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INTRODUCTION

he purpose of this paper is to define Chern classes for higher algeb?aic
eory in the greatest possible generality and to generalize the
ann—Roch theorems of Grothendieck [34] and Baum er al. [2, 3] to

rem asserts that if f:X—Y is a proper morphism between quasi-
ective varieties over an algebraically closed field and .# is a locally free
module then:

Jeh(F) - Td(X)) = ch(f, [ 7)) Td(Y),

e the Chern character of % is an element of the cohomology ring
X) (A* could be the Chow ring, integral cohomology, or one of several
theories), f; is the direct image, “Gysin homomorphism”
X)— A*(Y), Td(X) and Td(Y) are certain universal power series in the
. classes of the tangent bundles of X and Y and f, [#7 is
—1)'[RYf,.5 ] considered as an element of the Grothendieck group Ky ().
generalization we prove (see Section 4 for the full statement and proof)
tts that given a suitable category of schemes 2 and a suitable
mology theory on 77: X — H*(X, I'(*)), there is a theory of Chern
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classes for the higher algebraic K theory of 77 with coefficients i
H*(X,I'(*)), ie., for all p, i>0 there is a natural transformation of
contravariant functors (d is a constant =1 or 2):

Cip: Kp( )= HY7P(, (D).

Using these classes one may construct a natural transformation of covariant
functors on the category of projective morphisms in 77:

=@ 1, @ K( )~ @D @ Hyiyo - T0)),

q>0 q>0 i»0 g>0

where K'(X) for X in 7 is the “homology” algebraic K-theory of coherent
sheaves on X and H,( ,I'(*)) is the homology theory corresponding to the
cohomology theory I'(*). In the case of a projective morphism between non-
singular algebraic varieties over field f: X — Y, the theorem reduces to the
more classical looking formula:

Ji (ch(a) - Td(X)) = ch(fx(a)) Td(Y)

for any a € K ,(X).

In Section 1 we write down the axioms that we need for a graded
cohomology—homology theory I'(*) on a category of schemes 7. The
cohomology theory X — H*(X, I'(*)) is the hypercohomo’iogy of a graded
complex of sheaves of abelian groups on the big Zariski site 77, of 7.
The axioms are enough to ensure, using the methods of Grothendieck ([23]),
that there exist a theory of Chern classes for representations of sheaves of
groups on a scheme X in 7~ coming from universal classes, for n>i
C, € HY(B.Z %, I'(i)) where B.Z¥, is the simplicial sheaf on 77;,, which
restricts to B.Z%,(¢%) on each X in 7”. In the case where 7" has a final
object S the C; lie in the cohomology of the simplicial scheme B.GL,/S.
Using the homotopy theory of simplicial sheaves developed by K. Brown
([9], [10]) together with a generalization of an idea of Quillen one sees that
elements of the cohomology of B.GL,/S correspond to elements in the
cohomology groups of the simplicial sheaf on 77, which takes the value
NB.2.%, (the infinite loop space whose homotopy groups are the K-theory of
X) on X in 77, or equivalently characteristic classes for the K-theory
functors on 7°. This point of view is central to the proof of the
Riemann—Roch theorem, and also shows that Chern classes exist for higher
K-theory with values in cohomology theories not considered in the text, such
as crystalline cohomology. This approach also allows the a priori
construction of local Chern classes for higher K-theory as conjectured by
Grothendieck for K, (in Section 6 we show, via an equivalent definition of
K-theory due to Waldhausen, that our definition agrees with that of Iversen
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K, [27]). The construction of Chern classes, the Chern character and the
pofs of their basic properties are in Section 2. In Section 3 we prove the
of the three Riemann—Roch theorems in the paper, the Riemann—Roch
rem without denominators for a closed immersion of schemes smooth
a base scheme S. This theorem (Theorem 3.1), apart from its
pendent interest, is a key step in the proof of the main Riemann—Roch
sorem of Section 4.

Qur Riemann-Roch without denominators is a theorem “with supports” in
style of Proposition 6.1 of [27], and as such can be used to show that the
rn classes for higher K-theory define maps of coniveau spectral
ences, and to compute these maps at the E, level by studying the
ionship between Chern classes and localization in K-theory. In Section 4
state and prove the full Riemann—Roch theorem for (possibly singular)
mes quasi-projective over a fixed base. In Section 5 we prove an
ogue of this theorem, which asserts the existence of a natural transfor-
jon relating K-theory to topological K-theory.

inally Sections 6 and 7 form an Appendix in which we collect various
Its on K-theory not previously in the literature that we use in the text,
prove that the Chow ring satisfies the axioms of Section 1. These results
taken from the author’s 1978 Harvard thesis.

1. GENERALIZED COHOMOLOGY THEORIES ON ¢
CATEGORIES OF SCHEMES.

EFINITION 1.1. (i) A graded cohomology theory I'(*) on a category
of schemes consists of a graded complex of shaves of abelian groups
*¥) =@, [*() on the big Zariski site 7;,, of 77, together with a
ing in the derived category of graded complexes of abelian sheaves on .

R*

D‘(*)(?L*(*)HE*(*),

ch is associative with unit and (graded-) commutative.

(ii)) Given such a cohomology theory, for each pair (Y, X) of schemes
, with Y a closed subscheme of X one may define the cohomology of X
| coefficients in I and supports in Y by

H(X, I'(j)) = Hy(X, L*()))-

e that by construction the groups Hi(X, I'(j)) are contravariant functors
Y); given f: Z — X there is a natural map for all i, :

f!: H;(X, () - H}-l(y)(z I'(j)).
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every variety X over C there is a natural map of sheaves of topological
QB 2P ~xL XL BEZLO) (ZXBU =2,

AUV)=(Z X BU)

he sheaf #'Z is pseudoflasque in the sense of [10] because every pair of
ariski open sets V, W < X is an excisive couple. Hence for every open set
— X there is a map

QB.25(V)~ (Z X BUY,

hich is compatible with inclusions of open sets V' < W < X. The induced
ap t7: K,— KU™? is the higher K-theory analogue of 7 we want. Given
ch an inclusion V< W we then have a map induced on the homotopy
bres of the restriction maps:

RIy,_ (W, 0B.2.9)— (Z X BU)™Y,

In the case of W =M a smooth variety and ¥V =M — X, where Xc M is a
osed subvariety, the domain of this map is 2B..Z.#(X) and the induced
ap on homotopy groups is

™: Ki(X) - KUy (M) ~ KU “(X).

he rest of the proof is entirely parallel to that of Theorem 4.1. Note that in
e proof of Theorem 4.1 the independence of the map 1, from the smooth
mbedding used to define it was a consequence of Theorem 3.1; the analogue
f this theorem for topological K-theory instead of I' cohomology is again
roved using the same methods as those of Section 3, the purity theorems
sed in Sections 3 and 4 being replaced by duality or the Thom isomorphism
and the Dold—Thom computation of the cohomology of projective bundles
being replaced by the analogous result for KU*.

