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THEI ETA INVARIANT OF PIN MANIFOLDS
WITH CYCLIC FUNDAMENTAL GROUPS

Perer B. GILKEYT (Oregon)
[Communicated by: Jduos Szenthe]

Abstract

Lot £ = 2¥ > 1. Let M bhe an orientable manifold of odd dimmension m with
w1 (M) = 7 whose universal cover M is spin. We define a fixed point free action
of Zigg on the product M x M and Yot N o= M x M/Zsp; N(M) is uou orientable
and admits a natural pin~ structure. We express the eta invariant of N{Af) in
terms of the eta invariant of M and show the map M — N{M) extends to a map of
suitably chosen equivariant connective I -theory groups. Let X be a non orientable
manifold with m, (X) = Z,; of even ditnension m > 6 whose universal cover is spin.
We show that if X admits a metric of positive scalar curvature, then the moduli
space of all metrics of positive scalar curvature on X has an infinite number of are
components. If m = 2 mod 4 and if wa (X} = 0, we show X admits a metric of
positive scalar curvature if and only if the A genus of the universal cover X vanishes:
this establishes the Gromov- Lawson conjecture in this special casc.

§1 Introduction

1.1 Notational conventions

We work in the category of smooth manifolds and smooth veetor bundles in
this paper. All manifolds arc assumed to be closed and connected unless otherwise
noted. Let £ = 2 > 1 be a non-trivial power of 2 and let g, 1= 27V=1/7 he
the canonical generator of Z; := {A € € : A* = 1}. Let p,(A) = A® define lincar
representations of Z¢ for s in the dual group Z} = Z/¢7Z. Let 7 be a finite group. A
7 structure on a manifold A of dimension m is a map f from M to the classifying
space B of w. Let Z(Bw) be the classifying principal # bandle over Br and let
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Z(M) = f*Z(Bn) be the associated principal n bundle over M. If @, (M) =7, we
give M the natural = structure; Z(M) = M is the nniversal cover of M.

If 10 is odd and if M admits a spin® structure, let Py be the Dirac operator
on M. If M is the boundary of a spin® manifold N and if the structures are product
near the boundary, then the operator of the spin® complex on V' can be written in
the form

P‘N - 0(8,/ -+ I)J"..’)-

Thus Py is the tangential operasor of the spin® complex. If . is even and if A
admits a pin® structure, let Pas be the Dirac operator on M; Pus is the tangential
operator of the pin® complex. The operator Py is a self-adjoint elliptic operator.
If M has a 7 structure f and if p is a representation of «, let (M, p) be the eta
invariant of the Dirac operator Py with coefficients in the associated flat bundle.

We say that a manifold A is a spherical space form if M admits a Ricmann-
ian metric of constant sectional curvature +1. We say that o finite group 7 is a
spherical space form group if 7 is the fundamental group of a spherical space form
or equivalently if there exists a fixed point frec representation of 7 to the orthogonal
group Q{m + 1) for some m.

1.9 Prewvious results for orientable maonifolds

In [14. 18] we showed the eta invariant completely detects the reduced corm-
plex, real, and quaternion J(-theory groups K(M), KO(M), and KSp(M) it M
is a spherical space form. In [16], we showed the eta invariant and tle cquivari-
ant characteristic numbers completely detect the equivariant spin® bordism groups
MSpint(B%;). Later joint work with Bahri, Bendersky, and Davis [3] thew gave the
additive structure of these groups. In related work [17], we studied the equivariang
unitary bordism groups MU, {BZ;}.

Let 1 > 5 be odd. In joint work with B. Botvinnik {7, 8], we used the cta
invariant to construct exotic metrics of positive scalar curvature on a wide class of
manifolds with finite fundamental groups whose universal cover is spin.

The Gromov-—-Lawson conjecture as generalized by Rosenberg asserts that a
manifold of dimension m > 5 whose universal cover is spin admits a metric of
positive scalar curvature if and only if a generalized index of the Dirac operator
vanishes. In joint waork with Botvinnilk and Stols [10], we used the eta invariant to
prove this conjecture for a spin manifold M whose fundamental group is a spherical
space form group. In joint work with Botvinnik [9], we extended these results to
the case in which Af is an orientable manifold with cyclic fundamental group and
whose universal cover admnits a spin structure.

The proof of all of these results used formulas of Donnelly [12] which compute
the eta invariant of the tangential operators of the classical eliiptic complexes in
terms of Dedekind snms if M is a spherical space form. Woe also used generalizations
of these formulas to manifolds M which are lens space bundles over 5.
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1.3 Premous results for non orientable mansfolds

In [15], we developed the basic theory of the Dirac operator for a pin® mani-
fold. In joint work with Bahri [4], we used these results to determine the bordism
groups MPing. Oledzki [27, 28] has used the eta invariant to detect exotic 4 dimon-
sional projective spaces. In these results for even dimensional manifolds, the only
fundamental group which enters is the cyclic group Zs of order 2.

1.4 Quthne of the paper

This paper is devoted to computing the ota invariant for a wider class of pin~
manifolds than those with fundamental group Z» and to giving some applications of
this computation. In §2, we discuss the Dirac operator for odd ditnensional spin and
spin® manifolds and for even dimensional pin® and pin® manifolds. Let 7 be a finite
group. If m is even, we wiil show that the map which sends M o (M, p} € R/Z
extends to a homomorphistn from the equivariant pin~ bordism groups MPin (B)
to R/Z. I = 2 (8) and if p is real or if m = 6 (8) and if p is quaternion, then
this invariant takes values in R/27.

Let f be a Z; structure on an orientable manifold M of odd dimension m;
we assume the associated principal bundle £ = Z{M} is spin. Let Dpy denote the
action of Z; on Z. Define a fixed point free action Dy of Zae on Z x Z by

(1.5) Dn{(g2e) : (z1,22) = (Darlge)z, z1); et N(M) := (2 x Z)[/Zs.

Trwnan vy T . To. ML
1 Lemina 3.4 we will show that N’(P\f} inherits a natural pin~ structure. In Theo-

rem 3.7, we will express the eta invariant of N(A4) in terms of the eta invariant of
M ; this is the main a.nalytu.dl result of this paper. There is an analogous result for
N{M) if M is an even dimensional non orientable manifold due to Barrera-Yanez
[5]. We can also take twisted products. Let M Dhe an even dimensional pin™ mani-

it
oy

fold with a Z; structure. Let &7 be an even dimensional spin 1n(mlfold with a spinor
Z¢ action. In Theorem 3.11 we express the cta invariant of U xz, Z{M} in teyms of

the eta invariant of M and the equivariant index of the spin (:'.omplex on L.

Let M be either a lens space or a lens space bundle bundle over 52, In §4, we
use the results of 83 to compute the eta invariant of N(M). This gives a whole new
class of pin™ manifolds with eyclic fundamental group Z,, for which we can compute
the eta invariant combinatorially. We estimate the range of the cta invariant and
establish some technical results we will use in later sections.

Let X be a manifold of dimension m > 5 with 7;(X) = 7 whosc universal
cover is spin and which admits a metric of positive scalar curvature. If m is odd,
we assume X is orientable and if m is even, we assume X is not orientable. Let
R{X) be the space of all metrics of positive scalar (:urvaturc-' on X and let M(X)
be the moduli space R{X)/Diff(X). In Theorems 5.6. 5.7, 5.10, and 5.12 we show
under certain conditions that AM(X) has an infinite number of are components and
that X admits infinitely many metrics of positive scalar curvature which are not
concordant. Theorems 5.6 and 5.7 follow from results of [7, 8]; Theorem 5.6 deals
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with the case m odd and 7 cyclic and Theorem 5.7 deals with the case of general «
if X itself is spin. Theorems 5.10 and 3.12 are new; they use the analytic results of
§3. Theorem 5.10 deals with the case m even and 7 cyclic and Theorem 5.12 deals
with the case of gencral « if X adinits a pin~ structure and if m = 2 mod 4. We
also refer to related work by Kreck and Stols [22] if = 3 mod 4, if H'(X;Z;) = 0.
if the Pontrjagin classes of X vaunish, and if X 1s spin.

In the generalized Gromov Lawson-Rosenberg conjecture, it is stated that a
manifold M of dimension m > 3 whose universal cover is spin admits a metric of
positive scalar curvature if and only if the c invariant (which is a certain generalized
equivariant index of the Dirac operator) vanishes. Stolz [36] has established this
conjecture if M is simply connected. The fundanental group 7 of M plays a crucial
role. The Gromov Lawson-Roscnberg conjectinve has heen established in several
cases:

(1} If 7 is a spherical space form group and if M is spin, then see Botvinnik, Gitkey
and Stolz [10].

(2) If @ is cyclic and if M admits a flat spin® structure. then sce Botvinnik and
Gilkey [9] and also Kwasik and Schuitz [24].

(3) If # = Z, 6 Zy, for p an odd prime, then see Schultz {34].

(4) If 7 belongs to a short list of infinite fundamental proups, including free groups,
free abelian groups, and fundamental groups of orientable surfaces, then sec
Rogenberg and Stolz [31].

On the other hand, Schick [32] has shiwn that the o invariant is not the only
obstruction to the existence of a metric of positive scalar curviture by constructing
a compact 5 dimensional spin manifold with fundamental gronp Z 2 G 76 7 Zay
which does not admit a metric of positive scalar curvature and whicli as vanishing
¢ Invariant.

In §6, we prove the Gromov - Lawson conjecture for non orientable pin - marn-
ifolds of dimension m = 4k + 2 with fundamental group Zae. As a byproduct of
our investigation, we show the eta invariant completely detects certain twisted con-
nective K-theory groups and we show the map M — N{M) exteuds to a map in
connective K-theory, see Theorem 6.7 for details.

