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Introduction

A KNOT K in S3 is said to be slice if it is the boundary of a properly and
smoothly embedded 2-disk A in D4 . Let F<= S3 be a Seifert surface for K
with Seifert pairing 0: HX{F) x H^F) - • Z. Let L denote the double
branched cover of S3 along K. Define e: H^F) -> H^F) by e(x)(y) =
0(x, y) + 0(y, x). Let A <= H1(F)<S>Qfl denote the kernel of e<8>idQ/z. We
will give an isomorphism of A with H'(L, Q/Z). This isomorphism is
natural up to sign. A. J. Casson and C. McA. Gordon have defined an
invariant r(K,x) of elements verf'(L,Q/Z). Since T(K,X) = T(K,~X),

we can view T as defined on A. Let A ' c A b e the subset of elements of A
with prime power order.

The following theorem combines the results of Casson and Gordon [3],
[4], [5], [7] (Section 13) with the earlier work of J. Levine [11] in a
nontrivial way.

THEOREM (0.1). / / K is slice then there is a direct summand H of H^F)
such that

1) 2 rank H = rank Hi(F).
2) 0(HxH) = O.
3) For all XeA'nH®Q/Z,T(K,x) = 0.

In Section 1, we will give a proof of this for homology slice knots in
homology 3-spheres. In Section 2, we will use this theorem to define a
homomorphism of the knot cobordism group to a certain Witt group F .
The cobordism class of a knot K goes to zero in F if and only if K
satisfies the conclusion t»f Theorem (0.1). We also discuss the relation of
F to previous Witt groups defined by Levine and Casson-Gordon: G_
and A'.

In Section 3, we discuss r(K, x) and show how to estimate T(K, X)
(actually OXT{K, X)) in terms of curves lying on a Seifert surface. More
precisely, if x e H^F) is primitive let Cx denote the collection of knots in
S3 obtained by representing x by a simple closed curve y on F and then
viewing y in S3. Our estimates together with (0.1) give the following
corollary.

COROLLARY (0.2). If K is slice then there is a direct summand H of
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HX(F) such that
1) 2 rank H = rank Hi(F).
2) 0(HxH) = O.
3) If xeH is primitive, and x ® sime A' for some 0 < s < m, then for all

J e Cx, we have

kwm)(J)l« genus (F).

Here o-(l/m) is an ordinary knot signature. Steve Kaplan has indepen-
dently found a result similar to (0.2). His bound on |a(s/m)(/)| is 2(genus
F ) - l . He uses the approach of [4], while we follow [3] more closely.
When F has genus one, our result coincides with his. Note that in the
genus-one case, Cx is a singleton. We denote its element Jx. Also o-(j/m) of
a knot is always even. This yields:

COROLLARY (0.3). Let K be a slice knot which possesses a genus-one
Seifert surface F. Then there exists a primitive x e H^F) such that 0(x, x) =
0 and cris,m)(Jx) = 0 for all 0<s<m where m is any prime power dividing

V|det(0 + 0T)|.

Corollary (0.3) lends itself to an interesting interpretation. Namely if Jx

is slice then one can use the smooth disk in D4 with boundary Jx to do
ambient surgery on F and obtain a slice disk for K. This is essentially
Levine's program (which works in higher dimensions) for showing knots
with metabolic Seifert pairings are slice. On the other hand, if Jx is slice,
o~>im(Jx)= 0 for all 0<s < m and m a prime power. If a genus-one Seifert
surface has a metabolic Seifert pairing, then there are exactly two (up to
sign) primitive classes with square zero. Let J\ and J2 be the associated
knots. If F fails to satisfy the conclusion of (0.3), then neither / t nor J2

can be slice, and Levine's program cannot be carried out. Thus the
Casson-Gordon invariants seem to be secondary obstructions to carrying
out the program.

In Section 3, we also calculate T(K, X) exactly in the case of genus-one
knots. It turns out that the cobordism class of sucti a knot maps to zero in
F if and only if the conclusion of (0.3) is satisfied.

Finally in section 4 we give an example of a non-slice knot which is
detected by F but not by G_ or A'.

