LOCALIZATIONS IN ASSOCIATIVE RINGS

V. N. Gerasimov UDC 519.48

INTRODUCTION

In this article we develop the methods of [1]. 1In the first section we describe the
construction of a localization of an arbitrary ring R with respect to an arbitrary set I of
(rectangular) matrices over the ring R, analogous to Ore's construction, and which essentially
coincides with it in the case when I is the set of the elements in the ring satisfying the
left or right Ore condition (Theorem 2). We prove a criterion for the equality of two ele-
ments in the ring Ry~', analogous to the criterion for the equality of two fractions in Ore's
construction. This criterion allows us to find a fairly simple condition, written in the
form of a system of quasiidentities, which 1s necessary and sufficient for the potential in-
vertibility of the set I (Corollary 3).

In the second section, we introduce the idea of an n—independent set I, and we prove
that for such a set, the ring RS™! is an n-FI-ring (Theorem 6)., As an application, we give
an answer to Bergman's problem [2] on the connection between the dependence parameters on the
rings R and RZ™!, where I is the set of all complete quadratic matrices of a given fixed order
7 > 0. It turns out that if R is an n-FI-ring, then RZ™! is an (n — 27)-FI-ring. In par-
ticular, if £ = R\ {0} is the set of all nonzero elements of the n-FI-ring R, then the ring
RZ™! is an (n — 2)-FI-ring.

All the rings we consider have a unity, which is preserved by homomorphisms. If R is an
arbitrary ring, then we denote by ™R" the set of matrices over the ring R with m rows and n
columns. If one of the indices m, n is equal to zero, then by definition we assume that the
set TRD consists of a unique empty zero matrix. We denote by the symbols M0R and 1,, respec-
tively, the zero matrix in ™R", and the unit matrix of order n. If in writing ™R" one of
the indices is omitted, then this means that its value is either arbitrary or can be found
uniquely from the context. This also refers to the notation M0", 1, and other similar nota-
tion. We denote by N the set of nonnegative integers.

On the set Mat(R)= |J ™R" we define the partial operations of addition
m,neN

m,n< N,

(@,6)->»a -5

and multiplication

mpn n Rk mpk

{ R X "R~ TR m, n, k< N,

(a,b)—ab

which turn this set into a preadditive category, whose morphisms are matrices and whose ob-
jects are the natural numbers, and, moreover, the number O is the zero object, i.e., 1o = %0°,

As well as the category Mat (R), it is useful to consider the category Mat? (R), whose
elements (morphisms) are matrices with a fixed expansion into cells, where some cells may be
empty. The operations of addition (or multiplication) of two matrices in Mat? (R) are defined
if and only if the expansions into cells are compatible, i.e., the operations may be carried
out cellwise. The result of the operation is the ordinary sum (or product) of the matrices,
whose cellular expansion is maturally defined by the expansions of the terms being added
(mltiplied). All computations with cellular matrices will be performed in Mat® (R), unless
we specify otherwise.
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A DESCRIPTION OF THE CONSTRUCTION, AND ITS FUNDAMENTAL PROPERTIES

Let R be an arbitrary ring, and T =Mat(R) an arbitrary set of matrices. We recall
that the homomorphism of rings f:R - R; 1s called I—inverting if the images of the matrices
in the set I are invertible over the ring R;. Amongst the I-inverting homomorphisms there
is a universal one, which we call a localization of the ring R with respect to I, and we
write thus:

ny:R— REL

This homomorphism is characterized by the fact that for any I-inverting homomorphism f:R - Ry,
there exists a homomorphism h:R:™! » Ry, such that we have the following commutative diagram:

B rr™
\* ;
.f’
Ry

We call the set I of rectangular matrices over the ring R multiplicative, if it satis-
fies the following conditions:

1. The empty (0 x O)-matrix 1, belongs to I.
ac )
2. 1If a, beX, then (Ob)esz for any matrix ¢ of suitable dimensions.

For any set X, we can easily construct a least multiplicative set % containing . We
call the set I the multiplicative closure of the set L. ZLocalizations of the ring R with
respect to L and I are naturally isomorphic, and therefore, without loss of generality, we

need consider only multiplicative sets,

In this section we give a conmstruction for a localization of the ring R with respect to
the multiplicative set . In the future it will be convenient to construct, not the ring
RZ™Y itself, but the whole set Mat (R%™!) of rectangular matrices over this ring, together
with the partial operations of addition and multiplication, defined on this set. We first
construct some set M(R, I) with partial operations &, ©, a mapping e:Mat (R) + M(R, L) pre-
serving the operations, and an equivalence relation Oz, stable with respect to the above
operations. We will then establish a correspondence between equivalence classes and matrices
over some ring, so that the mapping e, restricted to (1 x 1)-matrices, defines a universal
I-inverting homomorphism. The relation 83, which is first defined noncomstructively, is then
studied, as a result of which we obtain a criterion for the equality of two elements of the
ring RI™! in terms of the ring R. The final results on this construction are formulated be-
low in Theorem 2 and its three corollaries.

We say that we are given an # -object if we are given:
1. A nonempty set M.

