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The Atiyah-Singer index theorem 711 

O. Introduction 

Here is a brief outline to the paper. In Section 1, we review some basic facts concerning 
Clifford algebras and spin structures. In Section 2, we discuss the spectral theory of self- 
adjoint elliptic partial differential operators and give the Hodge decomposition theorem. 
In Section 3, we define the classical elliptic complexes: de Rham, signature, spin, spin c, 
Yang-Mills, and Dolbeault; these elliptic complexes are all of Dirac type. In Section 4, we 
define the various characteristic classes for vector bundles that we shall need: Chern forms, 
Pontrjagin forms, Chern character, Euler form, Hirzebruch L polynomial, A genus, and 
Todd polynomial. In Section 5, we discuss the characteristic classes for principal bundles. 
In Section 6, we give the Atiyah-Singer index theorem; the Chern-Gauss-Bonnet formula, 
the Hirzebruch signature formula, and the Riemann-Roch formula are special cases of the 
index theorem. We also discuss the equivariant index theorem and the index theorem for 
manifolds with boundary. We have given a short bibliography at the end of this article and 
refer to the extensive bibliography on the index theorem prepared Dr. Herbert Schrrder 
which is contained in [ 12] for a more complete list of references. 

This article began in 1988 as a set of lecture notes for a short course on the index the- 
orem which was given at the International Centre for Theoretical Physics in Trieste Italy. 
These lecture notes were revised and published in Forty More Years of Ramifications, Dis- 
courses in Mathematics and its Applications #1,1991, Texas A&M University. The present 
article represents a second complete revision; permission for this has been granted by the 
Department of Mathematics of Texas A&M University. It is a pleasant task to acknowledge 
support of the NSF (USA) and MPIM (Germany). 

1. Clifford algebras and spin structures 

We refer to Atiyah, Bott, and Shapiro [ 1], Hitchin [ 15], and Husemoller [ 16] for further de- 
tails concerning the material of this section. Give ]~m the usual inner product. The exterior 
algebra A (N m) is the universal unital real algebra generated by ]1~ m subject to the relations 

V A W q - - W A v = O .  

Similarly, the Clifford algebra C(~;~ m) is the universal unital real algebra generated by ]1~ m 

subject to the relations: 

v . w + w . v = - 2 ( v , w ) .  

Let {ei } be the usual orthonormal basis for 1~ m . If I is a collection of indices I = { 1 ~< i l  < 

�9 .. < ip ~ m } , l e t  Ill = P ,  let 

e a ' - - e i l A ' ' ' / x e i p  and let e / c : = e i l * ' ' ' * e i p .  
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Both A (It~ m) and C (]R m) inherit natural innerproducts. The {e~ } are an orthonormal basis 

for A (~m) and the {e/c } are an orthonormal basis for C (/I~ m). As the defining relation for 
A (/t~ m) is homogeneous, A (/~m) is a Z graded algebra where 

Ap (~m).._ span{e~}lil= p. 

As the defining relation for d (]1~ m) is Z 2 graded, C (]1~ m) is a Z2 graded algebra where the 
grading into even and odd is given by 

ce(~ m) := spanle/C}l/i=eve n and C~ m) := span{e/C}l,l=odd. 

Let 

ext(v)to := v A to 

be exterior multiplication and let int(v) be the dual (interior multiplication); it is defined by 
the identity (ext(v)tol, o92) = (to1, int(v)w2). Suppose that v is a unit vector. Then we can 
choose an orthonormal basis {ei } so that v = el. Relative to such an adapted orthonormal 
basis we have: 

0 
ext(v)(eA) :-- el Aeil A . . -Ae ip  

ei2 A . .  �9 A eip 
int(v) (e~) := 0 

if i l  = 1, 
i f i l  > 1, 

i f i l  = 1 ,  
i f i l  > 1. 

In other words, in this adapted orthonormal basis, exterior multiplication by v adds the 
index '1' to I while interior multiplication by v removes the index '1' from I. If c is a 
linear map from ~m to a unital algebra .A such that c(v) 2 = -Ivl 21.4, we polarize to see 
that 

c(v)c(w) + c(w)c(v) = - 2 ( v ,  w)1A. 

As c preserves the defining relation, c extends to a representation of C (~m). Let 

c(v) := ext(v) - int(v). 

Then c(v)2to = -[vl2to so c extends to a unital algebra morphism from C to the algebra of 
endomorphisms of A(~m). Again, relative to an adapted orthonormal basis where v = el, 
we have 

- -e i2 A . . .  A eip 

c(v)(e~) := el Aeil A . - .Ae ip  
i f i l  = 1 ,  
i f i l  > 1. 

The map v ~ c(v)l extends to a natural additive unitary isomorphism from C(]1~ m) to 
A (~m) which sends e/c to ep; this map is not an algebra isomorphism. 
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If m ~> 3, then the fundamental group of the special orthogonal group SO(m) is Z2;  

we use the Clifford algebra to describe the universal cover. Let Pin(m) be the set of all 
elements o9 ~ C,(R m) which can be written in the form o9 = 1)1 * . . .  * Vk for some k where 
the l)i are unit vectors in I~ m and let Spin(m) be the subset of elements where k can be 
taken to be even; 

Spin(m) = Pin(m) M C e (][~m). 

Then Pin(m) and Spin(m) are smooth manifolds which are given the structure of a Lie 
group by Clifford multiplication. The Lie group Pin(m) has two arc components; Spin(m) 
is the connected component of the identity in Pin(m). Let 

X (o9) -- ( -1)k  for 09 "-- 1)1 * " "  * Ok E Pin(m) 

define a representation of Pin(m) onto Z2 whose kernel is Spin(m). Let 

p (O9) :X ~ X (O9)O9 * X * O9-1 

define representations p :Spin(m) ~ SO(m) and p :Pin(m) ~ O(m). If v is a unit vector, 
then p(v) is reflection in the hyperplane v• relative to an adapted orthonormal basis where 

v = el, we have 

p(v)el = - e l  and p(v)ei -- ei fori  > 1. 

The representation p defines a short exact sequence 

Z2 ~ Spin(m) ~ SO(m) 

and exhibits Spin(m) as the universal cover of SO(m) if m ~> 3. The orthogonal group 
O(m) is not connected; it has two components. There are two distinct universal covers 
of O(m) distinguished by the induced multiplication on the set of arc components. One 
universal cover Pin(m) is as defined above; the other is defined by taking the opposite sign 
in the definition of the Clifford algebra. We omit details as this will not play a role in our 

discussion. 
Let U(n) be the unitary group. We complexify to define: 

Cc (]~m) .__ C (]1~ m) @~ C and  

SpinC(m) := Spin(m) | U(1) C Cc(]~m). 

Since we identify ( - g )  | (-~.) with g | ,k in Spin c (m), the map a ' g  | )~ ~-~ ~2 defines a 
representation from SpinC(m) to U(1). Since p ( - g )  = p(g), we may extend p to a repre- 
sentation from Spin c (m) to SO(m) by defining p(g | X) -- p(g). Let S n be the unit sphere 
in I~ n+l, let ~ := sn/z2 be real projective space, and let SU(n) be the special unitary 

group. We have that 

SO(3)  =/I~I? 3 Spin(3) -- S 3 = SU(2) 
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Spin c(3) = U(2) and Spin(4) = S 3 x S 3. 

Let s(2n) = s(2n + 1) := (~/=T) n. We define the normalized orientation by: 

ornm : - s ( m ) e l  , . . - ,  em e Cc(~m); O1"112 - - - -1 .  

Let My(C) be the algebra of v x v complex matrices. Then Cc(R 2n) = 1142, (C). This iso- 
morphism defines an irreducible representation S of Cc(I~ 2n) of dimension 2 n which is 
called the spin representation. Every complex representation of C(I~ 2n) or equivalently of 
Cc(~ 2n) is isomorphic to the direct sum of copies of S. The normalized orientation Om2n 
anti-commutes with elements of o 2n C c ( R )  and commutes with elements of ce(~2n). The 
restriction of S to C e (2n) is no longer irreducible; it decomposes into two representations 
S + called the half spin representations; S+(orn2n) = -4-1 on S +. Clifford multiplication 
defines a natural map intertwining the representations p | S + and S T of Spin(2n) and of 
Spin c (2n): 

c" R 2~ | S + ~ S :F. 

For example, let {u, v} be an orthonormal basis for R2. Then Cc(]I{ 2) = S1 E~) ~2 decom- 
poses as the sum of 2 copies of S where 

Sl := Span{u + ~ - 1 - v ,  1 - ~ - i . u  �9 v } 

and 

$2 := Span{u - ~/Z]-. v, 1 + ~'S]- �9 u �9 v}. 

We may identify S + = S + with the span of u + ~-S-iv and S -  = S 1 with the span of 

1A- ~~- lu  ~v. Similarly, let {u, v, w, x} be an orthonormal basis for ~4. Then Cc(R 4) = 
$1 ~ 82 @ 83 ~ 84 decomposes as the sum of 4 copies of S; these representation spaces 
can be taken to be the tensor product of the representation spaces in dimension 2. Thus 

A 

S1 " = $ 1 |  
A 

$2 "-" $2 ~) S1, 
A 

~3 :'-- $1 | 
A 

84:=82| 

or equivalently: 

s i  := Span{(~ + ~ - T .  ~)(w + 4 = f .  x),  (~ + 4 - ~ .  ~)(~ - ~ -  w �9 x), 

(1 - , / - ~ .  u ,  ~ ) (~  + , / = - f .  x),  (1 - , / = 7 . , ,  ~)(1 - , / = 7 .  m ,  x)}. 
�9 = Span{ (u - ~/Z-f.  v)(w + ~ Z - f .  x), (u - ~/Z-f. v ) ( 1  - ~ / - Z i -  �9 to  �9 x ) ,  

(1 + ~Z- f .  u �9 vl(w + ~Z- f .  x), (1 + V C ~ . u  �9 v)(1 - ~/-Z-i. w �9 x)}, 

g3 := Sp~{(u + , / ~ .  ~)(w - , /=7.  x), (, + , / ~ .  ~)(1 + , / = 7 .  to,  x), 

(1 - , / - ~ . , ,  ~ ) (~  - , / = 7 .  x),  (1 - , /= - f  �9 u ,  ~)(1 + , / = 7 .  ~ ,  x)}, 
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$4 := S p a n { ( u -  ~-Z1 . v ) ( w - ~ - f . x ) , ( u - ~ Z - f . v ) ( 1  + ~ Z - f . w . x ) ,  

(1 + ~/Z-f. u �9 v)(w - ~/-L--~. x), (1 + ~/-L]-. u �9 v)(1 + ~Z] - .  w �9 x)}. 

Let 

( x / Z ]  - 0 ) ( 0  1 )  ( 0 v/Z] - )  
C l : =  0 - - ~ ' - ~  ' C 2 : =  - 1  0 ' C3"-- ~ 0 ' 

CA1 "= ~ ] - "  Cl ~ Cl, C~2 : =  ~ "  Cl ~)C2, CA3 :--  "r " Cl ~)C3, 

C~4 "'-" C2 ~) 1. 