I wish to thank R. A. Litherland for pointing out an error in the proof
of Theorem (1.1) in an earlier version of this paper. At that time I knew
another correct proof for (0.1), given in [13]. However, this method could
not be used to prove the homology slice version (1.1) below. Thus, I have
modified the original proof in a way suggested by Litherland.

Section 1

Suppose more generally we have K a knot in a homology sphere S. By
the same transversality argument as is used in S3, we can find a Seifert
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surface FcS. Let 6 be the Seifert pairing, and define e,A, A' as in the
Introduction. Let L be the double branched cover of S along K. There
are several ways to give the identification of A with H^L, Q/Z). We
begin with a method which relates well to the proof of Theorem (1.1). We
discuss some other methods following the proof of (1.1).

Let X denote S slit along F, i.e., the complement of the interior of B, a
bicollar neighborhood of F. L can be constructed by gluing together two
copies, say Xo and Xj of X along dX0 and dXj appropriately. The deck
transformation T acts on L by switching Xo and X1. Let F+ (respectively
F_) denote the lift of F in L which corresponds to the copy of F in dX0

lieing just above (respectively below) F.
As is well known, Hi(L) is an odd torsion group, see [3] Lemma 2, for

instance. Since L/T = S and H^S) = 0, a standard transfer argument
shows T cannot fix any nonzero element in H^L). Therefore x + T(x) = 0
for all x in Hi(L). In other words, the action of T on H1{L) is
multiplication by — 1. It follows that the inclusion induces a surjection of
H\(X0) onto Ht(L). Thus a homomorphism ^€H'(W,Q/2) is deter-
mined by its restriction x\Xa- Thus restriction gives an injective map
H1(L,Q/Z)->H1(X0,Q/Z).

We wish to determine the image. If t/» eH'(X0 , Q/Z) extends to *e
H\L, Q/Z) then x\x, = -X\xoT=->l>T. Thus ip extends iff 4> agrees with
-tj/T along dX0 = dX1. However T acts on dX0~F+UF_ by interchanging
F+ and F_. T maps t/f|Xo+ <Â |x<, to its negative. Thus i/> extends to Hi(W)
iff t/>|F + i^T|F+= 0. Thus we have an exact sequence

0 -> H\L, Q/Z) -+ H\X0, Q/Z) -> H 1 ^ , Q/Z)

We have isomorphisms (with Q/Z coefficients understood) Hl(X)~
H2(S,X) = H2(B,aB) = H1(B) = H1(F) given by, respectively, the
coboundary, excision, Lefshetz duality, and a homotopy equivalence.
Using the identifications of Xo with X and F+ with F, we have an exact
sequence

0 -* H\L, Q/Z) -+ H^F, Q/Z) -» H'(F, Q/Z).

We wish to identify the last map with e <S> Jdo/z. The universal coeffi-
cient theorem gives isomorphisms: H, (F) <8> Q/Z = H,(F, Q/Z) and
H\F,<Q/Z) = H\F)®Q/Z. If / is a curve on F representing x e H ^ f ) ,
then x ® sld corresponds under the above isomorphisms to the element
of H2(S, X, Q/Z) = Horn (H2(S, X), Q/Z) which assigns to a 2-cycle a, the
value (sld)(a ° J). Here ° denotes intersection number. Therefore x <8> sld
maps to the element iJ/eH1(X0, Q/Z) which assigns to a 1-cycle b, s/d
times the linking number of b and J. Moreover (/f|F+ + t/<T|FVeH1(F+, Q/Z)
is then s/d e(x). Our identification of Hl(L, Q/Z) with A depends on a
choice of a component of the cover of X to be Xo. If we make a different
choice we only change the isomorphism by a sign.
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We say K in S is homology slice if there is some homology 4-ball D
with 3D = S and a smooth properly embedded 2-disk A in D with
boundary K.

THEOREM (1.1). If K is homology slice, then the conclusion of Theorem
(0.1) holds.

