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0. INTRODUCTION

The classical invariants of (nonsingular) symmetric bilmear forms over a field
are rank, discriminant, signatures, and Hasse~Witt invariants. In the theory of
(=, u)-reflexive forms [9], an algebraic K-valued rank and an algebraic K;-valued
discrimmant come into play, leading to various algebraic L-theories L?, L®, L?,
as well as to certam pertodicity phenomena relating them [10].

In this paper, we generalize for (o, #)-reflexive forms the Hasse-Witt invariants
to an algebraic K,-valued invariant. A corresponding invariant for automor-
phisms (1sometries) of such forms is also defined This 1s all accomplished 1n
Section 3, and the relation of the invariants defined with the Hasse~Witt
invariant 1n the case of a field 1s given 1n Section 4.

The first section motivates and defines involutions T, , on the even order
general hinear groups GL(2r, R) and Steinberg groups St(2z; R), compatible
with the natural homomorphisms St(2#n; R) — GL(2#x; R),Ywhere (R, o, 1) 1 a
ring with anostructure As z— oo, T, induces the right mvolution on K, R,
1=1,2 Then («, #)-reflexive forms and automorphisms of even rank and
their discriminants are described in terms of T, ,, , 1n Section 2. In Sections 2
and 3, there arise “differentials” H*(Z, ; K,R)— H¥Z,; K, ,R), 1+ =0, 1,
which are carefully described; also, some general computational structure of
these differentials 1s given.

For algebraic L-theory (and for topological applications), K;R and K,R are
not the rght value groups for discriminants and Hasse-Witt invariants of
reflexive forms Hence, in Section 5, we describe Stemnberg-type groups
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HASSE-WITT INVARIANTS 435

St¥(n; R) for suitable subgroups IV C R’, the group of units of R, and an exact
sequence
0— K,YR— St"(R) — GL(R) —~ K;¥*R - (,

so that K;¥R-valued discriminants and K,"~valued Hasse~Witt invariants may
be defined with all the nght properties The special choice R = Zm, V = 4=
gives K\"R = Wh(w), K,¥R = Why(w) and the “correct” theory for surgery of
manifolds

In the second paper of this series, we shall give an algebraic L-theory applica-
tion and interpretation of the ideas set forth here In particular, an L-theory L*
will be described, which fits into an exact triangle

NS

H¥(Zy5 K3)

L L

From the standpomnt of periodicity, the periodicity sequences of Wall {10] may
be extended somewhat farther to the left. Also, the direct connection with the
unitary K, of Sharpe [7] may be established

Subsequently, computational results and topological apphications will be
given, including the relation of L to pseudo-isotopy

A final word on our restriction of all discussion of forms in this paper to
reflexive forms (as opposed to Hernutian or quadratic forms) 1s 1n order. This
is because the theory of reflexive forms is, 1 a precise sense, the “fixed point
theory” of an involution on a theory of finttely generated projective modules
(cf. [3, 8]); moreover, the algebraic K-theory valued invariants we treat arise
from this equivariant algebraic K-theoretic situation.

1. ALGEBRAIC PRELIMINARIES

Let R be an associative ring with unity. An antistructure («, #) on R consists
of an antiautomorphism « of R together with a unit # € R such that of{s) » = 1
and o®(r) == wru~' for every r € R. There 1s the contravariant duality functor
D, My #y given by DM = Homp(M, R) for MeObj #, with the
conjugate right R-module structure determined by o,

(frix) = ofr)f(x), reR, xeM, feHomy(M,R),
and D = Hompg(h, R) for ze Mor .# 5 .

Levma 1.1 The formula (n, M) F) = ao(f{x)) u defines a natural trans-
formation n, .+ 1 4, — D2
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Proof. First, we check that (v, ,M)(x) € D,2M:

(o M )@)(fr) = A(fr)(®)) v = ololr) £ (x)) 2 = o(f (%)) &2(r) u
= of f (%)) ur = (., M)(2)(f) .
Next, we check that 5, ,M & Homg(M, D 2M)"

Ma )@ )(f) = o f(wr)) u = o f(2) 1) u = ofr) o f(x)) u
= o7 )7, uM)ENS) = ((,uM)(%) 7)()-

Hence, 7, ,M 1s well defined for every M e Oby.# . That 1t 1s a natural
transformation follows easily. |

ProrosiTION 1.2.  The natural transformation m, ., defines a self-adjunction of
D, ; that 15, (Do, u)(Ma,uDe) = 1p , and the assocrated homomor phisms

by = t, (M, N): Homg(N, D, M) — Homg(M, D N)
defined by t, (M, N)f) = (D.f)¥nuM) are natural isomorphisms and satisfy

2
t,,=11e,

ta,u(N’ M) ta,u(M’ N) = ]HomR(N,DaM) .

Proof. Tt suffices to show that (Dyny,u)(e,uDs) = 1p_, the other parts then
being routine (cf Eilenberg and Moore [2], for example). Let f € Homg(M, R),
geHomg(D,M, R), and k€ Homg(D M, R); then, (n,,,D.M)(f)(g) = o(g(f)) u
and

(Do, MY R)%) = h{(70, M )()-

Hence, we have the composition

(D, e )10, DY) = (0, u DY N (0, M )(#)) = (90, uM)(2)(S)) 1
= ofo(f(x) W) u = uf () u =f(x) 1

Note Adjoint and self-adjoint contravariant functors and the reflexive
structures determined by the latter are discussed 1n greater detail in [3].

It is helpful to have an alternate description of D2M in the cases where
MM 18 an 1somorphism If ¢: R— S 1s a ring homomorphism then there 1s
the base change functor [y Mg— My given by JM =M, [,f =f for
MeObj My, fe Mor M ¢, where J,M has the induced R-module structure
x 47 =xp(r) for x e M, r € R The following 1s trivial.

