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Given a knot K in the 3-sphere, the genus of K, denoted g(K), is defined to
be the minimal genus for a Seifert surface for K. The slice genus g (K) is
defined to be the minimal genus of an oriented surface G admitting a smooth
proper embedding in the 4-ball which maps ¢G to K. If we insist the embed-
ding of G have no local maximum with respect to the radial function, we obtain
the ribbon genus g, (K) instead. Thus a knot is slice (ribbon) if and only if
g2,(K)=0 (g,(K)=0). It is clear that g (K)<g,(K)=<g(K).

There are well known lower bounds on g (K) given by invariants of a
Seifert matrix for K. These are all included in the invariant m(K) [8] defined
by Taylor. It gives the best possible bound based on a Seifert matrix. m(K)
vanishes if and only if the Seifert pairing is metabolic. If this is the case, K is
called algebraically slice. The work of Casson and Gordon [I, 2, 5] showed
that certain algebraically slice knots are not in fact slice.

We generalize the main theorem of [1]. As an application, we give a
sequence of algebraically slice knots Q, such that g{Q,)=g(Q,)=n We also
study the slice genus of K,# K, where K, denotes the ¢t twisted double of the
unknot. We show for example that g (K,,#K,,)=2. K,, is algebraically slice
but not slice by [1]. Section | has some preliminaries on the linking form. In
Sect. 2, we state and prove our main theorem. In Sect. 3 we give our examples.
In this paper, all manifolds are oriented. We use ¢ to denote the Euler
characteristic.

We wish to thank Andrew Casson, Pierre Conner and Larry Taylor for helpful discussions.

§ 1. Linking Forms
A linking form on a finite abelian group A4 is a bilinear symmetric map «: 4
x A—>@Q/Z which is nonsingular. Here nonsingular means that the correlation

map c: A—>A*=Hom (4, Q/Z) is an isomorphism. It will be convenient for our
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purposes to define a dual form o* on A* by the formula o*(cx, cy)=u(x, y). If
H is subgroup of A, define

HY={xcAd|a(x,h)=0YheH}.

If there is a subgroup H such that H=H", « is called metabolic and H is
called a metabolizer.

We now discuss the notion of a presentation for linking forms. Let L be a
free Z module of finite rank and { , > a nondegenerate bilinear symmetric
form Lx L—Z. Nondegenerate means the correlation L—L*=Hom(L,Z) is
injective. We can extend ¢(, > to a form V®QxV®Q—-Q® and let L*
={xeV®Q|{x,y>eZ, YyeL}. We have L<L¥ and L¥/L is a finite abelian
group. One can define a linking form « on L*/L by

alxL, yL)y=<{x,y> mod Z

{, > is said to be a presentation of «. Every linking form has such an even
presentation [9] (Theorem 6).

Suppose M is a rational homology 3-sphere and consider the geometric
linking form [ defined on H;(M). Let f§ denote —I!* defined on (H,(M))*, the
set of characters y: H,(M)—-Q/Z.

Lemma l. If M is a boundary of a 4-manifold V then B=p,®p, where f, is
metabolic and f§, has a presentation with rank dim H ,(V, Q) and signature Sign V.
Moreover, the set of characters which extend to H,(V) forms a metabolizer for
B,. If Vis spin, the presentation of f§, can be taken to be even.

Proof. We will consider the long exact sequence for the pair (V, M)

0—H,(V)—s H,(V, M)—2 H (M)~ H (V) — H,(V, M)=0.

We can describe | on the image of ¢ as follows. Let x, yeH,(V, M), then pick
X, yeH,(V) such that iX=rx and ij=sy where r and s are integers. An easy
geometric argument shows

1
(*) I(ax’ay): _E<x7 y>

Here ( , > denotes the intersection pairing on H,(V). Pick a free subgroup F
of H,(V,M) so that H,(V,M)=F®TorH,(V,M). Let B=0F and D
=0 Tor H,(V;M). Let |,=—1/B then by (x) (B,l) is nonsingular and has
presentation with rank =rank F and signature Sign V. This presentation is even
if Vis spin. By [9] Lemma 1,

(H, (M), —=)=(B,1,y®(B*, 1,).

The formula (x) shows that D< B* and D<= D",
Since H,(M) is torsion, the kernel of j is a subgroup of Tor H (V). Thus,
sitting in the exact sequence for (V, M) above, we can find

0-Tor H,(V)-Tor H,(V, M)-B*—Tor H (V)-Tor H,(V, M)-0.
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By Poincaré duality and the universal coefficient theorem, we have isomor-
phisms
Tor H,(V)~Tor H (V, M)
and
Tor H,(V, M)=~Tor H (V).

