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Preface

In various branches of mathematics and its applications, in particular,
in differential geometry and in physics, one has often to integrate a quan-
tity over an r-dimensional manifold M in n-space E™, for instance, over
a surface in ordinary 3-space. Considering M (or a portion of M) as the
image of part of r-space E”, integration over M is reduced to integration
in B, where standard theory applies. However, it is important to know
in what manner the integral over M depends on the position of M in £™",
agsuming the quantity to be integrated is defined throughout a region R
containing M. Thus we must consider the integral over M as a function
of the position of M in E”. The main purpose of this book is to study this
function, in a broad geometric and analytic setting.

Starting with Chapter V, we use a postulational approach. Assuming
the simplest properties of what r-dimensional integration in z-space should
be like, we are led to a theory which turns out to be precisely the integra-
tion of differential forms, which may be of a very general character.
Hence the role of differential forms in integration theory is more firmly
fixed, and at the same time the scope of the theory is considerably
increased.

The subject requires an understanding of the geometric properties
of the “direction” of an r-dimensional element in n-space, and of course
the fundamentals of calculus in several dimensions. The classical treat-
ment, using coordinate systems, results in sometimes lengthy formulas,
which do not make the underlying geometric ideas clear, and whose
parts depend on the coordinate system employed. Hence in the first
part of the book we give a full exposition of this material, in an elementary
manner. The geometric approach is gradually coming into use at present;
it is hoped that the early chapters may help in making the methods
accessible to the general reader.

An overall picture of what the book is about may be obtained from
the introductory chapter; we show how the simplest hypotheses lead to
the basic tools employed, and we illustrate these tools particularly in the
3-dimensional case. For a more complete outline of results, one may read
the introductory pages to the different chapters. Preliminary material
that is somewhat outside the scope of the study but is needed in various
parts of the book is collected in the appendices.

The body of the book falls into three Parts. The first Part, Classical
theory, leads up to the theory of the Riemann integral; we include also
a study of smooth (i.e. differentiable) manifolds. The early chapters
should be accessible to the beginning graduate student. The second Part,
General theory, gives a postulational approach. More maturity on the
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part of the reader is assumed here. In the last Part, we continue the
general study, using Lebesgue theory.

Except where we consider smooth manifolds, we remain always in
Euclidean n-dimensional space E™. Since we use normed spaces as a tool,
the metric of £” is employed; however, the fundamental geometric ideas
and theorems are independent of the metric. The study of smooth
manifolds in Chapter IV lies outside the main stream of thought of the
book; it is included because of its wide interest and application. We prove
de Rham’s Theorem by elementary means (much like de Rham’s original
proof). In this manner, the theorem lies close to a theorem deriving the
cohomology properties of a complex from abstract integration theory;
see § 12 of Chapter VIL

For other expositions bearing some relation to our Part I, see the
books mentioned below of Bourbaki (for Chapter I), Lichnerowicz (for
Chapters I, IT and III), and de Rham (for Chapter IV).

We now give a brief description of our approach to the general problem
of r-dimensional integration in n-space. An “integral’ is something defined
over oriented r-dimensional cells, and over linear combinations of cells;
it becomes a function of polyhedral r-chains. This function is linear, and
hence we call it a “‘cochain.” We define two norms in the linear space of
polyhedral chains, the “flat” norm |4|” and the “sharp” norm |4 |¥.
The cochains which are bounded functions in one of these norms are
“flat” or ‘‘sharp” correspondingly. A straightforward proof shows that a
sharp cochain corresponds to a differential form, in that the value of the
cochain on any polyhedral chain equals the integral of the form over the
chain. Thus the theory of a certain class of differential forms is derived
from the simplest assumptions about the integral. The similar theorem
in the flat case is due to Wolfe.

In the case of n-dimensional integration in n-space, the “flat’ theory
is equivalent to the Lebesgue theory of bounded measurable functions.
To obtain all locally summable functions, one should define a space of
cochains more general than is possible through a norm. We know of no
conditions expressible simply in the r-dimensional case which lead to
differential forms in all cases, and to all measurable locally summable
functions in the n-dimensional case. In the introductory pages of Chapter
V we give conditions leading to arbitrary continuous forms. See also the
introductory pages of Chapter VIIL.

The domains of integration are always oriented, for » > 0; we have
f_qw = —f, 4w, or in the terminology of cochains, X-(—A4) = —X-4.
In theories where orientation properties play no role, we prefer to
consider the integration as O-dimensional; see the last section of the
Introduction. Since the spaces of polyhedral chains have been given
norms, we may ‘‘integrate’” over any element of the completions of the
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spaces, that is, over any “flat chain’> or “sharp chain”. One type of
flat chain is given by an oriented (curved) piece of an r-dimensional
manifold in E*. We show this in very general circumstances in Chapter X.
Another type of flat chain is determined by a continuous summable
function in E" whose values are r-vectors; see § 7 of Chapter VI (also
§25 of the Introduction). In this case, an apparently n-dimensional
integral may be interpreted as an r-dimensional integral.

The differential forms w coming from flat cochains are ““flat” forms.
They are measurable functions satisfying two boundedness conditions.
Using properties of flat cochains, the standard properties of forms are
derived; the exterior differential dw exists (though it may not be definable
through differentiation), as does the image f*w of w if f is a Lipschitz
mapping. Hence also cohomology with real coefficients in polyhedra (and
in Lipschitz spaces, see below) may be studied through flat forms (as in
de Rham’s Theorem). In particular, the cup product of flat forms is
anti-commutative, and obeys the other standard relations for products
of cochains.

The “mass” of flat and sharp chains is definable. In the last chapter,
we study the structure of sharp chains 4 of finite mass. One may find
the “part 4, of A” in any Borel set Q. Generalizing the notion of the
r-vector of an oriented r-cell, one may define the r-vector {B} of any
r-chain B. Now with 4 given, ®(Q) = {4} is an additive function of
Borel sets in E™, whose values are r-vectors. It is shown that this set
function characterizes the chain 4. The theory of these chains now
becomes the theory of these set functions.

In the theory of distributions and currents in a manifold (due to L.
Schwartz and G. de Rham, see the book of de Rham quoted below), one
starts with a simple space of forms (cochains), and obtains the currents
(which include smooth singular chains) as linear functions on the forms
with some continuity conditions. We do just the reverse: starting with
chains, cochains are obtained as linear functions. Because of this, the
spaces of cochains and chains obtained are quite different from the above
spaces of forms and currents; the explicit study of our chains and cochains
has little relation to the standard theory of currents.

On the other hand, starting with smooth singular chains in a Rieman-
nian manifold and introducing sequences of semi-norms, one may obtain
directly by a limiting process various spaces of currents and distributions.
This procedure, offering certain advantages over the usual one, has been
given by James Eells, Jr., in Geometric aspects of currents and distri-
butions, Proc. Nat. Ac. of Sci. 41 (1955), 493-496.

This book had its beginnings in a study of integration in ‘‘Lipschitz
spaces”; see Algebraic topology and integration theory, Proc. Nat. Ac.
of Sci. 33 (1947), 1-6. The theory in Euclidean space was at that time
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restricted principally to the case of sharp cochains {there called ‘‘tensor
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cochains”). The discovery by J. H. Wolfe, in Tensor Fields Associated
with Lipschitz Cochains, Harvard Thesis, 1948, that flat cochains (then
called Lipschitz cochains) correspond to differential forms, caused a
fundamental change in the point of view. The study in Euclidean space
now became primary; having found that the theory of cochains could be
built on norms of chains, these norms became the basic tool. For reasons
of space, Lipschitz spaces were finally dropped out of the book; the author
expects to give the theory for this case in a separate memoir. An account
of the more recent state of the work (including results on Lipschitz spaces)
may be found in r-dimensional integration in n-space, Proc. International
Congress of Mathematicians, Providence, 1952. A study of the Riemann
integral in a geometric manner similar to the early chapters of the book
was made by Paul Olum in a Senior Thesis at Harvard in 1940.

A choice of notations was sometimes difficult, owing to the overlapping
of the fields of integration theory and algebraic topology. Since the
operations of exterior differentiation of forms and of taking the coboundary
of cochains coalesce in the present work, a single symbol should be used;
we finally chose the d of analysis rather than the d of topology. We use V in
place of d for the ordinary differential to avoid confusion with the above d.
The symbols v and A chosen for the products in Grassmann algebra corre-
spond exactly to the usual symbols — and ~ in topology; see Chapter IX.

We shall have occasion to refer to the following texts. This will be
done by mention of the author’s name.

Banach, S. Théorie des operations linéaires, Subwencji funduszu kultury
narodowej, Warszawa, 1932. '

Bourbaki, N. Eléments de mathématique, Livre I1, Algébre, Chapitre III,
Hermann, Paris, 1948.

Halmos, P. Measure Theory, Van Nostrand, 1950.

Lichnerowicz, A. Algébre et analyse linéaires, Masson, Paris, 1947,

de Rham, G. Variétés différentiables, Hermann, Paris, 1955,

Saks, 8. Theory of the Integral, Subwencji funduszu kultury narodowe;j,
Warszawa, 1937.

A reference such as (V, 10.4) applies to equation (4) in § 10 of Chapter
V; (App. I, 7) means § 7 of Appendix I.

The author wishes to acknowledge the permission of J. H. Wolfe to
incorporate the results of his thesis into the book. He is indebted to
Norman Z. Wolfsohn for much help in the manuscript, and to James
Eells for collaboration in revising Chapter XI, for other help in the
manuscript, and for aid in proofreading.

May, 1956 HassLEr WHITNEY

Institute for Advanced Study
Princeton, New Jersey
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Introduction

The purpose of this preliminary chapter is first of all to provide motiva-
tion for the methods and tools appearing in the book, and secondly to
illustrate some of the general considerations through a study of special
cases, particularly in three dimensions. The Introduction and the body
of the book are independent of each other; however, the meaning of the
full theory will become clearer if the Introduction is read in conjunction
with the rest of the book.

In Part A (which is rather abstract in character), we ask what a
theory of r-dimensional integration in =»-space should look like. An
“integral’”’ X-o is defined over an oriented r-cell ¢ for instance, and changes
sign if the orientation is reversed. We may now define X:(ag) = a(X-0)
for real numbers a, and X-(4 + B) = X-4 + X-B; assuming that a
subdivision of cells does not affect the integral, we now have a linear
function defined over ‘“polyhedral r-chains.” To give this linear function
analytical properties, we introduce some continuity hypotheses. Next we
study the local nature of integration. Near any point, in any r-dimensional
direction, the integral over a cell is approximately proportional to the
r-dimensional volume of the cell (with the strongest continuity hypo-
thesis); this fact leads to the construction of a point function D y(p)
which acts on “r-vectors” {c} of oriented r-cells ¢. These r-vectors must
have certain simple properties, which in turn lead directly to the con-
struction of Grassmann algebra. Finally, Dy becomes a differential
r-form, whose integral |, D 5 over any ¢ equals the original X-¢.

In Part B, we start with the elements of Grassmann algebra as derived
above, and work out from a geometric point of view some of the funda-
mentals of calculus. We consider vector analysis in three dimensions,
differentials, Jacobians, transformation of “‘multiple integrals,” manifolds,
and the Theorems of Stokes and de Rham.

The purpose of Part C is to introduce the reader to some of the general
methods in the later parts of the book. In the last two sections, we touch
on the way some particular modes of integration may be considered as
r-dimensional for different r.

A. THE GENERAL PROBLEM OF INTEGRATION

1. The integral as a function of the domain. For an integration theory
there must certainly be various possible ‘“domains of integration.”

3



4 INTRODUCTION [INTRO.

Whatever kind of process integration (with real values) is, a definite
“integrand” X will give a real number when applied to a permissible
domain A. Thus, for a fixed X, we have a real valued function of domains
A; we denote the value on 4 by X-A. We consider integration in
Euclidean space.

If we are to call the integration r-dimensional, we must certainly
include among the permissible domains the simplest r-dimensional
figures. An r-cell o, consisting of a closed bounded part of an r-plane,
bounded by a finite number of pieces of (r — 1)-planes, is such a figure.
We make our first hypothesis:

Hyroruesis (H,). The integral over ¢ depends on the orientation of
g; a reversal of orientation reverses the sign of the integral.

We discuss the meaning of and reason for this hypothesis. A line
segment ¢! has two end points p and q; the two orientations of ¢! are
the two directions along ¢!, from p to ¢ and from ¢ to p; we may denote
the two oriented cells by pg = —gp and by ¢p = —pg respectively.
They may be defined by a choice of the vector ¢ — p (from p to ¢) or
p — ¢ (from ¢ to p). We may orient a triangle p,p,p, by choosing an
ordered pair of independent vectors in it; for instance, the pair (p, — p,,
Py — Do) Interchanging these or reversing the direction of either would
reverse the orientation. Similarly, an r-cell ¢ is oriented by the choice of
an ordered set of r independent vectors in it. A 0-cell, i.e. a single point,
has no orientation properties.

The triangle ¢ == pyp,p,, oriented as above, has a boundary do,
consisting of the oriented segments pyp,, PP, and p,p,. The boundary
0(pq) of the oriented segment pq consists of the point q counted positively,
and the point p counted negatively. The boundary do of an r-cell ¢
contains its (r — 1)-faces, properly oriented (App. 11, 5).

For any oriented cell g, let —o denote the oppositely oriented cell;
then (H,) may be written in the form
(1) X(—0o) = —X-0.

We consider some examples. Let ¢ be a real valued function defined
in 3-space E3, and let C be an oriented curve, from the point p to the
point g. If we integrate the rate of change of ¢ along C, we obtain
dlg) — (p). If the orientation of C were reversed, we would obtain
é(p) — #(g). Next, consider any I-dimensional integral [, w. Let
0 = pyP1Ps be an oriented triangle, cut into the two oriented triangles
0’ = pop'Py, 6" = P'Py Py, by the segment p'p,, with p" in pyp,. Then

g foo 4 o= [

for
f ,w+f,w:f w, f,w+f =0,
Pop Py, PoPy P Ps Do
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the latter since p'p, and p,p’ are oppositely oriented. This type of
relation is fundamental for geometric properties of the integral; it would
be impossible if orientation properties were disregarded.

Of course integration over non-oriented domains is possible and
sometimes of importance; in this case, much more general types of
domains are permissible, but the geometric properties are largely lost.
We prefer to think of such integration as 0-dimensional; see § 26 below.

The most typical requirement of integration theory is additivity,
or in the present exposition, tnvariance under subdivisions (used in the
example above):

Hyroruesis (H,). If the oriented r-cell ¢ is cut into similarly oriented
r-cells ay, = * *, 0, then

(3) Xo=X0, + '+ X0,

2. Polyhedral chaing. We wish to write the boundary do of the
triangle o = pyp,p, &s a domain of integration. With the point p’ in
Pop; 28 in § 1, we would like to write do in various ways, such as

0o = Polh + P1Pe + Palo = ng -+ prz PoPo2 + PPI + P1Ps — ppz

etc. This suggests the definition of a polyhedral r-chain A as being a
linear combination of oriented r-cells, with real numbers as coefficients,
together with the properties

(1) lo = o, 0o = 0, a(—0o) = (—a)o = —(ao),

and invariance under subdivision: if the oriented cell ¢ is cut into
0y, ', Oy, then ¢ and oy 4 -« 4 o, are the same polyhedral chain.
The definitions of a4 (for real numbers a) and 4 -+ B are obvious; the
set of polyhedral r-chains now forms a linear space.