6. WALDHAUSEN K-THEORY OF THE DERIVED CATEGORY
AND LocAL CHERN CLASSES

Let & be an exact category in the sense of [31], which we may view as a
full exact subcategory of an abelian category .. Then the category C,(&) of
pounded homological complexes of objects in & has a natural exact category
ructure; X.— Y. - Z. is exact if for each k¥ (>0 by hypothesis) X, —
«— Z, is an exact sequence in &. %,(£) is a category with cofibrations and
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weak equivalences in the sense of [39]. A cofibration is an admissable
monomorphism in the exact category C,(&), and a weak equivalence is 4
homology equivalence (the homology objects lie, a priori, in &). If we
denote the category of weak equivalences by h, then in the notation of
Waldhausen [39], there is a homotopy Cartesian square:

SE(EV — hSE(E) ~*
JS.J lh.s../ (6.1

SE(&) — hSZE)

where %,(&)" is the category of acyclic complexes and J: ,(£)" - C,(&) is
the natural inclusion. Our object is to prove:

THEOREM 6.2. There is a weak equivalence h.S.%, (&)~ B..2&.

First we need a lemma:
LEMMA 6.3. Let & be an exact category. Then S.& ~B.2&.
Proof. A p-simplex in B.Z& is a diagram

P,»>P, | —: 2P,

in Q. For each i,j, 0<i<j<n we have a map P;— P; which is
represented by a diagram in &:

Pj«— Q,.j > P,

We call the kernel N; of the map Q;;— P; the kernel of the map P;— P, If
k >j > i then there is an exact sequence e
N> Ny — Ny

The data ({Ny};c;» {€in}icj<i) TEPresent a p-simplex in S.&. It is easily
checked that this defines a map B..2& — S.&. There is a map S.& — B.24,
defined as follows. Let ({N}, {e;;}) be a p-simplex in S.&. Then for each
e, there is a diagram E;; in B.2€&":

0
/N
Noyy—» Ny,

NN

0>— Ny —»0
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hich represents a “singular” 2-simplex of B..2&; ie., a 2-simplex of
x*(B.2&) (45]. The E; all fit together to form a singular p-simplex of
B..2& with vertices 0, and edges 0 >+ N;;— 0 for each i <j. Evidently this
nap is injective. For each vertex P in B..2& there is a unique path from the
ingle vertex 0 of §.& to P

0> P

nd for each edge in B.2&

ahis defines a canonical retraction of the 1-skeleton of B..2& onto the 1-
keleton of S.&, which extends naturally to a retraction of B..2& onto S.&.

_ Proof of theorem. By construction the map S.J is an infinite loop map so
t is enough to prove that there is a co-fibration sequence in the ‘stable
motopy category ¥ Ho [1]:

SE, &) 5L, SZ (&) - S.&.

Lemma 6.3 this is equivalent to proving that the cofiber of the map
2J: B.2C,(&)" - B.2%,(¥) is BZ&. First we identify the domain and
domain of BQJ as objects of . Ho. The identity functor I on #,(&) has a
ofiltration” by exact quotient functors:

I:FO—-»Fl—HFZ—»...—»F"—H..._

fined by F/(X.),= X, if k >j or 0 if k <j. For each j > 0 there is an exact
quence of functors:

P >__)F.I'_HFJ'+1’
here P/(X.),=0if j+# k and X, if j=k.
Hence by [30, Sect. 3] we have

N Ky(P) = Id: K (#(2)) - Ko (B(). (6.4)

j=0
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(Note that any diagram in .2%,(&) is mapped to zero by all but a finite
number of the F’, so the non-finiteness of the cofiltration F* is not a
problem.)

The functor 322, P’ is the exact functor %,(&) - #,(&) which replaces all
the differentials of a complex by zero, so it may be regarded as the com-
position:

% &) —L (@)

\ / (6.5)

(&)

where %,(¥) is the exact category of graded objects @ is0X; of &, with
X;~0 for j>0, P is the obvious forgetful functor and G the natural
inclusion. Obviously P.G =1,,(&), so by (6.4) P and G are inverse weak
equivalences. Since %,(&) is a direct sum of exact categories, there is an
isomorphism in % Ho:
B.2%,(&)~ \/ B.2¥
i»0

(The join V is the direct sum in the additive category ¥’ Ho). Now we define
a map (the “Euler characteristic”) :

E:\/ B.2& > B.2&
) i>0
by E= Z,->o(——l)f E;, where E; is projection onto the jth factor of the
domain of E.
Turning to %,(&)" we see that the identity functor I": Z(&)" - €,(€)" has
a filtration by exact subfunctors L,:

> Ly>> > Ly>> Ly=J
L(X.),=X, I>k,
-z, =k
=0 I <k,

where Z, = ker(X, — X, _,). Note that a priori Z, does not lie in &. But we
may suppose without changing its K-theory that & contains all objects in &
with finite resolutions by objects in & [31, Sect. 4], and then Z, does lie in
&. The quotients of the filtration {L.} are the functors:

AL ACHEAACHE
Z(X),=0  k#l I+1,
=Z, k=1LI1+1
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th the differential Z, » Z,, the identity. There is a commutative triangle of
nctors

28—, 9, (&)

N A

Z(&)

HX)=® Z,X.);,

i>0
SX),=X,®X,_,.

with (6.4) we see that S and H are weak equivalences. Hence we have a
mmutative diagram:

B.2%(&) —22L__, B.9%(&)
/l}l ZJ'P
B.2%(&) LIS, B 9% (&)
f f

\/ B.2¢ — 2, \/ B985 -£.B.98

j>0 j>0

ere D is the map

(X0 X150y Xpyeer) = (Xg5 Xg + X1, X) + Xy perey X, + Xy pses)

arly E.D is the zero map in .¥Ho. Furthermore E is split by the map
1 (x)~ (x,0,0.,...,0,...) and since the matrix (6;,;+ 9, ;) is invertible over
[ we see that

CVD:B.2&V \/ B.2& - \/ B.9& ~ B.9%,(¥)

J>0 i»0
5 a weak equivalence, and E is projection onto the first factor of a direct
m decomposition the other factor of which is B..2%,(&)".
We now use the preceding proposition to relate the definition of local
ern classes in Section 2 with those of Iversen [27]. First observe that if X

(noetheran, separated) scheme and Y — X is a closed subscheme, then we
e a homotopy Cartesian square [39]

hy SES TN —— hy S B (T = v

l l

hySEYT) —  hySE(H)
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APPENDIXES

7. K-THEORY OF SCHEMES

~ In this section we collect together the basic facts about K-theory that we
eded in the main text.

First we need to introduce the language of “n-categories.”

DEFINITION 7.1. (i) Let 2 be a category with finite inverse limits. By a

egory object C in & we mean a pair of objects Ob(C), Mor(C) in &
ether with a diagram in &:

So
—_—

0b(C) «_j_ Mor(C)

where dy - sy=d, -5, =1Idg,,.d, is the “source” map, d, the “target” map
ind s, is the “identity morphism” map. We assume a “composition law”
om  Mor(C) Xpc) Mor(C)»"Mor(C) and we suppose that all these
tructure maps satisfy the usual compatibilities.

(ii) A simplicial object in 2 is a functor from A% — @, where 4 is the
sual category of finite totally ordered sets and non-decreasing functions.

There is a natural fully faithful embedding of the category Cat (2) of
egory objects in & into the category [4°?, 2] of simplificial objects in 2,
alled the “classifying space” functor. We shall make no notational
stinction between a category object and its classifying space object, and by
,(C) for C in %=/ (¢ ) we shall mean n; of the associated simplicial set.

