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A SHORT PROOF OF THE LOCAL ATIYAH-SINGER INDEX
THEOREM*

Ezra GETZLER
(Received 24 April 1985)

IN tHIS paper, we will give a simple proof of the local Atiyah—Singer index theorem, first
proved by Patodi [9]; in fact, his earlier proof of the Gauss—Bonnet—Chern theorem (Patodi
[8]) is quite close to ours. (Perhaps he did not find the proof for Dirac operators given in this
paper because he was unaware of the symbol calculus for Clifford algebras.) A paper of
Kotake [5] contains a proof of the Riemann-Roch theorem for Riemann surfaces along
similar lines, and a recent paper of Bismut [3] is also very closely related.

It might be helpful to give a short history of this theorem. As explained in Atiyah ez al. [1],
all of the common geometric complexes, namely, the twisted Dirac operators, J-operators,
signature operators and the De Rham complex, are, locally, Dirac operators. We shall refer to
all of these operators as Dirac operators, although this is not globally correct on non-spin
manifolds. The index theorem for Dirac operators was first proven, at least for Kahler
manifolds, by Hirzebruch using cobordism theory. A few years later, McKean and Singer gave
their famous formula for the index of the Dirac operator:

Index () = Stre‘P'(= Tre!P P — Tre® P

= J str {x|e®®’|x ) dx,
M

and asked if the integrand converges as t — 0, by some “fantastic cancellations”. Notice that
this is a completely local question, only depending on the metric and connection in a small
neighbourhood of x, since we are sending ¢t to 0. Thus, we may as well assume that our
operator is a Dirac operator on R", with twisting bundle C™. Patodi established this
convergence and identified the limit; for a review of this phase of the history of the theorem,
see Atiyah et al. [1].

In Getzler [0], motivated by the ideas of the physicists Witten and Alvarez-Gaume, it was
shown that these cancellations are not fantastic at all, but quite natural, and for the first time,
the local index theorem was proven in a completely analytic fashion, without appealing to any
topological calculations as in earlier proofs. However, the machinery developed in that paper
is rather general, so the goal of this paper is to show how simple the basic idea is.

The proof of the theorem splits into two steps:

(a) the asymptotic expansion of the heat kernel of D?;
(b) an algebraic calculation of the top order in the asymptotic expansion.

The second part is the same as in Getzler {0]; the only question is what is the clearest method
of establishing the asymptotic expansion. In this paper, we use a new technique that requires
the estimation of the heat kernel of uniformly elliptic operators on R" whose first and zeroth
order coefficients increase linearly and quadratically fast at infinity. This estimate is
accomplished in the first appendix, by using the Feynman-Kac representation of the heat
kernel.
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112 Ezra Getzler

An alternative method is to use Patodi’s original asymptotic expansion, which is
technically more difficult to establish than anything else that we use, but is better known.
Granted this, the proof becomes extraordinarily simple. This is dealt with briefly in the second
appendix. (I wish to thank M. Vergne for suggesting this strategy after reading an earlier
version of the paper.)

To state the theorem, we need some results from the theory of Clifford algebras. [f nis an
even integer, so that the space of spinors A= A* ®A~ has dimension 2"?, then the
endomorphism algebra of the spinors End (A) is the complex Clifford algebra on R", which we
shall write as Cliff(n). This algebra may be thought of as the exterior algebra A(n) = A%R"
with a twisted multiplication defined as follows. The vector space R" acts on the exterior
algebra A(n) = ALR" by the formula

vea=vAa+v_la, whereveR" and aeA(n),

and this gives an isomorphism from Cliff (n) to A(n), called the symbol map, with which we
shall identify these spaces. If ae A(n) and be A(n), then we have the formula,

acb—aAnbeAti"(n). (1)

We will denote the projection of a € A(n) onto A™(n) by a,,. Recall that there is a isomorphism
from the Lie algebra o(n) to Cliff(n), given by sending the antisymmetric matrix a;; to the
element of Cliff(n) with symbol 1/2 Y a;;e’ A e/. This is the isomorphism that is used to

i<j
obtain the connection on the spinor bundle from the Reimannian connection.
Let g be a Riemannian metric on R" satisfying the following three conditions:

(i) g is asymptotically Euclidean, so that g;;(x) = §;; for |x| large;
(ii) g is a small C™ perturbation of the Euclidean metric;
(iil) the coordinates are normal around 0 € R", that is, the exponential map at the origin is
an isomorphism.

