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BARCODES: THE PERSISTENT TOPOLOGY OF DATA

ROBERT GHRIST

Abstract. This article surveys recent work of Carlsson and collaborators on
applications of computational algebraic topology to problems of feature detec-
tion and shape recognition in high-dimensional data. The primary mathemati-
cal tool considered is a homology theory for point-cloud data sets—persistent
homology—and a novel representation of this algebraic characterization—
barcodes. We sketch an application of these techniques to the classification
of natural images.

1. The shape of data

When a topologist is asked, “How do you visualize a four-dimensional object?”
the appropriate response is a Socratic rejoinder: “How do you visualize a three-
dimensional object?” We do not see in three spatial dimensions directly, but rather
via sequences of planar projections integrated in a manner that is sensed if not com-
prehended. We spend a significant portion of our first year of life learning how to
infer three-dimensional spatial data from paired planar projections. Years of prac-
tice have tuned a remarkable ability to extract global structure from representations
in a strictly lower dimension.

The inference of global structure occurs on much finer scales as well, with regard
to converting discrete data into continuous images. Dot-matrix printers, scrolling
LED tickers, televisions, and computer displays all communicate images via arrays
of discrete points which are integrated into coherent, global objects. This also is
a skill we have practiced from childhood. No adult does a dot-to-dot puzzle with
anything approaching anticipation.

1.1. Topological data analysis. Problems of data analysis share many features
with these two fundamental integration tasks: (1) how one infers high-dimensional
structure from low-dimensional representations; and (2) how one assembles discrete
points into global structure.

The principal themes of this survey of the work of Carlsson, de Silva, Edelsbrun-
ner, Harer, Zomorodian, and others are the following:

(1) It is beneficial to replace a set of data points with a family of simplicial
complexes, indexed by a proximity parameter. This converts the data set
into global topological objects.
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(2) It is beneficial to view these topological complexes through the lens of alge-
braic topology — specifically, via a novel theory of persistent homology
adapted to parameterized families.

(3) It is beneficial to encode the persistent homology of a data set in the form
of a parameterized version of a Betti number: a barcode.

This review will introduce these themes and survey an example of these tech-
niques applied to a high-dimensional data set derived from natural images.

1.2. Clouds of data. Very often, data is represented as an unordered sequence of
points in a Euclidean n-dimensional space E

n. Data coming from an array of sensor
readings in an engineering testbed, from questionnaire responses in a psychology
experiment, or from population sizes in a complex ecosystem all reside in a space
of potentially high dimension. The global ‘shape’ of the data may often provide
important information about the underlying phenomena that the data represent.

One type of data set for which global features are present and significant is the
so-called point cloud data coming from physical objects in 3-d. Touch probes,
point lasers, or line lasers sweep a suspended body and sample the surface, record-
ing coordinates of anchor points on the surface of the body. The cloud of such
points can be quickly obtained and used in a computer representation of the ob-
ject. A temporal version of this situation is to be found in motion-capture data,
where geometric points are recorded as time series. In both of these settings, it is
important to identify and recognize global features: where is the index finger, the
keyhole, the fracture?

Following common usage, we denote by point cloud data any collection of points
in E

n, though the connotation is that of a (perhaps noisy) sample of points on a
lower-dimensional subset. For point clouds residing in a low-dimensional ambient

Figure 1. Determining the global structure of a noisy point cloud
is not difficult when the points are in E

2, but for clouds in higher
dimensions, a planar projection is not always easy to decipher.
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space, there are numerous approaches for inferring features based on planar projec-
tions: reconstruction techniques in the computer graphics and statistics literatures
are manifold. From a naive point of view, planar projections would appear to
be of limited value in the context of data which is inherently high-dimensional or
sufficiently ‘twisted’ so as to preclude a faithful planar projection (Figure 1).