_ A bicategory has the same relationship to a category as a bisimplicial set
which is a functor A x A% - Sets) has to an ordinary category. A
1 Vicategory consists of the following data: Objects, Horizontal Morphisms,
| Vertical Morphisms and Bimorphisms. The bimorphisms can be thought of
 diagramatically as squares, and have two composition laws, vertical and

—_—

(2] [¢]

he vertical and horizontal sides of the squares represent vertical and
izontal morphisms, and their corners represent the objects. A bicategory
ect in the category & will therefore consist of four objects (O, V, H, B)
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and certain maps between them. Associated to a bicategory object C in &
we have two category objects in Fa/ (Z): the vertical and horizontg
category objects; we only define the first as the second has a similar
definition.

DEeFINITION 7.2. The  wvertical  category  object (O,,M,) i
%al (Fal (2)) associated to a bicategory C has:

0b(0,) = 0b(C), Mor(0,)= Hor Mor C
Ob(M ) = Vert Mor(C), Mor(M,) = Bimor C.

From the embedding %u/ (Fal/ D)-+ |4°F, €l (¥)] we get a simplicial
category object in &, the vertical nerve of C. Similarly we have the
horizontal nerve of C. We therefore have a diagram:

Bical (D)

vertical
category object

«, horizontal
category object

Cul (Cual D) Cul (Fal D)
| serien [ sepomea
[4°7, Zat D) (4%, Zal (D))

l n

[, |4, 2] (47, 14, D)) = |47 X 4", 7 .

1

We therefore see the category of bicategory objects in & has a fully faithful
embedding into the category of bisimplicial objects in %, which is
independent of whether one first takes horizontal or vertical nerves.

All of this has an even more messy generalization to n-categories for
n>2. These correspond to n-simplicial sets, and have n-morphisms
corresponding to n-cubes. If 1 <k <n and C is an n-category object in 7
then the k-nerve of C is the simplicial n — 1 category obtained by “forming
nerves in the kth coordinate.”

For more details and many examples of bicategories see [38}.

We should also state a well-known lemma which we shall need later.

LemMmA 7.3. Let X.—» Y. Z. be a sequence of simplicial spaces such
that X.— Z. is constant. Suppose that X,— Y, > Z, is a fibration up 10
homotopy for all n and that Z,, is connected for every n. Then X. - Y.~ Z.is
a fibration up to homotopy.
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roof. See Waldhausen [38].

Let .# be a small exact category [31, p. 15]. Then Quillen constructed the
oups K,(#) as the homotopy groups of a certain category Q.# associated
M.

DEFINITION 7.4. 2.4 is the category:

Ob 2.4 =0b.#
ZM[M, N] = The set of isomorphism classes of diagrams,
for fixed M and N:
M« PN
e morphism (e, i) may also be described by the length 2 filtration

er(¢)>>P>>N of N, together with an isomorphism z of the layer
Ker(<) with M.

DEFINITION 7.5. By an admissible Jiltration F. of the object N of an
act category .#, we mean an isomorphism class of diagrams
Fo>>Fy > Fy o ... ~F,_ > N=F,,

ere k is the length of the filtration. The quotient F,_/F; is called the ith
er of F.

egories (&.rac/ ) and exact functors to %/ (:#/ ). Hence A - n (2.#)
growps.

| DErINITION 7.6. K(#)= i (2A), i 20.
_ Waldhausen [38] has described an iterated Q construction in which

k-times

K =2 ... 9.#

a k-category and 2% # is a delooping of .2*~'#. Since this construction
f central importance in this chapter, we shall describe it in detail.

DEFINITION 7.7, 2X# is the following k-category:
Ob(2* ) = Ob(#)

k-Mor(2*.#) = the set of objects of .# with k-fold
admissible filtrations of length 2.
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Note. A k-fold admissible filtration F; ..., (of length two) of an object
M is a set of admissible subobjects F; ..., > M (i;=0, 1, 2) such that if
ij<r; for all j=1--n, F, ., >F,. .., and if r;=Min(s;, 1) for

j=1..- k we have a fibre product:

Tk

I I

[TERRY 7

F

together with choices of quotients.
For example, k =2 ‘

Fog >—— Fy; > Fyy

|

Fio>——F, —F,

L

Fyo——Fy >——Fp=M
We can also write this
Fiy[Foy + Fige——F,, [Fy, > F,[Fy,

T T T

F,/F, «— F, > Fp
Fy [Fyy «—— Fy >—— Fy.

The horizontal and vertical “faces” of this bimorphism correspond to the
four edges of the second square.

THEOREM 7.8. Z%*'.# is a delooping of 2*.#, k > 1.

Proof. We generalize Waldhausen’s proof for the case k=2 [38].

Let &.# be the category whose objects are the admissible
monomorphisms in .#, and where a morphism from x to y is a commutative
diagram
X2, X

VAR

) P D
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here is a natural functor £.# — 24, which acts on objects and
_morphisms as follows:

objects: X >» X" i X'/X
morphisms: ¥ > X >» X' > ¥ P X /X« X'/Y > Y)Y,

We can apply the Q-construction in a natural way to L.#, forming 2*L.#
or all k> 1. A (k+ 1)-morphism will be a filtered object F; ...  of #
here i, ---i,=0,1,2 and i1 =0,1,2,3. The F; are required to satisfy
ompatibility conditions paralleling those for .2%+! #. We now have the
achinery for the proof of the theorem.

Consider the sequence

DM Tk P g

of (k + 1)-categories, where <. # - 9%+ # is the functor induced by the
nctor L A — Z.#, and 2K # is regarded as a degenerate (k + 1)-category
hose (k + 1)-morphisms all have (k + 1)st coordinate the identity. . 2% # is

erefore the full sub(k + 1)-category of .2¥%.# which is sent to the zero
bject of 2%+ z7.

We will be done if we can now show that this sequence is a fibration up to
omotopy for all k> 1 and that .2*<.# is contractible for all k > 1. First
¢ do the fibration part. Taking (k + 1)-nerves of the sequence, we obtain a
quence of simplicial k-categories which in degree n is equivalent to:
31((/__,2&;;"‘#21_}3%"!*1/’

here #,,.# is the exact category with objects admissible filtrations of
ngth m; Fy > ... > F M= M. By the Exactness Theorem

LF M~ (D)
d so, assuming the theorem true forj=1,.,k—1,
K7 M~ (2k ).
.
gence, up to homotopy, our sequence becomes in degree n:
_le“é (ﬁgl{/)ln+2 _ (3k/)2n+l.

is is clearly a fibration with connected base, and so by Lemma 7.3 we
ow that 2% # —» 2*L 4 - 9%+ 4 is a fibration up to homotopy (so long
27*.# is a delooping of 2.4 for j=1... k — 1). Finally, both to start
induction off and to provide the inductive step we need:

LEMMA 7.9. 2/ # is contractible Sor all k.
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Proof of lemma. We have an explicit null homotopy of ‘LM via the pair
of natural transformations:

X>>X)> (0> X)«(0>0)

These then induce the required nullhomotopy of Z*<_# by the functorality
of the Q-construction. This also exhibits an explicit homotopy equivalence
9k ~QI* A

DEFINITION 7.10. %, is the C — W Q-spectrum which in degree n is:

F,),=0""Yo#  n<Oo,
=4 n>1

and has maps
S‘f{.n _)'z/.,l,n+l

adjoint to the maps -2".# — Q.2"*! of the theorem.
We therefore can regard the K-theory of the category .# as the (stable)
homotopy of the spectrum %, i.e., K,(A) = n(Z ).