Proof. Since D - A is a homology circle, a standard transversality
argument produces an embedded, oriented 3-manifold R <= D with 8R =
FUA. Let HaH^F) be the inverse image of the torsion subgroup of
H\CR) under the map induced by inclusion. Since FUA is the boundary
of R, another standard argument (using Lefshetz duality) shows 2 rank H
equals rank Hj(F). Curves on F representing elements in H rationally
bound surfaces in R. These surfaces can be used to calculate linking
numbers in S. One sees 0(HxH) = O. We have just recapitulated
Levine's argument in this dimension [11].

Now let W be the double branched cover of D along the slice disk A
for K. Let i denote the inclusion of L in W, and T the covering
transformation. By the argument in [3], Lemma 2, or using Smith theory,
H^W) is an odd torsion group. Since Hi(D) = 0, T must act as multipli-
cation by —1 on HxiW) (by the same argument given for H^L)).

Let Y denote the complement of the interior of a bicollar neighbor-
hood of R in D. W then can be built from two copies Yo and Y1 of Y.
We have an exact sequence for W analogous to that given for L above.
The first map, for instance, is given by (with Q/Z coefficients understood)

« H2(R x.I,Fxr)~ H2(R, F).

Moreover, it fits into a commutative diagram (due to Litherland)

0 • H\W, Q/Z) • H2(R, F, Q/Z) > Hl(R, Q/Z)

• H\L,Q/Z) > H^F,Q/Z)-^UH\F,Q/Z)

H,(R, Q/Z)

The first vertical map is given by restriction. Now H®Q/Z is the kernel
of /$ and thus the image of d. Therefore the image i* is a subgroup of
ADH® Q/z.

Let {x, , . . . , Xg} be a basis for H extended to a basis
{xu . . . , X,, yx, . . . , yg} for H^F). Let {xf,..., y*} be the dual basis with
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respect to ( > the nonsingular intersection pairing on H,(F). Thus
{yf,..., yf} forms a basis for H x the subspace that anhilates H under (, >.
Since (x, y)= 6(x, y)-0(y, x), H^H^. Since they have the same rank,
H = H \ Thus {x1 ; . . . , xg, xf,..., x*} is a basis for H^F). With respect
to this basis 6 is given by a matrix of the form

[ 0 C + H
lCT E J

where E = E T . Let {zu ..., z2g} be the dual basis for H\F). With respect
to these bases e is given by

T 0 2C+H
12CT + I IE \

Let m denote |det (2C + /) | then using the above matrix representation of
e we see \A\ = m2 and \A nH®Q/Z | = m. Since A =H1(L, Q/Z), we
have |Ht(L)| = m2. By Lemma 3 of [3], the image of H,(L) in H^W) has
order m thus |image i*\ = m. Since image i* is a subgroup of A D H ®
Q/Z and they both have the same order, we can conclude they are equal.
Thus if xeAnH<8>Q/Z, x extends to an element of H\W,Q/Z). By
Theorem 2 of [3], T(K, X) = 0. •

We now give some alternative descriptions of the identification of A
with Hl(L,Q/Z). Let V denote a matrix for 6 with respect to some basis
for H^F). Rolfsen, 8.D.1 (page 212) [12], shows that V+VT (a matrix
for e) is a presentation matrix for H^L). Using the above basis for
iTjCF), we can write an element in A as a vector with Q/Z coefficients
which, when multiplied by V+ VT, becomes zero. The corresponding x
assigns to the ith generator for Hi(L) the ith entry in this vector. The
kernel condition insures that all the relations map to zero.

Another way this presentation arises is as follows. Let D denote the
branched cover of D along F pushed slightly into D [8], [1]. Then D may
be obtained by adding 2-handles according to a framed link in the
boundary of some homology ball (D4 if D = D4). The linking matrix for
this framed link is V+ VT. The meridians for the components can be
identified with Rolfsen's generators. One may use D to understand the
linking form I on H^L). Let c denote the correlation isomorphism
H J C D - ^ H ^ L , Q/Z) given by c(u) = l( , u). Define a linking form j3 on
H\L, Q/Z)«= A by P(cu, cv) = -l(u, v). Then one can show

0(x <8> r, y <8> s) = rs[6(x, y) + 0(y, x)] mod 1

where f and s are rational numbers that reduce mod 1 to r and s.
This means given two elements of A written as vectors with Q/Z
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coefficients a and b, pick any two vectors d and 6 with rational coeffi-
cients which reduce mod 1 to a and b, then multiply dT(V+ VT)6 out
and reduce mod 1.

