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0. INTRODUCTION 

The classical mvariants of (nonsmgular) symmetric bilmear forms over a field 
are rank, discriminant, signatures, and Hasse-Witt invariants. In the theory of 
(01, zl)-reflexive forms [9], an algebraic &-valued rank and an algebrarc Xi-valued 
discrimmant come mto play, leadmg to various algebraic L-theories L”, Lh, L”, 
as well as to certam penodmity phenomena relating them [lo]. 

In this paper, we generahze for (01, u)-reflexive forms the Hasse-Witt invanants 
to an algebraic &-valued Invariant. A corresponding mvariant for automor- 
phisms (isometrics) of such forms is also defined This is all accomphshed m 
Section 3, and the relation of the invarrants defined with ,the Hasse-Witt 
invariant m the cast of a field is given m Section 4. 

The first section motivates and defines mvolutions T,,, on the even order 
general linear groups GL(2n, Ii) and Steinberg groups St(2n; RR), compattble 
with the natural homomorphisms St(2rc; R) -+ GL(2n; R), ‘where (R, 01, U) is a 
rmg with antistructure As n ---f co, T,,, Induces the right mvoluuon on K,R, 
z. = 1,2 Then (01, u)-reflexive forms and automorphisms of even rank and 
their discrimmants are described m terms of T,,, , m Section 2. In Sections 2 
and 3, there arise “differentials” U*(Z, ; K,R) + H*(Z, ; K,+,R), a = 0, 1, 
which are carefully descrrbed; also, some general computational structure of 
these differentials is given. 

For algebraic L-theory (and for topological applications), K,R and KzR are 
not the right value groups for discrimmants and Hasse-Witt invariants of 
reflexive forms Hence, m Section 5, we describe Stemberg-type groups 
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S?‘(n; R) for suitable subgroups V C R’, the group of units of R, and an exact 
sequence 

0 + KzvR --j. S?(R) -+ GL(R) -k KlvR -+ 0, 

so that KIVR-valued drscrimmants and Ktv-valued Hasse-Watt mvariants may 
be defined with all the rrght propertres The special choice R = 25, V = &T 
gives KlvR = Wh(?r), KgvR = Wh2(n) and the “correct” theory for surgery of 
manifolds 

In the second paper of thus serves, we shall give an algebraic L-theory applica- 
tion and interpretation of the ideas set forth here In particular, an L-theory LSt 
~111 be described, which fits into an exact triangle 

From the standpomt of perrodrcrty, the perrodrcrty sequences of Wall [lo] may 
be extended somewhat farther to the left. Also, the direct connection with the 
unitary Kz of Sharpe [7] may be established 

Subsequently, computational results and topological apphcations will be 
grven, including the relatron of LSt to pseudo-isotopy 

A final word on our restriction of all discussion of forms m this paper to 
reflexrve forms (as opposed to Hermman or quadratic forms) IS m order. This 
is because the theory of reflexive forms is, m a precise sense, the “fixed point 
theory” of an involutron on a theory of fimtely generated projecttve modules 
(cf. [3, 81); moreover, the algebraic K-theory valued mvariants we treat arise 
from this equrvariant algebraic K-theoretic situation. 

1. ALGEBRAIC PRELIMINARIES 

Let R be an associative nng with unity. An antistsucture (OL, U) on R consists 
of an antiautomorphism 01 of R together with a umt u E R such that LX(U) u = 1 
and 012(r) = UT& for every P E R. There IS the contravariant duality functor 
D,: &s + &‘s given by D&f = Hom,(M, R) for ME Obj ~2’~ , with the 
conjugate right R-module structure determined by a, 

we4 = 4->fW> r E R, x E M, f E Hom,(M, R), 

and D,h = Horn& R) for h E Mor ~2’s . 

LEMMA 1 .l The formuZu (QJW)(~)(~) = a(f(x)) u defines a natural trans- 
formation ~~ U* l&, -+ Dm2. 
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Proof. First, we check that (T~,~M)(x) E Dm2Mz 

hx,uM)(~)(f~) = 4(f~K4) @ = G(r)f (XI) u = a( @) u 

= df(4) to, = huW(W> 7. 

Next, we check that ?,,*M E Hom,(M, Du2M)* 

h,tJWWf > = a(f (XT)> u = a(f(x> r) u = a(r) a(f(x>> 1* 

= 4~chJw>(f> = h,uW(4 r)(f )* 

Hence, T~,~M 1s well defined for every ME Obl J&‘~ . That it 1s a natural 
transformation follows easily. 1 

PROPOSITION 1.2. The natural transformatzon T~,~ de$nes a self-adjunction of 

D, ; that as, (D~sd(~d%) = 1~~ , and the assonated homomorphisms 

t cd,21 = t,,,(M, N): Hom,(N, D,M) -+ Hom,(M, DJV) 

de$ned by t,,,(n/r, N)(f > = (Doil’ )(rol,,,M) are natural zsomorphisms and satzsfy 

tE,u = 1, 2 e , 

Proof. It suffices to show that (Dol~,,u)(~E,uDu) = lDu , the other parts then 
being routme (cf Ellenberg and Moore [2], for example). Let f E Hom,(M, R), 

g E Hon-&LM, R), and h E Hom@,2M, R); then, (rl,,,D,M)(f )(g) = a(g(f 1) 21 
and 

Pu%,uM)(h)(x) = hK%,uww 

Hence, we have the composmon 

(D,~,,zcM)((rla,uDuM)(f))(~) = (rlol,uDwW(f )((xuM)(x)) = ~((~cy,2LNI(~)(f>> u 

= a(a(f(x)) u) u = 2&.2f (‘?z) ZL = f (x) 1 

Note Adjoint and self-adjoint contravariant functors and the reflexive 
structures determined by the latter are drscussed m greater detail in [3]. 

It is helpful to have an alternate descrlptron of Dw2M in the cases where 
qOI,uM 1s an lsomorphism If 4: R -+ S 1s a ring homomorphism then there 1s 
the base change functor Jb: MS *AR given by J$M = M, J*f = f for 
MEObjds, fgMords, where J,M has the Induced R-module structure 
x d r = X+(Y) for x EM, r E R The following 1s trivial. 