Levmma 1 3. The formula (f,,M)(x) = xu=? defines a natural equivalence of
Junctors jo o' 1 4, — N |

It follows that the natural transformation 6, , == 1, ,js 5 Jo2 — D2 has the
especially sumple form

(OouM)@)f) = o f(x1)) u = o7 (#)).
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Thus, for example, (6, ,M)(x)f)=0 or 1 according as f{x) =0 or 1 In
particular, let F' be the free right R-module with finite basis ¢, ,..., ¢, ; then the
dual basis of DF to e, .., e, 15 the basis e*,..., ¢,* of D, F determined by
e,*(e,) = 8, (Kronecker delta). Similarly, D 2F has the basis ef*,..., &f* dual
to e, *,. ., €,*; then, if JF has the basis ¢, ..., &, , we have shown the following.

Levma 14. For 1 = 1,.,n, (6,.F)e) = ef*. Moreover, 6, ,M: J 20—
DM is an isomorphism whenever v, M is; in parizcular, 0, P 15 an isomorphism
Sor every fimtely generated projective R-module P.

Let #; C M be the subcategory of finitely generated projective R-modules
and isomorphisms of such. The restriction of D, defines a contravariant functor
on &5 by (1 4), however, since the morphisms of & are isomorphisms, 1t 13
more convenient to consider the covariant functor T,: Py — P, given by
T,P=D/P, T,f=D.f* for PeObj @, fe Mor P, . We have T2 = D2
on Pp , and [ restricts to a functor on &, . Hence, by (1.4) we have the natural
equivalences

Nosu* ngR = T2 Ot Jor 22 T2

of functors on &, . As before, we also have the natural mvolutions
to,u(P, Q): ZPR(Q; T.P) == F (P, T,Q).

Since T, 1 a product preserving functor and 7, , 1s 2 natural equivalence of
functors on &y, it follows that T, induces an mnvolution, also denoted T, , on
KR, the Quillen-Segal algebraic K-theory of R. Although T,? is the identity
on K R, it 1s not the case that, for Ky R or KR, T, is indueed from an mvolution
on GL(P, R) or on St(n, R). However, for isomorphisms between projectives
of the form P @ T,P, we can do considerably better.

Let H,: &, — Py be the hyperbolic module funcior, given by H P = P © T,P,
H,f=f@ T,ffor Pe Obj 5, fe Mor #;, Then H, %, denotes the category
with objects H,P for P e Obj #; and with morphisms from H,P to H,Q all
the morphisms in &5 from H,P to H,Q Swnce T H, Pz H,T P naturally in
P e Oby Z,, the functor T,: H, P — H, P is defined, and %, ,: lg g, o T2

For P e Obj Py , there 1s the hyperbolic form

bo P = ( 0 leP

P G ) HP—HT,P

in H, % . Let T,,: HP?y — H, Py be the functor given by 7T, ,H.P = H,P,
Touf = )™ (TS Yo, uP) for PeOby Py, fe PR(H,P, H,Q). Then the
following is immediate.

LemMA 15. iy, t5 @ natural equivalence of functors on HPp. .,
sz,u % Tm A l
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Noting that 7% — Tufus and that (Tufun)(bus) = uut Lgo, == T
we have, not only that T, , fixes the objects of H, % , butalso that T, , = 15 P
Since the canonical functor H, %, — & 1s cofinal, we have

KHPyo(1+T)KR of 1=0,
~ KR if i>0.

Furthermore, T, , =T, on K,R, i >0, and 7., =1 on GL(H,P;R) for
PeObyPr. We shall see that the same holds for the Steinberg group
St(HF; R) for F e Obj #y a free module with specified basis e, , .., e, . For
then H_F has the basis ¢ ,..., €, , &.%,..., €,%, and in matrix notation,

T = (7 )30 (g )

in GL(2#n; R) =~ GL(H_F; R), where M* denotes conjugate transpose of M
by a, M~ the inverse of M<, and I, 1s the identity of GL(n; R).

ProposiTiON 16  If €, 15 an elementary matrix wn E(2n; R) C GL(2n; R) =~
GL(H,F; R), then T, ¢, = e, for switable unique p, q, s {depending upon nota-
tional convention only).

Proof We simply give below the result of applying 7, , to the elementary
matrix ¢, . The proposition follows from the same kind of arguments given in
Milnor [5, 92, 9.4], except that we are working in E(2n; R). Let the basis
element ¢, correspond to the integer 7, and let the basis element e,* correspond
to the integer —i, where 2 = 1,.. ,# Then

Tyutsy = e 1,1 both > 0,

—3,—%
=0 i> 0, j<0,
= u i<0, >0,
= i jboth<0. |

For convenience, we record how T, , acts on E(2n; R) i blockwise notation

(subscripts are to be ordered 1,. , n, —1, .., —n).
r.(¢ D=0 ")
ro(® )= )
o 0= 2
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Also, for (£ 2) € GL(2n; R), we have

(A B)~1 _ (Df‘ u“lB“)

4 C D Cou A

%

Using the Stemberg relations for E(2n; R), the following 1s easily checked
(cf. Milnor {5, Chap 5, 10.4]).

Cororrary 1.7. The wmwolution T, , on E(2n; R) hfts to an mvolution T, ,
on St(2n; R) defined by the permutation of generators

—o.{r)

Ty ey = %50, 1,7 both > 0,
— a0 >0, j<0,
= ay 1 <0, j>0,
= ¥ 1,7 both < 0. §
Letting n— oo gives the corresponding result for St(R) = “St(200; R).”

Thus we have a commutative diagram with exact rows and vertical morphisms
all involutions (here, GL(R) = “GL(200; R),” also)

0 —» K,R — St(R) %> GL(R) —> K;R —> 0

|
Toc,u:Tal Tal iTa lTa,u=Ta

0 —> K,R —> St(R) —*> GL(R) —>» K,R —> 0.

2. RerLExive Forms on HypersorLic MoODULES

Recall that a (nonsingular) («, u)-reflexive form on P e Oby Z5 1s an element
g e PP, T,P) such that n, P = (T,2) g (i other words, ¢, (P, T.P)(g) =
(D,8)my,P) = £) A basic observation in our approach to reflexive forms is
the following.

ProrosiTioN 2.1. If PeObjP,, then the (nonsingular) (o, u)-reflexive
Jorms g on H,P are in one-to-one correspondence with the elements ' € GL(H_P; R)
such that 1y p = (Ty,8') &', according to the 1ule g = ($, ,P) g'.

