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INTRODUCTION 

On the  s e t  M a t ( R ) =  U 
m,n~N 

In this article we develop the methods of [I]. In the first section we describe the 
construction of a localization of an arbitrary ring R with respect to an arbitrary set ~ of 
(rectangular) matrices over the ring R, analogous to Ore's construction, and which essentially 
coincides with it in the case when E is the set of the elements in the ring satisfying the 
left or right Ore condition (Theorem 2). We prove a criterion for the equality of two ele- 
ments in the ring RE -l , analogous to the criterion for the equality of two fractions in Ore's 
construction. This criterion allows us to find a fairly simple condition, written in the 
form of a system of quasiidentities, which is necessary and sufficient for the potential in- 
vertibility of the set E (Corollary 3). 

In the second section, we introduce the idea of an n-independent set E, and we prove 
that for such a set, the ring R~ -I is an n-FI-ring (Theorem 6). As an application, we give 
an answer to Bergman's problem [2] on the connection between the dependence parameters on the 
rings R and RZ -I, where E is the set of all complete quadratic matrices of a given fixed order 
I > 0. It turns out that if R is an n-FI-ring, then R~ -I is an (n -- 21)-FI-ring. In par- 
ticular, if Z = R\ {0} is the set of all nonzero elements of the n-FI-ring R, then the ring 
R~ -l is an (n -- 2)-FI-ring. 

AII the rings we consider have a unity, which is preserved by homomorphisms. If R is an 
arbitrary ring, then we denote by mRn the set of matrices over the ring R with m rows and n 
columns. If one of the indices m, n is equal to zero, then by definition we assume that the 
set mRn consists of a unique empty zero matrix. We denote by the symbols m0n and In, respec- 
tively, the zero matrix in mRn, and the unit matrix of order n. If in writing mRn one of 
the indices is omitted, then this means that its value is either arbitrary or can be found 
uniquely from the context. This also refers to the notation m0n, In and other similar nota- 

tion. We denote by N the set of nonnegative integers. 

mRn we define the partial operations of addition 

and multiplication 

{ ~ R  n x turn "-+ ~ R  n 

(a,b)-+a +b  m , n ~ N ,  

tuRn • nR~ __~ mBh 
(a, b) - +  ab m, n, k ~ N, 

which turn this set into a preadditive category, whose morphisms are matrices and whose ob- 
jects are the natural numbers, and, moreover, the number 0 is the zero object, i.e., I0 = ~176 

As well as the category Mat (R), it is useful to consider the category Mat 2 (R), whose 
elements (morphisms) are matrices with a fixed expansion into cells, where some cells may be 
empty. The operations of addition (or multiplication) of two matrices in Mat 2 (R) are defined 
if and only if the expansions into cells are compatible, i.e., the operations may be carried 
out cellwise. The result of the operation is the ordinary sum (or product) of the matrices, 
whose cellular expansion is naturally defined by the expansions of the terms being added 
(multiplied). All computations with cellular matrices will be performed in Mat 2 (R), unless 

we specify otherwise. 
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A DESCRIPTION OF THE CONSTRUCTION, AND ITS FUNDAMENTAL PROPERTIES 

Let R be an arbitrary ring, and Z-Mat(B) an arbitrary set of matrices. We recall 
that the homomorphism of rings f:R + RI is called E-inverting if the images of the matrices 
in the set Z are invertible over the ring R I. Amongst the ~-inverting homomorphisms there 
is a universal one, which we call a localization of the ring R with respect to Z, and we 
write thus: 

u~ : R ~ RE-t  

This homomorphism is characterized by the fact that for any E-inverting homomorphism f:R § RI, 
there exists a homomorphism h:RZ -I § Rl, such that we have the following commutative diagram: 

~ ----RZ -I 

We c a l l  t h e  s e t  Z of r e c t a n g u l a r  m a t r i c e s  o v e r  t he  r i n g  R m u l t i p l i c a t i v e ,  i f  i t  s a t i s -  
f i e s  t he  f o l l o w i n g  c o n d i t i o n s :  

1. The empty (0 • 0 ) - m a t r i x  10 b e l o n g s  to  Z. 

2. I f  a, b E E ,  t h e n  0 b  ~ Y '  f o r  any m a t r i x  c o f  s u i t a b l e  d i m e n s i o n s .  

For any set Z, we can easily construct a least multiplicative set ~ containing E. We 
call the set ~ the multiplicative closure of the set E. Localizations of the ring R with 
respect to ~ and ~ are naturally isomorphic, and therefore, without loss of generality, we 
need consider only multiplicative sets. 

In this section we give a construction for a localization of the ring R with respect to 
the multiplicative set Z. In the future it will be convenient to construct, not the ring 
RE -l itself, but the whole set Mat (RE -l ) of rectangular matrices over this ring, together 
with the partial operations of addition and multiplication, defined on this set. We first 
construct some set M(R, E) with partial operations @~ | a mapping s:Mat (R) § M(R, Z) pre- 
serving the operations, and an equivalence relation @z, stable with respect to the above 
operations. We will then establish a correspondence between equivalence classes and matrices 
over some ring, so that the mapping ~, restricted to (I • ~)-matrices, defines a universal 
E-inverting homomorphism. The relation ~Z, which is first defined nonconstructively, is then 
studied, as a result of which we obtain a criterion for the equality of two elements of the 
ring R~ -l in terms of the ring R. The final results on this construction are formulated be- 
low in Theorem 2 and its three corollaries. 