LEMMA 1 3. The formula (j,,,M)(x) = xu-l dejkes a natural equivalence of 

functorsj,,; lJla + J,z . 1 

It follows that the natural transformation 0,,, = T,,,j$: J,e -+ Da2 has the 
especially simple form 
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Thus, for example, (B,,,M)(x)(f) = 0 or 1 accordmg as f(x) = 0 or 1 In 
partrcular, let F be the free right R-module wrth fimte basis e, ,..., e, ; then the 

dual basis of D,F to er , .., e, IS the basis e,* ,..., era* of 02 determined by 
e,*(e)) = 8,J (Kronecker delta). Similarly, DW2F has the basis ef*,..., ez* dual 
to er*,. ., e,*; then, if JuzF has the basrs e, ,..., e, , we have shown the followmg. 

LEMMA 1.4. For z = l,..., IZ, (O,,,F)(e,) = e:*. Moreover, O,,,nil: J,zM - 
De2M is an isomorphzsm whenever q&U u; in partzcular, B,,,P as an isomorphism 
for every Jinztely generated projective R-module P. fl 

Let gIR C dR be the subcategory of fimtely generated projective R-modules 
and isomorphzsms of such. The restrrctlon of D, defines a contravariant functor 
on giR by (1 4), however, since the morphrsms of gR are isomorphrsms, it IS 
more convement to consider the covarlant functor T,: gIR -+ 8, given by 
T,P = D,P, T,f = D,f --I for P E Obj 9, , f E Mor Yx . We have Ta2 = Da2 

QngR, and Jax restricts to a functor on giR . Hence, by (1.4) we have the natural 
equrvalences 

q,,u: b,~ Ta2t &,u: J,l z T, 

of functors on 9X . As before, we also have the natural mvolutions 

Smce T, IS a product preserving functor and TV,% IS a natural equivalence of 
functors on 8, , it follows that T, induces an mvolution, also denoted T, , on 
K,R, the Quillen-Segal algebraic K-theory of R. Although Ta2 is the identity 
on IS&R, it IS not the case that, for K,R or K,R, T, is Induced from an mvolution 
on GL(P, R) or on St(n, R). However, for isomorphisms between projectives 
of the form P @ T,P, we can do considerably better. 

Let I-r,: gplp + B, be the hyperbolic module finctor, grven by H,P = P @ T,P, 
H,f = f @ Tuf for P E Obj YR , f E Mor 8, Then gzpR denotes the category 

wrth objects H,P for P E Obj YE and wrth morphisms from N,P to H,Q all 
the morphisms in 9, from H=P to E&Q Smce T,H,Pr H,T,P naturally in 
P E Obj 8, , the functor T,: pap, -+ pU!Ym, is defined, and v,,,: 1~~~~ z Ta2. 

ForPEObjgR, there IS the hyperbolzc form 

3,&&P = O 
! 

l T,? H,P -+ H,T,P 
%,uP 0 

in &YR . Let Ta,u: B&Y, --f I&g, be the functor given by Ta,,HaP = H,P, 

TO1,%f = (kuQ>-l (TdW,,,P) for f E oh 4, I f E ~RGV’, f&Q>. Then the 
following is immediate. 

LEMMA 1 5. t,b,,u zs a natural equizcalence of @actors on gtiLYi, , #,,,- 

Ta,ur T,. 1 
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Noting that Q&J, = T,$,,. and that (TavLu)(hJ = T,~,: ~R,B~ = Tar’, 
we have, not only that T,,, fixes the objects of&C?, , but also that Tz,21 = lBabR. 

Since the canonical functor &YR -+ 8, IS cofinal, we have 

K,Rsk LX (1 + TJ K,R lf a = 0, 

z K,R if i>O. 

Furthermore, T,,, = T, on K,R, i > 0, and Tt*, = 1 on GL(H,P; R) for 
P E Gbj gR . We shall see that the same holds for the Steinberg group 
St(H,F; R) for FE Obj YR a free module wrth specified basis e, , .., e, . For 
then H,F has the basrs e, ,..., e, , e,* ,..., en*, and in matrrx notation, 

in GL(2n; R) s GL(H$‘; R), where Ma denotes conjugate transpose of M 
by 01, IV-= the inverse of Mm, and I, IS the identity of GL(n; R). 

PROPOSITION 1 6 If ei, as an elementary matrix m E(2n; R) C GL(2n; R) s 

GL(H,F; R), then To,uei3 = e& for suatable unique p, q, s (dependang upon nota- 
tional convention only). 

Proof We simply give below the result of applying T,,, to the elementary 

matrur ei$ . The proposition follows from the same kind of arguments given in 

Mllnor [5, 9 2, 9.41, except that we are working in E(2n; R). Let the basis 
element e, correspond to the integer i, and let the basis element e,* correspond 
to the integer -i, where z = l,.. , n Then 

T ’ a,ue23 = eYf,(Li a,] both > 0, 

-K-b(r) 
= e-3,-2 i > 0, j < 0, 

-dTh = e,,-, i < 0, 1 > 0, 

-6-w = e-?,-% i, j both < 0. i 

For convemence, we record how T,,, acts on E(2n; R) m blockwise notation 
(subscripts are to be ordered 1,. , n, -1, .., -n). 
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Also, for (z E) E GL(2n; Ii), we have 

Using the Steinberg relations for E(2n; R), the following IS easily checked 
(cf. Mrlnor I.5, Chap 5, 10.41). 

COROLLARY 1.7. The znvoktzon T,,, on E(2n; R) lzfts to an zrivolutlon T,,, 
on St(2n; R) defined by the permutation of generators 

T T ol,U% = xz;,y i,~ both > 0, 

-tr%&) = x--3,--z a > 0, j < 0, 

--bw21 = x-,,-, a < 0, j > 0, 

-L-i-%) = x--3,-1 a,~ both < 0. 4 

Letting n + co gives the corresponding result for St(R) = “St(2oo; R)-” 
Thus we have a commutatrve dragram with exact rows and vertical morphrsms 
ail involutions (here, GL(R) = “GL(2co; R),” also) 

0 - K,R --+ St(R) & GL(R) --+ K,R --t 0 

T a,u =T, 
1 

0 --+ K,R + St(R) --%+ CL(R) --+ K,R --+ 0. 

2. REFLEXIVE FORMS ON I-IYPERBOLIC MODULES 

Recall that a (nonsmgular) (01, u)-rejexive form on R E obj ppR IS an element 
g E B,(P, T,P) such that qW,%P = (T,g) g (m other words, t&P, T,P)(g) = 
(D,g)(qa,uP) = g) A basic observation in our approach to reflexive forms is 
the followmg. 