Therefore, |D|*=|B*|. Since D=D*, D is a metabolizer for /,. Now f=—I*
=[¥@H. Define f,=1F and f,=10%. f, is noncanonically isomorphic to [, so it
has a presentation of the required type. A character ye[H,(M)]* extends to
H, (V) if and only if it vanishes on B@®D. This means yeB** and y vanishes on
D. It is not hard to see that the set of such characters forms a metabolizer for

B,. O

§2

Given yeH,(M)*, Casson and Gordon [1,5] have defined some invariants
o,(t(K, 7)€@ where ieS'. M —K has a finite cyclic cover defined by y and an
infinite cyclic cover (the infinite cyclic cover of S*— K). Putting these together,
one has a C,, x C cover of M —K. Define (K, y)=dim H (M — K, €(1)). Here
we use the notation of [S] for homology with twisted coefficients. By [1]
Lemma 4 (or Lemma 2 below), if y has prime power order u(K, y)=0. Let o(K)
denote the ordinary signature of a knot as defined by Murasugi and Trotter.
We now state and prove our main result. For g=0, this is a theorem of Casson
and Gordon.

Theorem 1. If g (K)=g, then (H,(M)*, ) can be written as a direct sum ,®f,
such that 1) B, has an even presentation with rank 2g and signature ¢(K) and 2)
B, has a metabolizer H such that if yeH has prime power order, then o, 1(K, y)
+a(K)|<4g for all ieS™. If g,(K)=g, then 2) can be changed to 2Y B, has a
metabolizer H such that

lo,T(K, 1) +o(K) Z4g+u(K, x)

for all yeH and 1eS".
Proof. Let Y denote D* minus an open tubular neighborhood of our surface G
of genus g. The Thom isomorphism and excision show that Y has the ho-
mology of S* wedge 2g 2-spheres. Let W be the double cover of Y. Then e(W)
=4g. To compute the rational homology of W one should consider the +1
and —1 eigenspaces for the action of the covering transformation and recall
that the transfer maps the homology of the base isomorphically to the +1
eigenspace. Propositions (1.4) and (1.5) of [3] may be useful. W has the rational
homology of S' wedge 4g 2-spheres. The +1 eigenspace of H,(W,Q) has
dimension 2g.

Let V denote the double branched cover of D* along G. V is obtained from
W by adding G x D?. The Mayer-Vietoris sequence for the —1 eigenspace
shows V has the rational homology of a wedge of 2g 2-spheres. One has Sign VV
=ag(K) [6]. Since the signature of the intersection pairing on the +1 eigen-
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space of W is zero, one has Sign W=g(K). W is certainly spin. A Mayer-
Vietoris sequence shows the restriction map H*(V,Z,)— H*(W,Z,) is injective,
so Vis spin as well.

Since M is the boundary of ¥, Lemma 2 applies and f=f,@f, as above.
Moreover, 8, has a metabolizer consisting of characters that extend to H, (V).
Let y be such a character, its extension will map H,(V) onto some cyclic
subgroup C,,. If yeH,(M)* has order a power of a prime p, we can and do
insist that m be a (possibly larger) power of p.

This defines a C,, cover of ¥V and thus of W, X, the infinite cyclic cover of ¥,
is also an infinite cyclic cover of W. If we pull the C,, cover of Wup to X, we
obtain X a C, x C, cover of W, If we identify G xS! properly in oW, this
cover restricted to GxS' is given by a map ¥:H(GxS"
=H (G)®H, (S}~ C,, x C_ which maps H,(G) to zero in C_, H,(S') to zero
in C,, and H,(S") isomorphically onto C_ . Inductively, pick a collection of g
disjoint curves ¥, on G representing a half basis in the kernel of . Attach g
round 2-handles (D* xI x S''s) to W along ,xS! in Gx S! to form U. Note
that the boundary of U is obtained by zero framed surgery to M along the lift

of K, which we will denote by L. Since the C,, x C_ cover extends uniquely to

U and its restriction to L is the cover mvolved in the definition of 7(K, y),
(K, y) can be computed in terms of this cover of U.

We can regard U as WUQ where Q is obtained from L x I by attaching g

round one-handles along D2 xS x §!'s that travel around the meridian of K.
The intersection form on Q is seen to be identically zero. Thus, SignU
=Sign W=0¢(K). Let t(U) denote the image in W(C(t), J) of the intersection
pairing on H% (U, €(t)). Then o,(t(K, y))=0,(z(U))—Sign U. On the other hand
lo, t(U)| £dim H% (U, €(t)). To complete the proof, we obtain the required up-
per bounds for this last term.

The C,, x C_ cover restricted to each round 2-handle is m copies of D*x I
x IR attached to W along a S' xI xIR. A Mayer-Vietoris sequence shows that
the inclusion induces an isomorphism H' (U, C(1)—H' (W, C(1)). Since
H' (W, C(t)) can be computed from a chain complex whose n'" group is the
vector space over €(t) generated by the n cells of W, (W) can be computed as
usual from dim H (W, C(1)).