We say that we are given an . /K-ob~eo~  if we are given: 

I. A nonempty set M. 

2. Some expansion M~ m 

3. A family of mappings 

mMn into pairwise nonintersecting subsets. 

{~  M n • 'n M'~ -- .  ,~ M ,~ 
(a, b) ---~ a ~D b. ra, n ~ N.. 

4. A family of mappings 

{ mM~ m, n~ k ~ N. 
~M h 

X 

(a~ a ) - +  a (D b 

A fundamental example for us of an ~(-object is the set of all rectangular matrices 
over the ring R, with the partial operations +, �9 defined on it. Analogously, any preaddi- 
tive category, whose objects are natural numbers, may be considered as an J(-object. Below 
we define the J-object M(R, Z) and an equivalence relation e Z on it, so that the equiva- 
lence classes correspond to matrices over R~ -I. 
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If MI and M2 are two J/-objects, then an ~ - m o r p h i s m  from MI to M2 is a family of 
mapping s 

such that ](aeb)=f(a)ef(b),f(c| every time the values aeb, ced are defined. 

Any homomorphism of rings f :R + R~ induces an ~-morphism Mat (f):Mat (R) § Mat (RI). 

An equivalence relation 9 on the Jr-object M is called a congruence if the following 
conditions are satisfied: 

I . (aOb,  a ~ ~ M ~ )  =~ b ~ "~M '~. 

2.  (aOb, c O d ) = ~ ( a @ c ) O ( b r  i f  a @ c  i s  d e f i n e d .  

3.  (aOb, cOd) =*- (a | c)O(b | d) , i f  a | c i s  d e f i n e d .  

If f:M l § M2 is an ~-morphism, then the relation 

Oi : aSjb ~=~ ](a) = / ( b )  

is clearly a congruence, which we call the kernel congruence of the morphism f. 

If O is a congruence on the J[-object M, then on the factor-set M/O we clearly have 
defined the structure of an ~/f-object. 

Let R be an arbitrary ring. We call an R-object any Jf-object together with a fixed 
~4/-morphism E:Mat (R) + M. If (MI, El), (ME, E2) are two R-objects, then we call an R-mor- 
phism any JK-morphism f :Ml § Me for which we have the following commutative diagram: 

M !  ' ~ M 2 

Mat(R) 

We c a l l  t h e  c o n g r u e n c e  9 on the  R - o b j e c t  (M, c) a r i n g  c o n g r u e n c e  i f  t h e  f a c t o r - o b j e c t  
M/0 i s  a p r e a d d i t i v e  c a t e g o r y  ( i . e . ,  t h e  o p e r a t i o n s  ~7 | a r e  a s s o c i a t i v e ,  t h e r e  e x i s t  n e u -  
t r a l  e l e m e n t s ,  <'~M~/O; ~> a r e  A b e l i a n  g r o u p s ,  and t h e  d i s t r i b u t i v e  i d e n t i t i e s  h o l d )  and 

8 
Ma~(R) =---------- M 

the mapping s/8 in the commutative diagram s / ~  I is a morphism of preaddit ive 

M/S 

categories (i.e., takes zero elements to zero elements and unit elements to unit elements). 

In particular, this definition requires that the natural number 0 is a zero object in 

M/0. 

If 0 is a ring congruence on the R-object (M, c), then it is easily proved that the 
factor-object (M/9, s/0) is naturally isomorphic to the R-object 

Mat (%VO) : Mat (B) -+ Mat (~M~/O), 

We construct the isomorphism as follows: 

Let mE~mRn be the matrix whose (i, j)-th element is one and the remaining element 
m n are zeros. Moreover, let menj be the image of the matrix Eij for the mapping e/e. We asso- 

ciate with each element~a~M~/8 a matrix of order m • n over the ring IMI/8, whose (i, j)-th 
element is lemi'a-nel. . It is easily verified that this correspondence is an isomorphism of 

jl 
R-objects. 

We call the ring congruence O on the R-object (M, c) (universal and) E-inverting, if the 
homomorphism of rings icI/9:R + iM1/6 is a (universal) E-inverting homomorphism. Here E =- 

Mat (R) is some multiplicative set of matrices. 

We shall now construct an object (M, 2) with the following properties: 

(a) For any E-inverting homomorphism f:R § RI, there exists a mapping hf:M(R, Z) § Mat 
(Rl) which is an R-morphism [to the R-object Mat (f):Mat (R) § Mat (RI)]. 
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(b) For any matrix a~Y.n~B ~ there exists an element a*.~M~(R, E) such that hf(a*) = 
f(a) -I for anyZ-inverting homomorphism f. 

(c) M(R, Z) is generated as an R-object by the set {a*la~E}. 

On such an object, any kernel congruence 9hf is E-inverting, the intersection of all 
such congruences 

Oz = FI O,~j 
1. 

is universal and ~-inverting, and the homomorphism icl/ez:R § 1MZ(R, ~)/e~ is a localization 
of R with respect to E. 

Construction of the R-object M(R, E). Denote by M(R) the set of rectangular matrices 
with a fixed expansion into cells, of the form 

= ( 1 )  

i.e., the quadruple of matrices (a', a, d c, '~), whose dimensions allow us to form the matrix 
(I). We shall think of the expansion (I) as being distinct from other expansions of the ma- 
trix a which we shall encounter. Thus, on the set M(R) there are defined four mappings 

a - ~  a ' ,  a ~ ~, a - +  a ~ a - ~  ' a .  