Using parallel translation along the geodesics to the origin, the tangent and spinor
bundles on R" may be trivialized. Indices for tensors in this frame will be written with the
indices a, b . . . . For example, the spinor connection is

[o=4T,(" Aeb)o.
In Atiyah et al. [1], it is shown that
9i;(x) = 8;;+ O(Ix|?), (2)
Tip = ~ 4 Rijap (0)x7 (e* A e”) 0 + O (|x%),

where R, is the Riemannian curvature of the metric g.

Let A4; be a connection on the bundle with fibre C™ on R" satisfying conditions
corresponding to (i)-(iii) above. Namely, 4;(x) vanishes for | x| large, is a small perturbation of
the zero connection, and parallel translation along the geodesics out of the origin is the
identity. (This is called the radial gauge.) We have

Ai= ~}F;(0)x/+ 0(x]%), (3)

where F;; is the curvature of the connection 4;.
If ID is the twisted Dirac operator for the metric g and connection A, and V;is the covariant

derivative

Vi=5,-+%1",~°+Ai
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then Lichnerowicz's formula (Lichnerowicz [6]) states that
D2=V*V+Fo —§
ij k a b R
=gY(ViV;+ TV + Fa(e® Ae )°—z.

where R is the scalar curvature for the metric g. This explicit formula is basic to our proof.

It follows from the Kato—Rellich theorem (Reed and Simon [10], p. 162) that D2 is a small
enough perturbation of the flat Laplacian A that it is self-adjoint on the domain of A. The
Schwartz kernel k, (x, y) of the operator ¢’®*, which lies in

C?((0, 0)xR"x R")®End(A® C™)

by parabolic regularity theory is called the heat kernel of D2,

We shall denote by k,(x)eC*((0, 20) x R") ® A(n) ® End (C™) the symbol of the heat
kernel k,(x, 0)e C* ((0, 20) x R") ® Cliff (n) ® End (C™). Thinking of ID? as an operator D on
C*(R"Y®A(n) ®End(C™), k,(x) satisfies the heat equation

(¢/¢.~D)k,(x) =0, (4)

limk,(x) = d(x) ® L.
t=—0
Let 7, be a rescaling operator defined by the following assignment of degrees (this was the
main idea of the proof in Getzler [0]):
deg(x;) =1, deg(t) = 2, deg(e;) = — 1.

That is, T,(t?x%") = ¢2?* 17 "t?x%”". Clearly, ki(x) = ¢"T,k,(x) is the solution of the heat
equation (4) for the operator D® = ¢27,D(T;)" !. This turns out to be enough to calculate
lim k, (x).

e—~0

THeorEM. Let k2 (x)e C* ({0, 20)xR") ® A(n) ® End (C™) be defined by the formula
- 1 tQ/2 o
0 = -n/2 — iJj
ki (x) = (4nt) " A Q) expl:tF P <——tanhtﬂ/2 >Uxx J,

where the symbol Q denotes the Riemannian curvature of the metric g at the point 0 thought of as
an antisymmetric n x n matrix of 2-forms, F is the curvature of the connection B at 0 thought of
as a hermitian m x m matrix of 2-forms, and the characteristic class A(0) is the A-genus

9/2 1/2
ot I:sinh 9/2j| )

Then for all t small enough and 3 > 0,

[Kki(x) = k7 (x)| < cgp™ni2 w1 =dgm el

Proof. The basic idea of the proof is the observation that as ¢ — 0, D® converges to the

operator
2n

D° = Z (Ei—%{Qijxj A)Z +FA.
i=1
for which the solution of (4) is precisely k? (x). Using an a priori bound on k#(x), it is then easy
to prove the uniform convergence. At e > 0, the noncommutative Clifford multiplicationa ° b
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is replaced by the product ae, b, defined by
ve,a=uvAana+e*v_la where veR"and aeA(n).