Because of (H,) and (H,), it is possible to define X4 for any polyhedral
r-chain 4 = Ya,0,, by the relation

(2) X'Zaia«; = Z‘%‘(X'U«;);

X is now a linear function of polyhedral r-chains. For this reason, we call
X an r-cochatn. That X is a cochain is equivalent to assuming that X-¢
is defined, with the properties (H,) and (H,).

The boundary of 4 = >a,0, is defined to be 04 = Da, do,; this is
easily seen to be a well defined polyhedral (r — 1)-chain. A polyhedral
0-chain is an expression 4° = >a,p,, the p, being points; we set 34° = 0.

3. Two continuity hypotheses. For a satisfactory integration theory,
the permissible domains must include oriented curved 7-cells for instance.
One should be able to obtain these as limits of polyhedral r-chains, and
the integral should be definable as the limit of the integrals over the
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approximating polyhedral chains. This requires some continuity hypo-
theses on the integral. We give two hypotheses in this section with which
a satisfactory general theory may be obtained; if we include also the
hypothesis of the next section, the integral has simpler analytical properties.
Let o be an oriented triangle, of area |a| . If we cut the plane con-
taining ¢ into small rectangles and let =y, - - -, 7, be those contained in ¢,
then these 7, fill up most of o, and it is natural to require that > X-7, be
near X-g. This will follow from:
Hyporresis (H;). Given the r-cochain X, there is a number N, such
that
(1) | X0 S W,

all oriented r-cells o,

where | o | is the r-dimensional volume of o,

This is of course a stronger hypothesis than needed for the above
requirement. We assume it largely for the sake of the analytical methods
described in § 6 below.

Take the case r = 0. We may consider the ‘“0-dimensional volume”
of a point p to be 1. Any 0-cochain X corresponds to a real function ¢:
$(p) = X'p for all points p. Now (H;) says that i d(p) i < Ny, all p;
that is, ¢ is bounded. These functions are too general; we must restrict
them further. We look for a hypothesis suggested by the case r = 1.

Take the above triangle ¢ again; let 7 be the union of the ;. We may
consider the boundary dr of 7 as an approximation to da, even though
it is made up of segments not parallel to the sides of o in general. Taking
r = 1, we may require that X-dr be near X-do, i.e. that X-0(c — 7) be
small, as a result of the area of ¢ — 7 being small.

Hyroraesis (H;). Given the r-cochain X, there is a number N, such
that

(2) | X-00™1 | < Nyl o

Note that (H,) is trivially satisfied if r = n.
For r = 0, (H,) says that for any oriented segment pg,

(3) | Xq— X-pl=|X0pg) | < Nylqg—p),

all oriented (r + 1)-cells o™+

] q—1p ] being the length of pg; that is, the function ¢(p) = X-p satisfies
a Lipschitz condition.

Any cochain satisfying (H;) and (H)) we ca,ll a flat cochain.

4. A further continuity hypothesis. If the cell o is moved into a
nearby position ¢’, we may assume that X-o’ is near X-0. We shall
consider rigid motions without turning; that is, translations by means of
vectors v. Let 7,0 denote the new cell. Our hypothesis is that X-T' ¢
differs from X-o by at most some fixed multiple of the r-volume | ¢ |
times the distance } v l of translation.



§ 6] THE CASE r =n 7

HyeotHEsts (H}). Given the r-cochain X, there is a number Ny such
that for any oriented r-cell ¢ and vector v,
W | XTyo — Xo| < M| o] [0]

In the case r = 0, this hypothesis is equivalent to (Hy). For r ==,
it is non-trivial, whereas (H;) is trivial.

Any cochain satisfying all three hypotheses we call sharp. We shall
see that sharp cochains correspond to differential forms. (This holds also
in the flat case; see Chapter 1X.)

5. Some examples. We help elucidate some of the hypotheses through
the study of a steady flow of fluid in oriented 3-space E3. Take any
oriented 2-cell ¢. Let (v, v,) define its orientation, and choose a vector v,
so that (v}, vy, v3) (or equivalently, (v;, v, v,)) defines the given orienta-
tion of E3; then the positive direction through o is the direction in the
sense of v;. Let X:¢ be the quantity (positive or negative) of fluid flowing
through o in the positive direction in unit time; this is the flux across o.
Clearly (H,) and (H,) hold; hence X is a 2-cochain. Of course XS for any
oriented surface § is definable.

If the density of fluid and the velocity of flow are bounded, then
clearly (H;) holds. Now take any 3-cell 7. If fluid is being neither created
nor destroyed, then (we assume the density constant in time) the total
rate of flow out of 7, which equals X-07, must be 0. In general, X-dr
equals the total rate of creation of fluid in 7. Hence (Hy) is equivalent to
assuming that the total rate of creation per unit volume is bounded.

With the same flow of fluid, consider the circulation along an oriented
curve C. At a point p of O, if u(p) is the unit tangent vector at p in the
positive direction along C, v(p) is the velocity vector of the fluid at p,
and p(p) is the density at p, then the circulation is
(1) Y-C = [0 pru

w

(compare (18.3) below). Again (H,) and (H,) hold.

Hypothesis (H;) will follow from the boundedness of » and p. Given
an oriented 2-cell o, Y-do is the circulation around the boundary de.
Taking arbitrarily small cells ¢ near a point p, we see that (Hy) will
follow if curl (v) = V X v exists and is finite; compare (21.4).

Suppose the flow is through a pipe. Then the above cochains X
and Y are not defined throughout E3, but only in the region of flow; the
hypotheses need be assumed only in this region.

6. The case r — n. For an n-cochain X which satisfies (H;) in oriented
E™ ((H,) is satisfied trivially), it is standard Lebesgue theory that there is
a bounded measurable function @ such that (using the Lebesgue integral)

(1) X-g = f ®,  all n-cells o™ oriented like ™.
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We consider briefly the simpler case when (Hj;) is also satisfied.
Given the point p, let gy, 0y, * * * be a sequence of n-cells oriented like B7,
in smaller and smaller neighborhoods of p. Set
@) O(p) = lim =%

— |0‘¢-[
We indicate the proof of existence and uniqueness of the limit. Let
Ty, Tg, * * * be a similar sequence of cubes. Suppose ¢, and %, are such
that for i > tgand k > &, o, and 7, are in a neighborhood of p of diameter
< e. We may take k so large that translations of 7, nearly fill up o;:

;=0 + R, o' =Tym + "+ Ty | R] small.

By (Hy),
iy . N/ P,
X?"'XT’C glhz e S < Nge,
(o el 17 s 4 |7 |
i=1
and the statement follows, using (H)).
Using (H,) again, it is clear that @ satisfies
(3) | D(p + v) — B(p) | < Nyl vl,
and that (1) holds (using the Riemann integral). Moreover,
@ | Xo—|o|®@)|=]][ () — Cp)ldp| < Nyl |o|

if all points of ¢ are within { of p,.

7. The r-vector of an oriented r-cell. Let X be a sharp r-cochain in £
Then for each oriented r.plane P in E*, we may consider X-¢ for r-cells in
P, and hence find a function @ in P as in §6. For any point p, the
values of @ p(p) for the various oriented r-planes P through p are of
Interest.

We shall use a closely related function. Given ¢ and p, let P be the
r-plane through p parallel to ¢ and oriented like ¢, and set

(1) Dx{(p){o} =| 0| @p(p).

We must give meaning to D x(p), to {¢}, and to their combination. With
the o; as in § 6, (1) and (6.2) give
(2) Dy (p){o} =1lim —[—o—l— X0,
i—> o l o; |

As a function of g, the right hand side is known as soon as we know the
set of r-planes parallel with o, the orientation of ¢, and | ¢ | ; we call this
triple the r-vector {g} of 0. We may now define Dx(p) to be that real
valued function defined on all r-vectors of oriented r-cells which is given
by (1). (Later D (p) will be taken to be defined on more special spaces T,.)
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We remark that D y(p)-{o} is unchanged if we alter the metric in £";
for using (2), we see that | G [/| o, ‘ is unchanged, as is X-a,.

Given {o} and the real number a = 0, let a{o} denote {¢’} for any
oriented ¢’ parallel with ¢, oriented like or opposite to ¢ according as
a > 0ora < 0, and such that| ¢’ | = | lo|. If ¢y and o, are parallel,

say {o,} = a{o,}; set
{o1} + {oo} = (1 + a){ou},

for @ =2 —1. If we include a ‘‘zero r-vector” 0, then with these definitions
the r-vectors associated with a fixed set of parallel r-planes form a linear
space isomorphic with the real numbers. In any such space of r-vectors,
we see easily from (2) that D x(p) is linear:

(3) Dx(p)(a{a} + b{o'}) = aDx(p)-{o} + bDx(p){c’}.

8. On r-vectors and boundaries of (» + 1)-cells. Let us immerse the
set of all r-vectors of oriented r-cells in a linear space 8, (of infinite
dimension for 0 << r <C n) as follows. Take a fixed point p,. An element
o of 8, is a finite set of distinct r-planes Py, - - -, P,, through p,, together
with an r-vector «; associated with each P;; we may include extra
planes P;, if we associate the zero r-vector with them. We form aoa by
replacing each «; by aea;. Given « and f, we may take enough planes
Py, ---, P, sothat « and 8 are defined by «, and §; in P, respectively
(t=1,+++, m); let « + § be defined by «, + 8, in P,. Clearly 8§, is
independent of the choice of p,. The linear spaces described in the last
section are linear subspaces of S,.

We may extend D (p) to be a linear function in S, by defining

(1) Dy(p)a = ZDX(p) ., if aisdefinedbyo,inP;(i =1, ,m).
i=1

Now take any oriented (r + 1)-cell . Its boundary is an r-chain
o; + 4+ 0,. We wish the sum of the corresponding r-vectors to be 0:

(2) {op 4+ +{opt=0 if o+ + o, = 0r for some 7.

11 110}\ t1ang +n hald $33vma an M AT ~ nLnlI

tions to hold turns §, into a linear space T,. Wesha
call any element of T, an r-vecior. (Strictly speaking, let S, denote the
linear subspace of 8, generated by all such elements {a,} + - -+ + {0,,};
then T, is the quotient space.) We now turn D4 (p) into a linear function
in the space T,, by letting its value on an element of T, be its value on any
corresponding element of §,. To show that this is possible, we must prove

the following relation:
(3) Dx(P)'{O']_} +-0+ DX(p)'{Gm} =0 if T R + G = or.

'na] [+
PRSNEL
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We may suppose p is in 7. Given 4 > 0, let us contract £" towards p
by the factor 4; then + becomes 7, and g; becomes g;;, and we have

a‘TAZZGM, iTl‘:lf+1|T|’ {U;{i‘zlrlailo

Take a sequence Ay, 4,, - —0. We may use Oai> Oagir ** " in (7.2);

with the help of (7.1), we find
D y(p){o;} = lim ‘ ’ X-0; ;= lim - X ‘O,
k

—3 00 ‘ lkt l k— o0 lr
7 Z LT

These relatlons give (3).

Also, by (H

= ‘Xank Nszl—AN\TI

<3

9. Grassmann algebra. We shall find a special manner of writing
elements of T,. Take any ordered set (v, « * -, v,) of independent vectors.
Let o be the parallelepiped with a point p as vertex and with these vectors
along the edges from p, oriented by the v,, We define the symbol
vyV* * Vo, by
(1) vv- - ve, = {o}.

Now any element of T, can be written as a sum of such elements.

From the properties of §7, we see that the “product” vyv: - -vo,is

skew symmetric:

(2) VoV = —v,Vv,, and hence wvvv =0.
Also
(3) vyve e ov(aw)ve ¢ v, == avgve covove o eve,).

We shall prove that it is linear in #,:
(4) (vq + V)VOLV* * VY, == VOVt VD, - VDV VD,
hence it is linear in all the v,.

If v, is in the r-plane determined by v, - - - , v,, thisis a simple geometric
fact about addition of volumes. We assume this is not the case, and con-
sider a few values of r.

For r = 1, a 1-vector is now represented by a vector; the l-vector
{pq} of the oriented segment pg is represented by the vector ¢ — p.
Relation (4) says that addition of 1-vectors (appearing on the right) is
equivalent to addition of vectors (appearing on the left). We show this
as follows. Choose a point p,, and define the points and triangle

Pr=1DPg+ v, DPp=p + v =00+ @ +0) 0=DPDs
By (8.2),

{Popr} + {P11a)} + {PaPo} =0, hence {pops} = {popi} + {PiPa;
this is the required relation.
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For r = 2, take the above points p,, and also the points q; = p, + v,
(:=0,1, 2). Set ¢" = ¢¢¢,9,. The p, and g¢; are vertices of a 3-cell 7
whose faces are ¢ and ¢’, and also three parallelograms oy, 04,5, G,
where ¢,; contains p,p;. We have clearly

(0} = {o'} = o},
{001} = 210y, {010} = v1v0,, {Go2} = (v, + v1)vo,.
With proper regard to orientations, we see that
Or = ¢ — 0 + Gy + Gya — Gps;
applying (8.2) gives (4) for »r = 2. The general case is similar.
The set of all vectors in E™ forms a vector space V = V(&"). Let
e, " **,¢e, be a base in V. Then any vector » can be written uniquely
as >v'e;; the ¢* are the components of v. Since we consider 1-vectors and

vectors as the same, the e; form a base in T,. For r = 2, using (2), (3)
and (4) gives

n
. oy ol
(5) VIV, = vivi(e,ve;) = i 3 e;ve;.
: , z , v v
. 3 4 » - 1 2

It may be shown that the e;; = ¢;ve; (+ <C j) are independent in T,; by (5),
they form a base in Ty. Similarly, thee; ., = ¢, v- - ve, (4 <+ <4,)
form a base in T,, and any r-vector « can be written uniquely in the form

_ Ayeeed
(6) o° = Z Wi,
2y <<y

The o™ are the “components” of «.

1t follows that T, is of dimension (:’) . In particular, T, is of dimension

1, with base element e,.., and each T, for k> n contains the zero
element only.
Through the definition

(7 (Vv VOINV(D, Ve T VD) = OVt VD,

we have a bilinear multiplication between T, and T,, with product in
T,,,. If we include the space T, == the real numbers, the system of the
T, with these operations is the Grassmann algebra of V. Let us denote T,
by Vi,y.

For n < 3, any r-vector « (for any r > 0) equals {¢} for some oriented
r-cell g. This is not the case for n > 4; for instance, e, -+ €5, cannot be
written in this form. Any « of the form {c} is a simple r-vector.

10. The dual algebra. The set of linear functions f in a vector space V
forms a vector space, with the following definitions: the function af has
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the value af(v) at v; the function f- g has the value f(v) 4- g(v) at ».
This space is the conjugate space V of V.

Since Dx(p) is a linear function in the vector space T, = V|, we
may consider it as being an element of the conjugate space of V},;; we
denote this conjugate space by V", We call its elements r-covectors;
the elements of ¥ = V! are covectors. We shall find a special manner of
representing elements of V7.

Tete, -+, e, beabasein V. Setting

(1) ety = e*(vley 4+ - 4 v"%,) =o'

defines a linear function ¢’ in ¥V, i.e. an element of V. The elements
el, - -+, e" are easily seen to form a base in the base dual to the e,.
Now any element f of P may be written uniquely as > fie’; the f; are the
components of f. Hence also ¥ and V are of the same dimension; since
Vi and V,; are conjugate, they are also of the same dimension.