Some of the above four cells of the matrix a~M([ t )  may be empty. In this case we shall 

use abbreviated notation, i.e., (~), (aja) , and so on. 

Set 

*riM= (R) ~-~ {a ~ M (R). I a ~  '~R~}, a �9 b ~- | a ~  ] ,  
\o b~ / 

#' 
| b laO' b' I,o  (<,) 

\ 0  b~ ' b /  

It is easily verified that we have thus defined an R-object (M(R), a) and that the map- 
ping a + ~ is an R-morphism M(R) + Mat (R). 

For the matrix a~R ~ , set 

('r) a* ~- ---a l ~ nMm (R)" 

If f:R § R! is a homomorphism of rings, then the induced mapping M(f):M(R) § M(RI) may 
be assumed to be an R-morphism in view of the following commutative diagram: 

M(R) - M(_____~_~ -+M(R~) 

at M a t ( / ) l  s 
Mat (R). +Mat (R~), 

We also note that the mapping M(f) preserves the operation a + ~*. 

If ~ is a multiplicative set of matrices, then the set 

M(R, E) ~ {a~M(R)Ia~  

is closed with respect to the operations @, | and therefore on it there is induced an R- 
object structure, which we also denote by M(R, E), assuming that the mapping s is fixed. 

Denote by a(a~M(R)) the matrix 

gO 

O--  
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In particular, if p~"M~ q~~ , then 

(~,~ P'), 'q 
~=\o pOT ~=(qo~ ' 

If a~M~(R) and the matrix a ~ is invertible, then the matrix G is also invertible and there 
exists a unique matrix co(a) E~M~(R) such that 

/\ 
a - I  = ~ ( a ) .  

The following identities can be verified immediately: 

o)(a r b) = (~(a) | o)(b), 
(o(a | b) = o)(a) | ~o(b), 

" (~ )  = (~ ) ,  

(a-lo-, 1 
co (a*) = \ a_l la_i  I .  

(2) 

phism hf in the commutative diagram 

fourth identity in (2). Now set 

Each of these identities is true whenever the value of its left- or right-hand side is 
defined. In particular, if the set Z consists of invertible matrices and is closed with re- 
spect to inversion, then identities (2) hold for any matrices in the set M(R, Z). The first 
three identities mean that the mapping ~ is, in this case, an automorphism of the R-object 
H(R, Z). 

Set ~(a)~e(a). It follows from the definition of ~ that ~=(a)=~--a'(a~ -i''a. 

Now let f:R + Rl be some E-inverting homomorphism. Denote by X l the set f(~ U/(Y,) -~ 
consisting of the images of the matrices in E and the inverses of these images. The R-mor- 

M(R,Z-) M(?) .~ M(RI,~.I ) 
~ ! ~  is E-inverting, in view of the 

f 

where the intersection is taken over all E-inverting homomorphisms. 

Proposition I. The relation e E is a universal E-inverting congruence. 

Proof. Of the conditions (a)-(c) formulated above, it remains to prove only (c),which is 

satisfied in view of the identity 

�9 ( ( 1 -  a,) | a, | 

We can now give an explicit description of the congruence 0Z. 

The proposition is proved. 

The set E of matrices over the ring R is called saturated if it contains all the ma- 
trices e~Mat(R) for which the matrices uE(a) are invertible over the ring RE -I. (Here 
u Z is a universal g-inverting homomorphism.) For any set E, there exists a unique saturated 
set ~, such that the universal E- and ~'-inverting homomorphisms coincide. Moreover, a 
universal E-inverting congruence 9Z on the set M(R. Z) is, clearl_y, the restriction to this 
set of the congruence e F [defined on the set M(R, E)]. The set E is called the saturation 

of the set ~. 

We call the matrix eEM(R, Y,) E-incomplete if it can be written in the form 

~lq,/= 
where E is the saturation of the set ~. 

LEMMA I. Any E-incomplete matrix represents the zero matrix over the ring RE -l. 
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Proof. We may assume that the set Z is saturated. It is sufficient to prove that hf 

(c) = 0 for any Z-inverting homomorphism f. Therefore, we may assume that the set Z con- 

sists of invertible matrices and is closed with respect to inversion. Under these assump- 
tions, we show by direct verification that 

lo; I01 ~(c)= ~ ,  

w h e r e  a l  = ~ ( a ) ,  b l  = ~ ( b ) .  Thus ,  ~ ( c )  = O. The lemma i s  p r o v e d .  

F o r  m a t r i c e s  a, b~M(R) ,  set 

LEMMA 2. The following equations in the category Mat 2 (R) are equivalent: 

- - -  

\~I~7 6) \bO[,b ) \0  t I] \0 b~ 

(3) 

Proof. Each of the above three inequalities is equivalent to the following equations: 

a ' .  qO § p ,  . b o = - b ' ,  a '  �9 'q .4 -  p '  . 'b ---- 5 - -  ~ 

a o . q O + p O  . b o = O, a o " ,q  + p O  . ~b = 'a .  

This can be verified directly. The lemma is proved. 

COROLLARY. If a, b ~ M(R, Y~), p ~ M~ q ~= ~ and in the category Mat 2 (R) we have the 
equa t ion 

aq + pb = O, ( 4 )  

i.e., the equation 

- ( b '  (::,:) ;) 
t h e n  a ~ zb .  

This statement follows immediately from Lemmas ~ and 2. 

Fix some multiplicative set Z of matrices over the ring R. 

