

C Springer-Verlag 1982

On the Slice Genus of Knots

Patrick M. Gilmer*

Institute for Advanced Study, Princeton, NJ 08540, USA and Louisiana State University, Baton Rouge, LA 70803, USA

Given a knot K in the 3-sphere, the genus of K, denoted g(K), is defined to be the minimal genus for a Seifert surface for K. The slice genus $g_s(K)$ is defined to be the minimal genus of an oriented surface G admitting a smooth proper embedding in the 4-ball which maps ∂G to K. If we insist the embedding of G have no local maximum with respect to the radial function, we obtain the ribbon genus $g_r(K)$ instead. Thus a knot is slice (ribbon) if and only if $g_s(K)=0$ ($g_r(K)=0$). It is clear that $g_s(K) \leq g_r(K) \leq g(K)$.

There are well known lower bounds on $g_s(K)$ given by invariants of a Seifert matrix for K. These are all included in the invariant m(K) [8] defined by Taylor. It gives the best possible bound based on a Seifert matrix. m(K) vanishes if and only if the Seifert pairing is metabolic. If this is the case, K is called algebraically slice. The work of Casson and Gordon [1, 2, 5] showed that certain algebraically slice knots are not in fact slice.

We generalize the main theorem of [1]. As an application, we give a sequence of algebraically slice knots Q_n such that $g_s(Q_n) = g(Q_n) = n$. We also study the slice genus of $K_t \# K_t$ where K_t denotes the t twisted double of the unknot. We show for example that $g_s(K_{12} \# K_{12}) = 2$. K_{12} is algebraically slice but not slice by [1]. Section 1 has some preliminaries on the linking form. In Sect. 2, we state and prove our main theorem. In Sect. 3 we give our examples. In this paper, all manifolds are oriented. We use e to denote the Euler characteristic.

We wish to thank Andrew Casson, Pierre Conner and Larry Taylor for helpful discussions.

§1. Linking Forms

A linking form on a finite abelian group A is a bilinear symmetric map α : $A \times A \rightarrow \mathbb{Q}/\mathbb{Z}$ which is nonsingular. Here nonsingular means that the correlation map $c: A \rightarrow A^* = \text{Hom}(A, \mathbb{Q}/\mathbb{Z})$ is an isomorphism. It will be convenient for our

^{*} Partially supported by the N.S.F.

purposes to define a dual form α^* on A^* by the formula $\alpha^*(cx, cy) = \alpha(x, y)$. If *H* is subgroup of *A*, define

$$H^{\perp} = \{ x \in A \mid \alpha(x, h) = 0 \forall h \in H \}.$$

If there is a subgroup H such that $H = H^{\perp}$, α is called metabolic and H is called a metabolizer.

We now discuss the notion of a presentation for linking forms. Let L be a free \mathbb{Z} module of finite rank and \langle , \rangle a nondegenerate bilinear symmetric form $L \times L \to \mathbb{Z}$. Nondegenerate means the correlation $L \to L^* = \text{Hom}(L, \mathbb{Z})$ is injective. We can extend \langle , \rangle to a form $V \otimes \mathbb{Q} \times V \otimes \mathbb{Q} \to \mathbb{Q}$ and let $L^{\#} = \{x \in V \otimes \mathbb{Q} | \langle x, y \rangle \in \mathbb{Z}, \forall y \in L\}$. We have $L \subset L^{\#}$ and $L^{\#}/L$ is a finite abelian group. One can define a linking form α on $L^{\#}/L$ by

$$\alpha(xL, yL) = \langle x, y \rangle \mod \mathbb{Z}$$

 \langle , \rangle is said to be a presentation of α . Every linking form has such an even presentation [9] (Theorem 6).

Suppose M is a rational homology 3-sphere and consider the geometric linking form l defined on $H_1(M)$. Let β denote $-l^*$ defined on $(H_1(M))^*$, the set of characters $\chi: H_1(M) \rightarrow \mathbb{Q}/\mathbb{Z}$.

Lemma 1. If M is a boundary of a 4-manifold V then $\beta = \beta_1 \oplus \beta_2$ where β_2 is metabolic and β_1 has a presentation with rank dim $H_2(V, \mathbb{Q})$ and signature Sign V. Moreover, the set of characters which extend to $H_1(V)$ forms a metabolizer for β_2 . If V is spin, the presentation of β_1 can be taken to be even.