We now describe Waldhausen’s construction of products, and show that it
is compatible with the infinite loop space structure of Definition 7.10.
Throughout we shall be considering a biexact functor MNP

Consider the pair of categories 2.4, 9.4". Then we have a natural
bicategory 2.# ® 2.4, homotopy equivalent to 9.4 X 247, in which a
bimorphism is pair (4, v) of morphisms from 2.#, 2.4, respectively. We
then have a natural functor 2.4 ® 24 - 227 which takes the
bimorphism (F;, G;) in 9.4 ® 24 (remember F; and G; are length 2 Recall
admissible filtrations of objects in .#, .#", respectively) to the bimorphism
o(F;, G;) of 2.2.9; here ¢(F;, G;) is a bifiltered object of #°. We can extend
this to a whole family of products ¢, , for m,n>1:

THEO!
bcateg

Qm‘/@”?n‘/_’_h%_} an#n‘?a.
. . . a fibrc
These take the pair (F;, G,), where now F; and G; are objects of # and ¥ .
with m and n-fold filtration respectively, to the (m + n)-fold filtered object Proof.
P malFi> Gy . Obvio

Since ¢, ,(0, N) =¢,, ,(M,0)=0 for all M, N in ob(.9"#), Ob(2"4) § I, ar
these products induce maps on spaces (i.e., simplicial sets)

I N DN > 2P,

We want to patch these together to obtain a pairing of spectra, so we must
check that all these products are compatible with the deloopings.  a cofil
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EMMA 7.11. We have commutative diagrams

LM R PN — gming IMRQDN — gmtnp

| |

I"LMRQ DN — IMP I P PN RQ LN — Mg P

.?m+lh/®3n./,/‘__>u?m+n+ly 3m‘/f®3n+ly/’/“_ﬂ 3m+n+1{93'

oof. Obvious.
ecking the difference between the isomorphisms

nk(ngrny) ~ nk+l(’9m+n+1y)

uced by the two deloopings of .2™*"% in the lemma, we find that if
En(2"'\#), BELI"V and Qac T 2" A, then ¢(Qa,p)=
1)" Q¢(a, B), and o(a, 2b) = 2¢(a, ).

We can summarize the results of this section in:

THEOREM 7.12. Let .M X NV - P be q biexact functor. Then there is a
ural pairing of spectra

F e NF o~ K,
cribed explicitly in degrees m, n 2> 0 by the products O

Recall Quillen’s localization theorem :

HEOREM 7.13. Let o be an abelian category, ¥ ./ a Serre
category, </ /% the associated quotient category. Then

2.5 5 I - 28]

Jibration up to homotopy.

roof. See [31].

bviously .24 - 2%/ — 9%/ /5 is a delooping of the fibration for all
1, and so we can rephrase Quillen’s theorem:

HEOREM 7.13'. Let &/, ¥, 5/|.% be as above. Then
Ko Ky Ky,

cofibre sequence of spectra.
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This has the obvious but important:

COROLLARY 7.14. Let ¥, o, 4| &', ', /'S be localizations
of abelian categories, as in Theorem 1.13, and A an exact category such
that there are compatible products (i.e., the horizontal maps are biexact):

XM —— S

P

XM — A

Lo

A XM AL

Then

() Xy AKX, NX, o NF,is acofibre sequence (also true for
&L AN

(ii) The following diagram commutes:

HNH, — H

Koy NH g —— Hys

o

SH,NE, — SHy

If we look at the bottom square of the diagram of the lemma, we see:

Kp (@/4 ) X Kq () —————>=Kp+qla’a/)

9+ Q 9

Kp-1(8) XKglm)

Kp+q-1 (4)

Note. If we multiplied on the left by K, .# this would commute up to
(=1)7 {40, p. 274].
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Suppose that =/ is an abelian category filtered by Serre subcategories
# D/ 'O/ 5.0 Then %, has an induced filtration
s A ;D DA > such that for all i >j we have cofiberings:
ich

‘z,ﬂw“"jw*

Wi

Associated to this filtration of %, there is a spectral sequence

Ef=K_, (/7)) > K_,_ ().

f o/ =/ then E? is zero unless p >0 and p + g <0.

Note. If we have an increasing filtration .. & c & +1 - we have a
pectral sequence

E}]”l :Kp+q("‘/p/%—l) = Kp+q('M)a

hich if />0 is concentrated in p >0, p + ¢ > 0.
For details see [1].

for

THEOREM 7.15. (a) Let AV X 4D % 29 be q biexact functor
etween abelian categories filtered by Serre subcategories, such that
WA XA Y PYD Then there is a naturally induced pairing of
spectral sequences d

EPUAT)Q EP 4 (#7) » EZVPIH (),

(b) Let #P X 4"~ 7 be a pairing with #" and 7" as in (a), and
exact. Then there is a product

EPUA")® K (A7) = EDT="(F).

Proof. (a) For all n, g, r >0 we have products

» n ,
,.y_(n/,ﬁr /\X,ﬂ/_,q+r—+-z7..,m+q/‘,zn+q+r-

ollowing [41] these products induce the required product of spectral
quences so long as they satisfy the following two conditions.

@) Ifn}n’,q}q’,n+r>n’+r’,q+r>q’+r’, then

{/Cé’z,n/,mw /\f,qﬁ,ﬁqu —i‘——) XW+Q/‘V,)N+Q+V‘

‘%4'”// PL /\‘Z;"’//Jql*"l —_ ‘zf‘}an’/‘?n’»&q%r’.
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(i) Forall n,g>0, r>1 in the diagram: (2)
coheren
n%{ﬂ/,ﬁ«}r /\ %,ﬂ/‘yq—(»r #r fyzn+q/.9m+q+r an((i3():01
nAg topolog
4)
aAn <%}n/1ﬂ+l/\f¢q+r/l‘q+r+l 4 KI(X)_
. )
)
S}y’,n+r/,n+r+x/\<z’,q/_,q+r - HS.Z:/H+QH‘/.,W+Q+’+1 pal(r;l;gs
One has 9 - g, =p,(n N 3) + 1,0 A n).
Note that at the level of homotopy groups, for the product
M,y :f’n//nn A S}Z”’q/.‘{q+y+l - S‘X;‘n+q+r/.r}m+q+r+l which i1
we must add a factor of (—1)7:
yl:K,.(/l"//"*‘)®Kj_1(/tf"/f‘”’+’)_ﬂ,KHF1(.9’"“””/9‘"“’““). bOn a
categ
The truth of (i) is obvious. As for (ii), this involves tedious checking and M=
use of [1, Sect. 9] (properties of products of spectra). Let E
Associated to a commutative noetherian ring with unit, R, there are two eorem
categories.
A, = Category of all f. g, R-modules. This is an abelian category, and we THEO
give it the naturally induced exact category structure. hen
7, = Full subcategory of .#; of projective R-modules. We make it an .
exact category by selecting those sequences P’ > P — P” which are exact in @
#,. Thus all epis are admissible and monomorphisms are if they have (i
projective cokernels. (iii’
If X is a noetherian separated scheme, we again have associated exact (iv

categories.

A, = Abelian category of coherent ,-modules

% = Exact category of locally free modules.

Clearly if X = Spec(R), then .# =.#; and 9% = F%.

Finally we set K,(X)=K/(%), K(R)=K{(%), Ki(X)=K/(A#) and
Ki(R) = K (A).

The groups K, and K have the following natural properties, which are
only stated for schemes X leaving the affine case implicit. Proofs are either
obvious or may be found in Quillen [31].