Proof. Smce T, P =, TP and (b, TP )by, L) = 1, P, we have
Ta,m((‘/‘m,up)-l g) = (lpot,uP)Ml (Talﬁa,uP)—l (Tag)(¢m uP>
= (Mo, ul) ™ (To8) P ul)

Hence, of g = (5, )¢, then (T,.g)¢ = lyp if and only if ly, =
(MY (To2) g, 1 e, 1f and only if g is («, u)-reflexive. §



440 CHARLES H. GIFFEN

Of course, the hyperbolic form ¢, ,P 1s itself an («, #)-reflexive form on H,P,
and 1t corresponds in Proposition 2.1 to 1 Hp "The following 1s clear.

Lemma 22 Let P,OQeOby Py, and let g = (4, ,P)g', b = Q) be
(o, u)-reflexave forms on P, Q, respectwely; of v+ HP @ HQ~ H P DQ) s
the canonical 1somorphism which interchanges the middle two summands, then

gHE=(Ti)g @) 77 = (Yo (P ©DONe' HE)
s an (o, u)-reflexsve form on H (P @D Q), and g HI =+(g' @A)+ |

Thus, stabilizing the («, u)-reflexive form g = (4, ,,P) g’ on H,P by orthogonal
direct sum with the hyperbolic form i, ,,Q on H,Q corresponds in Proposition 2.1
to stabilizing ¢’ e GL(H,P, R) by direct sum with 15 , 'The process of
stabilizing g or g’ this way will always be followed by 7 , Yz ,

GL(H,P; R) “> GL(H.,P ® H,Q; R) =S GL(H(P P Q); R),

as with the direct sum operations []. This 1s basically in agreement with notation
adopted 1n the previous section for free modules I and for GL{HF, R).

Having identified ¢’ € GL(H,P; R) such that 15 p = (7},,8') g’ with the (o, u)-
reflexive form (i, ,P) g’y we should point out that an element f e GL(H,P; R)
satisfies T, , f = f if and only if f is an automorphism of the hyperbolic form
L. More generally, we have the following.

Lemma 2.3. If g =, P) g, h= (), OV I are (o, uj-reflexive forms on
P,Q e Oby Py , respectively, then fe P(H,P, HQ) is an isomorphism of (a, u)-
reflexive forms from g to hif and only if T, ., f = k'fg"

Proof. Expanding Ty f = ($uu@) ™" (Tuf )(beuP); we have T, f = Hfg"™
if and only 1f (D, f) kf = g, which is just the condition for f to be an somorphism

fromgtoh J

The discriminant with respect to P e Obj Py of an («, u)-reflexive form g on
H_P 1s defined to be the class of (J, ,P) g € GL(H,P; R) in KR,

discp g = [(u,uP) 1 8] € KR,

Similatly, if e € Zx(P, Q) and if fe P (H, P, H,Q) is an isomorphism of (a, #)-
reflexive forms from g to A, the discrimnant with vespect to e of f is defined to
be the class of (H,e) fe GL(H,P; R) in K,R,

disc, f = [(He)f] € KR

If P=0, e =15, and g = A, then disc, f is sumply the determinant of the
automorphism f of g. From Proposition 2 1, it 1s clear that

(1 + T,) discp g = 0;
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on the other hand, smce T, ,H, = H,, we have from Lemma 2.3 that
(1 — T,) disc, f = disc, g — discg 4,

which vamshes if g and A have the same relative discriminants, e.g., when f
is an automorphism. From a somewhat different viewpoint, Lemma 2.3 tells
us that, up to stable somorphism of (g, P), discp g is well-defined modulo
(1 — T,) KR, Similarly, up to stable choice of ¢, disc, f 1s well-defined module
{1+ 7T,) KR

Now, if fe Zx(H, P, H,Q) 1s an 1somorphism from g to % of («, u)-reflexive
forms, then, in the absence of any e € Z,(P, (), we have from Lemma 2 3 that

(awP) 8 = (Lo uf Y1 o, OV A,
and smnce conjugation does not alter a class modulo commutators,
discy g — discq i + [(Tuuf) f1€ KiR.
The element [(T, ,f)f]€ KR is of particular mterest, as explained by the

following, whose proof is omitted.

Lemva 24. Let xe Z-(Z, 3 KyR), then there are P,Q € Obj Py such that
HP =~ HQand x = [P] — [O). If fe #(H,P, H,Q), then, modulo (1 — T,) K\R,
the element d % = [(T,, . f) ™ f]1s well defined. The resulting function

dyut Z7(Zy s KGRY— K\R{(1 — T,) K4R

is @ homomorphasm which vamshes on (1 — T,) KR and satisfies (1 + T,) d;,, =0,
and so induces a homomor phism

g H(Zy s KgR)— H (Z,; K4R). §
Note. Z¥(Zy; )=Ker(1 F T,); H:(Z,; }=Z%Z,; )Im(l £+ T,).

CoroLLaRY 2.5. If gis a nonsingular (o, w)-reflextve form on H,P, P ¢ Oby Z,
then the (global) discriminant of g

disc g = [discp g} € Coker[d,,: H(Z, ; K,R)— H (Z, ; K;R)]
15 well defined on the stable isomorphism class of g (as opposed to the stable 1so-
morphism class of the pair (g, P)). §

Suppose now that P e Obj & satisfies P~ T,P; then, for g P(P, T, P),
there is defined the hyperbolic automorphism of , P

0 f,.87"

Poug = (g 0

) e GL(H,P; R)

As complement to Lemma 2.4, we have the following, whach is easily verified
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LemMa 26 Let x€ ZH(Z, ; K R); then there are P,Q € Oby Py such that
P TP Q==T0, and x =[P]—[Q]. If g PP, T,P), he P 0, T.,0),
then, modulo (1 + T,) K\R, the element

dy o = [Puug] — [funh] € KR/(1 + T,) K4R
s well defined. The resulting function
diwi Z7(Zy s KoR) —~ KiR((1 + T,) KiR

15 @ homomorphism which vanishes on (1 -+ T,) KR and satisfies (1 — T,) d;,, =0,
and so induces a homomorphism

i H'(Zy ; KoR) — H'(Zy ; K4R). 1

Hence, modulo both the stable choice of ¢ and stable hyperbolic automor-
phisms (or modulo hyperbolic stabilization), the discrimmant of an automor-
phism of an («, #)-hyperbolic form is well defined as an element of

Coker[dy ,: H(Zy ; KoR) — H¥(Z, ; KyR)].

