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O. Introduction 

Let Z , = { 2 ~ C :  2n=1} be the cyclic group of order n and let ~: Z ~O(v) be a 
fixed point free representation of Z,  in the orthogonal group, r lets Z,  act 
without fixed points on the unit sphere S ~-1 and the quotient manifold M of 
dimension m = v - 1  is called a lens space. If m is even, then either n = 1 and M 
= S "  is the sphere or n = 2  and M = R P  m is real projective space. As S m and 
RP m are well understood, we restrict henceforth to the case m odd and v even. 
Since v is even, ~ is conjugate to a representation ~: Z,-~ U(k)~_O(2k=v). (See 
Wolf [13].) Let K(M) and KO(M) denote the complex and real K-theory rings, 
and let R(Z,) and RO(Z,) denote the corresponding representation rings. Let 
ps(2) = 2 s, then {Ps}0_<s<, parametrize the irreducible complex representations of 
Z n so R(Z,)=Z[pl] / (p~-  1). The structure of RO(Z,) is a bit more complicated 
and will be discussed in Sect. I. Let c: RO(Z,,)~ R(Z,) and c: KO(M)~  K(M) 
denote complexification; this is a ring morphism. Let r: R(Z, )~RO(Z, )  and 
r: K ( M ) ~ K O ( M )  denote the operation of forgetting the complex structure; 
this is an additive morphism but not a ring morphism. 

If p is a representation of Z, ,  let Vp denote the bundle over M correspond- 
ing to p. The map p-~V o defines maps 0 c :R(Z . )~K(M)  and 
Or: RO(Z,)-~KO(M) which are ring morphisms. Atiyah [2] proved the map 
R(Z,)-~ K(M) is surjective. We refer to Gilkey-Karoubi  [9] for 

Theorem 0.1. Let M=S2k-1/z(Z,) be a lens space of dimension m = 2 k - 1 .  
(a) I f  n is even, Oc: R(Z,)-+ K(M)--+0 and Or: RO(Z,)--* KO(M)~0.  
(b) I f  n is odd, there are split short exact sequences 

R(Z,)~K(M)-~I~(Sm)--- ,O and RO(Z,) ~  
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Remark. Since / ( (S") -0 ,  we recover Atiyah's theorem. Furthermore: 

{ Z 2 i f m ~ l ( 8 )  } 
KO(S') = 0 if m is odd otherwise 

so that 0 r has cokernel Z 2 precisely when m-1(8)  and n is odd. Let Kflat(M ) 
and KOnat(M ) denote the image of 0 c and 0r; these are the subrings of K(M) 
and KO(M) generated by bundles which stably admit flat structures. We let 
"tilde" denote the corresponding objects of virtual dimension 0 and we let 
Ro(Z,, ) and ROo(Z,) denote the augmentation ideals of representations of 
virtual dimension 0. Theorem 0.1 implies: 

K(M) = Z @/(nat(M) 
K O(M)= Z | I(Of~a~(M)| ~ Z2 if n is odd and m - l ( 8 ) ;  

( 0 otherwise 3 

Consequently to compute K(M) and KO(M) it suffices to calculate /(flat(M) 
and/(On~t(M ). 

The eta invariant of Atiyah et al. [33 is an R/Z valued spectral invariant 
measuring the spectral asymmetry of a self-adjoint elliptic operator. We refer 
to the first section for further details. Let M=S2k-1/z(Z,,) be a lens space, then 
M inherits a natural unitary and spin c structure. Let P denote the tangential 
operator of the spin c complex. P is a first order self-adjoint elliptic differential 
operator. If p is a representation of Z,, the transition functions of Vp are 
locally constant so the operator Pp with coefficients in Vp is canonically defined 
and locally isomorphic to the direct sum of dim(p) copies of P. The eta 
invariant is additive with respect to direct sums so tl(Po)~R/Z is well defined 
for p~Ro(Z,). We refer to Gilkey [-63 for the following result. 

Theorem 0.2. Let M=S2k-1/z(Z,) be a lens space of dimension m = 2 k - 1 .  Then 
K(M)=Ro(Z,)/Ro(Zn) k and I/((M)l=n k-1. /((M) depends only on (n, m) and not 
the particular z. Let P be the tangential operator of the spin c complex. Define a 
bilinear R/Z valued form on Ro(Z,)| by ~l(pl, p2)=tl(Ppl| This ex- 
tends to a bilinear .form: 

/7: /~flat(M) @/~flat(M) ~ R/Z 

which is non-degenerate. In other words, if p~R0(Zn) and V = V  o, then V=0 in 
I?2(M) if and only if tl(p, pl)=OV p~Ro(Z,).  

Remark. Since /(f~at(M) is pure torsion, the eta invariant takes values in Q/Z in 
Theorem 0.2. 