A more global and intrinsic approach to high-dimensional data clouds has re-
cently appeared in the work of Carlsson and collaborators. This body of ideas ap-
plies tools from algebraic topology to extract coarse features from high-dimensional
data sets. This survey is a brief overview of some of their work. As a result of our
focus on techniques from algebraic topology, we neglect the large body of relevant
work in nonlinear statistics (which is rarely topological) and in computer graphics
(which is rarely high-dimensional).

1.3. From clouds to complexes. The most obvious way to convert a collection
of points {xα} in a metric space into a global object is to use the point cloud as the
vertices of a combinatorial graph whose edges are determined by proximity (vertices
within some specified distance ε). Such a graph, while capturing connectivity data,
ignores a wealth of higher-order features beyond clustering. These features can be
accurately discerned by thinking of the graph as a scaffold for a higher-dimensional
object. Specifically, one completes the graph to a simplicial complex — a space
built from simple pieces (simplices) identified combinatorially along faces. The
choice of how to fill in the higher-dimensional simplices of the proximity graph
allows for different global representations. Two of the most natural methods for
doing so are as follows:

Definition 1.1. Given a collection of points {xα} in Euclidean space E
n, the Čech

complex,1 Cε, is the abstract simplicial complex whose k-simplices are determined
by unordered (k + 1)-tuples of points {xα}k

0 whose closed ε/2-ball neighborhoods
have a point of common intersection.

Definition 1.2. Given a collection of points {xα} in Euclidean space E
n, the Rips

complex,2 Rε, is the abstract simplicial complex whose k-simplices correspond to
unordered (k + 1)-tuples of points {xα}k

0 that are pairwise within distance ε.

The Čech theorem (or, equivalently, the “nerve theorem”) states that Cε has
the homotopy type of the union of closed radius ε/2 balls about the point set
{xα}. This means that C, though an abstract simplicial complex of potentially
high dimension, behaves exactly like a subset of E

n (see Figure 2). The Čech
complex is a topologically faithful simplicial model for the topology of a point cloud
fattened by balls. However, the Čech complex and various topologically equivalent
subcomplexes (e.g., the alpha complex of [13]) are delicate objects to compute,
relying on the precise distances between the nodes in E

n.
From a computational point of view, the Rips complex is less expensive that the

corresponding Čech complex, even though the Rips complex has more simplices (in
general). The reason is that the Rips complex is a flag complex: it is maximal
among all simplicial complexes with the given 1-skeleton. Thus, the combinatorics
of the 1-skeleton completely determines the complex, and the Rips complex can be

1Also known as the nerve of the associated cover by balls.
2A more appropriate name would be the Vietoris-Rips complex, in recognition of Vietoris’

original use of these objects in the early days of homology theory [21]. For brevity we use the
term “Rips complex”.
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Figure 2. A fixed set of points [upper left] can be completed to a
Čech complex Cε [lower left] or to a Rips complex Rε [lower right]
based on a proximity parameter ε [upper right]. This Čech complex
has the homotopy type of the ε/2 cover (S1 ∨ S1 ∨ S1), while the
Rips complex has a wholly different homotopy type (S1 ∨ S2).

stored as a graph and reconstituted instead of storing the entire boundary operator
needed for a Čech complex. This virtue — that coarse proximity data on pairs of
nodes determines the Rips complex — is not without cost. The penalty for this
simplicity is that it is not immediately clear what is encoded in the homotopy type
of R. In general, it is neither a subcomplex of E

n nor does it necessarily behave
like an n-dimensional space at all (Figure 2).

1.4. Which ε? Converting a point cloud data set into a global complex (whether
Rips, Čech, or other) requires a choice of parameter ε. For ε sufficiently small,
the complex is a discrete set; for ε sufficiently large, the complex is a single high-
dimensional simplex. Is there an optimal choice for ε which best captures the
topology of the data set? Consider the point cloud data set and a sequence of Rips
complexes as illustrated in Figure 3. This point cloud is a sampling of points on
a planar annulus. Can this be deduced? From the figure, it certainly appears as
though an ideal choice of ε, if it exists, is rare: by the time ε is increased so as
to remove small holes from within the annulus, the large hole distinguishing the
annulus from the disk is filled in.