Section 2
One may form a knot cobordism group C. Elements of C are equival-

ence classes of knots K in S3. Two knots Ko and K\ are equivalent if
there is a smooth proper embedding / : SxxI—*S3xI with /(S'xO) =
K 0 C S 3 X { 0 } , / ( S 1 X 1 ) = XI<=S 1 X{1}. The group operation is given by
the connected sum of knots. Inverses are given by taking mirror images
and reversing string orientation. This group was first studied in 1957 by
Fox and Milnor [2].

One can define a related group 3? as follows. One forms a semigroup of
isomorphism classes of pairs (S, K) where S is a oriented homology
3-sphere and K is an oriented knot in S. We say (S, K) is null cobordant
if there is some homology cobordism W* of S to some other homology
3-sphere and there is a smooth D2 <= W with dD2 = .K <= S. If both
(So, Ko)#(Su Kj) and (Si, KJ are null cobordant then so is (So, Ko). Let
—(S, K) be obtained from (S, K) by reversing the orientations of S and K.
We say (So, Ko) ~ (Su Kx) if (So, J«C0)#-(S1, KJ is null cobordant. This is
an equivalence relation. "<K is then equivalence classes of pairs with
addition given by the connected sum. There is a natural morphism

In 1968, Levine [11] defined a group G_ and a epimorphism C—*G-
as part of his study of codimension-2 knot cobordism. See Kervaire's
article [9] for an excellent discussion. We briefly outline the definition of
G_. Elements of G_ are equivalence classes of pairs (V, 6) where V is a
finitely generated free Z module and 6 is a bilinear pairing with the
property that 0 - 0 T is unimodular. (V, 0)~(W, 0') if (V, 0)©(W, -0') is
metabolic (i.e. admits a half dimensional summand on which the form
vanishes). The map from C to G_ assigns to the class of K the class of
(H^F), 6). This clearly factors through 9?.

Casson and Gordon have also defined homomorphism from X to a
different Witt group A' [5]. A' is defined to be equivalence classes of
triples (A, /3, T) where A is a finite abelian group, 0: AxA—> Q/Z is
bilinear and nonsingular (in the sense that the induced map A —*
Horn (A, Q/Z) is an isomorphism) and T: A —*• W(C(t), J)®Q is a map
of sets. Let A ' c A be the subset of elements of prime power order.

One defines (Ao, /30, To)©(A,, fiu T,) = ( A O © A,, ft,® Pi, T O © ^ )
where j3o©/3i(*o©*i, yo© yi) = /3o(*o. yo) + 0i(*i> yi) and TO©T1(XO+
xi) = T(XQ) + T(Xi). (A, p, T) is called metabolic if there exists G<^ A such
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that

1) |G|2 = |A| 2) 0 (GxG) = O 3) T ( G D A ' ) = 0

One defines -(A, 0, T) = (A, -/3, - T ) and says (Ao, /30, T0) ~ (A,, 0U Tj) if
(Ao, 0o» T0) © -(A l 5 0!, Tt) is hyperbolic. One proves by a formally paral-
lel proof to Kervaire's for G_ that ~ is an equivalence relation.

The homomorphism of Casson and Gordon sends the class of {K, S) to
the class of (Hl(L, Q/Z), /3, T(K, )). There is an analogous group A
defined identically except condition 3) above reads T(G) = 0.

We will next define another group F which combines G_ and A' in a
nontrivial way. In fact one has a commutative diagram.

In Section 4, we will give an example of an element in C whose images in
A' and G_ are zero but whose image in F is nonzero.