(1) The K,(X) are contravariant functors on the category of all
noetherian separated schemes.
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(2) The Kj(X) are covariant for those morphisms X - Y for which every
coherent sheaf on X has a finite resolution by R'f,.-acyclic coherent sheaves,
and contravariant with respect to flat morphisms.

(3) Both K, and K| are presheaves in the Zariski, étale and flat
topologies. We denote the associated sheaves by % and .7".

(4) The natural exact functor Ty - My induces homomorphisms
Ki(X)- Kj(X) which are isomorphisms if X is regular.

(5) Ki(X.ea) = K(X).

(6) The biexact functors .7 X .#, +®x_#, and Ty X Ty »®7% P, induce
pairings on the associated graded presheaves, and their sheafifications.

(7) If X and Y are schemes over a field k, there is a biexact functor:

M X My—s (X X, Y)

which induces an external pairing

K (X) ® K (Y) - K4y (X X Y).
On a (noetherian, separated) scheme X we have a filtration of Ay by Serre
ubcategories .#7,:
Ay = Category of sheaves with support of codimension at least 7. »

Let E7(X) be the associated spectral sequence, then we have the following
eorem of Quillen [31]:

THEOREM 7.16. Let X'P be the set

of points of codimension p on X.
hen

) EP'(X) =@yexw K_,_,(k(x)).
(i) EPX)=> K", (X).
(iii) EP is contravariant Jor flat morphisms.

(iv) Ifx =lim X; where i+ X i s a filtered projective system with
[fine flat transition morphisms, then

E(X) = lim EP(X,).

Note that we could have filtered A, by dimension of support, and
tained a spectral sequence E}(X) having essentially the same properties
ough in (iii) and (iv) above one must take into account the relative

pure dimension d, then:

E}, (X)= Ed~P—d-q(x),



272 HENRI GILLET

The E, term of the spectral sequence of Theorem 2.1 breaks up into a family
of complexes R¥ (g > 0):

Ri= @ K, ,(k(x))

xeXx(p)

each of which comes with an augmentation K, (X) - R}(X). By (iii) above
this situation may be sheafified in the Zariski topology, to obtain for each
g > 0 an augmented complex of sheaves,

He= FG
whose stalk at a point x € X is by (iv) of the theorem:
K (@) = Ri(Cx )
The utility of these complexes comes from:

GERSTEN’s CONJECTURE. If X = Spec(d4), A regular local, then R} is a
resolution of K, for all q.

THEOREM 7.17 (Quillen [31]) The- above conjecture is true if A is a
semi-local ring on a scheme of finite type over a field.

é

COROLLARY 7.18. If X is a regular scheme of finite type over a fleld In th
and 1
ES (X)) = Hy o (X, 7).
Proof. By (i) of Theorem 7.16, #} is a flasque sheaf. By Gersten’s
Conjecture and the comment preceding it, it is a resolution of .#;. Hence As is

jgeneral
H} o (X, ) = W (X, FF) = HU(ED* (X)) = E7%(X).

From (i) of Theorem 7.16 we can see that if Y <X is a closed codim d
subset of X:

Iy (#F) = REZ (V).

Therefore if X/k is regular, of finite type over a field:

HY(X, ;) = H([W(# ) = B ™Y, Z5_0)-

The geometric content of this computation lies in the following theorem:
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THEOREM 7.19 (Quillen, Grayson). Let X be a scheme. Then the
ifferential in the spectral sequence:

@ Kik(x)—2— @ K (k(x))

xex(p-1) xexw
8 ~ZP(X) the group
of codimension p
cycleson X
®  k(x)*
xexp-1n

ssociates to every rational function f€ k(x)* its principal Cartier divisor
n {x}, which then determines a codim p cycle on X,

~ Proof. |31,42].

- COROLLARY 7.20. H’(X, #})~ CH"(X) the Chow group of cycles of
odimension p on X, modulo rational equivalence (¢f. Fulton [17]).

Let R be a commutative ring, S a multiplicative set in R. Then the S-
orsion modules form a Serre subcategory & of .#,, with quotient category
s-1r- Hence we have a localization sequence:

5 K((F5) > K AM) > K A1) D K ((Bg)

In the special case of a one-dimensional local domain 4 with quotient field
and residue field &, we get (setting S =R — {0})

L Ki(k) > Ki(R) = K(F) - K, _,(k) .

- As is well known, K (R) splits as a direct sum: K,(R) =R @ SK,R for a
eneral commutative R. For f& R we denote the corresponding element of
((R) by {f}. If * denotes the K-theory product, we write products of the
orm  {f}}* .- {f,} EK,(R) as {f},..f,} and refer to them as “p-
ymbols.” The question to be answered in this section is: “How does & act
n symbols?” If p=1 we find

0: K\ F=F*>Kk=1

5 the unique homomorphism having the property that if fER, d{f}=
(A/fR). This is just a rephrasing of Theorem 7.19. For p > 2 we treat only
e case of a discrete valuation ring. So let R be as above. Set R/nR =k,
~'R =F the residue and quotient fields, respectively. Since every f€ R
hay be written

f‘-: v g g€ R*




274 HENRI GILLET

we have
s Syl = 3 IO LN S Loy 8
I<11< i, Lp

So by Corollary 7.14

a{f] 9-.0,}},} = Z 3{7[””"1),..., ﬂu(fir)}(_l)gl‘. iy
1< - <ipgP

X A &1 yees By rees Geres Bt voes B

where g, is the image of g, in k* and ¢, ..., is the sign of the permutation
(iyseees Iy Lyoews By prees Lpseney ). NOW tO compute the &{n,..., m} portion of this
formula, we first observe that {n, n} = {n, —1}, since {m, 1 —n} = 1. Rather
than justify this directly, we shall use the fact that Waldhausen’s product
agrees with Loday’s [28, 38]; now it is known for Loday’s product that the
symbols in K, defined via the product K, X K, — K, are the same as those
defined by Milnor. Hence {x,..., 7} = {7, —1,..., —1} € K,(F) so d{n,..., n} =
{—1,...,—1} € K, _,(F). Summarizing, we have:

THEOREM 7.21. LetR, F, k, v, f;, g, & (i=1--- p), be as above, then

—1)€dy i, Bz U
ofi - Jol = 2 {—‘1,...,—1}( Dy i 2y 1Py
i<ii< - <ipgp

X A &rowes 8, soes &irwens Eiyrees 8-

THEOREM 7.22. Let f:X—Y be a proper morphism of noetherian
schemes.

(i) If there is an ample line bundle L on X, then there is a natural
homomorphism of spectral sequences

Jui Epg(X) — EL,(Y)
compatible with the map on the abutments
“(X)— KL (Y).

(ii) In general there may be no such L on X and therefore we do not
know how to construct a trace map on E” for all r. However there is always
a trace map between the E* terms of the spectral sequences:

St Ef,q(X) - E,Z,q(Y).

This, however, is only a homomorphism of bigraded groups.

An in
eil.

RECIF

field, a.
; equen(,‘(

here M
tensio.

Proof.
ement

hich t
tioi(8
Using
First «
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Proof. (i) Let #;c.#, be the full subcategory consisting of those
eaves F for which R, F=0, i > 0. Let #; c.# be the induced filtration
y dimension of support. By the same argument as in Quillen [31, p. 42], the
clusion .#;c.# is a homotopy equivalence, and therefore induces an
omorphism

E! (VX)) ~ E}(AX).

ut we have an exact functor, compatible with the topological filtrations:
"X - #Y. Hence we have the desired homomorphism:

ET(X) = Ej(#X) - Epg(Y).