If m is a prime power, we may apply Lemma 2 below. One sees H (X, Q) is
finite dimensional for n=+2 and thus H,(W,C(t))=0 for n=+2. Therefore
dim HL(W, C(1)) =e(W) =

If G is a ribbon surface, then Y and its covers can be built without 3-
handles. Thus, H5(W, C(t))=0 and H{(0W, €(r)) maps onto Hi (W, C(r)). Now
the W is M—K union GxS' and the C, x C, cover of GxS' is GxR
attached along some copies of S' x R where G is a C,, cover of G. Therefore, a
Mayer-Vietoris sequence shows that dim H{(éW, C(t))=pu(K,y). Therefore,
dim H{ (W, C(1)) Su(K, ) and dim HY(W, C(t) S4g+u(K, ). O

The following lemma is a slight modification of Lemma 4 of [1].

Lemma 2. Let X be a connected infinite cyclic cover of a finite complex Y and X
a p" cyclic cover of X, for p a prime. If H(Y)=0, then H (X, Q) is finite
dimensional. If H (Y)=1Z, then H,(X, Q) is finite dimensional.
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Proof. First one shows that H,(X,Z)) is finite if H(Y)=0 and H,(X,Z)) is
finite if H,(Y)=7Z using Milnor’s exact sequence for the homology of infinite
cyclic covers. See the proof of assertion 5 in [7]. Next using a sequence of
Smith homology groups (1.2) [3], one can show by induction that dim Hj(N)Z,
Z)<p dimH{X,Z,). As in the proof of Lemma 4 [1], one can show that X is
the infinite cyclic cover of a finite complex. An application of Lemma 6 of [1]
completes the proof of the lemma. [J

Remark. Let M, denote the d-fold cyclic branched cover of S* along K where d
is a prime power. Then one can prove the analog of Theorem 1 for these

covers by the same argument with slight modifications. The correct statement is
d—1

obtained by substituting: M, for M, rank 2(d—1)g for rank 2g, Y o,(K) for

a(K) (see [3] p. 363 for ¢,,), and 2dg for 4g. s=1

§3. Examples

Consider the evident genus one Seifert surface for the knot J, in Fig. 1. Let J,
denote the new knot obtained after we have tied n trefoils in each band with
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zero twist. J, is also indicated. J, is slice and J, is algebraically slice (in fact J,
is algebraically doubly null-concordant). For n>0, let @, be the connected sum
of n copies of J,.

Corollary 1. g.(Q,)=g(Q,)=n.

Proof. g(Q,)=n as genus is additive. Let N denote the double branched cover
of §* along J,. Then M, the double branched cover of S along Q, is the
connected sum of n copies of N. H((N)=Z,®Z,, thus, H,(M) is the direct
sum of 2n copies of Z;. We assume g (Q,)<n and obtain a contradiction.
Since H, (M) does not possess a presentation (as a group) of rank less than 2n,
there exists some nonzero yeH,(M)* with |o, 1(Q,, x)|<4n. Since Q, is alge-

braically slice, 6(Q,) =0. We can write y =@ y; where each y,e H,(N)* and some
i=1

2:+0. By [4] (3.2) 1(Q,, )= Y. t(J,, 1) There are eight nonzero yeH, (N)*. It
i=1
is easy to check using (3.5) of [4] that for each such x, ¢, 7(J,, )= —4n. [

Our next example uses the linking form in a more essential way. Let K,
denote the ¢t twisted double of the unknot. K, has genus one and if t=u(u+ 1),
K, is algebraically slice. Casson and Gordon showed K, is slice if and only if ¢
is one or two.

Corollary 2. If t>2 and 4t+1 is divisible by a prime p=3mod4, then
gs(Kz #* Kt) = g(Kt #K,)= 2.

Proof. Let g denote 4t + 1. The double branched cover is the connected sum of
two copies of the lens space L(g, —2). § is thus the direct sum of two copies of
a form on Z,. If we restrict this form to the p-primary component, we must get
the form 24 ,=2B . (here we adopt Wall’s notation [9]). Now suppose 8 has
an even presentation { , > of rank 2 with signature zero. Let M be a matrix
for ¢ , >, then M =¢qP where P is even, has det= +1 and signature zero. So P
must be equivalent to [? (1)] And gP presents the form {(2/¢>@®{—2/¢g>. The
p-primary component of this form is A, ®B,. because —1 is not a square
mod p. Since A, @B,+2A4,., B does not have such a presentation. Thus, if
g(K,#K)=1, then there is a nonzero y such that f(y, =0 and
lo, (K, #K,, sy <4 for all s. However, calculation shows that this is not the
case. [

Remarks. If t <0 then o(K))= —2 and g(K,4#K,)=2. If =0 or 2, K, is slice, so
g (K, #K,)=0. K, is the figure eight knot which is amphicheiral, so
g(K,#K,)=0. The theorem of Casson and Gordon can be used to show
K;# K, is notslice. If one makes the indicated ribbon moves in Fig. 2, one obtains
the unlink with two components. It follows that g (K # K,)=g (K, #K;)=1.
K, #K, is not slice, but I do not know whether g (K,# K,) is one or two.
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