Define r/:/(On~ t (M) |  ~ R/Z by r/(V, W) = t? (c (V), W). This extends 
these invariants to /~Oflat(M). The extent to which c fails to be injective is a 
matter of 2-torsion. One can refine the eta invariant just enough using the 
reality condition to detect Ker(c) and consequently to completely detect 
/(Oflat(M ) using the eta invariant. The major result of this paper is the 
following: 

Theorem 0.3. Let M=s2k-1/T(Zn) be a lens space. 
(a) Let n be odd. Then c:/(Oflat(M)-+/((M) is injective and the invariants of 

Theorem 0.2 completely detect/(Oflat(M ). 
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(b) Let n be even and let m-=7(8). Then c: K O ( M ) ~ K ( M )  is injective so the 
invariants of Theorem 0.2 completely detect/(Onat(M ). 

(c) I f  n is even and if m is not congruent to 7roodS, then ker(c)=Z z. Let y 
=r (po-p l )~ROo(Z , ) .  I f  m-=1,5(8), let m = 2 ( 2 j + l ) - i  and let W(m) corres- 
pond to the representation yL(p , /2 -po  ). I f  m-3(8),  let m = 2 ( 2 j ) - i  and let 
W(m) correspond to the representation yJ. Then W(m) is an element of order 2 
which generates Ker (c). 

(d) Let n be even and let P be the tangential operator of the spin c complex 
over M. 

(i) I f  m= 1,5(8) the map p--, tl(Pp) extends to a map 1,720(M)--+R/Z. 

n 
(ii) I f  m -  3(8) the map p ~ ~. q(Pp) extends to a map I s  R/Z. 

(e) Let n be even. I f  m=-1,5(8), then t/(Pw(,,))=0.5. I f  m-3(8),  then 
n 
~.~/(Pw(,,~)=0.5. The invariants of (d) together with the invariants of Theorem 0.2 

completely detect KO(M). 
(f) I f  z and ~ are two f ixed point free representations, then KO(S2k-1/z(Z,,)) 

= i ~ o ( s  2 k -  1/~-(z.)). 
Remark. The proof of (b) will rely on a result of Yasuo [143. 

The orders of these groups are given by 

Theorem 0.4. Let M = S 2 k - I / z ( Z , )  be a lens space. Let e= 1 if n is odd and e=2  
if n is even. Let m = 2 k - 1 .  Then: 

(a) I f  m = 1 (4) so k = 2j + 1 is odd, then [c (I(O (M))[ = e J. n j, 

(b) I f  m=3(4) so k = 2 j  is even, then ]c(KO(m))[=d.n j - l ,  

(c) I f  m =- 1,5(8) so k = 2 j +  1 then I/(Onat(m)l =eJ+l.n j, 

(d) I f  m=3(8) so k = 2 j  then [KOnat(m)l=e~+l.nJ-1, 

(e) / f  m-=7(8) so k = 2 j  then II(Oflat(m)l=eJ.n j-1. 

Remark. Since I72(RP 2k-1) and K O ( R P  2k-1) are groups with only one genera- 
tor, this gives the additive structure if M = R P  2k-a. 

This paper is divided into three sections and an appendix. In the first 
section, we review the analytic facts concerning the eta invariant and prove 
Theorem 0.3(d). In the second section, we will complete the proof of Theorem 
0.3. In the third section, we will prove Theorem 0.4. In the appendix, we give a 
list of some of these groups calculated on a computer using the eta invariant; 
further details are available from the author upon request. 

It is a pleasant task to thank Professors A. Bahri and M. Karoubi for 
invaluable assistance on some of the topological details in this paper. 

1. The eta Invariant 

Let M be a compact Riemannian manifold without boundary of odd dimen- 
sion m=2k-1  and let P: C~(V)~ Ca(V) be a self-adjoint first order partial 
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differential operator. Let {2~}~  denote the spectrum of P where each eigen- 
value is repeated according to its multiplicity. Define: 

~l(z,P)=Tr(P.(P2)-~z+l)/2) = ~ sign(2~)12~[ -~ 
2 v * O  

for Re(z)>>0. q(z,P) has a meromorphic  extension to C with isolated simple 
poles on the real axis and z = 0 is a regular value. Let 

1 0 q (P) = 7 {t/( , P) + dim ker (P)} ~ R/Z 

be a measure of the spectral asymmetry of P. If P(t) is a smooth 1-parameter 
family of such operators, then r/(O,P(t)) has integer jumps as spectral values 
cross the origin. The reduction mod Z yields a smooth function of the 
parameter  t. We refer to Atiyah et al. [3] or Gilkey [7] for details. 

If  M is a lens space and if P is the tangential operator of the spin c complex, 
the eta invariant can be calculated in terms of generalized Dedekind sums. We 
refer to Donnelly [5] for a proof of the following lemma. 