If the conditions of the corollary are satisfied, then we say that the matrix ~ is con- 
nected to b from the left, and that b is connected to ~ from the right, and we write this 
fact as ~ § b. 

LEMMA 3. The relation § is reflexive and transitive; if ~ § b and c + d, then a@c~ 
b@d, a(Dc-+bq)d whenever the corresponding operations are defined. 

Proof. The equation a. (--l)~l.a~----0 proves reflexivity. If a$+pb=O,!:b~.=~c=~O 
are relations of the form of (4), then the relation ~'(--~v)~(p~)-c=0 is also of the form 
of (4). Therefore, ~ § c. 

Let aq~-~pb=O, cv~-~d~-O. If the value of a@c is defined, then 

/ \  / \  
( a  @'c)  - : (q �9 v) "i: (p @ v) �9 ( b @  d) =- O. 

If, moreover, a| is defined, then 
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j---....., j - - ~ .  
d' 

\ 

).(b d)= o. 

Both t h e s e  e q u a t i o n s  can be v e r i f i e d  d i r e c t l y .  The lemma i s  p r o v e d .  

To p e r f o r m  c o n c r e t e  c o m p u t a t i o n s  in  a u n i v e r s a l  g - i n v e r t i n g  r i n g ,  we need  t h e  f o l l o w i n g .  

LENNA 4. C o n s i d e r  t he  f o l l o w i n g  p a i r s  of  m a t r i c e s :  

t .  ~o ~ o  I o ] ' / g ~ K ~ / '  

\C~ c~31'c~7 \c3~ 0 c~31'c3/ 

3. t~Ol,~ r t~~ t~-IF/' 

( ! l ib  (:'1 ] 
4. to I,~O7 "t,>l~,S' t.ml'~S" 

If in some of these pairs both matrices belong to the set M(R, E), then the first of them is 
connected to the second from the left. 

Proof. The relation of connectivity is easily written out in each case. Let a be the 
first matrix of a pair, and b the second. In the first case we must take 

in the second, 

p =  (~176 ( 7-o - - 1  Oo 
O0 ' q =  0 O 0  ; 

o l l /  o - ~  ,~ 

, 0t01 
p =  7 - - ~ ;  q o o - i  o ; 

\oo 117 

(Ol) in  t h e  t h i r d ,  p ~ .  ., q = ( - - ' v ~  and in t he  f o u r t h ,  p a , q = ( - - = t [ 0 ) .  The lemma i s  
p r o v e d .  

Deno te  by  t h e  symbol  ~ t he  e q u i v a l e n c e  r e l a t i o n  g e n e r a t e d  by the  r e l a t i o n  § In  t he  
c o n d i t i o n s  of  Lemma 4, r e p l a c i n g  the  f i r s t  m a t r i x  of  any p a i r  by t h e  second  does  n o t  change  
the equivalence class. In the first case we call this substitution reduction by a trivial 
row; in the second, insertion of a trivial column; and in the third, triangular transforma- 
tion of columns. The inverse substitution is called, in the first case, insertion of a triv- 
ial row; in the second, reduction by a trivial column; and in the fourth, triangular trans- 
formation of rows. 

LEMMA 5. The relation ~ coincides with the universal E-inverting congruence ~Z. 

Proof. The relation ~ is a congruence, by Lemma 3. It is sufficient to prove that 

M/~ is a preadditive category with zero morphisms ([~O~)/y and unit morphisms (~1_~n)/~, and 

that (La)~)a*N(]i)~ a*E)(~)N([i) for any matrix a~iY~ 

The operations ~, | are already associative on the set M(R) and have neutral elements 
(]mon) and (L In), respectively. The equations 

/\ 
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a o o i ' ( ~ - )  § ( ~  = o 

prove the equivalence aea--~(10) , i.e., the sets mMn(R, E) are groups with respect: to the 
operation @ . The commutativity of these groups follows from the obvious identity @(6@b)-- 
(@a)@ (@b) . Distributivity follows from the equations 

where 

((a | c) | (b | c) ) . .~"+ p'. ((a �9 b).| c) = O, 

.(a e (b �9 e)) �9 ~ '+  ~ .  ((a e bj �9 (a e e)) = o, 

f-o o or', 

[o  ~ otl i 
_ _  t 0 0 

/ 

0 0 - - t  
O - - i  0 
0 0 -- I 

t /oooo 
, , ,  / 7--6"7-6 

Oo7 ' --to oo 
\0001 

I 0,0i) v =  0 - - 1  0 0 �9 
0 0 0 - - i  

Finally, for any matrix a~E , the equations 

(~).(o - ~) + (T_t) . ( ( I~)  | ~,) - o, 

(,~* o (~)) .  (13) + (~o),(,> = o 

show that the relation ~ is a E-inverting congruence. Since ~--~0~ in view of the corollary 
of Lemma 2, then the statement of Lemma 5 now follows from Proposition I. The lemma is 
proved. 

The equivalence relation ~ on the set M(R, E) can be considered in the usual way as 
some categroy ~, whose objects are the elements of the set M(R, E), and whose morphisms are 
pairs (a, b) such that a ~ b. 

In view of its reflexivity and transitivity, the relation § defines a subcategory~ which 
we denote by ~. 

We introduce three subcategories of ~ with the same set of objects as in D~. 

