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On class groups of free products
By S. M. GERSTEN

Introduction

If R is a commutative ring, let S(R) be the category of supplemented R
algebras, where R is central in each object A of S(R). Thus, if e,: A— R is
the augmentation, 7,: R— A the unit, so &,, = 1, then a morphism f: A—T
of S(R) is a ring homomorphism satisfying e.f =¢,, ), =7,. We identify R
with its image under 7,, and denote the augmentation ideal Kere,: A— R
by A.

If A and I" are objects of S(R), then their coproduct exists and is denoted
AxpD'. This is just the free product of A and I' described in [3]. K(A)
denotes the Grothendieck group of finitely generated projective left A modules,
and K (A)= Ker¢,,,: K(A) — K,(R). We shall prove

THEOREM 1. Suppose that R is regular and A @, T is a flat R module.
Then the inclusions A — Ax,I' and I' = A*;I' induce a direct sum de-
composition

K(A*pI) = K (A) @ K(T) .
Equivalently,
K(A#;T') = K(R) @ Ker ¢, ,.: Ky(A) — K(R)
Ker e, : K(I') — K(R) ,
where the decomposition is induced by inclusions.

COROLLARY. If A;,;1 <1 <, are objects of S(R), where R is regular
and, for each index i, A, is a flat R module, then

?o(Al kplokp o oo ¥p\,) = E(AJ @E(Az) D--- @_I_{—O(An) .

The corollary follows from Theorem 1 by induction on n using properties of

flat modules.

If A is a ring, and A[«] is the polynomial ring on an indeterminate x, let
U(A) be the subgroup of K,(A[x]) generated by invertible matrices of the
form 1 + @y, v a matrix with entries in A. We shall give a Grothendieck

group type definition of U(A) and prove

THEOREM 2. If R is regular and A and I' are objects of S(R) such that
A ®:T is a flat R module, then U(A*,T) = U(A) @ U(T') where the decom-
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position is induced by inclusions A — Ax,I' and I' — Ax,T.
Theorems 1 and 2 should be considered in conjunction with the theorem
of Stallings [3], that

K (A7) = K(A) @ K(I)
under the same hypotheses as our Theorem 1. Here K,(A) = Ker ¢, ,: K,(A)—
K.\(R), and K,(A) is the commutator quotient group of GL (A)[1]. In fact our
results will be deduced from Stallings theorem, with the aid of a theorem of
Bass, Heller, and Swan [2], and some algebraic tricks.
1. Applications to group rings

If R is a commutative ring and G is a group, then the group ring
R[G] is considered a supplemented R algebra by the augmentation g — 1,
g9€G. If Hisa group, G H is the free product of groups, and we have the
relation

R|GxH] = R[G]*zR[H] .
Thus, Theorem 1 implies
THEOREM 1.1. If R is regular, then
K(R[G+H]) = ITO(R[G]) @ K(R[H]) .
If G is a free group of finite rank », then
G=TTx-xT,,
where each T is an infinite cyclic group. Thus if R is regular
K(RI[G]) = @, K(R[T\]) .
But if R is regular, then R[T] is regular, and the theorem of Grothendieck
[2] states that K(R) — K,(R[T:]), induced by inclusion R — R[T;], is an iso-
morphism. Hence, K(R[T]) = 0.
THEOREM 1.2. If R is regular and G is free, then the map
K(R) — K(R[G])

induced by inclusion R — R[G] is an isomorphism.

Proor. The preceding discussion establishes this result if G is free of
finite rank. The general case is reduced to the case of finite rank by observ-
ing that a matrix over R[G] involves entries which are sums of words involv-
ing only a finite number of free generations of G.

COROLLARY. If T is free abelian and G is free, then
K(ZIT x G) = Z.
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PRrOOF. As above, one reduces to the case with T free abelian of finite
rank and G free of finite rank. Then Z[T] is regular and

ZIT x Gl = Z|T]G] .
Hence K(Z[T x G]) = K,(Z[T]). By successive applications of the theorem
of Grothendieck, one deduces that

K(ZIT))= K(Z) = Z.

Remark. In his extension of Novikov’s splitting lemma, Wall [4] assumes
that M is a closed manifold with free abelian fundamental group. The essen-
tial restriction on the fundamental group G of M needed for the proof of the
splitting lemma is that K(Z[T x G]) = Z for free abelian groups 7. Asa
consequence of the last corollary, the splitting lemma applies to manifolds
with fundamental group T x G, G free and T free abelian, in particular to
manifolds with free fundamental group.