Lemma 1.1. Let M=SZk-1/'~(Zn) be a lens space and let P be the tangential 
operator of the spin e complex over M. Let peR(Z.). Then 

t/(Pp)= 1. ~ Tr(p(g)).det(I-z(g)) -1 m o d Z .  
t~ g ~ Z n ,  g ~= 1 

We prove Theorem 0.3 (d-i) as follows. Let M=S2k-1/z(Z,) be a lens space 
of dimension m = 1(4), let P be the tangential operator of the spin ~ complex on 
M, and let V be a real vector bundle over M. Fix a Riemannian connection 17 
on V and let Pv denote the operator P with coefficients in V defined by the 
connection. The leading symbol of P is unique, but the 0 th order terms depend 
upon the connection chosen. We define t/(V)=r/(Pv). We must show this is 
independent of the choice of connection; since the eta invariant is additive 
with respect to direct sums it extends to KO(M). 

Let 17 o and V~ be two different connections and let ch denote the Chern 
character. Let Tch denote the transgression of the Chern character so that 

ch(V1)-ch(Vo)=dTch(171, V o) 

(see Chern et al. [4] or Gilkey [8]). Let V o and V 1 denote V with the two 
connections. Let L be the bundle corresponding to the representation det(z); 
this is the complex line bundle of the spin ~ structure. I f /1  is the A-proof genus, 
we proved Gilkey [8] that we can lift q(Pv~)-rl(Pv~) from R/Z to R so that 

tl(Pv~)-tl(Pvo)= ~ fl.ch(L). Tch(Va, Vo). 
M 

Since L has a fiat structure and since M is conformally flat, ch (L) .A= 1. Since 
V o and 171 are real Riemannian connections, Tch(V1, 17o) has components only 
in degrees j~3(4) .  Since m =  1(4), we conclude that this integrand is 0 so tl(Pv~) 
=t/(Pvo ) which completes the proof  of Theorem 0.3(d-i). 
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Suppose next that m-=3(8) and that n=2v is even. Let 7i~RO(Zn) define 
isomorphic real vector bundles. We must show that the normalized eta in- 
variants coincide in R/Z. We compute as above: 

v'{q(P~l)-r/(P~o)} = v" ~ A'ch(L)'rch(V~l, V,o)=V" I rch(r~l, V~o). 
M M 

This is a local formula. If we lift it to the universal cover, we multiply by the 
order of the covering so that 

v'{tl(P,,)-tl(P~)}=�89 f Tch(V,l, V~o ). 
S ~ 

Since we are working in R/Z we complete the proof by showing 

f rch(V~1, V~o)e2.Z. 
S ~ 

Since the sphere is simply connected, all locally flat bundles have natural 
trivializations. An isomorphism between V~ and V~o over S" is equivalent to a 
map g: Sm--,GL(dim(V),R); Tch is the pull back of a suitable expression in 
the Maurer-Cartan form. Let Wg be the real vector bundle over S 2k="+1 
defined by the clutching function g. Then 

f rch(7~,70)= ~ ch(Wg| 
S r n  S m + 1 

(We refer to [7] for details.) The Atiyah-Singer index theorem implies 

f ch(W)eZV W~K(Sm+~). 
S m +  l 

Since m~3(8), the map c: I~O(S~+I)=Z~I~(S"+I)=Z is multiplication by 
two (see [10J for example). This proves 

rch(71, 70)~2Z 
S ~ 

which completes the proof of Theorem 0.3 (d). 

2. The Real K-Theory of Spherical Space Forms 

If p is a representation of Z,, let p* denote the dual representation; p*=p_~. 
We have c(r(p))=p+p*, r(p)=r(p*), and r(c(p))=2p. We say that p is self-dual 
if p=p*. If n is even, there are two self-dual irreducible representations P,/2 
and Po; if n is odd, Po is the only irreducible self-dual representation. We note 
that c: RO(Z,)-~R(Zn) is injective. We begin the proof of Theorem 0.3 with 

Lemma2.1. Let A={p~R(Z,):p=p*} and let Ao=AnRo(Zn). A is a sub- 
algebra of R(Zn) and A o is an ideal of A. 

(a) Let n = 2 v + l .  Then additive generators for RO(Zn) and A are given by 
{Po, r(Pl), -.., r(Pv)} and {Po, P~ + P-5}0 < ~_<_~ respectively. 
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(b) Let n=2v. Then additive generators for RO(Z,) and A are given by 
+ i {P0, r(Pl), ..., r(P~-a), P~} and {Po, P~, Ps P-,*o<~<~ respectively. 

(c) Let c f = ~ p  s be the regular representation then 6.Ro(Z,)=O. Let ~ be 
s 

fixed point free and let c~=~( -1 )kAg(z )=de t ( I - z )ERo(Z , ) .  I f  f i -e=0,  then fi 
k 

is an integer multiple of 3. c~.R(Z,)=Ro(Z,) k. 
(d) Image (c)=A. Let y = r ( p o - p l  ) and let c t = c ( y ) = 2 . p o - p l - p  1. Then 

Ro(Z,)ZJ=cd.R(Z,) and Ro(Z,)2J+I=~J.Ro(Z,) 

Ac~Ro(Z,)ZJ=cd.A and AC~Ro(Z,)ZJ+I=~J.A o. 