We can also define the spin representations for m -- 2 or m -- 4 by taking 

c(alu -F a2v) "-- alCl -F a2c2 if m = 2, 

c(alu + a2v + a3w + a4x) "= alF1 + a2F2 + a3F3 + a4F4 if m = 4. 

The Stiefel-Whitney classes are Z2 characteristic classes of a real vector bundle. They 
are characterized by the properties: 

(a) If dim(V) = r, then w(V) = 1 + wl(V) + . . .  + wr(V) for wi ~ H i (M; Z2). 
(b) If f : M1 --+ M2, then f * ( w ( V ) )  = w( f*V) .  
(c) We have w(V @ W) = w(V)w(W) ,  i.e. 

Wk(V ~ w)= y~ w i ( W ) w j ( W ) .  
i+j=k 

(d) If L is the M6bius line bundle over I ~  1 = S 1 , then Wl (L) ~ 0. 
For example, we have n*(R~n;  Z2) -- Z2[Xl]/(x~ +1 = 0) is a truncated polynomial alge- 
bra; here Xl = Wl (L) ~ HI(~]W; Z2) is the first Stiefel-Whitney class of the classifying 
real line bundle over I~F n. We have 

w(T]~]P n) = (1 -[-- 1/31) n+l  . 

More generally, let Grp(m) be the Grassmannian of unoriented p-dimensional planes in 
Item; ] I~  m -- Grl (m + 1). Let E be the classifying p plane bundle over Grp(m) and let E "l" 
be the complementary bundle; 

E "= {(zr,~) E Grp(m) x I~ m" ~ E zr} and 

E • "= {(Jr, ~) E Grp(m) x Nm. ~ _1_ zr }. 

Let w := w(E) and let ~ := w(E• Since E ~ E • is the trivial m plane bundle over 
Grp(m), we have w ~  = 1. We use this relation to solve for ~ in terms of w; ~1 = Wl, 
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1/)---2 = 112 2 -+- W2, etc. For dimensional reasons, we have wi = 0 for i > d im(E -L) = m - i. 
This is the only relation imposed. We have, see Borel [5], 

H*(Grp(m) ;  Z2)  : Z2[Wl  . . . .  , Wp]/-wi -- 0 fo r  i > m - p .  

The integral Chern classes are Z characteristic classes of a complex vector bundle. They 
are characterized by the properties: 

(a) If dim(V) = r, then c(V) = 1 + Cl (V) + . . .  + cr(V) for ci ~ H i ( M ;  Z ) .  

(b) If f :M1 --~ ME, then f*(c(V))  = c ( f*V) .  
(c) We have c(V ~ W) = c(V)c(W), i.e. 

Ck(V �9 W ) =  y ~  c i ( V ) c j ( W ) .  
i+j=k 

(d) If L is the classifying line bundle o v e r  C ~  1 = S 2, then Cl (L)[CP 1] = - 1 .  

We have H * ( c p n ;  Z) = Z[x2]/(x~ +1 = 0) is a truncated polynomial algebra; here x2 = 

cl (L) 6 H 2 ( c p n ;  Z) is the first Chern class of the classifying complex line bundle over 
CP n. Let T 1,~ be the holomorphic tangent bundle of c p n ;  T 1'~ is isomorphic to A0 ' Icpn .  
We have 

c ( T  1'0) - -  (1 + x2) n+l  . 

We can complexify a real vector bundle V to define an associated complex vector bundle. 
The integral Pontrjagin classes are defined in terms of the Chern classes: 

p i ( V )  : :  (-1)ic2i(VII~C) E H4i (M; Z ) .  

For example, 

p(rs m) = 1 and (1 + "+1 

Fix a fiber metric on a real vector bundle V and let ea be local orthonormal frames for 
V over contractable coordinate neighborhoods O~. We may express e~ = 4~#e~ where 
q~at~ maps the overlap Oa N (.9/~ to the orthogonal group O(r). These satisfy the cocycle 
condition: ~ba#4~#~, = tp~y. We say that V is orientable if we can reduce the structure group 
to SO(r); this means that we can choose the ea so det(~b~t~ ) = 1; V is orientable if and 
only if Wl (V) = 0. We say that V admits a spin structure if V is orientable and if we can 
define lifts 4~ag to Spin(r) preserving the cocycle condition; similarly, we say that V admits 
a spin c structure if V is orientable and if we can define lifts ~at~ to SpinC(r) preserving 
the cocycle condition. Let s be a spin c structure on V. We use cr to define an associated 
complex line bundle tr (s) over M with transition functions tr (~at~) ~ U(1). 

By choosing a fiber metric for a line bundle L, we can reduce the structure group to 
O (1) -- 4-1 in the real setting or to U(1) = S 1 in the complex setting. Let ca# be the 
transition functions of L. If s is a spin structure on V and if L is real or if s is a spin c 
structure on V and if L is complex, we twist the structure s by L to define a new structure 
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st. with lifts q~"~#ea#. Let Vect~(M) and Vect~(M) be the set of isomorphism classes of 
real and complex line bundles over M. We use the map s ~ sL to parametrize inequivalent 
spin and spin c structures on g by Vect~(M) and Vect~ (M). We use tensor product to make 

Vectl(M) and Vectl(M) into Abelian groups. The first Stiefel-Whitney class is a group 

isomorphism from Vect I ( M )  to H 1 (M; Z2) which provides a natural equivalence between 
these two functors. Similarly, the integral first Chem class is a group isomorphism from 
Vect~(M) to HE(M; Z) which provides a natural equivalence between these other two 

functors. Thus inequivalent spin and spin c structures on V are parametrized by H I(M; Z2) 
and H2(M; Z); there exist inequivalent spin structures if and only if HI(M;  Z2) r 0 and 
there exist inequivalent spin c structures if and only if H2(M; Z) g: 0. Note that the complex 
line bundle cr (sL) associated to the twisted spin c structure is the complex line bundle cr (s) 
twisted by L 2, i.e. cr (sL) = or(s) | L 2. 

A real vector V is orientable if and only if Wl (V) = 0. It admits a spin structure if and 
only if Wl (V) = 0 and w2(V) = 0. It admits a spin c structure if and only if Wl (V) = 0 and 
if w2(V) can be lifted from H2(M; Z2) to H2(M; Z). If V1 admits a spin structure, then 
V (9 V1 admits a spin structure if and only if V admits a spin structure. If V1 admits a spin c 
structure, then V (9 V1 admits a spin c structure if and only if V admits a spin c structure. 
If V is the underlying real vector bundle of a complex vector bundle W, then V admits a 
natural orientation and spin c structure. 

We say that a manifold M is spin or spin c if the tangent bundle TM has a spin or spin c 
structure. The sphere S m is spin for any m. Note that IRI? 1 = S 1 . Let m > 1. Real projective 
space II~dP m is orientable if and only if m is odd, spin c if and only if m is odd, and spin if 
and only if m - 3 rood 4. We have 

n l(]I~m; ~2) = ~2 and n 2 ( 1 ~ ;  Z) = ~2. 

Let j >~ 1. There are 2 inequivalent spin structures on  ]~l[ ~ j - 1  and 2 inequivalent spin c 
structures on R]i ~4j+l. Complex projective space C]? m always admits a spin c structure. It 
admits a spin structure if and only if m is odd. The spin structure is unique; the spin c 
structure is not. If m = 2 and if M is orientable, then M admits a spin structure. The group 
of n-th roots of unity acts by complex multiplication on the unit sphere S 2k- 1 in C k. For 
k ~> 2, the lens space L(k; n) is the quotient S 2k-1/Zn. If k is odd and if n is even, L(k; n) 
does not admit a spin structure; L(k, n) admits a spin structure if n is odd or if k and n 
are both even. The spin structure is unique if n is odd; there are two spin structures if n is 
even. The lens space L(k; n) always admits a spin c structure and there are n inequivalent 
spin c structures. The product of spin manifolds is spin; the product of spin c manifolds is 
spin c. The connected sum of spin manifolds is spin; the connected sum of spin c manifolds 
is spin c. 

If M is an even dimensional spin manifold, let the spin bundle S(M) be the bundle 
defined by the spinor representation S. The Levi-Civita connection lifts to a connection 
called the spin connection on S(M). Clifford multiplication defines a representation c of 
the Clifford algebra of the tangent bundle on the spin bundle S(M). Let ~ := {ei } be a local 
orthonormal frame for the tangent bundle. The frame ~ defines two local frames •  for 
S(M);  this sign ambiguity plays no role in the local theory and reflects the fact that we 
have two lifts from the principal SO bundle to the principal Spin bundle. Let Fijk be the 
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Christoffel symbols of the Levi-Civita connection. Then the connection 1-form of the spin 
connection is an endomorphism valued 1 form which is given by 

1 
Z ~'jkei | c(ej)c(ek). 
qk 

2. Spectral theory 

We refer to Gilkey [12] and to Seeley [ 19] for further details concerning the material of this 
section. Let M be a compact Riemannian manifold without boundary. Let x = (x 1 . . . . .  x m) 
be a system of local coordinates on M. Let 0 x = 8/8x i. If ot = (or1 . . . . .  am) is a multi- 
index, let 

OX .__(0~)0/1 ...(OXm)O~m, ~0/ .__b~l 1 ...~m~m and [oil : --Or 1 " + - - " - l - o t t o .  

Let V and W be smooth complex vector bundles over M and let D mapping C~176 to 
Coo (W) be a partial differential operator of order n. Choose local frames for V and W to 
decompose 

D =  Z aa(x)OX' 
Ic~l~<n 

where the aa are linear maps from V to W. We define the leading symbol of D by replacing 
differentiation with multiplication: 

crL (D)(x, ~) "= Z aa(x)~ a. 
Iotl--n 

If we identify ~ with the cotangent vector ~ := Y~i ~i dx i, then ~rL (D)(x, ~) is an invari- 
antly defined map which is homogeneous of degree n from the cotangent bundle T*M to 
the bundle of endomorphisms from V to W. We have 

trL(D*) = (--1)ncrL(D) * and crL(D 1 o D2) =trL(D1) OtrL(D2). 

The leading symbol is sometimes defined with factors of q / Z ]  to make formulas involving 
the Fourier transform and the adjoint more elegant; we delete these factors in the interests 
of simplicity. 

We suppose V = W for the moment. We assume V is equipped with a fiber metric and 
define the L 2 inner product by integration. We say that D is elliptic if crL (D)(x, ~) is 
invertible for ~ ~ 0. We say that D is self-adjoint if 

(D~, ~)i2(v ) = (~, D~)L2(v ) for all smooth q~, ~. 