An immediate corollary of (i) is the following generalization of a result of
eil.

ReciPrOCITY Law FOR CURVES. Let X/k be a complete curve over a
eld, and d,:K,(k(X))— K,_,(k(v)) the differential in the localization
equence for the local ring at the point v of X. Then Yo € K (k(X)):

>_1 Nmyyiddy(@)) =0,

en
here Ny K;_(k(v)) = K, _,(k) is the trace map for the finite field
xtension k(v)/k.
Proof. Consider the projection p: X — Spec(k). a € K(k(X)) defines an
lement in E] ;_;(X). Now
ian . .
E_, Ny dd (@) = psldy i—1())
v
iral ) ) .
hich by existence of the trace map =d;; ,px(a). But py(a) lies in
E} ;- ,(Spec(k)) =0.
Using the reciprocity law we now prove (ii) of the theorem.
First observe that for each p we have natural additive functors
fi: AN X)| My ((X) > AYY)) A, ((Y).
not However, f; is exact, for suppose # is a coherent sheaf supported on closed
vays subset Z — X of dimension at most p. Then f(Z) either has dimension <p or

|, is generically finite, and in both cases R'f,. . has support of dimension
at most p— 1 for all j> 1. Hence there is a homomorphism of bigraded

groups

Sii Ep(X) = E i (Y).
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It will be sufficient to check that this homomorphism is compatible with the

s : d henc
differentials:
@ Kp+qk(x) —dl“" @ Kp+q—l(k(u))
X€EX, UEX, 4
1 ; l . his las
¥y F
@ Kh(y) —E— @ K, , (k@) Simila
YEY, vE¥p_ et:
So we take a € K k(x), some x € X, and chase it round the diagram.
There are two cases:
. o ) ) n partic
(@) k(x)/k(f(x)) is finite; ie., {¥}— {7} (y=,f(x)) is generically ach g, ¢
finite. The non-finite locus has codim > 2 on {y}, so all the u € {X} N X,_,
are finite over their images. So to check that fy d(a) = df(a) we may restrict
ourselves to the open subset U of x in {X¥} on which f is finite; since
St My M is exact we have a map E, (U) - Esy({ 7}) for all r > 1, and ompatit
the desired identity follows. 4+
(b)  k(x)/k(f(x)) transcendental. Since this means f,(a) =0, we have l
to check f - d'(2)=0. If ¢: dim k(x)/k(f(x)) > 2 then all divisors u of {x} sing Tl
have relative dimension at least 1 over their images and so fyd'(a)=0. If
t:dim k(x) | k(f(x)) is 1, then all divisors u which are finite over their
images lie in the generic fibre of f: {X} — {7} which is a cufve. The result [ @ .
now follows from the reciprocity law for curves. 7 xex®
As a corollary of this we obtain the following well known algebraic fact: 5 compc

(cf. Fulton [17, p. 6]).

COROLLARY 7.23. Let A be a one-dimension local noetherian domain
with maximal ideal P and quotient field K. Let L be a finite extension of K,
B a finite A-algebra whose quotient field is L. Let P, .-- P, be the prime
ideals of B lying over P, B;= Bp,. Suppose t € B and N, ,(t) € A. Then

IA(A/N([)A)Z,E |B;/P;B;: A/P| IBI(Bi/tBi)‘

Proof. Just use the theorem for Spec(B)— Spec(4) together with
Theorem 7.14.

For a general scheme X, the biexact functor:
M X T

is compatible with the topological filtration on .#;, so that we have pairings:
EP(X) ® K(X) » EPTH(X),

EL(X) @ K(X) = E}, g, {(X)
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d hence also a pairing of complexes of sheaves:

B ACK 2

p+i

This last pairing is compatible with the augmentations HK,— ZF and
o T

Similarly for the external product for schemes of finite type over a field we
get .

EFX)® E}(Y)» EPFP (X X Y).

n particular the product on E| terms provides pairings of complexes, for
ach g, ¢’ >0:

o BT @ B (1) 2 ER TN XX Y)
ompatible with the differentials in the sense that:
APt (r(x @ ) = t(df(x) ® ¥) + (1P t(x ® 2V (p)).
sing Theorem 7.16 we may write this pairing down explicitly; the pairing
| &, % |0 @ Ko fkD]+ @ Kugouunthiz)

xex® yer) ze(xx )i+
s composed of the maps
Kq—i(k(x))@)Kq_j(k(J’))"* @ Kyrqrirp(k(2)

ze(t®) x(FH©

duced by the pairing of rings
k(x) ® k(y) > D k(2).

particular t~ 99"~ is the external product on cycles.

When, for each ¢>0, we view Ef ~%(X) as a complex R¥(X) and
imilarly write E¥ ~7(Y) as R3¥(Y) we find that the product 7 induces a
airing not from R¥(X)®R}(Y) to R}, (X XY) but between the
omplexes I(X) and I(Y) where I;,_" =E;" " for p=gq,q'. Using a trick of
rayson we can modify the pairing in order to circumvent the failure of 7 to
e a pairing between the complexes R*. Define a pairing

Hg ot  REX) @ RE(Y) > RE, (X X Y)

Y pgh = (=¥ It is easily checked that d(u(x® y))=
dx® y) + ()" u(x ® dy), so that u is indeed a pairing between
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complexes. We may sheafify the situation in order to obtain a pairing of
complexes of sheaves on X X Y (where py, p, are the natural projections):

u: (PERY)® (PFFE) > Fh g

compatible, via the augmentations .Z, - #Z} for p=gq,¢’, with the product

PIF, @ Py Ay > H g

THEOREM 7.24 (Projection Formula). Let f:X—Y be a proper
morphism, then we have a commutative diagram of graded complexes:

E}k‘q(X) ® Kp(Y) - E:k,q+p(X)

1&@1 J’ *
Ei (V) ® K,(Y) — Eig1,(Y)

Proof. We have, for each i>0, a commutative diagram of exact
functors:

XA, (X)) X P(Y) — X)) A \(X)

lf*x 1 [f*

L) A (D)) X () s A/ A7)

The vertical arrows give the desired maps of complexes by Theorem 7.22
while the horizontal arrows do too, since the pairing “®,,” respects the
topological filtrations on .#(X) and .#(Y).

8. CHow THEORIES ON THE CATEGORIES OF SCHEMES

Recall from Theorems 7.16 and 7.22 that the two Quillen spectral
sequences (corresponding to-the dimension and codimension filtrations) have
the following properties:

@) Ef,q is covariant with respect to proper morphisms.

(ii) E;“q(X) ~ CH,(X), the Chow group of dimension p cycles
modulo rational equivalence.

(iii) If X is regular and of finite type over a field, then E{?(X) breaks
up into complexes R} which are resolutions of %, so that
EPI(X)~ HP (X, H_,).

The significance of these three properties is that (i) and (ii) suggest that

the functor X -»Ef,q(X) forms a homology theory on the category of
schemes, which contains the “classical” Chow homology theory (cf. Fulton
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17]) as a direct summand. Turning to (iii), this we may regard as saying
at we have a “duality” isomorphism between the groups Ef,q(X) and
H" (X, %,_,) for a pure n-dimensional regular variety. Because the
unctors K are contravariant on the category of all schemes we see that the
HP(X, %) form a bigraded contravariant functor with a product structure
nduced by the K-theory product.