. m n . . . . .
2. Some expansion M= { M" into pairwise nonintersecting subsets.
mneN

3. A family of mappings

{mMnmen_+mMn
m, e N,y
(a,b)—~>a D b.
4, A family of mappings
m g 7y ok m x4k
{ M™X M —>"M m,n, k=N,
(g,0)>a®b ]

A fundamental example for us of an  -object is the set of all rectangular matrices
over the ring R, with the partial operations +, - defined on it. Analogously, any preaddi-
tive category, whose objects arenatural numbers, may be considered as an J& -object. Below
we define the U -object M(R, I) and an equivalence relation 83 on it, so that the equiva~
lence classes correspond to matrices over RI™!.
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If M; and M, are two J -objects, then an Jf -morphism from M; to M, is a family of
mappings

f={mf: "M > "M

m,n< N}

such that f{g® b) = fla) ©f(3), He@d)=Hc) @ f(d) every time the values q®b,¢9d are defined.
Any homomorphism of rings f:R + R; induces an  -morphism Mat (£):Mat (R} » Mat (R;).

An equivalence relation & on the # ~object M is called a congruence if the following
conditions are satisfied:

1. (a0, a=™M")=>b=s"M".
2. (aBb, cBd) = (a©c)0bDd), if a®¢ is defined.
3. (aBb, c8d) = (@ ©)B(b@d), if a®@c 1is defined.
If f:M; > My is an J/ -morphism, then the relation
0 aG,b <> f(a) = f(b)
is clearly a congruence, which we call the kernel congruence of the morphism f.

If 6 is a congruence on the . —object M, then on the factor-set M/6 we clearly have
defined the structure of an .# —object.

Let R be an arbitrary ring. We call an R-object any JM -object together with a fixed
M -morphism e:Mat (R) » M. If (M, e1), (Mz, £2) are two R-objects, then we call an R-mor-
phism any Jf -morphism f:M; - My for which we have the following commutative diagram:

Fd
Moy

ENIL

Mat (R)

M,

We call the congruence 8 on the R-object (M, €) a ring congruence if the factor-object
M/6 is a preadditive category (i.e., the operations 97 © are associative, there exist neu-
tral elements, <™M"/§; ©) are Abelian groups, and the distributive identities hold) and

< -M

Mat(R)

the mapping €/0 in the commtative diagram g/ l is a morphism of preadditive
M/6

categories (i.e., takes zero elements to zero elements and unit elements to unit elements).

In particular, this definition requires that the natural number 0 is a zero object in
M/8.

If 8 is a ring congruence on the R-object (M, e), then it is easily proved that the
factor-object (M/6, €/6) is naturally isomorphic to the R-object

Mat{1¢!/0) : Mat (R) — Mat ('M*/0),
We construct the isomorphism as follows:

Let ™ER&™R" be the matrix whose (i, j)-th element is ome and the remaining element
are zeros. Moreover, let me?j be the image of the matrix MEY: for the mapping €/6. We asso-

1]
ciate with each elementae=™M"/8 a matrix of order m X n over the ring Ml/g, whose (i, j)-th
element is 1erlni-a-nel.l. It is easily verified that this correspondence is an isomorphism of
R-objects. J

We call the ring congruence 6 on the R-object (M, e) (universal and) I-inverting, if the
homomorphism of rings 'e'/6:R - IMl/g is a (universal) I-inverting homomorphism. Here & =.
Mat (R) is some multiplicative set of matrices.

We shall now construct an object (M, L) with the following properties:

(a) For any I-~inverting homomorphism f:R - Ry, there exists a mapping he:M(R, I) - Mat
(R1) which is an R-morphism [to the R-object Mat (f):Mat (R) > Mat (Ry)].
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(b) For any matrix e=2XN™R" there exists an element ¢*<*M™R, £} such that hf(a*) =
f(a)™! for any L -inverting homomorphism f.

(c) M(R, %) is generated as an R-object by the set {a*lasXl}.

On such an object, any kernel congruence Opy is L-inverting, the intersection of all
such congruences
92 = ﬂ ehj
¥

is universal and I-inverting, and the homomorphism lel/6y:R » MI(R, £)/65 is a localization
of R with respect to I.

Construction of the R-object M(R, ©). Denote by M(R) the set of rectangular matrices
with a fixed expansion into cells, of the form
a
,_), (1

a'
a=1%
a%a

i.e., the quadruple of matrices (a', a, a°, 'a), whose dimensions allow us to form the matrix
(1). We shall think of the expansion (1) as being distinct from other expansions of the ma-
trix a which we shall encounter. Thus, on the set M(R) there are defined four mappings

a+a’,a—~>d a—>a, a—>"a
Some of the above four cells of the matrix a=M(R) may be empty. In this case we shall
use abbreviated notation, i.e., ‘(E(’—l)1 (a_lat) , and so on.
Set
o bla+b
"M"R=lecsM@Rlze™RY, cdb={d’ 0z ,
0 b%b

o ab’lab
a®@b=| a®'ab’lgp |, € (a) = (Ja).
0 % 'b
It is easily verified that we have thus defined an R-object (M(R), €) and that the map-~
ping ¢ -~ 2 is an R-morphism M(R) =+ Mat (R).