Let D be self-adjoint and elliptic. There exists a complete orthonormal basis {~Pv} for 
L2(V) where the q~v are smooth sections to V with D~v = )~v~Pv; the collection {q~v, )~v} is 
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called a discrete spectral resolution of D. We have dimker(D) < oo and limv~oo I~l  = 
oo. Order the eigenvalues so 0 ~< I~.11 ~< IZ.21 ~ . - . .  Then there exists 8 > 0 and e > 0 so 
that I~,v I ~> ev8 if v is sufficiently large. We have a decomposition 

C ~176 (V) -- ker(D) ~ range(D) 

which is orthogonal in L2(V). If q~ 6 L2(V), we may expand 4~ = )--~v avdpv in a generalized 
Fourier series; 4) is smooth if and only if limv~c~ vkav = 0 for any k, i.e. the Fourier 
coefficients decay rapidly. 

For example, let D = - 0  2 on the circle. The corresponding spectral resolution is 

{e 4~-fnO , nZ}n~Z. The eigenfunctions are smooth and the eigenvalues grow quadratically. 
More generally, let D be the Laplacian on the sphere Sm. If we introduce polar coordinates 
(r, 0) on R m+l for r 6 [0, c~) and 0 6 S m, we can express the Euclidean Laplacian De in 
the form: 

De = - 0  2 - mr -1or + r -2D. 

Let H (m + 1, j )  be the vector space of all harmonic polynomials which are homogeneous 
of order j in m + 1 variables. We can use the above equation to see that the restriction 
of f 6 H(m + 1, j )  to S m is an eigenfunction for D corresponding to the eigenvalue 
j (j  + m - 1). In fact, all eigenfunctions of the Laplacian on S m arise in this way and 
{j (j  + m - 1), H (m + 1, j )  } j >/0 is the discrete spectral resolution of the scalar Laplacian 
on the sphere S m . The eigenvalues j (j + m - 1) appear with multiplicity 

(m+mJ)  ( m + j - 2 )  d imH(m + 1, j )  = - . 
m 

Thus if we order the eigenvalues in increasing order and repeat each eigenvalue according 
to multiplicity, we have ~,v grows like v 2/m . We refer to [ 12, Section 4.2] for further details. 

Let {q~v, ,kv} be the discrete spectral resolution of a self-adjoint elliptic second-order 
partial differential operator D. If we assume that the leading symbol of D is negative 
definite, then there are only a finite number of negative eigenvalues. The estimate ~.v ~> v E 
for large v shows that the heat trace 

h(t, D) " =  t r L 2 e  - t D  ~-- Z e-t~'" 
p 

is analytic for t > 0. There exists an asymptotic series as t $ 0 of the form 

h(t, D) ~ ~ an(D)t (n-m)~2 

n>.O 

where an(D) = fMan(X, D) are locally computable invariants. The an(X, D) are invari- 
ant polynomials in the jets of the total symbol of D with coefficients which are smooth 
functions of the leading symbol of D. For example, if D = ~d is the scalar Laplacian, 
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the leading symbol of D is given by the metric tensor; D is a self-adjoint elliptic partial 
differential operator. Let Rijkl;... denote the components of the covariant derivatives of the 
curvature tensor relative to a local orthonormal frame for the tangent bundle of M. We 
adopt the Einstein convention and sum over repeated indices. Let Pij : :  Rikkj be the Ricci 
tensor and 7"g := Pii be the scalar curvature. Then, see [12, Section 4.1] we have: 

ao(D) = (47r) -m/2 fM 1, 
L 1  a2(D) = (47r) -m/2 -~7"~, 

a4(D) = (47r)-m/2fM{ 5 2 1 1 12 } ~-~7~ - -i-~lPl 2 + 1--~le , 

a6(D) = (47r)-m/2fM{17 2 4 --~. 7"~;kT"~;k - ~. Pij;kPij;k -- ~. Pjk;nPjn;k 

9 28 797g 8 24 
@ ~..Rijkl;nRijkl;n H- 7--(. ;nn -- "~.PjkPjk;nn q- -'~.PjkPjn;kn 

12 35 7~,3 14 2 14 
-Jr" "-~.gijkeRijke;nn "~" ~ - -  -~. vTgp + 3.7!  7glRI2 

208 
9.7! PjkPjnPkn 

64 16 
3.7! Pij Pkl Rikjl -- 3 �9 7! Pjk Rjnei Rknei 

44 80 } 
9.7! Rijkn RijepRknep - ~ gijkn RiekpRjenp �9 

There are similar formulas for the Laplacian on p forms we will discuss presently; note 
that the covariant derivatives of the curvature tensor enter nontrivially into these formulas. 

Exterior differentiation d is a first order partial differential operator from the space of 
smooth p forms C ~ (AP M) to the space of smooth p + 1 forms Coo (Ap+IM). We have 
d 2 = 0. The de Rham theorem provides a natural isomorphism between the cohomology 
groups HP (M; C) which are defined topologically and the de Rham cohomology groups 

HP(M; C ) : =  ker(dp)/range(dp_l) 

which are defined geometrically. We have 

d ( ~ f l  d x l ) - - ~ l i  OfI dx i A d x  I Ox z 
I " 

so crt, (d) (x, ~) = ext(~). 

The leading symbol of interior differentiation 8 is the dual - int .  The leading symbol of 
d + 8 is is given by Clifford multiplication c := e x t -  int. The Laplacian 

Ap "= dp-l•p-1 -[- t~pdp = (d + ~)2 
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on C ~ (AP M) is a self-adjoint second order partial differential operator with scalar leading 
symbol. Let ds 2 = ~-'~ij gij dx i o dx j be the metric tensor and let I be the identity map on 
AP. We have 

tYL Ap(X, ~ )  : C ( ~ )  2 " -  -1~121 : - ~"~gij ~i~j I. 

ij 

Thus Ap is elliptic. We have ker Ap : kerdp n ker~p_l. We may decompose 

C~176 = ker(Ap) ~ range(Ap) 

= ker(Ap) ~ range(dp_l) ~ range(6p); 

these are orthogonal direct sum decompositions in L 2(A P M). If w 6 ker A p, then dpw -- O. 
This yields the Hodge decomposition theorem: the map o) -~ [co] is an isomorphism 

ker Ap -- HP(M; C) 

from the space of harmonic p forms to the de Rham cohomology groups. Let V be the 
Levi-Civita connection and let {ei } be a local orthonormal frame for the tangent bundle 
TM. Then: 

d = ext o V = ~ ext(e i) Vei 
i 

and 8 = - i n t  o V = - ~ int(e i) Vei. 
i 

Let orn be the normalized orientation on an orientable manifold M. Then 

c(orn) 2 = 1, c(~)c(orn) = (-1)m-lc(orn)c(~) ,  Vorn = 0 ,  

(d + ~)c(orn) = (-1)m-lc(orn)(d -4- 8) and c ( o r n ) A p  ---- Am_pC(orn ). 

Consequently c(orn) intertwines ker(Ap) with ker(Am_p) and defines an isomorphism 
called Poincar6 duality 

-- H m-p (M" C). HP(M; C) = ker(Ap) -- ker Am_ p 

Let dvol be the oriented volume form; the image of orn in AtoM | C is e(m)dvol. This 
is a harmonic form which generates H m (M; C) = C. The Hodge ,  operator is an isometry 
from APM to A m - p M  characterized by the property 

( * t ~ p ,  ~m-p)dvol - -~p  /k ~m-p. 

There is a universal fourth root of unity e(m, p) so that 

*d/)p -- e(m, p)c(orn)dpp; 
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thus c(orn) is essentially just the Hodge operator. We shall use c(orn) rather than * to 
simplify the sign conventions. 

It is worth considering a few examples. Let S n be the standard sphere in Nm. Then 
H j (an; C )  - -  0 for j r 0, n. We have 

HO(sn; C) = ker(Ao) = 1. C 

is generated by the constant function and 

H n (sn; C) = ker(An) = dvol. C 

is generated by the volume form on S n. Let CI? n denote complex projective space. Then 
H 2j (c~zn ; C) -- C for 0 ~< j ~< n; Hu(c]pn; C) = 0 otherwise. Let x2 be the Kaehler form 
of the Fubini-Study metric; alternatively, we could take x2 to be the first Chern form of the 

hyperplane line bundle. Then x~ is a harmonic 2j form which generates n 2j (C][~n ; C) -- C 

for 0 ~< j ~< n. Let U(n) be the unitary group embedded in Mn (C). Let tr := u- ldu be the 
Maurer-Cartan form. Let Ok(U) = tr(cr 2k-l); tr(cr 2k) = 0. Let 

Ol:=OilA'"AOip f o r l : = { l < ~ i l  <. . .<ip<~n} .  

Then the 6)1 are harmonic forms on U(n) which form a basis for the cohomology of the 
unitary group. A basis for the cohomology of the special unitary group SU(n) is given by 
the 6)1 where iv/> 2 and a basis for the cohomology of the orthogonal group O(n) is given 
by the 691 where all the iv are even. 

Let V := {V0 . . . . .  Vn} be a finite collection of vector bundles over M and let 
d := {do . . . . .  dn-1} be a collection of first order partial differential operators where 
dp : C ~176 (Vp) ---> C ~176 (Vp+ 1 ). We say that (V, d) is an elliptic complex if 

(a) dp o dp-1 = O, 
(b) kercrL(dp)(X,~) =rangetrL(dp_l)(X,~) for ~ ~ 0 .  

We define the associated Laplacian A := (d + d*)2; this decomposes in the form A := 
~)p Ap, where the Ap are elliptic self-adjoint second order partial differential operators 
on C~(Vp). The Hodge decomposition theorem generalizes this setting to identify the 
cohomology groups with the harmonic sections: 

ker(dp) 
H p (~), d) := = ker(Ap). 

range(dp_l) 

The cohomology groups are finite-dimensional. We define the index of this elliptic complex 
by 

index(V, d) := y ~ ( -  1) p dim HP(I), d) = ~'-~(- 1) p dimker Ap. 
p p 

Let an (.) be the constant term in the asymptotic expansion of the heat trace. Define 

am(x,d) := ~ ( - 1 ) P a m ( x ,  Ap). 
p 



The Atiyah-Singer index theorem 723 

We then have 

index(V, d) -- Z(--1)PtrL2e-tAP = fM am(X, d). 
p 

This gives a local formula for the index. 
To illustrate this, we recover the Chern-Gauss-Bonnet formula in dimensions m = 2 

and m = 4 using formulas from [ 12, Section 4.1 ]. Let A p be the p form valued Laplacian. 
We have: 

a0(Ap) = (4Jr)-m/2 fM ( ; )  �9 

a 2 ( A p ) - - ( 4 7 r ) - m / 2 6 f M { ( ; ) - - 6 ( ; - - ~ ) } r .  

a4(Ap) = (47r)-m/23160 fM{ { 5 ( ; ) -  6 0 ( p -  ~ ) +  1 8 0 ( ; - - ~ )  }r 2 

+ { -- 2 ( p )  + 1 8 0 ( ;  -- ~) -- 7 2 0 ( ;  - -4)  }IPl 2 

-t- { 2 ( ; )  - 30 (p  - ~) q- 1 8 0 ( ;  - ~) } IRI2} �9 

The index of the de Rham complex is the Euler characteristic. Thus 

x(M 2) = Z(--1)Pa2(Ap)= (4rc)-m/2 fM r, 
p 

x ( M  4) = Z ( - - 1 ) P a 4 ( A p ) =  (4rr)-m/2 
p 

360 { 180r 2 - 7201Pl 2 + 1801RI2}. 