PROPOSITION 2.1. If P E Obj B, , then the (nonsinguluv) (cl, u)-reflexive 
formsg 012 H,P are in one-to-one correspondence with the elementsg’ E GL(&P; R) 

such that lwep = (T,,,g’) g’, according to the rule g = ($oi,uP) g’. 

Pyoof- Since TahJ’ = A~J,P and W~,,~2KhPf = rl,,,RP, we have 

~mdhP-lg) = ~~a,up)-l (TdfLJY (T&MY UPI 
= h,zcW (~&w&p) 

Hence, rf g = (gL,,,P)g’, then (T,,,g’) g’ = lx P rf and only if l,%, = 
(va,,,P)-l (T,g) g, i e., rf and only if g is (cc, u)-refl&ive. 8 



440 CHARLES H. GIFFEN 

Of course, the hyperbohc form #J~,~P 1s itself an (01, u)-reflexive form on H,P, 

and It corresponds in Propositron 2.1 to lHup The following 1s clear. 

LEMMA 2 2 Let P, Q E Obj zYR , and let g = (+,,,P)g’, h = (&_Q) h’ be 

(a, u)-reflexzve forms on P, Q, respectzvely; af 7: H,P @ HWQ e H,(P @Q) as 

the canonical asomorphism whzch interchanges the mzddle two mmmands, then 

g q h = (T,T)(g 0 h) 7-l = (J,&,,(P 0 Q)W E?I h’) 

is an (01, u)-re$exzve form on H&P @ Q), and g’ q h’ = T(g’ @ h’) 7-l 0 

Thus, stabrhzmg the (CX, u)-reflexrve formg = (#,,,P> g’ on H,P by orthogonal 

direct sum with the hyperbohc form #N ,Q on HaQ corresponds in Proposmon 2.1 
to stabllizmg g’ E GL(H,P, R) by dnect sum with lH,o The process of 

stab&zing g or g’ this way wrll always be followed by T* , MZ , 

GL(H,P; R) c--+ GL(HJ’ 0 f&Q; R) F GL(H#’ 0 Q); R), 

as with the direct sum operations m. This 1s basrcally m agreement wrth notatron 

adopted m the previous section for free modules F and for GL(H,F, R). 
Having Identified g’ E GL(H,P; R) such that lHap = (T,,,g’) g’ with the (a, u)- 

reflexrve form (#a,WP) g’, we should pomt out that an element f E GL(H,P; R) 
satisfies T,,,f = f rf and only if f is an automorphism of the hyperbolic form 

z/&P. More generally, we have the following. 

LEMMA 2.3. If g = (&._P)g’, h = (zjaIuQ) h’ are (LX, u)-rejexive forms on 

P, Q E Obl pR , respectively, then f E gE(HEP, HNQ) is an isomorphzsm of (01, u)- 

reflexive forms from g to h if and only if Ta3, f = h’fg’-I. 

Proof. Expanding T,,, f = (#or,uQ)-l (TJ)(&,P), we have TaS, f = h’fg’-l 

if and only rf (DEf) hf = g, which is just the conditron forf to be an rsomorphrsm 
fromgto h 1 

The dascraminant with respect to P E Obj gR of an (a, u)-reflexive form g on 

H,P 1s defined to be the class of (#a,uP)-lg E GL(H,P; R) in K,R, 

disc, g = WuoI,uP)-l gl E W. 

Srmrlarly, if e E gR(P, Q) and if f E pR(H,P, H,Q) is an isomorphrsm of ((Y, u)- 
reflexive forms from g to h, the dascrimanant wath respect to e off is defined to 
be the class of (H,e)-lfE GL(H,P; R) m K,R, 

disc, f = [(H,e)-l f ] E K,R. 

If P=Q, e=l,, and g = h, then drsc, f is srmply the determanant of the 
automorphism f of g. From Proposrtron 2 1, it 1s clear that 

(1 + 7’J disc,g = 0; 
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on the other hand, smce T,,,H, = Ha , we have from Lemma 2.3 that 

(1 - T,) disc&f = disc, g - disco h, 

which varnshes rf g and h have the same relative drscriminants, e.g., when S 
is an automorphism. From a somewhat different vrewpomt, Lemma 2.3 tells 
us that, up to stable rsomorphism of (g, P), disc, g is well-defined modulo 
(1 - T,) Krpi. Similarly, up to stable choice of e, disc,. IS well-defined modulo 
(1 + TJ K,R. 

Now, if f E gR(HaP, H&Q) 1s an rsomorphism from g to h of (a, u)-reflexive 
forms, then, in the absence of any e E gR(P, Q), we have from Lemma 2 3 that 

Va,ufY g = (T,,uf )-lff-l(&,uQ)-l hf> 

and since conjugation does not alter a class module commutators, 

drsc,g = drsco h + [(TU,,,f)-lf] E K,R. 

The element [( Tol,J)-l f ] E K,R is of particular interest, as explained by the 
following, whose proof is omitted. 

LEMMA 2 4. Let x E Z-(2, ; KJ?), then there are P, Q E Obj B, such that 
H,P E l&Q and x = [P] - [Q]. If f E pR(H,P, H,Q), then, mod& (1 - T,) K,R, 
the element d~~x = [( T,,,f )-I f] zs well dejked. The resulting function 

d;,: Z-(2, ; K,R) --+ K,R/(l - T,) K,R 

is a homomorphzsm which vanzshes on (1 - T%) K,,R and satisfies (1 + T,) d:, = 0, 
and so induces a homomorphism 

d;,: H-(2, ; K,,R) -+ H-(2, ; KIR). 

Note. Z*(Z, ; ) = Ker(1 F T,); H&(2, ; ) = Z*(Z, ; )/Tm(l -& T,). 