The object of the rest of this section will be to show that these two
unctors form a homology-cohomology theory, with values in the category of
abelian groups, possessing suitable properties. Such a theory can be referred
_to as a “Chow theory.”

We now give a general description of a Chow theory, and list the main
properties such a theory should have, which are more extensive than the
xioms of Section 1.

Homology
Homology should be a covariant functor from the category of schemes
nd proper morphisms to the category of bigraded abelian groups:

X - CH, (X).

This functor should have the following properties.

(1) Given Y-/ X of pure relative dimension d, there should be Gysin
) | ;%naps CH, (X)—»CH, _,,Y) if f is either flat or a regular immersion.

2 (2) The Gysin homomorphism CH, (X)-CH,, . ,(A}) should be an
somorphism (i.e., CHy should satisfy homotopy).

(3) Given a pair (X,U), U open in X, there should be a long exact
equence

R CHr.s(X‘ U)__’ CH,_,S(X)-V CHr+d,s+d(U)i’ CHr——l,s(X_' U)—’

d is the relative dimension of U/X).

(4) Given a filtered projective system {X,, 1,,} with affine flat transition
orphisms, the natural map

lim CHy4(X,) = CH 4 (lim X,)

.
.

should be an isomorphism.

(5) There should be a specialization map from the homology of the
eneral fibre of a flat family to the homology of the special fibre.
(6) Homology should only depend on the reduced structure of a scheme,

e

CHr.s(X) = CHr.s(Xred)'
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(7) If X is irreducible of pure dimension n, then CH,, , ,(X) should be of
rank 1 with a canonical generator [X]. Hence for each closed codimension p
subscheme Y < X we should get a class [Y|€CH,_,, ,(X); this “cycle
class” map should define a natural transformation from the classical Chow
group functor [17] to the theory CH,..

Cohomology
This should be a contravariant functor from the category of all pairs of
schemes (X, U), U < X open, to the category of bigraded abelian groups:
X, U) - AR y(X) = A74(X),

where Y =X — U. Cohomology should have cup products and cap products,
both compatible with supports and with each other:

APUX) © AL (X)— AR (X)
A';‘q(X) ® CHr,s(X) —D—_) CHr—p,s~q(Y)'

Cohomology should also have the following properties:

(1) For X regular, of finite type over a field and of pure dimension n,
cap product should induce an isomorphism:

AL X)) CH, (V).

(2) K p:X-Yis proper and if x € CH 4 (X), y € A**(Y):

P«(xNp*(y))=px(x) Ny

(The projection formula).

(3) If X is of finite type over a field, smooth and quasi-projective, then
the cup product on 4”°? should coincide, via duality, with the classical inter-
section product.

(4) There should be a theory of Chern classes satisfying the usual
axioms (as described in Grothendieck’s article [21]).

DerINITION 8.1.  From now on, by Chow homology and cohomology we
shall mean the theory defined as follows:

CH, ,=E. _,(X); homology graded by dimension,

A29(X) = HYX, %,); cohomology with supports in Y.
(To keep track of the indices, recall that

E, = ©

dim{X)=p

K, ,,(k(x)).)

which

ie., H}

We
The 1
contras
compa
 know t
abelian

The
in two
the gra
1,
MA(X)-

Fror
over a

In part

nx(Y) 1

THE
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The Cup product is the product induced by the pairings of sheaves
A, Q0 %, > %, ,. To define the cap product we use the pairing (Section 7)
E i s®K,~FE !

r,s+q?°

which induces a pairing of sheaves, and hence of hypercohomology:
HY(X, %) ®@H "(E.)->H} "(EL.),

ie., HY(X, 7)) Q El _(X) - E} This gives us our product

r,—s r—p,—s+q*

Al};"q(X) ® CHr.s(X) ____fl__» CHr—p,s«q(X)'

 We can now check some of the properties directly from the definitions.
_The homology Gysin map for flat morphisms becomes the flat
_ contravariance of the B-G-Q spectral sequence (Theorem 7.16). Similarly,
ompatibility with inverse flat limits is Theorem 7.17. For cohomology, we
now that excision is a general feature of the local cohomology of sheaves of
abelian groups.
The long exact sequence for the homology of a pair (X, U) can be viewed
in two ways. Either as the long exact sequence for local hypercohomology of
the graded complex &L, of flasque sheaves, together with the isomorphism
Iy(&p) 2 Ey(Y), or as coming from the fibration #(X—U)—
H(X)— #(U) of filtered categories.
From Corollary 7.20 we have, for X regular irreducible and of finite type
over .a field, the duality isomorphism

AVUX)~CH,_, _,,(Y) n =dim X.

n particular, if ¥ is irreducible of codimension d:
AFUX)~CH,_4 (V) =Z[Y].

So we have a fundamental class #,(Y)€ 4%%X) such that
nx(Y) N {X] = [Y]
THEOREM 8.2. Let Y < Z be a pair of closed subschemes of the scheme
X, then given elements a € Ay(X), B € A7*(X), y € CH, (X) we have:
(a U;B) M y=a M (ﬂ M y) € CHi~p~r,j~q-s(Y)'

Note that if a € ApU(X) and BNy E CH,_, ;_(Z), we define aM (BN y) as
({Fa)yM (BN y), where i: Z - X is the natural inclusion.

Proof. Since the K-theory product is associative for all triexact functors

07/40/3-6
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HXM KM >N, and F, ® Ej 4 — Ey 4 is a map of graded complexes,
we have a commutative diagram:

and

wx ®F® A,
/ - Both of
We
Ekxirs®F, Exx®F inductic
\\ / _from th
ép:l!<,>l<+s+q LEM)

The theorem now follows by applying general properties of local
cohomology.

. THEOREM 8.3. Let p: T— X be a flat map whose fibres are all affine
spaces of dimension d (note that p s therefore surjective). Then
p*:CH, (X)—» CH, ,4,,.4T) is an isomorphism.

Proof. (following Quillen’s proof for K’ [31, p. 44]). If Z is a closed
subset of X with complement U, then because f is flat we have a map of
exact sequences

— CHyx(Z) — CHyy(X) — CHyx(U) T

ool

— CHyy(T;) — CH s (T) — CH,(T,) —

which comes from the commutative diagram of filtered categories:

AUT,) —> M(Ty) — AT ).

By the five lemma the proposition is true for X if it is true for Z and U.
Using noetherian induction we can assume the proposition holds for all
closed subsets Z # X. Further, we can suppose X irreducible, for if
X=2Z,UZ, with Z,;#+ X, i=1,2, then the proposition holds for Z, and
X—2Z,=2,—(Z,NZ,) by induction and the five lemma. Also we can
assume X reduced since CH y 4 (X) = CHy 5 (X eq)-

Taking the inductive limit over all closed proper subschemes Z of X we
get

Proof
_degener:

lim CH 4 (U) = CH, 1 (Spec(k(X)))
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- and

lim CH 4 (Tyy) = CH g4 (T xy)-

_Both of these equalities follow from Theorem 7.16.
We are therefore reduced to the case of AZ for k a field; further by

induction on d, we can take d = 1. This is the only point at which we depart
from the proof for K'-theory.