2. Algebraic topology for data

Algebraic topology offers a mature set of tools for counting and collating holes
and other topological features in spaces and maps between them. In the context of
high-dimensional data, algebraic topology works like a telescope, revealing objects
and features not visible to the naked eye. In what follows, we concentrate on ho-
mology for its balance between ease of computation and topological resolution. We
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Figure 3. A sequence of Rips complexes for a point cloud data
set representing an annulus. Upon increasing ε, holes appear and
disappear. Which holes are real and which are noise?

assume a rudimentary knowledge of homology, as is to be found in, say, Chapter 2
of [15].

Despite being both computable and insightful, the homology of a complex asso-
ciated to a point cloud at a particular ε is insufficient: it is a mistake to ask which
value of ε is optimal. Nor does it suffice to know a simple ‘count’ of the number and
types of holes appearing at each parameter value ε. Betti numbers are not enough.
One requires a means of declaring which holes are essential and which can be safely
ignored. The standard topological constructs of homology and homotopy offer no
such slack in their strident rigidity: a hole is a hole no matter how fragile or fine.

2.1. Persistence. Persistence, as introduced by Edelsbrunner, Letscher, and
Zomorodian [12] and refined by Carlsson and Zomorodian [22], is a rigorous re-
sponse to this problem. Given a parameterized family of spaces, those topological
features which persist over a significant parameter range are to be considered as
signal with short-lived features as noise. For a concrete example, assume that
R = (Ri)N

1 is a sequence of Rips complexes associated to a fixed point cloud for an
increasing sequence of parameter values (εi)N

1 . There are natural inclusion maps

(2.1) R1
ι

↪→ R2
ι

↪→ · · · ι
↪→ RN−1

ι
↪→ RN .

Instead of examining the homology of the individual terms Ri, one examines the
homology of the iterated inclusions ι : H∗Ri → H∗Rj for all i < j. These maps
reveal which features persist.

As a simple example, persistence explains why Rips complexes are an acceptable
approximation to Čech complexes. Although no single Rips complex is an especially
faithful approximation to a single Čech complex, pairs of Rips complexes ‘squeeze’
the appropriate Čech complex into a manageable hole.
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Lemma 2.1. For any ε > 0, there is a chain of inclusion maps

(2.2) Rε ↪→ Cε
√

2 ↪→ Rε
√

2.

(See [10] for the tight dimension-dependent expansion bound smaller than
√

2.)
This implies that any topological feature which persists under the inclusion Rε ↪→
Rε′ is in fact a topological feature of the Čech complex Cε′ when ε′/ε ≥

√
2. Moral:

The homology of the inclusion ι∗ : H∗Rε → H∗Rε′ reveals information that is not
visible from H∗Rε and H∗Rε′ unadorned. This is a foreshadowing of the broader
idea of persistence arising in an arbitrary sequence of chain complexes.

2.2. Persistent homology. One begins with a persistence complex: a sequence
of chain complexes C = (Ci

∗) together with chain maps x : Ci
∗ −→ Ci+1

∗ . (For
notational simplicity, we do not index the chain maps x.) This is motivated by
having a sequence of Rips or Čech complexes of increasing ε sampled at an increasing
sequence of parameters {εi}. Since Rips or Čech complexes grow with ε, the chain
maps x are naturally identified with inclusions.

Definition 2.2. For i < j, the (i, j)-persistent homology of C, denoted Hi→j
∗ (C),

is defined to be the image of the induced homomorphism x∗ : H∗(Ci
∗) → H∗(C

j
∗).

As an example, consider the filtration R = (Ri) of Rips complexes parameterized
by proximities εi. Lemma 2.1 implies that if εj/εi ≥

√
2, then Hi→j

k (R) �= 0 implies
Hk(Cεj

) �= 0. Holes in the Čech complex are inferred by the persistent homology of
the Rips filtration.