COROLLARY 2.5. If g is a nonsingular (a, u)-re$exzve form on H,P, P E ObJ PII?, 
thee the (gZoba2) discpimznant of g 

disc g = [disc, g] E Coker[&,: H-(2, ; K,R) -+ H-(2, ; KIR)] 

is well defined on the stable asomorphasm class of g (as opposed to the stable zso- 
morphism class of the pair (g, P)). 1 

Suppose now that P E Obj 9s satisfies P g T,P; then, for g E B,(P, T,P), 
there is defined the hyperbolic automorphism of iG,,,P 

#,,,g = (“, tW3;-1) E GL(H,P; Rf 

As complement to Lemma 2.4, we have the following, whrch is easily verrfied 



442 CHARLES H. GIFFEN 

LEMMA 2 6 Let x E Z+(Z, ; K,,R); then there are P, Q 6 ObJ @R such that 

P= T,P, Qz T,Q, and x = [PI- [Ql. IfgEg&‘, TJ’), hEpR(Q, T,Q), 
then, modulo (1 + T,) K,R, the element 

is well defined. The resulting function 

d&: Z+(Z, ; K,,R) --+ K,R/(l + T,) K,R 

as a homomorphzsm whzch vanishes on (1 + T,) K,,R and satzsjies (1 - T,) d,+;, = 0, 
and so induces a homomorphism 

d;,: H+(.Z, ; K,,R) + H+(Z, ; K,R). 1 

Hence, modulo both the stable choice of e and stable hyperbolic automor- 
phisms (or modulo hyperbolic stablhzatlon), the discrimmant of an automor- 
phism of an (a, u)-hyperbohc form is well defined as an element of 

Coker[d&: H+(Z, ; K,R) + H’(.Z, ; K,R)]. 

If stabrhzatron 1s vra HR, F free, then topologrcal applicatrons require that the 
determmant or relative drscrrminant only be considered modulo [$,,,(F -+ T,F)], 
where F -+ T,F is the dual basis map which sends e, to e,*. 

At any rate, we have defined (&)-discrzmznant homomorphrsms d&: 
H*(Z, ; K,R) -+ H*(Z, ; K,R), whrch are of some Interest in algebraic K-theory. 
Presumably, they may be rdentrfied with a row of Differentials m the Es-term 
of the equivanant algebraic K-theory spectral sequence due to Vance [8]. 

Recall that if ((Y, ZJ) is an antistructure on R, then (01, v) is an antistructure 
on R rf and only if v = EU, E E 2 = Z(R), and a(~) E = 1. For example, there 
are always the cases E = &- 1. 

PROPOSITION 2.7. Let E E Z = Z(R) be a unit satzsjymg B(C), = 1. If P E ObJ YR 
supports an (ol, cu)-rejlexzve fopm, then, in the pairang K,Z @ K,,R --f K,R, 

d&PI = R-WI1 E H+G , W9 

In particular, af P supports an (01, -u)-Yeflexive form, then d&[P] = 0. 

Proof. Let g E .9;,(P, T,P) satisfy tO1,EOCg = g; smce t,,,, = E&U , we have 

Usmg Ip @g: P @ P -+l H,P, we have 

(1 @g)-’ (&t&l Og) = (1”, $‘) E GW’OP; RI, 
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which gives the desired result under the identifications R = Z gz Ii, 
P=Z@,P. i 

In the same vem, we have the following (proof omitted). 

PROPOSITION 2.8. Let Z = Z(R) and P E Obj @a su@ort an (U lz, + 
reflexzve form; then, in the pairing K,R @ K,,Z -+ K,R, 

d&[R @z P] = [[-eu][P]] E H=(Z, , K,R). 

In particular, d$JR] = [I-u]. B 

As for d;, , we have the followmg, usmg Lemma 2.3. 

PROPOSITION 2.9. If P, Q E Obj ~7~ and the hyperbolic forms +a,zlP, z&~Q 
we isomorphic, then d;,([P] - [Q]) = 0 1 

3, REFLEXIVE FORMS WITH VANISHING DISCRIMINANT 

Let g, h be (01, u)-reflexive forms on H,P, firQ, respectively, where 
P, Q E Obj 8, ; then, by Lemma 2 2, the relatrve discriminant 1s additive: 

drsc,e o g m h = drsc, g + disco h. 

Thus, for example, we may fix g, P and then choose Q such that P @Q = F 
is free, say with basis e, ,.. , e, ; of course, disc,g + #a,,Q = disc,g. If &is 
vanishes, and If n is sufficiently large, then, with respect to the canonical basis 

* el ,. ., e, , 9 , , e,* of H,F, the matrix of 

IS an element 2 E E(2n; R) C GL(2n; R) satrsfying (T,,,g)J = 1 by Proposi- 
tion 2.1. 

Now let g” E St(2n; R) be an element such that $2 = g, where $. St(m; R) -+ 
E(m; R) denotes the canonical eprmorphism. Since 4T,+ = TX,,+ by Corol- 

lary 1 7, we have 

(T,,,g)g E C,,,R = Ker[‘: St(2n; R) --f E(2n; R)]; 

hence, there is defined the element (?U,,z = [(Toi,&)g] E K,R. 

PROPOSITION 3 1. If k E E(2n; R) satzsjies (T,,,&j = 1, and if 2 E St(2n; R) 
satisfies qSg” = j, then 

c?,& E Z+(Z, ; K%R). 
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If g”’ E St(2n; R) also satisjies $2’ = g, then 

&,,i’ - (?& = (1 + T,)[g”‘Pl E (1 + T,) K& 

hence, Gm,,,g = [Gu,,jj] E H+(Z, ; K,R) as well dejned. 

Proof. That (?m,Ug = T$‘,,,j follows from the fact that T& = 1 on 
St(2n; R) by Corollary 1.7. The second assertion follows from the computatron 

[(Twg”‘)g”‘l - KTa,~gkl = [(T,,ug”‘)g”‘g”-l(T,,,g”)-‘l 
= E’PI + [~&?ml~ I 

If PI , Pz E Obj gR , e ELY~(P~, PJ, and rf f~ B,(H,P, , H,P,) is an iso- 
morphism from g, tog, of (ol, u)-reflexive forms, then we may choose Q E Obj 9x 
such that P, @Q = Fx 1s free, say with basis e,, , . , ezn , i = 1, 2. Then 

f q lH& E B,(H,F, , H,F,) is an rsomorphrsm from g, [fl #ol,,Q to gs FFJ &,Q, 
and dlsce~l,fB LQ = drsc,f (a special case of addnivrty of the relatrve 
discrimmant of rsomorphrsms of (ol, u)-reflexive forms) Wrth respect to the 
appropriate canomcal bases determined by the e,, and the es3 , let 6, f, gz be 
the matrices of 

respectrvely, i = 1,2; also, set A, = (H,e”) &(H,~)-1, where H,a = e^ @ e”-@ 
Since T,,,H,& = H,d, we have ( Toi,uf)jI = &,jby Lemma 2 3 and (T,,,&)g, = 1, 

O”w.JJ A, = 1 by L emma 2 2. If disc, f and drql g, all vanish, and if n is 
sufficrently large, then f: gz , R, E E(2n; R), i = 1,2. 