Proof. We will consider the long exact sequence for the pair (V, M)

$$0 \to H_2(V) \xrightarrow{i} H_2(V, M) \xrightarrow{\partial} H_1(M) \to H_1(V) \xrightarrow{j} H_1(V, M) \to 0.$$

We can describe l on the image of ∂ as follows. Let $x, y \in H_2(V, M)$, then pick $\tilde{x}, \tilde{y} \in H_2(V)$ such that $i\tilde{x} = rx$ and $i\tilde{y} = sy$ where r and s are integers. An easy geometric argument shows

(*)
$$l(\partial x, \partial y) = -\frac{1}{rs} \langle x, y \rangle.$$

Here \langle , \rangle denotes the intersection pairing on $H_2(V)$. Pick a free subgroup F of $H_2(V, M)$ so that $H_2(V, M) = F \oplus \text{Tor } H_2(V, M)$. Let $B = \partial F$ and $D = \partial \text{Tor } H_2(V, M)$. Let $l_1 = -l/B$ then by (*) (B, l_1) is nonsingular and has presentation with rank = rank F and signature Sign V. This presentation is even if V is spin. By [9] Lemma 1,

$$(H_1(M), -l) = (B, l_1) \oplus (B^{\perp}, l_2).$$

The formula (*) shows that $D \subset B^{\perp}$ and $D \subset D^{\perp}$.

Since $H_1(M)$ is torsion, the kernel of j is a subgroup of Tor $H_1(V)$. Thus, sitting in the exact sequence for (V, M) above, we can find

$$0 \rightarrow \operatorname{Tor} H_2(V) \rightarrow \operatorname{Tor} H_2(V, M) \rightarrow B^{\perp} \rightarrow \operatorname{Tor} H_1(V) \rightarrow \operatorname{Tor} H_1(V, M) \rightarrow 0.$$

By Poincaré duality and the universal coefficient theorem, we have isomorphisms

Tor
$$H_2(V) \approx \text{Tor } H_1(V, M)$$

and

Tor
$$H_2(V, M) \approx$$
 Tor $H_1(V)$.

Therefore, $|D|^2 = |B^{\perp}|$. Since $D \subset D^{\perp}$, D is a metabolizer for l_2 . Now $\beta = -l^* = l_1^* \oplus l_2^*$. Define $\beta_1 = l_1^*$ and $\beta_2 = l_2^*$. β_1 is noncanonically isomorphic to l_1 so it has a presentation of the required type. A character $\chi \in [H_1(M)]^*$ extends to $H_1(V)$ if and only if it vanishes on $B \oplus D$. This means $\chi \in B^{\perp *}$ and χ vanishes on D. It is not hard to see that the set of such characters forms a metabolizer for β_2 . \Box

§2

Given $\chi \in H_1(M)^*$, Casson and Gordon [1, 5] have defined some invariants $\sigma_{\lambda}(\tau(K, \chi)) \in \mathbb{Q}$ where $\lambda \in S^1$. M - K has a finite cyclic cover defined by χ and an infinite cyclic cover (the infinite cyclic cover of $S^3 - K$). Putting these together, one has a $C_m \times C_{\infty}$ cover of M - K. Define $\mu(K, \chi) = \dim H_1^t(M - K, \mathbb{C}(t))$. Here we use the notation of [5] for homology with twisted coefficients. By [1] Lemma 4 (or Lemma 2 below), if χ has prime power order $\mu(K, \chi) = 0$. Let $\sigma(K)$ denote the ordinary signature of a knot as defined by Murasugi and Trotter. We now state and prove our main result. For g=0, this is a theorem of Casson and Gordon.

Theorem 1. If $g_s(K) = g$, then $(H_1(M)^*, \beta)$ can be written as a direct sum $\beta_1 \oplus \beta_2$ such that 1) β_1 has an even presentation with rank 2g and signature $\sigma(K)$ and 2) β_2 has a metabolizer H such that if $\chi \in H$ has prime power order, then $|\sigma_{\lambda} \tau(K, \chi) + \sigma(K)| \leq 4g$ for all $\lambda \in S^1$. If $g_r(K) = g$, then 2) can be changed to 2)' β_2 has a metabolizer H such that

$$|\sigma_{\lambda} \tau(K, \chi) + \sigma(K)| \leq 4g + \mu(K, \chi)$$

for all $\chi \in H$ and $\lambda \in S^1$.