There is a good deal more algebraic structure in the interleaving of persistent
homology groups, as explained in the work of Carlsson and Zomorodian. Fix a PID
of coefficients R and place a graded R[x]-module structure on C with x acting as a
shift map. That is, a unit monomial xn ∈ R[x] sends Ci

∗ to Ci+n
∗ via n applications

of x. One assumes a finite-type condition that each Ci
∗ is finitely generated as an

R[x]-module and that the sequence stabilizes in i (in the case of an infinite sequence
of chain complexes).

As the filtering of C is via chain maps x (cf. the setting of Rips complexes
— simplices are added but never removed as ε increases), C is free as an R[x]-
module. The resulting homology H∗(C) retains the structure of an R[x]-module,
but, unlike the chain module, is not necessarily free. Nor is it easily classified: the
Artin-Rees theory from commutative algebra implies that the problem of classifying
(finite-type) persistence modules such as H∗(C) is equivalent to classifying finitely
generated nonnegatively graded R[x]-modules. This is known to be very difficult
in, say, Z[x].

However, for coefficients in a field F , the classification of F [x]-modules follows
from the Structure Theorem for PID’s, since the only graded ideals of F [x] are of
the form xn · F [x]. This implies the following:

Theorem 2.3 ([22]). For a finite persistence module C with field F coefficients,

(2.3) H∗(C; F ) ∼=
⊕

i

xti · F [x] ⊕

⎛
⎝⊕

j

xrj · (F [x]/(xsj · F [x]))

⎞
⎠ .

This classification theorem has a natural interpretation. The free portions of
Equation (2.3) are in bijective correspondence with those homology generators
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which come into existence at parameter ti and which persist for all future parame-
ter values. The torsional elements correspond to those homology generators which
appear at parameter rj and disappear at parameter rj + sj . At the chain level,
the Structure Theorem provides a birth-death pairing of generators of C (excepting
those that persist to infinity).

2.3. Barcodes. The parameter intervals arising from the basis for H∗(C; F ) in
Equation (2.3) inspire a visual snapshot of Hk(C; F ) in the form of a barcode. A
barcode is a graphical representation of Hk(C; F ) as a collection of horizontal line
segments in a plane whose horizontal axis corresponds to the parameter and whose
vertical axis represents an (arbitrary) ordering of homology generators. Figure 4
gives an example of barcode representations of the homology of the sampling of
points in an annulus from Figure 3 (illustrated in the case of a large number of
parameter values εi).

H0

H1

H2
ε

ε

ε

Figure 4. [bottom] An example of the barcodes for H∗(R) in the
example of Figure 3. [top] The rank of Hk(Rεi

) equals the number
of intervals in the barcode for Hk(R) intersecting the (dashed) line
ε = εi.

Theorem 2.3 yields the fundamental characterization of barcodes.

Theorem 2.4 ([22]). The rank of the persistent homology group Hi→j
k (C; F ) is

equal to the number of intervals in the barcode of Hk(C; F ) spanning the parameter
interval [i, j]. In particular, H∗(Ci

∗; F ) is equal to the number of intervals which
contain i.

A barcode is best thought of as the persistence analogue of a Betti number.
Recall that the kth Betti number of a complex, βk := rank(Hk), acts as a coarse
numerical measure of Hk. As with βk, the barcode for Hk does not give any in-
formation about the finer structure of the homology, but merely a continuously
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parameterized rank. The genius of a barcode representation is the ability to qual-
itatively filter out topological noise and capture significant features. Indeed, as
shown in [7], barcodes are stable in the presence of noise added to a [Morse] fil-
tration. For example, in Figure 4, one sees (from a very coarse sampling) that the
point cloud likely represents a connected object with one or two significant ‘holes’
as measured by H1 and no significant higher homology.

2.4. Computation. Most invariants in modern algebraic topology are not known
for their ease of computation. Homology (in its simplest manifestations) appears
exceptional in that the invariants arise as quotients of finite-dimensional vector
spaces. In the context of applications, ‘finite’ may exceed reasonable bounds. There
is no recourse to chanting “Homology is just linear algebra” when faced with millions
of simplices: one needs good algorithms. Fortunately, such exist with increasing
scope and speed. The text [16] gives a comprehensive introduction to issues of and
algorithms available for computing homology for realistic problems in application
domains.