The ¢ may be defined by the relation

(2) ehe, =8 =1 if =},
=0 if 757
Let us define base elements e’r"* in V" by the same formula:
(3) eil...ilr.ezlmzr___ 1 (11 <L v Z Ar)’
and ezl""r-e‘ul_.. u, = 0 for other p; (y <<+ -+ < p,).

As a consequence of (2), we have

n n
@ FO)=fv= flee;= > fat;
t,i=1 i=1
similarly, writing
(5) E= > gl
Ay <oy,

the & 2,1, are the components of &, and we have, using (9.6),

(6) 5(05) — 5'01 — Z 521 "Arap,l...z,..

Of course a change of base results in a change in components. For n = 3,
r = 2, (5), (9.6) and (6) read

() &= 512312 + &0t 4 523‘323s o = 0’-12312 + o35 + a¥eyy,

(8) Erou = £1p01% + £1g!® + £ppa®,

We wish to define expressions like fiv- - -vf, the f? being in ¥ and the
result being in V"), We wish this multiplication to be skew symmetric
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and linear in each variable, and we wish to have efy- - -velr = et

This determines the multiplication. For instance, for r = 2,

9) fvg = Zfigje"ve" = Z
,i=1

1<j

fi [
g: 9;

e,

The value of (flv---vf7)(v,v:--vo,) is the determinant with the
elements f*v,. For instance, for r = 2,

fv fw
gv gw
To show this, we note that both sides of (10) are skew symmetric and
linear in the quantities », w; hence it is sufficient to prove this in the
particular case v = ¢,, w = ¢,, k << l. But this follows at once from (9)
and (3). Note that if we use (9) and (9.5) to obtain ( fvg)-(vvw), comparing
with (10) gives the Lagrange identity

(10) (fvg)(vvw) =

(11 ‘Zfz’”i Ef,.W‘| :TU} fj||”i ”5[_
R | 2900 g’ l é I 9: 9; | | w' W I
i<j

11. Integration of differential forms. A differential r-form w in E* is a
function whose values w(p) are r-covectors. Hence, for any p and r-vector
&, w{p)« is a real number. If @ is continuous, we may define its integral
over any oriented r-cell ¢ in E” as follows. Take a fine subdivision of o
into oriented r-cells oy, - -+, o,; choose a point p, in each ¢,; form the
sum

(1) > olp){od;
take the limit of this, using a sequence of subdivisions with diameters of
cells approaching 0. It is not necessary that E™ be metric or oriented.

For a sharp r-cochain, Dy is a continuous differential form, and

(@) Xg= [ Dy =lim Z D x(p,){o.}.

&

Qoo YV 1MW
P

UU\', J-U’c

B. SOME CLASSICAL TOPICS

12, Grassmann algebra in metric oriented n-space. In metric E*, scalar
products u-v of vectors are defined. Take any veetor . The function
¢,(v) = uv (we write also ¢,v) of vectors v is linear; hence ¢, is a
definite element of the conjugate space ¥ of V. This is easily shown to
define an isomorphism between ¥ and V. Thus any linear function y in ¥
can be written in the form y(v) = u-v for a unique vector ». Since ¥V,
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and V") are conjugate for each 7, a definite choice of metric in Vi (see
(I, 12.1)) establishes a definite isomorphism between V,; and V1,

Now take E”™ to be oriented also. Then there is a definite ‘‘unit
n-vector” a,, which equals {c} for any n-cell ¢ of unit volume, oriented
like E”. For any orthonormal base (¢,, - - -, e,) (consisting of perpendicular
unit vectors defining the given orientation of E"), we clearly have
(1) g == €. = €V" * *VE,,.

There is also a definite “unit n-covector” w, such that
(2) Wy = e =elv. - ve?,  wgouy = L.

Given any r-vector a, set
(3) D(B) = wy vl all (n — r)-vectors .

Now @ is a linear function in Vj,_, and hence is a definite element of

V=t Thus we have a definite isomorphism between ¥|; and pir=rl,

13. The same, n = 3. Applying the results of the last section shows
that in metric oriented B3, all spaces V;,; and V1" are isomorphic in a
definite way either to V};; = V or to ¥;; = the reals. The isomorphism
between V = V};, and V = V'l is given by the scalar product; we
consider the isomorphisms between ¥ and V' and between ¥ and Vi,

Take any vector v; set

(1) Y (a) = wy(vva), all 2-vectors a.

Since W, is a linear function of «, it is a 2-covector.
Next, take any 2-vector a; set
(2) O, w = wy(avw), all vectors w.

Since this function of w is linear, it is given by the scalar product of w by a
definite vector @,.
We use this to define the vector product of vectors:

(3) uXv = 0,,,;
thus u X v is defined by
4) (uXv)w = wy(uvovw), all vectors w.

Since all operations on the right of (4) are linear, # X v is a bilinear
function of # and ». Since vvu = —uvv and uvu = 0, we have

(9) OXU = —uUXD, uxXu =0.

Let (e, €5, €5) be an orthonormal base giving the orientation chosen
in B3 Let each of %, v, w be each of ¢, e,, €5 in (4) in turn. As one
example, we have
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In this manner we see that

) € X €y = €g, €y X g = —Ey, €y X g = €.
Working out uXv = >, u™’e; Xe; gives
Uy, U u, u u, U
2 Ug 1 Us 1 Y
(8) UXv = ey — eq + es.
v, Vg v, Vg v, Uy

We shall find a geometric interpretation of the vector product. Given
u and v, choose an orthonormal base (e, e,, €3) orienting E3 properly so
that u is in the e,-direction and v is in the plane of ¢, and ey, on the same
side of e, that ¢, is. Say
u = aey, v = b'e; -+ bey; then a > 0, b= 0.

Then applying (7) gives uXv = abez. Thus, if » and v are independent,
in which case @ and b are £0, then X v is a vector perpendicular to both,
and oriented so that (u, v, u X v) gives the orientation of E3. Otherwise,
uxv = 0. Let o be the parallelogram with a point p as vertex and sides
along « and v. Then | ¢ | — ab, and hence the length of u X v is

o) Juxco| =] o]

We shall find the components of the 2-covector ¥, in (1) in an ortho-
normal coordinate system. Using (10.5) and (10.3), we have for instance

(Fohs = Volers) = wo'( Zvieivela) — wyvie,veves = —vl
We find
(10) W, = ple, — vl + vley,.
Similarly, for the vector @ in (2),
(11) O, = a2, — alde, 4 ale,.

14. The differential of a mapping. Let f be a mapping of E” (or of an
open set in E%) into E™ which is smooth; that is, with coordinate systems
in the spaces, the first partial derivatives of each component of the mapping
function exist and are continuous. The differential Vf of f is a concept
which may be used in place of these partial derivatives, as follows.
Take any point p and any vector v in E"; then for each real number
t >0, p 4 tv is a point in E*. We set

.1
(1) Vof (p)=Vf(p,v) =lim {f(p + ) —f(p)}
. {—04
This is a vector in E™, tangent to the curve which is the image under f of
the line through p in the direction of ». For each p, we have a function
Vf (p) mapping vectors in E™ into vectors in E™; it is elementary to show
that this function is linear.
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If m =1 and E™ is the space U of real numbers, we have a real
valued function ¢ in E"; with coordinates (2%, - -+, 2*) in E” and corre-
sponding vectors e, * « + , e, along the axes at the point p, we clearly have

d
(2) Velﬁf’(P) = (gs(c{)) ; t=1, -+, n.

In this case, V ¢(p) is a real linear function of vectors v, and thus V¢(p)
is a covector. Hence V ¢ is a differential 1-form in E™, called the gradient
of ¢.

We return to the general case. Given p and vectors v;, -+, v, in
E" set
(3) Vf(p, vyv- - vo,) = Vf(p, o)v- - vV f(p, v,);
this defines a linear transformation of r-vectors in E” into r-vectors in ™,
which we also call Vf (p)

Now let @ be any r-form in E™. Take any point ¢ = f(p) in E™.

Then w(g)-a’ is a linear function of r-veetors o’ in E™; hence w(q)-Vf (p, «)

is a linear function of r-vectors « in E”, and is thus an r-covector in E®,
which we call l f*r x\{fn\ Now f ¥ 1s an r-form in ", The definition is

¥Y LAE/AA  FY ANNSVY LAF a1 v r =AXNSE ARi HiA AV VAVRLALIVANS LI AT

given by
(4) (f*o)(p)oe = ol f(p)-Vf(p, «), all r-vectors « in E™.

Because of (3), we find, for differential forms & and & in E™,
(5) f ¥ wvé) = f *wvf *§.

15. Jacobians. Let f be a smooth mapping of E” (assumed metric and
oriented) into E™. Then the image under Vf(p) of the unit n-vector «,
of £” is an n-vector in E™, which we call the Jacobian J(p) of f at p. Take
for instance » = 2, m = 3, and let (e, e,) be an orthonormal base in E2.
The images from p of these vectors are

(I) wl(p) - Vf(p, 61), w2(p) = Vf(P, 62)3

and the Jacobian at p is the 2-vector

(2) J1(p) = VI (D, ap) = Vf (D, e3vep) = wy(p)vawy(p).

IfJ J,(13) is 740, then w,;(p) and wz(p) are independent which clearly implies

+h A on ~fF o
bll&b J .lb one-one 111 a I.lBlgliUUI'IlUULl UJ. 1}, Hl L-l].lb case tne uud,gt:, UL &

neighborhood of p is a smooth piece S of surface in E3.

Suppose f maps E" into itself. Then J (p) is a multiple aa, of «y;
we call this number a the algebraic Jacobian J(p). Thus, with the unit
n-covector w, of £™,

(3) J(p) =T D)y, wgI(p) = J,(P)-

The term ‘“‘Jacobian’ is commonly used to denote J,(p); note that J(p)
is independent of the metric or orientation of E™.
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Take the case n = 2, m = 3 again. Using orthonormal coordinates
(s, ) in B2 and (x, y, 2) in B3, write the components of V, f (p) = of (p)/0s
etc. as a set of three numbers. We have

o IO (e B
ds  \ds’ 0s’ 0s/)’ ot \ot ot ot/
Define the “Jacobian determinants’
o(z,y) | 0x[ds 0Oy/0s
o(s,t) | oxjor oyjor |’

Then by (9.5),
d(x, y) d(, 2) a(y, 2)
(5 J(p) = == o — e,
(9) +P) s, b) €12 1 3, 1) €13 3, 1) €o3
Define the “Jacobian vector” J(p) at p as that vector corresponding

to the 2.vector J(p); see (13.2). By (2) and (13.3), we may write it in
the form (using orthonormal coordinates)

_of(py _oft®) .

f ) . FEA R { an\
FAV S B s o~ ot — W\ AWl Pt

- (M_) _ Oz, 7) Oz, y))
os,t) - O(s,t) " d(s, t) ]

16. Transformation of the integral. Let w be a uniformly continuous
differential 2-form in the bounded open set R of the oriented plane EZ2.
We consider a smooth mapping f of the bounded open set R, of the space
E’% onto R, with Jacobian J, 5% 0 at all points. We wish to express
{ r @ as an integral over R,,.

Cut E’% into small rectangles, and let a,, * - -, 6, be those lying in E,.
The image 7, = f (6,) of o, is a small “curvilinear parallelogram’ in R.
Let p; be a corner of ¢;, and let v,;, v;, be vectors on adjacent sides of g,
so that

{o:} = vavoy.
Now
wy = Vf(p; vy), we = V(D vs0)

are side vectors of a parallelogram 7; which is a good approximation to 7;
if o, is small. By § 11, clearly

1) D o) a=Fp),
is a good approximation to fR w. By (14.3),

{T:} = wilvwi2 = V.f (pis 'UuVUiz) == Vf (.pp {Gi})’
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and by (14.4),
> wl@) w5t = o(f) Vi, (o) = D (f*a)p){o)

which is a good approximation to fR f *®. Thus we see that
0

— *
(2) [0 = [pf*o
(The detailed proof is given in (I11, 8).)
From this we shall derive the usual formula, using Jacobians, and
taking E'2 = E2. With the unit 2-vector «, in E?
{ri} = VI (®s {o:}) = Vf(p:, ag) = I 0y ‘ J{p,)-

Let @ be the real function corresponding to w; that is, with the unit
2-covector w, in E2,

g;

(3) w(g) = B(Q)wy,  ®(g) = w(g) oy
Now by (15.3),

w(g;){:}

A £’

4}

|
—

q;) ll'r_’i!

7

= 0(q;)wy’

o;|I((p,) = (@) (p) | o] -

Summing and taking limits, we have

@) [p® = [ o @) 0 dp,

using the Riemann integral in both cases.
The same formulas hold in any number of dimensions. Note that
neither side of (2) depends on a choice of metric.

17. Smooth manifolds. As a typical example, we take a piece S of
smooth surface in 3. At each point p of S there is a tangent plane T'(p).
Some neighborhood U of p in T(p) projects in a one-one way into S.
A coordinate system in 7'(p) projects into a coordinate system in §; this
coordinate system is a smooth mapping of part of the space W2 of pairs of
real numbers into §. Where two such coordinate systems overlap, they
are related by a smooth mapping of part of U2 into itself, with non-
vanishing Jacobian. This suggests the general definition of a smooth
manifold, using such coordinate systems, without reference to any con-
taining space, as in (II, 10).

With 8 as above, let v be a vector in T(p). The points p, =p + tv
in T'(p) project into points ¢, in S (for ¢ not too large). These points ¢,
form a ‘‘parametrized curve” C in 8, which we may take as defining a
corresponding vector “of 8’ at p. In place of the points p,, we could use
any function p, in T(p) with py = p which has the same tangent vector
at { = 0: (9p,[0t),_o = v; this would project into a parametrized curve
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¢’ with points ¢; in S equivalent to €. We may use the definitions of av
and of v + w in T(p) to give corresponding definitions in S at p. The
vectors in S at p now form a vector space V(p). Using this vector space,
we may define r-vectors and r-covectors in S at p; hence we may define
differential forms in 8. In a general smooth manifold (not in Euclidean
space), we may define vectors at a point by means of parametrized curves,
and define addition of vectors with the help of coordinate systems.

To define r-dimensional integration in an n-dimensional manifold M,
one must first choose simple r-dimensional domains of integration;
(rectilinear) r-cells are not defined here. One may choose oriented pieces
of r-dimensional submanifolds of M for such domains. We have now the
problem of defining the integral of an r-form « over an oriented piece of
an r-manifold.

Take first n = 1; then we have an oriented curve C, abstractly defined.
It is of course equivalent to an interval of the real numbers. Now

[C o is defined for a 1-form . Suppose C is in E3 and o is defined in a

'y Vm

Th%“ the ventnra m — m. ara nearlv tancant ta {1 and
m—1 m—1

M > op) (PPt = D 0B Bus— )
i=0 t=0

is an approximation to the integral fc .

Take an oriented piece S of surface in E3 again. Supposing 8§ is a
small piece, we may cut it up into small curvilinear pieces 7, -, 7,
for instance images f(a,), * * +, f(o,) of rectangles in a coordinate system
(see the =, in § 16). With tangent vectors w;;, w;, at the vertex g, of 7,
we may form

(2) Z (q;) (Wi vw;s)

and use this as an approximation to fs ®; compare (16.1). Because of
(16.2), we see that we may equivalently define fsw as being fs f*o,
o

if § = f(8,), S, being part of the Euclidean plane.
The latter definition is independent of the fact that 8 is in E3. With

Sin B8 if s ia defined thrauchout o neichborhood of © in 72 we eniild
41 A4, 11 WU 1D Uubillicu UlllUuéllUu.U & J.J.UIBU.UULH.UUU UL O 111 1Y 3 W Coulu

use polyhedral approximations to define the integral; see Chapter X.