The subcategory ~7~ consists, by definition, of pairs of the form 

\ 0  a~  1' O l  

where a~ ; the subcategory ~m consists of pairs of the form 

a ~ 

\ o  a ~ J'~ / 
where a ~, a i i~Y, ,  and the  s u b c a t e g o r y  41 c o n s i s t s  of p a i r s  of  the  form (a ,  b ) ,  which may be 
i n c l u d e d  in a r e l a t i o n  of the  form ( 4 ) ,  such t h a t  the  m a t r i c e s  p0 and q0 a r e  i n v e r t i b l e  over  
the r i n g  R, 

It follows from Lemmas 3 and 4 that the above subsets are really subcategories of ~ , 
and, moreover, the subcategory ~s is closed with respect to inversion of morphisms (in the 
category ~). 

For sets ~ and ,~ of morphisms in the category ~ , we use the normal notation 

~-'={g-'l~}--{(b, a)l(a, b) ~ } .  
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L EMPIA 6. 

(a) ~i. ~ ~ X.~,, 
~--I ~ C~--1 (b) ~ . - ~  _ -o~  -~o, 

(c)  ~ = ~ , , . ~ . ~ < ,  

(d) ~ = ~ e * ' ~ ' ~  ~. 

P r o o f .  (a)  The p a i r  ( c ,  b) b e l o n g s  to  t he  s e t  ~ g i ' 9 ~  i f  and on ly  i f  

\0  a~ l ' a  } 

and we have a relation aq + pb = 0 of the form (4). Set 

- 1  o o 

\O p~ / ,  O q~ ,q 

; 

and d e f i n e  t he  row ( b l l b l f b  1 by the  e q u a t i o n  

(m,a , /a~)  . q, + (b , , b , / b , )  = O. 

(Th i s  e q u a t i o n  d e f i n e s  the  d i m e n s i o n  of t he  u n i t  m a t r i x  in q> . )  
s i o n  of  t he  u n i t  m a t r i x  in P l ,  we h a v e  the  e q u a t i o n  

( 5 )  

Then for a suitable dimen- 

bi2 1 ---- 0 eql+s71- 1 1 b  ~ , 

where b ~  by ( 5 ) .  Thus ,  ( c , b ) ~ . ~  1. 

Statement (b) is true in view of the symmetry between rows and columns in all the defi- 
nitions. Its proof is analogous to the proof of statement (a), and therefore we omit it. 

We prove (c). Let aq + pb = 0 be a relation of the form (4). Set 

\ 0  a ~  \ 0  a ~ O /  P~ 1 

By d i r e c t  v e r i f i c a t i o n  we h a v e  cq l  + pzd = O, and t h e r e f o r e  (a, c) ~ m ,  (e, d ) ~ ,  (d, b ) ~ e .  
E q u a t i o n  (c)  i s  p r o v e d .  

To prove (d), it is sufficient to establish that the set ~a ~ - ~ - l ' ~ ' ~ n l  satisfies the 

conditions ~fi.~--~,b ~i-1_____~i. We use the statements (a)-(c), which we have already proved. 

We have 

~--- e ,~--1 --1 --I C 

--1 --I (7a~--I ~ ~--* C ~--I ~ ~--I 
= ~  " ~ ' ~ o  " ~ ' ~ ' ~ "  ~ - -  ~ " ~ ' ~  = ~ 1 ,  

~11 = ,~m. ~-1  ~ i .  ~ml. ~e ~ ,~ . ,~ -1 .~ i .  ~i~ml.. ~ ~ ~-1 ~ ~ . ~ g l  = ~ i '  

The lemma is proved. 

COROLLARY. The matrices a, b~M(R, s are equivalent if and only if they can be in- 

cluded in a relation of the form 

:) o**: " E ,  = 0 , ( 6 )  

Y' * " 0 b ~ 'b 0 

where the symbol Z denotes certain matrices in Z, and the symbol * denotes certain matrices 

of suitable dimension. 
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Proof. This statement is a reformulation of statement (d) of Lemma 6, also using Lemma 

2. 

We now formulate the fundamental theorem on the construction of a localization. 

THEOREM 2. Let R be an arbitrary ring, and E a multiplicative set of matrices. We 

define on the set M(R, S) a relation ~, setting ~ ~ b if the matrices a and b may be included 
in a relation of the form (6). Then 

I. The relation Nis a congruence with respect to the operations @, (9. 

2. There exists a one-to-one correspondence between congruence classes and matrices 
over a universal E-inverting ring RZ -I, and, moreover, each element a~M~(R, E) 
represents some matrix Is], with m rows and n columns. 

3. The elements a@b, o| represent the matrices [~7] + [b] and [c].[d], respectively. 

4. For any matrix a~Y. , the element a* represents the matrix inverse of [ Jm]. 

All nhe statements of Theorem 2 are already proved. We note that the criterion thus 
obtained for the equality of two elements in a universal E-inverting ring is analogous to 
the criterion for the equality of two fractions in Ore's construction. Orers theorem can 
easily be obtained from Theorem 2. 

COROLLARY 1. Under the conditions of Theorem 2, the following statements on the matrix 
a~M(R, Y~) are equivalent: 

(a) The .matrix a represents the zero matrix over the ring R~ -l. 

(b) There exists a relation of the form 

a t , $ * ~ 

a * * �9 * * = 0 t . 