More fortunate still, there is an excellent algorithm available for the computation
of persistent homology groups and barcodes. The algorithm takes as its argument
the filtered simplicial complex consisting of pairs (σi, τi), where σi is a simplex and
τi is the time at which that simplex appears in the filtration. This algorithm first
appears in the paper of Edelsbruner, Letscher, and Zomorodian [12] for simplicial
subcomplexes of E

3 with Z2 coefficients and in that of Carlsson and Zomorodian
[22] for general persistence complexes with field coefficients. The Matlab-based
front end Plex by de Silva and Perry [11] incorporates the C++ persistent homol-
ogy library of Kettner and Zomorodian with tools for inputting and manipulating
simplicial complexes.

It is worth noting that for chain filtrations arising from realistic data sets, the
Rips complexes are of an unmanageable size. This necessitates efficient sampling
or reduction of the complex with accurate topology. The witness complex of
Carlsson and de Silva [8, 9, 14] is one solution to this problem.

2.5. Other directions. We note that the above is the briefest of treatments of
what quickly becomes a fascinating and very active sub-topic of computational
topology. For those interested in the algebraic-topological aspects of the theory, we
note the following recent developments:

• There are other filtrations besides those associated to Čech or Rips com-
plexes which are natural settings in which to contemplate persistence. The
Morse filtration of a space X outfitted with f : X → R is a filtration
of X by excursion sets Xt =

{
f−1 ((−∞, t])

}
. This (or a discretized ver-

sion thereof) is one commonly investigated setting [1, 7], as is filtration by
means of curvature data [5].

• Our discussion of persistence is couched in the setting of chain complexes
indexed by a single parameter. There are strong motivations for wanting to
treat multi-parameter families of complexes. However, there are fundamen-
tal algebraic difficulties in constructing an analogous theory of persistence
modules in this setting [24].

• The computation of persistent relative homology is more subtle, since the
ensuing parameterized chain complex C is no longer free as an F [x]-module.
Bendich and Harer [in progress] have developed an algebraic construction



PERSISTENT TOPOLOGY OF DATA 69

for defining and computing persistent homology which has a particularly
clean form in the setting of a Morse filtration. The analogue of Theorem 2.3
provides a perfect pairing of Morse critical points.

• The computation of persistent cohomology is not straightforward. As
shown by de Silva [in progress], if you take the graded free F [x]-module
chain complex C for the Morse filtration Xt of a space X and dualize it
as a graded free F [x]-module, i.e., if you construct HomF [x](C, F [x]), then
the homology of the resulting object as a graded F [x]-module is not the
persistent cohomology of H∗(Xt), but rather that of the relative cohomol-
ogy H∗(X, Xt). Computing absolute persistent cohomology necessitates a
recourse to duality and the theory of Bendich-Harer above.

3. Example: natural images

One recent example of discovering topological structure in a high-dimensional
data set comes from natural images. A collection of 4,167 digital photographs of
random outdoor scenes was assembled in the late 1990s by van Hateren and van der
Schaaf [20]. Mumford and others have posed several fascinating questions about
the structure and potential universality of the statistics of this and similar sets of
images in the context of visual perception [17].

3.1. “Round about the cauldron go”. Mumford, Lee, and Pederson [18] con-
struct a data set by choosing at random 5,000 three-pixel by three-pixel squares
within each digital image and retaining the top 20% of these with respect to con-
trast. Each such square is a matrix of grey-scale intensities. The full data set
consists of roughly 8,000,000 points in E

9. By normalizing with respect to mean
intensity and restricting attention to high-contrast images (those away from the
origin), the data set is projected to a set of points M on a topological seven-sphere
S7 ⊂ E

8. The details of this data set construction require a choice of natural ba-
sis with respect to a particular norm for values of contrast patches. We refer the
interested reader to [18] for details.

