leaf, 377
Lefschetz Duality, 359
length, 203, 435, 440

of a word, 197
of expansion, 208

length metric, 440
lens space, generalized, 184
level, 407
lift, 86
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lim
←−

1, 242

lim
←−

1{Gn}
trivial, 242

limit, 240
direct, 238
inductive, 240
inverse, 235
projective, 240

linear, 185
link, 132, 189

ascending, 189
descending, 189
simplicial, 192

local incidence number, 75
locally cofinite , 339
locally compact, 8
locally contractible, 426
locally finite, 7, 129, 221, 338

strongly, 222
locally finite chain, 230
locally finite CW pair, 221
locally finite type, 227
locally path connected, 9
loop, 94

malnormal, 351
manifold, 125

closed, 126
combinatorial, 134
CW, 354
open, 126
piecewise linear, 134
topological, 125

map, 4
cellular, 28
closed, 219
equivariant, 109
perfect, 219
proper, 219
simplicial, 129

map of pairs, 4
mapping cylinder, 102
mapping degree, 56
mapping telescope, 112
mapping torus, 112
marked graph, 215
matching complex, 211
Mayer-Vietoris sequence, 39, 68

reduced, 71

measure, 29
metric, 9

CAT(0), 191
length, 440
proper, 191

metric complex, 191
metric space, 9
metrizable, 9
Milnor exact sequence, 265
minimal narrow set, 312
Mittag-Leffler, 242
mod torsion, 278
module

graded, 35
modulo the Poincaré Conjecture, 388
Morse function, 188
movable at the end, 253

n-acyclic, 119, 186
n-acyclic at infinity, 411
n-acyclic at infinity group, 413
n-aspherical, 162
n-ball, 6
n-connected, 161
n-connected at infinity, 411
n-connected at infinity group, 413
n-connected pair, 102
n-equivalence

n-equivalence
proper, 234

n-equivalence, 65
n-equvialence

n-equivalence
CW proper, 234

n-inverse, 65
n-movable at the end, 254
n-space, 5
n-sphere, 6
narrow, 311
natural, 36
natural ordering, 140
neighborhood, 4

CW, 32
of the end, 250
simplicial, 131

nerve
of a cover, 210
of a Coxeter system, 198

non-degenerate edge, 73
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non-orientable surface, 128
non-reduced, 434
normal covering, 100
normal form, 201, 451
normalizer, 100
Novikov ring, 341
nowhere dense, 4
number of ends, 295
number of ends of a group, 300
number of ends of a pair, 303
number of filtered ends of a pair, 346

one-point compactification, 424
one-point union, 51
open, 3

ball, 9
cover, 7
embedding, 5
function, 4

open convex hull, 130
open manifold, 126
orbit, 85
ordered simplicial complex, 140
orientable pseudomanifold, 268
orientable surface, 127
orientation, 52, 269, 362

canonical, 56
orientation preserving, 51, 270
orientation reversing, 51, 270
oriented, 268
oriented CW complex, 54
oriented CW pair, 54
outer automorphism, 173
outer automorphism group, 215, 364,

395
over a set, 444
over a space, 321

pair
exact sequence of, 38

pair of CW complexes, 21
pair of spaces, 4
parabolic, 197
paracompact, 23
parametrization, 97
partially ordered set, 235
path, 8
path component, 8

bounded, 296

same, 8
unbounded, 296

path connected, 8
perfect, 219
perfect space, 299
piecewise linear, 133
piecewise linear manifold, 134
PL, 133
PL manifold, 134
Poincaré Duality, 359
Poincaré Duality group, 362, 364

orientable, 362
pointed CW complex, 51
pointed homotopy equivalence, 119
pointed homotopy idempotent, 204
pointed space, 51
poset, 235
pre-ordered set, 235
presentation, 19
presentation complex, 19
principal simplex, 323
pro-epimorphic, 242
pro-finitely generated, 277, 383
pro-finitely presented, 422
pro-free, 383
pro-group

fundamental, 379
pro-isomorphic, 237
pro-isomorphism, 237
pro-monomorphic, 383, 384
pro-torsion, 277
pro-torsion free, 277
pro-trivial, 248, 383
product

cup, 290
product of k-spaces, 8
product of edge paths, 74
product of spaces, 5
product orientation, 56
product topology, 5
projection map, 5
projective

limit, 240
projective module, 185
projective plane, 94
projective resolution, 185
proper, 219

group action, 440
proper attaching, 220
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proper edge ray, 231
proper homotopy

weak, 427
proper homotopy equivalence, 222
proper homotopy extension property ,

222
proper homotopy inverse, 222
proper homotopy type, 222
proper metric space, 191
proper parametrization, 376
proper ray, 295
proper simultaneous attaching map, 220
proper strong deformation retract, 222
properly n-acyclic, 412
properly n-connected complex, 412
properly n-connected pair, 411
properly filtered, 340
properly homologous, 233
properly homotopic, 222
pseudomanifold, 267
pseudometric, 436
pseudometric space, 436
pull-back, 224

quasi-homotopic, 437
quasi-isometric embedding, 435
quasi-isometry, 435
quasi-surjective, 435
quotient complex, 22
quotient map, 6
quotient orientation, 54
quotient space, 6
quotient topology, 6