We draw some consequences of the observation that there is a local formula for the in- 
dex. Let {V, de } be a smooth 1 parameter family of elliptic complexes. Since am (x, de) 
is locally computable, it is continuous in the parameter e. Thus the index is continuous 
in e. Since the index is Z valued, it is constant; this shows the index is a homotopy 
invariant. A simple parity argument shows the local invariants am(x, d) vanish if m is 
odd. This shows the index is zero if m is odd so we shall restrict to even-dimensional 

N 

manifolds for the most part. Suppose that ~r'M ~ M is a covering projection with fi- 
nite fiber F. Let (rr*V, rr*d) denote the pull-back to M. Since an is locally computable, 
am ('x, A) = am (2"x, A). Since integration is multiplicative under finite coverings, the index 
is multiplied by the cardinality of the fiber: 

index(V, d) = Ifl" index(V, d). 
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Suppose that the elliptic complex is natural with respect to connected sums ~ this will 
be the case for the de Rham, signature, and spin complexes; it will not be the case for the 
Dolbeault complex. Since integration is additive, we have 

index(V, d; M1) + index(V, d; ME) 

= index(V, d; MI#M2) --b index(V, d; sm). 

We shall only consider elliptic complexes of partial differential operators. If we were 
to consider elliptic complexes of pseudo-differential operators, there would exist exist 
nontrivial index problems in odd dimensions. For example, the shift operator defined on 
C~176 1) by 

{ ne4~S-f(n-1)O 
P ( e ~/'z--f n O ) = n e ~--f n 0 

ifn > O, 

ifn~<O 

has index 1 on the circle; this is a pseudo-differential operator. 
There are examples where axiom (b) for an elliptic complex is satisfied but axiom (a) is 

not satisfied. Thus 

ker crL (dp)(X, ~) = range crL (dp-1)(x, ~) 

for ~ # 0 but we do not have d 2 = 0; this means that the complex is exact at the symbol 
level. For example, if M is an almost complex manifold, then M is holomorphic if and 
only if the Nirenberg-Neulander integrability condition (d o, 1)2 = 0 is satisfied. However, 
we can always "roll up" the elliptic complex to create a 2 term complex and define an 
index. Let 

A : C ~ (V e) ---> Coo (V~ 

where 

A := d + d*, V e " - - ~  V 2k, V ~ : - - - ~  v2k+l; 

this is an elliptic complex if axiom b) is satisfied. If axiom a) is satisfied, this new Z2 
graded complex has the same index as the original Z graded complex. Thus this construc- 
tion extends the index to this more general setting. We define the associated operators of 
Laplace type and heat invariants 

Ae := A'A, Ao := AA* and am(x, d) = am(x, Ae) -- am(X, Ao). 

The complex is elliptic if and only if the associated Laplacians are elliptic. Of the classical 
elliptic complexes, the de Rham and Dolbeault are Z graded; the remaining complexes are 
Z2 graded. 
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3. The classical elliptic complexes 

We define the de Rham complex by taking exterior differentiation 

d : CC~(APM) --+ C~176 M). 

We have d 2 - -  0. If ~ r 0, then ext(~)0)= 0 if and only if there exists 4~ so 0 ) =  
ext(~)4~. Thus this is an elliptic complex. The associated Laplacian is A p and the as- 
sociated cohomology groups are the de Rham cohomology groups. Thus the index is 
Y~p(-1) p dimHP(M; C); this is the Euler-Poincar6 characteristic x(M) and is a com- 
binatorial invariant. If M is given a simplicial structure or a cell structure with n p sim- 
plices or cells of dimension p, then x(M) -- Y~p(-1)Pnp. If M is odd dimensional, then 
X (M) = 0. Let qF n be the n toms. We have 

X (S2n) = 2, X (]RP2n) = 1, X (T2n) = 0 and X (C 1era) = m + 1. 

Let M be oriented and even-dimensional. The signature complex 

d + 8 :C~176 --+ C~176 

is defined by decomposing the exterior algebra into the 4-1 eigenvalues of the normalized 
orientation c(orn); since M is even-dimensional, c(orn) anti-commutes with d + 8. The 
symbol of the signature complex is Clifford multiplication; the signature complex is an 
elliptic complex. We let sign(M) be the index; it is independent of the metric on M and 
changes sign if the orientation of M is reversed. Furthermore, sign(M) = 0 if m -- 2 mod 4. 
The associated Laplacians are the restriction of the Bochner Laplacian. As with the de 
Rham complex, it is possible to give a topological interpretation. Let m -- 4k. Only the 
middle dimension plays a role here. The index form I (0)1,092) :--" fM gO1 A 0)2 extends to a 
nonsingular bilinear form on the de Rham cohomology groups H 2k (M; C) in the middle 

, dimension. We have * = c(orn) on A 21r We decompose the Laplacian A2k = Ark �9 A2k 

I is positive definite on ker Ark, I is negative definite on ker A2k, and ker A~- k is orthogonal 

to ker A2k with respect to the pairing defined by I. Thus sign(M) is the index of the form 
I. We have 

sign(S 4k) = 0, sign('lP 4k) = 0 and sign(CP 2k) -- 1. 

The Yang-Mills complex in dimension 4 arises from yet another decomposition of 
the exterior algebra. Let Jr :A2M --+ A2,-(M) be orthogonal projection. The Yang-Mills 
complex is a 3 term elliptic complex given by: 

d'C~(AOM)---> C~(A1M) and rcd'C~(A1M)--> C~176 

Let y ( M )  be the index of this elliptic complex; when twisted by a suitable coefficient 
bundle, it plays a crucial role in the study of the moduli space of anti-self dual connections 
in Donaldson theory. We have X(M) = �89 (M) - sign(M)) so 

3](S 4) --" 1, ~y(~4)__ 0 and 3;((217 2) = 1. 
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The Dolbeautt complex is the holomorphic analogue of the de Rham complex. Let z "= 
(z I . . . . .  z m) be a system of local holomorphic coordinates on a holomorphic manifold M 
of complex dimension m where z j "= xJ + ~ - f  yJ. In the complexifications TM | C 
and A(M)  | C we define: 

dz j "= dx j + ~ d y  j, d-~J ._. dx j _ ~ dy j , 

dz  I " -  d z  il A . . .  A d z  ip , d-~ J = d-~ h A . . .  A d'~ jo , 

A p'q M := spanlll=p,iJl= q {dz t m d-z J }, 

z 1 -e 1 aj := +, / : - fay) ,  

d l ' O E f l ' j d z I  Ad'zJ :'- E aJ ( f I ' J )dz j  A d z I  Ad-zJ' 
l ,J j , I ,J  

d~ E f l , J d z I  Ad-zJ  E "f �9 = Oj (f1,J) dz  j A dz x A d-z J . 

I,J j , l ,J  

A complex function f is holomorphic if and only if d ~  - 0 .  Since d = d 1'~ + d 0,1, 
we see d o, 1 d 0,1 = 0. Note that d o, 1 is often denoted by O. The operators given above are 
invariantly defined. If ~ is a cotangent vector, decompose ~ = ~ 1,0 + ~0,1. The leading 
symbol of d ~ is exterior multiplication by ~0,1 so the Dolbeault complex 

d~ . c ~ 1 7 6 1 7 6  ~ C~176 0,q+l) 

is an elliptic complex. The index of the Dolbeault complex is called the arithmetic genus 
of M and will be denoted by Ag(M). We have 

Ag(~2n)=0  and Ag(CIl~n)=l. 

If J is an almost complex structure on M, we can mimic this construction; J arises from 
a complex structure on M if and only if (d ~ = 0. To define an index problem in this 
setting, we "roll up" the complex. If S ~ is the adjoint of d ~ we take 

(d 0'1 + t~O'l) " C ' ( A ~  ~ C ' ( A ~ 1 7 6  

The sphere S 2 admits a complex structure. The sphere S 6 admits an almost complex struc- 
ture; it is not known if S 6 admits a complex structure. No other sphere admits an almost 
complex structure. 

The spin complex is defined for even-dimensional spin manifolds. Let S(M)  be the 
spin bundle. Clifford multiplication defines a natural action of the cotangent bundle on the 
spin bundle S(M).  We decompose $(M)  = S + (M) ~ S -  (M) into the chiral spin bundles 
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where c(om) = 4-1 on S+ (M). The Levi-Civita connection V induces a natural connection 
called the spinor connection on S(M); 

c o  v .  

A A 

defines the spin complex. The index of this elliptic complex is called the A-genus A (M). 
The index of this elliptic complex vanishes if m -- 2 mod 4. Let K 4 be the Kummer surface; 
this is the set of points in CI? 3 satisfying the homogeneous equation z 4 + z 4 + z 4 + z 4 = 0. 

We have 

A'(S 4k) -- 0, ~'(~4k) _ 0 and A'((K4) k) -- 2 k. 

A A 

There is a close relationship between the A genus and the scalar curvature. The A genus is 
a Z valued invariant which is defined if m - 0 mod 4. It is possible to define a Z2 valued 
index if m - 1, 2 mod 8. The formula of Lichnerowicz [ 18] shows that if M admits a metric 
of positive scalar curvature, then there are no harmonic spinors; consequently A(M)  = O. 

Stolz [20] has proven apartial converse: if M is a simply connected spin manifold of 
dimension m >~ 5 with A (M) = 0, then M admits a metric of positive scalar curvature. 
There are extensions of this result in the nonsimply connected setting, see [6] for details. 
Here the eta invariant plays a crucial role in giving the relevant characteristic numbers. 

These elliptic complexes are multiplicative. Let M := M1 • M2. When dealing with the 
signature complex, we assume the Mi are oriented; when dealing with the spin complex, 
we assume the Mi are spin; when dealing with the Dolbeault complex, we assume the Mi 

are holomorphic. We then have 

x ( M )  = x(M1)x(M2), sign(M) = sign(M1)sign(M2), 

A A A 

Ag(M) =Ag(M1)Ag(M2) and A ( M )  = A(M1)A(M2).  

These elliptic complexes behave well with respect to finite coverings. Suppose that 
Jr" M --+ M is a finite covering with finite fiber F. If M has an appropriate structure, 
there is a similar structure induced on M. We have 

x ( M )  = x (M)IFI ,  sign(M)--  sign(M)lF], 

A ~ A 

Ag(M) =Ag(M)IF[ ,  and A(M)  = A(M)IFI .  