Now Iet x gl , Aa E St(2n; R) be elements such that 4f” = J’, +& = gl , 
@ia = &a ; then ( T,,,f)&f”-l&;l E C,,R, and hence there is defined the element 

~a,u(.f’i 21, h‘,) = [(Lf”) Af-lkll E KS. 
PROPOSITION 3 2. If i g, h E E(2n, R) satzsfy (T&Q = 1, (T,,,h) h = 1, 

and ( Tol,uf”)g = &3, and if J g”, I% E St(2n; R) satisfy $f” = 3, #g” = 2, dh” = fi, 
then 

(1 + T,) f&dj, g”, h”) = &,,Z - &,,I;: 

If J’ E St(2n; R) also satasjies +p’ = 3, then 

&a,,(f’; g”, 6) - GaJj; j, 6) = (1 - T&f?-‘] E (1 - T,) J&R; 

hence, &‘,&A g”, h) = [(?&fi g”, R)] E KzR/(l - T,) K,R is well de$ned. 

Proof. Permuting some of the terms cychcally in the following computatron, 
we have 

(1 + T,) &,(Ji 2, A) = [h”-l(C,,f)i?f-ll + TU”a,uf)2f-1~-11 
= [k-l( T,,,f) ~~-‘(T~,,fl)(T,,llg)(T,,,f”)-l V’w@-ll 
= [g”(T,,,g”)] + [~-l(Ta.u&ll = f%,,g” - (%i,u~. 
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For the second assertion, we have 

c7&f; jj, h”) - &,(f, g, h”) = [(T,,,j’)~~-lR-l~~~-l(Tol,uJ)-l] 
= IL?-‘.fl + [xY,,(j’P)l 
= (1 - T,)[fY-q. 1 

Thus, if (?a,ug = Ga,,h”, then (?,+(x g”, i) E Z-(2, ; K,R) and C?a,Ly,zE(fi 2, E) E 
H-(2, : KaR). This is the case, for example, when g” = h” (and hence j = A)); 
moreover, m this situation, we have the following, whose proof is trivial. 

PROPOSITION 3.3. Let f, f E E(2n; R) satisfv (T,,,t)g = 1 and (T,,,$)f = gfi 

if f, 2 E St(2n; R) are elements such that +f = f, $g” = g, then the elements 

are well defined, independent of the choice of 2 E St(2n; R) such that #g’ = gO 

Suppose that, in the situation preceding (Proposition 3.2), we are given 
x 2% E St(2n; R) such that (pf” = J” +tz = jz , i = 1,2. Since inner automor- 
phism of GL(R) by an element 2 E CL(R), say 9 t+ p = f-i@?, induces an 
automorphism of E(R), then covering this automorphism of E(R) IS a unique 
automorphism, 3 H$, of St(R). In our case, we have (T,,,&, = &“=“-‘f, 
and so we have the elements 

Thus, for all practical purposes, we may take & = 1 
Suppose now that {, jj, it E GL(272, R) satisfy (T,,&J = 1, (T,,,&) L = 1, 

and (TWIzcp)g = !z~! If, as elements of CL(R), we have 8, it E E(R), then 

Xf E E(R) and hence also fl(TN Uf”) = @j-l E E(R). Let g”, K, 3 E St(R) satisfy 
+g” = d, $6 = R, $9 = f-1(7’a,,j^), and y”g” = @. Then, smce K,R acts trivially 
on K,R, we have 

As for the element [P(Ta,U$)] E K,R, we have the following analog of Lemma 2.4. 

PROPOSITION 3.4. Let x E Z+((Z, ; K,R); then, if fg GIG(R) represents x, 
(Ta,&lf~ E(R). If 9 E St(R) satisj?es 43 = (T,,,f)-lx then, mod& 

481/44/z-9 
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(1 + TJ K,R, the element dol;,x = [(T,,$)y] zs well dejked. The resultzng 
jiinctaon 

d&z Z+(Z, ; K,R) -+ K,R/(l + Ta) K,R 

as a homomorphzsm which vanzshes on (1 + TJ K,R and satisfies (1 - T,) d:, = 0, 
and so znduces a homomorphism 

d&: H+(Z, ; K,R) + H+(Z, ; K,R) 

Proof. Clearly, modulo (1 + T,) K,R, [(Ta,$))j] depends on f” and not 
on the choice of y” E St(R) such that +jj = (T,,,f^)-lfi Suppose f^’ = $3, where 
& E E(R), and j’ E St(R)satrsfies $J’ = (T,,,f^‘)-lj’, If e” E St(R) sat&es q% = 8, 
then y” = j?‘(?‘( T,,,e”))/ satisfies 

$y = (T~,,f”,)-lf’f”-l~-l<Tol,zba>j = (T,,,f’)-l3 

Hence, we have 

since (T,,,f)(49’) = 3, and thus dzUx IS well defined To see that d& vamshes 
on (1 + T,) K,R, let & E GL(n, R) represent x E KIR; then 3 = H$ E GL(2n; R) 
represent (1 + TJx, and ( Ta,Uf)-13 = 1, so that dz,(l + T,)x = 0. The rest 
follows easily 1 

The exposrtion above has been arranged so that the following IS now a routme 
verification. 

COROLLARY 3.5. If g zs an (01, u)-rejexzve form on H,P, P E GbJ YR , and if 
discg = 0, then, for g E E(2n; R) the matrix of (&,F)-l (g q #a,UQ) as before, 
the element 

G,,,g = [C?‘&] E Coker[d&: H+(Z, ; KIR) -+ H’(Z, ; K,R)] 

zs well deJined on the stable zsomorphasm class of g (as opposed to the class of (g, P) 
up to stable lsomorphzsms wath vanishzng discrzminant). 1 

Contmumg the analogy with Section 2, suppose that e” E GL(n, R) satisfies 
H,& E E(2n, R); smce T,,UH,e = H,e”, if 3 E St(2n; R) satisfies 47 = H,e^, then 

tTdXi+ E GnR- 

PROPOSITION 3 6. Let x E Z-(Z, , K,R), th en x is represented by e” E GL(n; R) 
such that H,e” E E(2n; R) for some n. If j: E St(2n; R) satisJies ~$9 = H& then, 
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moddo (1 - TJ K2R, the element d;,x = [(T,,$)y-l] is well defiineh The 
resulting function 

di;,,: Z-(2, ; K,R) 3 K,R/(l - T,) K,R 

as a homomorphzsm which vanishes on (1 - TJ K,R and satzsfies (1 + TJ d;, = 0, 
and so induces a homomorphzsm 

d;; H-(2, ; K,R) -+ H-(2, , K,R). 