18. Particular forms of integrals in 3-space. Here we have r-dimen-
‘sional integration forr = 0, 1, 2 and 3. Letting E® be metric and oriented,
an r-covector in E3 corresponds either to a real number or to a vector
(see § 13); this gives us special forms of the integrals, which we discuss.

r=10. A O-cell is a point p (without orientation properties). A
O-covector is a real number; hence a O-form is a real function. The
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integral of the 0-form ¢ over the 0-cell p is the number ¢(p). A polyhedral
0-chain is an expression A = >a,p,, and the integral of ¢ over A is

1) [#=2 adm).

In particular if ¢ is the oriented 1-cell pq, then

@) Apg) =1g +(—Dp, [, = da)—é(m.

r = 1. With an oriented curve C and a 1-form w!, an approximation
to J.c' w' was given in (17.1). We replace w! by a vector function v in E3,

as follows. For each p, v(p) is the vector such that the scalar product
v(p)w equals wl(p)w for all vectors w; see § 12, With a common notation,
a tangent vector along C is called the “line element” ds, and the integral
is written (using (17.1))

3) [t = [ vds =1tm > 6(p)(Pus — p)-

This is the “circulation” of v along C.
r = 2. In this case, an approximation to fs w? was given in (17.2).

The 2-form w? corresponds to a vector function v, as follows. For each
P, w¥(p) =Ty, a8 in (13.1). This relation gives

w3(p) o = wylv(p)val, all 2-vectors «.
Hence, by (13.4),
(4) 3(g;) (W V) = g [WyVw;eve(g:)] = (Wi X Wie)(g;);
with the notations of (17.2), the sum of these quantities is an approximation
to f w?, The vector
s
(5) NI‘ —_ ’wuX’wm

is called the “‘surface element” at ¢,, and in analogy with (3), the integral
18 written

(6) fs w? = fs »-dN = lim z v(g,)'N..

This is the “flux” of » across S (see § 5).
r = 3. The integral J‘R w? is defined for regions R in oriented £3 and a

3.form ®3. With the unit 3-covector w, w3 p) = @(p)w, for a real
function @ as in (16.3), and

@) [REER
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the last integral being the Riemann integral. If we cut R into small cells
o, oriented like £ and choose a point p, in each g;, then

(8) Z w¥(p){o;} = Z @(p;) | o]

is an approximation to the integral.

19. The Theorem of Stokes. Let w be a smooth r-form in E". Then
the general Theorem of Stokes says that there is an (r + 1)-form o’ = dw
in E™ such that for any oriented piece M of a smooth manifold of dimension
r 4+ 1 in E™ with boundary oM,

(0 .[dez J;Mcu.

From general considerations we will see that w’ must exist; we deduce its
form in the next section. The usual formulas in E? are given in § 21,
Define the r-cochain X in £” by

(2) X0 = Jr aJ, &
ag

We define an (r 4- 1)-cochain ¥ = dX by the formula
(3) Yr=X-0r= J; w, all oriented {r 4 1)-cells 7;

compare (1.2). It may be proved that X satisfies (Hj), or equivalently,
that Y satisfies (H;); see (V, 10). That Y satisfies (H,) is trivial: For
any oriented (r 4 2)-cell 77,

(4) Y-0r' = X-007' = X-0 = 0.

Thus Y is a flat (r 4- 1)-cochain. We call it the coboundary dX of X. If we
assume that the partial derivatives of w satisfy a Lipschitz condition,
then we may show that Y is sharp. There is then (§ 11) a corresponding
(r + 1)-form &’ = Dy, such that

er'z Yr= {;CU,
giving (1) for cells and hence for M. (Of course o’ exists under much more
-general conditions; see for instance (III, 16) and (IX, 12).)

20. The exterior differential. Given the smooth r.form w in E” the
(r + 1)-form o' =dw of §19 is called the exterior differential of w.
Using an affine coordinate system (1, - - -, x") in E*, we wish to find the
components of w’ in terms of those of w.
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Take first r = 0. Given the point p, take any %, set p, = p 4 te;, and
consider the segment pp, (¢ > 0). Since

t ., . W
w. dxt =J. = w
f o PP: ppy)

= w(p;) — o(p) = J - 4,

we must have

, Ow
(1) r =0: w,--_a—x;.

Take next »r = 1. Given p and ¢, j, let us write z, ¥ for 2%, 2/, and omit
the other coordinates. Take any A, k > 0, and let ¢ be the oriented
rectangle with corners

p=(zy), pP=&+hy, P=@+thyt+k, P"'=(zy+k).
. p” y+k

| Since J‘p, w = L w,;(x + h, t) dt etc., we have

(2)

i fy+k. e . [fz+ , . s , v 3
'l 0e® =Jy [w,(x 4 &, 1) — w,lz, 1)] J lwa-(é‘, Y + k) — w8, y)] ds.
Now

x+h P
wir + b 1) — wz, t) = J; Ew w8, t) _d's,

and similarly for the other integrand. Hence we must have

f w’ —-f w = Jﬂh JWH[ (8, 8) — ;y w,(s, t)]dt ds.

Taking % and k arbitrarily small, this shows that

’ a J a i
(4) r=1: Wy = a(:::)" . a:;,.

The same method may be used in the general case. In particular,

. dw;, Ow,; . Ow,
(®) =2 =gl T
There are similar formulas relating w and @’ directly. For instance,
(6) r=1:  do(p)ovw) =V jop)w] - Vo@]
We mention some general properties. For any r-form w and s-form &,
(7) ddw = 0, d(wvE) = dwvé + (—1)wvds.

If f is a smooth mapping of one Euclidean space into another and  is an
r-form in the second, then

(8) df*e = f* do.
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If w is an r-form defined in a manifold, we may define dw with the
help of a coordinate system; because of (8), the definition is independent
of the coordinate system employed. The above properties continue to
hold, except for (6).

21. Some special formulas in metric oriented Z3. We give examples
of the exterior differential and Stokes’ Theorem.

r = 0. Here, the exterior differential is simply the differential, i.e.
the gradient: d¢ = V. (This formula fails for » > 0.) With the “del”
operator

d 0 d
v=€1$+eza_y+83§’

the vector function corresponding to d¢ (see § 18) is

o6 06 04

1 Vé =grad (¢) = — ¢; + - e, + — e,.

( ) ¢ gr ¢ ax 1 ay 2 az 3
For an oriented curve C from p to g, (19.1) gives, with the notations of
§ 18,

@ [, Véds= [ grad ($)ds= [ dg = b(g) — 4(p).

If C is an interval of the real axis, this is the “fundamental theorem of the
integral calculus.”

r = 1. Given the smooth vector function v in E3, there is a corre-
sponding 1-form w, this has an exterior differential w’ = dw, and this
2-covector valued function corresponds to a vector function #’, called
the curl of v. Because of (10.2), w; = ¢*, and because of (13.10),

(3) Wi =103,  wiy= —1v'% @y =0l
Hence, by (20.4),
(4) VXxv = curl (v)
ov®  do? ov:  ov' ov: oot
:( _“)el+(_§+—§")€2+(——§")eg-

oy 0z / \dx dy/

VWV

For an oriented piece § of surface with boundary curve C, {19.1) gives
(5) fs (V X v)-dN = fs curl (v)-dN = fc vds.

This is the commonly called “Theorem of Stokes.”
r = 2. Given the smooth vector function v, there is a corresponding
2-form w, and dw = w’ is a 3-form corresponding to a real function &’
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as in (16.3), called the divergence of v. The relation between » and w is
given by (3), and @’ = w’yy5. Hence, by (20.5),

ovt n ov? n ov?

ox ody 0z

For a region R (oriented like E3), with boundary S, (19.1) gives, using the
volume element dR,

(6) Ve =div (v) ==

(7) va-v dR = fR div (v) dR = fsw-dN

By taking particular vector functions in (5) or (7), we obtain special
standard formulas. Recall that they are all cases of (19.1), which formula
holds independently of a metric in the space.

The formula ddw = 0 gives, in the cases r =0 and r =1,

(8) V X Vdé = curl (grad(¢)) =0
(9) V+{V X ¢) = div (curl{¢)) = 0;

these are easily verified directly.

We may start with a real functlon é, find its gradient, interpret this
as a vector function, and find its divergence, giving a real function again;
this is the Laplacian of ¢. By (1) and (6), this is

2p 0% 0
(10) VU4 =Ad = 4’ a"s af'

Because of its construction, the right hand side is independent of the
choice of orthonormal coordinates.

22. An existence theorem. In a convex subset of K3, any vector
function is a gradient provided its curl is 0 (it is then commonly called
an exact differential), any vector function is a curl provided its divergence
is 0, and any real function is a divergence. (The functions are assumed
smooth.) These are cases of the general theorem, that a smooth r-form w
(r 2 1) in a convex subset of E” équals d& for some (r — 1)-form § if and
only if dww = 0. Note that for a 0-form (real function) ¢, d$ = 0 if and
only if ¢ is constant. The theorem fails for more general subsets of E* or
for mantfolds; see the next section.

We give a formula denoted by (n; r), for the components of a possible
& in terms of those of the r-form w in E”, for various values of » and 7,
in a cube containing the origin. Forn =r =1, set

(1;1) Ez) = f w,(t) dt;
then (d§),(x) = dé(z)/dr = w,(x), and hence d§ = w.
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For n = 2, r = 1, we carry out the idea above by integrating along
the path from (0, 0) to (0, y) and thence to (z, ¥):

(2:1) fay) = [[ 00,0 dt + [ onls, y) do.
Then 9&(z, y)]0x = w,(z, y), and since dw,/0x — ow, [0y = 0,

0é(x, y):wz(o, y) - awg(;, Y) ds

= wy(0, y) + [wy(x, ¥) — w4o(0, )] = wqlz, y).

We write down some further cases:
(2;2) @ y) =0, o y) = [ wls,y) ds;

Bi1) £y, 2) = [[ 040, 0,w) du + [}y, 1.2 dt + [} w1(s, 9,9 ds

T
5y [E@BA=0 bmyd)= [7 s, 9, 2) ds,
; = f .\ yA I 5 T TS S ¥ S| :l:“ o ar oA a
| 3l 4, 2) = jro WqqlU, ¢, 2) dl 4 J0w13{ , Y, 2) ds;

(3;3) &1a(@, 9, 2) = £1s(@, 9, 2) = 0, Eas(®, Y, 2) = J.: Wy 25(8, ¥, 2) dS.
A general proof of existence of £ will be given in (IV, 25).

93, De Rham’s Theorem. The Theorem of de Rham relates differential
forms in a manifold to homology and cohomology properties of the mani-
fold; see (IV, Theorem 29A). We shall discuss the theorem briefly for the
case of a torus M, in the dimension 1.

The points of M are described by naming a pair of angular coordinates
(0, ), 0 <6< 2m, 0 < »< 2m, where § = 0 is identified with § = 2,
and similarly for . Thus we have

(1) 0,y) = (2m y), (0,0)=(6,2n)

The points (6, 0) as 8 goes from 0 to 27 form an oriented closed curve C;
similarly, the points (0, y) form C,. Now let C be any oriented closed
curve. By an elementary argument we may show that C can be deformed
into an oriented closed curve C’ which follows C; a number y, of times, and
then C, u, times; u, and u, are any integers. For u; = uy = 0, 0" reduces
to a point.

We call a differential form w closed if dw = 0, and derived if w = d§
for some £. Since ddé = 0, any derived form is closed. Call v and @’
cohomologous if w — @’ is derived. A closed r-form, together with all
cohomologous forms, forms an r-dimensional differential cohomology class
in M (with real coefficients); the set of these classes form the r-dimensional
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differential cohomology space H”. By the Theorem of de Rham, this is
isomorphic to the r-dimensional algebraic cohomology space with real
coefficients.

The fundamental periods of the closed 1-form w in the torus are the
numbers

2) Pyw) = fclcu, Py(w) = fciw.

For any cohomologous w’, Stokes’ Theorem gives
P() — Po) = |, (0 —w)= [ dt= [,

since C, is closed. Hence we may speak of the fundamental periods of a
differential cohomology class. We shall show that there is a unique class
with any given pair of numbers as periods. This is the original formulation
of the theorem in the present situation.

Define the closed 1-forms

(3) w} = db, wy = dy.

§=0,

Though 6 and y are not single valued in M, because of (1), clearly o] and
w} are. The fundamental periods of w} and of w; are (27, 0) and (0, 27)
respectively; hence

(4) Pyaw} + bo}) =2ma,  Pyaw} + bw}) = 2nb.

Thus there are closed forms with any given fundamental periods.
We next note that if the oriented closed curve C is deformed into O’
as above, then for any closed 1-form w,

(5) fcw = _[C,w = t Py(w) + paPy(w).

isomorphic to the r-dimensional algebraic cohomology space.

For we may find a succession of curves C,=0C,Cy,--+,C, =C’, as
follows. For each 1, there is an oriented 2-cell g; with boundary dg,

= B; — A, such that C,; contains B, C, contains 4,, and C; and C, ,
are the same otherwise. Now

fcmw — Jo = fauiw = Lida) = 0,
and the first relation in (5) follows; the second is clear.

We must show still that if w and &’ are closed 1-forms with the same
fundamental periods, then their difference #n = w’ — w is derived:
n = d¢. We may define ¢ by the formula (2;1) in § 22:

Y 7}
(6) B0, 9) = [ 10,0 dt + [, mals, v) ds.

To show that ¢ is single-valued, apply (6) to give
2w
$(6, 2m) — $(0,0) = [ 75(0, 1) dt = fc, 5 = 0.



§ 24] NORMED SPACES OF CHAINS AND COCHAINS 27

Similarly ¢(27, y) = ¢(0, y). That dd = » follows as in § 22.
We remark that for any oriented closed curve C, we can find the
associated numbers u,, p, through wf, wy. With ¢’ as before,

(7) J'C‘ cuf: J.orw: = lulpl(w:) + #ng(wf) = 2mru,.

The Theorem of de Rham also relates products of forms to products
of algebraic cohomology classes or intersections of cycles. We give one
formula. Clearly w}vw} is the unit 2-covector function in M; hence

(8) [, wlvel = an.

It follows easily, for any closed w,, w,, that

9) [, @1vey = 472 Py(w)) Pylwy) — Py Py(wy)]

we use the fact that w, is cohomologous to a form w, = a,wf + bw;.

C. INDICATIONS OF GENERAL THEORY
24. Normed spaces of chains and cochains. Given the flat r-cochain X

. TR (8 ok | X and | AY ! ho thoe amallact AV and A Liafoineg +ha
in 1& (§ v), itV t;x I uLiva wal. I MO ULIC BLIIALICHU LY 1 allll AY 2 aabmx‘yulg Gl

hypotheses (H;) and (H,) respectively. Then the function
(1)

of flat cochains is a norm, the flat norm, and the linear space of flat r-
cochains with this norm is a Banach space C'".
Let the mass of the polyhedral r-chain 4 = >a,0, be

(2) | 4| = 3|a;||0o;| (f the o, are non-overlapping);
then the definition of | X | gives| X-4 |< | X || 4], and
| X-oD|<L|dX || D|, all polyhedral (r 4 1)-chains D.
Given X and A, take any such D. Then
| X-4| =|X(4 —aD) + X-0D |
<|X||4 ~ 0| +|ax|| D|<| X[ 4~ 2D| +|D))
This suggests defining the flat norm of the polyhedral r-chain 4 by
() |[A|" =inf{{4 —8D|+|D|},  all polyhedral (r -+ 1)-chains D.
- This is a norm in the space of polyhedral #-chains, and is the smallest
norm such that, for all flat X,
n | xa|<|XP|ap.
For an example, take an oriented 1-cell ¢, and let o’ = T,o denote ¢
translated by the vector v. Now o and ¢’ are two sides (of length | o|) of
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a parallelogram 7; the other two sides A, B are of length |v|, and
i7|<|o||v|. Hence

B | Tw—olZ|To—o—0r|+ |72+ ]|o])|?|.