3.2. “Hover through the fog”. So coarse a reduction of natural images (into
three-by-three squares of greyscale intensities) still leads to a point cloud of too
high a dimension to visualize. Worse still, what structure there is is blurred and
foggy: points appear at first to be distributed over the entire S7. A resort to density
considerations is thus in order. The subject of density filtration is a well-trod area
of statistics: see, e.g., [19].

A codensity function is used in [3] as follows. Fix a positive integer k > 0. For
any point xα in the data set, define δk(xα) as the distance in E

n from xα to the
kth nearest neighbor of xα in the data set. For a fixed value of k, δk is a positive
distribution over the point cloud which measures the radius of the ball needed to
enclose k neighbors. Values of δk are thus inversely related to the point cloud
density. The larger a value of k used, the more averaging occurs among neighbors,
blurring finer variations.

The codensity is used to filter the data as follows. Denote by M[k, T ] the subset
of M in the upper T -percent of density as measured by δk. This is a two-parameter
subset of the point cloud which, for reasonable values of k and T , represents an
appropriate core.
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3.3. “When shall we three meet again?” The first interesting persistent ho-
mology computation on this data set occurs at the level of H1: to what extent are
there ‘loops’ in the data set along which the cloud is concentrated?

Taking a density threshold of T = 25 at neighbor parameter k = 300, with
5,000 points sampled at random from M[k, T ], computing the barcode for the first
homology H1 reveals a unique persistent generator [3]. See Figure 5. This indicates
that the data set is diffused about a primary circle in the 7-sphere. The structure of
the barcode is robust with respect to the random sampling of the points in M[k, T ].

The goal of the homology computation is to discover a ‘hidden’ feature of a data
set that is not discernable by clustering and connectivity alone. The simplest such
feature would be, as indicated by the computation above, a primary circle about
which the data is scattered. To what might this correspond? A close examination
of the data point corresponding to the primary circle reveals a pattern of 3-by-3
patches with one light region and one dark region separated by a linear transition.
This nodal curve between light and dark is linear and appears in a circular family
parameterized by the angle of the nodal line, as shown in Figure 5.

H1

ε

Figure 5. The H1 barcode for a random sampling of 5,000 points
of M[300, 25] yields a single generator. This generator indicates
the nodal line between a single light and single dark patch as being
the dominant feature of the primary circle in M.

As seen from the barcode, this generator is dominant at the threshold and co-
density parameters chosen. An examination of the barcodes for the first homology
group H1 of the data set filtered by codensity parameter k = 15 and threshold
T = 25 reveals a different persistent first homology. The reduction in k leads to
less averaging and more localized density sensitivity. The barcode of Figure 6 re-
veals that the persistent H1 of samples from M[k, T ] has Betti number five. This
does not connote the presence of five disjoint circles in the data set. Rather, by
focusing on the generators and computing the barcode for H0, it is observed [3]
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H1

ε

Figure 6. The H1 barcode for M[15, 25] reveals five persistent
generators. This implies the existence of two secondary circles,
each of which intersects the third, large-k, primary circle twice.

that, besides the primary circle from the high-k H1 computation, there are two
secondary circles which come into view at the lower density parameter.

A close examination of these three circles reveals that each intersects the high-
k primary twice, yet the two secondary circles are disjoint. To which features in
the data might these secondary circles correspond? As noted in [3], each secondary
circle regulates images with three contrasting regions and interpolates between these
states and the primary circle. The difference between the two secondary circles lies
in their bias for horizontal and vertical stratification respectively. Figure 7 gives an
interpretation of the meanings of the secondary circles.

Figure 7. The secondary generators of H1 for M[15, 25] have
an interpretation as regulating changes from dual-patch to triple-
patch high contrast regions in horizontal and vertical biases respec-
tively.