If stabilization 1s via H F, F free, then topological applications require that the
determmant or relative discriminant only be considered modulo [, (F — T,F)],
where F'— T,F is the dual basis map which sends ¢, to ¢,*.

At any rate, we have defined (J-)-discrtmanant homomorphisms dF,:
H=(Z, ; KyR) — H*(Z, ; K, R), which are of some interest in algebraic K-theory.
Presumably, they may be identified with a row of differentials in the E,-term
of the equivarnant algebraic K-theory spectral sequence due to Vance [8].

Recall that if («, #) is an antistructure on R, then (e, v) is an antistructure
on R if and only if v = eu, ee Z = Z(R), and o(c) ¢ = 1. For example, there
are always the cases ¢ = 4-1.

ProrosiTiON 2.7. Let e € Z = Z(R) be a unit satisfying ae)e = 1. If Pe Oby #,,
supports an (o, eu)-veflexive form, then, in the pairmg KiZ & KR — KR,

. [P] = [[—€l[P]le H'(Z, , KiR).
In particular, 1of P supports an (o, —u)-reflexive form, then d} ,[P] = 0.
Proof. Let g e Pp(P, T,P) satisfy ¢, .,g = g; since ¢, ,, = ef, ,, , we have

Pouf = (g t"‘”(‘)g”l) = (g E%_I)EGL(HaP, R)

Using 1, @g: P D P—>= H P, we have

611:

1 DY (houtll @9 = ([, /) cCLE@ P R),
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which gives the desired result under the identifications R = Z @, R,
P=Z®,P |}

In the same vein, we have the following (proof omitted).

ProrosiTioN 2.8. Let Z = Z(R) and PeObj#, support an (o|z, e
reflexive form; then, in the pawring K\R R K7 - KR,

d¥JR ®z Pl = [[~eul[Plle H (Z, , KyR).

In particular, df [R] = [—u]. |

As for d_,, , we have the following, using Lemma 2.3.

Prorosrrion 2.9. If P,Q e Obj %, and the hyperbolic forms i, ,P, &, .0
are isomorphic, then d_ ([P1—[0)) =0 |

3. RerLEXIVE FOorRMS WITH VANISHING DISCRIMINANT

Let g, £ be (o, u)-reflexaive forms on HP, H,O, respectively, where
P, 0O e Obj #4 ; then, by Lemma 2 2, the relative discriminant 1s additive:

discpgo g B A = discp g + discg A

Thus, for example, we may fix g, P and then choose O such that PR Q =F
is free, say with basis e, ,.., e, ; of course, discyg - 3,0 = discp g. If this
vanishes, and if # is sufficiently large, then, with respect to the canonical basis
e v €ns ¥, e, of H F, the matrix of

(e F) 7 (g H o uQ) € GLULEF; R)

1s an element g e E(2n; R) C GL(2n; R) satisfying (T, ,8)¢ = 1 by Proposi-
tion 2.1.

Now let § € St(2#; R) be an element such that ¢§ = ¢, where ¢ St{m; R) —
E(m; R) denotes the canonical epimorphism. Since ¢T, , = T, ¢ by Corol-
lary 17, we have

(T,..8)¢ e Cyp,R = Ket]é: St(2n; R) — E(2n; R)};
hence, there is defined the element G, ,§ = [(T, .8)#] € K,R.

Prorosirion 3 1. If § € E(2n; R) satusfies (T,,,8)8 = 1, and if § € 5t(2n; K)
satisfies pg§ = B, then

G, f€ZHZy; KyR).
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If 8’ €St(2n; R) also satisfies ¢’ = 8, then
Goud' — Gund = (L + T)F'E el + T,) KR
hence, G, 8 =[G, &1 € HH(Z, ; KyR) 15 well defined.

Proof. That G,,§=T,G,,§ follows from the fact that 72, =1 on
St(2n; R) by Corollary 1.7. The second assertion follows from the computation

(70,881 — [(To.u8)g] = [(T08"E' 8 HT0u8) "]
=[N+ 1.8 |

If P,,P,cO0bj Py, ec Py(P,, Py), and if fe P (H,P,, H,P,) is an iso-
morphism from g; to g, of («, u)-reflexive forms, then we may choose O € Obj £,
such that P, @O =F, 1s free, say with basis e¢,,.,¢,, 2=1,2. Then
J H Ly o € PR(HFy , HJY) is an ssomorphism from gy [ 4o, uQ t0 g5 H 0,0
and dlzce@lg fH 1y o= disc,f (a special case of additivity of the relative
discriminant of isomorphisms of («, u)-reflexive forms) With respect to the
appropriate canonical bases determined by the e;, and the e, , let &, f, g, be
the matrices of

e @ 1Q ’ Hu(e @ 10)_1 (f lHaQ)’ ('Jl'u,qu)——l (gz ‘vl'a,uQ)’

respectively, ¢ = 1, 2; also, set izz (H.2) §(H.2) 1, where Hé =¢é@é~
Since T, ,H,é = H,¢, we have (T, ,.f )81 = hpf by Lemma 2 3 and (T, ,£,)8, =1,
(T,.4hs) by = 1 by Lemma 2 2. If disc, f and discp g, all vanish, and if # is
suﬂicwntly large, then 7. 8, e EQn; R), i =1,2.