Let # denote connected sum. The connected sum of two oriented manifolds is oriented 
and the connected sum of two spin manifolds is spin. However, the connected sum of two 
complex manifolds need not be complex. We have 

X (M#N)  = X (M) + X (N) - 2, 

s ign(M#N) = sign(M) + sign(N) and 
A A A 

A (M#N)  = A (M) + A (N).  
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The de Rham and Dolbeault complexes have nontrivial indexes in any even dimensions; 
the signature and spin complexes have nontrivial indexes only if m - 0  mod 4. To get 
a nontrivial index if m -- 2 mod 4, we can twist these complexes by taking coefficients 
in an auxiliary bundle V. We assume V is equipped with a positive definite fiber metric 
and an auxiliary Riemannian connection V. We use V and the Levi-Civita connection to 
covariantly differentiate tensors of all types. We define the following elliptic complexes 
with coefficients in V: 

de Rham: (c | lv)  o V:COO(AeM | V) --+ C~176176 | V); 
signature: (c | 1 v) o V : COO(A+M | V) --+ COO(A-M | V); 
Yang-Mills: (c | Iv) o V : COO((A~ ~ A2,-M) | V) ~ COO(A1M | V); 
spin: (c | 1 v) o V : C ~ (S + M | V) ~ Coo (S-  M | V). 

Let ~ = (sl . . . . .  Sr) be a local holomorphic frame for a holomorphic vector bundle V. 
The twisted Dolbeault complex with coefficients in V is defined by 

d~176 | V ) ~  Coo(A~ | V), 

where 

0,1 
Oj f j, v d-z j A d-z J | Sv. 

J,v j,J,v 

Let X (M, V), sign(M, V), Y(M, V), A'(M, V), and Ag(M, V) be the index of these ellip- 
tic complexes; 

x(M, V) = dim(V)x(M) and 
1 

Y(M, V ) =  -~(x(M, V ) -  sign(M, V)). 
z -  

We note that it is necessary to "roll up" the Yang-Mills complex when twisting with a 
coefficient bundle; the following sequence is a complex if and only if the connection V on 
the coefficient bundle V is anti-self dual: 

dr"  Coo (V) ~ Coo (A 1 M | V), 

Jr o dv " Coo (A I | V)--~ COO (A2'-M | V). 

If M is spin, then we can write the de Rham and signature complexes in terms of the twisted 
spin complex. If M is holomorphic, then M is spin if and only if we can take a square root 
L of the canonical bundle A ~ Let m = 2n. We have 

x(M, V ) =  ( -1 )  n dim(V){'A(M,S +) - A'(M, S - )  }, 

A 

sign(M, V) = A(M, S | V), 
A 

Ag(M, V) -- A(M, L | V). 

Let Sc be a spin c structure on an even-dimensional manifold M. Let Sc be the associated 
spinor bundle and let L = L(sc) be the associated complex line bundle. Then M admits 
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a spin structure if and only there is a square root of the line bundle L; if this is possible, 
then Sc = S | 4'-L. We define the twisted spin c complex with coefficients in V using the 
diagram 

(c | 1) o V :Coo (S + | V) ~ C ~ (S -  | V). 

A 

Let Ac(M, V) be the index of this elliptic complex. The spin c complex plays a crucial role 
in Seiberg-Witten theory if m = 4. 

If M is a complex manifold, there is a canonical spin c structure on M and we may iden- 
tify A O,e = ,.q+ and A ~176 = $ - .  Under these isomorphisms, the operators of the Dolbeault 
complex and of the spin c complex agree if the metric is K~ihler. Although they do not agree 
in general, they have the same leading symbol and hence the same index; 

A 

Ag(M, V ) =  Ac(M, V). 

We put all these elliptic complexes in a common framework as follows. Let M be an 
even-dimensional oriented manifold. Let c be a linear map from the cotangent bundle T* M 
to the bundle of endomorphisms of a complex vector bundle E so that c(~) 2 = -I~1=. We 
extend c to the Clifford algebra bundle generated by T*M to define the endomorphism 
c(orn) of E. We choose a unitary connection X7 on E so that Vc = 0; such connections 
always exist. We decompose E = E + @ E -  into the 4-1 eigenbundles of c(orn) and define 

d • := c o V :Coo(E • ~ COO(Era). 

The d • are elliptic first order operators with (d• * = dm. The associated second order 
operators A + := dmd • have scalar leading symbol given by the metric tensor and are said 
to be of Laplace type. We consider the elliptic complex 

d+ : Coo(E +) --+ C~176  

this is an elliptic complex which is said to be of Dirac type. It is immediate that the signa- 
ture, spin, and spin c complexes are of Dirac type. 

Let M be a complex manifold. Let ~ 1,0 and ~0,1 be the projections of a real cotangent 
vector ~ to A 1,~ and A ~ We define 

c(~) "= ~/2{ext(~ ~ - i n t ( ~  1'~ }; C(~') 2- -  -l~:l 2. I. 

Modulo a suitable normalizing constant, c is leading symbol of the Dolbeault operator 
d ~ + 8 ~ . The Z2 grading of A ~ given by c(orn) is the standard decomposition A ~ 
A ~176 If the metric on M is K~hler, then we have d ~ + 8 ~ = c o V where V is the 
Levi-Civita connection. For general metrics, this operator differs from the operator of the 
Dolbeault complex by a 0-th order term. 

There is a 4 fold decomposition of A (M) into forms of even and odd degrees as well as 
into 4-1 chirality. We define two elliptic complexes of Dirac type: 

COl :--  (d + 8) : COO(Ae'+M) --+ COO(A~ 
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E2 :-- (d + 6) : C~176176 ---> C~176 

We can twist with a coefficient bundle. The signature complex is given by the formal sum 
E1 + E2 while the de Rham complex is given by the formal difference E1 - C2. The Yang- 
Mills complex is -C2. Thus we have 

X (M, V) = index(E1) - index(C2), 

y ( M ,  V) = -index(E2) and sign(M, V) -- index(El) + index(C2). 

This shows that the de Rham and Yang-Mills complexes are also of Dirac type. Suppose 
that M is spin. If m = 0 mod 4, then C1 is the spin complex with coefficients in S + and E2 
is the spin complex with coefficients in S - ;  if m = 2 mod 4, then E1 is the spin complex 
with coefficients in S -  and C2 is the spin complex with coefficients in S +. 

4. Characteristic classes of vector bundles 

The Stiefel-Whitney classes take values in H*(M; Z2); the Chern and Pontrjagin classes 
take values in H* (M; Z). We can complexify to define Chern and Pontrjagin classes tak- 
ing values in H*(M; C) and to regard them as elements of de Rham cohomology. These 
classes can be computed in terms of curvature. We refer to Eguchi et al. [10], Hirze- 
bruch [ 13], and Husemoller [ 16] for further details concerning the material of this section. 

A connection V on a real or complex vector bundle V is a generalization of the notion 
of a directional derivative. It is a first order partial differential operator 

V : C~(V)  ---> C~176 | V) 

which satisfies the Leibnitz rule V ( f s )  = d f  | s + f V s .  There is a natural extension 

V : CC~(APM | V) -+ C~176 | V) 

defined by setting 

V(Ogp | s) --dwp | s + (-1)Pogp A Vs. 

In contrast to ordinary exterior differentiation, V 2 need not vanish. However, 

V2(fs)  = d d f  | s - d f  A Vs + d f  A Vs + fV2s  = fV2s  

so V 2 is a 0-th order partial differential operator called the curvature ~2. Let (Si) be a local 

frame. We sum over repeated indices to expand Vsi = o~ i | sj. Then 

V2si : (dw/ -ogki A o9~) | sk and I2/: dog/-ogki A o9~. 
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If~' = g[ sj is another local frame, we compute ~ = dgg -1 + gcog - I  . We say that V is a 
Riemannian connection if we have 

(Vs1, $2) "{'- (s1, Vs2) -- d(sl,  $2). 

We restrict to such a connection henceforth. Relative to a local orthonormal frame, the 
curvature is skew-symmetric. We can always embed V in a trivial bundle of dimension v; 
let zrv be the orthogonal projection on V. We project the flat connection to V to define 
a natural connection on V. For example, if M is embedded isometrically in Euclidean 
space N v, this construction gives the Levi-Civita connection on the tangent bundle T M. 
We summarize: 

12 = do.) - o9 2 - -  y rv  drcv drcv, 12 + 12" = 0 and ~ = g12 g-1. 

Let P (A) be a homogeneous polynomial of order n defined on the set of r x r complex 
matrices Mr(C) which is invariant, i.e. P(gAg - I )  = P(A) for all g in Gl(r, C) and for 
all A in Mr(C). We define P(12) ~ C~176 by substitution; this is invariantly defined 
and independent of the particular local frame field chosen. We polarize P to define a multi- 
linear invariant symmetric function P(A1 . . . . .  An) so that P(A . . . . .  A) -- P(A).  Then 
dP(12) = nP(d,C2, 12 . . . . .  12) is invariantly defined. Fix x0 ~ M. We can always choose 
a local frame field so og(x0) = 0 and thus d12(xo) = 0. This shows that dP(12)(xo) = 0 
and hence P(12) is a closed differential form. Let [P(12)] denote the corresponding rep- 
resentative in de Rham cohomology. Let V(e) :=  6Vl  -a t- ( l  - 8)V0 be an affine homotopy 
between two connections on V. Let 0 := o91 - coo. Then ff = gO g-1 so 0 transforms like 
a tensor. Since 0 is a 1 form valued endomorphism of V and 12 is a 2 form valued en- 
domorphism, P(O, 12(e) . . . . .  12(e)) is an invariantly defined 2j  - 1 form. One computes 

that 

P ( 1 2 1 ) - P ( 1 2 o ) = n d { ~ o  1 P(O,12(e) . . . . .  12(e)) de} 

so [P(120)] = [P(121)] in H2n(M; C); we denote this common value by P(V).  
Complexification gives a natural map H*(M; Z) ~ H*(M; Z). We can complexify the 

integral Chern classes to define the complex Chern classes and compute them in terms of 
de Rham cohomology using curvature. The total Chern form of a Riemannian connection 
V on a complex vector bundle of complex dimension r is given by 

/ 
c(12) "= det 1I  + 

2rr \ 
12) - 1 + Cl (~(2) + C2(12) + " "  + Cr(~Q).  

The complex Chern classes are C characteristic classes of a complex vector bundle V. 
They are characterized by the properties: 

(a) If dim(V) = r, then c(V) = 1 + cl (V) + . . .  + cr(V) for ci ~ H i (M; C). 