Proof. Exercise. 1 

There are various ways of relating Proposition 3.6 with G‘,,&$d) and the 
like Perhaps the most obvious comes from the fact that, for & E GL(n; R), 
HE8 is the matrix of an automorphism of $,,,F wrth respect to a basis of the 
form e, ,..., e, , e,* ,..., e,*. Thus, if [8] E Z-(2, ; K,R), then d;,[8j = 
C?&HJ; 1) E H-(2, ; K,R). The followmg result for d;, is quite basrc 

THEOREM 3.7 Let E E 2 = Z(R) be a umt satisfy&g CX(C) E = 1 If 
g E GL(2n; R) satis$es (T,,,&d = I, then, in the pairing K,Z @ K,R -+ K,R, 

In particular, if g is an (a, -u)-rejexive form on H,P, P E GbJ YpR ) then 
d;,[dls+ g] = 0 (disc, g is taken in the (01, -u) antistructure). 

Proof. From the fact that (Tol,,&)j = 1, we have TIyf = 6&%-r, where 

-j= 0 1 
( 1 EU 0 

E GL(2n; R). 

Now, followmg the notational scheme of Proposition 1.6, let block elementary 
matrices be denoted 

ri 1 6 
( 1 

e!, = 
1 0 

e,- = o l , 
i 1 
a 1 E E(2m; R) for BEM~R, 

and let xi-+ E St(2m; R) denote the block Steinberg generator such that 
55x:, = e$ . In other words, if e& is expressed as the canonical product of ma 
ordinary elementary matrices m E(2m; R), then x& is expressed as the corre- 
sponding product of m2 ordinary Steinberg generators in St(2m, R). For 
f, E GL(m; R), let 

w*-&) = x~~x$c:~ ) 



448 CHARLES H. GIFFEN 

in St(2m; Ii) be the block analogs of the elements Wan, h,,(u) m Milnor (5, 
Sect. 91; then 

Hence, wrth m = 2n, we have 

= +a+_(@-‘) $zu+_(-a-l) = cpt+_(@-1) @z+_(&l)-1, 

much as m [5, Corollary 9.41. Now, using Corollary 1.7, we have 

LP+-(4 = ~+-(-@-W E @42m. R) 

T&u+_(h) = w+_(-h) I ’ 

for fi E GL(m, R). Hence, with y” = zu+_(&V) w+_(--B-l), we have 

T,,,jj = w+_(-u-V-“p) w+_(u-W”) = w+_(-&“@) w+_(E~-~) 

= zu+_(-&F) W+_(E@), 

since B-m = 8, u-%3 = &l, and VP = &Y1 (T& = &*) Thus we have 

(T,,&j-l = w+_(-E&G-‘) zu_(&) w+_(B-l) zu+_(-$6-l) 

= A+_( -C&-l) A+_(--E&l)-1 h+_(W) h+_(@“)-1, 

since w*,(R) w*~(-iz) = I and z&jZr) UI&&) = h*;,(&) Iz+~(-!z,)-~, as m 
[5, Sect. 91 Letting n -+ co and continuing our calculation, we have, upon 

inserting h+_( -E) h+_( --c)-l between /z+_(W) and j?+_(@-l)-l, 

[(TE,UJ)y-lJ = -[-c][W] + [h+_(-@l) I%+_(+“) /‘z+_(&~)-~] 

= [-6][6] + [-q@-“] = [-E&q, 

by mild extensron of [5, Lemmas 8.2, 9.41. The theorem follows. 1 

For the appropriate analog of Proposition 2.8, we offer the following without 

proof. 

PROPOSITION 3.8. Let E ~2 = Z(R) be a unit satzsfying W(C) E = 1. If 
2 E GL(n; 2) satisfies (T&)&f = 1, then, in the pairing KIR @ KJ-+ K,li, 

d,;,[R 0.z $1 = U-4211 E ff-6% ; ~&. 

Inparticular, d;,[-1] = [[-u][-l]]. 1 

A vanishing result for d&,, is the following. 
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THEOREM 3.9. If f~ GL(2n; R) is the matrix with respect to e, ,.. , e, ) 
e,*,..., e, * of an automorphism of an (01, @)-reflexive form g with vanislzi~ v&&e 
dismimilzant on H,F, then dz,[f’] = 0. 

Proof. Let g E GL(2n; R) be the matrrx of (&,F)-lg; then g E E(R), and 
(TU,Uf)g = &?, by Lemma 2 3. Thus (Ta,U&lf = j’g-8 Let g” E St(R) satrsfy 
Ev= g and set 3 = 22-i. Then, notmg that g = (T&-l near the end, we 

c,Lfl = Wd)Yl = KLJ~w&F”“*” %~-~I 
= [(T~,ug”)~(T01.2,8)-(r~,~~)~~-~] 

= e, & + [(;r, u&qf-i] 
= c&&g + I( T,,,p+)-y] 
= G,,,@ + [(T,,,g”)-l&l] = 0. 

Now we can show how the dzu of this and the precedmg section are differen- 
tials. 

THEOREM 3.10. d&d& = 0. 

Proof* If g E gR(P, T,P), then T,,,&,g = \L,,%g, so that (dzJz = 0 by 
Theorem 3.9. To show that d- d- 01.21 CL,--u = 0, let x E Z-(Z, : KOR); clearly, in the 
representatron x = [P] - [Q] of L emma 2.4, we may take P = F to be free, 
say wrth basis e, ,.. , e, . Now let f E .YR(H,F, H&j and let g E GL(2n; R) be 
the matrix of (Tti,-J-lf E GL(HaF, R) with respect to e, ,... I e, , e,” ,..., en*- 
Then (T,,-,g)g = 1, so d&[j] = 0 by Theorem 3.7 Since [g] = d&,x, rt 
follows that d- d- E,U a,--21 = 0, u 

Let dz’i: H$Z, ; K-,R) -+ H”+2(2, ; K-,+,I?) for p > 0, q = 0, -1, be 
defined by 

#‘a0 = d-f- (Y u ci,u for p 5 0 

= G z.2 1 
(mod 41, 

= d;-a Ez 2 

= d;-, E 3 

d-1 = df 
01u [Y,--u for ps0 

= d;, El 
(mod 4). 