2. The functor U(A)

If A is a ring we construct a category £(A) as follows. An object of £(A4)
will be a pair (P, v) where P is a finitely generated projective left A module,
and v is a nilpotent endomorphism of P. A morphism (P, v) —f—+ (P’,v)isa
homomorphism of left A modules f: P — P’ such that the following diagram
commutes

PP
s
P,
The diagram of morphisms
f

(P, v') = (P, v) = (P", V")
is a short exact sequence if the corresponding diagram

0—sp . p 9, pr__,y

is a short exact sequence of A-modules. We can form the Grothendieck group
K,(£(A)). It is a covariant functor from the category of rings and homo-
morphisms of rings to the category of abelian groups. K,(£(A)) can be
described as the quotient group of the free abelian group generated by iso-
morphism classes of objects (P, v) by the subgroup generated by all (P, v) —
(P, V') — (P", V"), where

f

(P, v) =15 (P, v) -1 (P, v
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is a short exact sequence.

Definition. L(A) is the quotient of K (£(A)) by the subgroup generated
by classes of (P, 0). It is a covariant functor from the category of rings to
the category of abelian groups.

If A is a ring, recall [11] that an element of K, (A) is represented by a
pair (@, @) where @ is a finitely generated A module and « is an automorphism
of Q. For a ring A, we associate to the object (P, v) in £(A) the pair

(A2 @4 P, 1 + (2 QV)) .
Here A[x]is the polynomial ring on an indeterminate #, and A — A[x] is the
inclusion. Since v is nilpotent, 1 + 2 @ v is an automorphism. This associa-
tion is additive and defines a homomorphism ¢: L(4) — K,(A[z]).
Definition. U(A) is the image of ¢ in K,(A[x]).
We consider A[x] as a supplemented A algebra by the augmentation
2+ 0. Clearly the composition

L(A) - K (A[z]) — K(A)
is zero.
LEMMA 2.1. The relative group K,(A[x], (x)) is the kernel of the map
K\(Alz]) — K,(A) .

ProoF. The easiest way to see this is to invoke the functor K,[5] and
the exact sequence

K,(Alz]) — Ky(4) — K\(A[2], (¥)) — K(Alz]) — K,(4) .

Since A[x] — A has right inverse, K;(A[x]) — Ki(A) is surjective, (¢ = 1,2)
whence the sequence
0 — K (4[], (2)) —K,(A=]) K, (A) 0
is split exact. Alternatively, a direct argument may be given in terms of
matrices.
Thus ¢: L(A) — K,(A[z]) actually has its image on K,(A[z], (z)).

LEMMA 2.2. ¢@: L(A) — K,(A[2], (2)) is surjective.

PROOF. An element a of K(A[x], (x)) is represented by an invertible
matrix M congruent to 1 modulo the ideal (). We may then apply the linea-
rization trick of Higman [6], multiplying M on right and left by elementary
matrices, each congruent to 1 modulo (), to get a matrix representing « of
the form 1 + a2y, where v is a matrix with entries in A. Since 1 4 av is in-
vertible, it follows that v is nilpotent [2]. Let 1 + v act on A[x]*. Then the
pair (A", v) € £(A) represents a class S8 € L(A) such that ¢(B) = a.
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COROLLARY 2.3. U(4) = K (4[], (2)) c Ky(A[=]).

According to Bass, the map ¢: L(A) — U(A) is an isomorphism. This
result will not be used in this paper, but it provides a convenient way of
describing K,(A[2], (x)).

3. Passing from S(R) to S(R[T']) and to S(R[x])

Let A be an object of S(R). We let T be an infinite cyeclic group, and x
denote a polynominal indeterminate. Then A[T](respectively A[x]) may be
considered as a supplemented R[T](respectively R[z]) algebra. For A[T] =
A ®z R[T)(Alx] = A ®z[x]) and the augmentation is in each case ¢, @ 1. If
I' is also an object of S(R), the coproduct of A[T'] and I'[ T'] exists in S(R[T]),
and is the free product A[T|*g I[T]. Similarly the coproduct of A[x] and
I'[«] exists in S(R[«]) and is the free product A[2]#zp'[].

PROPOSITION 3.1. A[T 1T [T] = (A*)[T] as objects of S(R[T]), and
Ala]#p P[] = (AxzI)[2] as objects of S(R[x]).

PrOOF. One observes that (AxxI")[T], equipped with the inclusions
A[T]— (A D)[T]and I'[T] — (A*z)[T], is a coproduct of A[T] and I'[T]
in S(R[T']); similarly for (Ax,I")[x].

4. Proofs of Theorems 1 and 2

The theorem of Stallings states (although not in Stallings notation) that
K (A*xT) = K\(R) @ Ker ¢, ,: K\(A) — K\(R)

) @ Kerer,,.: K(I') — K\(R)
with the decomposition induced by inclusions, provided the hypotheses of
Theorem 1 are satisfied.