(b) If f :M1 --+ M2, then f * (c (V) )  = c ( f*V) .  
(c) We have c(V ~ W) = c(V)c(W).  
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(d) If L is the classifying line bundle over S 2, then f s  2 Cl (L) = - 1. 
The first three properties are immediate from the definition; we check the final property 

as an example. Let CI? 1 = $3/S 1 be the set of complex lines through the origin in C 2. Let 
(~) 6 CIP 1 be the line determined by the point 0 -r ~ 6 C 2. The classifying line bundle L 
over C/t ~1 is given by 

L - -  {((~), ~.) ECI~ 1 x C 2" ~, E (~)}; 

L is a sub-bundle of the trivial 2 plane bundle. Let s(z) := ((z, 1), (z, 1)) be the canonical 
section to L over C C CI?I; s is a meromorphic section to L with a simple pole at oo. We 
compute: 

V(s) = dz | zrL {(1,0)} = (1 + [zl2)-l-~dz | s, 

V2(S) ---- (1 + [z[2) -2 d-~/x dz ~ s, 

Cl (~2) = - 1 ( 1  + x 2 + y2)-2 dx/x  dy, 

Cl (L) = -- - r ( 1  -q- r2) -2 d O d r = - l .  

Let L be a holomorphic line bundle over a Riemann surface M. Choose a meromorphic 
section s to L. Let ns and Ps be the number of zeros and poles of s. The calculation 
performed for the classifying line bundle over CI? 1 can be used to show that: 

fM Cl (L) = ns -- Ps. 

The total Chern character is defined by the formal sum 

( 4 " ~ )  v v) 
ch(l'2) := tr(e ~/-~/2rr)  = ~ (--~i~v~ tr(12 = ch0 + Chl + . - . ;  

!) 

ch(V ~ W ) =  c h ( V ) +  ch(W) and ch(V | W ) =  ch(V)ch(W). 

The Chem class lifts from H*(M; C) to H*(M; Z); it is an integral class. The Chem 
character lifts from H*(M; C) to H*(M; Q); it is a rational class but not an integral class. 
Let KU(M) be the K theory group of M; we refer to Karoubi [17] for further details 
concerning K theory. The Chem character extends to a ring isomorphism from KU(M) |  
to He(M; Q) which is a natural equivalence of functors; modulo torsion, K theory and 
cohomology are the same functors. 

Let q be a linear map from ~2j+1 to the set of v x v complex self-adjoint matrices so 
that q(x) 2 = Ixl 2, for example, if j = 1, we could let 

( lO)  (01 t ( 0 
qo = 0 - , ql -- 1 0 and q2 -- _ 
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define q(x) = x~ + x lq l  + x2q2. Let V be the eigenbundles of q over the sphere s2J; 

V• :-- {(x ,  ~:) E S 2j • C v" q(x)~ = q-~ }. 

We wish to compute fs2J chj (V• Let 

1(1-4- (x)) zr+ := ~ q 

be orthogonal projection on the bundles V• We project the flat connection on  S 2j • C v 

to define connections V• on the bundles V• this is analogous to the construction of the 
Levi-Civita connection on a hypersurface by projection of the Euclidean connection. Fix 
a point P e S 2j and let ~• be a basis for V• Extend this basis to a local frame by 
defining ~• (x) := zr• (x)~• (P). We compute the curvatures: 

Vi(x)~+(x) -- re• (x) dzri(x)-~• 

$2+(x)-~+(x) -- 7r+(x) drc+(x) drr• 

SO 

$2• = rr+drc+drc+. 

Choose oriented orthonormal coordinates for ]I~ 2 j+ l  SO that the point P in question is the 
north pole. Expand 

q(x) = x~ + . . .  + x2jq2j;  qiqj + qjqi  = 23ij. 

Note that ~" "= x/-L-]-q extends to the Clifford algebra; modulo a suitable normalizing the 
evaluation of ~" on the normalized orientation form is given by qo"" q2j; thus this product 
is invariantly defined and does not depend upon the choice of P nor upon the orthonormal 
coordinate system chosen for ]1~ 2j-l-l" it does depend, of course on the orientation. Thus in 
particular 

T := tr(qo �9 - "q2j) 

is invariantly defined. We compute at P that: 

d v o l -  dx  1 / x . . .  A dx  2j, 

1 
yr+(P) = ~-(1 + qo), 

z 

dzr+(P) = ~dx  i qi , 
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1 (dxi A dxJ)(1 + qo)qiqj, 12+(P) = g 

ff2+(P) 2j = 2-2j - l (2 j ) ! (dx  1 A . . . A dxZJ)(1 + qo)ql"" "q2j, 

t r{~+(P) 2j } = 2-2j- l (2j)!dvoltr{  (1 + qo)ql"" "q2j }, 

(~Z]-) j (2j)! 
chj(I2+)(P) = (2zr)J j!22J+ 1Tdvol. 

Since P was arbitrary, this identity holds in general. Since the volume of S 2j is 
j!TrJ22j+l/(2j)!, we conclude 

fs  chj(V+) = 2 - j  (~Z--1)Jtr(qo" "q2j). 2j 

If q = ~/-ZTc is defined by the spin representation, v = 2 j , 

2 - j  (~L-1)J tr(q0"" "qzj) = 4-1 and fs chj(V+)-- 4-1. 
2j 

The corresponding element [V+] in K theory is called the Bott element; it and the trivial 
line bundle generate the K theory of S 2j, i.e. 

KU(S 2j) = [11-Z ~ [V+]" Z. 

The Chern character is defined by the exponential function. There are other characteristic 
classes which appear in the index theorem which are defined using other generating func- 
tions. Let :7 := (Xl . . . .  ) be a collection of indeterminates. Let sv(Y) be the v-th elementary 
symmetric function; 

I-I(1 + xv) -- 1 + Sl(s + s2C7) + . . . .  
p 

Let f (~) be a symmetric polynomial or more generally a formal power series which is 
symmetric. We can express f(~)  = F(sl (~) . . . .  ) in terms of the elementary symmetric 
functions. For a diagonal matrix A "= diag(~.l,...), let xj := ~L]-~.j/2rr be the normal- 
ized eigenvalues. Then 

c (A)=de t  1+  2zr A = l + s l ( : 7 ) + . . . .  
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We define f(12) = F(cl (12) . . . .  ) by substitution. For example, if f (~)  := ~ v  eXv, then 
f (12) = ch(12) is the Chern character. The Todd class is defined using a different generat- 
ing function: 

td(~) "= H x v ( 1  - e-Xv) -1 = 1 +tdl(:~) + . . . .  
p 

If V is a real vector bundle with a Riemannian connection V, the total Pontrjagin form 
is defined by 

( 1 ) 
p(12) :=det  1 + ~zr/12 = 1-4-p1(12)+p2(12)+ . . . ,  

where the pi(12) are closed differential forms of degree 4i; since 12 + 12t = 0, the forms 
of degree 4i + 2 vanish. Let pi(V) -- [pi(12)] denote the corresponding elements of de 
Rham cohomology; these are independent of the particular Riemannian connection which 
is chosen. Let [.] be the greatest integer function. The Pontrjagin classes are characterized 
by the properties: 

(a) If dim(V) = r, then p(V) - 1 + pl (V) + . . .  + p[r/2](V) for Pi E H 4i (M; C); 
(b) If f :M1 ~ M2, then f * (p (V) )  = p ( f*V) ;  
(c) We have p(V (9 W) = p(V)p(W);  
(d) We have fc~2 pl (TCI~2) -- 3. 

The Pontrjagin classes can be lifted to Z integral classes by defining 

pi(V) :-" (-1)ic2i(V ~ C); 

the formula in (c) only holds modulo elements of order 2 over Z. Let x2 generate 
H2(CI?n; Z) C H2(cI?n; C). The formula in (d) follows from the observations 

p(TCIF 'n) = (1 + x2) n+l and f r  x ~ = l .  

We can define some additional characteristic classes using formal power series. Let 
{-r 1;kl . . . .  } be the nonzero eigenvalues of a skew-sy Ammetric matrix A. We set x j = 
-~.j/2yr and define the Hirzebruch polynomial L and the A genus by: 

Xp 

L(s "= H tanh(xv) 
p 

-- 1 + L1 (.~) + L2(.~) + . - . ,  

H Xv A(~) := 1 
v 2 sinh (~xv)  

= 1 + AA1 (:~) + A'2(~) + ' " .  

The generating functions x/tanh(x) and �89 are even functions of x so the am- 
biguity in the choice of sign plays no role. This defines characteristic classes 

Li(V) E H 4i(M; C) and A~(V) ~ H 4i(M; C). 
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We summarize below some useful properties of these classes" 

p j (V)  -- ( -1)Jc2j(V | C), 

~ / -1  Err 8 -~  1 {tr(I22) tr(~Q)2 Cl (~(2) -" tr(ff2), c2(ff2) --" -- }, 

P l ( ~ )  "- -- 8 -~ t r (~2) ,  

1 
ch(V) = dim(V) + c l ( V ) +  ~(c 2 - 2c2)(V) §  

1 1 1 
t d ( V ) -  1 § ~cl(V) § -i-~ (c 2 § c2)(V) § "~(ClC2)(V) §  

f c  td(A0' lcI?k)= 1, 
la 

A 1 1 
A(V)  = 1 - "~Pl (V) + 5760" "{7P~" - 4p2)(V) + " ' ,  

1 1 
(7p2 - p2)(V) + . . .  L(V)  = 1 § -~Pl (V) § -~ 

td(V ~ W ) =  td(V)td(W), 

fK A ' 4 ( T K 4 ) - -  2, 

f c  Lk(TCI?2k)= a' p2k 

A(V ~ W ) =  A ( V ) A ( W )  and 

L(V ~ W) = L(V)L(W) .  

There is one final characteristic class which will play an important role in our analysis. 
While a real anti-symmetric matrix A of shape 2n x 2n cannot be diagonalized, it can be 
put in block diagonal form with 2 x 2 off diagonal elements 

0 )~v) 
-~.v 0 " 

The top Pontrjagin class pn(A) = x 2 ' ' '  x 2 is a perfect square. The Euler class e2n(A) := 
Xl . . .Xn is the square root of Pn. If V is an oriented vector bundle of dimension 2n, then 
e2n(V) ~ H2n(M; C) is a well defined characteristic class satisfying e2n(V) 2 = pn(V).  
If V is the underlying real oriented vector bundle of a complex vector bundle W, then 
e2n(V) = cn(W). If M is an even-dimensional manifold, let em(M) := em(TM). If we 
reverse the local orientation of M, then era(M) changes sign. Consequently era(M) is a 
measure rather than an m form; we use the Riemannian measure on M to regard em (M) as 
a scalar. Let Rijkl be the components of the curvature of the Levi-Civita connection with 
respect to some local orthonormal frame field; we adopt the convention that R1221 = 1 on 
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the standard sphere S 2 in R 3 . If e I'J := (e I , e J) is the totally antisymmetric tensor, then 

E2n :-- E g'l'J 1 
(8rr)nn! 

I,J 
Ril i2j2jl "'" Rim_l im jmjm- 1" 

Let R "=  Rijji and #ij : =  Rikkj be the scalar curvature and the Ricci tensor. Then 

E2 = 4rr and 
1 

E 4 - -  32:r 2 (~2 _ 41/912 + in12); 

these are the integrands of the Chern-Gauss-Bonnet theorem discussed in Section 2. 