Proof Assertions (a) and (b) are ammediate. Since Tr(6(2))=0 for 2~=1, 
t r (a .p(2))=0 V).eZ,,  VpeRo(Z,). Therefore 6-Ro(Z,)=0.  Conversely, let 
f l . d e t ( I - r ) = 0 .  Since d e t ( I - z ) ( 2 ) + 0  for 24=1, we conclude tr(fi()o))=0 for )~4=I 
and the orthogonality relations imply fl is an integer multiple of 8. The 
remaining assertion of (c) are immediate. Image ( r )=A by (a) and (b). Let 
peA CfRo(Zn) 2j and let z=j .p l  +J'P-1. Since ~ is a fixed point free representa- 
tion of Z,, R o (Z,) 2 j = det (I - z). R (Z,) = cd. R (Z,). We decompose p =cd./3, Since 
p and e are self-dual, we conclude cd./3*=p=p*=~J./3 * so that cd.(/3-fl*)=0. 
This implies /3-/3"=e.6. As 6 is self-dual, /3-/3"=fl*-/3 which implies /3 is 
self dual. Consequently A ~Ro(Z,)2J=c~.A. Similarly, let p e a  c~Ro(Z,) 2j+~ and 
decompose p=eJ-/3 for /3eRo(Z,). Then as /3 must be self-dual, peaJ.Ao which 
completes the proof. 

We can now prove Theorem 0.3(a). As/s  is a finite group of odd order, 
it is clear that Ko(sZk-1)~_Ker(c). We must therefore show that c is injective 
on /(Ofl~t(M ). Let fleROo(Z,) and let V= V,~KOn,t(M ). Suppose c(V)=0. We 
must show V=0. By Theorem 0.2, c(/3)sRo(Z,)knA. Let y=r (po -pO so that 
c (y )=2 .po -p~-p_  ~. First let re= l (4)  so k = 2 j + l  is odd. Use Lemma 2.1 to 
decompose c(/3)=e(yJ).y for some y e a  o. As ?~ is self dual, we may decompose 

7= ~ Cs.(ps+p_s-2.po)=y~+7~ for 7 , =  Z (P~-Po). 
O<s<=v  O < s < _ v  

Since c(yJ).71eRo(Zn) k, the bundle defined by this representation is zero. Since 

c (/3) - c ( r  (c ( / ) -  ~ ~)) = c (~) - c ( / ) .  ~ ~ - c ( / ) .  ~* = 0, 

and since c: RO(Z, )~R(Z , )  is injective, /3=r(c(yJ).70 and V~=r(Vr 
Next let m~3(4) so k=2j  is even. Use Lemma 2.1 to decompose c(fl)=c(yJ).y 
for some 7cA. Decompose 

7=Co.Po + ~ c~.p~ 
O K s < n  

where Cs=C s. As cf.c(y)=0, we may replace 7 by 7 +6  if necessary to assume 
without loss of generality that c o is even. Let 71=(Co/2).po+ ~ c~.p~ so that 

O<s<=v 
7 = ~ + 7 " .  Since c(yJ).vleRo(Z,) k, the bundle defined by this representation is 
zero. Since 

c (/3) - c ( r  (c ( / ) .  ~ ) )  = c ( / ) .  ~ - c ( / ) -  ~ - c ( / ) -  ~*  = 0 

fl = r (c (y J)" 71) and Vp = 0. This completes the proof of Theorem 0.3 (a). 
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If m=-7(8), c is injective if n is a power of 2 by Yasuo [14]. More generally, 
decompose n into its prime power decomposition and consider the correspond- 
ing direct sum decomposition of/<f~t. The 2-primary piece injects by Yasuo. 
The odd primary piece injects using the same argument as that given above to 
prove Theorem 0.3(a). This completes the proof of Theorem 0.3(b). 

We now prove Theorem 0.3(c) and 0.3(e); we recall that 0.3(d) was proved 
in section one. Suppose first m - 1 ( 4 )  so k = 2 j +  1 is odd~ Let y=r(po-p~ ) and 
let W correspond to the representation Y(P~-Po).  Since c(yJ-(p,-po))ERo(Z,) k, 
c ( W )=0  so W~Ker(c). Let fleROo(Z) and let V=V~Is Sup- 
pose c (V)=0 so c(fl)~Ro(Z,,) 2j+1. By Lemma 2.1, decompose c(fl)=c(yJ).7 
for 7~A o. We modify the argument given for n odd to take into account the 
one extra self-dual representation. Decompose 7= ~ c~{(p~-po)+(p_,-po)} 

O<s<v 
+e.(p~-po ) where e=0 ,  1 reflects the parity with which P~-Po appears in 7- 
Let ~1= ~ c~(p~-po). Since 

O<s<=v 

c(fi) = c(r(c(yJ) . 71)) + e. e(yJ) .(p~- Po) = c {r(c(yJ) . 71) + e'YJ'(P~- Po)} 

fi=r(c(y~).70 +e.yJ.(p~--po). Since c(yJ).)h eRo(Z,) k, the bundle defined by this 
representation is 0. We replace fl by fl-r(c(y:)'70 without changing the given 
bundle V. Thus without loss of generality, we may assume fl=e.yL(p~-po ) for 
e = 0, 1 so that Ker (c) is a subgroup of order at most 2 generated by W. 