Now let 7, &, hzeSt(Zn R) be elements such that ¢f = f, ¢35 = &1,
by = hy ; then (T, o f )8.f 2hi5* € Cy R, and hence there is defined the element

Goalfi 815 1) = [(Tunf) 5 03" € KR

Propostriox 32. If f, & he E(2n, R) satisfy (T. wud)f =1, (T, ) h=

and (T,..f)§ = hf. and if f, §, e St(2n; R) satisfy $f — f, 48 = &, 9 —
then

(1 + Toc) Goa u(f9 & h) azug——~ ﬁ'
If ' €St(2n; R) also satisfies $f' = f, then
Goul 38 1) — Cuulf; & B) = (1 — TYff el — T.) KR
hence, G, (1 §, B) = [G,.(f; &, k)] € KLR(1 — T,) KR is well defined.

Proof. Permuting some of the terms cyclically in the following computation,
we have

A+ 1) Gl & ) = PN Touf) 8 + TU(Tuf) 80
= [ (T 8 (T uf )T, WL o] 7 (Teuh) ™
= [#(Teud)] + YT b)) = G — Goh.
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For the second assertion, we have

Gol '3 8 B) — Golf, & B) = [(TunF VG R fEH T, f Y1
= [f"f1+ [Teul /T
=1 -1 |
Thus, if G, & = G, .k, then G, (f; §, by Z~(Z,; K;R) and Coulfs 8 Bye

H~(Z, : K,R). This is the case, for example, when # = / (and hence § = A);
moreover, m this situation, we have the following, whose proof is trivial.

ProposrTioN 3.3. Let f, e E(2n; R) satisfy (T, ug)g =1and (T, f)¢ =4/
if f, € St(2n; R) are elements such that ¢ f = f, $§ — 8, then the elements

Ga,u(.f; 8= G«x,u(f; & 8)eZ(Zy; KyR),

sz,u(f; g’) == Ga,u(f; g) g~) € H_(Zz 3 KZR)
are well defined, independent of the choice of § e St(2n; R) such that ¢g = §. }
Suppose that, in the situation preceding (Proposition 3.2), we are given
f, & € St(2n; R) such that ¢f = f, ¢5, = §,, i = 1, 2. Since inner automor-
phism of GL(R) by an element % € GL(R), say § > 9° = £194, induces an
automorphism of E(R), then covermg this automorphism of E(R) 1s a umque

automorphism, > 7*, of St(R). In our case, we have (T, .f)g; = 877",
and so we have the elements

Gau(ﬂ 81,838 =G (i 81,8 il )5 KR,
Coufi81, 8038 = Goulfs 81, 85 ) e KuRI(1 — T,) KyR.

Thus, for all practical purposes, we may take & = 1

Suppose now that f, §, he GL(2n, R) satisfy (T, ,8)8 = 1, ( WM hE=1,
and (T, 1) = hf. If, as elements of GL(R), we have g, he E(R) then
#f e E(R) and hence also /(T u fy=hig1e E(R). Let 3, k, ¥ e St(R) satisfy
F = 5, dh = h, 5 = fNT,., f ), and §§ = A’ Then, smce KR acts trivially
on K,R, we have

Gdaﬂﬁ = [(Ta uﬁ) ﬁ] = [(T ﬁ)f ﬁi] = [(T ﬁ)fy"‘”] — [y"‘(Ta’uii)f(éﬁ) g]

= [H(To )™+ 3] = [H(Touli)) 8] = (9T (58)) £]
= [H(Tou)] + G..u8.

As for the element [ §(T, , )] € KyR, we have the following analog of Lemma 2.4,

ProposITION 3.4. Let x € ZH(Z,; KyR); then, if fe GL(R) represents x,
(Touf)t fEER). If 5eSHR) satisfies ¢5 = (T, f)2f, then, modulo

481/44/2-9
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(1 -+ T,) K3R, the element d} x = [(T,,,5)5] s well defined. The resulting
Junction

df,: Z(Zy ; KiR) —> K,R|(1 4 T,) KyR

15 @ homomorphism which vamshes on (1 + T,) Ky R and satisfies (1 — T,) df, =
and so induces a homomorphism

dFy: HY(Zy ; K\R) —~ HY(Z, ; K,R)

Proof. Clearly, modulo (1 + T,) K4R, [(T,,, %)) y] depends on f and not
on the choice of 7 € St(R) such that ¢§ = (T, of )—1 1. Suppose f' = &f, where
ée E(R), and §" € S(R) satisfies ¢ J' = (T, f YLf', if é € St(R) satisfies p& = &,
then § = § (e—l( " o8)) satisfies

$5 = (Loul V[N T0d)f = (Tund )Y

Hence, we have

(T 3) 91 = [(Taal ' €U0, n8)) 7' (N T )]

= [T W(Ta) ™ 8 57 (L))
= [(To,ud) 5 (( T8y &) (F YT, 08))]
= [(Toud) 3

since (7,.,./)¢#) = £, and thus 47, 1s well defined To see that d, vamshes
on (1 + T,) KyR, let é € GL(n, R) represent x € Ky R; then f=HgeGL2x; R)
represent (1 4 T,)%, and (7, f)2f =1, so that df (1 + T,)x = 0. The rest
follows easily ||

The exposition above has been arranged so that the following i1s now a routine
verification.

CoroLLARY 3.5. If g 1s an (v, u)-reflexive form on H,P, P Ob) Py, and if
disc g = 0, then, for § e E(2n; R) the matrix of (b, ) (¢ H $,..,0) as before,
the element

G, .& =[G, .8 € Coker[d) ,: HY(Zy ; KyR) —~ HY(Z, ; K,R)]

15 well defined on the stable isomorphism class of g (as opposed to the class of (g, P)
up to stable isomorphisms with vanishing discruminant). |

Continuing the analogy with Section 2, suppose that é € GL(n, R) satisfies
H¢e E(2n, R); since T, H.é = H ¢, if §eSt(2n; R) satisfies ¢ = H ¢, then
(Toud)F 1€ CouR.

ProposITiON 3 6. Let x € Z~(Z, , KiR), then x is represented by é € GL(n; R)
such that H g e E(2n; R) for some n. If § e St(2n; R) satisfies ¢ 5 = H ¢, then,
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modulo (1 — T,) KyR, the element d x = (T, )5 is well defined. The
resulting function

Ozt Z7(Zy s KuR) — KGRI — T.) KR

15 a homomorphism which vanishes on (1 — T,) K, R and satisfies (1 + T,) d;, =0,
and so induces a homomor phism

dyw H(Zy 3 KyR)—~ H™(Z, , K5R).