5. Characteristic classes of principal bundles 

Let g be the Lie algebra of a compact Lie group G. Let rr" P ~ M be a principal G bundle 
over M. For p ~ P, let 

)?p "= kern ,"  TpP ---> TrrpM and 7-[p "= VXp 

be the vertical and horizontal distributions of the projection n. We assume the metric on 
P is chosen to be G invariant and so that ~r, :7-/p --~ TpM is an isometry; thus zr is a 
Riemannian submersion. If F is a tangent vector field on M, let 7-/F be the corresponding 
vertical lift. Let Pv be orthogonal projection on the distribution V. The curvature is defined 
by: 

s  F2)  = pV[7-[(F1), 7-/(F2)];  

the horizontal distribution 7-/is integrable if and only if the curvature vanishes. Since the 
metric is G invariant, ".(-2 (F1, F2) is invariant under the group action. We may use a local 
section s to P over a contractable coordinate chart (.9 to split rr-1 (.9 = (.9 • G. This permits 
us to identify V with TG and to regard s as a ~t valued 2 form. If we replace the section s 
by a section ~, then ~ = gs changes by the adjoint action of G on g. If V is a real or 
complex vector bundle over M, we can put a fiber metric on V to reduce the structure group 
to the orthogonal group O(r) in the real setting or the unitary group U(r) in the complex 
setting. Let Pv be the associated frame bundle. A Riemannian connection V on V induces 
an invariant splitting of TPv = l? @ 7-( and defines a natural metric on Pv; the curvature s 
of the connection V defined in Section 4 agrees with the definition given above in terms of 
principal bundles in this setting. 

Let Q(G) be the algebra of all polynomials on 0 which are invariant under the adjoint 
action. If Q ~ Q(G), then Q(s is well defined. It is not difficult to show that dQ(s = 0 
and that the de Rham cohomology class Q (P) "= [ Q (,.(,22) ] is independent of the particular 
connection chosen. Let BG be the associated classifying space. For example 

BU(1) -- CI? ~176 B ~  r = (CI~~176 r, BO(1) = IRI? ~176 and BSU(2) = HI? ~176 
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Let C be a coefficient group. Let fe  :M --+ BG be the classifying map for a principal G 
bundle P over M. Let 0 be a cohomology class in H v (BG; C). Since fp is well defined 
up to homotopy, we use pullback to define 

O(P) := f~,(O) ~ HV(M; C). 

If v = m, we can evaluate 0 on the fundamental class [M] to define a characteristic number 
O(P)[M] ~ C. The map Q ~ [Q(I2)] defines an isomorphism from Q to H*(BG; C) 
which is called the Chern-Weil isomorphism. For example, we have: 

H*(BU(r); C) -- Q(U(r))  = C[Cl . . . . .  Cr], where deg(ci) = 2i, 

H* (BSU(r); C) = Q(SU(r)) = C [ c 2 , . . .  , Cr], 

H*(BTyr; C ) =  Q(qi "r) = C [ X 1  . . . . .  Xr] ,  wheredeg(xi) = 1, 

H*(BO(r); C) -- Q(O(r)) -- C[pl . . . .  , P[r/2]], where deg(pi) -- 4i, 

H* (BSO(2s); C) --- Q(SO(2s)) = C[pl . . . . .  ps] �9 C[pl . . . . .  ps]e2s, 

H*(BSO(2s + 1); C) = Q(SO(2s + 1)) = C [ p l  . . . . .  ps]. 

The natural inclusion of the toms in the unitary group U(r) induces a pull-back mor- 
phism from Q(U(r)) to Q('IFr); the pull back of the Chern class cj is the j- th elementary 
symmetric function in the xv variables. Similarly, the pull-back of the Pontrjagin class p j  

under the natural inclusion of the toms in the special orthogonal group is the j - th  elemen- 
tary symmetric function in the x 2 variables; the Euler class pulls back to the polynomial 
X1 �9 �9 �9 Xr .  

The natural inclusions ]1~ m ~ ~m+l and C m ~ C m+l induce natural inclusions and dual 
homomorphisms 

O(r) --+ O(r + 1), Q(O(r + 1))--~ Q(O(r) ) ,  

SO(r) ~ SO(r + 1), Q(SO(r + 1))--+ Q(SO(r)), 

U(r) --+ U(r + 1), Q(U(r + 1))--+ Q(U(r)) .  

The Chern and Pontrjagin classes are stable characteristic classes. This means that 

pj(V ~ 1 ) = p j ( V )  and cj(V ~ 1 ) = c j ( V ) ;  

they are preserved by the restrictions maps defined above. In contrast, the Euler class is 
an unstable characteristic class; the Euler class cannot be extended from Q(SO(2r)) to 
Q(SO(2r + 1)). 
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There are other coefficient groups one can use. We have 

H*(BO(r); Z 2 )  - -  Z2[1 / ) l  . . . . .  Wr] and H*(BU(r); Z) -- Z[C1 . . . . .  Cr]. 

The Chem classes lift from C to Z in a natural fashion. Let Lc = L | C be the complexifi- 
cation of the classifying line bundle over ~I? m for m >/2. Then H 2 ( ~ m ;  C) -- 0 so Cl in 
de Rham cohomology yields no information. However Cl (Lc) :/: 0 in H2(I~I?m ; Z2) = Z2; 
information concerning torsion is lost in passing from the integral Chern classes to de 
Rham cohomology in this instance. Since the index is a Z valued invariant, we can work 
with de Rham cohomology in computing the index of an elliptic complex. 

Bordism and characteristic classes are intimately related. We give a brief introduction 
to the subject and refer to Stong [21] for further details. Let MO(m) be the set of all 
m-dimensional compact manifolds modulo the bordism relationship that [M1] = [M2] 
if there exists a compact manifold N with boundary the disjoint union of M1 and M2. 
The Stiefel-Whitney numbers are the characteristic numbers of MO(m). This means that 
[M1] = [M2] in MO(m) if and only if co(M1) = w(M2) for all co ~ Hm(BO(m); Z2). For 
example, ~ V  • R~ n and CP n have the same Stiefel-Whitney numbers so they are bor- 
dant; there exists a compact manifold W so that the boundary of W is the disjoint union of 
RP" • ~pn and C?  n . We refer to Conner and Floyd [8] for details; see also Stong [22]. 

Let MSO(m) be the set of all m-dimensional compact oriented manifolds modulo 
the bordism relationship [M1] --- [M2] if there exists a compact oriented manifold N 
with oriented boundary the disjoint union of M1 and -/142. The Stiefel-Whitney num- 
bers and Pontrjagin numbers are the characteristic numbers of MSO(m). This means that 
[M1] = [M2] in MSO(m) if and only if w(M1) = w(M2) in Z2 for all ~o 6 Hm(BO(m); Z2) 
and or(M1) = cr (M2) in Z for all cr 6 Hm(BO(m); Z); the Euler class is an unstable char- 
acteristic class and plays no role in this theory. If m is even, the stable tangent bundle 
is TM ~ 12; if m is odd, the stable tangent bundle is TM ~ 1. We say that M admits a 
stable almost complex structure if the stable tangent bundle of M admits an almost com- 
plex structure. Let MU(m) be the set of all m-dimensional compact manifolds with stable 
almost complex structures modulo a suitable bordism relationship. The Chern numbers 
are the characteristic numbers of MU(m); we have [M1] = [M z] in MU(m) if and only if 
co(M1) = w(M2) in Z for all o9 ~ Hm(BU(m); Z). Thus in particular, MU(m) = 0 if m is 
odd. One can also define spin bordism; the characteristic numbers arise from real K theory 
as well as from cohomology. 

6. The index theorem 

The Atiyah-Singer index theorem [3,4] expresses the index of any elliptic complex in terms 
of characteristic classes. We first discuss this formula for the classical elliptic complexes. 
We then give the general formulation. 

The index of the twisted de Rham complex is the Euler-Poincar~ characteristic 
x(M,  V). Since x(M,  V) = dim(V)x (M), no new information is added by twisting the 
de Rham complex with a coefficient bundle. If the Atiyah-Singer index theorem is applied 
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to this setting, one gets the Chern-Gauss-Bonnet theorem [7]. Let Em be the Euler class 
defined in Section 4. Then 

X (M) = fM Em Idvoll. 

The index of the twisted signature complex is the L genus L(M, V). Let Lk be the Hirze- 
bruch polynomial. If the Atiyah-Singer index theorem is applied to this setting, one gets 
the Hirzebruch signature formula 

sign(M, V)-- fM E 
2j+4k=m 

2Jchj(V) A Lk(TM). 

Let M be an orientable manifold of even dimension m = 2n. The Chern character gives an 
isomorphism between KU(M) |  and He(M; C). Thus there exists V so that chn (V) r 0. 
The Hirzebruch signature formula shows that sign(M, k. V) ~ 0 for k sufficiently large. If 
m -- 2 mod 4, then sign(M) = 0; however, the twisted index will be nonzero for suitably 
chosen V; there always exists a nontrivial index problem over M. 

The index of the twisted spin complex with coefficients in an auxiliary bundle V is the 
A genus A (M, V). If the Atiyah-Singer index theorem is applied to this setting, one gets 
the formula 

v)= f,, Z 
2j+4k=m 

A 

chj(V) A Ak(TM). 

The index of the twisted Yang-Mills complex in dimension m = 4 with coefficients in 
an auxiliary bundle V is y (M,  V). If the Atiyah-Singer index theorem is applied to this 
setting, one gets the formula 

Y(M'V)=fM{dim(V)2 (E4 - Z l ) q - ( 2 c 2 -  c21)(V)1. 

A spin c structure on a manifold M defines an auxiliary complex line bundle L. If the 
Atiyah-Singer index theorem is applied to this setting, one gets the formula 

A~c(M, V)= fM E 
2j+4k+2s 

2-tchj(V) A Ak(TM) m cht(L). 

The index of the twisted Dolbeault complex is the arithmetic genus Ag(M, V). If the 
Atiyah-Singer index theorem is applied to this setting, one gets the Riemann-Roch for- 
mula 

2j+2k=m 
chj (V) A tdk(A~ 



The Atiyah-Singer index theorem 741 

We give a single example to illustrate the use of the index formula to prove nonexistence 
results; there are many such examples. When the signature formula, the Chern-Gauss- 
Bonnet formula, and the Riemann-Roch formula are combined for an almost complex 
manifold of real dimension 4, one gets the formula 

1 
Ag(M4) = ~{X (M4) "1- sign(M4) }. 

If we take M = S 4, then I{x(S4 ) -q- sign(S4)} -- �88 + 0) is not an integer; thus S 4 does 
not admit an almost complex structure. More generally, let Mi be complex surfaces. We 
show that MI#ME does not admit an almost complex structure by computing: 

x(MI#M2) = x(M1) + x(M2) - 2, 

sign(N) = sign(M1) + sign(M2), 

SO 

2 
Ag(N) = Ag(M1) + Ag(M2) - - .  

4 

All the formulas described so far can be put into a common framework. Let c be a map 
from the cotangent bundle of M to the bundle of endomorphisms of a complex vector bun- 
dle V so that c(~) 2 = -1~12Iv. We choose a compatible connection V on V; this means 
that V is Riemannian and that V c = 0, such connections always exist. Let c o V be the as- 
sociated operator of Dirac type; the elliptic complex is then said to be a compatible elliptic 
complex of Dirac type. The chiral splitting of V = V + ~9 V- into the 4-1 eigenvalues of 
c(orn) defines an elliptic complex of Dirac type. The Chem character of the spin bundle 
ch(S) is a well defined characteristic class even if M is not spin; the ambiguity in defining 
the spin bundles is a flat Z2 ambiguity which does not affect the characteristic polynomials 
in the curvature tensor. Since cho(S) ~- 0, this characteristic class is invertible. The index 
of this elliptic complex of Dirac type is given by 

E 
4j+2k+2s fM Aj(TM) m ch-1 (S)k/x che(V). 