F' is defined to be equivalence classes of triples (V, 0, T) where V is a
finitely generated free Z-module, 0 is a bilinear pairing 0: VxV-+Z
such that 6 - 0T is nonsingular, and T is a function from A to W(C(t), J)<8>
Q. Here A is an abelian group associated to (V, 0) as follows: A =
ker e ® idoyzC V®Q/Z, where e: V—•HomCV, Z) is given by e{x)y =
0(x, y) + 0(y, x). We think of a triple (V, 0, T) as a single algebraic object.

One defines (Vo, 0O, To)©(V,, 0U n) to be (Vo© Vu BO®BU TO®TX)
where 0o©0i ar>d TO©T! are defined as in the definitions of G_ and A'.
(V, 6, T) is called metabolic if there exists a direct summand H of V such
that 1) 2 rank H = rank V; 2) 8(HxH) = 0; and 3) T ( A T I H ® Q / Z ) = 0.
One defines - ( V , 0 , T ) = ( V , - 0 , - T ) and (V0, flo, To)~(V,, fllf Tl) if
(Vo, 0O, T 0 )©—(VL 61, Tt) is hyperbolic. We remark that one may define
a similar group T in the same way except condition 3) above should read

The cancellation lemma below shows that ~ is an equivalence relation.
F is then ~ classes of triples (V, 6, T). The homomorphism from X to F
sends the class of K to (H^F), 6, T(K, )). Theorem (1.1) and Proposition
(3.2) allow one to see that this indeed gives a homomorphism. One finally
has homomorphisms from F to G_, respectively A' sending (V, 0, T) to
(V, 0), respectively (A,fi,y). Where A<=V®Q/Z is as above and
0(x® r, y ®s) = +rs(0(x, y) + #(y, x)) mod 1. Here r,s are any elements
of V®Q which reduce to r and s.
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CANCELLATION LEMMA. If (W, i/>, A) is metabolic and (V, 0, r)ffi
(W, ip, A) is metabolic, then (V, 0, T) is metabolic.

Proof. (Again based on Kervaire's proof for G_). Let L^V(BW and
K c W b e the direct summands with half the rank which make the triples
metabolic. Let H e V be the smallest direct summand which includes
p(LDV(&K) where p: V© W —* V is the projection. Kervaire shows
that 2 rank H = rank V and that 0(HxH) = O.

We only need to show that r(H®Q/ZnA') = 0. L e t B ' c f l c W ® Q / Z
denote the analogous subsets to A and A'. Thus A is defined on B, and
T © A is defined on A®B. We are given that A(K®Q/ZnB') = 0 and
T©A(L®Q/Zn(A©B)') = O. Let p also denote the projection p: A®
B-»ALDefi_ne H as p(L ®Q/2n(V®Q/Z)©(X®Q/Z)nA ©B).

Let W <= H be the subset of elements of prime power order. If h e H',
then h = v®b and / ® a = (v ® b) © (fc <8> c) where / € L, t> e V, k e K, and
a, b, c eQ/Z. Moreover qrb = 0 for some prime q. Write the denominator
of c as q'd where deZ and d^Omodq. By the Chinese Remainder
Theorem, there is an neZ such that dn = 1 modq'. We have dnh =
v® dnb = v ® b = h, dn(l ® a) = h® (nk <8>dc) and dc has prime power
order. So r(h) = 0. Therefore r(Hr) = 0.

It is clear that H<=H<8>Q/ZnA. it is easy to show that |H®Q/Zn
A|2 = |A| (see the proof of (1.1)). On the other hand |H]2 = |A|. This
follows from the proof of the cancellation law for A which in turn is
modelled directly after Kervaire's proof for G_. It follows H =
H ® Q / Z n A and we are done.

Section 3
Recall T(K,x)eW(C(t),J)®Q, [7]. Here C(t) denotes the field of

rational functions over C in the variable t and / is the involution on C(t)
that conjugates the complex numbers and sends t to f~\ W(C(t), J) is the
associated Witt group of finite dimensional hermitian inner product
spaces. The signature is an isomorphism from W(R) the Witt group over U
to Z. There is a natural map W(R) -» W(C(t), J). Together these yield a
homomorphism p: Q—* W(C(f), J)®Q. There is also a homomorphism
ov W(C(t), J )®Q^ 'Q , [3]. It is easy to see that <rx°p is the identity.