3.4. “Come like shadows, so depart!” What is the good of temporary topo-
logical features which emerge and dissolve as a function of the parameter ε? Does



72 ROBERT GHRIST

this lead to anything more than a heuristic for high-dimensional data sets that are
hard to visualize? While the work of Carlsson et al. is very recent, there are sev-
eral applications of the topological approach to data analysis which argue in favor
of the proposition that homological structures in high-dimensional data sets are
of scientific significance. Besides the Mumford data set reviewed here, persistent
homology computations are being applied in several disparate contexts, including
geometric features of curves (e.g., optical character recognition) [5] and spike train
data from implanted electrode arrays in the primary visual cortex of Macaque mon-
keys [4]. The latter project has as its goal the understanding of how the topology
of a parameterized space of images is represented in neural data: just as the lens
manipulates and projects an image onto the retina, an image parameter space is
transformed and projected directly into the visual cortex.

Regarding the natural image data, it is instructive to think of the persistent
homology of M as something akin to a series expansion of the true space. The
reduction of the full data set to an S7 via projection is really a normalization to
eliminate the zero-order (or “single patch”) terms in the data set. Following this
analogy, the H1 primary generator fills the role of a next term in the expansion of the
homotopy type of the data set, collating the nodal curve between two contrasting
patches. The secondary circles, interpolating between single and dual nodal curves,
act as higher-order terms in the expansion, in which horizontal and vertical biases
arise.

It is here that one gets deeper insight into the data set. Inspired by the meaning
of the H1 barcodes of M, further investigation reveals what appears to be an
intrinsic bias toward horizontal and vertical directions in the natural image data, as
opposed to an artifact of the (right) angle at which the camera was held: [3] reports
that a repetition of the experiment with a camera held at a constant angle π/4 yields
a data set whose secondary persistent H1 generators exhibit a bias towards true
vertical and true horizontal: the axis of pixellation appears less relevant than the
axis of gravity in natural image data.

Is there any predictive power in the barcodes of the data set? Recent progress
[3] demonstrates the insight that a persistent topology approach can yield. The

Figure 8. A Klein bottle (pictured against a computer-generated
UPC barcode of the string “Klein bottle”) [left] is the non-
orientable surface obtained by identifying opposite sides of a square
as shown [right].
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Figure 9. A Klein bottle embeds naturally in the parameter space
as a completion of the 3-circle model. In the unfolded identifica-
tion space shown, the primary circle wraps around the horizontal
axis twice. The two secondary circles each wrap around the ver-
tical axis once (note: the circle on the extreme left and right are
glued together with opposite orientation). Each secondary circle
intersects the primary circle twice.

barcodes for the second persistent homology H2 are more volatile with respect
to changes in density and thresholding. This is not surprising: the lowest order
terms in any series expansion are always most easily perceived. However, there is
indication of a persistent H2 generator (in Z2 coefficients) at certain settings of k
and T . Combined with the basis of H1 generators, one obtains predictive insight to
the structure of the space of high-contrast patches. At certain density thresholds,
the H2 barcode, suitably trimmed with Occam’s razor, suggests a two-dimensional
completion of the low-k persistent H1 basis into a Klein bottle (see Figure 8).
Recall that this nonorientable surface can be realized as an identification space of
a square, as in the figure. Figure 9 illustrates an embedding of this surface in the
space of pixellated images. One notes that this is a natural completion of the low-
density persistent H1 readings: the primary and secondary circles appear with the
appropriate intersection properties. Fortunately, a pair of homology computations
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in Z2 and Z3 coefficients — finite fields being most natural for computer experiments
— is efficacious in verifying that the persistent surface found is a Klein bottle.

We emphasize that the point cloud data set M is vast, high-dimensional, and
not at all concentrated sharply along distinct features. A cursory viewing of the
data seems to indicate that the 7-sphere is filled densely with data points and that
there is seemingly no coherent structure to be found. It is through the lens of
persistent homology — suitably tuned and aimed — that cogent features emerge
and fade with changing parameters. These persistent generators, upon close ex-
amination, do correspond to meaningful structures in the data, inspiring a sensible
parametrization of the global structure of the data set. This is the type of explana-
tory power that any exemplar of good applied mathematics provides to a scientific
challenge.
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