Note that the particular Clifford module structure is not important in this formulation as 
only the Chern character of V enters. Thus when considering an elliptic complex of Dirac 
type, it is only necessary to identify the underlying vector bundle. When this formula is 
applied to the de Rham, twisted signature, twisted spin, and twisted Yang-Mills complexes, 
the formulas given above result. When considering the twisted Dolbeault complex, the 
resulting operator has the same leading symbol and thus the index is unchanged. 

We now discuss the index theorem of Atiyah and Singer in complete generality. Let 
A:C~(Vo)  -~ C ~ (V1) be an elliptic complex. In this framework, we permit A to be a 
pseudo-differential operator. Let a be the leading symbol of A; for 0 ~ ~ ~ T* M, a (x, ~) 
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is an isomorphism from the fiber of V0 over x to the fiber of V1 over x. Let S(M) be the 
unit sphere bundle of T*M and let D + (M) be two copies of the unit disk bundle of T* M. 
We use the symbol a as a clutching function to glue V0 over S + (M) to V1 over S - ( M ) ;  
this defines a vector bundle Z: (V0, V1, a) over 

Z'(M) := D + (M) US(M) D - ( M )  

which encodes all the relevant information. Give Z7 (M) a suitable orientation. The Atiyah- 
Singer index formula then becomes: 

s 
index (V0, V1, A) = / 

(M) 2k+21=2m 

tdk (TM | C) A ch/(~'(Vo, V1, a)). 

If Vi are trivial bundles, the index can be expressed in terms of secondary characteristic 
classes. In this case a is matrix valued and we define the pull-back via a of the normalized 
Maurer-Cartan form 

(~rST)e (s - 1)tr{ (a-ida) 2e-1 } 
O2e-1 := (2zr)e(2 s _ 1)! 

When a suitable orientation of the sphere bundle S(M) is chosen, we have 

s 
index(V0, V1, A) = / 

Js (M) 4k+2s 
tdk (TM | C) A O2s 1. 

The original proof of the Atiyah-Singer index theorem [4] was topological in nature and 
used bordism. Since then, a number of other proofs have been given. We are somewhat 
partial to the heat equation proof, see [ 12] for details. We sketch this proof as follows; it 
uses the local formula index(V, d) = fM am (x, d) for the index described in Section 2. If 
{V, d} is a compatible elliptic complex of Dirac type, one can use invariance theory to show 
that am (x, d) is given in terms of characteristic classes; the method of universal examples 
then shows that am (x, d) is given by the characteristic form described above. This proves 
the Atiyah-Singer index theorem for elliptic complexes of Dirac type; a simple K theory 
argument then derives it in general. 

It is possible to state an equivariant index theorem. We shall restrict to the classical el- 
liptic complexes in the interests of simplicity. Let !b' :M ---> M be a smooth map. When 
considering the de Rham complex, we make no additional assumptions. When considering 
the signature complex, we assume !/s is an orientation preserving isometry. When consid- 
ering the spin complex, we assume qs is an orientation preserving isometry which also 
preserves the spin structure. When considering the Dolbeault complex, we assume qs is 
holomorphic. Then !/s induces an action on the appropriate cohomology groups H* (M;)2) 
and we define the Lefschetz number 

CV(~)  := E ( - 1 ) P t r ( q s  on HP(M; ~))). 
p 
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To simplify the discussion, we shall assume q /has  isolated fixed points and that det(I - 
dq/(xv)) ~ 0 at any fixed point xv. 

If ~ is an orientation preserving isometry, let 0 < Oj, v < 2rr be the rotation angles of 
d ~  (xv). If qJ is holomorphic, let ~.j,v be the complex eigenvalues of the complex Jacobian 
dc qJ. Define: 

/2de Rlaam(T) = Z signdet (I - dT(xv)),  
!) 

/~sign(T) -- Y~ I-I  { - ~-"(cot(Oj,x~/2)}, 
v j 

~spin(Z)=~v H{-2~-"lcsc(Oj, u/2) }, 
J 

/~Dol(T) = ~ ( - 1 ) q t r ( T  * on H~ C))= E 17 (1 - -~j(xv)) -1 
q v j 

The generalized Lefschetz fixed point formula then becomes 

E 
{x: q,(x)=x} 

It is worthwhile considering a few examples; we work with the de Rham complex for 

simplicity. 
(a) Let T (z) = ~ - ] - z  mapping S 2 = CIP 1 to itself. This has two isolated fixed points 

at 0 and oo; the rotation angles are rr/2 at 0 and - r r / 2  at c~. Since T is an orientation 
preserving isometry, it acts trivially on ker A0 = 1 �9 C and ker A a -- orn.  C and T* is 
the identity on de Rham cohomology so the Lefschetz number is 2. We have sign det( l  - 
d T)(x)  = 1 at x = 0 and x = oe and the fixed point formula yields 2 = 1 + 1. 

(b) We can also consider T as a map from the square 2 torus ,/[,2 to itself. We have T* 
acts as the identity on H~ C) = C and Ha('IF2; C) = C and as a rotation through an 
angle of rr /2 on H1 (qi"2; C) = C ~ C .  Thus the Lefschetz number is 1 - 0 +  1 = 2. The map 
T has two fixed points (0, 0) and (�89 �89 and the contribution at each fixed point is 1. This 
example shows that the equivariant index can be nonzero even if the Euler characteristic is 

zero. 
(c) Let T (x) = - x  map ~3 to itself. Then T acts as the identity on H ~ and H 2 and as 

minus the identity on H 1 and H 3. Thus the Lefschetz number is 1 - ( - 3 )  + 3 - ( - 1 )  = 8. 
This map has 8 fixed points at ( E 1 , 8 2 , 8 3 )  where 8i " - 0 ,  �89 and the contribution of 
sign det(I  - dT) is + 1 at each fixed point. This example shows that the equivariant in- 

dex can be nonzero even in odd dimensions. 
(d) Let G be a compact connected nontrivial Lie group. Let g be an element of G 

distinct from the identity element. Let T (x) = gx be left multiplication by g. Then T has 
no fixed points so the Lefschetz number is 0. On the other hand, the Lefschetz number 
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relative to the de Rham complex is a homotopy invariant. Let y (t) be a path in G from the 
identity to g. Then the Lefschetz number of T is the Lefschetz number of the identity map. 
Thus x(G)  =0 .  

Let M be a compact smooth Riemannian manifold with smooth boundary d M. We as- 
sume dim(M) = m. We assume for the moment that dM is a totally geodesic submanifold 
of M. Then the Chern-Gauss-Bonnet formula continues to hold; 

X (M) = fM Era, 

where Em is the Euler form discussed previously. The Hirzebruch signature formula does 
not extend to this setting. There is an additional correction term: 

sign(M) = fM Lk + 77(dM). 

The Novikov additivity for the signature shows ~ (dM) depends only on the boundary d M. 
It is a global invariant, it is not locally computable. Atiyah, Patodi, and Singer [2] showed it 
was in fact a spectral invariant. We describe this invariant as follows. Let P be a self-adjoint 
elliptic first order partial differential operator. Let {r ~.v } be the spectral resolution of P. 
We define 

O(s, P ) " =  dimker(P) + E sign(Xv)12"vl-S 
X~#O 

This series converges absolutely for the real part of s very positive; it has a meromorphic 
extension to C which is regular at s = 0. We define 

r/(P) := r/(s, P)ls=0 

as a measure of the spectral asymmetry of P. Let A : Ccr ---> Ccr be a compatible 
elliptic complex of Dirac type. Near dM, we can use the leading symbol of A applied to the 
normal covector to identify V0 with I/1 and express A = On + P. The de Rham complex 
admits local boundary conditions (absolute or relative). However there is a topological 
obstruction to the existence of local boundary conditions in general; the signature, spin, 
Yang-Mills, and Dolbeault complexes do not admit local boundary conditions. However, 
for an arbitrary elliptic complex of Dirac type, there exist spectral boundary conditions; 
these are pseudo-differential boundary conditions defined by the vanishing of the projec- 
tion in L 2 on space spanned by the eigensections of P with nonnegative eigenvalues for 
f ~ C~(Vo) and positive eigenvalues for f ~ Ccr there is a slight bit of fuss deal- 
ing with the zero mod spectrum. With these boundary conditions, the index theorem for 
manifolds with boundary becomes: 

index(A) = 
4j+2k+2e=m fM A"j(M) A ch -1 (S)k/X che(V) - o(P). 
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There is also an equivariant index theorem for manifolds with boundary; we refer to 
Donnelly [9] for details. 

In Section 5, we noted that the characteristic numbers completely detected the bordism 
groups. Thus, for example, a compact orientable manifold M m without boundary is the 
boundary of a compact orientable manifold N m+l if and only if o9(M) = 0 in Z2 for all 
09 ~ Hm(BO(m); Z2) and o9(M) = 0  in Z for all o9 ~ Hm(BO(m); Z); in the first instance, 
o9 is a homogeneous polynomial in the Stiefel-Whitney classes and in the second instance, 
o9 is a homogeneous polynomial in the Pontrjagin classes. There are, however, relations 
among the characteristic classes given by the index theorem. For example, the Hirzebruch 
signature theorem shows that pl (M) is divisible by 3 if m = 4. Other integrality results 
for MSO can be obtained by twisting the signature complex with coefficients in bundles 
determined by a representation of SO(4). Similarly, if M is a complex surface, we apply 
the index theorem to see Ag(M) = (c2 + c2)[M]/12 and thus (c2 + c2)(M) is divisible 
by 12 if M is a complex surface. The Hattori-Stong theorem [14,23] shows that all such 
universal integrality relations in MSO or MU are the result of the index theorem; there is a 
similar result for spin bordism that is more difficult to state. 

Let BG be the classifying space for a spherical space form group; for example, we could 
take G to be a finite cyclic group. The eta invariant defines Q / Z  valued characteristic 
numbers of the reduced equivariant bordism groups MUm (BG) which completely detect 
these groups. Thus the eta invariant can be thought of as a secondary index; it is sometimes 
expressible as a secondary characteristic class. We refer to [ 11 ] for details. 
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