The limit ¢ — 0 is like the classical limit in quantum theory; as ¢ — 0, the noncommutative
product a o, b converges to a A b.
Using Lichnerowicz’s formula, it is easy to show that D* has the following form:

D® = g% (ex)((C; + &~ ' Ti(ex) o, + e A;(ex)) (&5 + £ 1 T (ex) o, + £ 4 (ex))
2R

+ T5(Ex) (S + e Thlex) o, + 671 Ar(ex))) + Fap(ex)(e® A b)o, — Ez— )

This shows that the coefficients b} and c® of the first and zeroth derivatives in D® are bounded
uniformly in & for t small enough:

165 (x)] < c(1+]x]), (3)

e ()] < (1 +]x])%.
Using the Taylor expansions for g and 4, it follows that for small ¢;
[(D*~ D)k (x)] < cet ~M2e —eixlt (6)

We will only prove this for the terms involving d2, which should be enough to give an idea
of how the inequality is proved. The terms in question may be bounded for small ¢ by
lg(ex) =g (0)].0(t ™1 +|x|?/t?).t ~"2e =114 For |x| > ¢!, the inequality holds because
the exponential factor decreases exponentially in ¢ ™!, while for |x| <&~ !, we can bound
|g(ex) — g (0)| by £?|x|?, obtaining

t"'/z.O(lxlz/H-lxl‘/zz).e””‘*z/‘“S !—n/z —|x|‘,8

We now show that the solution to the heat equation (4) for D° is k?(x). By Mehler’s

formula (Glimm and Jaffe [4], p. 19), the heat kernel <xle"" ly) of the one dimensional
d2

harmonic oscillator H = — o=t a*x? equals

2ar \'/? 1 2at
-1/2 _ tlx? + vy — 2x1) |
(4mr) (sinh 2at> eXP 4t[sinh 2at (cosh 2at (x” + y7) x,»)]

If 8 isan m x m positive matrix, then the heat kernel of the m-dimensional harmonic oscillator
—A+0;x'xtis

L 2.9\
(4nt)_’"’zdet[ 2t/ :| 1[( 2./8 > xx’+y'y’)—2<*_——t—\——> x‘y’].
sinh 2¢,/8 tanh 2t,/8/i; sinh 2:./6/5

In the expansion of this formula as a power series in \/5 near § = 0, only the even powers
contribute, so the heat kernel is actually analytic in 6. We will use this formuia in a setting in
which 0 is a matrix of 2-forms; this uses the same analytic continuation from complex
variables to even differential forms that is used to define characteristic classes in differential
geometry.

Observe that the operator D° is equal to the sum of the two commuting operators
K=A-4Q;Qux'x*and L = F —$Q,;¢'x’. We have calculated the heat kernel of K above
(let 6 = 752;Q; x'x¥), so the result follows from the formula k{ = (e*¥e‘%)(5(x) ® 1), and
the fact that e’¢(S(x) @ 1) = e (S(x) ®1).

To prove that ké(x) converges to k? (x) as ¢ — 0, we use Duhamel’s formula, which states
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that

ki(x)—kP(x) = J dse~*"9D*(D* - D)k2(x).
[}
This follows from the operator identity
ele =1 4 J dse*4(4— B)e ~*5,
0

The theorem now follows from Theorem A.l in Appendix A, which applies uniformly to the
operators D%, 0 <¢ < 1, and the bound in formula (6). O

If a is an element of Cliff (R”), then the supertrace of a, denoted Str g, is defined to be
Tr|,-a—~Tr|,-a, where ais identified with an endomorphism of the spinors A = A* @A™ .In
terms of the gradation of Cliff(n), we have the following suggestive formula for Str a:

Stra = (2/i)"? | q,

where the linear map |: A (n) - C (Berezin’s integral) is given by taking the inner product of a,
with the volume element in A"R". A proof may be found in [0].
From this formula for the supertrace and the theorem that we have proved, it follows that
lim Strk, (0, 0) = lim (2/i)"2 [ k£(0) = (2mi)~"2 (A(Q)ch (F)),.
e—~0

=0

This is the local Atiyah-Singer index theorem.

