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Given a knot K in the 3-sphere, the genus of K, denoted g(K), is defined to 
be the minimal genus for a Seifert surface for K. The slice genus gs(K) is 
defined to be the minimal genus of an oriented surface G admitting a smooth 
proper embedding in the 4-ball which maps CG to K. If we insist the embed- 
ding of G have no local maximum with respect to the radial function, we obtain 
the ribbon genus gr(K) instead. Thus a knot is slice (ribbon) if and only if 
gs(K) = 0 (gr(K)= 0). It is clear that g.~(K)<g,.(K)<=g(K). 

There are well known lower bounds on gs(K) given by invariants of a 
Seifert matrix for K. These are all included in the invariant re(K) [8] defined 
by Taylor. It gives the best possible bound based on a Seifert matrix, re(K) 
vanishes if and only if the Seifert pairing is metabolic. If this is the case, K is 
called algebraically slice. The work of Casson and Gordon [1, 2, 5] showed 
that certain algebraically slice knots are not in fact slice. 

We generalize the main theorem of [1]. As an application, we give a 
sequence of algebraically slice knots Q, such that gs(Q,)=g(Q,,)=n. We also 
study the slice genus of K, 41=K, where K, denotes the t twisted double of the 
unknot. We show for example that g.~(K 12 =~ K 1 z ) = 2 .  K I2 is algebraically slice 
but not slice by [ l ] .  Section 1 has some preliminaries on the linking form. In 
Sect. 2, we state and prove our main theorem. In Sect. 3 we give our examples. 
In this paper, all manifolds are oriented. We use e to denote the Euler 
characteristic. 

We wish to thank Andrew Casson, Pierre Conner and Larry Taylor for helpful discussions. 

w 1. Linking Forms 

A linking form on a finite abelian group A is a bilinear symmetric map e: A 
x A--+Q/Z which is nonsingular. Here nonsingular means that the correlation 

map c: A ~ A * = H o m ( A ,  Q/7Z) is an isomorphism. It will be convenient for our 
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purposes to define a dual form c~* on A* by the formula c~*(cx, cy)=~(x,  y). If 
H is subgroup of A, define 

H i = {x~Alo~(x, h)=0 Vh~H}. 

If there is a subgroup H such that H = H  • e is called metabolic and H is 
called a metabolizer. 

We now discuss the notion of a presentation for linking forms. Let L be a 
free ;r module of finite rank and ( , ) a nondegenerate bilinear symmetric 
form L x L ~ Z .  Nondegenerate means the correlation L ~ L *  =Horn(L,  2g) is 
injective. We can extend ( , )  to a form V |  V |  and let L ~* 
= { x e V N Q l ( x , y ) e E ,  VyeL}.  We have L c L  # and L~*/L is a finite abelian 
group. One can define a linking form c~ on L*/L by 

c~(x L, yL) = ( x, y)  mod 77 

( , ) is said to be a presentation of c~. Every linking form has such an even 
presentation [9] (Theorem 6). 

Suppose M is a rational homology 3-sphere and consider the geometric 
linking form I defined on HI(M ). Let fl denote - l *  defined on (HI(M))*, the 
set of characters x : H  1(M)~Q/Tz. 

Lemma 1. I f  M is a boundary of a 4-manifidd V then fl=fllOf12 where ~2 is 
metabolic and fll has a presentation with rank dim H z ( V  , (I~) and signature Sign V 
Moreover, the set of characters which extend to H~(V) forms a metabolizer for 
f12. l f  V is spin, the presentation of fl I can be taken to be even. 

Proof We will consider the long exact sequence for the pair (V, M) 

O--+ H2(V) ~ H2(V, M)~C' ~ H~ ( M ) ~  Ht ( V ) - ~  H~ ( V, M)~O. 

We can describe l on the image of 6 as follows. Let x,y~H2(V,M),  then pick 
2,.P~H2(V ) such that i 2 = r x  and i f :=sy where r and s are integers. An easy 
geometric argument shows 

1 
(,) l(~x, ~y)=  - (x, y) .  

r s  

Here ( , ) denotes the intersection pairing on Ha(V ). Pick a free subgroup F 
of H2(V,M ) so that H 2 ( V , M ) = F @ T o r H 2 ( V , M  ). Let B=(?F and D 
= 0 T o r H 2 ( V , M  ). Let I I = - I / B  then by (*) (B, 10 is nonsingular and has 
presentation with rank = rank F and signature Sign V. This presentation is even 
if Vis spin. By [9] Lemma 1, 

(H, (M), - t) = (B, l , } |  19. 