Given a closed 3-manifold N and a map <p: H,(A/)^ Cm © C», one
may define an invariant T(N, <p)e W(C(t), J)®Q of the associated cover,
in the way T(K, X) is defined in [7].

As before let L be the double branched cover of S3 along K. Let M be
the result of 0-framed surgery on L along K, the lift of K in M. There is a
natural isomorphism H1(M) = H1(L)©Z. Given x- H,(L) ^ Q / Z , ^ will
map into some cyclic group Cm. Define x+- H\(.M) —> Cm © C«, by
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X+(x,n) = (x(x),tn). Then T(K, X) = T(M, x+l Define X G H ^ M , Q / Z ) by
x(x, n) = xM- Since the deck transformation T, is a diffeomorphism of L,
fixing K, and acting by - 1 on HX{L), T(K, x) = r{K, ~x).

Given <p G H'(N, Q/Z), define Tj(iV, <p) = dim H[(N, C). Here we use the
notation of [7] for twisted homology groups. Also define cr(N, <p) € Q as in
[7]. These invariants are also discussed in [6] in slightly different guise.
The relation is given in [3]. The proof of Theorem 3 in [3] shows that

) (3.1)

Let Ko and Kt be two knots and K2 = K0#Kl. For each knot K,, one
has as above L,, M,, K,, and A< = H\Li, Q/Z). We have 1^ = Lo#Lu K2 =

! and A2 = Ao® Au

PROPOSITION (3.2). 7 /x o eA o and Xi^Au then T(K0#K1,X0®XI) =

Proof. Let W be MoUMjXf together with a 1-handle joining the 2
components and a 2-handle attached as indicated in Figure (la). Claim:
d+W = M2- To see this slide a 2-handle to get a new description of d+W
(b). Then trade the 2-handle for a 1-handle (c) yielding yet another
description of d+ W. Finally remove the pair of cancelling 1 and 2 handles
(d). The result is M2. We have 3W = M 2 U-M 0 U-M 1 . (Here the minus
signs indicate reversed orientation). Moreover the Cm x C» covers of
Mo, Mu M2 given by x~o, x t and {xo + Xi)+ extend t o a ^ x C . cover of
W.

To calculate H$(W, MoUMj, C(r)) we have a chain complex,

0 • C 2 ^

The map d2 can be calculated by reading off the intersections of the
attaching circle of the 2-handle with the belt 2-sphere of the 1-handle
weighted with elements of C © C . In this case d2 is multiplication by
1-r and so Hi(W,MoUM,,C(t)) = 0. Thus the inclusion induces an
isomorphism H*(M0UM,, C(f)) -> H't(W, C(r)) and the intersection pair-
ing on H2(W,C(t)) is identically zero. One can also show Sign(W) = 0.
The result follows. •

n

PROPOSITION (3.3). Let W = N*I \J h2, where the h2 denote 2-handles
1 = 1

attached along curves yt in a closed 3-manifold N. Orient W so that
dW=-N\JP. LetxeH\N,QIZ) such thatx[yi] = 0 andx^O- X extends
uniquely to H^W) and thus defines x^H\P,Q/Z). Then

with equality mod 2.
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K0#K

Fie. 1
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Proof. Here we write H'+( ) for H^( ,C). Since « ^ 0 , H^(N) = 0. Let
Aj = ̂  C\NxI, then H*(A) = ̂ ( S 1 ) . The Mayer Vietoris sequence for
W as the above union shows H3(W) = 0. Another part gives

0-+ H'2(N) -» H^(W) -+ H{(U A) -» Hi(N) «- H{(W) - • 0

By Poincare duality H^ (N) = H[ (N), thus dim HJ (W) = dim H{ (W) + n.
Let a and TJ denote the signature and nullity of the quadratic form on

Hi,(W). Then
(1)

with equality mod 2. Since a matrix representing the form will also
represent the map H£(W)->Hi(W,NUP) we have