Since
| X(T0— o) | < | XP|To— o < @+ ol | XP| o],

X-T,0 is near X-¢ if » is small. .
Each flat r-cochain X has a coboundary dX, which is a flat (r 4 1)-
cochain, defined by

(6) dX-B = X-0B, all polyhedral (r + 1)-chains B.

This relation is the abstract counterpart of Stokes’ Theorem (19.1).

The space of polyhedral r-chains in the flat norm is not complete;
if we complete it, we obtain the space C of flat r-chains. Now C°" is the
conjugate space of C2.

We may define the sharp norms | X |* of cochains and | A |[¥ of poly-
hedral r-chains similarly. Completing the space of r-chains in the sharp
norm gives the space C¥ of sharp r-chains, which includes C5.

Now integration theory may be set up as follows: Define a norm (for
instance the sharp or flat norm) in the linear space of polyhedral r-chains;
then an “‘integrand” (cochain) X is a bounded linear function in this
space; it satisfies continuity conditions, depending on the norm chosen.

Now X-4 = L D  is defined not only over polyhedral r-chains, but also

over all elements of the completed space of chains; with properly chosen
norms, this space will include curved pieces of r-dimensional manifolds,
etc. This is the program we carry out starting with Chapter V.

25. Continuous chains. We return for the moment to the torus M of
§ 23. Let U}, be the oriented closed curve of points (6, ) as 6 runs from
0 to 27. Since C},, may be deformed into C;, we have, for any closed
1-form w in M,

M [0, preldd = [ w6, v) do = fm,,,w — Py(w),

where e, is the unit vector in the #-direction. Integrating with respect to
v and dividing by 27 gives
1 | 27 [2n

2 — w-ez—f w(0, w)e]do dy = Py(w).

(2) 217M12ﬂ_00[(%")1] Y 1(w)
This expresses P,(w) by means of the Riemann integral of w-e; over the
whole of M. We have here a 1-dimensional integral P;(w) in the guise of a
2-dimensional integral.
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We ask now, dropping the restriction that w be closed, can the !eftihand
side of (2) be interpreted as a 1-dimensional integral? We may do this as
follows. First, the curves C;, may be considered as simple 1-dimensional

figures, and
X0y = | 0 @ = F®)

is defined. Now take a fine subdivision & of (0, 27) by the points g, = 0,
Y * s Y = 2, Corresponding to &, define the 1-chain (similar to a

polyhedral 1-chain)

m—1

(3) Ag = z (Wir1 — PIChy,-

=0

Then
X-dg = z(wm — ) X0y, = ZF(%)(%H = a)-
Taking a sequence &,, &,, * - - of such subdivisions, with mesh —>0, this

shows that
(4) lim X-Aek =

k—w®

2
fﬂ F(y) dy,
which is the desired integral over M. Moreover, we show below that in the
flat norm (§ 24), the sequence AGI, Aez, - + - i3 a Cauchy sequence; hence it
has a limit A4:

(5) lim? Ag, = 4.

k— 0
Now X4 = f:"F(gu) dy, so that the integral in (2) is simply the value
of X on the flat 1-chain 4.

To illustrate the convergence in (5), take the square 0 < 6 < 2q,
0< 9 < 27, in U2 (see § 17) instead of in M; the Cy,, are now segments o,.
Suppose ©, is a refinement of S,. Then each term (Y41 — wi)o; in S
1s replaced in &; by a sum of terms (Wijr1— widogs oy, —yp,<e
(all ¢), then (24.5) gives
b

’Z Wige1 = Yi)0is — (Yisa — oy ’ = l Z (¥i5+1 — vasloy; — o)
j 3

- O, | b
= Z‘ (Wt',:i+1 - "Pij) i G;; — 0; é ('QU,-_H — P2 + 27)e.
b

Therefore
(8) |4, —A4g |P< Z (Y1 — )2 + 2m)e = 2m(2 + 2m)e,

and (5) follows for this case (and hence for the above case).
Note that it is the e, in (2) which determined the flat chain 4. In
general, in an n-dimensional Riemannian manifold M, we may have a
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continuous point function «(p), whose values are r-vectors; the function
« defines a flat r-chain 4, called a continuous r-chain. An r-form @ = Dy
corresponds to a flat (in fact, sharp) cochain X (see (11.2)), and using the
Riemann integral, :

(7) X4 = fM W

Suppose the function « is smooth. Then it may be shown (VI, 9) that
the boundary d4 of the corresponding chain A is defined by a function
«’ formed from the partial derivatives of a.

26. On 0-dimensional integration. We may divide kinds of integration
into two types: (a) those in which orientation properties of the domains
are used, and (b) those where these properties are not used. Under (a),
there is of necessity a certain dimension number r attached to the integral.
This might even be the case under {b), but the essential geometric properties
are missing; we show below how to set up such an integral as a 0-dimen-
sional integral.

Whenever a domain of integration can be turned in space (thus moving

Ainantinnag nt amanallal A Aniainal magid PRy

lll. Pai't 11l GITEeCUitIisS 1iov Pﬂ!l. autﬂ. vO lbb Ul.lsll].ﬂvl PUbLUiUll), Ul.lUlantlULl
properties are probably needed; witness the discussion of flux in §5.
Where this type of motion is not used, orientation: can in general be

disregarded. Thus, as in (18.7), the integral fR w of a 3-form w in oriented
E3 over a domain R oriented like E3 can also be written as the Riemann
integral f 2® of the corresponding real function @ (assuming E? is metric);

in the latter, orientation properties are not used. In the transformation
formula (16.2) or (16.4) however, one must pay attention to orientation.

A typical example of an integral of type (b) is the evaluation of the
total mass of a mass distribution. We might have mass spread out over
curves or over surfaces in £2; but these figures need not be oriented in
determining the mass. A more general integral of the same sort is the
integral of a real function ¢ in a metric space § which has a (positive)
measure function u attached. We may consider ¢ as a O-form; then
X-p = ¢(p) i8 a 0-cochain in S. We show how to consider any compact
measurable subset @ of § as a “flat” 0-chain 4, such that

M) [,#dn=X-44;

Wwe assume ¢ i3 continuous, so a Riemann type definition may be used.
For each subdivision © of @ into measurable sets @,, - - * , @,,, together
with a point p, chosen in each ¢;, we have a 0-chain

(2) Ag = 2.u@)ps
for a sequence of such sets with mesh —0, the limit of the corresponding
chains is a “flat” chain A. The proof rests on the following fact: Suppose
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each @, is of diameter <'¢, and @’ is a refinement of S. Say @, is divided into
sets @;;, and p;; is in @;;. Then considering p,p;; as an abstract 1-cell
and noting from (24.3) that | d(pq) " < distance from p to g,

\ Ag — Ag Ib = l Z Q) (Pis — i) "= l Z (@) a(pipij)
4,7 1.f
Se Z p(Qy;) = eul@).
%)

1!:

The usual proof now shows that the flat 0-chain 4 exists. Since

Xdg =D uQ)Xp= D $ppIu@

it is clear that (1) holds.
We remark that if we set

pAg = 2P I(@)p;s

the flat limit gives a 0-chain ¢4 ; there is a “unit’ 0-cochain X, defined
by Xgp =1 (all p), with corresponding real function Dy (p) = 1, and

= 2 a r 2 - (4 2} n n . . - N - - . 2~ ——— -
AgpAd = .’Q ¢ du. 1S type ol operation 18 studied 1n (V1L 1).



PART I

CLASSICAL THEORY



I. Grassmann Algebra

We give here the algebraic basis for the theory of r-dimensional
integration in n-space; it will be used in Chapter III to set up the integral
of a differential form. Why this algebra appears in integration theory will
be seen in Chapter V; see also Part A of the Introduction. We use a
geometric approach; with the introduction of coordinate systems, the
usual formulas involving components are derived.

The Riemann integral, being an n-dimensional integral in n-space,
does not require the use of Grassmann algebra. However, the transforma-
tion theorem, and still more, the Theorem of Stokes, are best understood
with its help; hence we employ the algebra in Chapter IIT from the start.
Tor the purposes of that chapter, the important sections of the present
chapter are §§ 1, 2, 3, 5, 8, 9, and parts of 10 and 12. In the general theory
(starting with Chapter V), the norms of § 13 are basic. The products of
§8 6 and 7, though clearly a fundamental part of the subject, are needed
only in special parts of the theory.

For other accounts of Grassmann algebra, see for instance Bourbaki
and Lichnerowicz.

The theory is concerned with a vector space V. One defines, abstractly,
“products” of vectors (§ 1), thus forming r.vectors of V. Similar products
in the conjugate space ¥V of V (App. I, 3) give r-covectors, which act on
r-vectors to give numbers. These objects are known in tensor analysis
as contravariant and covariant alternating tensors. The actual appearance
in integration theory (V, 10) of r-covectors is as alternating multilinear
functions; these are discussed in § 4. In the study of coordinate systems
in §5, we find the properties of components often used to characterize
the objects.

The exterior and interior products correspond to products in algebraic
topology; see (IV, 29), (IX, 14), (IX, 16), and (X, 11).

The r-vectors with immediate geometric interpretation are the ‘‘simple”
ones; see § 9 and also § 7 of the Introduction. It is this interpretation
we make use of in the definition of the integral in Chapter III. Properties
of linear transformations, duality, and magnitude occupy the latter part
of the Chapter.

1. Multivectors. Let V be a vector space. We define first 2-vectors,
or bivectors, of V. A 2-vector is an expression of the form

(1) a = ay(uyVvo;) + * * * + a(uvey),
35
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with any number of summands, written in any order; the a, are real
numbers, and the u, and v;, vectors of V. We form « + § by writing one
expression after the other, joined by a plus sign; we form aa by replacing
each a; by aa,. The expressions are to satisfy the relations

(2) a{uvv) + bluvv) = (& + b){uvw), 1(uvv) = uve,
(3) (u + u' o = uvv + u'vo, wv(v + v') = uve + wvv’,
(4) (au)vv = uv(av) = a(uvv),

(5) uvu = Q.

Using these rules gives
uvy + vvu = uvu + wvv + vvu + vve = (u + v)v{u + v) = 0;
hence
(6) VWU = —uvo.
An r-vector is an expression of the form

(7) A CIONAR T I SIUIS S M AR P B

with the same properties. The distributive law applies to each variable; a
term with any vector repeated is zero. For r = 0, we have real numbers
(scalars); for r == 1, vectors. The r.vectors from a vector space, which
we denote by V.

We say r is the degree of the r-vector, though perhaps “dimension” is
a better term.

We can describe V[, in accurate terms, as follows. Let L" be the
linear space of real valued functions F, defined on the r-fold Cartesian
product V@ = ¥V x -+ X V, which vanish except at a finite set of
points of V™. If F has the value g, at vy X *+* X v, (§=1,---, k),
and is zero elsewhere, we write

(8) F=ay(vy - o,) + 0+ aplvgg -« - 0,
the terms may then be commuted, and a rule like (2) may be used. We
write 0 for O(v, * - - v,), and v, * - - v, for 1(v; - - - v,).

With these notations, let L be the subset of all functions ¥ which may
be written in any of the following forms (letting 4, B, and C denote any
expressions v, * - * v,, possibly vacuous):

(9) A{v + v")B — AvB — Av'B,
(10) A(av}B — a(4vB),
(11) AvBuC.

Let L} be the subspace of L” spanned by Lj, i.e. the set of all linear
combinations of such functions. Then V},,is the quotient space (App. I, 5)

(12) Vin = L"mod Li;
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let a(v,v- - -vv,) be the element of V|, corresponding to a(v, - - - v,) € L".

The proof of {6) shows that interchanging two vectors in any expression
;v * *vo, changes the sign of the term; applying this any number of times,
we find, if (A4, -+, A,) is a permutation of (1,---,r), that (see the

notations in (App. I})
(13) V3V VU = € V" VD,
If the A, are not distinct, both sides are 0.

2. Multicovectors. Using the conjugate space ¥ of V (App. I, 3), form
the space

of multicovectors in terms of V exactly as V|,, was formed in terms of V.
We say an r-covector is of degree r. Let expressions >a,f'lv- - -vf'" denote

r-covectors.
Define the scalar product of r-covectors and r-vectors as the bilinear

operation such that

PR | X AN Y
(‘I AV; * -VJ )-(vi\/- - ov'vr)

®) FACAREACRY
_ E eﬂl"'iffl(’b‘ll) - fr(”A,) = ... .
A ,fr(vl) < e,

For the case r = 0, we have multiplication of real numbers; for r = 1, the
operation of a covector on a vector; for r = 2, ( fvg)-(uve) = f (u)g(v)
~ f (v)g(w).

Relation (2) certainly defines all scalar products. Since elements of
V" and of V|, may be written in many different ways, we must show that
the definition is independent of the manner of writing the elements. We
may prove this as follows. Say V1"l = M" mod M7, as in (1.12). Let M"
operate on L” by the rule

(Zazfﬂ .. f")( ijvﬂ ‘s vjr) — Z aib’. Z ei-fz'l(vﬂl) - 'fif(vjl,.);
J A

i i,J

clearly this is well defined and bilinear. If we show that an element of M S
times an element of L' is zero, as is an element of M* times an element of
Ly, it will follow that a bilinear operation is defined correspondingly
between V") and V;,,, which is exactly the scalar product. We sketch
the proof of the first fact in the case r = 2; the general proof will then be
clear. First,

(f+ 19w = (f + f)g) — (f + f)w)g(w)
= [f () + f'w)lg) — [f (@) + ' (v)lg(w),
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and we find [(f + f")g — fg — f'g]'uv = 0. Use of (1.10) is similar, since
(af) (u) = af (u). Finally,

v = () f (v) —  (9) f (@) = 0 = O-um,
Let ey, -+, e,andel, -+ -, e" be dual bases in V and in ¥ respectively

(App. 1, 3). Write, forany A = (4,, -, 4,),

(3) € == €. = € V' Ve, et = eMhr — ghye - yeh,

Then for any 1 = (2;, -+, 4,) and p = (uy, - **, 4,)
(4) ete, = 6.

For if the A; are not distinct, then ¢* = 0; similarly fore,. If 4 is not a
permutation of , then some 1, does not appear in y, €*(e, ) = 0 for all j,
and e*¢, = 0. It is immediate from (2) that e*¢; = 1. If y is a permuta-
tion of A, we reduce the proof to the case y = A by using (1.13).

In general, we use only the e, and e* with A, <+ -+ < A,.

Using (4) gives (see the definition of 3, in (App. I))

PN s NV P
(5) ¢ 2 o, =’

(#)
~
(6) w e, = wlj
Clearly the scalar product is characterized as that skew-symmetric
bilinear operation satisfying (4). Compare § 10 of the Introduction.