Proof. Exercise. }

There are various ways of relating Proposition 3.6 with G, (f; 5) and the
like Perhaps the most obvious comes from the fact that, for € e GL(n; R),
H_ ¢ is the matrix of an automorphism of ¢, ,F with respect to a basis of the
form e ,..,e,, e%.. % Thus, if [fleZ~(Z,; KiR), then d_,[¢] =
G, (H,8 1) e H(Z, ; K,R). The following result for d_,, is quite basic

Tueorem 3.7 Let e Z = Z(R) be a wuwmt satisfying ofe)e =1 If
8 € GL(2n; R) satisfies (T, ..8)8 = 1, then, in the pairing K.Z R K,R — K,R,

d; W8] = <]l e H(Z; ; KoR)
In particular, if g is an («, —u)-reflexive form on H,P, PecOby Py, then
d; Jdiscp g} = O (discp g is taken in the (x, —u) antistructure).
Proof. From the fact that (T, ., 8)§ = 1, we have T, § = 4§29, where

= (gt (1)) e GL(2n; R).

Now, following the notational scheme of Proposition 1.6, let block elementary
matrices be denoted

ef’;,=((1) ‘1’) e‘L:(; ?)eE(2m;R) for de MR,

and let x%.eSt(2m; R) denote the block Stemnberg generator such that
¢x?. = el . In other words, if eZ. is expressed as the canonical product of m?
ordinary elementary matrices i E(2m; R), then x%_ is expressed as the corre-
sponding product of m? ordinary Steinberg generators in St(2m, R). For

h e GL(m; R), let
wyr(h) = xft?“f’;i!i:lxi? )

h:&:;:(il) = ‘wﬂ(il) ZU:\::F(—— 1)
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in St(2m; R) be the block analogs of the elements w,,(u), &,(«) in Milnor [5,
Sect. 9]; then

0 :{:izil),

¢wﬂ(h)=(ﬂﬁl . st 0)

() = ( 0 k¥

Hence, with m = 2n, we have

s (1 Oyg Oy 0y (1 O 1 0
H.g = (o ﬁ)(O g—l)(o 73—1) = (0 7)) $h.(8) (0 17‘1)
= ¢w, (§57) pw, (—F71) = dh, ($671) P, (57),
much as in [5, Corollary 9.4]. Now, using Corollary 1.7, we have

T, uw+—(i’) =y (—u~
Ty s (h) = w, (—hou)

-1
I )§ € St(2m; R)
for /€ GL(m, R). Hence, with § = w,_(§6~1) w,_(—31), we have
Ty = 0, (i 4) 0, (u16) = 0, (i34 0, ()
= w, (—ef0 ) w, (57,

since 9~ = 4, w19 = 07, and #-1g* = g6-1 (T,§ = ) Thus we have

(Tou$)Ft = w (—efd) w, (6 w, (F7) w0, (—§57)
= by (—<f0) by (—ed) by (F7) by (§E7)7,

since wyz(h) wiz(—h) =1 and wir(ly) wiz(hy) = haz(ly) bes(—hy), as 1n
[5, Sect. 9] Letting n~ o0 and continuing our calculation, we have, upon
inserting k. _(—e) k,_(~—€)~! between 2, _(¢71) and A, (4517,

(T0,ud)F7] = —[—elld7] + [hs(—ef8) b (—€)) b, (§571)7]
= [—elf] + [—<lld] = [—l£],

by mild extension of [5, Lemmas 8.2, 9.4]. The theorem follows. [

For the approprate analog of Proposition 2.8, we offer the following without
proof.

PrOPOSITION 3.8. Let e€Z =Z(R) be a unit satisfying oafe)e=1. If
8 € GL(n; Z) satisfies (T, .8)2 = 1, then, in the pairing K,.R ® K. Z — K,R,

dyu[R @z 8] = [[—eu][£]] € H(Z; ; K;R).
In particular, d;,[—1] = [[—u][—1]]. 1

A vanishing result for 4, is the following.
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TuroreM 3.9. If fe GL(2n; R) is the matrix with respect to e, ,.., ey,
€% ey €, of an automorphism of an («, u)-reflexive form g with vanishing relative
dzsmmmant on H,F, then d* ,[f] = 0.

Proof. Let g€ GL(2n; R) be the matrix of (i, ,F)g; then e E(R), and
(Tonf)é = 8f, by Lemma 2 3. Thus (T, .f)f = 47 Let e St(R) satisfy
¢& == g and set § = F§~7. Then, noting that § = (T, ,8)* near the end, we
have

dEuf] = [(Tuud) 9] = [(Turd N Tuud) ™ 227

~[( o) BTy TP 1)

=G, ug + (T8 511
Gond + (T8 ) 577
== Gtx,ug -+ [(Ta,ug)wlg_l] = 0. I

Now we can show how the d,, of this and the preceding section are differen-
tials.

Turorem 3.10. dE, 4

= w =0,

Proof. If gePyp(P, T,P), then T, b, .8 =, 8 so that (d},)? =0 by
Theorem 3.9. To show that d;,d, _, =0, let x € Z~(Z, : K4R); clearly, in the
representation x = [P] — [(] of Lemma 2. 4, we may take P =F to be free,
say with basis e ,.., e, . Now let fe P (H,F, HQ) and let §e GL(2n; R) be
the matrix of (T, _,f) 7 fe GL(HF; R) with respect to e ,..., &, , &,%,..., &,%.
Then (7,88 =1, so d,[£] =0 by Theorem 3.7 Since []=d;_,», 1t
follows that d,,d,_, =0. [

Let d0y HXZy ; K_(R)— H*"¥Z,; K_,,R) for p >0, ¢=0,—1, be
defined by

@y =df, for p=0

li

= d;u
= d::__u
=d,_,

(mod 4),

i
T

tl

I
[o=]

it =di_, for p

i

= dyu
== d+

o, U

:d“ w

(mod 4).

li

l
(98] [ [
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Then these should be differentials in the E,-term of the spectral sequence of
Vance [8] for equivarijant algebraic K-theory:

3= Hp(Zz s K JR) s KRZ(SOO’ 4),

(B2 = EP(R, o, u), KR%, = K(R, o, 0)}).