\ 0  E ,  �9 0 

(c) There exists a relation of the form 

�9 . 2 ,  a ' ~  
�9 * a ~ ' a  = 0 0 / ' /  

COROLLARY 2. Under t h e  c o n d i t i o n s  of Theorem 2, t h e  k e r n e l  of t h e  u n i v e r s a l  ~ - i n v e r t i n g  
homomorphism u~:R § R~ -z consists precisely of those elements r~R which can be included in 
a relation of the form 

a ~ ra  \ b  ~ 1b - -  0 0  ' ~ 

COROLLARY 3. The multiplicative set E is potentially invertible if and only if all 
quasiidentities of the following form are satisfied in the ring R: 

where  a ~ b ~  c ~ 1 7  ~ and t h e  r e m a i n i n g  m a t r i c e s  have  s u i t a b l e  d i m e n s i o n s .  

Let S be a multiplieative set of matrices over a ring. We shall now describe the divi- 
sors of zero and the invertible elements in the category Mat (RE-I). 

LEMMA 7. Let a, b, c~M(R, ~), (c, a(Db)~F~,. Then there exist matrices el; bI~M(R,E) 
such that 

( a , ,  a )  ~ . ~ ,  (b~,  b )  ~ . . ~ ,  a~ | b~ - ~  c .  

Proof. We have 

o Col oJ 

c o E Y,. 
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Set 

[<" ~,1 h (b,o ~k 
<,,+/<~~ ~1'o/, 

to c~ o/ \o c~ o) 
( 0 0 0 )  

i o o t l l  , o - ' 1  o 
P ~ l O  q ~  - t  o o "  

ioo~1~ o - ~  o 

For suitable dimensions of the unit matrices in p and q, we have the relation (ai| = 
0. The lemma is proved. 

Analogously, we prove the following dual statement: 

LEMMA 7'. Let a, b, c~M(R, E), (a| c) E~m. Then there exist matrices ai, b~M(R, Y.) 
such that 

(a, ai) ~ ~m,  (b, b~) ~ ~ ,  c -~ a~ | bi. 

Proposition 3. Let ~ be a multiplicative set of matrices over the ring R. Then for any 
relation 

u .v= [[r],. u.,v~Mat(RE-1),, r ~ M a t ( R )  

there exist matrices a, b~M(R, E) such that [a] = u, [b] = v, and we have a relation of the 

form 

() (000) a 0 r a ~ . 

*,  b ~ 'b 

P r o o f .  L e t  a=[az], -v=[bz],  a2, bz~M(R, E) .  By Lemma 6,  t h e r e  e x i s t  m a t r i c e s  c ,d~  
M(R, ~) such that 

(c, a2 q ) b 2 ) ~ e ,  c.-~d, ((l.--r),d)~R~. 

By Lemma 7, t h e r e  e x i s t  m a t r i c e s  a~, bi~M(R, E) such  t h a t  

(ai, a~) ~ ~ , ,  (hi, bz) ~ ~ ,  ai | b~ -~ c. (O]-r) 
By Lemma 3 we h a v e  a~| b~ ~ d. The m a t r i x  d i s  o f  t h e  f o r m  ~'~ 'd  " C o n s i d e r  t h e  r e l a t i o n  
c o n n e c t i n g  t h e  m a t r i c e s  a~| and  d :  

I a ~ axb 1 'a~b~ I . [ q 2 t  2 + P'  " d o ('d = 

to b, ~ 'b, i \  ~ f~ ~ 

From this relation we immediately obtain the following relations: 

/'/biq~i biq~-- b = ~o % p~ / \  ao t o o )  (8) 

2 + 0. (9) 
b ~ b~J" - -  t p3 " d o - -  

Set 

( r~dq;!lbtq21~ ~) a ~ a l ,  b ~  b , 1 - - b  
. 

By (9) we have b~.(@bl) (@bz) . Thus, [a] = u, [b] = v and relation (8) is of the required 

form (7). The proposition is proved. 
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2. INDEPENDENT SETS OF MATRICES 

Let Z be some (not necessarily multiplicative) set of matrices over a fixed ring Ro 
call a relation of E-dependence any relation a.b = 0 of the form 

We 

>-I y' = o,. ao. 5o 2. (10) 

Speaking more formally, we say we are given a relation of Z-dependence if we are given 
12 matrices [appearing in relation (10)] satisfying the four relations 

a'.v~+x~.g~+u~.b~ a ' .v~+x~.g2+u~. 'b=O. 
a ~ b ~=0, a ~  

where the dimensions of the matrices allow us to constitute the matrices a and b in relation 
(10) so that a~ = 0. 

Some of the 12 matrices in (10) may be empty, and in this case we use the reduced nota- 
tion, in the same way as in Sec. I. 

r The number of columns of the matrix z= which is equal to the number of rows in the 
x ' 

matrix y = (Yl, Y2), is called the length of the relation (I0). 

If relation (10) is of the form 

5-7- =o, 

then it is called trivial. 

If for relation (10) there exists a pair of mutually inverse matrices 

- -  - -  - -  (11)  

such that the relation aa. Bb = 0 is a trivial relation of E-dependence of the same length 
as the original relation a.b = 0, then we say that the pair (a, ~) trivializes (more pre- 
cisely, E-trivializes) the relation (I0). 

Expansion in the matrices a, B is performed so that multiplication is cellwise, and the 
chosen expansions are compatible. For example, 

100 

',OLO11/ 

Denote by ~0 the matrix ~U{10}, obtained by adding the empty (0 x 0)-matrix. We call 
the set Z n-independent if any relation of E-dependence of length ~<n can be Z0-trivialized. 

We call sets which are 0-independent, independent sets. We note that independent sets 
consist of nondivisors of zero [since relations of the form (~-~ = 0, (Hu)-(~01) = 0 
are trivializable] . = -- 

LEMMA 8. Let Z be an independent multiplicative set of matrices over the ring R, a~ 
M(R, Z). Then the following statements are equivalent: 

(a) The matrix a represents the zero matrix over the ring RE -l. 