0 -+ C -> Hj (P) © HJ (N) -> H{ (W) -»• HJ (W, N U P)

By Lefshetz duality HJ(W, NUP) = 0. Thus we have

:)-7, (2)

Since H{(N) injects into Hi(W) and the intersection pairing vanishes
on the image, -17^dim H2(N) = r}{N, x)- We may also view W a s P x J
union 2-handles. Thus T)S=T)(P, X) and

Equality mod 2 holds trivially. Using (1), (2), and (3) one has

with equality mod 2. Finally by definition

<T(P,X)-<T(N,X) = O--Sign W.

ForO<s<m, define o-^m{K) = Sign ((1-w')0 + (l-w-*)0') Tll/m(K) =
nullity ((l-ws)O + ( l -w" ' )0 ' ) where w = e2m7m. Recall if m is a prime
power, then r\lJm{K) = Q, [6] (3.1).

THEOREM (3.4). If x = x®s/meAc:Ht(F)®Q/Z, 0 < s < m , xeH t (F)
is primitive and J e Cx, then

m

Proof. We can view F as a disk with 0i(F) twisted knotted bands
attached where the first has / tied in it and represents x. By [1], L is given
by surgery on a framed link with /3i(F) components. The linking matrix is
the matrix of 6 + 6T with respect to the basis of H^F) given by the bands.
Let J* denote the knot obtained by reversing the string orientation on /.
It is easily seen that J and J* have the same signatures and nullities. The



316 PATRICK M. GILMER

first component of the link is / # / * . x takes the value s/m on the
meridian of this component and zero on the meridians of the other
components.

Let (N, x) be the 3-manifold given by 20(x, x)-framed surgery along
J#J*. By [6] (3.6),

<r(N, X) = 2<7I/m(J)-Sign (0(x, x)) + 4(m~S)S0(x, x)
m

Now L is obtained from N by O t ( F ) - 1) surgeries and M is obtained
from L by one more surgery. Thus M is obtained from N by 3i(F)
surgeries. This gives us a W as in (3.3). M plays the role of P. Moreover
Sign W = 0^(10-Sign (0(x,x)). So by (3.3),

<r(M, X)~2o-l/m(J)-4(ms)5-0(x, x) +
m

This, the formula (3.1), and the triangle inequality give the result.

Remark. Given a particular choice of xe -A. there is a great deal of
choice in applying Theorem (3.4). First there is the choice of x and then
Je Cx. The estimates of o-^riK, x)) obtained can vary widely. In particu-
lar, a judicious choice of two estimates taken together can give a sharp
estimate for CT1(T(K, X))- For example let K be the connected sum of n
trefoils. Take F to be the connected sum of n genus one Seifert surfaces
for the trefoil. There is an x e HX(F) coming from the Seifert surface of
the first trefoil such that 6{x, x) = —3 and x = x®^eA. C, contains both
the unknot and the connected sum of n — 1 trefoils. This yields

and

Taken together this yields

In fact by (3.5) below a-^{K, x) — ~§• The inequalities above then read
|2n — 2|*s2n. This shows that the inequality in (3.4) cannot really be
sharpened much.

THEOREM (3.5). J/g(F) = l, and x = x®slm, where 0 < s < m , m is a
prime power and where x is primitiw, then

(K, X) = P(2a«m(Jx) + 4im
m2

S)S 6(x, x ) -
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Proof. View F as a disk with two twisted knotted bands with one
representing the class x with Jx tied in it. Let F' be formed by tying —Jx

in this band and putting —6(x, x) more twists in it. Let K' = dF' and in
general use prime to denote objects associated to K'.

Note that K' is slice. Moreover the 3-manifold R in the proof of (1.1)
can be taken to be F ' x J U h 2 where h2 is a 2-handle attached along a
curve representing x. So by the proof of (1.1), r(K', x') = 0. We will now
compare T(K, X) to T(K', X')- This idea is due to Steve Kaplan.