Proof. Let Y denote D^4 minus an open tubular neighborhood of our surface G of genus g. The Thom isomorphism and excision show that Y has the homology of S^1 wedge 2g 2-spheres. Let W be the double cover of Y. Then e(W) = 4g. To compute the rational homology of W one should consider the +1 and -1 eigenspaces for the action of the covering transformation and recall that the transfer maps the homology of the base isomorphically to the +1 eigenspace. Propositions (1.4) and (1.5) of [3] may be useful. W has the rational homology of S^1 wedge 4g 2-spheres. The +1 eigenspace of $H_2(W, \mathbb{Q})$ has dimension 2g.

Let V denote the double branched cover of D^4 along G. V is obtained from W by adding $G \times D^2$. The Mayer-Vietoris sequence for the -1 eigenspace shows V has the rational homology of a wedge of 2g 2-spheres. One has Sign $V = \sigma(K)$ [6]. Since the signature of the intersection pairing on the +1 eigen-

space of W is zero, one has Sign $W = \sigma(K)$. W is certainly spin. A Mayer-Vietoris sequence shows the restriction map $H^2(V, \mathbb{Z}_2) \rightarrow H^2(W, \mathbb{Z}_2)$ is injective, so V is spin as well.

Since *M* is the boundary of *V*, Lemma 2 applies and $\beta = \beta_1 \oplus \beta_2$ as above. Moreover, β_2 has a metabolizer consisting of characters that extend to $H_1(V)$. Let χ be such a character, its extension will map $H_1(V)$ onto some cyclic subgroup C_m . If $\chi \in H_1(M)^*$ has order a power of a prime *p*, we can and do insist that *m* be a (possibly larger) power of *p*.

This defines a C_m cover of V and thus of W. X, the infinite cyclic cover of Y, is also an infinite cyclic cover of W. If we pull the C_m cover of W up to X, we obtain \tilde{X} a $C_m \times C_\infty$ cover of W. If we identify $G \times S^1$ properly in ∂W , this cover restricted to $G \times S^1$ is given by a map $\psi: H_1(G \times S^1)$ $= H_1(G) \oplus H_1(S^1) \to C_m \times C_\infty$ which maps $H_1(G)$ to zero in C_∞ , $H_1(S^1)$ to zero in C_m and $H_1(S^1)$ isomorphically onto C_∞ . Inductively, pick a collection of g disjoint curves ψ_i on G representing a half basis in the kernel of ψ . Attach g round 2-handles $(D^2 \times I \times S^1 's)$ to W along $\psi_i \times S^1$ in $G \times S^1$ to form U. Note that the boundary of U is obtained by zero framed surgery to M along the lift of K, which we will denote by L. Since the $C_m \times C_\infty$ cover extends uniquely to U and its restriction to L is the cover involved in the definition of $\tau(K, \chi)$, $\tau(K, \chi)$ can be computed in terms of this cover of U.

We can regard U as $W \bigcup_{i \in W} Q$ where Q is obtained from $L \times I$ by attaching g round one-handles along $D^2 \times S^0 \times S^1$'s that travel around the meridian of K. The intersection form on Q is seen to be identically zero. Thus, Sign $U = \text{Sign } W = \sigma(K)$. Let $\tau(U)$ denote the image in $W(\mathbb{C}(t), J)$ of the intersection pairing on $H_2^t(U, \mathbb{C}(t))$. Then $\sigma_\lambda(\tau(K, \chi)) = \sigma_\lambda(\tau(U)) - \text{Sign } U$. On the other hand $|\sigma_\lambda \tau(U)| \leq \dim H_2^t(U, \mathbb{C}(t))$. To complete the proof, we obtain the required upper bounds for this last term.

The $C_m \times C_\infty$ cover restricted to each round 2-handle is *m* copies of $D^2 \times I \times \mathbb{R}$ attached to \tilde{W} along a $S^1 \times I \times \mathbb{R}$. A Mayer-Vietoris sequence shows that the inclusion induces an isomorphism $H_*^t(U, \mathbb{C}(t)) \to H_*^t(W, \mathbb{C}(t))$. Since $H_*^t(W, \mathbb{C}(t))$ can be computed from a chain complex whose n^{th} group is the vector space over $\mathbb{C}(t)$ generated by the *n* cells of *W*, e(W) can be computed as usual from dim $H_n^t(W, \mathbb{C}(t))$.