It is a pleasant task to thank E. Barrera-Yancz, B. Botvinnik, and 5. Stolz for
helpful conversations regarding these mattors. We also thank the referec for helplul
suggestions regarding the exposition.
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2 The Dirac operator for spin and pin manifolds

2.1 Clifford algebras

Let Clif*(m) denote the real Clifford algebra on R™; this is the universal
unital algebra generated by R™ subject to the Clifford commutation relations v %
w4 wkv = (v, w)- 1. Let Clif (m) := Clif () ®r C be the complexification. Let
pin®(m) ¢ Clif¥(m) be the multiplicative subgroup generated by the unit sphere
of B™: this is the set of all elements & which can be written as a finite product
z = %...=vp of clements v; of length 1 in R™. We complexify to define

pinf(m) = pin~ (m) xz, S' < Cif*(m)

where we identify (g, A} = (—g, — ).

2.2 Definition

Ifvel and |v] =1, then v™! = $v s0 (v *...%xw,) " is given by (£ 1) ¥y *
.xvy. Let

(1) det(x, A) = A% : pin©(in) — S*.
(2) x(vg * ... % vp) = (= 1}* : pinE(n) — Zo.
x(vy * ox v, A) i= (= 1)* : pin“{m) — Z».

(3) Z(x) cw = x(x)z*w =2t pinF(m) = O(m).
E(z, A w e x(z, M s w sz pinfim) — O(m).

{(4) spin(m) = spin~ (m) = ker(x) N pin™{rn) and spin(1n) := ker(x) N pin®(m).

If v is a unit vector in R™, E(v) is reflection in the hyperplane perpendicular
to . Thus = defines a surjective group homomorphism from pin®(m) to O(m) and
from spin(m) to SO(m). Let m > 3. Since spin{mn) is connected, since my (SO(m)) =
Zs, and since ker(Z) is {£1} € spin(m), spin{m) is the universal cover of SO(m).
A similar argument shows that pin®*(m) is a universal cover of O{m). Since O(m)
is not connected, the universal cover is not uniquely defined as a group; pin® (m)
are the two possible universal covering groups of O(m).

Tet e = —, € = 4+, or ¢ = ¢. We say that a manifold M admits a pin
structure if we can lift the transition functions of the tangent bundle T'AM from the
orthogonal group O(m) to pin®(m). We say that an orientable manifold M admits
a spin structure or a spin® structure if we can lift the transition functions of the
tangent bundle TM from the special orthogonal group SO{m) to spin(m) or to
spin®{m). If M admits a (s)pin® structure sy, the determinant line bundle det(sa)
is the associated complex line bundle over 4. Let w; be the Stiefel-Whitney classes
of TM. The following is well known; see for example Giambalvo [13].



144 GILKLY

2.3 LEMMA.

1
2

M admits a spin structure <= wy =0 and wy = 0.

M odmits a spin® structure <= w) = 0 and wy lifts to H*{M; 7).
t

4

(1)
(2)
(3) M admits a pin~ structure <= wj +ws = 0.
(4) M admits o pin™ structure <= wy = 0.

(5)

M admits a pin® structure <= ws lifts to H>(M; E).

2.4 Evample

Let L be the classifying real line bundie over RP* := S8%/Zy and let vL =

Lo..aL Letw,:=e *..%¢e,. Then Z{w,) = -1, is a lift of the transition
functions of ¥L from O(v) to pin¢(m). Then vL admits a pint structure if and
oniy if w? = 1 or equivalently if (£1)”(=1)*=1/2 = 1; by replacing w, by /= lw,

i St =]

if necessary we see »L always admits a pin® structure. These structures reduce to
spin® structures if and only if v is even. Since T(RP*Y & 1 = (k + 1)L,

(1} (4k 4+ 1)L and RP* admit pin® structures; ws = 0.

(2) (4k 4+ 2)L and RP** ™! admit spin® structures; wy = 0, and wo lifts.
(3) (4k + 3)L and RP***? admit pin™ strutures; w? + wy = 0.

(4) (4k +4)L and RP*™* admit spin structures; w; = 0 and wy = 0.

2.5 Operators of Dirne type

We say a second order partial differential operator D on the space of smooth
sections C(V) of a vector bundle V' is of Laplace type if locally D has the form
D = —g¥[y8;0; + A*8, + B or equivalently if the leading symbol of D is given by
the metric tensor. We say a first order partial differential operator P is of Dirar
type if P? is of Laplace type. The leading symbol p of P gives V' a ClLif~{A)
module structure i.e. p is a linear map from the cotangent bundle to the bundle
of endomorphisms of V' so that p(€)? = —~1£]*I-. Conversely, given a CHf ™ (T'M)
module structure p on V' and a connection V on V', then P :=po V is an operator
of Dirac type on V. Fix a fiber metric on V so p is skew-adjoint. The connection
V is said to be compatible with the Clifford module structure if ¥ is Riemannian
and if Vp = 0. Such connections always exist and the associated operator P is
self-adjoint; see Branson-Gilkey {11].
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Let M,(F) be the v x v matrix algebra over the division algebra F = R,
[F = C, or F = H; we use the notation M_(F) when we wish to simplify notation by
omitting the parameter r. We rccall the structure of some of the Clifford algebras;
see [1] for further details:

2.6 LEMMA.

(1) The isomorphism ClLif*(2k) = M3 (C} defines an rreducible CLE(2k) module
Aoy, Every ClLf¢(2k) module is isomorphic the direct sum of copies of this
module.

(2) The isomorphism ClLf°(2k + 1) = My (C) @ M (C) defines two irreducible

Clif(2k + 1) modules Ay ond Avgyr; Aopyi(§) = —Aspqr(E).  Buery
Clif*(2k + 1) module is isomorphic to the direct sum of copies of these two
modules.

(3) CLf* (8k) = M_(R) and Clif™(8k + 1) = Clif" (8k) & CIif" (8k).

(4) Clif~ (8k +2) = M_(H) and Clif {8k + 3} = Cll (8% +2) & Clif (8% +2).
(5) CLfT(8k + 4) = M_(H) and Chf* {8k + 5) = Cif " (8% + 4) & Cli
(6) CLif ™ (8k + 6) = M_(R) and Clif ™ (8k + 7) = Clif (8k +6) & C

Let o be a representation of Cliff(mn) on a finite dimensional vector space ¥
we let € = 4, —, ¢ to have a common notation for these three cases. If & € spin®(m),

PR

the follow J.Ilg aiagrdm COIMIMUTEs:

Rra¥ SAN b))
(2.7) LE(@) 8 o(2) Lola).
R™ @5 N B

If M admits a spin® structure, we use diagram (2.7} to define an elliptic operator
P, .= g oV of Dirac type on the associated bundle T(M). If A is the fundamental
representation, P is the Dirac operator on the spin bundlc A(M). I mis odd, P
is the tangential operator of the spin® complex. If m is even, the decomposition
P = Pt @ P~ gives the spin® complex.

If, on the other hand, M is not orientable, the situation is a bit more compli-
cated. Let £ € R™. Because

5(E(z)¢)o(x) = x(x)o(z)o(§ale) olz) = x(z)o(x)o(E),

diagram (2.7) does not commute if x(x) = —1. To remedy this difficuity, we intro-
duce y on the right hand side. Let y act on the one dimensional vector space L,
The following diagram does commute:

a

R* @Y% - T,

{2.8) LE@) ®a(x) o Lo(z)@x(x).
R™ @ L - T@l,
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Let M be a manifold which admits a pin® structure. Then L,.(Af) is the orienta-
tion line bundle. We use diagram(2.8) to define an elliptic symbot o and, once a
compatibie connection V is chosen, an elliptic complex 13,

o T*M & S(M) = (M) & L, (M), and

(29) Dy i=00oV:C™(S(M)) » C®(X(M) % L (M)).

If m is even, tuczc is another way to solve the difficulty involved in diagrain
{2.7). Let {e;} be the standard 01thon01mdl hasis for R'™. Let w,,b = d(m. e)e; *
. * &y, where 8(m, e) is chosen so that w?, = —1ife = —cand w? = +1if ¢ = +
More precisely

1 fm=2dande=—~ore=c,
o f 1 fm=0()ande=+,
U\H’t}_li fm=0(4)ande=—ore=—c
i ifm=2(4)and e = +.

Since m is even, w,, anti-commutes with & € R™ < Clif*(m). We extend o to a
representation of Clif (m + 1) on £ by defining a(em41) = o(w,,). We also define
a new representation & of CLif™ {m) on ¥ by a(&) := o(w,)o(l); even if e = +, 7 is
a representation of Clif 7. If = € pin®(n), then ww,, = x{¥)w,+ and the following
diagram commutes:

B

R* @ % — z
{2.10) FE(x) weoln) lo(z).
R™ & % — z

1N

If M admits a pin®(m) structure, then diagram (2.10) gives rise to a self-adjoint
operator of Dirac type

(2.11) Py =60V : C®(N(M)) - C®(L(M)).

We emphasize that the representation ¢ defines ¥(A) and the representation &
defines P. If ¥ is complex, o and & are abstractly isomorphic, but act differently
upon the representation space ©. If e = — or if ¢ = ¢, the roles of ¢ and & are
symmetric; if we wish to use ¢ to define an operator P, we can use & to define the
bundle. We take the fundamental representation to define the Dirac operator on
M this is the tangential operator of the pin® complex.