For the matrix ee™R" , set
LI o R b .
a w-( aL)E M”(R)

If £:R > Ry is a homomorphism of rings, then the induced mapping M(f):M(R) - M(R;) may
be assumed to be an R-morphism in view of the following commutative diagram:

M@ 2D )y
4
e ‘a
Mat (R)—12 D), Mat (R,

We also note that the mapping M(f) preserves the operation a - g%,
If £ is a multiplicative set of matrices, then the set
MR, %) ={ac= MR =3}

is closed with respect to the operations ®, ® | and therefore on it there is induced an R-
object structure, which we also denote by M(R, &), assuming that the mapping € is fixed.

Denote by @ (ae M(R)) the matrix

1 o 4
0 a® ay.
0 0—1



In particular, if pe™M°(R), q=°'M"(R) , then

~ (P o~ ’q)

P=%0 p) 77\0 —1.)
If a=™M~(R) and the matrix a° is invertible, then the matrix @ is also invertible and there
exists a unique matrix @la)="M"(R) such that

at =wla).

The following identities can be verified immediately:

wla ® b) = wla) ® wlb),
0la ©b)=0wla) © wl(b),

©(lg) = (1),

- ()

a1

Each of these identities is true whenever the value of its left~ or right-hand side is
defined. 1In particular, if the set I consists of invertible matrices and is closed with re-
spect to inversion, then identities (2) hold for any matrices in the set M(R, £). The first
three identities mean that the mapping w is, in this case, an automorphism of the R-object
M(R, I).

Set ola) = wla). It follows from the definition of w that @=(a)=ad—a'(a®)" ’a.

(2)

Now let f:R - R; be some I~inverting homomorphism. Denote by &; the set fZ)UfZ)-t
consisting of the images of the matrices in I and the inverses of these images. The R-mor-
M)

M(R,%) M(RysZ1)
phism hf in the commutative diagram Py P is I-inverting, in view of the
£
. . . Mat (Ry)
fourth identity in (2). Now set
by = D U

where the intersection is taken over all I-inverting homomorphisms.

Proposition 1. The relation 6y is a universal I-inverting congruence.

Proof. Of the conditions (a)-{c) formulated above, it remains to prove only (c), which is

satisfied in view of the identity

al
ao

We can now give an explicit description of the congruence 8y.

a
‘a

)= (@) o (1=) 00 o (1)

The proposition is proved.

The set % of matrices over the ring R is called saturated if it contains all the ma-
trices ae=Mat{R) for which the matrices uyp(a) are invertible over the ring R:"l.  (Here
uy is_a universal s-inverting homomorphism.) For any set I, there exists a unique saturated
set =3 such that the universal I- and I'-inverting homomorphisms coincide. Moreover, a
universal I-inverting congruence 0y on the set M(R, %) is, clearly, the restriction to this

set of the congruence 6y [defined on the set M(R, T)]. The set I is called the saturation
of the set .

We call the matrix ce=M(R, £) Z-incomplete if it can be written in the form

cr'z\ a'
arz) =7

where ¥ is the saturation of the set I.

) (5B, a0, 0 < ¥,

LEMMA 1. Any S-incomplete matrix represents the zero matrix over the ring RI™.
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Proof. We may assume that the set ¥ is saturated. It is sufficient to prove that hg
(c) =0 for any IZ-inverting homomorphism f£. Therefore, we may assume that the set I con-~
sists of invertible matrices and is closed with respect to inversion. Under these assump-
tions, we show by direct verification that

ai 0
o {c) = | —|— |,
K (zﬁaa"bl)
where a; = w(a), by = w(b). Thus, w(c) = 0. The lemma is proved.

For matrices a, b= M(R), set
Bb==(—1) @b, 0O b=0a® (Oh).

LEMMA 2. The following equations in the category Mat? (R) are equivalent:
a a vq° q f1p .‘b’g _
(a° 'a)'(o -—1> +(0 p“) (60 ) =0
(a’p’ ?°'q\ —b a—1%
\a® p°) \8'b) 0 ‘a ’
o) o (B S ) (TaTe
o) C\Bn) TG ] \owle)

Proof. Each of the above three inequalities is equivalent to the following equations:

a‘/"qg_{_pl.bo:__bl’ a'-IQ'+p’-’b=d-—E,
a-g°+p° b=, a'gtpt-'b="a

This can be verified directly. The lemma is proved.

COROLLARY. If a, b= M(R, 3), p= M"R), ¢=°M(R) and in the category Mat’ (R) we have the
equation

a5+}b=0, (4)

i.e., the equation

(af;)(qs’ 7). (Uy)(yz)-:o
a®’a, — 1} T 0 p?) A\ b, ’
then ab6yb. |
This statement follows immediately from Lemmas 1 and 2.
Fix some multiplicative set I of matrices over the ring R.

If the conditions of the corollary are satisfied, then we say that the matrix a is con-
nected to b from the left, and that b is connected to o from the right, and we write this
fact as a > b.

LEMMA 3. The relation »> is reflexive and transitive; if g + b and ¢ - d, then a®c¢-.
b®d, a©c—bOd whenever the corresponding operations are defined.