If *m* is a prime power, we may apply Lemma 2 below. One sees $H_n(\tilde{X}, \mathbb{Q})$ is finite dimensional for $n \neq 2$ and thus $H_n^t(W, \mathbb{C}(t)) = 0$ for $n \neq 2$. Therefore dim $H_2^t(W, \mathbb{C}(t)) = e(W) = 4g$.

If G is a ribbon surface, then Y and its covers can be built without 3-handles. Thus, $H_3^t(W, \mathbb{C}(t)) = 0$ and $H_1^t(\partial W, \mathbb{C}(t))$ maps onto $H_1^t(W, \mathbb{C}(t))$. Now the ∂W is M - K union $G \times S^1$ and the $C_m \times C_\infty$ cover of $G \times S^1$ is $\tilde{G} \times \mathbb{R}$ attached along some copies of $S^1 \times \mathbb{R}$ where \tilde{G} is a C_m cover of G. Therefore, a Mayer-Vietoris sequence shows that dim $H_1^t(\partial W, \mathbb{C}(t)) = \mu(K, \chi)$. Therefore, dim $H_1^t(W, \mathbb{C}(t)) \leq \mu(K, \chi)$ and dim $H_2^t(W, \mathbb{C}(t)) \leq 4g + \mu(K, \chi)$.

The following lemma is a slight modification of Lemma 4 of [1].

Lemma 2. Let X be a connected infinite cyclic cover of a finite complex Y and \tilde{X} a p^r cyclic cover of X, for p a prime. If $H_k(Y)=0$, then $H_k(\tilde{X}, \mathbb{Q})$ is finite dimensional. If $H_1(Y)=\mathbb{Z}$, then $H_1(\tilde{X}, \mathbb{Q})$ is finite dimensional.

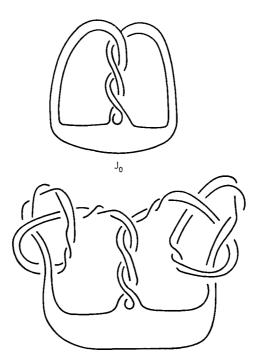
Proof. First one shows that $H_k(X, \mathbb{Z}_p)$ is finite if $H_k(Y) = 0$ and $H_1(X, \mathbb{Z}_p)$ is finite if $H_1(Y) = \mathbb{Z}$ using Milnor's exact sequence for the homology of infinite cyclic covers. See the proof of assertion 5 in [7]. Next using a sequence of Smith homology groups (1.2) [3], one can show by induction that dim $H_j(\tilde{X}, \mathbb{Z}_p) \leq p^r \dim H_j(X, \mathbb{Z}_p)$. As in the proof of Lemma 4 [1], one can show that \tilde{X} is the infinite cyclic cover of a finite complex. An application of Lemma 6 of [1] completes the proof of the lemma. \Box

Remark. Let M_d denote the *d*-fold cyclic branched cover of S^3 along K where *d* is a prime power. Then one can prove the analog of Theorem 1 for these covers by the same argument with slight modifications. The correct statement is obtained by substituting: M_c for M_c rank 2(d-1)g for rank $2g \int_{-\infty}^{d-1} \sigma_c(K)$ for

obtained by substituting: M_d for M, rank 2(d-1)g for rank 2g, $\sum_{s=1}^{n} \sigma_{s/d}(K)$ for $\sigma(K)$ (see [3] p. 363 for $\sigma_{s/d}$), and 2dg for 4g.

§3. Examples

Consider the evident genus one Seifert surface for the knot J_0 in Fig. 1. Let J_n denote the new knot obtained after we have tied *n* trefoils in each band with



zero twist. J_1 is also indicated. J_0 is slice and J_n is algebraically slice (in fact J_n is algebraically doubly null-concordant). For n > 0, let Q_n be the connected sum of *n* copies of J_n .

Corollary 1. $g_s(Q_n) = g(Q_n) = n$.