2.12 Remark

If m is even, let D, be the operator defined in equation (2.9) and let Ps be the
operator defined in equation (2.11). Then o(w,,) defines an isomorphism between
¥ and X & Ly which extends to an isomorphism between (M) and S(M} & L, (M)
and modulo a possible sign convention, P; = o{w,,)D,. Furthermore, if we extend
o to a representation of CLif*{m + 1), then FP; is the tangential operator associated

to the resulting clliptic complex on M x [0, c0).
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2.18 The eta invariont

It P is a self-adjoint operator of Dirac type, let
n(z, P) 1= Trp:(P - (PH)~5H0/2

be the eta invariant of Atiyah-Patodi-Singer [2]. The function »(z, P) has a mero-
morphic extension to C with isolated simple poles on the real axis. The origin is a
regular value and we define

n(P) = %{T}(Z:P) + dimker{ P} }H.o

as a measure of the spectral asymmetry of P. A representation p of a finite group
7 defines a flat vector bundle V{p) o ver the classifying space Br. Let f give M a
7 structure. The pLu{ back bundle f J \v ‘\'U}’l is a flat bundle over M with llUll.)ll(JJ]i.y

pfe. m is even, we assume M lias a pin® structure; if m is odd, we assume M has
a spin® structure. Let (M, p) be the cta invariant of the Dirac operator on A7 with
coefficients in f*V'(p). If m is even and if M is orientable, then P, is conjugate to
—P, and therefore n(M, p) = dim ker(P,)/2. This vanishes if M admits a metric of
positive scalar curvature. We refer to [19] for further details.

2.14 Equivariant pin bordism

The equivariant bordism groups MSping {Bx) (resp. MDPinS, {B7)) consist
of tripies (M, £, s) where f is a = structure on a manifold Af of dimension m and
where & is n spin® (ref-_.p pin ﬁ structure on AM; we assume A is closed bus not
necessarily connected. Wc impose the eguivalence relation (M, f,5) ~ 0 if there
exists a compact manifold N (which need not be connected) with boundary A
so the structures (f,s) extend over N. The group structure is defined by disjoint
union. There are twisted bordism groups we will discuss in §5. Let R(#x) be the
group representation ring of a finite group 7« and let Ry(x) be the augmentation
ideal of virtual representations of virtual dimension 0. The map p — n{d, 0} is
additive in p and extends to B(w).

2.15 LEMMA.

(1} If m is odd and if p € Ro(w), the map {M,f,s) = n{M,p) extends to a
homomorphism from MSping, (Br) to R/Z which takes values in R/27 for
M b;)ln,-,-ﬂ(ta’ir) e the joummn,g £O8es:

a) Ifin =3 mod 8 and p is real.
b) If m = 7 mod & and p is gquaternion.

(2) If m is even and if p € R(x), then the map (M, f,s) v (M, p) extends to
homomorphism from MPing, (Bn) to R/Z which takes values in R/27Z in the
following cases:

a) Ifm=0mod 8, if e = +, and if p is quaternion.
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b} If m = 2 mod 8, if e = —, and if p is real.
¢) If m =4 mod 8, if e = +, and if p is real.

c) Ifm =6 mod 8, if e = —, and if p is quaternion.

PrOOF. We refer to [9] for the proof of assertion (1). Suppose that M = N
where the pin® and 7 structures extend from M to N. Choose a metric on N which
is product near the boundary. We use Remark 2,12 to see that modulo a possible
sign convention, P is the tangential operator of an elliptic complex I defined over
N. The Ativah-Patodi Singer index theorem [2-I, Theorem 3.10] then yields

Index(D(p)) = [ P £1{M,p)

where 7 is the constant term in the asymptotic expansion of the heat equation; P
vanishes as dim{N) is odd. This proves that 5(M, p) is a bordism invariant with
values in R/Z. To complete the proof, we use Lemma 2.6 to squeeze out an extra
factor of 2. In the cases discussed, é(e,m) = 1 so we do not have to complexify.
If m = 2 mod & A(N) and D admit a quaternion structure; we assumed p is
real. If m = 6 mod 8, A(N) and D are rcal; we assumed p is quaternion. Thus
A(NY® f5(V(p)) and D, admit a quaternion structure so the (complex} dimension
of the kernel and cokernel is even. O

£3 Twisted cyclic actions

3.1 spin® structures with flat determinant line bundles

Let M be an odd dimensional orientable manifold with fundamental group
m{M) = Z; whose universal cover M is spin. Let Pu(ge) be a lift to the principal
spin bundle on M of the orientation preserving isometry Day(ge) of M. Then
Par(ge)t =1 <= M admits a spin structure. If Pas(ge)f = =1, we let P§, () =
e™=UP(ge) on the principal spin® bundie. Then P§,(g0)" = 1 50 M admits a
spin® structure with flat associated line bundle given by p;.

Conversely, suppose f is a Z; structure on a manifold A and suppose that
M admits a spin® structure with associated flat determinant line bundle given by
py. Then Z(M) admits a spin® structure with trivial determinant line bundle and
hence a spin structure; gs preserves this spin structure and the action of Z, on the
principal spin® bundle of Z is given by +P5, (g¢) 1= *™V VP (ge).
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3.2 Definition

We define the external tensor product X as follows. Let

Pl 1oP ) )
for

PlPJZZPLOC'lf?O(},-l+1Q0pg®£L3$(1®Pz _P w1

fa oy /1 ny N1\ /1 1\ -
kn).g)} _ AL u i u ES L i i .
) = , Qo = ag — 2;
a% = ag = a% =1, ayas + asy = 0, Grug = azaa, G203 = aza,.

3.4 LEMMA. Let Z be the principal Zg bundle defined by o Z; structure [ on
an oriented odd dimensional manifold M. Assume M admits o spin® structure with
associated flot determinant line bundle given by f*py.

(1) The twisted product N(M) := (£ x Z)[ZLy; is a non orientable manifold with
natural Dy and pin~ structures.

(2) We may identify A(Z x Z) = A(2) @ A(Z) & €. Under this identification,
P(Z x Z) = P(2)XP(Z).

(3) Let Clge) and Clgae) give the action of ge and gae on A(Z) end A(Z x Z)
respectively. Let ¢ = Lif m = 3 mod 4 and e = V1 if m = 1 mod 4. Then
Clygae){vy G v @ 2) = eClge)vs B v @ azz.

pive the natural action of Ze on Z. Let

L0 Ly BIVE LI ) Cr
Da(goe) : (21, 22) = {Daage)zz, 21)-

Then Da(gae)? 1 (21, 22) > (Darlge)z1. Das(ge)z2) s0 Dar(g2e)®t = 1. We have Dy
defines a fixed point free isometric action of Zye on £ x Z. Clifford multiplication
defines an embedding spin(m) x spin(m) C spin(2mn). Since the spin® structure on
M lifts to a spin structure on 2, Z x Z admits a natural spin structure. Since
the dimension m of M is odd, the flip (zy, z2) — (22, 2) reverses the oriensation of
ZxZ. Since Dy (¢¢) preserves the orientation of Z, Dy (g2¢) reverses the orientation
of £ x Z so N is not orientable. Lot Pa{gee) be a lift of Dy (gae) to the principal
pin~ bundle aver Z x Z; the sign will be normalized by assertion (3). Then we have
Palgae)? = £Par(ge) x Par(ge) s0 Pulgee)®® = Prlge)t x Parlge)t = 1 so N(M)
admits a natural pin~ ssructurc. This proves the first assertion.

Let ¢, : Clif (m) — End(A,,;) be the canononical spin representation dis-
cussed in Lemma 2.6. Since {(¢,, (6 )Xo, (627 = —|€3 |~ €3], X,y defines a rep-
resentation of Clif°(2m); for dimensional reasons this representation is irreducible
and can be identified with ¢y,,. This proves the sceond assertion.

Let F(£1,&2) 1= (&2, &) € O(2m) interchange the factors of R™ x R™. Let
Fi be a lift of F from O(2m) to Pin™(2m). Let e; be an orthonorinal basis for ™.
Then e} = ¢; 0 and ¢? := 0 ¢; form an orthonormal basis for R ¢ R = R*™.
Reflection in the hyperplane defined by (e} — ¢?)/v/2 interchanges e! and e} and
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preserves ef for i # j. Consequently F; = 272 (el — ¢F). This shows F2 = —1
if m =1 mod4and Ff = +1if m = 3 mod 4. Let F give the action of F; on
the spin bundle A(Z x Z); we used ¢y, to define the operator and thus we use
&am to define the bundles; see §2 for details. Let Fa(vy ® va ® 2) 1= vy % 1) &0 agz.
Since Clgag) = (Clge) ® 16 1)Fy, to complete the proof of (3) we must show that
Fy = eFy for suitably chosen e. By equation (2.10), fg(:gm(&,ég) = e (£2, 61 ) T,
B'y F(]uahiuu (:) o} 36ty = (103 ruu'l figli] = ity SO J -;L,Jm\gi,c,)) = tfg,,,,{&j,f;)..’r—’:;g.
Since eayy, is irreducible, Fa = eF; for some ¢ €C. Sincea? =1, F2=1.1fm=3
mod 4, then F} = 1s0 77 = Land ¢ = L. If ;n = 1 mod 4, then F} = -1 g0

2 = —1 and ¢ = —1. Since we can replace e by —e by changing the sign of C{gae),
the third assertion follows; we use this choice of sign to normalize the pin structure
chosen in assertion (1). [

3.8 Equivariant computation of cta invariant

Let Zx be the principal Z, bundle defined by a Zg stracture f on a manifold X
which admits a (s)pin® structure with agsociated flat determinant line bundle given
bv §* 0oagsume 7" arient: 1]\]() ‘Kﬂ‘n m ‘nr r]n MNVINSE 72 (/\(7 \\ - f-¢-\\ Fih Zu)

v 17y we assume Zy orienfable. We ma decompose L{A(Zx AEA, Zy)
into the eigenspaces of the Dirac operator on ZX. The action C of Z,« on LH{A{Zx))
commutes with the Dirac operator so the eigenspaces E(A, Zx) are representation
spaces for Zy. We decompose E(X, Zx) = ®.Fs(A, Zx) where C{gr) = psige) on
E (A Zx). We may identify E,(A, Zx) witl: the corresponding eigenspace of the
Dirac operator on X with coefficients in the representation pe. Let {A; . ¢} for
0 < s < randi &N be an equivariant spectral resolution for the Dirac operator
on Zx. The ., are a complete orthonormal basis for L2{A{Zx)) so that v, , €
Es()\.,;,s, Z)() Then

(3.6) (X, p:)(z) =Z5sign(M|A| 77 dim Es (A, Z2x) = Iy sigu(; o)A )75

We now come to the main analytic result of this paper.