We use Theorem 0.3(d) to show W is non-trivial in /(Ofl~t(M ). Let 
r .Z ,~U(k )  be a fixed point free representation. Since det(I-z) .R(Z,)  
=Ro(Z,)k=c(yJ).(pa--po), we may choose 7~R(Z,) so that 7 . d e t ( l - z )  
=c(YJ)'(P~-Po). Let U be the complex bundle defined by y. By Lemma 1.1: 

1 ~, Tr (7 (2)). Tr (c (y J)(2))-Tr (Pv - P o)(2)-det (I - z (2))- 1 tl(Pw| =n , =  i, ~ ,  l 

1 1 
= -  Z ( ~ - 1 ) . ( ~ - 1 ) - ' = -  Y ( , ~ - , + . . . + ~ o )  

n3,n=l,3.4= 1 H ,in= 1,2 ~1 

=1 Z ('~v-~+--.+~~ -'~-=-'~=lmodz- 
n~,= a n n 2 

Let 7 = c . p 0 + 7 o  for ?,o~Ro(Z,) and let U 0 correspond to the representation 7o- 
Then ~l(Pw|174 ). As the map (W, U)~tl(Pw| extends to a 
map in K-theory by Theorem0.2 and since W = 0  in /(fl~t(M), we conclude 
tl(Pw| so that c.q(Pw)=0.5. Since Ker(c) has at most 2 elements, W is an 
element of order at most 2 in /(Oflat(M). Since W~rl(Pw) is well defined as a 
map in KO-theory, rl(Pw) is an element of order 2 in R/Z. This implies c is odd 
and tl(Pw)=0.5. This shows W is non-trivial and completes the proof of 
Theorem 0.3(c, e) in this case. 

Next we consider m---3(8). Let m = 4 j - 1 ,  let y=r(po-pO and let W be the 
bundle corresponding to the representation yJ. Since c(yJ)~Ro(Z,) k, c (W)=0  so 
WeKer(c).  Let fieROo(Z,) satisfy c(Vr Decompose c(fl)=c(yJ).7 for 
7~R(Z,); 7 is self-dual so 7= ~ cs.p, for c ,=  - c  s. By adding an appropri- 

O<s<n 
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ate multiple of c5, we may assume without loss of generality that c~ is even. We 
may therefore decompose ? =?~ + 7* +e'po where e=0 ,  1 reflects the parity of 
c o. By replacing fl by fl-r(c(yJ).7~) if necessary, we may assume without loss of 
generality that c(fi)=e.c(y j) so that V=e.W. This shows Ker(c) has at most 2 
elements, that Ker(c) is generated by W, and that W has order at most 2. 
Choose 7 so 7 .c (y f=de t ( I - z ) .  Let U be the bundle corresponding to the 
representation 7, then 

1 
r/(Pw| ~ {Tr(7"c(YJ))(Z)}'det(I-z(2)) -~ 

-- 1 , Z : t -  1 

1 n - 1  
=2 Z 1-  -o.5. 

Z n = l , A : ~ l  2 

The same argument as that given in the case m - l ( 4 )  then shows ~(Pw)=0.5 
which completes the proof of Theorem 0.3(c, e). 

Finally, let vi define lens spaces Mi:Sm/'ci(Zn). Let fieR(Z,) define bundles 
V i over M i. Suppose V2=0 so that c(V2)=0. This implies c(B)eRo(Z,) ~ for 
2 k - l = m  and consequently c(Va)=0 as well. This completes the proof  if n is 
odd or if m-7 (8 ) .  In the exceptional cases, we conclude Vi=c.W where c = 0 ,  1 
does not depend on i and can be determined from the representation ft. Since 
V 2 =0,  c = 0  which shows V~ =0. This complete the proof  of Theorem 0.3. 

3. The Orders of the Real K-Theory Groups 

We shall need the following lemma in the proof  of Theorem 0.4. 

Lemma3.1 .  Let M=S2k-1/r(Z,) be a lens space. Let ~=(Po-P-1) ' (Po-PO 
=c(y) and let A and A o be as defined in Lemma 2.1. Set e = l  if n is odd and e 
= 2  if n is even. Then IAo/c~.A I --5 and I~.A/~.Ao[ =n. 

Proof If n is odd, then A o is generated additively by 

{ 2 " p o  - -  P~ - -  P - ~ }  = { ( P o  - -  P~, ) ' (Po - -  P - , ) }  

= {(po - p l ) ( p o  - p -  , ) ( p o  + . . .  + + - . .  + -s ) }  

~ ( ~  " A .  