(A <- o <Ay

3. Properties of V;,;and V", Note that through (2.2), each r-covector
£ defines a linear function H in V,;. We prove
THEOREM 3A4. Let V be of dimension n. Then for 0 < r < n, Vi, and

Vi) are of dimension ('r) ; for r > n, all r-vectors and r-covectors vanish.

With the operation of scalar products, V" may be identified with the conjugate
space of V. With dual bases as in § 2, the elements

(1) e (A< e <A
form dual bases in V,,; and in VU] respectively.

First, given any r-vector a = 5,a,0,V* * *vv,,, Writing v;; = >, v5es,
multiplying out, and using (1.13) shows that « is a linear combination of
the e* in (1); also, if # > n, then « = 0. To show that the ¢, are indepen-
dent, suppose there were a relation 3 ;a’¢; = 0. Applying (2.5) shows
that a* = 0 for each 1. Hence the ¢, in (1) form a base in V},;. Similarly,
the e’ in (1) form a base in VI"). Hence also the statement about dimensions

is correct. If the ¢; and ¢, are dual bases in V},; and 7[_,], then letting e*
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correspond to ¢, obviously gives an isomorphism between V"' and ¥y,
which is defined by the above function H.

4. Alternating r-linear functions. The theorem below will be used in
(IL, 8) and in (V, 9). Let L[ (V) be the vector space of alternating r-linear
functions F in V; that is, F is a function of r variables, linear in each,
such that

(1) F(vi.la ttt, vl,.) = ell---lrF(vls e, ’U’.).

For r-linear functions, (1) holds if and only if ¥ vanishes whenever a vector
is repeated; compare § 1.

THEOREM 4A. For each such F, let V'F be the corresponding linear
function in V,, defined by

(2) (‘FF)( Zaivﬂv' ) 'V”ir) = Z%F(”u, Tty V)
Then ¥ 18 an isomorphism of L (V) onto 17[:]- Hence (see Theorem 3A)
(3) V= P, ~ Vi & Liy(V).

First, given F, let @ F be the linear function in L (see § 1) defined by
(2), with ® and Jaw, - - v, on the left; this is clearly well defined.
We see at once that @ F vanishes on all elements of Lf,; hence it defines a
linear function W' F in V.

Using a base ¢;, - -, e, in V, set
(4) ey v ren) =08, (A< -+ <A)
there is a unique element f* of L!,,(V) which has these values. Given
Fe L(V), its components are the numbers F, = Fleg, -5 e)
(A <--+ < 1,). Now
) F— Z F, f*.

{4
For take any g, u; < -+ < y,. Then

(ZFﬁfa)(e-‘ﬁ’ S ZF’I 61‘ = F.u = F(el‘l’ T e"r)’

) (4)
and since both 3, F, f* and F are r-linear and alternating, (5) follows.

Hence the f* span L,(V). Toshow that they are independent, suppose
G b Z(x)alf,_ = (). Then

0=Gle,, )= a0k =0, (< <p,).
(4)
Therefore the f* form a base in L7, (V).
Now with the dual base element, é; (8 3),

(WFHe,) = flleyy -« ) = 8 = ehe, = gy(e,);
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hence ¥ carries the base elements f* of Lf,,(V) into the base elements &,
of IE, proving (3).

5. Use of coordinate systems. Given the base e;, -+, ¢, in V, and
corresponding base elements ¢,, ¢* in V},; and V1 (§2), define the com-
ponents «* of r-vectors « and w, of r-covectors w by

(1) x = z e, o= Zwlea
(4) )]

(see Theorem 3A). Then «* and w, may be found from (2.5) and (2.6):
(2) ot =ta, w,=we (A < <A

We may use (2) to define «* and w, for all 4, not requiring 4, <<+ + - < 4,.
Using (1) and (2.4) gives
(3) W = Z w,al,
(1)
Given vectors v, -+, v, and covectors f1,---, fr, if v, = T vle,

. J
etc., the components of the v; and f* form matrices, from which we form
the determinants

oo Al

(4) Da(vli""vrt """ ’ Dl(fl"°"fr)-: """
U R

Since e*(v;) = of, file,) =fi, (2) and (2.2) give

(5) (wyv++vo,)* = DYwy, -+, v,), (fve-vfT)y= D,(fY, -+, f").

Hence, by (3),
(6)  (flv - ufry(oys vw) = D Dy fL -+, f DYy, -, 0

(4)
the equality of the right hand sides of (6) and of (2.2) is called the general
Lagrange identity (recall that f(v) = frv = >, f,).
We now consider a change of coordinates. Letey, - - -, e, be a new base,

related to the old one by (App. I, 1.1); the dual bases are related by (App.
I, 36) Define the determinants

58 te

ai!]_ s ai]_
A 61 v Ve __ ! r
(7) D, = VAL a; = TRk
" a”rl ... alIr |

with a similar definition for D’ﬁ, in terms of the a’;:. The corresponding
transformation of components of r-vectors and r-covectors is given by

(8) o't = Z Dicx", W) = Z D'tw,.

(1) (#)
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We prove the first relation. Let e, denotee, v- -ve, . Givena = > & e
use (App. I, 1.1) to find

o= z Z ay - ayate,.
v ()
In the first sum, collect together those terms in which the indices are a
permutation of some set 4; < - < ., this sum then becomes a double

sum >0, where > is the sum over all permutations » of this 4.
Recalling the definition of 8 and using (1.13) gives

y) ' i ’
S5 S e 3 S 0

b » (W (A (u)
from which the relation follows.

6. Exterior products. We define the exterior product of r-vectors and
s-vectors by the formula

(1) (Dgve s VoIV (W Ve * V) = TV VOV YT VI,

extending it to all r-vectors and s-vectors by linearity. This must be
shown to be independent of the manner of writing elements of V{,; and
V- The proof is like the corresponding proofin § 2, and will be omitted.

The associative law av(8vy) = (avB)vy is obvious. Using (1.13), we
find the commutative law

(2) v = (—1)"Pavg  (a €V € V.

As a consequence, ava = 0 if r is odd. But this need not be the case if » is
even. For instance, with the notations of § 2,

(612 + €35)v(e1s + €34) = 2e193.
Define the exterior product of multicovectors in the same way; the
same laws hold.
As special cases, vvw and fvg have the same meaning as formerly; and

v,v: - +vo, and flv---vfT may now be considered as exterior products.
If a is a number, define also

(3) ave = ava = aa, avew = wva = aw.

We now study components, with a base ¢, ** -, ¢, in V. Suppose 4
and y are distinct sets of distinet numbers (taken from 1 to n); let v be
the union of these sets, in some permutation. Then (1.13) gives at once

(4) eve, = 63,8,

For instance, ey ve,3 = —e,55,. We prove

(5) (vp) = > 0B~

(A)( )
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For if avf =y, then
avf == Z ate,v Z pre, = Z opre;ve, = Zy"e,;
)] (u) (A p) ()

collecting together those terms in » ;) in which 4 and u together form
a permutation of a single », (5) follows from (4). Similarly, for multi-
covectors,

(6) (wvE), = z 8 sk,
o)

For instance, if @ and & are 2-covectors,
(wv€)1234 = 019634 — W16y + W14€as + Wesbiy — Wasbis + Wgebso

If w is a covector and & an r-covector, we find

k
(7) (va)ﬂ “Aeey T Zéﬁ: Arir kfm He
k.(n)
r41
= ? (_—1)‘—10)1,51 Bl e
p ¢ AETALTAS ey
i=1

Consider the direct sum V of the spaces V[, (the reals), Vjy; (ie. V),
Viap = = *» Vinps thisis a vector space of dimension 2%, with base elements
e, together with the number 1. With the exterior products, Visa ring,
with the number 1 as unit; it is commonly called the Grassmann algebra
of V. The elements e, * - -, e,,, with the number 1, generate the algebra;
that is, any element is a linear combination of products of these elements.

A more general system is formed by including also the spaces V!
and the interior products of the next section.

7. Interior products. We define two products (which will be used
rarely in later chapters):

(r-covector)a(s-vector) = (s — r)-vector if 7< 3,
(r-covector)a(s-vector) = (r — 8)-covector if r>s;

for r = s, both reduce to the scalar product.
Letting superscripts denote degrees, the products are defined by the
relations

(1) £ (o) = (£ vel)et if r<s,
(2) (w"ra?)- B = w™(a?vf™?) if r=s.

The right hand side of (1), for fixed w" and «’, is a linear function of £&*;
by Theorem 3A and (App. I, Lemma 3a), there is therefore a unique
(s — 7)-vector %" such that (& "vow')«® = &"p*" for all &7 Set
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w'Ae® = §~; then (1) holds. In the same fashion, (2) defines w"ra® for
r 2> 8. The two products are clearly bilinear.
If r = s, setting £% = 1 in (1) gives
(3) w'Ad” = 1+(w"ra”) = (Ivew')a” = w™a’;
the sa:me relation follows from (2).
Take r = 0 in (1). Then ®° is a number a, and

E-(ana’) = (§va) o’ = (af’)a® = £ (ax’);
with a similar use of (2), we have
(4) ard = ao, WAR = Aw.
Using (1) several times gives
i€ A w'hat)] = (pvE)(@ra) = [(vEver]«
= [pv(§vew)]-a = n[(Evw)ral;
a similar relation follows from (2). Hence
(5) Fr@hat) = (Vo (r+ <),
(6) (W AaP)ABE = w'A(efv ) (s +t< 7).
We give relations for the components of waa, if w € Vi, a e Vi,
(7) (@ra)t = > St =D wa  (r <),
(AX») (»)
(8) (wAx), = Z 8% w0t = z @ 0" (r = 8).
(A (1) (1)

We shall prove the first part of (7). Take any £ € yt—rL Using (5.3)

and (6.6) gives
Eora) = (fvoya = > ()t = > 8Ewq
{4) (A u)(»)

Take a fixed u, and set £ = e“. Then this relation, with (2.5), gives the
first part of (7). The second part is immediate, and the proof of (8) is
similar.

For an r-covector w and an s-vector «,

(9) wA(yyve - ovoy) = S\ el (v, Ve vy, )]oy v v, (r < 9),
@) ) -

(10) (fIV' . 'Vf")/\a — Z E.ul[(f Biye o .Vf “')'oc]f’“V' . .vf’-r—- (,- ; 8)_
‘ (A)(p2)
Note that for each A, just one y occurs. For instance, for r = 2,

WA (VVEvYg) = [ (vevvg) v, — [w:(vvug)]vg - [we (v ve,)]vs.

To prove (9), suppose @ = £ *~"+1v- - ~f *, and choose any £, - - -, f*";
set & = f1lv- - -vf*". Take the scalar product of £ with both sides of (9).
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The left hand side equals ( f 1v- « -vf *)-(vyv- - -vv,), which is the determinant
D = |fv,) | , and the right hand side is clearly a Laplace’s expansion
of D. Since the f* were arbitrary, (9) follows. The proof of (10) is similar.

8. n-vectors in n-space. If V is of dimension #, then, by Theorem 3A,
Va3 is of dimension 1. Hence if ay % 0 is an n-vector, then any n-vector
equals aa, for some real number a. The sets of all n-vectors ax, with
a > 0 and with a << 0 we call the two orientations of V.

With a base in V, formulas (5.1) become

(1) a=al"",. ., ="

by Theorem 3A, e,., 7% 0, el %= 0. The transformation formulas
(5.8) become

(2) a!l-.-n J— Dal-.-n, win — wal‘"n, _D’ — ]./D.
Suppose (#,, ***,u,) and (v, *--,v,) are independent sets. Say
v, = > vlu, Then working out v,v- - -vv, and using (1.13) gives

3) vt Ve, = Duyve s va,, if v, = > wlu, = |v]|.
This also 'Fn"nura ﬂtrnnﬂv from 2), if we let the ». and the U, be the old

2 CaAl R e VRS ALNSRLL N fy Yi VALY Wra
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and new bases respectlvely, and use & = v,v* * 'vv,.) Hence the two sets
determine the same or opposite orientation of V according as D > 0 or
D < 0.

It is an elementary fact that if D > 0, then the », may be deformed
into the v,, keeping them independent. That is, there are continuous
functions u,(t), - - -, u,(t), such that u,(0) = u,, u,(1) = v,;, and the u/?)
are independent for each ¢{. For instance, using a metric in V (App. I, 9),
we may first deform both sets into orthonormal sets. Then, by rotations,
we may carry , into v;, then u, into »,, etc. Finally, when %,_, is carried
into v, ;, we must have u, = 4v,; since the determinant D in (3)
remains positive, we have u, = v,,.

9. Simple multivectors. An r-vector « is called simple, or decomposable,
if it can be written in the form a = v,v- - -vv,; similarly for r-covectors.
For r =0, 1, or n, any r-vector in n-space is clearly simple; from §§ 11
and 12 below, we see that thisis truealsoforr = n — 1, and for r-covectors,
for the same values of ». In U4, e,, + eg, for instance is not simple, as
follows from (13.9), (13.13) and (12.7).

We shall give a geometric interpretation of simple r-vectors.

LeMMA 9a. vv- - vo, = 0 tf and only if the v, are dependent.

If the v; are dependent, then some v, is a linear combination of the
others; say v, = ayv; + * * * + @,_yv,_,. Substituting into v;v- - *vv, and
using v,vv; = 0 gives »,v* - *vv, = 0. Now suppose the v, are independent.
Then they form part of a base v, - - -, v,. By Theorem 3A, v,v- - vy, Is
now a base element of V|, and hence is 7 0.
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Given an r-vector «, let V(«) be the set of all vectors u such that
avy = 0; this is a subspace of V.

Lemma 9b. If a=wvv: - vo, 70, then V(x) is the subspace of V
spanned by vy, * + -, v,.

By the last lemma, v, + -+, v, are independent; also, z € V(«) if and
only if v, * - -, v, u are dependent, i.e. « is a linear combination of the v;.

If there is no metric in ¥, we cannot define volumes; however, we may
define the ratio p(R, R’) of the ““volumes” of the bounded open sets R, R’,
as the number with the following property: Given the base e, -+, ¢,
and € > 0, there is a 0 > 0 for which the following is true. Using the e, as
base vectors of a rectangular coordinate system, cut V into equal cubes of
side &, where k < §; if N and N’ are the numbers of cubes in R and in R’
respectively, then | p(R, R'y — NN " < €. In particular, we can tell
whether or not two open sets B, R’ have “equal volume™.

By an oriented volume R in V, we mean the pair consisting of a class of
open sets of equal volume in V (all sets of this volume being in the class),

and an orientation of V. If R and R a are oriented volumes in V, let

- R il
p\n R ) denote the ratio of th

minus sign, according as the two orientations agree or disagree. See also
(VIL, 11.7).

If v,---,v, is a base in V, let A(v,,---, v,) denote the oriented
volume determined by the open set of all vectors >a,v,, with 0 < a;, < 1,
and the orientation of V given by »v- - -vv, (§ 8).

Levma Qe Ifuy, -, u,and vy, -+, v, are bases in V, then

Py

ie COT‘i"e"pGuuLug, vOJuuu:s, with the Plus or

(1) vVe VY, = ;)[A('Dl, T, ’Un), A(up T, un)]ulv' TV,
Using some elementary geometry, we may prove this as follows. Some

%, is not in the plane of vy, + + +, v,; there are numbers c,, *  *, ¢, such
that V== 0 F Colg o+ttt e, = ayly,  a; # 0.
If we replace v, by z;, neither side of (1) is changed. Continuing in this
manner, we may suppose v; = a,u, for each i. A permutation of the v,
leaves (1) unchanged or changes the sign of both sides; hence we may
suppose A, = i. Replacing v, by b,v; multiplies both sides of (1) by b,;
hence we may suppose v, — u,. But (1) is trivial in this case.