3.7 THEOREM. Let Z be the principal Zp bundle defined by a Ze structure f
on an orienteble odd dimensional manifold M. Assume M admits o spin® structure

with associated flal determinant line bundle given by f*py. If in = 3 mod 4, let
B=0;ifm=1mod 4, let 3= £/2.

(U Ifu=20—-0+0, n(N,p,) =n(M,p,) — (M, pypes2) in R/Z.
(2 Ifu=2v-b+8+1, n(N,p,) =0inR/Z.
{

3) If there are no harmonic spinors on 2, these equalities hold in R.

Proor. We apply equation (3.6) and work equivariantly to compute the eta
invariant. Let {g; 5, ¢ s } be an equivariant spectral resolution of the Dirac operator
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on Z. Let E(i,8,j.1) i= ¢ s 0 0j @ C2%. Then L*{A(Z x 2)) = @is e B8, 4.1)
and

(3.8) P(Z X 2Y¢hi s 60 thju ®0) = s @ Py & (g oty + fij002)0.

If (i,s) # {4,t), the 4 dimensional space & = FE(i,s,j,t} P E(f.t,4.8) is
invariant under the action of both the Dirac operator and the group Za,. We
compute

C(ggp)(q‘s,-’s ford] qf)jsf £y 6D fb'j,f. oy Qﬁi,s e ’Ug)

(3.9) ‘ ]
=P gt2s (Gae)is 0 iy @ Az B poprgragee) i @ diy & azvr.

A word of explaination is in order. The action of Z; on the principal spin® bundle
of Z is given by eV L/ EPas {(g¢); we must undo this compiex factor in computing
the Za action; this creates the factor of p_p{gae). The factor of ps(gss) comes from
the correction factor of ¢ relating Fp and F3 as was discussed in Lemma 3.4, The
remaining factors come from the parameters s and 1. Let,

Ve =y R b Bw F ey B s B0 agw,
Clyzelv: = ppygrtrs(gao)vs i €= p(g2),
Clgae)ve = poysrgpegste(gae)os i € = prosyo(gar).

Thus this gives the cquivariant decomposition of £. Let & be the span of the
ve for v € €2, We use equation (3.8) and the commutation relations of equation
(3.3) to sce that the Dirac operator maps ve to ((psser + ft5002)v).. Since the o,
are trace free, this operator has eigenvalues which occur in with opposite signs. If
(i t250) # (0,0) these eige .
the eta invariant. If (., 05) = (0,0), there are two 0 eigenvalues which do not
contribute to the R/Z valued invariant.

The argument, given above shows that to compute n{N, p), we may suppose
i = j and s = t. The cigenvalues of a3 = (a1 + (Lg)/?'/2 are +1. Let azve = vy
and let 41 ;¢ = i 0 © @is R v, Then Clgae)ta i = £piqgros(g2e)ts,i,s, and

envaluey a d cancel in the caleulation of

T NON=-760T0) Y
v LAY adl

P(Z X ZW0p i = i sins & dis 2 (a1 + anv = £2V7; 0y .

The normalizing constant of 21/ plays no role in the eta invariant when we evaluate
at z = 0 and may be ignored. Let v = -0+ 3 4 2u. The cigenfunctions ¢ ; ,
correspond to the representation p,, precisely when ¢ = v; the elgenvalues j;,, then
give rise to n{M, p,;) in the calculation of n(N, p,). Since

—pbyor2el02e) = Poppsrrisry2(g2e),

the eigenfunctions v_ ; , correspond to the representation p, when s = v+ £/2;
the eigenvalues —p; .y ¢/2 then give rise to dim EU+,»;/3(O, ZY = (M, pyyesr) in the
caleulation of n(N, gy }; we must correct for the sign of the zero cigen values but this
ptays no role mod Z. This proves assertion {1). Assertion (2) follows since there are
no equivariant eigenspaces of this form corresponding to p, ifu = =b+ 3+ 2v + L.
If there are no harmonic spinors, the 0 spectrum plays no role and the identities of
assertions {1} and (2) hold in R. O
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One can also study even dimensional twisted products; we refer to the thesis
of Barrera-Yanez {3] for the proof of the following result.

3.10 THEOREM {Barrera-Yanez). Let Z be the principal Zy bundle defined by
a Zp structure [ on a non orientable even dimensional manifold M. Assume M
admits a pin® structure with wssociated flat determinant line bundle given by [~ py
and that Z is orientable. Use equation (1.5) to define on action of Lo on Z % 2
and let N = (Z x Z)/F.

(1) If £ = 2, then N is a nan orientable munifold with 7\ (N) = Zy which admits a
canonicel PIn® structure with associoted determinant line bundle given by p) .
i) Ifu=2s—b+m/2, then n(N,py) = n{M,p,) in R/Z.
i Ifu=2s—b+1+m/2, then n(N,p,) =0 in R/Z.

(2 If £ > 2, then N is a non orientable manifold with w1 (N) = Zue which admits
a canonicol pin~ structure,
D Ifu=2s—b+m/2+ /4, then (N, py) = (M, pe) +19(M, pyyea)
in R/Z.
N Ifu=2s+1—0b+m/2+ /4, then n(N,p,) =0 in R/Z.

(3) If there are no harmonic spinors on Z, these equalitics hold in R.

There is another twisted product formula that is nseful.

3.11 TuroreMm. Let Z be the principal Ze bundle defined by o Zp structure f
on o non orientable even dimensional manifold M. Assume M admits o pin© struc-
ture with associoted flat determinant line bundle given by f*py, that Z is orientable,
and that Z has no harmonic spinors. Let U be an even dimensional spin manifold
which admits o Zy spin action. Give U(M) 1= U xg, Z the notural Zy structure and
pin® structure with associated flut determinaent line bundle given by f*py.

(1) The Z; vetion on U induces representations pfj on the kernel of the half spin
operotors. Decompose p?f —pp = Egngps. Then we have
(U (M), pu) = Zensn(M, pa—s).

{2) Give U = 8' % S' the spin structure with triviel principal spin bundle, Let { >
4. The mop g 1 u — —u defines o spinor action of Zy on U and n(U (M), p,) =
TI{IUV Pu—ﬁ/t}(ﬂo - ,0!?/3))

Proor. Let wy be the normalized orientation of U o{wyr) suti-commutes
with Py and e{wy) = +1 on ker PF. We can decompose A(U x Z) = A(U)® A(Z).
Under this decomposition the Dirac operator on 7 x Z takes the form Py & 1 +
olwi) & Pry. The action of Z; is the tensor product of the two actions and commutes
with clwe ). Let {dis, Aio} and {4, 1} be an equivariant spectral resolution of



LETA INVARIANT OF PIN MANIFOLDS 153

the Dirac operators on U and on Z. We have c{wy)dyy € Eo(—Ajs, Pu). A # 0,
let

E(iﬁs‘,j1 t) = 5[)0?1{@), s By, clwp )i s 43 f}

Then Z¢ acts diagonally on E(i. s, j,£). Since the eigenvalucs of P on E{i, s, j,1) are
i(/\’is + ,u.':,’! ,_)1/ 2 these spaces play no role in the computation of the equivariant eta
invariant. If ¢; , € ker(Pj), then

P{dhis 02 400) = iy eis @ e

We set s + # = « and sum to derive the desived formula. We assume Z has no har-
monic spinors to ensure that U x Z(AM) has no harmonie spinors to avoid difficulties
with the zere eigenspace.

Give U = §' x 8! the spin structure s which has trivial principal spin bundle.
Paradoxically, s is often called the non-triviel spin structire since [U, s] generates
MSpins == Zy. The spinor bundle on U is a trivial bundle of complex dimension 2.
The kernels of P are 1 dimensional and gs acts by £v/—1 on ker(Pi) The second
asgertion now follou from the first, O

$4 Spherical space forms and spherical space form bundles

In this scction, we establish some technical resnlts we will use in §5 and
86 to study metrics of positive scalar curvature. In Loemma 4.3, WE express the

psa vl o el +

) o larndloc iy
~e9 and lens space ouiiies in1 terms of Dedek

1t of lens apa

Lbd Hl\d' 3, 1“
Lemma 4.4, we use the results of §3 to compute the eta invariant for thv associated
twisted products. Lemma 4.5 is a technical Lemma we will use to prove Lemma 4.8

which gives the order of the range of the eta invariant.

4.1 Definition (Lens spaces and lens space bundles)
If d = {ay,..a} is a collection of odd integers, let 7(@) 1= pa, & ... 8 pa,
define a fixed point free representation from Z; to the unitary group (k). Let
LA (£8) 1= ST (R E)

be the resulting lens space. Let H®2 ¢ (k — 1)1 be the Whitney sum of the tensor
square of the complex Hopf line bundle with (b — 1) copies of the trivial complex
line bundle over the sphere S%. Let A € S act by multiplication by A" on the
M summand. This action restricts to a fixed point free action of Z; on the sphere
bundle S{H%? & (k — 1)1). Let

X3V @y -= S(H® @ (k- 1))/ 7(@) (%)

this a bundle over 82 with fiber L** ! (¢;a).
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4.2 Definition (Notational Conventions)

Let G7* and GY be the free Abelian groups generated by the lens spaces and
by the lens space bundles of dimension m. The eta invariant is additive and extends
to these groups.