Let T be an infinite cyclic group. Then R[T] is regular if R is regular.
Also AlT] Qe TIT] = A®:T ®z(R[T]) is a flat R[T] module. Thus the
theorem of Stallings applies to (A*zI)[T']:

K((A*xD)[T]) = K(R[T]) D Ker e,ry,4: K(A[T]) — K(R[T])
@ Ker e, K(T[T]) — K(R[T]) .
We proceed to compute left and right sides of (xx).
If A is any ring, Theorem 2’ of [2] gives a canonical decomposition
K(A[T]) = K(A D KA DV,,

where V, is generated by classes of unipotent matrices of the form
1+ (t** — 1)v. Here t is a generator of T and v is a nilpotent matrix over A.
Also, if A is regular, then V, = 0.

Thus we may compute the left side of (xx):

(35)
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Kl((A*RF)[T]) = K(A#xT) D K (A*:T') D VA*RI‘
(1) = K, (A#zI') @ K,(R) @ Kere, ,: K,(A) — K,(R)
P Ker ;42 Ky(I') — K(R) @ Vis,r
where we have applied () to compute K, (Ax:T").
Now K,(R[T]) = K«(R) @ K,(R), K,(A[T]) = K(A) @ K,(A) @ V., K(T'[T])
= o(P) @ KI(P) 69 Vi )

and

Ker e, x: K(A[T]) — K(R[T])

= Kere, ,: K(A) — K(R)P Kerer ,: Ki(A)— K(R)P V, .

Similarly for Ker ¢r;,,. Here we have used the fact V, = 0.
Thus, the right side of (x*) is computed as

K ((A+xI)[T]) = K(R) @ Kere,,,: K(A) — K,(R)
P Ker ¢, .: K(I') — K(R) P K,(R)
P Kere,,,: K,(A) — K,(R)
DKere, .. KI) — KR PV,.D Ve
If we compare the right sides of equations (1) and (2), and examine the

composite isomorphism, we see that this isomorphism carries K, terms to K,
terms, K, terms to K, terms, and V-terms to V-terms. In particular

K(A*zI') = Ky(R) @ Ker ¢,,,.: K(A) — K(R)
@ Kere;,,.: K(I') — K(R) ,

(2)

where the decomposition is induced by inclusions. The result can be restated
K(A#;T) = K(A) @ K(I)
which completes the proof of Theorem 1.

We begin now the proof of Theorem 2. The polynomial ring R[z] is
regular if R is regular, and Al2] Qg I'[2] = A Q- T ®¢ (R[x]) is a flat R[]
module. Thus the theorem of Stallings applies to (A *,I')[x].

K\((AxzD)[x]) = K,(R[2]) B Ker &,,3,4: K,(Alx]) — K, (R[])
b Ker erp,y,4: Ki([z]) — K, (R[x]) .
From the split exact sequence in the proof of 2.1, we deduce that
K1(A*RF[97]) = K, (A*zI") @ U(A*xI)
= K,(R) @ Kere,,,: K,(A) — K,(R)
é Kere,,.: K,(I') — K,(R)
P U(Ax:T) .

(3)

(4)
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Now K,(R[z]) = K,(R), K(Alz]) = K,(A)@® U(A), and K,(I[2]) = () U(T) .
Thus
Ker ¢,,1,.: Ky(Al2]) — K,(R[2])
— Kel‘ 8A[ac]»>|=: KI(A) e KI(R) @ U(A) ’

and similarly for Ker ¢,;,,. Thus, the right side of (3) is computed as

K ((AxpD)[z]) = K(R) @ Kere,,,: Ki(A) — K,(R)
(5) @ Ker e, K,(T') — K\(R)

DUNDUND.

If we compare the right sides of equations (4) and (5), examining the

composite isomorphism, we deduce, as in the proof of Theorem 1, that
UAI)=UNA)HPUD).
This complete the proof of Theorem 2.

We remark finally that Bass has shown (unpublished) a remarkable con-
nection between V, and U(A). If T is an infinite cyclic group generated by
t, and @ is a polynomial indeterminate, then there are maps

Vi, Yt Alx] — A[T]
given by v, (x) =t — 1, ¥_(x) = ¢t~ — 1. The compositions, . and @_, of maps

L(4) -5 U4) ¢ K(Alz]) 225 K, (A[T))
L(A) —> U(4) © K(Al=]) =5 K(AT))

and respectively, provide a canonical decomposition of V,as Imw, @ Imw_.
This fact can also be used, with the proof of Theorem 1, to deduce Theorem 2.
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