LEMMA 8.4. Let k be a field. Then
CHH- 1,5+ I(All() >~ CHrs(SpeC(k))

Proof of lemma. By duality, we rewrite this as

g It H?(Ay, #,) = H?(Spec(k), #;),
= —5

‘and start with the local cohomology sequence where P = P, —A))
—5 Hp(Py, 75) — HP (P, X)) > HP (AL, 7). *)

Again by duality

HE(P}, ;) = B~ (Spec(k), 7;_,) = 0, p>1,
=K, k), p=1,
=0, p=0.

Clearly we must compute H”(P,,.%,).

SUBLEMMA 8.5.

HP(PL, ;) = K k), p=0,
=K,-.(k), p=1

Proof of sublemma. The Quillen spectral sequence for a curve
degenerates at E%, and splits up into exact sequences:

0= H'(Py, 7, 1)~ K, (P) > H(Py, 7;) - 0.
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Since K,P,~ K, k@ K, k (Quillen [31]) we have a commutative diagram: Dr
given
Hiel, K, ) Kq (PR ——H(Ry, Ky
a B yln where
—_— ® —=Kq k
Kqk Kqk ® Kok q Note
where
a=p*(YUE EE H(P, 7)) the tautological Cartier divisor,
The
f=p* %] = [Pu(=D]) ®p%
y=p*, TH
n = evaluation at any k-rational point.
From this diagram we immediately see that H'(P;, .7, )~ Pro
H°(P}, #,)~ K (k), and so we are done.
Returning to the lemma we see that
HAP}, 7))~ H'(PL. ;)
and so the long exact sequence (*) becomes:
0 H'(BL, . #;) » H(Ab, ;) > Hy(P, 7,)
~ HyP,, 7))~ H' (P, 7,) > H' (A, %)~ 0.
. ‘ Thi:
(Note that H(PL,.%;)=0 since I'y(#;)=0 for i=0.) Thus we have ®
completed the proof of both the lemma and the theorem. Not
Let X —” Spec(R) be a flat family, where R is a discrete valuation ring Let
with quotient field F and residue field k. So: a fami
If
ch_La.)(—-t—l——" Xy Spec/)
P over A
spec {F) S—s—X ——— Spec (k) =P fibre ¢
the sp
We wish to define a homomorphism (“specialization”) from the homology PNy,

of the general fibre X, of p to that of the special fibre.

The closed point P of Spec(R) is a Cartier divisor with local equation 7
where 7 is any generator of the maximal ideal of R. Then 7#,, the
fundamental class of [P] is the image of the class {n} under

F* = K, F = H*(Spec(F), .%#;) —% H'(Spec(R), .%)).
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.~ DeriNITION 8.6. The specialization map CH, (X,)-° CH, (X,) is
_ given by

a—25 d(p*{n}Na),
where

CH, 2", CH, . _,(X,)-% CH, (X)).
Note that the long exact sequence for the pair (X, X;) has a dimension shift:
CH, (X)~»CH, ,, (X.)-CH,_ 1s(Xg)-
The specialization map has the following property:
THEOREM 8.7. Leta € CH, (X). Then
o(i*(a)) = p*n, N e
Proof. This equality is the same as the commutativity of the diagram:
H'Xp, 7)) -5 Hy(X,.%)

® ®
H™ (X, #%,,) — H'7(X,FE,)

1 |

H" "X, BE i) ~5 BT, 2

s+n+1/°

¥ This, however, is just a statement about local cohomology and the product
i‘%;ﬂn@‘;{/iﬁ‘@;invﬁ'

Note that a similar construction gives a specialization map for K.

Let Y-’ X be a codimension p local complete intersection. By [2] we have
a family D, over 4} which is constructed as follows:

If 7yyc% is the sheaf of ideals defining ¥, set D, =
pecﬁX[,]((@wO(fx/y,t)")(,,)degzo. While the family D,, need not be flat
over A; we do know that ¢ is not a zero divisor on Dy, , and that the special

ibre over t =0 is equal to Cyxyv (Nyy in our situation). The complement of
he special fibre is X X, G,, which is flat over X. So if S XXG,~ X and
:Nyy— Y are the projections our Gysin map is the composition:

CHr,s(X) L CHr+l,s+l(X>< Gm)m CHr+l.s(X X Gm)
-1
_6_) CHr.s(NX/Y)j—’ CHr—p,s—p(Y)'

ote that p*~ ' is defined because N xv 18 a vector bundle over Y.
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This construction is a slight generalization of that of Verdier [14].

The Projection Formula

We now verify the obvious analogue for our situation of the classical
projection formula.

THEOREM 8.8. Let X~ Y be a proper morphism and x € CHy(X),
y € A**(Y). Then

Px(x N p*y) = py(x) D ).

Proof. This follows immediately from Theorem 7.24 after “sheafifying”
the commutative diagram there and taking hypercohomology.

Finally, we know that the cup production on the groups
AP(X)~ H"(X,.%,) is compatible with the classical intersection product,
when this is defined.

THEOREM 8.9. Let X be a smooth, n-dimensional, irreducible variety of
finite type over the field K. Suppose Y and Z and are cycles on X, of
codimension p, q, respectively, intersecting properly. Then using Serre’s inter-
section theory we may define Y.Z as a cycle on S =Y O Z. If n(Y)and n(Z)
are the fundamental classes of Y and Z in H(X, Z;),and HY(X, 7,) (i.e.,
n(Y)N [X]=[Y]€CH,_,(Y) and NZYN X =[Z]| € CH,_,Z)) their
cup product n(Y)Un(Z) lies in HA}(X, %, ,,) and so defines a class
m(NUNZ)NX)ECH,_,_,(S) Then as cycles on S, we have:

MV UnE@ZNN [X]= (17 [Y.Z].

Proof. [43,44].
Finally in order to construct Chern classes and prove the Riemann—Roch
theorem we need:

Tueorem 8.10. Let E be a vector bundle over a regular variety X. Then
n-1
APYP(E) ~ @ A°~H7I(X),
i=0

where AP~ 971 is understood to be zero if i > p, q.

Proof. Consider the Leray Spectral Sequence for the projection
7: P(E) - X. By the compatibility of E, of the B-G-Q spectral sequence with
flat inverse limits,

(RineK,) = H(PH !, X)) YxEX.
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LEMMA 8.11. Let R be a regular local ring. Then

n—1
H Py~ ', %)~ @ H"'(Spec(R), 7, _)).

al i=0

Proof of lemma. We have the localization sequence
HP (AR, ;) 20 HE Py, 7,) — HP (P, ;) — HP(AL™, 7)),

 where H is the hyperplane at oo on P"~ 1,
By Theorem 8.3 7: A% '- Spec(R) induces an isomorphism on

- cohomology, hence the long exact sequence above splits into short exact
sequences:

0- HR(PL".7) - H'(Py %) —HAy™',.%)-0

S In* 7%

HP7U(P"~% %, ) HP"(Spec(R),.%;)

The lemma now follows by induction on n.

Observe that if &, € H,,(P:~',.#;) is the tautological divisor, then we have
_ a commutative diagram:

H?(Spec(R), #,) =~ HY (PR~ ', #;) =5 H (PR ',.7,, )
n* ?

P n—-2 i
ch Ho (P ’j")

So we can rewrite the direct sum:

en - n—1
HY Py, A )~ @ &Un*H"~{(Spec(R), 7).

i=0

Returning to the theorem, the result now follows by the standard Leray
Spectral Sequence argument.
1.(;2 Note. (i) The same theorem is true for CH** without the regularity
/ .
! assumption.

(ii) For the case of 4”** this is only a minor modification of the
classical argument (cf. Verdier [14]).
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