T 2

H e — vl
If k is cven, lev W (d; A) = A7

| /%2 1
A

(1) if det{T - 7(a}{A))-

(2) If k is odd, let ¥ (a ,/\) = A UFHD/2 det (T — 7{@)(A)).
(3)IEA# 1 et Fr(@A) = Tp(@ A" I A =1, let Fp(a@A) = 0.
(4) Let Fx (&, A) = (1+)\“')( — A TLFL (A,

L 12T mtd e ol
Define B . {-j}” — QL i and B : {},(‘ o d _G\r 1u.y

—
o
By

L) = L™ (4;3,1,1) — 3L™+4(¢; 4,1, 3), and
XM @) s X8 1 1) — 3XMH (4G, 1,3).
(6) Let K} = L'(61) and let KT := BK ™% e gl
KU = BRUT e gt
Let o= ¥ 5(1,1) = p_1{po — p1)* and let 6 := py — pesa.

)
(9) Since ¥ (5-1,5-3) € Ry(Ze)* = ¢ R(Z), we can choose ¢; so that ¢ud =
Ppls- L1 3)

ey 447

We refer to [9,10] for the proof of the following result; the assertions concerning
the eta invariant are based on results of Donnelly [12].

4.3 LEMMA. Let By = Nyez,, and let 3y = YAz AL

(1) For m > 3, L™(6; &) and X" (£; &) admit metries of positive scalor curvature,
7!“1 - 27 R I LI ST (N IR r .y . ; .
(2) If k is even, then L**716; @) and X2 {6d) admii spin structures.

(3) If k is odd, then L* =16, @) and X*H(68) have spin® structures with deter-
manant line bundle given by py.

(4) We have 5(L*~16,&), p) = {7E3Tr(p)Fr (@A) € Q.
{5) We have n{ XH#FUE @), p) = £S5 Tr(p) Fx (T A) € Q.

We use the construction described in Lemuna 3.4 to coustruct the manifolds
N{L™{(¢;d)) and N(X™(#; @)); these manifolds admit metries of positive scalar cur-
vature for m > 3. Thus the formula of Lichinerowicz [26] shows there are no harmonic
spinors. The following is an immediate consequence of Lemma 4.3 and of Theorem
3.7.
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4.4 LEMMA.,
(1) If m = 3 mod 4, then n(N(L™(6; @), psy) = (L™ (€T}, 6p.).
(2) If m = 3 mod 4, then p(N(X™(6: D)), pav—s) = (X" {;d),dp,.).
(3) If m =1 mod 4, then p(N(L™(t:8)}, pro—112) = (L™ &), dp,.).
{4) If m = 1 mod 4, then n(N{X"{£:@)), Paotes2) = X A), 0py).
(8) Otherwise n(N(L™(& @), pu) = 0 and n{N(X"(6;a)), p.) = 0.

We shall need the following technical result.

4.5 LEMMA. Let £ > 4, p € R(Z¢), @ = {ay,.;ap), and b= (b1, ... by_y).
(1} For k= 0 mod £, 7 E, A% = 1; this vanishes otherwise.
(2) We have n(I}.8) = n(K%,6) = 1/2 mod Z.
(3) If v € Ro{Zg)* ", then 7' 5y To(v(ADIL (1 — A=)~ € 7,

(LA 4d8),7) € 2, and { X~ D), ) € Z.

(4) We have n{L*1(£;d,1) - 3L*71(4,d,3), p) = y(L**=1(£;d,3), ).
(5) We have (X1 (£:5,1) — 3X*=1(:5,3),p) = X 2E-1(0,5,3), 40p).
(6) If Y € GF* or if Y € G, then n(BY, ¢;p) = n(Y, p).
(T) If § > 1, then (K1 dp) € Z and n{K 3+ 9ép) € Z.
(8) We have n{K "™ ¢,6) = (K VI 48 = £ mod Z

(9) If X* = X5(6,1,1) — 3X°(; 1,3), then n(X",6p) = 0 mod Z and
n{X?,8pes4) = 1 mod 27.

Proor. The first assertion follows from the orthogonality relations. We com-
pute

n(K},d) = 1801 = A2 (1 - A)!
:E”li];\/\(l+/\+...+/\f/3“1)
=02 HEISAL A+ LAY = 2

We use the ident‘ity 4% = 24 to compute:
MUY, 6) = (267 B+ A1 - AY2)2(1 - A) 2
= (207 EMI A AT+ A4+ AL
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= 0+ (207 AL+ AL+ A AT
= —¢/4+1/2.

The second assertion now follows since £ > 4. We set v = lli<g wlpo = Pay )
Then v Ro{Z¢) = Ro{Ze)**" 50y = i€ for some € € Ro(#Z;). Thus

g Te(v (AN (1 - M%) 71 = 718, Tr(e(A).

Since Tr{e(1)) = 0, we may repiace ¥\ by £ and use (1) to see £7 X, Tr(e(A)) € Z;
this proves the first part of (3); the remaining parts now fallow from Lemma 4.3.
Assertions (4) and (5) follow from the identities

FL(@ 1)(N) = 3F (@ 3)(A) = ¢ () Fo(d 3)(A),
Fx (@ 1)) — 3Fx (@, 3)(A) = (A Fx (& 3)(A)-

Assertion (6) follows from equation (4.6) since ¢ s Fo(, j1,43) = F-(&) tor L and
X. We use equation (4.6) to see that for any v € R(Z¢):

(I y) = (LY G+ 1L 3 ¢ y)
YTy = (XY (G + DL 73).00).

We apply equation (4.7) to v = ¥dp. Since ¢/T1pd € Ro(Z)% 13, assertion (7)
follows from assertion (3). Asscrtion (8) follows from assertion (2) and assertion
(6). Since A2 = X3/2 for A € Zy, we have

7?(X5a519£/4) = TI(«Y5(E§ 1,3), 5!’#/«1'#”)
= fIEAANT + (1 = A2 /(1= AP
= 0TI A 4+ A2 (1 + A 4 4 AT
= 1 VSN XL X L AT,

(4.6)

(4.7)

By (1), ¢ '3,A = 0 unless £ divides v. The powers of A that appear in this
sum are v = £/4+ 1+ 3k or v = £/4+ 2 + 3k for 0 < k < 3¢/2. Since v = 1 and
since 3¢/2 — 3+ £/4+ 2 < 2¢, we need only consider v = £s0 1= £~ £/4 — 3k or
2 = ¢ — £/4 — 3k. This is not possible as £ —{/4 - 3k = 3(—k -+ £/4) and 3 does not
divide 1 or 2. Thus n(X?, pysa) = —1. We can decompose any p = nipesa 7 for
~ € Ro(Z¢) and thus

p(X5,6p) = —ny +nan(X°(6;1,3), 5v¢).

Since y& € Ro(Ze)*, 1{(X°,dv¢) € L. 0
The Poincare dual A* of an Abelian group A is the group of homomorphisms
from A to R/Z. Thus, for example, Z; = Z/{Z.

(1) Let 5*(M) € R(Z)* be the homomorphism 4" (M) : p — n(M,dp) € Q/Z.
(2) For k > 1, let Lap—1(£) := spang{n™(L* " ({ar, ..., ax))} € R{Ze)".
{3) For k > 1, et Xypqi(€) == spang {7 (X1t ay, .. )} C R(Ze)".
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4.8 LeMMa. Let 4 > 0.

(1) We have 29771 < |£a;1(2)].
(2) If € > 4, then 277" < |£4.
(3) If!’ Z 4, then QJ_H S I-’Ydj-H} (f?)l S !A11J+5(P)|

Proor. We use Lemma 4.3 to prove the first assertion: 5*(RP?* pg) =
+27971 Let oa; 1= p_1{po — p1) and let 6251 := (po — p1). Let @ = (ay, ..., az) for
k > 1. Then

op Fu(@ 1) = (@) so n{L¥ 7 (6,d,1), por) = (L1 a@), p);

49 N
(*9) or Fx(d@,1) = Fx (@) so n( XM (88,1}, poy) = (X (), p).

The map p — oyp induces a dual map o + R(Z¢)* — R(Z;)*. By equation (4.9),
o (LH(6a, 1) = o (L 1(6,d)) and o (X348, 1)) = o= (X1 (4a))
S0

Lop1(6) C o Lapsr (), [Las1 (O] < | Laprr (6],

Ko () C op Aupga (€), and |Xa s (0] < | Xapga ()]
By Lemma 4.5 (2), we have [£,{{)] > 2 and |A3(£)] > 2. Since ¥ = ¥, (1,1), a
sirnilar argument shows #* is surjective so

L1041 (O] < |Lass(O)] - [ker(™) 0" Laice (O)], and
| Xak4s (O] < | Xap1 (O] - [ker(e") Nyp* X«MHU’)!
By Lemma 4.5 (7), n* K7**" € ker(y*) and n* KY€ ker(1h*); by Lemma 4.5 (8),
these elements have order at least 2. Assertion (2) now follows by induction. O

§5 Exotic metrics of positive scalar curvature

5.1 Twisted bordism groups

We generalize the equivariant pin bordism groups defined in §2.14. Let £ be a
real vector bundle over the classifying space B of a finite group . The equivariant
twisted bordism group M Spin,,(Bw,¢) consists of triples (M, f,s) where f is a 7
structure on a manifold M of dimension m and where s is a spin structure on the
bundle T'(M) & f*(£); we assume M is closed but not necessarily connected. We

impose the equivalence relation [(M, f,5)] = 0 if there exists a compact manifold
N (which need not be connected) with boundary M so the structures {f,s) extend
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over N. The group structure is defined by disjoint uniown. If w (M) = @, we shall
give M the canonical  structure. X

If the Stiefol- Whitney classes wy and we of € and & agree, then the groups
MS8pin,, (Brn. &) and M Spin,,(Bx, £) agree; thus only w;(€} for i = 1,2 are rele-
vant. If wi{€) = 0 and if w»(&) = 0, then MSpin,(B7,£) = MSpin, (Br). If
wi{€) + wo(€) = 0, then £ admits a pin~ structure and there is a natural map from
MSping, (B#,£) to MPing, (Br). If £ admits a spin® structure or a pin® structure,
there is a natural map from MSpin,, (Bw, £) to MSpin¢,(Bx) or MPing, (Br); we
use these maps to extend the eta invariant to this setting.