4, TrE Case oF A CoMMUTATIVE RING

In this section, R will be a commutative ring; hence, o 1s an automorphism
of period 1 or 2, and # 1s a unit such that a(u) u = 1.

ProrosiTioN 4.1. Let v e R be a unit such that T, v = v=* (v.e., a(v) v+t = 1);
then [v] € Z+(Z, ; K,R) and

dyJ[v] = [ul[o]] € HY(Z, ; K;R).

Proof. If Tw=w9, then (7, (0@1) T (vP])=vP vt =d¢h _4(v);
on the other hand, if T,0 = v, then Ho =0 @ v =k _,(v). In erther
case, let ¥ =k, _4(v) € St(2, R); then, using Corollary 1.7, we have

[(Te.u 331 = [(To,ubr,1(0))* By 4(2)]

= [(ly, o(—u0F) by (—u 1)) By _o(9)]
= —[+u][v] = [Lu][e]

in K,R. Hence, df,[v] = [[-Lu][o]]. |}

CoroLLARY 4.2. If H*(Z,; SK\R) = 0, then df,: H¥Z,; K;R) —
H*(Z, ; K,R) vanishes |

This is the case, for example, 1f R 1s a Dedekind domain or the group ring
of a finite abelian group with erther cyclic or elementary abelian Sylow 2-sub-
group. We shall be particularly interested in the case of a field.

The following calculation leads directly to the main result of this section.

Levma 4.3. Let a, b € R be units, and let
a0

I B T

&= 0

b

. e GL(4; R).
0

O

Then § € E(4; R), (T.310)é = 1, and G414 = [[—a][—b]] € HH(Z, ; K,R).
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Proof. We have the factorization

—at 0

i
O o _—s{fo ©

g = _
a O T
0 b © © 0 —b

0
1

= $(W_1,1() W_2,2(8) hg,1(—D)) € E(4; R).

Setting § = w_; (@) w_y 2(0) #_y _1(—b)€St(4; R) and using Corollary 1.7,
we have Ty 1§ = w4 ((—a) w_y o —b) iy ;(—b71) Now using [5, Lemmas 8.2,
9.6, Corollary 9.4], we have
G 18 = [wg,1(—a) 20_p,5(—D) Py (—b71) w_3,1(@) W_s () s, 1(—B)]
= (g, a(=b72a7) by (7@ Dy, o(—0)]
= Wb = —[—H][—a] = [—a][—4]

in ZH(Z, ; K,R). Thus G,y ¢ = [[—al[—5]].

Now we can identify our invariant G,; 4 in the case R = E 1s a field. Note
that, by Corollary 4.2, G,;, takes values in H(Z, ; K,E)~ K,E[2K,E, the
isomorphism following directly from Matsumoto’s theorem [5, Theorem 11.1].

TaeorREM 4 4. Let E be a field, g an (2d, 1)-reflexive (1 e., symmetric bihnear)
form of even rank with vanishing discriminant disc g; then, for every symbol
o B X E — {1}, the Hasse-Witt invanant h,g equals ©G .8, where $ is
the umique homomor phism such that the following diagram is commutative.

K\E X KiE —> K,E — K,E2K,E

gl detx det ia

E X E = {£1}

(h,, is defined 1n Milnor and Husemoller [6, p. 80]).

Proof. Clearly, discg lives in H~(Z,; KyF) = E [E'* and comcides with
the usual discriminant for forms of even rank. Thus, in the Witt ring W{(E),
g represents an element of 1%, I C W(E) being the fundamenta] ideal generated
by forms of even rank Since both %, and G,;; are homomorphisms of I?, it
suffices to show that h,g = §G, ;.2 for a set of generators for 1%, But such a set
18 given by the forms

g =< +<b) + oy +<1, abek.
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Now, Lemma 4 3 computes G,y = G,q.8 = [[—a][—b]]; hence, we must
have h,g = @[[—a][—b]] = ¢(—a, —b). This 1s indeed the case, as is easily
checked from the definition of 2.

It follows from Theorem 4.4 that G4 q: I3/13 >~ K E[2K,E 1s the universal
Hasse-Witt invariant in the case of a field E. For this reason, the invariants
G.us G, G, of the preceding section are all called generalized Hasse-Witt
wmoariants.

5. EXTENSIONS OF THE HASSE-WITT INVARIANTS

We begin by defining a Steinberg-like group St¥(z; R), where VC R is a
subgroup of the group R* of units of the ring R, # >> 1. In terms of generators
and relations, St¥(#; R) is presented as follows

Generators. (1) «),,vreR, 1 <i,j<m i},
2) ¥y, . O Ty s eV
Relations. (1) x5, = x5,
(D) $y s ) YO s D) = YDy s - ),
(3) 301 eees Ta) 5, 315 -y D) = AL
4 [%3 » %] =1 f i1, j#£k
= if i£1, j=4,
=ux" of 1=1, j#k,

(5)  w,(w) &,w,,(—u) = x;™, where € R" and w,,(u) = &%, &%,

6) &, =y1,.., v,...,v ..., 1), vV, where k(1) = w,, (1) w,(—1).
P
t 7

Clearly, for V = {1}, St¥(n; R) = St(n; R).

There are canonical homomorphisms it St(n; R) — St¥(n; R) given by
i, — a7, and dy: St7(n; R)— GL(n; R) given by dyil, = €, , by3(0y , v 00) —
diag(o, , ., v,). If E¥(n; R) = ¢,,St¥(n; R), then E(n; R) is a normal subgroup
of E¥(n; R). Let W,"(n; R) == E¥(n; R)[E(n; R) and W,"(n; R) ==
Ker[i,: St(n; R) — St¥(n; R)]. From relation (3), 1t follows that ¢, St(n; R) 1s
a normal subgroup of St¥(z; R), and so &, induces a surjection ¢,: Coker ,, —>
W,y¥(n; R).