(b) There exists a relation of the form 
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(~ z) 
a o 'a = ~,bo/" (co 'c), 

in which b ~  

(c) There exists a relation of the form (12) in which c~ 

Proof. The implications (b) =~ (a) and (c) =~ (a) follow from Lemma 1~ 
that (b) follows from (a). 

(12) 

We prove 
By Corollary l of Theorem 2, there exists a relation of the form 

~ ~ p: = , 

P3 aa21 \b21 b22 0 

/ _ i \  
The relation of Z-dependence '(~). cq~ilJ----O is trivializable by the condition, and we may 

assume that it is trivial, i.e., as2 = 0, ql = 0. Then q2 = O, since p3 is a nondivisor of 

zero. Thus, we have the relation 

(:'0 G121.(bll b12~ = "a" 

Let (~, ~) be a pair of matrices trivializing the relation 

and let 

(o' l i . , , )  lb, ,J)  = o, 

Then 

(:/0 g121"/~ll (g121 = (~;0 ~), {~11 ~12~./bll ~::)-a (0o ,~) 
a22/ \a21 ~22] \~sl [32~] kb2~ " 

a b' 

which is what we required. 

The implication (a) ~ (c) is proved analogously. The lemma is proved. 

COROLLARY. Any independent multiplicative set Z of matrices over an arbitrary ring R 

is potentially invertible. 

Proof. Let r ~ Rbe an element in the kernel of a universal E-inverting homomorphism. 

By Corollary 2 of Theorem 2, there exists a relation of the form 

(:0 
We may assume that 'a = 0, b' = 0. In this case a = 0, b = 0, since 0 and b ~ are nondivi- 

sors of zero. Hence it follows that r = 0. The statement is proved. 

We note that this statement may be formally deduced from Lemma 8. 

Proposition 4. Let ~ be an n-independent multiplicative set of matrices over the ring 

R. Then the ring RZ-I is an n-FI-ring. 

Proof. Let u be a row of length n, and v a column of length n over the ring RZ -I with 

u'v = 0. It is sufficient to prove that there exists a pair of mutually inverse square ma- 

trices 

[]], [61 ~ Mat (RY,-~), ], 6 ~ " M " ( R ,  2) 

such that either the last element of the row u.[y] or the first element of the column [6]'v 

is zero. 
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By Proposition 3, there exist matrices a~iM~(R, ~), b ~M~(R, E) such that [a] = u, 
[b] = v and we have a relation of the form 

�9 /b' 21=o.  
t , 7  7~a -p~] \b o 'b l  

Let (~, 6) be a pair of mutually inverse matrices of the form (!I), trivializing this rela- 

tion. Then for some matrices e, d~M(R, ~) , we have 

Set 

d 7 " 

|d '  i~1 13~t 
"~ ~"/b~ ~<:, I ~ :  ~<,=/. 8 ~/<~o n-----7, i n--;j. 

\ o  c ~ l'c 0 ) 
\ 0  a~ 1 ' ~ /  

We verify that the matrices [y] and [6] are mutually inverse. We have 

8| 

Id~ 133, I~z2b' 133dz2___._t, p3~~ 1332c%3, 

Io a~ ' ab' " ae~21 I ' a ~ 2  " aex23 t" 

IO 0 b~ a3' l a ~  ~ 1 
to 0 0 c o I 'c  0 J 

We use Lemma 4. We multiply the matrix we obtain, respectively, on the left and on the right, 
by the matrices 

,,ooo, 3 tliO_ O oj 
0 t 0 f l 4 3  0 I 0 0 0 
O0 l p x - - -  ! 0 1 0 0 " 

t O 0 0 0 0 t  0 0 0 t .  0 
o o o o  Ioo o o o i j 

As a result, we obtain a matrix 

/ ola, ,o  o i ~ o l  
d'n,,o.-o Io I I 
I ~ ~ -o-i--m-o N 
IO<,oo o /.o o l, 

/o o. o ~o/ ' :  o I 

(i which, by reducing the trivial rows and columns, gives us the matrix 0 I " 

Analogously, the matrix ?| ,after triangular transformations and reductions, gives us 
the unit matrix. Thus, 8|174 

We now verify the equivalence 

.< ,o~- . tTi , -c-o) ,  8 |  _~. 
�9 \d~  'dJ (~3) 
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We have 

a i ab' aa~l a~(x22 a~3~ 'ab' 'ao~l 'a0r tact,31. 
a (9 ~?---- b~ G531 ~32 ~33 ~ 

0 c ~ ['c O / 

Multiply the matrix thus obtained, respectively, on the left and on the right, by the matrices 

0 0 . O0 I 
0 ' 0 0  i 0 

0 0 0  /00  0 0 ) 

As a result, we obtain a matrix 

o ~ - I T - c - /  
bo o,~[ ~,~ ~ l  '~ 
0 e ~  / 

which after reduction gives us the matrix 

(• 
c ~  c 0]" 

The second  e q u i v a l e n c e  in  (13) i s  p r o v e d  a n a l o g o u s l y .  The p r o p o s i t i o n  i s  p r o v e d .  

LEMMA 9~ The m u l t i p l i c a t i v e  c l o s u r e  Z- of  the  n - i n d e p e n d e n t  s e t  Z i s  n - i n d e p e n d e n t .  