Note that not every pair of cohomology classes (uy,u2) for u; € H HBw,Zs)
can be realized as the first two Stiefel-Whitney classes of a vector bundle §. Stolz
has informed us in a private communication {37] that there is a generalization of the
twisted spin bordism groups defined above which associates an Abelian group to
every such pair (up, ;) which is isomorphic to MSpin,, (B, £} in the special case
that (uy,us) = (un (€), ws(E)).

Suppose m = %, is cyclic. We take £ trivial if n is odd. If n is even, tet &
generate H'(BZ,: %) = Z» and let y generate H*(BZy; 7)) = Za. It n = 0 mod 4,
then 22 = 0; if » = 2 mod 4, then 2 =y. We define real bundles & over BZ,, by
requiring

wi (&) =0, wa(€) =0, wi(§H) =0, wil§y) =y

wy (€)=, walka) =0, wi(&s) =, walls) =y
For example, we could take & to be the trivial real line bundle, & to be the real
line bundle defined by p /2, &1 to be the real 2-plane bundle defined by the complex
representation py, and & = £ @ L.

Let w1 (M) = Z,,. Assume that the universal cover of M admits a spin struc-
ture. There exists a structure s on M that [(M, f,s)] € MSpin,(BZ,,,§). Hn =0
mod 4:

0) We take £ = & if w, (M) = 0 and w3 (M) = 0; M admits a spin structure.

1) We take £ = & if w (M) = 0 and wa(M) # 0; M admits a spin® structure
with determinant line bundle given by p:.

2) We take £ = & if wi (M) # 0 and wa (M) = 0; M admits a pin~ structure.

3) We take € = & if wn (M) # 0 and wy (M) # 0; M admits a pin® structure with
determinant line bundle given by p,.

If n is odd, M is spin and we take £ = &. If n = 2 mod 4, we take £ = &3 and give
M a pin® structure in 2} and we take £ = & and give M a pin~ structure in 3).

Give U = S! % §! the spin structure with associated trivial principal spin
bundle. Let v = 0 mod 4. If Y is an even dimensional pin~ manifold with a Z,
structure which carries the orientation, let U(Y) := U x4, Z{1") where Z(Y) is the
associated principal Z, bundle over Y. We have that:

a) RPY € MSpin(BZs, &), RPY¥ 12 € MSpin(BZ,, &),
b) L¥*+1(¢; =) € MSpingy) (BZg, &), L¥*T3(6; —) € MSpinga(BZg, &),
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¢) XE+L(f =) € MSpinggy (BZe, &o), X W (4 —) € MSpinris(BZe, &),
d) N{L™(& =)} € MSping,, (BZar. &), N(X™(& =) € MSping,, (BZz, &),
e) UN(L™(£; ) € MSpins,, 2 (BZ., &), and

UN(X™(6; ~)) € MSpingnss(BLay, &2).

5.2 Twisted geometrical bordism groups

The group ™A Spin,, (Br, £) is defined similarly. It consists of quadruples
(M, f,s,9) where (M, f,s) is as above and where g is a metric of positive scalar
curvature on M. We impose the equivalence relation *[(M, f.s, )] = 0 if there
exists a compact manifold N (which need not he connected) with boundary A
so the structures (f,s) extend over N and so that the metric on M extends as a
metric of positive scalar curvature over N which is product near M. Again, the
group structure is defined by disjoint union. If [(M, f,s,m)] = [(M, f,s.92)] in
T MSpin,, (Bw, £), the metrics g; and gy are said to be geometrvically bordant.

We say that two metrics of positive scalar carvature g; on M arce concordant
if there exists a metric g on A x [0, 1] which has positive scalar curvature, which
is product near the boundary, and which restricts to the given metyics at A x ¢
for ¢ = 0,1. Metries which are concordant are geometrically bordant; one takes
the cylinder as the boundiug manifold. The converse does not hold; there exist
metrics which are bordant but where the hounding manifold can not be talken to
be the cylinder. See, for example, Lawson & Michelsobn [25] or Kreck & Stolz
[22]. Let R(M) be the space of metrics of positive scalar curvature on M and let
M(M) = R(M)/Diff{ M) be the associated moduli space. Two metrics which are
in the same are component of R{(M) arc necessarily concordant; again, it is not
known if the converse holds.

A spec ial caze of the 1UHO'\7V1U}.) Theorem for £ orientable was proved by Botvin-
nik and Gilkey [7, 8}; it uses work of Gromov and Lawson [20, 21], Rosenberg [29],
Rosenberg and Stolz [30], and Schoen and Yau [33]. The extension to the nonori-
entable setting is entirely straightforward and is therefore omitted.

5.3 THEOREM. Let m be o finite group. Let p be o wirtual representotion of

Mo poer the Jassifuing spo I3

. p . ; TE oy da oo
and let £ be o reel vector bundle over the DUOSSING Spdce T. A T OtE evern,

e y
A ende vGe  VE L TCR

assume that § is non orientable ond thet £ admits e pin® structure. If m is odd,
assume that & admits o spin® structure and thot p haes virtual dimension 0. Let M
be a connected closed manifold of dimension m > 5 with m (M) = 7. Let f be the
canonical m structure on M. Asswme there exisls o spin structure s on T{(M) & f*€
o [(M, f,5)] € MSpiu,, (Bm,£).

(1) Suppose there exists o closed manifold M, which admits a metric g, of positive
sealar curvature so that [(M, f, 5)] = (M1, fr, s1)] in MSpin,, (Bm, &); M, need
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not be connccted. Then M admits « metric of positive seolar curvoture g so

that (M, s, f, )] = [(My, 51, fi,g0)] in T MSpin,, (B7, £).
(2) Let [(Moa, f2.52,42)] =0 in T M Spin,, (B, £). Then n{Msz, p) =0 in R,

(3) Suppuse that there exists {(Ms, fs3,53.93)] 0 TMSpin,, (B, &) such that
n{My, fa,83.93,p) # 0 in R. Suppose that M admits « snetric of positive scalar
curvature. Then M{A) has an infinite number of components and there exists
o countable family of metrics g; of pesitive scolor curvature on M which are
not geometrically bordant.

To apply Theorem 5.3, we must coustruct manifolds which admit metries of
positive scalar curvature and which have non-vanishing eta invariant. I o is a group
homomorphism from G to H, we have natural maps

o BG = BH, o RH —» RB(G, and
o 2 MSpin,, (BG, 05€) = MSpin, {BH, €).

(When discussing the case m is even, we shall need to assume that both £ and
o5& are non orientable). Inequivalent spin® structures on £y are parametyized by
complex line bundles; there exists a suitable linear representation p¥ which reflects
choice of the determinant line bundle on a3;£ so that:

(5.4) noar (M), p) = n{M, p*or(p))-

For example, let & be the natural surjective map from Zo, to Z,. Then o5& — &
and we take p° = p;. We can use equation (5.4) to reduce the existence of non-
trivial eta invariant to a corresponding question conceruing cyclic groups in many
instances.

We begin with the odd dimensional case:

5.5 LEMMA. Letwe > 5 be odd, let n > 2, and let i = 0,1. If i = 0 and of
m=1wmoed 4 orifi =1 and if m = 3 mod 4, assume n > 3. Then there exists
(M, f.5,9)] in TMSpin,, (B%,, &) and p € Ry(Z,) so that n(M, p) # 0.

Proor. This was proved in [7, 8. We sketeh the proof briefly. Let i be odd
and let n = ab where o and b ave coprime and let ¢ be the natural inclusion of Z,
in Z,,. Then oy is surjective. Thus by cquation (5.4), we may suppose without loss
of generality that n = p* is a non-trivial pritme power. Suppose n is odd. The lens
space L™(n; @) admit spin structures. We use a suitable generalization of Lemma
4.3 {4) to compute (L™ (n; @), ¥ (@) = (n — 1}/n # 0. Suppose n = £ is a non-
trivial power of 2. We use the same argument if m = 3 mod 4 and £ = & or if
m=lmoddand f &E=&. Hm =3 mod4and £ =& orifm=1mod 4 and if
£ = &, we compute

n(X7 (), 0@ {po — pa,)) = £ DA+ A =7 (- 2)
50 this is non-trivial for £ > 2. i

The following is now immediate
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5.6 THEOREM. Let X be an orientable manifold of odd disnension m > 3 with
non-trivial cyclic fundomental group Z, whose universal cover is spin and which
admits o metric of positive scalar curvature. If m = 3 mod 4 and if wa(X) # ¢
or if m = 1 mod 4 and if wa(X) =0, assume n > 3. Then M(X) has an infinite
number of components and there evists a countable family of metrics g; of positive
scalar curnature on X which are not geometrically bordant.

There are suitable generalizations of this theorem to manifolds with other
finite fundamental groups; we restrict to spin manifolds for the sake of simplicity
and we refer to {7, 8] for the proof of the following resutt.