APPENDIX A

In this appendix, we prove the theorem on the heat kernel for elliptic operators that was used in the
proof of the index theorem.

THEOREM A.l. Let D be a second order elliptic operator on R” given by the formula
D 1A+ i bi(x) ‘ +c(x)
=_ (x)— +c(
2 i=1 cX; e

where A is the Laplacian for a Riemannian metric g on R" such that g(x) and g(x)™! are both uniformly
bounded, and b; and c are bounded continuous functions from R" to m x m complex matrices satisfying the
bounds

1bi(x)] < (1 +|x]).
le(x)] < c(l+]x])%

Then for t small enough, the heat kernel k,(x, y) of D satisfies the following bound for any é > 0:

t
j ds ﬁk,_,(x, PsTMe s dy < cpmzrimsg ekt

[}

Proof. We use Stroock’s version of the Feynman~Kac formula [11]. Let Q, be the set of all paths
@:{0, 0) —» R" such that »(0) = x, let E, be the Brownian expectation on Q_ corresponding to the
metricg. If Bisa ball in R", let bgand cg be the functions b and ¢ multiplied by the characteristic function
of B. If ®:Q,x[0, s0) — End (C™) is the solution of the stochastic integral equation

t t

(P(w. D)b(w(r)), dw()) + j P(w, 7)c(w(r))dr,

0

<D(w,t)=1+J

0
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then the heat kernel of D satisfies
Jfk: (x, ) f(3)dy = E.[®(w, 1) [(w(t)].

In particular,.j' (X, ¥) f(y)dy = E.[ f(w(1))], where p,(x, y)is the heat kernel of the Laplacian A for the
metric g.
Furthermore, the following estimates hold:

(@) E.[|1®(w,1)|P] < ceOUel +lclt for 5 > 2 where ||-|| denotes the uniform norm,

(b) (McKean [7], p. 93) P,( max |w(1)—x| = R) < ce~aRM
0<srst

() (Baldi [2]) p.(x, y) < ¢z ~"2e =251/ for some positive constants a and c.
In proving the theorem, we divide the set of paths starting at x into the countable partition

U, = {wlw(O) =X, \/r; £ max |o{t)—x]</m+ 1}, m >0, and bound the expectation of
Q

N Ostst-: P

®(w, t —s) on each of these sets. On the set U ,,, we estimate the expectation of ® using (a) and (b) above,
by making use of the bounds on ||b|| and ||c|| on the ball around x of radius /m+ 1. Using the
Feynman-Kac formula, we have all for p > 1

xX
jlk‘-,(x, Ws e dy< Y E [sTe 10 (U,) | B (w, £~ 5)[]
m=0

S E[(s"2e 1wt ) P E [y (Un)]" EL[|®(c0,t —5)|2 ]} 27

1/p =
< C[J s (X, y)s—np/2e—plylz/sdy] Z e ~am/lt—5) o Olx|* + mit = 5)
m

=0
S ¢'s ¥ e e for t small enough.

Integrating over s gives the stated result, since we can choose p’ arbitrarily large. ]

APPENDIX B
In this appendix, we give another method of proving the local index theorem, based on Patodi [8].
Using Patodi's asymptotic expansion for the solution of the heat equation {(4) around ¢ = 0, we may
write

ki(x) ~ (dme) ~m2e e S ot ppmxte
zBmz20
where « is a multi-index for the symmetric algebra S*(R") and B is a multi-index for the antisymmetric
algebra A*(R").
It is immediate from Patodi’s proof of the asymptotic expansion that the numbers ¢}, are universal
polynomials in the derivatives of the coefficients of D* at x = 0. It follows from the explicit formula for
D¢ that

c:nzﬂ = Cgﬂﬂ + O(E)
The proof of the local index theorem foliows from the calculation of k¢ {x) in the body of the paper.
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