Proof. The equation a-(—~1)+1-a=0 proves reflexivity. If _aa—i-;b—_—@’:__b;;:gcz

are relations of the form of (4), then the relation d-(~-gl;}+(;l;\)-c=0 is also of the form
of (4). Therefore, a - c. '

Let a;1\+’]\)b=('), cw+ud=0. If the value of a®c is defined, then
N AN .
(@a®c) (@) +(p®v) - (b®d) =0,

If, moreover, a®¢ 1is defined, then
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SO O
oo (rol28))+ (5

Both these equations can be verified directly. The lemma is proved.

To perform concrete computations in a universal I-inverting ring, we need the following.

LEMMA 4. Consider the following pairs of matrices:

’ r 7 -~
Cy €5 €3 |C ~
J;_E__E_T_ 01 % ¢
g, | Gux 12 Cus G —

Cy1 Cial'€
O czz 0 0 1 cll C13 cl)’

, r 31 Casl Cq
€33 C33 C33] C3

r 14 ~
’ ry o~ Cy 0 Ca | C
L c3 e e
—l €11 0 eg5feq
2. | eqq €430’y ), I
Ca1 Cag Co3f C2

€31 €33l 3 €, 0 Cyl'cy

3" ff? ¢ i)
3 \als ) &z ) \olr )
4 11wy (e ¢ Z)
A0 fwe) T\ e )\l

If in some of these pairs both matrices belong to the set M(R, £), then the first of them is
connected to the second from the left.

Q'nl

Proof. The relation of connectivity is easily written out in each case. Let a be the
first matrix of a pair, and b the second. 1In the first case we must take

' —1 00
, = 0O 0i0¢4;

. 0 —1]0
f

0

S

o

I
(SRR
-~ oo

in the second,

000

(0t} o= (T
001

o

0 . . ..
in the third, p::_(T1),q==(~—v°|«—’m; and in the fourth, p=u,g=(—1[0). The lemma is
proved. !

Denote by the symbol o the equivalence relation generated by the relation +. 1In the
conditions of Lemma 4, replacing the first matrix of any pair by the second does not change
the equivalence class. 1In the first case we call this substitution reduction by a trivial
row; in the second, insertion of a trivial column; and in the third, triangular transforma-
tion of columns. The inverse substitution is called, in the first case, insertion of a triv-
ial row; in the second, reduction by a trivial colum; and in the fourth, triangular trans-
formation of rows.

LEMMA 5. The relation N coincides with the universal I~-inverting congruence 8y.

Proof. The relation ~ is a congruence, by Lemma 3. It is sufficient to prove that
M/, is a preadditive category with zero morphisms (ITO”)L' and unit morphisms (]L0/~, and
that (Ia)@a*~(|1) a*@(la) ([1) for any matrix ae?f_‘,\f'

The operations ®, ® are already associative on the set M(R) and have neutral elements
(1B and (l1n), respectively. The equations

(a; g),'(_/ier(Hl).(aea):O,
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(8- (1) -0 -0

prove the equivalence a©a~(]0), i.e., the sets ™" (R, £) are groups with respect to the
operation @ . The commutativity of these groups follows from the obvious identity ©(g®b)=
(€a) ®(Ob) . Distributivity follows from the equations

((a@c)®(bO ) -THp (a®b).® ) =0,
@O B®) -v+u ((a@h)®(a®c)) =0,

where
0004 —1 0 o0lo 0000
Lol 0o o—1jo} [ioto
P=%10’q= 0 —1 oo‘“—(uoq*
—110 0001
loo1|] 0 0—1 x

—1 0—1 o0
v={ 0—1 0 olo}
0 0 0-—1]0

Finally, for any matrix =2 , the equations

10 — 1)+ (1])-((l2) @ a*) =0,

(a* @ (la)) |1>+( RO

show that the relation ~ is a I-inverting congruence. Since ~=0; in view of the corollary
of Lemma 2, then the statement of Lemma 5 now follows from Proposition 1, The lemma is
proved.

The equivalence relation ~ on the set M(R, I) can be considered in the usual way as

some categroy &, whose objects are the elements of the set M(R, %), and whose morphisms are
pairs (a, b) such that a ~ b.

In view of its reflexivity and transitivity, the relation + defines a subcategory, which
we denote by #..

We introduce three subcategories of # with the same set of objects as in % .

The subcategory #. consists, by definition, of pairs of the form

o~
a a ay -
2~ ala
a’ Q391 Q |y ool it
0 O al’a
Gos b

where a', @, €2 ; the subcategory H#m consists of pairs of the form

"~

1~ 0 a a
(a’ a) 7
= a
o7 ’ 11 %ig 1
a a /-
- 0 o)z /

where @’ a3, and the subcategory R consists of pairs of the form (a, b), which may be

included in a relation of the form (4), such that the matrices p° and q° are invertible over
the ring R.

Tt follows from Lemmas 3 and 4 that the above subsets are really subcategories of z

and, moreover, the subcategory #: is closed with respect to inversion of morphisms (in Lhe
category &

For sets & and # of morphisms in the category & , we use the normal notation
A B={ye&lilocy, BpeF (a-p=11,
St ={aas A= {(b, a)lla, b) =£}.
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LEMMA 6.