If $p: Coker iy — W,¥(n; R) 1s an isomorphism, then V is called an St(n)-
subgroup of R ; V is called an St{co)-subgroup of R' if it is an St(n)-subgroup
for almost all n, and V is called an St-subgroup of R if 1t is an St(n)-subgroup
for all n.
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The significance of an St(n)-subgroup V' C R is that it leads immediately to
the following commutative diagram with exact rows and columns, where
K,¥{n; R) = Ket[¢y: St¥(n; R} — E¥(n; R)].

1 1

! !

1 —— Wy(n; R) —> Ky(n; R) — K" (m; R) —> 1

| i !

1 ——> W,"(n; R) —> St(n; R) —L> $t¥(n; R) —> W, (n; R)—> 1

I lo |

11— E(n; R) —— E¥(n; R} — W{"(n; R) — 1

! !

1 1

Letting # — 0, where St¥(n; R) ¢ S5t¥(n -+ 1; R), etc., in the obvious way,
we have, for an St(oo)-subgroup V' C R’, the following commutative diagram
with exact rows and columns, where K V(R) = K,(R)[W,"(R).

0 0

| !

0 —— WY (R) —> Ky(R) —> KpY(R) —— 0

R |

0 —> W,¥(R) —> St(R) —£> StV(R) —> W,¥(R) —> 0

oo e

I — E(R) — GL(R) — Kj(R) —> 0

! ! !

N
! !
0 0

It could perhaps be that all subgroups of R are, say, 5t(o0)-subgroups.
The best we can do is the following, which provides a source of St-subgroups.

ProposiTion 5.1, If the kernel of the canonical homomorphism V — KR is
the commutator subgroup of V, then V C R’ is an St-subgroup.
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Proof. For n=1, ¢, =1d: V=~V 1s clearly an isomorphism. Suppose
n > 1, and let @ € St¥(n; R) be an element such that &,[w] = 1 1n W,"(n; R),
i.e., such that ¢,w € E(n; R). Using relations (1), (2), (3), we may suppose that
w = xy9(Vy ..., V), Where ¥ 1s a word 1n the &7, . Now, using relation (6), we
have ¥(v,,. , v,) = kyo(vy) ¥(1, 2195, 05 ..., U,). Continuing inductively, we
have

o1, ., 0,) = hl,z('vl) hn—l.n(vl 0y ) V(L 1, 91+ * 1),

and so we may in fact suppose that w = xy(1,.., 1, v,), where # is a word m
the «f, . From the assumption that the kernel of V' — KR 1s the commutator
subgroup of V, it follows that ¢, is an element of the commutator subgroup
of V. Now, for u, v € V, we have

w1, , 1, [w o)) =3(,.., 1, v w) y(1,..., L, e, u ) y(1,..., 1,0, 01
= hn,n—l(lw) hn,n—l(u)_l hn,n——l(v)—l’

again using relation (6). Hence, % may be expressed as a word in the %], , and
$0 @ is 1n the image of ¥, . That 1s, [w] € Coker 3, , and V 1s an St(n)-subgroup
of R- for everyn |

Two wmportant examples of rings and St-subgroups, in virtue of Proposi-

tion 5.1, are the following.

ExampLE 1. Any subgroup I of the group of units of a commutative ring R
is an St-subgroup. The particular choiwce V =R gives WY (n; R) =
WX (R) = R, and since SK;(R) = K (R)/R" = K¥ (R), we define

SE,(R) = KX (R).

By the work of Dennis and Stein, the ring of integers in Q(—17)*/2 is a ring R
with SK,R # 0 [1, Sect 3].

Exampre 2. Anysubgroup ¥ C 47 such that V/V" injects monomorphically
into 47/’ is an St-subgroup of the group of units of the group ring Z=. In
particular, we may choose V' = -, and then we have KF"(Zn) = Wh(=) and,
in the notation of Hatcher [4], W5 "(Zn) = W(w) N KyZm, and so we have

Why(m) = K3"(Z).

It would appear that basic objects of topological algebraic K,-theory should
somehow be the groups in the exact sequence

0 — Why(m) - St(m) — GL(Z7) — Wh(z) — 0,

as well as the sequence 1itself, where St(r) = St*7(Zn).
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Now suppose that R 1s a ring with antistructure {«, ), and that VC R 15
an St(co)-subgroup such that o = V. Then T,WV(R) = WVY(R), i=1,2,
and so T, induces an involution T, on KV(R), 7 =1, 2.

If V' C R 1s an St(2n)-subgroup such that «F = V, then, with the notational
convention of Proposition 1.6~Corollary 1.7, there 1s an involution T, , on
St¥(2n; R) given by

T, o, = %0, ¢,7 both > 0,
=40 50, j<o,
= ij‘,(f)z“ 1 <<0, §>0,
= xjii') 1,7 both < 0,

~1, -1 ~1_-1 -1
Toc,uy(vl 3. -av—n) :y(“ Vg & VU_p, 00 .

. ov).

For an St(oo)-subgroup ¥V with ol = ¥, these involutions are compatible
with stabilization and commute with ¢, ;. Hence, in this case the com-
mutative diagram preceding Proposition 5.1 13 a commutative diagram of
groups-with-involution.

Now, if VC R is an St-subgroup (or, with care being taken to stabilize
appropriately, an St(co)-subgroup) such that a¥ = V, then the program of
Sections 2 and 3 may be repeated with K,"R replacing KR, i =1, 2, E"(n; R)
replacing E(n; R), St¥(n; R) replacing St(n; R), etc For example, we obtain
relative discrimimants disc” with values in K;¥R and homomorphisms

i H5(Zy 3 KoR) —~ H*(Z, ; K, "R).

Similarly, Hasse~Witt invariants G}, in Z%(Z, ; K,VR), GY , m H*(Z, ; K,”R),
and homomorphisms

dy . H5(Zy s K,"R) — H(Z, ; K,'R)

are defined. With the obvious rewording, the results of both sections hold true
in this situation.

Algebraic L-theoretic ramifications will be taken up in the next paper of
this series, along with topological applications.

Note added wn proof. 5. C. Geller has shown the sufficient condition provided by
Proposition 5.1 1s also necessary.
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