Proof. We may assume that the set E contains the empty matrix I0. Consider the ~'-de- 
pendence relation a.b = 0 of the form (10). We must prove that it is trivializable. We do 
this by induction on the sum of the number of rows of the matrix a ~ and the number of columns 
of the matrix b ~ If each of the matrices a ~ b ~ belongs to the set ~, then the relation 
under consideration is, by the condition, trivializable. Let one of the matrices, e.g., a0, 
not belong to the set Z. Then we may rewrite relation (10) in the form 

0 a3r I X3 | US~ kU13 v$2 [ V2 ] "hi a21' a32 

[Here and henceforward, the symbol T denotes the formal, i.e., nonexpanded into cells, trans- 

position of  m a t r i c e s ,  e . g . ,  ~ c d ]  b" , where a ,  b ,  c ,  and d a r e  m a t r i c e s . ]  The r e l a t i o n  

(az~ I xs I ttz)" kv2, t Y, )'b] 

is trivializable, by the inductive hypothesis, and we may assume that it is trivial. 

case, the relation under consideration is of the form 

~ 21 ! X121Ul'~ /Ull 0]0 ,.~/21 b_~.~ T 
o a~lx~O t O /  

In this 

(14) 

so that we have the relation 

(~,, I x,~.l~. ( ~ 1  v,i I~'~ ~ = o, 

802 



which, by the induction hypothesis, is trivialized by some pair (~, 8). Inserting the rows 
and columns of the unit matrices in the suitable places, we obtain a pair which trivia!izes 
relation (14). 

The lemma is proved. 

If there exists at least one n-independentset ~ over the ring R, then all relations of 
length ~<n of the form 

1). = o 

are trivializable, and therefore the ring R is an n-FI-ring. (All the definitions and re- 
sults concerning n-FI-rings may be found in [3].) 

LEMMA 10. The set ~ of matrices over the n-FI-ring R is n-independent if and only if 
all the following relations are trivializable: 

(Ixl~)" =o, ~, 

where the above relations have length not greater than n. 

Proof. Consider an arbitrary Z0-dependence relation G-b = 0 of the form (I0), with 
length ~<n. We may assume that the relation 

(,11yi I b0)  = 0 

is trivial, and the relation under consideration is of the form 

(o_1o y llfl �9 
a ~ ! x ~  o 1 o 7" \~,~ t v ~  v ~  ! ' b /  = O. 

In this case we have the relations 

and we may assume that these relations are also trivial. Then the relation under consider- 
ation takes the form 

and we have the relation (]_x!31).(ly32) = 0, which is trivializable, by the definition of an 
n-FI-ring. The lemma is proved. 

COROLLARY. The set E of matrices over an arbitrary ring R is independent if and only 
if it consists of nondivisors of zero, and all relations of the form 

are Z-trivializable. 

Lemmas 9 and 10 allow us to omit the requirement of multiplicativity in the corollary 
of Lemma 8 and in Proposition 4. We formulate these results in the form of two theorems~ 

THEOREM 5. Let E be a set of rectangular matrices over the ring R, consisting of non- 
divisors of zero and satisfying the following condition: 

For any relation 

a . v + u . b = O ,  a, b ~ E  

there exists a pair of mutually invertible matrices 
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over the ring R, such that 

~. �9 v + ~ .  b = O, ,~, �9 v + ~ = .  b ~ ~. 

Then the set ~ is potentially invertible. 

THEOREM 6. Let E be a set of rectangular matrices over the n-FI-ring R, such that any 
relation 

a . v + x . y + ~ . b = O ,  x ~ R  m, y ~ R ,  m<~n, a, b ~ E U { t o } ~ - E o  

is E0-trivializable. Then the ring RE -I is an n-FI-ring. 

Let I be a positive integer. If the ring R is a 21-FI-ring, then the set E l of all com- 
plete square matrices of order L satisfies the condition of Theorem 5. If the ring R is a 
(21 + n)-FI-ring, then the set E l also satisfies the condition of Theorem 6. This follows 
easily from the definition of a k-FI-ring, and from some of their very simple properties 
(see, e.g., Theorem 1.1.1 of [3]). Hence we have: 

COROLLARY I. A set of complete square matrices of order Z over a 21-FI-ring is poten- 
tially invertible. 

This statement is a generalization of Theorem 2 of [I], where the same thing is proved 

for I = I. 

COROLLARY 2. If E is the set of all complete square matrices of order ~ over the (27 + 
n)-FI-ring R, then the ring RE -I is an n-FI-ring. 

This statement gives an answer to Bergman's problem in [2], p. 77. 
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INDICATORS OF ENTIRE HERMITIAN-POSITIVE FUNCTIONS OF FINITE ORDER 

A. A. Gol'dberg and I. V. Ostrovskii UDC 517.547.22+519.21.2 

We shall say that an entire Hermitian-positive function (e.H.p.f.) is an entire function 
f:C + C, f(0) = 1, whose restriction to the real axis is a Hermitian-positive function. The 
class of e.H.p.f.'s coincides with the class of entire characteristic functions of probability 

distributions, i.e., with the class of functions of the form 

f (z) = ~ e~=P (au), ( o )  
- - c o  

where P is a probability measure on the line, and the integral converges absolutely for all 
z ~ C. The finiteness of the order of the e.H.p.f, f is equivalent [I, p. 54] to the condi- 

t ion 

lira (ln r) -1 In In (l/P ({x : I z I >  r})) > t. 
T - - > ~  
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