5.7 THEOREM. Let X be a spin manifold of odd dimension m > 5 with non-
trivial finite fundamental group m which admits o metric of positive scalar curvature.
If m =1 mod 3, assume 7 contains an element g whick is not conjugate to g L
Then M(X) has an infinite number of components and there ezists countable
family of metrics g; of positive scalor curvature on X which are not geometrically

bordant.

For the remainder of this section, we shall he intercsted in the case m even
and M non orientable. We first take 7 cyclic.

5.8 LEMMA. Let m > 6 be cven, let n be even, and let i =2,3. Ifi =2 and
ifm=0mod 4 orif i =3 and if m =2 mod 4, assume n =0 mod 4. Then there
exists [(M, f,5,9)] i T MSpin,, (BZ,, &) and p € R(Z;) so that (M, m # 0.

ProorF. We may assume without loss of generality that n = £ is a power of
2. If ¢ = 2, we take M = RP™ and use [15, Theorem 3.3} to see p(RP™, py) =
+2-(m+D/2 o () We therefore suppose £ > 4.
Let m = 2{2k — 1). We consider the following cases
(W E=¢ and if 2k — 1 =3 mod 4, let e =0, let v(u} = u, and let Y = L.
) é=¢&andif2k—-1=3mod 4,let e =1, let v(u) =u+1,and let ¥ = X.
B Ie=Gandif 2k—1=1mod 4, let e =0, let v{u) = u—£/4, andlet ¥V = X.

MHE=¢&Gand f 2k -1 =1modd, let e =1, lot v(u) = u—£/4+ 1, and let
Y =1L

Let o be the natural projection from Zag to Zy. We use equation (5.4) and Lemma
4.4 to see

W MOV, pu) = n(N (V2 (68), pas.)
:T)(}',Qkii ({Jq CT) P’u(u.)(s)'

. 2l gL o=+ . . P
Since n(N(Y?2*71(£;a)), p,) is supported on the representations w = 2u + ¢ mod 2,
we use Lemma 4.10 to see the ota invariant in equation (5.9) is non-trivial.

(5.9)
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If Af is an m — 2 dimensional pin™ manifold with a Za, structure, then we use
Theorem 3.11 (2) to dimension shift. We use equation (5.9) and compute

e UN Y= 0@), pu) = pU N ED), prue)
=np(NYHE D), pruserepa(po — pe))
r2h— —» ]

:’U(Y ? l(g;a)sp‘n(n)-i-ff-’ldl)

:2’!}(1/2‘:_1 (E‘ 5), [)(,(.“)4,_({/46).
Since we are working in R/Z, the additional factor of 2 plays no role and we nse
Lemma 4.4 to sec these invartants are non-irivial. [

The following Theorem is a consequence of the discussion given above; the

case m = 0 mod 4 has also been derived by Barrera Yanez {5] using a different
method to establish the non-triviality of the eta invariant.

5.10 THEOREM. Let X be o non orientable manifold of even dirnension m > 6
with cyelic fundamental group Z,, whose universal cover is spin and which admaits o
metric of positive scalor curvature. If m = 0 mod 4 and if wa(X) # 0 orif m =2
mod 4 and if we (X) = 0, assume n = 0 mod 4. Then M{X) has an infinite number
of components and there exists o countable family of metries g; of positive scolar
curvature on X which are not geometrically hordant.

We can generalize these results to certain other finite groups. For the sake
of simplicity, we will work with pin™ structures on manifolds of dimension m = 2
mod 4; there arc other theorems of this type for the other cases but they are more
complicated to state. Again, we begin by constructing manifolds with non-vanishing
cta invariants. Let pp be the trivial representation of .

5.11 LEMMA. Let m = 4k + 2 > 6. Let € be the real line bundle over the
classifying spoce of o finite group © defined by o non-trivial representation = from
7 to Zy. There cuists [(M, f,s,g)} in T MSpin;, (B, £) so that 1{M, py) # 0.

Proor. Suppose that # contains an clement g of order 2 so that =(g) = —1.
The map g2 — g defines an embedding o : Zs — 7 and o [RP™] belongs to
M Spin,, (Bx, £). We use [15] to see n{o 3 RP™, pg) = m{RP"™, po) # 0.
~ Suppose # contains an element g of order £ > 4 so that Z{g) = —-1. Give
Yaite .= U N(L*(£,1,1)) the natural pin™ structure and Zog structure. The map
o gor ++ g defines a map ¢ : Zay — 7. Then
Mo N(LA#1,1)), po) = n(N (L2 (61, 1)), pjelpo — pe)™)
= {L3(6 1, 1), pyepp6Thy = 2297 RN (1 - M2 /(1 - )
= QHTUTIRNAN ] 4 X 4 A2 4 LAY
= 220N (=24 F NI L 20 A
= +2%~1g/4, 0
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The following theorem is now immediate.

5.12 TueoresM. Let X be e pin~ manifold of dimension m = 4k +2 > 6
with finite fundamental group w. Assume X admits o metric of positive scolar
curvature. Then M{X) has an infinite number of components. Furthermore there
exists o countable family of metrics g; of positive scalor curveture on X which ore
not geometrically bordant.

86 The Gromov—Lawson conjecture

Let M be a spin manifold of dimension 1 = 0 mod 4. Let A(M) € Z be the
index of the Dirac operator on M; by the index theorem, we can compute A(M) as
the integral of a polynomial in the Pontrjagin classes of M so fi(ﬂ/f ) is independent
of the metric on M and of the spin structure which is chosen on M. If M admits
a metric of positive scalar curvature, there are no harmonic spinors on A{ by the
Lichnerowicz formula [26] and thus A(M) = 0. Consequently, if A(AM) # 0, then M
does not admit a metric of positive scalar curvature. The Kummer surface

K'V={{z) e CP* 2} + 21+ 2 4+ 2 =0}

is an algebraic surface which admits a spin structure with A(K") = 2. Thus K*
does not admit a metric of positive scalar curvature. I m = 0 mod 4, A is Z valued.
We can define a Z» valued index if i = 1 or if m = 2 mod 8. Let P, be the Dirac
operator defined by a spin structure s on a manifold of dimension m. If m = 1
mod 8, let A(M,s) € Zs be the mod 2 reduction of dim(ker(P,)). If m = 2 mod
8, then dim(ker(P;)) is even and we let A(M,s) = dim(ker(P,)}/2 € Zy. We set
A = 0 for other values of m. Then A(M, s) depends on the spin structure s but not
on the Riemannian metric. For example, the circle §1 admits two spin structures
8;. If 51 defines the trivial principal spin bundle and s, defines the non-trivial
principal spin bundle, A(S',5,) # 0 and A(S?, 5} = 0. We extend A to the groups
MSpin,, (BZe, &) for i = 1,2,3 by defining A(M) = A(Z(M).

If M is simply connected, the spin structure is unique and we drop the de-
pendence upon s. The A genus vanishes if M admits a metric of positive scalar
curvature. Stolz [36] has shown that the converse holds in the simply connected
case if . > 5.

6.1 THEOREM. Let M be a spin manifold of dimension v > 5. Then M
admats o metric of positive scalor curvalure <= A(M) = 0.

If the fundamental group 7 of a spin manifold M is non-trivial, Ros g [29]
has defined an element «(M) generalizing the A-roof genus which takes values in

t
the K theory of the reduced C* algebra C7 (7). If M is not spin, but the universal

4 is non-trivial, Rosenberg
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cover of M is spin, then o extends suitably; if M admits a metric of positive scalar
curvature, then (M) = 0. The Gromov-Lawson-Rosenberg conjecture is that
this is the only obstruction to the existence of a metric of positive scalar curvature
if m > 5. We refer to Rosenberg and Stolz [30] for a general discussion of this
conjecture.

The fundamental group of M is crucial in this subject. We refer to {9, 10f for
the proof of the following theorem:

6.2 THEOREM. Let M be an orientable manifold of dimension m > 5 with
eyelic fundamental group whese universal cover M is g spin manifold.

(1) If M is spin, then M admits o metric of positive sealar curvature if and only
if A(M,s) =0 for every spin structure s on .

(2) If M is not spin, then M admits a metric of positive sealar curvature if and
only if A(M) = 0.

ture in the non orientable setting.

6.3 THEOREM. Let M be a non orientable manifold of dimension m = 4k +
2 > 6 with cyclic fundamental group which admits o pin~ structure. Then M admits
a metric of positive scalar curvature if and only if A(M) = 0.

By a theorem of Kwasik and Schultz [23], the Gromov-Lawson-Rosenberg
Conjecture is true for a finite group « if and only if it is true for all Sylow subgroups
of m. Thus we can work one prime at a time. The odd primes are covercd by
Theorem 6.2 so we assume m (M) = Zy. The case £ = 2 is covered by work of
Roscnberg and Stolz [30] so we assume £ > 4. The rest of this scction is devoted to
consideration of this case. We must first establish some additional technical results.

Theoremn 5.3 reduces the question of constructing & metric of positive scalar
curvature on M to a question in equivariant bordism. Our next step is to reduce
to a question in connective k theory. Let HP? be quaternion projective space with
the usual homogeneous metric and let HP? - E — B be a fiber bundle where
the transition functions are the group of isometries PSp(3) of HP2. Since HP* is
simply connected, the projection p : £ — B induces an isomorphism of fundamental
groups; any Zs structure on E arises from a Z¢ structure on B, Let T,,(BZ¢. &) be
the subgroup of MSpin,, (BZ¢, &) generated by manifolds E arising in this fashion.
Let

tOm(BZfa 54) = Mspinm (BZ‘I?: Ei)/Tm (BZ!" ‘EJ)

Let tot (BZg, &) be the image of the subgroup generated by classes [(M. s, f )] where
M admits a metric of positive scalar curvature. Let ko,,(BZ;, &) be the twisted
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connective K-theory groups. Note that every element of T, (8%, &) can be rep-
resented by a manifold which admits a metric of positive scalar curvature.  We
use Theorem 5.3 to reduce the question of constructing a metric of positive scalar
curvature to a question in connective K theory.