The formula (*) shows that D c B  • and D c D  I. 
Since HI(M ) is torsion, the kernel of j is a subgroup of T o r H t ( V  ). Thus, 

sitting in the exact sequence for (V, M) above, we can find 

0 ~ T o r  H2(V)--,Tor H2(V, M ) ~ B •  H 1 (V)~Tor  H 1 (V, M)~0.  
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By Poincar6 duality and the universal coefficient theorem, we have isomor- 
phisms 

Tor H 2(V) ~ Tor HI (V, M) 

and 

Tot  Hz(V, M)~TorH1(V) .  

Therefore, IDIZ=IB• I. Since D c D  • D is a metabolizer for 12. Now / 3 = - l *  
* * 2. /31 is noncanonically isomorphic to l~ so it =11@12. Define /31 =1" and /32=1 * 

has a presentation of the required type. A character Z~[H~(M)]* extends to 
H 1 (V) if and only if it vanishes on BOD. This means z~B l* and Z vanishes on 
D. It is not hard to see that the set of such characters forms a metabolizer for 

32. [] 

w 

Given zEH~(M)*, Casson and Gordon [1,5] have defined some invariants 
cr;,(t(K, X))~Q where 2~S ~. M - K  has a finite cyclic cover defined by 7, and an 
infinite cyclic cover (the infinite cyclic cover of S 3 -  K). Putting these together, 
one has a C,,, x C~ cover of M - K .  Define ~ t ( K , z ) = d i m H t l ( M - K ,  Ir(t)). Here 
we use the notation of [5] for homology with twisted coefficients. By [1] 
Lemma 4 (or Lemma 2 below), if Z has prime power order / t (K,  Z)=0. Let o(K) 
denote the ordinary signature of a knot as defined by Murasugi and Trotter. 
We now state and prove our main result. For g = 0, this is a theorem of Casson 
and Gordon. 

Theorem 1. I f  g.~(K)=g, then (H 1 (M)*, fl) can be written as a direct sum fllOf12 
such that 1) /3 l has an even presentation with rank 2g and signature a(K) and 2) 
/32 has a metabolizer H such that if x eH  has prime power order, then ]crar(K, Z) 
+a(K) l<4g fi)r all 2~S 1. 1f g,(Kl=g, then 2) can be changed to 2)' /32 has a 
metabolizer H such that 

I~ra T(K,/) + cr(K)l < 4g +/t(K, Z) 

for all z e H  and 2~S ~. 
Proof Let Y denote D 4 minus an open tubular neighborhood of our surface G 
of genus g. The Thom isomorphism and excision show that Y has the ho- 
mology of S t wedge 2g 2-spheres. Let W be the double cover of Y. Then e(W) 
=4g. To compute the rational homology of W one should consider the +1 
and - 1  eigenspaces for the action of the covering transformation and recall 
that the transfer maps the homology of the base isomorphically to the + 1 
eigenspace. Propositions (1.4) and (1.5) of [3] may be useful. Whas the rational 
homology of S 1 wedge 4g 2-spheres. The +1 eigenspace of H2(W,Q) has 
dimension 2g. 

Let V denote the double branched cover of D 4 along G. V is obtained from 
W by adding G •  2. The Mayer-Vietoris sequence for the - l  eigenspace 
shows V has the rational homology of a wedge of 2g 2-spheres. One has Sign V 
=a(K)  [6]. Since the signature of the intersection pairing on the +1 eigen- 
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space of  W is zero, one has Sign W = a ( K ) .  W is certainly spin. A Mayer-  
Vietoris sequence shows the restriction map  Hz(V, Zz)---~H2(W, 7Z2) is injective, 
so Vis spin as well. 

Since M is the boundary  of  V, Lemma 2 applies and /~=/71@//2 as above. 
Moreover, ~2 has a metabolizer  consisting of  characters that extend to Hi(V). 
Let Z be such a character, its extension will map  HI(V) onto  some cyclic 
subgroup C,,. If  xeHI(M)* has order  a power of  a prime p, we can and do 
insist that  m be a (possibly larger) power of  p. 