Let N be the 3-manifold obtained by doing 6(x, x)-framed surgery to
S3 along Jx. Let <p: H^N)^-^ map the meridian of Jx to e

2iril/m and
<p+: HX(N) -»• Cm x Coo map the meridian to (e2irWm, 0). It is clear that
T(N, <p+) = p(a(N, <p)). By [6] (3.6),

2m

M

FIG. 2
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Belt 2-sphere

FIG. 3

Let N* denote the result of 6(x, x) framed surgery to S3 along J*, the
reverse of Jx. Then T(N*. V+) = T(N, <p+).

We build a 4-manifold W with boundary M'UNUJV*U-M such that
the Q,, x Coo covers given by x+, X+''» a r |d <P+ extend to a cover of W. W is
formed by attaching two 1-handles to (MU-NU-N*)xZ joining the
separate components and then attaching two 2-handles in a certain way
along M # - N # - N * .

This is best described by example. Figure 2 illustrates K and x and also
a surgery description of M obtained using [1]. In Figure 3 we show
M#-N#-N* together with the belt 2-spheres of the 1-handles and the
attaching circles for our 2-handles. If we ignore the belt 2-spheres, this is
a surgery description of d+ W. Figure 4 shows another surgery description
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FIG. 4

obtained by sliding 2-handles [10]. Finally we can erase the two trefoils
with framing-3 and the simply linking meridians with framing 0 as these
surgeries cancel each other, and recognize M'.

By Novikov additivity,
Sign W = a^K1) - (cr(i)(X) - 2 Sign (6(x, x))).

One then shows, as in the proof of (3.2), that the intersection pairing on
H2(W,C(t)) is identically zero. Thus

T(K' , X') = T(K, X) ~ 2T(N, <p+) - p (Sign W).

This completes the proof.
The results of this section hold equally well for knots in homology

3-spheres. The proofs require only minor modification.

Section 4
When now give the promised example of a knot K whose image in V is

nonzero but which maps to zero in G_ and A'. Figure 5 is a picture of our
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FIG. 5

knot K. A genus 1 Seifert surface F is clearly visible. With respect to the
basis {x, y}, the Seifert matrix for F is

ro 4i
L5 0 1

Thus K has a null bordant Seifert matrix and so is zero in G_.
A c H ^ F l ^ Q / Z is generated by x®J and y®£. (This is denoted
A = (x <8> £, y ® £)) and is isomorphic to 2^ © Z9. There are exactly three
subgroups G such that \G\ = 9 and 0(Gx G) = 0. They are G, = (x ® >̂ =
2:9)G2 = <y®^) = Z9 and G3 = ( x ® i y ®\)^Z3®Z^. We need to
evaluate T on each of these subgroups.

Let K(n, m) denote the (n, m) torus knot and J the mirror image of J.
Note that JX = K(2, 7)#JC(2, 3)#K(2, 3) and Jy =JX. Using (5.1) of [6],
crj(/x) = -<rj(/y) = 2 and o-j(JI) = -aj(Jy) = 0. Of course for any knot
v\=<J\. By Theorem (3.5), T(x®|) = -r(y ®|) = p(2). Therefore T(G,)
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FIG. 6

and T(G2) are nonzero. Also we have

T(X ® £) = T(X <8> |) = r(y <8> i) = T(y ® §) = 0.

Now Jx+y=Jx#Jy#K(2,3)#K(2,3) so ^ ( J ^ , ) = - 4 . By (3.5),
T((x + y)®i) = T((x + y)®|) = 0. Finally Jx^=Jx#Jy#K0 where Ko is
shown in Figure 6. Xo is drawn with two extra crossings so that a
relatively simple genus 4 Seifert surface is readily apparent. A straightfor-
ward calculation shows cr$(K0) = 4. Thus T((X - y) ® i) = T((X - y) ® §) = 0.
Thus T(G 3) = 0, and K maps to zero in A'.

Finally there are only two direct summands H of H^F) of rank 1 such
that 6(HxH) = 0. They are H, =<x> and H2 = <y>. Since G; =
H, ® Q / Z n A and T(GI) and T(G2) are nonzero, we conclude that K
does not map to zero in V.
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