(a) Fm RER-Rm's
(b) #-R. SRR
(c) =R, & -A.,
() &8=%"F Rn"

Proof. (a) The pair (c, b) belongs to the set Hn -H if and only if

0 d|a
c=\ay ap|'a |y a2
0 a®}'a

and we have a relation aq + pb = 0 of the form (4). Set

0p S
Y —1 0
pl‘i 1 O 1 QI:( O Oo 7 )
0p° . ql'q
and define the row (b;1bi,b;) by the equation
(anan'a) - (?1 + (bub,'by) =0. (5)

(This equation defines the dimension of the unit matrix in q;.) Then for a suitable dimen-
sion of the unit matrix in pj, we have the eguation

Y L
gy -+ p1e| bur b1y by | =0,
0 8 b
where by&& by (5). Thus, e,y R Rl

Statement (b) is true in view of the symmetry between rows and columns in all the defi-
nitions. Its proof is analogous to the proof of statement (a), and therefore we omit it.

We prove (c). Let aq + pb = 0 be a relation of the form (4). Set

0 d)a 'Y | B P o —_—
. ,_a . —a“ — 110 —1 0| 0
c={polp), d={polp) p1= y == o _qlrg )
0 a®la 0 a% 0 P 1 1 g
By direct verification we have cq; + pid = 0, and therefore (a, ¢) €%y, (¢, d) ER, (d, b) = Re.

Equation (c¢) is proved.

To prove (d), it is sufficient to establish that the set &L =RR-Fw' satisfies the
conditions &, & =&, &' =&,. We use the statements (a)-(c), which we have already proved.

We have
EvEL =R BB RS R R SR AT R Tom
~RRRT R R BB SRR R = E s
&7 = - F R T Re S RH R R R R R = &
The lemma is proved.

COROLLARY. The matrices a, beM(R, &) are equivalent if and only if they can be in-
cluded in a relation of the form

, k% X P

a * % % s % O——fb a-—b_

ta=ss )l s, . |={0 0 ‘a | (6)
OZ**, .O‘bolb ) 0 0 0

where the symbol % denotes certain matrices in %, and the symbol * denotes certain matrices
of suitable dimension.
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Proof. This statement is a reformulation of statement (d) of Lemma 6, also using Lemma

We now formulate the fundamental theorem on the construction of a localization.

THEOREM 2. Let R be an arbitrary ring, and £ a multiplicative set of matrices. We
define on the set M(R, &) a relation n, setting a ~ b if the matrices « and b may be included
in a relation of the form (6). Then

1. The relation ~ is a congruence with respect to the operations @, @,

2. There exists a one-to-one correspondence between congruence classes and matrices
over a universal f-inverting ring R£™!, and, moreover, each element a&™M™(R, X)
represents some matrix [a], with m rows and n columms.

3. The elements a®b, c@d represent the matrices {a] + [b] and [cl-[d], respectively.
4. For any matrix a2 , the element g* represents the matrix inverse of [§g}.

All the statements of Theorem 2 are already proved. We note that the criterion thus
obtained for the equality of two elements in a universal I-inverting ring is analogous to
the criterion for the equality of two fractions in Ore's construction. Ore's theorem can
easily be obtained from Theorem 2.

COROLLARY 1. Under the conditions of Theorem 2, the following statements on the matrix
asM(R, Z) are equivalent:

(a) The matrix a represents the zero matrix over the ring RE™'.

(b} There exists a relation of the form
_a’t‘* * % 0?1'
a « x el w ) =10"4]
VO X« 2 %) ¢ 0

{c¢) There exists a relation of the form

Y A b ~
- ".2: * e a’ a
(2}“) 0a g (oo o)'

COROLLARY 2. Under the conditions of Theorem 2, the kernel of the universal I-inverting
homomorphism uy:R » RI™! consists precisely of those elements reR which can be included in

a relation of the form
a e\ (v D Or o 10
(a“ ’a)'(bﬁ ’b) = (00)’ s e

COROLLARY 3. The multiplicative set X is potentially invertible if and only if all
quasiidentities of the following form are satisfied in the ring R:

(d Ej‘b’z) 0.¢ ~0
a ‘a) \B*p) T \00)TET Y

0 1731 . . - . . .
where @', b°€3, c='R' and the remaining matrices have suitable dimensions.

Let 7 be a multiplicative sef of matrices over a ring. We shall now describe the divi-
sors of zero and the invertible elements in the category Mat (RI™1).

LEMMA 7. Let a, b, ceM(R, %), (c,a®@d)=H,. Then there exist matrices ay &, < MR, %)
such that '

la,, =R, (b, bR, a,9b, > c.
Proof. We have
a, aNbI Cy :ﬁzjb
a® ab’ ey |1qp
0 B ¢,0vp
0 0 ¢l o/

, e 2.

797



Set

AR 2 01%
al*_:((lo €y 7_‘.1\), b=\ b cg| 0},
0 ¢ 0, 0
(000])
100 —1 0
p=|001 0 0
010 0—1
001 0o 0

)

For suitable dimensions of the unit matrices in p and q, we have the relation (a,®b1)-§+'g}-c=
U. The lemma is proved.