This defines a C,, cover of  Vand  thus of  W. X, the infinite cyclic cover of  Y,, 
is also an infinite cyclic cover of W. If we pull the C m cover of  W up to X, we 
obtain J( a C,,•  cover of  W. If we identify G x S  1 properly in (?W,, this 
cover restricted to G x S 1 is given by a map 0 : H 1  (G x S 1) 
=HI(G)OHt(S1)--*Cm x C~: which maps HI(G ) to zero in C.~, HI(S 1) to zero 
in C,, and H1(S 1) isomorphically on to  C o. Inductively, pick a collection of g 
disjoint curves Oi on G representing a half  basis in the kernel of  0. Attach g 
round 2-handles (D 2 x I  x S 1 's) to W along Oi x S 1 in G x S 1 to form U. Note  
that the boundary  of  U is obtained by zero framed surgery to M along the lift 
of  K, which we will denote by L. Since the C m x C~ cover extends uniquely to 
U and its restriction to L is the cover involved in the definition of  r (K,D,  
z(K, Z) can be computed  in terms of  this cover of  U. 

We can regard U as w U Q  where Q is obtained from L x I by attaching g 
~w 

round  one-handles along D 2 x S O x S ~ 's that  travel a round the meridian of K. 
The intersection form on Q is seen to be identically zero. Thus, Sign U 
= S i g n  W=cr(K).  Let z(U) denote the image in W(ll2(t),J) of the intersection 
pairing on H~(U, IF(t)). Then cra(r(K, Z))=crz(z(U))-Sign U. On the other  hand 
I~z(U)l<dimH~(U,  tl~(t)). To complete the proof, we obtain the required up- 
per bounds  for this last term. 

The C m x C~ cover restricted to each round 2-handle is m copies of  D 2 x I 
x IR at tached to W along a S 1 x I x IR. A Mayer-Vietoris sequence shows that 

the inclusion induces an isomorphism H,(U,  II2(t))~H,(W,,I~(t)). Since 
H,(W,(12(t)) can be computed  from a chain complex whose n th group is the 
vector space over ~(t)  generated by the n cells of  W,, e(W) can be computed  as 
usual from dim Hr,(W, (l~(t)). 

I f  m is a prime power, we may apply Lemma 2 below. One sees H, (X,  Q) is 
finite dimensional for n + 2  and thus Ht,(W,,ll?(t))=0 for n + 2 .  Therefore 
dim H~(W, 112(t)) = e(W) = 4g. 

If G is a r ibbon surface, then Y and its covers can be built without  3- 
handles. Thus, H ~ ( W , ~ ( t ) ) = 0  and Ht1(OW, IF(t)) maps onto  H~I(W,~(t)). Now 
the 0 W i s  M - K  union G x S  ~ and the C m x C  ~ cover of G x S  ~ is d x l R  
at tached along some copies of  S ~ x IR where (~ is a C,, cover of  G. Therefore, a 
Mayer-Vietoris sequence shows that dimH~(OW,,ll;(t))=l~(K,) O. Therefore, 
dimHtl(W, ff2(t))<=#(K, 7~) and dimH~(W, t l ; ( t ) )<4g+/~(K,  Z). [ ]  

The following lemma is a slight modification of  L e m m a  4 of  [1]. 

L e m m a  2. Let X be a connected infinite cyclic cover of a finite complex Y and 
a p~ cyclic cover of X, for p a prime. I f  Hk(Y)=0,  then Hk(X, II~) is finite 
dimensional. IJ'H 1 (Y)=  77, then H 1 (X, Q) is finite dimensional. 
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Proof First one shows that Hk(X, TZp) is finite if Hk(Y)=O and HI(X, 7Ze) is 
finite if Hi(Y)=7/  using Milnor's exact sequence for the homology of infinite 
cyclic covers. See the proof of assertion 5 in [7]. Next using a sequence of 
Smith homology groups (1.2) [3], one can show by induction that dim Hj(~ ,  
7Zp) ~pr dim H;(X, ~,p). As in the proof of Lemma 4 [1], one can show that X is 
the infinite cyclic cover of a finite complex. An application of Lemma 6 of [1] 
completes the proof of the lemma. [] 