By an oriented r-volume in V, we mean the object consisting of an
r-dimensional subspace W of ¥, and an oriented volume in W.

TurorEM 9A. There is a one-one correspondence between simple
r-vectors == 0 and oriented r-volumes in V, defined as follows. Given « =

vy ove, £ 0, the ordered set (vy, - --,v,) determines an r-dimensional

subspace W of V, an orientation of W, and a parallelepiped in W, and hence
an oriented volume in W, and an oriented r-volume in V.

The oriented r-volume is determined by v,, - -+, v,. To show that it is
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uniquely determined by «, suppose « = u,v- * ‘v, also. By Lemma 9b,
W is spanned by the u, also. By (1) (used in W), p = 1; hence the same
oriented volume in W is determined, and hence the same oriented r-volume
in V.

Given any oriented r-volume in V, it is obviously determined by some
® == ¥V’ * *vv,. Suppose it is also determined by f = u,v- - -vu,. Then
both the u; and the », form bases in the subspace W, and determine
oriented volumes in W, which are the same; that is, p=1 in (1), and
hence f = a.

10. Linear mappings of vector spaces. Let ¢ be a linear mapping of V
into V', There is a unique corresponding linear mapping of ¥V, into V,,
such that
) By vo,) = doyv- - -vipy,

The proof that ¢u is independent of the expression of « as a sum of simple
r-vectors is like a corresponding proof in § 2.
An immediate consequence of (1) is

(2) $lavp) = dave

=

If ¢* is the dual mapping of ¥’ into 7
mapping of V' into V"), by the formula

—

App. 1, 3), it defines a linear

(3) qﬁ*(fIV' . 'Vf") — ¢*f 1. . 'Vqs*f T _
Hence
(4) P*(évw) = d*évd*w.
The pair ¢, ¢* preserves scalar products:
(5) d*w o = w (we V', oe Vi)

hence, considering V1" as the conjugate space of Vi, (Theorem 3A), ¢*
is the linear mapping dual to ¢. The proof of (5) is immediate from (3),
(2.2) and (App. 1, 3.8):

q6:l=(f1\,,. . 'Vf')'('le‘ CAES (qS*f1V' . 'qu)*f')'(le‘ . 'V”r)
= D IR Nw) e B ) = > M) f(gny)
A

i

= (fIV' . 'Vf')'(q5v1V' . 'VqS’v,) — (fIV' . 'V__f")'c_,ﬁ(le' - Vo).
There are two formulas relating interior products:
(6) wide = P(d*whrn) (we V', aeVy rZs),
(7) dHMwrda) = d*waa (weV'l «c Viep 7= 9).
For instance, (6) follows from the relations

Ed(Praona) = $*E(Pror) = ($*Evta)a
= ¢*(fvw)-a = (fvw)-da = & (wrda).
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Let ¢ and y be linear mappings of ¥ into V' and of V' into V”
respectively. Then ¢ and ¢*y* map Vinto V" and V" into ¥ respectively;
we let these define mappings of V|, into V”|,; and of V") into V11 by
the same relations:

(8) (phle = plda),  ($*y*)o = $*(y*w).
Working out (¢*p*)w-a as in the proof of (App. I, 3.10) gives
(9) (ph)* = ¥p*.

Let ¢ be a linear mapping of ¥V into itself. Since all n-vectors « are
multiples of a single one &, (§ 3), there is a unique number D, such that
da = Dya; D, is called the determinant of . Ife,, - -+, ¢, isa basein ¥,
and de, = S ,dle;, we find at once, using « = e,...,, that D, = | $?|.

11. Duality. Suppose V is of dimension n. Since Vi, ytrl, Vin—r and
pi*—7] are of the same dimension, they are isomorphic. We give here an
isomorphism between Vi, and ylr—rl determined solely by the choice of
an n-vector or n-covector. (For V[,; and V1], see the next section.)

Choose an n-vector «, and an n-covector w, such that wyay = 1. Set

(1) Do = wyha, D'w = whoy,.
We shall prove
(2) D' Do = a, DD'w = w,

which shows that each of &, &' is an isomorphism onto.
We may choose a base ey, * - -, ¢, 80 that g = ¢,...,,; thenw, =e¢
Using (7.10), (7.9), (2.5), and (2.6), we find

1

(3) Do = Z eMcx‘"e",
(A)( 1)
) Dw= D e
(AX w)
in each sum, for a given 2, just one y occurs. In particular (always if
%9 = €1.p),
(5) De;, = Z €18 D'et = Z €
(19) ()

€

uAZu?

with only one non-zero term in each sum. For instance, with n = 5,
De,y = €385, Pe,, — —e?45, Hence

(6) De, = €;,6, D'e" = €,,6;, if €, F#0;

hence also ' Ze; = ¢;, D D'e* = e*, from which (2) follows.
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Applying (7.5) and (7.6) gives (if the degrees are correct)
wrD'E = wn(éray) = (wvE)reg = D' (wvé),
Dhre = (werB)re = won(fva) = D(fva);
setting « = Z’£ in the first and w = 28 in the second gives
(7) wre = D' (wv D) (deg (w) < deg (),
(8) wre = D (D' wva) (deg (w) = deg (w)),

thus expressing the interior products in terms of the exterior products.
Applying (7.3), (7), (1), and (7.3) again gives

(9) (v Pa)ag = e (deg () = deg («));

a similar formula follows from (8).

LEmmA 1la. A multivector or multicovector is simple if and only if its
dual is.

Suppose for instance « = v,v* * *vv, 7= 0 is simple, and r << n. Choose
Vyi1, "> U, SO that v, - -+, v, form a base in V (see Lemma 9a), and so
that ag = ovv:--vo,; let f1, -+, f" be the dual base. Then, by (6),
Da = frHy- - «vf *, which is simple.

12. Euclidean vector spaces. Let V be Euclidean, and let @ be the
isomorphism of V onto ¥, given by (®u)(v) = wv (App. I, Lemma 9a).
Setting ®u-Ov = u-v defines a scalar product in ¥; now ¥V is Euclidean.
If e, -+, e, is an orthonormal base in V, then ®e,, « - - , e, is the dual
base in V; thus Qe, = ¢’

Define scalar products in ¥},; by the relation

(1) (uyve + ovu,) (vve s ovo,) = (Quyve « -vOu, ) (vyve * ove,);

we will prove the required properties (App. I, 9) below.

By (2.2),
Uy Dy * * Uy,
(2) (uyve > sva, ) (v« ve,) = |, . .
Up'y * UpVy
Using
(3) D(v,v- - vey,) = Oyyv- » -vOu,

and linearity, @ becomes a linear mapping of Vj,) into VI,  Setting
Qo ®f = a-f, we now have all but the last relation in

(4) Be, =¢', Qa®f=wf=op, |Pa|=!cl

Because of the first relation, ® is an isomorphism of V,; onto V1,
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With an orthonormal base,
(5) ) Z ale; = z a'®e; = Zaae"‘;
(4 (1) 4
thus components are preserved by @ : (0«), = «*. In terms of components,

(6) O('IB — Z alﬁl - 5‘&., w§ = Z w;fl = &w.

(4) (%)
Tor instance, a'f = Qa-f = 2(1)((1)0(),1,81 = Zwazﬁ". In particular,

(7) | ’: (oro)/2 = [Z (ai)zl 1"27 | ® |= (wo)/? = [Z (wa)2J 1/2’
(A (4

which proves that |« | > 0 if & # 0, |@ | > 0 if @ 5 0; hence these are
norms, and the last part of (4) holds.

TuroREM 12A. |«| and |w| are conjugate norms in Vi, and VUV
respectively.

This follows from (4) and (App. I, Lemma 9a).

Note that Qa is simple if and only if « is.

The case r = 2 gives

L e

U uv

0 < (uvo)-(uve) =

=l foft — oy

v v

also (Lemma 9a) wvv = 0 if and only if %, v are dependent. These facts
give the Schwarz inequality:

®  Juwe|x[ul]v],-
(9) \uwv|=]|u||v| ifandonlyif uand v aredependent.

Since this is true in any Euclidean vector space, it is true in V,,, and
V. hence

(10) EVAESLAN  AE  E t

equality holding if and only if « and 3, respectively w and &, are dependent.
Hence also (App. 1, 9)

(11) e+ B |a| +1BlL Jo+ES|w]+]E]
If « has just one component, there is a simple expression for avp:
(12) If @ = ol 7e.,, then avf= ol > Bl ..,

(Ahr<i,
For the right hand side of (6.5), using », <<+ < »,, vanishes unless
(¥y, -, v) = (1, -+, r); if this is so, there is one term, with 1 = (1,
*»+,r)and g = (v,,4, - **); this term is o781, and (12) follows.
We now prove

(13) avB < |«]|B| if «or g issimple.
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Say « = vv* - vv,. Choose an orthonormal coordinate system so that
vy, " **, v, are in the plane of ¢), - -+, ¢,. Then o = a'"7e,.,, and (12)
gives

I avf {2 = z[(avﬁ)v]z = («!"7)? Z < | o 2 ‘ B |2'

) (A,r<i,
REMARK. (13) fails if the assumption is omitted, as has been shown in
an example by J. H. Wolfe, with n = 6: take a« = § = >, _.a,e,;, where
all a,; are 1 except that a,5 = @, = —1; then |« |2 =15, | ava |* = 252,

He has shown that (13) holds if the factor (T j: S) is inserted, where

deg («) = r, deg () = s.
As a special case of (13), and of a corresponding inequality for multi-
covectors, we have

(14) | ugve = oy o vo, | K lagve < v, | ogve - v

(15) ]flV"'MfrvglV"‘Vgstég LfIV“‘Vfr[ ]glv---vgsL

and hence

(16) i!ﬁV"'VUfEE;!} ﬂi{..']lvf;’ !flv...vfr‘!ég Lfll' ..!fr!_
Since

VIV VY, — UVt VU, == (V) — U VUVt VU, - vV (U — Ug)VUgY© v,

+ T + vlv. . -V'vr___l\/(vr _ ur))
we find

| ogve s ve, — wgye v, | < rM e
if o, —u;|Ze |u|SM |v|<M.
A bound for | | in terms of a bound for its components follows from
(7):
n\ /2
(18) )alS__(r) M if || <M, alll  (deg(x) =)

(17)

To prove a converse relation, choose an orthonormal coordinate
system, and set p* = «*f| «*| if «* £ 0, and p* =0 otherwise. Then
a'p? =|a*|, and (10) gives

Diw|=>ap=ap<|allp|

(2 )

_ L1V (m\vE
Since | f | = [Z(A)(ﬁ )2] < (r) , this gives

(19) Z ot [ < (?:)112[ « | (deg () = 7).
Y
We now prove

(20) I VyVUaV© - ‘V'U,] = ! vy [ ] VgV * 'vv,{ if vo,=0 for ¢> 1L
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For if we use (2), the top row and left hand column of the determinant
consists of zeros, except for the term v;-v; = | v |2; the rest of the deter-
minant gives | vyv- - -vo, | %

If v, -+, v, are independent, they determine a subspace W /of V,
and r-volumes are defined in W. Now

/
(21) | wv* + *vo, | = r-volume of parallelepiped of v, - - -, v,. .
For this holds obviously if the v, are orthogonal (use (7), with the ﬁrs/t r
axes along the v,); in the general case, we may choose orthogonal vectors
wy, ***, 4, so that vyv- - vo, = uv- - vu,, and apply (9.1). (A proof 6f
(21) by induction, using (20), is easy to give; compare the proof of (9.1)).

Let W be any oriented r-dimensional subspace of V. Associating W
with a unit volume in W gives an oriented r-volume, determining uniquely
an r-vector a(W) (Theorem 9A), which we call the unit r-vector or the
r-divection of W. Ife,, - -+, e, is an orthonormal set in W, determining its
positive orientation, then a(W) = e,..,.. In particular, if V is oriented, its
n-direction a(V) =e,.., is defined. Its unit n-covector is e'"™.

If V is oriented, we may use «(V) to define the duality operators of

.
§ 11. In particular, for n = 3, given the vectors u, v, Z(uvv) is a covector,

and equals ®w for a unique vector w; w is the vector product of u and v
in ordinary vector analysis. Note that if o is an r-direction, then there is
a dual (»n — r)-direction «’, containing those vectors orthogonal to the
vectors of a. The set of r-directions in E” is called a Grassmann manifold
(see (IV, 9)), and the correspondence « — o« is a well known duality in
projective geometry.

Let V be oriented, with corresponding unit n-covector w, = e
Given any oriented subspace W, define § by

(22) wora(W) = DF;
then it is easily seen (by a suitable choice of a base) that § = «(W’), W
being the oriented orthogonal complement of W.

Let ¢ be a linear mapping of V into V' (both Euclidean). We may
define the magnitude of ¢ by
(23) |¢ | =sup{|(): |v|=1}
Then | ¢ | is the smallest number with the property

luun

I

@5 IS4
Given ¢, choose coordinate systems in ¥ and in V' as follows. Choose

e, 50 that |e;| =1 and | ¢, | is a maximum. Next choose e, so that

|62[__1 eyeg =0, and | e, | is a maximum, etc. Set ¢e;, =v]. If

© < J, & simple calculation (first putting ¢ inside, then expanding, then
differentiating, then setting 6 = 0) gives

» t
(cos fe; + sin Be,) [§_o = 2v]-v];

ggW
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because of the maximum property of ¢, v;-v; = 0. Hence we may choose

an orthonormal base ef, -+ -, ¢, in V' so that, setting n’ = inf {n, m},
(25) e, = ce (G=1,-"-,n"), e, =0 (i>n'),
(26) b=z 2oy 20

Given any r-veetor « of V, using (25) gives the components in ¥’ of

Po \

27) b = Z oAb, = z (adtcy, €3 )efe
(4) (A A, =n

Hence, using (26),
D N U S LE PO

(A, A, =n A
and thus

(28) [pa|S oo |al < plrn|  (deg () =)
Take any r-covector w in V', Then, for any r-vector a of V,
o] = ada] < |ol g2l S o472
hence, by (App. I, 8.7),
(29) | p*0 <M lw|  (deg (w) =71).
13. Mass and comass. Let V be Euclidean; then we have norms ( o l
and | @ |in ¥}, and in V" respectively. In the general theory of integra-

tion (starting with Chapter V), we shall need new norms, defined as follows.
The mass of an r-covector « is

(1) | cx[ozinf{i}:ﬁai]: azZai, the o, simple}.

We do not know if there exist simple r-vectors «; with o = 3 a,, | « iO =
2 ;| ; we know no bound for the number of terms needed in (1).
The comass of an r-covector w is

2

2) | @y =sup{|wa|: asimple, | a|=1}
These are related to the earlier norms as follows:

(3) jap=lal,  JolSlo)

See also (9), (10) below. The first is immediate from (1); the second holds,
since | @ | is conjugate to | « | (Theorem 12A), and hence is given by (2),
omitting the restriction that o« is simple (App. I, 8.7).