Analogously, we prove the following dual statement:

LEMMA 7'. Let a, b, ce MR, %), (a®@b, c) =%, . Then there exist matrices a, by=M(R, %)
such that ‘
((l, aj) = .%m, (b, bi) = -%m, c > a4y o b_l-

Proposition 3. Let ¥ be a multiplicative set of matrices over the ring R. Then for any
relation

u-v=||r], w,veMat(RZ™), reMat(R)

there exist matrices g, be M(R, 2) such that [a] = u, [b] = v, and we have a relation of the
form

~ LA
(a; a *)' AN (8 6) (7
@ e/ \p b

Proof. Let un=I[a), —v=1[b.], @, bp=M(R, ). By Lemma 6, there exist matrices c,d&
M(R, I) such that

0y @b) Ao, c>dy (| =7),d) & A
By Lemma 7, there exist matrices a, by M(R,2) such that
(aiy az) e%,,v (bi, bg_) E%;, a,® bl—" c,

0|—r .
By Lemma 3 we have a,;®b,—~d. The matrix d is of the form (Ea' 'd)' Consider the relation
connecting the matrices a,®b, and d:

{ai .Elbllt "3?151‘i fin Qa2 1 pi\. 0 —r

I A S : 0 . Lol =0
al ‘aby Tab || 9 e |+ Pq (do d )
" 0 —1/ \op,

[0 B ‘b |

From this relation we immediately obtain .the following relations:

’ ~ / »
a; . @y Py »?;1 e o
or 4019 01 —b =10 0} N
ay "a; Ps 2 ” »
b ) (o + Lo ) — bygg — B1gey+ b o .
blo ,bl ‘ O '—~1 0 p3 dO ’d
Set
o o= (i)

By (9) we have Bh~(0b) ~(Oby).. Thus, [a] =u, [b] = v and relation (8) is of the required
form (7). The proposition is proved.
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2., INDEPENDENT SETS OF MATRICES

Let I be some (not necessarily multiplicative) set of matrices over a fixed ring R. We
call a relation of I-dependence any relation ag-b = 0 of the form

<

1)

PATA AN B2t i S
( _1_1). AR (10)
F/

alzy | U,

Speaking more formally, we say we are given a relation of I-dependence if we are given
12 matrices [appearing in relation (10)] satisfying the four relations
e vty tub=9, o vitzooytu - b=0
g vty tu =0, & v;tam-oytub=0,

where the dimensions of the matrices allow us to constitute the matrices @ and b in relation
(10) so that a*b = 0.

Some of the 12 matrices in (10) may be empty, and in this case we use the reduced nota=-
tion, in the same way as in Sec. 1.

. Zy . . .
The number of columms of the matrix z= L{), which is equal to the number of rows in the
2

matrix y = (y1, y2), 1s called the length of the relation (10).

If relation (10) is of the form

010
(‘ixuog)_ o 10 —0
. 0/ \ Yo Yo ’

u» 1'b

then it is called trivial.

If for relation (10) there exists a pair of mutually inverse matrices

Bra | Bia | Bis

o Cio O o
- o P Bay | Bos | Bas (i
gl ¥ R e P= Bas | Bas | Bas

Qg1 | Xgp Ugy | Xgy B

Bar | Paz | Bas,

such that the relation ga-8b 0 is a trivial relation of I-dependence of the same length
as the original relation ¢+b = 0, then we say that the pair (o, 8) trivializes (more pre-
cisely, I-trivializes) the relation (10).

Expansion in the matrices a, B is performed so that multiplication is cellwise, and the
chosen expansions are compatible. For example,

110/

afy = gi_O, aof = a.
0]0}1

Denote by Fp the matrix XZU{l,}, obtained by adding the empty (0 x 0)-matrix. We call
the set I n-independent if any relation of I-dependence of length <n can be 5y-trivialized.

We call sets which are O-independent, independent sets. We note that independent sets
consist of nondivisors of zero [since relations of the form (aOH)-(?y) =0, (lu)+(byl) =0
are trivializable]. o

LEMMA 8. Let I be an independent multiplicative set of matrices over the ring R, a&«
M(R, £). Then the following statements are equivalent:

(a) The matrix g represents the zero matrix over the ring Ry~1.

(b) There exists a relation of the form
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d a A , v
iao 'a) - (bo).(co g ()

(c) There exists a relation of the form (12) in which ¢’ 3.

in which B =3,

Proof. The implications (b) = (a) and (¢) = (a) follow from Lemma 1. We prove
that (b) follows from (a). By Corollary 1 of Theorem 2, there exists a relation of the form

~

a’ p; ay, b1y bip 0 a
a® ps ag || @1 g: 1=10"a}, ps, by = 2.
0 p3 ase/ \byy by 00

The relation of I-dependence ?(p3“a32)- (2_1___ ) =0 is trivializable by the condition, and we may

21

o

assume that it is trivial, i.e., @32 = 0, q; = 0. Then gy = 0, since p3 is a nondivisor of

zero. Thus, we have the relation
(a' a12>.(bn bz} _ (0O 2
a® a,, boy byy/ ~ \O 'a)'

Let (o, B) be a pair of matrices trivializing the relation

@ fasg) (bu]) _
(&lez)- () =
(a’ a12>'(a11 O‘lz) _ (b/ 0) <l311 512).(1711 blz) . (O a
a® @y) \Gy Oy by 0)"\Ba Bae/ \by bgy)  \d°’a/’
P b’ ~
(% 8)= (%) ead,

The implication (a) = (c) is proved analogously. The lemma is proved.

and let

Then

which is what we required.