Therefore ]Ao/eAI=I if n is odd. If n=2v is even, there is an additional 
element Po-Pv not considered if n is odd so Ao/e.A is generated by Po-P~. 
Let c be the order of Po-P~ in Ao/c~.A. Since coA=Ro(Z,)2~A by Lemma 2.1, 
c.(po--pv)ERo(Z,) 2. Let r = 2 - p t  and let 

ind2(fi ' 7)= 1 ~ Tr(fi(Z).7(Z)).det(i_z(2) ) 1. 
n A n =  1,  .,1, @: 1 

By Theo rem0 .2  and Lemma 1.1, c . (po-pv)eRo(Z, )  2 if and only if 
ind2(c'(P0-P~), Po-Ps)=O~R/Z for 0 < s < n .  We compute 
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C 

ind2 (c'(po -P~), Po -P~) = n  a ,=~ 
1 , 2 + 1  

C = -  
F/ Xn= 1, J. ~: 1 

- - I ) S C  

gl 

using the orthogonality relations. 
- p~  is an element of order 2 in 

(1 - 2~)-(1-2~). ( 1 - 2 )  -2 

(2 ~-1 + . . .  + 1).(2 *-1 + . . .  + 1) 

1 t--  ~ ( 2 v - l + . . . + l ) . ( 2 * - l + . . . + l ) - - s c  
n~,=~ 2 

Since sc-=0(2) for all values of s, c = 2  and Po 
Ao/e .A .  This completes the proof of the first 

assertion. We prove the second assertion by decomposing A = Z . p o + A  o so 
that eA=c~ .Z@ct .A  o. This shows c~ generates c~A/a.A o. Let c be the order of a 
in e . A / ~ . A  o. Then c . e ~ e .  A o = R o ( Z , ) 3 c ~ A .  Let r 3 = 2 . p a + p _  1 so that 
d e t ( I - % ) = e . ( p o - p l  ). We let ind3(c.cg P o - P s )  be the corresponding 
Dedekind sum, then c . ~ R o ( Z n )  3 if and only if ind3(c .c~,po-Ps)=O for all s. 
We compute: 

c ~ o~(~,) (1 --,,~s).(~(2). (1 _ ~))- 1 i n d 3 ( c ' e ' P o - & )  n ~,,=l,x,l 

c ~ (2 s - l+  + l ) = - S C m o d Z  ~ - - -  , . .  

Y/ 2 " =  1 , 2 : g  1 iv/ 

so that c =n  which completes the proof. 
We prove Theorem0.4(a) by induction. Let k = 2 j + l  and M = S 2 k - 1 / r ( Z , ) .  

If j = 0 ,  then M = S  1 and /s  We may therefore assume m > l .  Consider 
the short exact sequence: 

0 ~ od- 1A o/Od A o ~ A o/od A o --* A o/~ j -  1 A o ~ 0 

so ]Ao/cdAo[=lAo/cd-lAo[.]Ao/c~.Ao]. Multiplication by cd -1 induces an iso. 
morphism between Ao/c~A o and cd -1Ao/cdA o. The short exact sequence 

0 -~ ~A/ccA o ~ Ao/Cr o --* Ao/~A ~ 0 

shows ]Ao/eAoJ =e .n  by Lemma 3.1. Consequently 

[c I~ Oflat(Mm)[ = [Ao/(A o m Ro(Z.)k)l = [Ao/~J Aol 

=[Ao/~J- l Aol.en=enlc_~Oflat(Mm-4)]. 

This recursion relation together with the initial value for m =  1 completes the 
proof of Theorem 0.4(a). 

To prove Theorem 0.4(b), we let k = 2 j  so m-3(4) .  If m=3,  then IKOfl,t(M)l 
= [Ao/~x.Al= e by Lemma 3.1. This completes the proof if j = 1. For  j > 1, we use 
the short exact sequence 

0 ~ cd- 1A/~JA ___> { c ( / ~ O f l a t  (m)) = Ao/cdA } --> Ao/a j -  1Ao ~ O. 

This shows 
I c (RO(m)) l  = e. IAo/cd- 1.Aol = e.(e.n) j -  l 

by Theorem 0.4(a). This completes the proof of Theorem 0.4(b). The remaining 
parts of Theorem 0.4 now follow from the calculation of Ker (c) in Theorem 0.3. 
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A p p e n d i x  

I t  is o f t en  use fu l  to  h a v e  l is ts  of  K - t h e o r y  g r o u p s  to  c h e c k  v a r i o u s  c o n j e c t u r e s .  