Proof. $g(Q_n) = n$ as genus is additive. Let N denote the double branched cover of S^3 along J_n . Then M, the double branched cover of S^3 along Q_n is the connected sum of n copies of N. $H_1(N) = \mathbb{Z}_3 \oplus \mathbb{Z}_3$, thus, $H_1(M)$ is the direct sum of 2n copies of \mathbb{Z}_3 . We assume $g_s(Q_n) < n$ and obtain a contradiction. Since $H_1(M)$ does not possess a presentation (as a group) of rank less than 2n, there exists some nonzero $\chi \in H_1(M)^*$ with $|\sigma_1 \tau(Q_n, \chi)| < 4n$. Since Q_n is alge-

braically slice, $\sigma(Q_n) = 0$. We can write $\chi = \bigoplus_{i=1}^n \chi_i$ where each $\chi_i \in H_1(N)^*$ and some

 $\chi_i \neq 0$. By [4] (3.2) $\tau(Q_n, \chi) = \sum_{i=1}^n \tau(J_n, \chi_i)$. There are eight nonzero $\chi \in H_1(N)^*$. It is easy to check using (3.5) of [4] that for each such $\chi, \sigma_1 \tau(J_n, \chi) \leq -4n$. \Box

Our next example uses the linking form in a more essential way. Let K_t denote the *t* twisted double of the unknot. K_t has genus one and if t = u(u+1), K_t is algebraically slice. Casson and Gordon showed K_t is slice if and only if *t* is one or two.

Corollary 2. If t > 2 and 4t+1 is divisible by a prime $p=3 \mod 4$, then $g_s(K_t \# K_t) = g(K_t \# K_t) = 2$.

Proof. Let q denote 4t + 1. The double branched cover is the connected sum of two copies of the lens space L(q, -2). β is thus the direct sum of two copies of a form on \mathbb{Z}_q . If we restrict this form to the p-primary component, we must get the form $2A_{p^k} = 2B_{p^k}$ (here we adopt Wall's notation [9]). Now suppose β has an even presentation \langle , \rangle of rank 2 with signature zero. Let M be a matrix for \langle , \rangle , then M = qP where P is even, has det $= \pm 1$ and signature zero. So P must be equivalent to $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. And qP presents the form $\langle 2/q \rangle \oplus \langle -2/q \rangle$. The p-primary component of this form is $A_{p^k} \oplus B_{p^k}$ because -1 is not a square mod p. Since $A_{p^k} \oplus B_{p^k} \pm 2A_{p^k}$, β does not have such a presentation. Thus, if $g_s(K_t \# K_t) = 1$, then there is a nonzero χ such that $\beta(\chi, \chi) = 0$ and $|\sigma_1 \tau(K_t \# K_t, s\chi)| \leq 4$ for all s. However, calculation shows that this is not the case. \Box

Remarks. If t < 0 then $\sigma(K_t) = -2$ and $g_s(K_t \# K_t) = 2$. If t = 0 or 2, K_t is slice, so $g_s(K_t \# K_t) = 0$. K_1 is the figure eight knot which is amplicheiral, so $g_s(K_1 \# K_1) = 0$. The theorem of Casson and Gordon can be used to show $K_3 \# K_3$ is not slice. If one makes the indicated ribbon moves in Fig. 2, one obtains the unlink with two components. It follows that $g_s(K_3 \# K_3) = g_r(K_3 \# K_3) = 1$. $K_4 \# K_4$ is not slice, but I do not know whether $g_s(K_4 \# K_4)$ is one or two.

References

- 1. Casson, A.J., Gordon, C. Mc A.: Cobordism of classical knots in S³. Printed notes, Orsay 1975
- Casson, A.J., Gordon, C. Mc A.: On slice knots in dimension three. Proc. Symp. in Pure Math. XXX, part two 39-53 (1978)
- 3. Gilmer, P.M.: Configurations of Surfaces in 4-manifolds. Trans. Amer. Math. Soc. 264, 353-380 (1981)
- 4. Gilmer, P.M.: Slice Knots in S³. Preprint
- Gordon, C. Mc A.: Some Aspects of Classical Knot Theory. Proc. Plans-sur-bex Switzerland, 1977. Lect. Notes in Math. 685, 1-60, Berlin Heidelberg New York: Springer-Verlag 1978
- 6. Kaufman, L., Taylor, L.: Signature of links. Trans. Amer. Math. Soc. 216, 351-365 (1976)
- Milnor, J.W.: Infinite cyclic coverings. Conference on the Topology of Manifolds, pp. 115–133, Boston, Mass: Prindle, Weber, and Schmidt 1968
- Taylor, L.R.: On the Genera of Knots, Topology of Low-dimensional Manifolds. Proc. Sussex, 1977, Lect. Notes in Math. 722, pp. 143–160, Berlin Heidelberg New York: Springer-Verlag 1979
- 9. Wall, C.T.C.: Quadratic forms on finite groups, and related topics. Topology, 2, 281-298 (1964)

Oblatum 14-IV-1980 & 18-IX-1981