COROLLARY. Any independent multiplicative set T of matrices over an arbitrary ring R
is potentially invertible.

Proof. Let r & Rbeanelement in the kernel of a universal I-inverting homomorphism.
By Corollary 2 of Theorem 2, there exists a relation of the form

d a v b _{0r

a al \B°’b) \0O/
We may assume that 'a¢ = 0, b' = 0. 1In this case a =0, b = 0, since 2" and b° are nondivi-
sors of zero. Hence it follows that r = 0. The statement is proved.

We note that this statement may be formally deduced from Lemma 8.

Proposition 4. Let I be an n-independent multiplicative set of matrices over the ring
R. Then the ring R: ' is an n-FI-ring.

Proof. Let u be a row of length n, and v a column of length n over the ring RE™Y with
uv = 0. It is sufficient to prove that there exists a pair of mutually inverse square ma-
trices

[yl, [8] = Mat(R=Y), v, ds="M"(R, %)

such that either the last element of the row u-[y] or the first element of the columm [&]*v
1s zero.
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By Proposition 3, there exist matrices a=!M™R, %), b ="M'R, ) such that [a]
[b] = v and we have a relation of the form

i
o

i 4 _q_2
(&ﬁiﬂ.iz ~0.
a’l’al p, 7%

Let (a, B8) be a pair of mutually inverse matrices of the form (11), trivializing this rela-
tion. Then for some matrices ¢, deM(R, £) , we have

dialp o ¢dlco
a®lalp,) \e®l’c O

bO

0|
—g),ﬁb‘b:
2

CYERSIRS
al®olo

Set
0 Bu|B
b 0y [ gy s d’ ﬁzi ﬁ:i
Y| b® ag |y, g |, 8= I o
0 ¢ ’L‘ 0 ﬁ:ﬂ ﬁ42
0 a® |’a

We verify that the matrices [vy] and [8] are mutually inverse. We have

{0 Bax Basd’ Pasar | Basttas ﬁzzazs}l
dl Bs1 Bsad” Bysar | Basaa Psaas
5Oy = d® B ﬁub,_ Baattay | Basas Basas )
0 a® ‘ab’ aoy |'ad,, ‘ac,,
00 b oy | oy g
00 O c® e 0 H

We use Lemma 4. We multiply the matrix we obtain, respectively, on the left and on the right,
by the matrices

{1000{523 MN{M1o—-10 0
plooﬁas 0} [01 Gy Qg3 Uyg 0"'13}
00108, O] 100 10 0 0O
0001p, —11"]00 1 0 0
00001 00100 00 1.0
}00000 1 lOO 06 0 1}
As a result, we obtain a matrix

lo Bn0 0 ;1 O

Py, 0°0 10 1

a@p;00 10 0

0a°00 [0 0

00 8 aylo ay
00 0 |% 0 |

which, by reducing the trivial rows and colummns, gives us the matrix ( é?)

Analogously, the matrix Y@§ ,after triangular transformations and reductions, gives us

the unit matrix. Thus, 8@y~(]_1;); 'y@ﬁ‘fv(]_i}

~ 0 gl 0
7%6)7 §Ob~{d ';i .
173 (13)

We now verify the equivalence

,a®v~(%
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We have

a ab aocﬂ[acc22 ayg

a® "al’ Tacy | aty, Tact,
0

0 0% og | o5 oy

0 0 ¢ | 0

a@y:

Multiply the matrix thus obtained, respectively, on the left and on the right, by the matrices

: “ q1 %3y Qyp Oy
321;_12__? 010 0 0
001 oll001 0 o
000 4/ 1000 10

000 0 1)

As a result, we obtain a matrix

0 B" agotgy dgs
00 (¢ O

¢'lc0
e 0f°

The second equivalence in (13) is proved analogously. The proposition is proved.

which after reduction gives us the matrix

LEMMA 9, The multiplicative closure T of the n-independent set I is n-independent.

Proof. We may assume that the set I contains the empty matrix 1. Consider the T-de-
pendence relation g-b = 0 of the form (10). We must prove that it is trivializable. We do
this by induction on the sum of the number of rows of the matrix a® and the number of columns
of the matrix b°. If each of the matrices «°, b’ belongs to the set I, then the relation
under consideration is, by the condition, trivializable. Let one of the matrices, e.g., a®,
not belong to the set ». Then we may rewrite relation (10) in the form

bo\* -
75 =0, ay,a, 2.