= d&, 55 2 

= d;-u 5 3 
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Then these should be differentials in the Ea-term of the spectral sequence of 
Vance [8] for equlvariant algebraic K-theory: 

Elsq = H*(Z, ; K,R) p’ KR$(S*, A), 

(ET‘” = E,“s”(R, 01, u), KRz8 = K(R, 01, z@). 

4. THE CASE OF A COMMUTATIVE RING 

In this section, R will be a commutative ring; hence, ac is an automorphism 
of period 1 or 2, and u 1s a unit such that I u = 1. 

PROPOSITION 4.1. Let v E R be a unit such that T,v = v+l (z.e., m(v) v&l = 1); 
then [v] E Z*(Z, ; K,R) and 

Proof. If T,v = v, then (T&v @ l))-r (r~ @ 1) = v @ v-r = $hl,-l(v); 
on the other hand, if T,v = v-r, then H,v = v @ v-l = $h,,-,(v). In erther 
case, let j? = h,,-l(v) E St(2, R); then, using Corollary 1.7, we have 

[(TwAilTl = P’a,uL-lW)*l L&41 
= [(hl,-l(-u-‘vf”) hl,-l(-u-l)-l)*’ h,,,(v)] 

= -[i~-“l[vl = [i4[vl 

in K,R. Hence, d:Jv] = [[iu][v]]. 1 

COROLLARY 4.2. If H*(Z, ; SK,R) = 0, then d;,,: H*(Z, ; KIR) -+ 
H*(Z, ; K,R) vanishes 1 

Thus is the case, for example, if R IS a Dedekmd domam or the group rmg 
of a finite abelian group with either cychc or elementary abehan Sylow 2-sub- 
group. We shall be partrcularly mterested in the case of a field. 

The followmg calculation leads directly to the main result of this section. 

LEMMA 4.3. Let a, b E R be units, and let 

Then $ E E(4; R), (Tz,&)$ = 1, and ecd,rj = [[-a][-b]] E H+(Zs ; KaR). 
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Proof” We have the factortzatton 

Setting 2 = ZU-~,~(U) W-s,s(b) ?~+r(-b) E St(4; RR) and usmg Corollary 1.7, 

we have T,& = ~-~,~(--a) ~-~,~(--b) h,,,(-b-l) Now using [S, Lemmas 8.2, 

9.6, Corollary 9.41, we have 

Gd rg” = b-1,1(-4 “-2,2(--b) k,(--b-l) W-l&> w-2,2(b) LL-d-41 

= [h+,(-b-%-l) h+~(b-%z-l)-l h-&+(-b)] 

= -[-b][-b-Q-l] = -[-b][-u-l] = [-a-I][-b] 

in Z+(Z, ; I&R). Thus Gzd,J = [[-a][-b]]. i 

Now we can rdentrfy our Invariant Gzd,l m the case R = E IS a field. Note 
that, by Corollary 4.2, Gzd,r takes values m H-(2, ; K,E) G KzE/2K,E, the 
isomorphism followmg drrectly from Matsumoto’s theorem [S, Theorem 11. l]. 

THEOREM 4 4. Let E be a jield, g an (zd, l)- re jI exme (z e., symmetrac b&neau) 
form of even rank with vanishing dzscriminant discg; then, JOY every symbol 
q E* x E -+ {&l>, the Hasse-Witt invarzant h,g equals +jGzdelg, where + is 
the unaque homomorphism such that the following daagram is commutative. 

(h, is dejned zn Milnor and Husemoller [6, p, SO]). 

Proof. Clearly, drscg lives m H-(2, ; K,E) = E /E*” and comades with 
the usual discrrminant for forms of even rank. Thus, in the Witt ring W(E), 
g represents an element of P, I C W(E) being the fundamental ideal generated 
by forms of even rank Since both h, and Gzd,l are homomorphisms of 12, it 
suffices to show that h,g = qGzd,lg for a set of generators for Is. But such a set 

1s given by the forms 

g = <a> + <b) + (a-lb-9 + Cl:, a,bEE‘. 
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Now, Lemma 4 3 computes Gzd,rg = G$,,,,g = [[-a][-b]]; hence, we must 
have h,g = +[[-a][-b]] = ~(-a, A). Th is is indeed the case, as is easily 
checked from the definition of h. fl 

It follows from Theorem 4.4 that Gzd,l: P/I3 s K,EI2K,E 1s the umversal 
Hasse-Witt invariant in the case of a field E. For this reason, the invariants 

G,u 7 cwL > G,,, of the preceding section are all called generalized Hasse-Witt 
anvariants. 

5. EXTENSIONS OF THE HASSE-WITT INVARIANTS 

We begm by defining a Steinberg-like group Stv(n; R), where VCR. is a 
subgroup of the group RR’ of umts of the rmg R, n 2 1. In terms of generators 

and relatrons, SP(n; R) is presented as follows 

Generators. (1) a$ , YER, 1 &i,j<n,i#j, 

(2) Y(~l,..,~Un),~l,..,~~EV. 

Relations. (1) x~~x,S, = A$“, 

c-4 Y&l P-*-Y Un)Y(Z)1 ,***3 %> =y(v1 9 **, WJn), 
(3) y(w1 )...) w,) xf3y(w, ) ..) w&l = xy”;l, 

(4) Lx: > x;z] = 1 rf ifl, j#Jz, 

TS 
= X,z if ifl, j=K, 

--ST- 
= Xlc3 lf z=l, j#f, 

(5) %3(U) &%(--4 = xijurzl, where u E R’ and WJU) = x~x;~~“x~ , 

(6) h,,(w) = y(l)..., v  ,..., 21-l ,..., l), z, E V, where A%,(U) = wz3(u) wJ-1). 

Clearly, for Y = (11, SP(n; R) = St(n; R). 
There are canonical homomorphrsms #r,z St(n; R) -P Stv(n; R) given by 

* VxF, = xz9 and+,: SP(n; R) -+ GL(n; R) given by &x& = e19, $,y(er, , .., z)J = 
diag(v, , . , a,). I f  EV(n; R) = &,S?‘(n; R), then E(n; R) is a normal subgroup 
of EV(n; R). Let Wlv(n; R) = EV(n; R)/E(n; R) and WzV(n; R) = 
Ker[#V: St(n; R) -+ St”(n; R)]. From relation (3), rt follows that &St(n; R) 1s 
a normal subgroup of St”(n; R), and so & mduces a surjection 6”: Coker &, --+ 
Wl”(n; R). 