U s i n g  t he  r e su l t s  of  th i s  p a p e r  a n d  a c o m p u t e r  p r o g r a m ,  we  h a v e  c o m p u t e d  t h e  

a d d i t i v e  s t r u c t u r e s  of  t h e  K a n d  K O  g r o u p s  l i s t ed  be low.  I f  n - - p . q  for  p a n d  q 

c o p r i m e ,  t h e n  ~ " - ~ " K ( S  / Z n ) - K ( S  /Zq)(~I~(Sm/Zp) and KOflat(S~ m / zn )  
~ t~ ~ tn 

= K O f l a t ( S  / Z p ) @ K O f l a t ( S  /Zq)  so in  c o m p u t i n g  t h e s e  g r o u p s ,  we  m a y  a s s u m e  
n is a p r i m e  p o w e r  w i t h o u t  loss  o f  gene ra l i t y .  

k n R(Sk/Z.)  KOf~ds~/z . )  

1 2 - Z 2 
3 2 Z 2 Z 4 
5 2 Z 4 Z 8 
7 2 Z 8 Z 8 
9 2 Z16 Z32 

11 2 Z32 Z64 
13 2 Z64 Zlz 8 
15 2 Z128 Z128 
17 2 Z256 Z512 
19 2 Zsl  2 Zlo24 

1 4 - Z 2 
3 4 Z 4 Z2(~Z 2 
5 4 Z s |  2 Z 8 @ Z  2 
7 4 Z 1 6 0 Z 2 @ Z  2 Z s O Z  2 
9 4 Z 3 z O Z ~ |  2 Z 3 2 |  4 

11 4 Z64@Z4(~Z 4 Z32{~Z 8 
13 4 Z I a s G Z s  q~Z, , Z 1 2 8 0 Z  8 
15 4 Z 2 5 6 G Z s O Z  s Z l z s q ~ Z  s 
17 4 Z s l z @ Z l e |  s Zs12(~Z16 
19 4 Z102d.(~Z16(~Z16 Z512@Z32 

1 8 - Z 2 
3 8 Z 8 Z 2 |  2 
5 g Z16@Z 4 Z16(~Z 2 
7 8 Z 3 2 0 Z 4 G Z  4 Z~6(bZ  z 
9 8 Z64(~Zs(~Z4(~Z2 Z6,g@Z4(~Z 2 

11 8 Z128(~Zs{~Zs{~Z2~)Z2 Z64(~Z4.(~Z2@Zz 
13 8 Z256~Z161~Z8(~Z2(~Z2(~Z2 Z2561~Z81~Z2(~Z2 
15 8 Z512(~Z16(~Z16(~Z2(~Z2(~Z2(~Z2 Z256(~Z8(~)Z2(~Z 2 
17 8 Zlo2d.(~Z321~Z16(~Zg@Zz@Z2@Z2 Z l o 2 4 ~ Z l s ( ~ Z 4 @ Z  2 
19 8 Z2048(~Z32@Z32(~Z4(~Z4(~Z2(~Z2 Zlo2,g(~Z16(~Z4(~Z4 

1 16 - Z 2 
3 16 Z16 Z 2 @ Z  2 
5 16 Z 3 2 G Z  8 Z a 2 Q Z  2 
7 16 Z 6 4 @ Z s @ Z  ~ Z32(~Z2 
9 16 Z I 2 8 G Z 1 6 G Z s |  Z128@Z8@Z 2 

11 16 Z256(~Z16@Z161~Z4(~Zg Z128@Zs@Z2@Z 2 
13 16 Zs12(~Z32(~Z16(~Z4(~Z4(~Z4 Z512@ZI6(~Z#@Z2 
15 16 ZlO24(~Z32@Z32(~Z,$@Z4(~Z4(~Z4 Z512@Z16(~Zg@Z2 
17 16 Zao48(~Z64(~Z32(~Zs~)Z,I.@Z4(~Zr Z2048(~Zaef~)Z4(~Z~,@Z2 
19 16 Z4096(~Z64(~Z6,$(~Zg(~Z8(~Z4(~Zg@Z2(~Z2 Z2048(~Z32~Z4(~Z4(~Z2@Z2 
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1 32 
3 32 Z32 
5 32 Z64(~Z16 
7 32 Z 1 2 8 0 Z I 6 0 Z I 6  
9 32 Z256(~Z32(~Z16(~Z8 

11 32 Zs,2(+-)Z320Za20ZsOZs 
13 32 Zlo2,J.OZ64{~.~)Z32(~)Z80Zs~)Z8 
15 32 Z2o480Z640Z640Z80Z80ZsOZ 8 
17 32 Z4o96(~Z1280Z6~i(~Zj.6(~Z8(~)Z8~)Z8(~Z4. 