R-orientation, 268
rank, 246
ray

proper, 295
realization

geometric, 130
reduced cellular chain complex, 72
reduced cellular homology, 70
reduced edge path, 74
reduced homology exact sequence, 71
reduced Mayer-Vietoris sequence, 71
reduced word, 197
reduction of edge path, 74
regular, 342
regular covering, 100

regular CW complex, 135
rel, 24
relative boundary, 66
relative cohomology, 264
relative cycle, 66
relative homology, 66
relative homotopy, 24
Relative Hurewicz Theorem, 119
resolution

free, 182
projective, 185

restriction, 4, 237
retract, 25, 158

deformation, 25
strong deformation, 25
weak deformation, 25

retraction, 25
strong deformation, 25

right angled Coxeter group, 325
right angled Coxeter system, 325
right-angled Artin group, 192
rigid G-CW complex, 84
rigid action, 84
Rips complex, 177, 426
root, 206

saturated, 6
Selberg’s Lemma, 200
semilinear, 185
semistable, 242, 277, 342, 370

at infinity, 394
semistable at each end, 394
Serre Tree, 155
Serre’s Theorem, 171
shape, 427

strong, 427
Shapiro’s Lemma, 288
sheets, 193
shift, 242
shift homomorphism, 201
short exact sequence, 36
sigma invariant, 442
simplex, 129

singular, 37
standard, 37

Simplicial Approximation Theorem, 135
simplicial complex

countable, 129
finite, 129
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locally finite, 129
simplicial isomorphism, 129
simplicial join, 131
simplicial link, 192
simplicial map, 129
simplicial neighborhood, 131
simplicial subdivision, 133
simply connected, 78
simply connected at an end, 379
simply connected at each end, 394
simply connected at infinity, 379, 394
simultaneous attaching map, 10, 12
singular chain, 37
singular chain complex, 38
singular cohomology, 266
singular homology, 38
singular simplex, 37
skeleton, 16
slender group, 313
sliding, 403
smash product, 399
space, 3

pointed, 51
space of ends, 296
sphere

homology, 396
sphere at infinity, 442
sphere of G, 442
spine, 335
splits, 37
splittable, 37
splitting of a group, 314
stabilizer, 84
stable, 237, 277, 383
stable at each end, 395
stable at infinity, 395
stable letter, 149
stably a particular group, 383, 395
stack, 146
Stallings. Theorem, 303, 308
standard n-simplex, 37
standard coset, 197
standard PL n-ball, 134
standard PL n-sphere, 134
standard subgroup, 197
star, 132
Steenrod fundamental group, 381
Steenrod homology, 427
Steenrod homotopy group, 418

strong deformation retract, 25
proper, 222

strong deformation retraction, 25
strong end, 369
strong fundamental group, 381
strong homology end, 372
strong homotopy group, 418
strong shape, 427
strongly connected, 373
strongly connected at infinity, 369, 373
strongly homology connected at infinity,

373
strongly locally finite, 222
subbasis, 4
subcomplex, 21, 131
subdivision

barycentric, 47
binary, 206
of CW complex, 47
simplicial, 133
tree, 207

subspace, 4
subsurface, 304
suitable for weak topology, 7
sum, 7
support, 41, 270

compact, 266
surface, 126

non-orientable, 128
orientable, 127

surface group, 128
suspension, 44
Švarc-Milnor Lemma, 440

telescope
inverse mapping, 255

tensor product, 273
thin chamber complex, 268
Thompson’s Group, 170, 206, 213, 331,

395, 452
Tietze transformation, 79
topological filtration, 333
topological finiteness properties, 185
topological group, 397
topological join, 131
topological manifold, 125
topological property, 4
topological space, 3
topologically equivalent, 9
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topologically well filtered, 333
topology, 3
torsion free module, 246
torsion submodule, 246
torus, 98
total complex, 150
total inverse sequence, 377
total space, 146
totally disconnected, 298
tree, 78

Bass-Serre, 156
complete rooted binary, 206
finite, 206
maximal, 78
Serre, 155

tree poset, 308
triangle inequality, 9
triangulable, 130
triangulation, 130

canonical, 193
triple

exact sequence of, 38
triple of spaces, 4
trivial RG-module R, 182
trivial first derived limit, 242
twisted, 360
type F , 173
type F∞, 170
type Fn, 169
type FD, 173
type FL, 185
type FP , 185
type FP ′

n, 195
type FP∞, 185
type FPn, 185

unbounded

component in a graph, 231
path component, 296
subset, 342

underlying polyhedron, 130
Universal Coefficient Theorem, 274, 275
Universal Coefficient Theorem in

cohomology, 276
universal cover, 91
unknotted, 126
usual topology, 5

Van Kampen Theorem
Generalized, 158

vertex, 17, 129, 187
vertex group, 149
vertex of cone, 132

Wang sequence, 316
weak deformation retract, 25
weak topology, 7
weakly properly homotopic, 427
wedge, 51
wedge point, 51
well filtered CW complex, 334
well parametrized, 369
Whitehead Theorem, 103

proper, 411
Whitehead’s Contractible 3-manifold,

389
word

reduced, 197
word metric, 435
Wright’s Theorem, 384

Z-set, 421
zero-dimensional, 298, 397
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