Y1
Ys

aiy Qua| %y | Uy
== ] (vu Va1

Ggy Qgg | Tg | Uy
0 as|x;)us

Uiz Vgg
[Here and henceforward, the symbol T denotes the formal, i.e., nonexpanded into cells, trans-

.
position of matrices, e.g., (jg) :(Z;) , where @, b, c, and d are matrices.] The relation
bo b
—,3) =0

is trivializable, by the inductive hypothesis, and we may assume that it is trivial. In this
case, the relation under consideration is of the form

— T [Vl
agy | X5 ug) - | —=—1=—
TarTe- (2]

@31 Biz| Ty Taa | U\

. vy, 010 vy 80\
@9y Qog | &a1 Tog| Ug (I;LO“‘O“;LI 75) = 0, (14)
0 agalis 0 10 2 2
so that we have the relation
(m@b).(@_.@i")zo
Aoy i Qoz | Ug Vizi Y22 b ’
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which, by the induction hypothesis, is trivialized by some pair (o, B). Inserting the rows
and columns of the unit matrices in the suitable places, we obtain a pair which trivializes
relation (14).

The lemma is proved.

If there exists at leastone n-independentset I over the ring R, then all relatioms of
length <n of the form

() ([w) =0

are trivializable, and therefore the ring R is an n-FI-ring. (All the definitions and re-
sults concerning n-FI~rings may be found in [3].)

LEMMA 10. The set © of matrices over the n~FI-ring R is n-independent if and only if
all the following relations are trivializable:

@)

(}x]u).(%l)zo, be 3,
(alz]u)-(viy|0)* =0, absZ

=) =0 p
i/:’ae’

where the above relations have length not greater than n.

Proof. Consider an arbitrary I¢-dependence relatiom a-b = 0 of the form {(10), with
length <n. We may assume that the relation

(a“[leuz)-(ullyl\b°)T =0

is trivial, and the relation under consideration is of the form

ar _l_l’_l 0 bo T . O
a’ 0 v, v)
In this case we have the relations

(1z2lw)- (1922 18T =0, {Tzy])-(751552]1)7 = 0

and we may assume that these relations are also trivial. Then the relation under consider-
ation takes the form

bo”

21 =0

0 yu
Y12 Yoz

L3 Ty
Ty O

(9:-961155121130_0).(9 00 0 y,
. Ib

a1z 0 0 510/ \0|0 yay ¥35 940

and we have the relation (lx;31)«(ly;,) = 0, which is trivializable, by the definition of an
n-FI-ring. The lemma is proved.

COROLLARY. The set I of matrices over an arbitrary ring R is independent if and only
if it consists of nondivisors of zero, and all relations of the form

(Eﬁ)(%[) =0, a,b=2

are I~trivializable.

Lemmas 9 and 10 allow us to omit the requirement of multiplicativity in the coreollary
of Lemma 8 and in Proposition 4. We formulate these results in the form of two theorems.

THEOREM 5. Let I be a set of rectangular matrices over the ring R, consisting of non-
divisors of zero and satisfying the following condition:

For any relation
a-vtu-b=0, g besl

there exists a pair of mutually invertible matrices
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o= (“11 “12), B— (ﬁu 512)
Oigy Ogg Bat Bae
over the ring R, such that

a-autu-ans:s a-aptu-dan=0
!Bu'v'l'ﬁig'b——"o, ‘ﬂzﬁ'v+ﬂzz'b52.

Then the set I is potentially invertible.

THECREM 6. Let ¥ be a set of rectangular matrices over the n-FI-ring R, such that any
relation

a-vtz-y+tu-b=0,zeR" ye™R, m<n, a b=sZU{{}=3
is fo-trivializable. Then the ring RZ~! is an n-FI-ring.

Let 7 be a positive integer. If the ring R is a 27/-FI-ring, then the set I; of all com-—
plete square matrices of order I satisfies the condition of Theorem 5. If the ring R is a
(27 + n)-FI-ring, then the set Z7 also satisfies the condition of Theorem 6. This follows
easily from the definition of a k~FI-ring, and from some of their very simple properties
(see, e.g., Theorem 1.1.1 of [3]). Hence we have:

COROLLARY 1. A set of complete square matrices of order I over a 27-FI-ring is poten-
tially invertible.

This statement is a generalization of Theorem 2 of [1], where the same thing is proved
for 7 = 1. ‘

COROLLARY 2. 1If I is the set of all complete square matrices of order I over the (27 +
n)~-FI-ring R, then the ring RZ™! is an n-FI-ring.

This statement gives an aunswer to Bergman's problem in [2], p. 77.
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INDICATORS OF ENTIRE HERMITIAN-POSITIVE FUNCTIONS OF FINITE ORDER

A. A. Gol'dberg and I. V. Ostrovskii UDC 517.547.22+519.21.2

We shall say that an entire Hermitian-positive function (e.H.p.f.) is an entire function
f:¢ > C, £(0) = 1, whose restriction to the real axis is a Hermitian-positive function. The
class of e.H.p.f.'s coincides with the class of entire characteristic functions of probability
distributions, i.e., with the class of functions of the form

o0

1@ = { e=P(du), (0)

—0

where P is a probability measure on the line, and the integral converges absolutely for all
z & C. The finiteness of the order of the e.H.p.f. f is equivalent [1, p. 54] to the condi-
tion

lim (In7)~Ip1n (1/P ({z : lz|>r)>1.
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