6.4 LEMMA. Let M be a closed manifold of dimension m > 5 with (M} =
Zi. Cive M the canonical structure so [(M..)] € f0,,(BZ,&). Then M admits
metric of positive scalar curvature if and only if (M. )] € to} (BZ, &).

If M has a Z; structure, let Z(A) be the associated Z, principal bundie.
6.5 LEMMA.

(1) We have toy,(BZ¢, &) = ko (BZe &)
(2) If £ > 2, then |kogy2(BZe, &) < 2243 and |kogpae(BZe, E2) < g2kt

(3) If m is odd, if p € Ro(Zy), and if i = 0,1, then the map M — n(M, p) extends
to homemorphisms 1, from toy,(BZe, &) to R/%. If m =3 mod 8, ifi =0,

and if p 4s real, we can extend 1, to take values in Rf2Z.

(4) If m is cven, if p € B{Z¢), and if i = 2,3, then the map M — n(M, p) extends
to homomorphisms 7, from to,(BZe &) to R/Z. If m = 2 mod 8, if i = 2,
and if p is real, we can cxtend n, to take volues in R/27.

(5) If £ > 2, A extends to a surjective homomorphism from toy sp{BZei 62) to Za.
(6) Let m = 4k +2 > 6. To prove Theorem 6.3, it suffices lo show that
to} (BZ, &) = ker(A) Nto, (BZe, &2).

ne

Proor. The first assertion follows from results of Stolz [35, 36] and is a
crucial link between the geometry of HP? fibrations and some powerful methods of
algebraic topology. The second assertion follows from [9, Theorem 1.5]. It is based
on a caleulation using the Adams spectral sequence. We use Lemma 2.15 to extend
the eta invariant to MSpin,, (%, &). Let E be the total space of a HP? fibration.
Botvinnik and Gilkey [9] showed that E admits a metric ¢ so that 5(E,p) = 0 iu
R and so that g has positive scalar curvature. The extension of the eta invariant
and the A genus to connective K theory now follows. Let M = N(S'). Then
Z(M) = §' x &' has the trivial (i.e. non-bounding) spin structure. Since the
dimension of the kernel of the Dirac operator is 2, A(N(S1)) = A(S! x ') = 1 and
A is surjective if m = 2. Let B® be the Bott manifold; this is a simply connected
spin manifold with A{B®) = 1. The Cartesian product N(5') x B* inherits natural
pin~ and Z; structures. We uge the multiplicative nature of the 4 genus to complete
the proof of assertion (4) by checking

AN(SY) x (BYY) = A(N(S)A(B®Y =1.
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The elements of T},(BZ¢, &2} can be represented by manifolds that admit metrics of
positive scalar curvature. If assertion (5) holds, then we can represent any element
of ker{A4) N MSpin,, (BZ¢, &) by a manifold that admits a metric of positive scalar
curvature. We then use Theorcm 5.3 to establish the Gromov-Lawson conjecture
in this case. 0

Proor oF THEOREM 6.3 Let n = 2¥ > 4. Since A is non-trivial, we use
Lemma 6.5 to see

| kcr(ﬁ) M t08k+'2 (BZmrng S 22L‘+2 and it()gk+ﬁ (BE”, &2)\ S 22k+2.
By Lemma 6.5, to prove Theorem 6.3, we must show

(6-6) itog_k+2(BZm‘£2)| Z 22k+2 and itoz_a._}‘-_g.(j(BZn':fz)l 2 22;\:4-2-

Suppose first n — 4. We use Lemimas 4.3 and 4.4 to compute
T}(N(R[Pztk—i-'i)’po) — 'Tj(RPqL:+l,5) — 2*21\:7[’ and
D(N(RP¥+?), py) = n(RP¥2,6) = 27072,

By Lemma 6.5, N — n(N, po) extends to a map from to,,(BZs, &) to R/2Z for m =
8k + 2 and to R/Z for m = 8k + 6. Thus N{RP***) and N(RP¥3) are elements
of order at least 2°¥%2 in tof;  ,(BZ4, &) and kof,  4(BZ., &) so the cstimate of
equation (6.6) holds.

Now suppose n = 2¢ for £ > 4. Let T,,,(L, 2¢) and 7,,{X, 27} be the subspaces
of 10, (BZus, &) spanned by the images of N(L™(4;%)) and N(X'({ %)) respec-
tively. The map M — n* (M) € R(Z20)* defined in §3 extends to these two spaces
with disjoint supports; the relevant parities in Lemma 4.4 are opposite. Thus the
eta invariant decouples and we may use Lemma 4.8 to see

ETI*tO?n(BZZH:‘EE)l 2 Vl'*(’l:n(L:2£)}1 ) |"7* (IH(X)2F))E = |£m(2€)| : ‘.)(,),73(2?)[ 50
"oy, o (BZag, &) > 2971 and |i*tog; , o (BZag, £2)] > 9% +2

This shows that estimate (6.6} holds if mn = 8§ + G; to obtain the desired estimate
if v = 83 + 2, we need only show:

| ker{n™) N togﬁ_z (BZe, &)} > 2.

We will use the refined eta invariant no(N) := (N, pe) € R/2Z to detect the kernel
of n*. Let X% := X°(¢;1,1) — 3X*(¢;1,3). By Lemma 4.8, n*(N(X?)) = 0 and
0(N(X®) = n(X® dpy) = 1. Thus N(X?®) is a non-trivial element of order at
least 2 in ker(n*). Give the manifold B® the trivial Zy, structure. By Theorem 3.11,
B(N(X®) x B8) = n{N(X*)A(B®) = y(N(X")) and the general case now follows.

d

We can draw some consequences from the discussion given above. We use the

result of Stolz cited above to identify ko, with to,,; let ko}, (Zg, £) be the subgroup
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generated by the manifolds that adiit metrics of positive scalar curvature. By
Theorems 6.2 and 6.3, if m > 5

kol (Z, &) =ker(A) N ko (Ze, &)
A’?O;;(Zg, £) = ker(}i} M ko, (Ze, £1)
kot (Fy, &) = l{er(,;l) N kop, (Ze, £2) it e = 2mod 4.

e

In [9, 10} we showed the eta invariant and the A genus provided the characteris-
tic numbers of the connective K theory groups ko, (Ze, &) for ¢ = 0,1, We can
generalize this result to & if m = 2 mod 4.

6.7 THEOREM. Let k > 1.

(1) Let & € kogjy2(BZag, &2). If Alz) =0, if y*(x) = 0, and if no(xx) = 0, then

z=0.
(2) Let © € kogpps(Bloe. &). If 17 () = 0, then 2 = 0.

(3Y Leti = 0 ori = 1; if 4k +2 = 2 mod 8 and if £ = 2. assuwme i = {.
The map M — N(M) extends to o homomorphism. from kojk 1 (BZe G;) to
kosit2(BZae, ).

Proor. The first two assertions follow from the proof of Theorem 6.3. Lem-
ma 4.4 expresses 3*(N(M2*T1)) in terms of *(M**+1). By Lemna 6.5, the eta
invariant extends to connective I theory so {M] = 0 in koapq) (BZ, &) lmplics
p* (M) =0 so n*N{M) = 0; this shows M — N(M) extends to connective I theo-
vy if 4k + 2 =2 6 mod 8. Let 4k + 2 = 2 mod 8. We suppose M adinits a metric of
positive scalar curvature. This implies A(N{A)} = 0 so to complete the proof we
must show 19 (M) = 0. We apply the identities of Theorem 3.7 to the case v = 0.
We have ng = 0 if w — &+ £/2 is odd which handles the cases i = 0 and £ = 2 and
i=1and £> 2.

If ¢ = 0 and if £ > 2, then no{N(M)) = 5(M, prq — p_¢z4). There are two
fundamental representations A% of the complex Clifford algebra Clif*(2k+ 1) which
may be distinguished by the identity A*{w,) = £1. Since 2k +1 = 1 mod 4,
we have @, = —w,,. Consequently complex conjugation defines a conjugate lnear
isomorphism

E(/\,P(ps)) = E(_/\ap(p—-—s)):
it is crucial at this point that we are dealing with a spin structure not with a spin®
structure. Since there are no harmonic spinors, n(M, ps) = —n(M, p—,). Thus

o (N(M)) =n(M, pesa — p_eza) = (M, pera — po) = (M, p_gsa — po)
:27[(ﬂ{[, pf/4 - p(]).

Since [M] = 0 in connective K theory and since the cta tnvariant extends to con-
nective K theory, n(M, pesa — po) € Z and thus 7o(N (M) € 22.
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This shows the map M — N{M)} is well defined map in connective K& theory.

We complete the proof by showing it is a group homomorphism. Let Af = M, Ll AL
be the disjoint union of two manifolds M,. Let

N = {2 x Zo) U (Zy x Z¢) and Ny 1= X/Zyy.

Then N{(M) = N(M) U N{Af:) U Ny. We may choose an orientation of X so the
flip which interchanges the two pieces preserves the orientation. Then Zye acts on
X by orientation preserving isometries so Ny is orientable and the pin~ structure
on N3 is a spin strucsure. The action of the orientation form anti-commutes with
the Dirac operator in even dimensions so F(M, P,,) = E(=X F,,). Since there are
no harmonic spinors, this shows n(Ns, p,) = 0 and hence [V3] = 0 in ko, (Ze, &2).
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