I f  &: Coker I& + W,“(n; R) IS an isomorphism, then V is called an St(n)- 
subgroup of R ; V is called an St(m)-subgroup of R. rf it is an St(n)-subgroup 
for almost all n, and V is called an St-subgroup of R* if rt is an St(n)-subgroup 
for all n. 
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The sigmficance of an St(n)-subgroup V 5; R is that it leads immediately to 
the followmg commutative diagram with exact rows and columns, where 
Kzv(n; R) = Kerr&: SF(n; R) -+ IP’(n; R)]. 

1 - W’“(n; R) ----+ K&G R) - fc,yn; R) - 1 

I/ i -1 
1 --t W2V(n; R) * St@; R) % St”@; R) ~_f Wl”(n; R) -----+ 1 

1 ---+ E(n; R) - EV(n; R) - W,V(n; R) - 1 

1 1 
1 1 

Letting n +- CO, where Stv(n; R) G Stv(n + 1; R), etc., in the obvious way, 
we have, for an St(co)-subgroup V _C R’, the following commutative diagram 
with exact rows and columns, where KIV(R) = Kl(R)[W,V(R). 

0 0 

0 ----+ ~JV,~(R) - &CR) ---+K2v(R) - 0 

Ii 1 1 1 
0 ----+ WsV(R) ----+ St(R) 2 StV(R) - Wlv(R)-0 

I---+ E(R) --3 GL(R) - fG(R) - 0 

1 &V(R) z.zzzzz K,“(R) 

It could perhaps be that all subgroups of R. are, say, St(co)-subgroups. 
The best we can do is the following, which provides a source of St-subgroups. 

PROPOSITION 5.1. If  the kernel of the canonical homorno~~~~m V-+ K,R is 
the commutator subgroup of V, then V C R* is an St-subgroup. 
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Proof. For n = 1, & = zd: Vr V 1s clearly an isomorphism. Suppose 
n > 1, and let w E Stv(n; R) be an element such that &[w] = 1 m Wr”(n; R), 
i.e., such that &w E E(n; R). Using relations (l), (2), (3), we may suppose that 

w = xy(v”l )..., ~3, where x is a word m the x:3 . Now, using relation (6), we 

have Y(V, ,- , %L) = ~l,Z(~l)Y(L 74% 2 7-J3 >***> v,). Contmuing inductrvely, we 
have 

Y(Vl ) * 3 58) = Al,, L,,n(v, --* vn-l)Y(L 1, % * * %h 

and so we may in fact suppose that w = xy(l,.. , 1, vs), where x is a word m 
the x:3 . From the assumptron that the kernel of V-+ K,R 1s the commutator 

subgroup of V, it follows that v0 is an element of the commutator subgroup 
of V. Now, for u, v  E V, we have 

YU, 3 1, [u, v]) = y(l,.. ) 1, v-%4-1, 24v) Y(l)..., 1, 24, u-1) y(l,..., 1, v, v-1) 

= h&4 hL,n-1w hLn-l(v)-l, 

again usmg relation (6). Hence, w may be expressed as a word in the X: , and 
so w is m the image of #V. That is, [w] E Coker #y, and V 1s an St(n)-subgroup 
of R- for every R 1 

Two important examples of rings and St-subgroups, m virtue of Proposi- 

tion 5.1, are the followmg. 

EXAMPLE 1. Any subgroup V of the group of umts of a commutative ring R 
is an St-subgroup. The particular choice V = R* gives IV; (n; R) = 
I&‘: (R) = R , and since SK,(R) = K,(R)/E = Kf (R), we define 

SK,(R) = K;‘(R). 

By the work of Dennis and Stem, the rmg of integers in Q(-17)1/2 is a ring R 
with SK,R # 0 [l, Sect 31. 

EXAMPLE 2. Any subgroup V _C +r such that V/V’ injects monomorphically 
mto -&T/V’ is an St-subgroup of the group of umts of the group ring &r. In 
particular, we may choose V = +T, and then we have K,‘“(&r) = IX%(m) and, 
in the notation of Hatcher [4], W~(Z-rr) = IV(r) n K&r, and so we have 

Whz(?T) = K$yz%-). 

It would appear that basic objects of topological algebrarc K,-theory should 
somehow be the groups in the exact sequence 

0 + J$%,(T) -+ St(m) --+ GL(Z%-) -+ Wh(rr) + 0, 

as well as the sequence itself, where St(r) = St+“(&). 
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Now suppose that R IS a ring with antistructure (01, u), and that Y C R IS 
an St(a)-subgroup such that ~xY = V. Then T,JXzV(R) = WLv(R), i = 1,2, 
and so T, induces an involution T, on Kzv(R), i = 1,2. 

If V C R’ 1s an St(2n)-subgroup such that czV = V, then, with the notatronal 
convention of Proposition 1.6-Corollary 1.7, there IS an involution T,,, on 
Stv(2n; R) given by 

T,,,x:> = xI$!~ z, j both > 0, 

-u-lab) = x--),--s i > 0, j < 0, 
-&h = x-j,-, 2 < 0, j > 0, 
-a-% ) = x--3,--2 i, j both < 0, 

Xw.LY(Vl 
-1 -1 ,. .,v-,) ==y(a -1 -1 v-1,. *,a -1 V-,,olVl ,‘.) cx91;1). 

For an St(a)-subgroup V wrth UY = V, these mvolutions are compatrble 
with stablhzation and commute with &, &. Hence, in this case the com- 
mutative diagram preceding Propositron 5.1 IS a commutative diagram of 
groups-wnh-mvolution. 

NOW, if V C R is an St-subgroup (or, with care being taken to stabrlrze 
approprrately, an St(co)-subgroup) such that EY = V, then the program of 
Sections 2 and 3 may be repeated with KtVR replacing K,R, i = 1,2, EV(n; R) 
replacrng E(n; R), Stv(n; R) re pl acing St(n; I?), etc For example, we obtam 
relative discrimmants discV wrth values in KIvR and homomorphisms 

d&: ET=@, ; K,R) -+ ir+(Z, ; KlyR). 

Slmdarly, Hasse-Witt invariants elw in Z*(Z, ; KsvR), CI?Eu m R*(Z, ; KzvR), 
and homomorphisms 

are defined. With the obvrous rewording, the results of both sections hold true 
in thus sltuatlon. 

Algebraic L-theoretic ramifications will be taken up in the next paper of 
this serves, along with topological applications. 

Nate added wz proof. S. C. Geller has shown the sufficient condltron provided by 
PropositIon 5.1 IS also necessary. 
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