Z 2 
Z2(~Z 2 
Z640Z 2 
Z64(~Z 2 
Zz56(~Z16~)Z2 
Z256(~Z160Z2(~Z2 
Zloz4(~)Z32(~Zs(~Z2 
Z~o240Z320ZsOZ; 
Z4096 (~Z6~.(~Z 8 O Z  8 0 2 2  

19 32 Z s 1 9 2 0 Z I 2 8 0 Z 1 2 8 ( ~ Z 1 6 ( ~ Z 1 6 0 Z s O Z s O Z 4 0 Z  4 Z4o96(~Z6d.(~Zs(~Z8(~Z2(~Z2 

1 3 - 

3 3 Z 3 
5 3 Z3@Z 3 Z 3 
7 3 Z9@Z 3 Z 3 
9 3 Z9@Z 9 Z 9 

11 3 Z27 (~Z 9 Z 9 
13 3 Z27 @Z27 Z27 
15 3 ZslOZ27 Z27 
17 3 Zs~OZ81 Zs~ 
19 3 Z243(~Z81 Zsl 

1 9 

3 9 
5 9 
7 9 
9 9 

11 9 
13 9 
15 9 
17 9 
19 9 

a 9 
Z9(~Z 9 
Z27(~Zg~)Z3 
Z27(~Z27(~Z3(~Z3 
Z81 (~Z27 (~)Z 3 (~Z 3 (~Z 3 
Zsl  (~Z81{~Z3~Z3(~)Z3(~Z3 
Z243 (~Zs 1 (~Z3 (~Z3 (~)Z3 (~Z3 (~ Z3 
Z243 {~ Z243 �9 Z 3 (~ Z 3 (~ Z 3 (~ Z 3 (~ Z 3 (~Z 3 
Z729 (~Z243 (~Z 9 (~Z 3 (~Z 3 (~Z 3 (~Z 3 (~)Z 3 

a 9 
Z9 
Z27(~Z 3 
ZzvOZ3 
Z81~Z3(~)Z3 
Z81~Z3(~Z3 
Z243(~Z3~Z3(~Z3 
Z243(~Z3(~Z3~Z3 

1 27  - 

3 27 Z27 
5 27 Z27 (~Z27 
7 27 Z81@Z27@Z 9 
9 27 Z81(~Z81(~Z9@Z9 

11 27 Z243@Zsl@Zg@Z9(~Z 9 
13 27 Z243(~Z243(~Z9@Z9@Z9~)Z 9 
i5 27 Z729@Z243@Z9(~Z9(~Z9@Z9@Z 9 
17 27 Z729(~)Z729(~Z9@Zg(~Z9(~Z9(~Z9@Z 9 
19 27 Z2187(~Z729@27@Z9@Z9@Z9(~Zg(~Z9(~Z 3 

1 5 

3 5 Z s 
5 5 Zs@Z s 
7 5 Z s @ Z s @ Z  s 
9 5 Zs@Zs@Zs@Z s 

11 5 Zas@Zs@Zs| s 
13 5 Z2s@Z2s@Zs@Z s 
15 5 Z25@Z25(~)Z25(~-Z5 
17 5 Zg5@Z25@Z25(~Z25 
19 5 Z12s@Z25@Z2s@Z25 

Z2 7 
Z27 
Z81| 
ZslGZ9 
Z243(~Z9(~Z 9 
Z243@Z9(~Z 9 
Z729(~Z9(~Z9(~Z 9 
Z729(~Z9(~Z9(~Z 9 

Z 5 
Z~ 
Zs@Z5 
Z50Z~ 
Z25GZ5 
Ze50Z5 
Zz5| 
Z~sOZ25 
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1 25 
3 25 Zz5 
5 25 Z25@Zys  Zz5 
7 25 Z 2 5 @ Z y s @ Z 2 s  Z2s 
9 25 Z y s |  /25@Z25 

11 25 Zlzs@Z25@Z25@Z25(~Z5 Z2s @Z25 
13 25 El 25 @Z125 @Z25 @ Z25 @ Z5 (~Z 5 Z125 (~)Z25 @Z 5 
15 25 Z125(~)Z125(~ZI25(~Z25@Z5@Z5@Z5 ZIa5(~Z25@Z5 
17 27 Z125(~Z125@ZI25@Z125(~Z5@Zs(~Z5@Z5 Z125@Zlz5@Z5@Z 5 
19 25 Z625@Z125(~ZI25(~Z125@Zs@Zs@Zs@Z5@Z 5 Z125(~Z125@Zs@Z5 

1 7 - 

3 7 Zv 
5 7 Z v @ Z  7 Z 7 
7 7 Z v @ Z T @ Z .  7 Z 7 
9 7 Z v @ Z v @ Z T @ Z  v Z .z@Z 7 

l l  7 Zv @Zv@Z.z@Z.z@Z v Z v @ Z  7 
13 7 Z v @ Z y @ Z y @ Z y @ Z v @ Z  7 Z v @ Z v @ Z  v 
15 7 Z4.9@Z7(~Z7@Z7@Z7(~Z 7 Z7@Z7(~Z 7 
17 7 Z49(~)Z49(~Z7@Z7@Z7(~Z 7 Z49(~Z7(~Z 7 
19 7 Z49(~Z49(~Z49@Z7@Z7@Z 7 Zg9(~Z7(~g7 
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