Remark. Let M d denote the d-fold cyclic branched cover of S 3 along K where d 
is a prime power. Then one can prove the analog of Theorem l for these 
covers by the same argument with slight modifications. The correct statement is 

d-1  

obtained by substituting: M d for M, rank 2 ( d - 1 ) g  for rank 2g, y~ as/d(K) for 
a(K) (see [3] p. 363 for as/d), and 2dg for 4g. s= 1 

w Examples 

Consider the evident genus one Seifert surface for the knot J0 in Fig. 1. Let d n 
denote the new knot obtained after we have tied 17 trefoils in each band with 

J0 

4) 



196 P.M. Gilmer 

zero twist. J~ is also indicated. Jo is slice and J,  is algebraically slice (in fact J, 
is algebraically doubly  null-concordant) .  For  n > 0, let Q, be the connected sum 
of  n copies of  J,. 

C o r o l l a r y  1. g,(Q,,) = g(Q~)  = n. 

Proof. g(Q~)=n as genus is additive. Let N denote  the double  branched  cover 
of  S 3 a long J,.  Then M, the double b ranched  cover of  S 3 along Q~ is the 
connected sum of n copies of  N. H l (N)=P7302g  3, thus, H~(M) is the direct 
sum of 2n copies of 2g 3. We assume g~(Q,)<n and obta in  a contradict ion.  
Since H I (M) does not possess a presenta t ion  (as a group)  of rank less than 2n, 
there exists some nonzero  zeHI(M)* with l a l r (Q , , , z ) l<4n .  Since Q,, is alge- 

n 

braically slice, o(Q,,)=O. We can write Z = @  ;(i where each xi~HI(N)* and some 
i - - I  

Zi=t=0. By [4] (3.2) z(Q,,,Z)= ~ z(J,,,Z~). There  are eight nonzero  zeHI(N)*. It 
i = 1  

is easy to check using (3.5) of [4] that  for each such ;~, cr I r(J,,  7~)_<- - 4 n .  [ ]  

Our  next example  uses the linking form in a more  essential way. Let K~ 
denote  the t twisted double  of  the unknot .  K t has genus one and if t=u(u+ 1), 
K t is algebraically slice. Casson and G o r d o n  showed K~ is slice if and only if t 
is one or two. 

C o r o l l a r y 2 .  I f  t > 2  and 4 t + l  is divisible by a prime p = 3 m o d 4 ,  then 
gs(Kt ~ K t) = g( K t #e K,) = 2. 

Proof Let q denote  4t + 1. The double  b ranched  cover is the connected sum of 
two copies of the lens space L(q, - 2). fl is thus the direct sum of two copies of 
a form on Zq. I f  we restrict this form to the p -pr imary  component ,  we must  get 
the form 2Apk = 2Bpk (here we adop t  Wall 's  no ta t ion  I-9]). N o w  suppose fl has 
an even presenta t ion ( , ) of rank 2 with signature zero. Let M be a matr ix  
for ( , ), then M = qP where P is even, has det = + 1 and signature zero. So P 

must  be equivalent  to / 1  10[" And qP presents the form ( 2 / @ |  The 

p-pr imary  componen t  of  this form is ApkOBp,, because - 1  is not a square 
m o d p .  Since Ap,,OBpk~2Ap,,, fl does not  have such a presentat ion.  Thus, if 
gs(K,~K~)=I, then there is a nonzero  Z such that / / (Z ,Z)=0 and 
Ic*i r(K,~K,,s)OI_-<4 for all s. However ,  calculat ion shows that  this is not the 
case. [ ]  

Remarks. If  t < 0  then t r (K,)= - 2  and gs(Kt:t# K,)= 2. If t - - 0  or  2, K t is slice, so 
gs(Kt~Kt)=-O. K~ is the figure eight kno t  which is amphicheiral ,  so 
g~(K~K~)=O. The theorem of Casson  and G o r d o n  can be used to show 
K 3 ~ K a is not slice. I f one makes  the indicated r ibbon  moves  in Fig. 2, one obtains 
the unlink with two components .  It follows tha t  gs(K3 ~ K a)=  g~(K a ~ K 3 ) =  1. 
K 4 ~ K  4 is not slice, but  ! do not  know whether  g,~(K4f~K4) is one or two. 
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