For any w, and for any o, expressed as > «, with the «, simple, (2) gives
| < > o [ <ol D |l
hence, using (1),

(4) jwra| < [wlo| ol
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TareoreM 13A. Mass and comass are conjugale norms in V) and in
VI respectively; hence

(5) lw10=sup{|w'o¢|: ’oc|0=l},
(6) |alg=—sup{|wa]: |w|y=1}
Clearly |aa |y =|a!||al,, oc+ﬁ[0<|oc10 If a0, then

K 0= | o« | > 0. Hence mass is a norm. If o %0, then in an ortho-
normal coordinate system, w; = w-e; 7 0 for some 4; since ¢, is simple,
‘wlp=|w;| > 0. Thus comass is a norm. To prove the theorem, it is
sufficient to prove (5), because of (App. I, Lemma 8e). Let w denote the
right hand side. Because of (4), w < | w |o. Since (clearly) | o |0 = ] o | if
o is simple, the set of o appearing in (2) is a subset of those appearing in
(5); therefore | w |, < w. Hence (5) holds.

If « is simple and | o | = 1, we may choose an orthonormal base such
that & = e;..,,. Then wa = w,..,; thus (2) shows that

(7) w |g = sup {w,..,: orthonormal bases}.

Since the set of all orthonormal bases forms a compact space in an obvious
fashion, and w,..., (with @ fixed) is continuous in this space, the bound is
attained. Hence also

Lemma 13a. For each r-covector w there is an r-vector f§ such that

(8) wpf=|wlo g simple, 18| =1.
(This follows also from (App. I, Lemma 8b).)
We now give further relations between the old and the new norms:

(9) | %o =|a]if ais simple, | & | > | « | otherwise;
(10) ||y =|w|if wis simple, | w |y < | @ | otherwise.
The first part of (9) is clear. To prove the first part of (10), say w = Qa
(§12). Then « is simple, and using (12.4),
(o =was ollalp=|olle|=]al|wo]

which proves | [y = | w . Using (3) gives the result.
Suppose now that w = ®a is not simple; then « is not simple. Choose
f by Lemma 13a; then neither « nor § is a multiple of the other, and the

remark fnllnvmmr (12.10) mvm;

wl=awp=up<|x|[f|=|x|=0|

To prove the last part of (9), suppose a is not simple; we may suppose

| | = 1. Set w = ®a, and choose f as before. Again we have | w |, <
‘rxHﬁlzl. Set&:w/{wlo. Then|§}0=1,and
[fa|=loalljoj>]wal=]a]*=1,

and (6) gives | a |o = | &a | > 1, as required.
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Let ¢ be a linear mapping of ¥V into V’. Then, corresponding to

(12.28) and (12.29),
(11) (¢ [d[ [l [¢*ol<|d]|wly
To prove the first relation, given € > 0, write

oczZoc,-, the «, simple, Z]ocilg]oclo—l—e.
Then

b= pay > |$a | [ D || [B([xlo+ o)

and since the ¢a, are simple, the relation follows. To prove the second,
take any simple a with | oc] == 1. Then using the relation just proved,
(4), and (9),

frera|=|odx| S| dafp =

and (2) gives the relation.
ExampLEs. Using an orthonormal base, we prove

(12) | @ei? 4 bed4 [g =sup {|a|, |b]}.

Supposing & = e!2 + ce4, |¢| < 1, we shall prove | &|y < 1; then,
using (7), (12) will follow. To find ] & ’0 from (2), we need clearly use only
those simple « lying in the space of ey, * -+, e,. Now a = v vv,, with o
and », being orthogonal unit vectors in this space. Since rotations in the
spaces of e, e, and of eg, ¢, do not affect the form of & we may suppose
v = a8y - ageg. If vy = Db, then (5.5) gives

al? = (v; v v, )12 = a,b,, a3 = agzb,.
Hence
o= Z 10t = al? 4 ca® = a;by + cagh,
(A
Set
U) = a8y + CAgey, Uy = boe; + byey;
then

(Ea)? = (uyug)? < oy |2 uy |2 = (af + c2a3)(BF 4 B < |0y 2|0,y |2 =1,
proving | £l S 1.

We now prove
(13) | aeyy -+ begy [ =|aj +|b].

We may suppose @ > 0,5 2> 0. Set v = e!2 4 €34, o = ae;, + beg,. Then
] w ]0 =1, wa = a 4 b; hence, by (6), | « {og a 4+ b. The converse is
clear.

ReMARK. In a Euclidean vector space, for each vector v # 0 there is
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a unique covector f such that |f| =1, f(v) =|v|, given by f= Pu,
u = vf|v|. In a normed vector space, a covector with these properties
exists (App. I, Lemma 8b), but need not be unique. This happens in the
present case, with ¥},; and its conjugate space V). For

’312|0=l312+634io=1’

€121y = (12 1 €M) e =1 = | ¢y (o-

14. Mass and comass of products. We shall give some Inequalities
here; they are not all the best possible. First, for exterior products:

(1) ]O‘Vﬂloéi“|o|ﬂlo»
& oz (F) okl @er, cere,
(3) |wvEly < |wlo| &g if  or &is simple.

To prove (1), take any € > 0, and write « = Ja,, the «, simple,
Z| o | < [ o ‘0 + €, and similarly for §. Then using (13.9) and (12.14)
gives

@Bl D [aBilo < D a8 < (Jalo+ ] Blo+ o)

giving (1). To prove (2), choose an orthonormal coordinate system for
wv& by the remark following (13.7), and use (6.6), giving

l wv& |0 = (wVE)l---r-%-s = Zaiﬁ-r-&swlfﬂ'
(D)
Since | w; | < | wlgand | £, | < | &y by (13.7), and the sum has at most

(r—{—s
r

terms, (2) follows.

ExampLE. We cannot omit the numerical factor in (2). For take
r=s=2andw = § = e1? 4 ¢¥. Then| w |, = 1, by (13.12), and hence
1wv§|0=[261234!0=2=2!wl0 510

To prove (3), suppose w is simple. Using the same coordinate system
as before, write w = flv- - -vf", and f? = ¢g* 4 k¢, ¢° and % being linear
combinations of e, -« - e™* and e™t*1, - . - ¢" respectively. Then

0 = wl + Zwk’ w’ — glv. . cvgr’
k

each w, containing some ¢/ with j > r 4 s. By a rotation in the space of
€1 s €ry e We may suppose ' = ae'”" for some a. We now follow the
proof of (2), giving

l wvé |0 = (wVE)lmr-i-a = wl---r5r+1---r+s g ’ w '0‘ § ]0'
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We now prove similar inequalities for interior products:

(4) lwra g [wfglaly (weVl, aeV,,r=9),
5)  |osale< (j) wiylaly (0eV ae ¥, r<s),
(6) lwra g < wlplaly  if wis simple.

To prove (4) and (5), take any f € V|,_,; in the first case, and any
& € V18—l in the second. Then, in the two cases,

| (wra)f|=|w(af) | S [0 aBlo< wlofalo]Blo
| &(wne)| :f(ng)-a|g(5vw;0;a[0§(j) &l wlo| oo

Taking | f |, =1, | & |, = 1, and using (13.5) and (13.6) gives (4) and (5).
Relation (6) follows similarly, using (3).

ExampLE. We cannot omit the numerical factor in (5), even if « is
simple. For take w = €12 4 €34, a = e;55,; then, using (13.12), | w]|,
= |alo=1. By (7.7) and (13.13),

| wra|g=|egy + €1a]o=2=2]w|y| &

15. On projections. We shall give some inequalities which will be
used in Chapter IX; the last one occursin Chapter IV. Let V be Euclidean,
and let W be any subspace. Then any vector » may be written uniquely
in the form

(1) v = v - 7'v, mve W, 7’'v orthogonal to W,

7v is the orthogonal projection of v into W. It is a linear mapping of ¥
into W; hence wa is defined for r-vectors a.

Let W, and W, be oriented r-dimensional subspaces of V, with
r-directions a(W,), a(W,) (§ 12). We define the angle 6 between them and
the distance I W, — W, I between their r-directions by the formulas

@) cosf=a(Wy)aWy, |Wy—W,|=]a(Wy)—aWy)],
taking 0 < 6 < #. Because of (12.10), § is defined. Note that

(3) | Wa— Wy[2=[a(W,) — a(W) (W) — a(W;)] =2 — 2 cos ,
and hence

(4) | Wy — Wy | = 2sin §0.

Letting = denote the orthogonal projection into W,, we prove

(5) ma(Wy) = cos Qa(W,), ao{ Wo)-o(W,) = cos 0.
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For we may suppose

a(W)=v¢e,. ,, W) =uvv v, v,=7v;+ v,
and v;-e; = 0 for j§ < r; hence

a(Wo)a(W,) = (mvyv: « vaw,)e, ., = ma(Wy) (W),

s

proving the second part of (5). Since ma(W,) is a multiple of a(W,), the
first part follows from this.

Letting | @ | denote the (r-dimensional) volume of the polyhedral set @
in W,, we prove

(6) Q)| =]cos0||Q (@ cW,.

From elementary properties of volumes it follows that we may suppose
that @ is the parallelepiped determined by vy, «: -, v,, with vv: - -vo,
=a(W,). Then |Q|=1, and |m(@)|=|nmu(W,)|=|cosf|, as
required.

We end with some inequalities about vectors in W,:

(M) JeosO|jo|S|m|Liv], |v—mo|Z|Wy— Wy|jv] (e,
We may suppose | v| = 1. Choose v,, -, v, in W, so that the set v,
vy, " "+, ¥, is orthonormal.  Clearly | 7o | < |v|; also | ;| < | v, ], and

(5) and (12.16) give

|cos 0| == | ma(Wy) | < |mv || 7vg|- | 7w, | S| 7o

b

proving the first inequality. Also, by Lemma 9a and (12.14), setting
o*; = d( W'i),

| oaqvo | =| (g — ag)ve + oty | = | (&, — ap)ve | < | oy — ay .
Finally, using (12.20),

Lagvo | = | oyv(v — 7)) | =] v — 7

giving the rest of (7).



I1. Differential Forms

In this chapter we give some of the fundamentals of calculus in
Euclidean space E™ from a geometric point of view. In particular,
differential forms are treated. Smooth manifolds are defined, and it is
shown how to handle differential forms on these manifolds. Rather
little of Chapter I is needed in most of the present chapter. The metric
character of E* is used for convenience, but most of the formulas clearly
hold in an affine space.

To start with, the general properties of a smooth (i.e. continuously
differentiable) mapping of one Euclidean space E” into another one, E™,
are given. In the special case m — 1, we have real functions defined in
E". We prove some elementary theorems, partly to illustrate the general
methods. The study is then continued to include the properties of
differential forms. From the usual theory of partial differentiation, no
large amount is needed in the present book. Most of that is given here,
in a manner which does not use coordinate systems, and keeps the full
meaning always clear. The usual properties of coordinate systems follow
easily. The geometric meaning of Jacobians is given, and a theorem on
inverse functions is proved.

The basic properties of the operation of exterior differentiation of
differential forms are given next. This operation forms a part of the
general Stokes’ Theorem; its abstract counterpart, the coboundary
operation on cochains, is at the heart of the later general theory.

In smooth manifolds one loses not only the metric character, but also
the affine character of Euclidean spaces. Vectors and covectors must be
defined at individual points. This is done in a direct manner, through the
use of parametrized curves and real functions in the manifold. The theory
of differential forms can now be carried over. In studying the exterior
differential, it is assumed that the manifold is 2-smooth and the differential
form is smooth. These assumptions will be weakened in (III, 17); see
also (IX, 12) and (X, 9).

v¥aila

1. The differential of a smooth mapping. Let f be a mapping of an
open subset R of E” into E™. For any point p € B and any vector » of
E", we define the derivative of f at p with respect to v by the formula (the
notation £ —> 0+ meaning that we keep ¢ > 0)

1
1) V.J(p) = Vi(p, ) = lim S [{(p + tv) — f(p)]

-0+
58
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if this exists; this is a vector in E™. We say that f is smooth if this exists
and is continuous in p, for each v; we will see below (§ 5) that this is true
if and only if fis continuously differentiable, using a rectangular coordinate

system.
If ¢ is a smooth mapping of the interval (0, {) into £™, and e is the

number 1, considered as a vector in I-space, then V , (s) = d(s)/ds is
the tangent vector to the arc at ¢(s); we have

2) B(t) — $(0) = [ V. h(s) ds.

We may prove this by the ordinary methods of calculus (compare Chapter
III), or introduce a coordinate system in E™ and obtain it from the
corresponding formula for each coordinate.

Given f, p and v as above, setting ¢(t) = f (p -+ tv) shows that (if
p+sweRfor0<L s< )

3) 1o + 1) — f(p) = [, V., fp + sv) ds.
THEOREM 1A. If fis smooth, then for each p, V , f (p) is a linear function

of v, mapping V(E") into V(E™).
We shall let Vf (p) denote this function; Vf (p) is the differential of

f at p.

Clearly V,, f (p) = aV, f (p)(@ = 0); we must prove
(4) Vo, 40, f(0) =V, f(p) + V,, f(p).
Set

P, =p + vy, g = Py + Wy =p + Hvy + vy).
Given € > 0, choose { > 0 so that

Taking ¢ so small that the segments pp, and p g, are in U,(p) N R, applying
(3) to each of these gives

[£p) — 1(0) — ¥, f(0) | = | [L [V, f0) — V., f(2)] ds | <
Fla) —F(p) —tV, f(p)| < e

Hence
\

a — £ (m |
l 94} ; J\P) [Vvlf(P) - szf(p)] ‘ < 2,
from which (4) follows.

* In the case m = 1, we have a mapping of E” into the reals, i.e. a real
function ¢ in ™. Now V d(p) is a real valued function, linear in v at
each p; hence V ¢(p) is a covector at p. The differential V¢ is also called
the gradient of ¢ at p. By definition,

(5) Vé(p)v = V(p, v).

| £
J

—
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2. Some properties of differentials. We prove first three lemmas.
LeEMMA 2a. Let f be smooth in R.  Then for each compact set @ C R
and each € > 0 there is a { > 0 such that for any p, q, and vector v,

1) IV, fle—V. S| Zelv] if pge@|g—p|<L

Take an orthonormal base in E*, and choose { so that this holds for
each of the vectors ¢,, - - -, €, using ¢/n in place of . Now take any
v = v, then|v'| < |v|. By Theorem 1A,

]%ﬂ@—%ﬂ@hﬂZﬂ%Jmhvd@m

ggmwéqw

Lemma 2b. Let f be smooth in the convex open set R', and suppose that
for some p, e R’,
2) IV, f(p) =V, f(p) |<ev]  (peR any vector v).
Then (3) below holds for any p, g€ R'.
Setting p, = (1 — t)p + t¢ and using (1.3) gives, if v =g — p,
1
F@—f() = V. f ()= [ [Vif(p) — VoS ()] i

(3) follows at once from this.
LemMma 2c. Let f be smooth in R, and let @ C B be compact. Then
for each € > 0 there is @ { > O such that

(3) \f@)—f@ —Vf(@eg—p)  Zelg—p|
if py €@ and p, q € Uy(py)-
Say @ = U, (@) C R. Using @', find { < {, by Lemma 2a; then (3)

follows by applying Lemma 2b to Uy {p,).
Given the smooth mapping f, define the quantities

(4) (Vi@) | =sup{|V f(p)|:|v]| =1},
(5) | Vile =sap {|Vf(p)|:pe@};

if R is the domain of f, let | Vf| denote | Vf|5.

Since V, f(p) is linear and hence continuous in v, | Vf(p) [ is finite;
if f is real valued, it is simply the magnitude of the covector Vf (p) (App. I,
8.7). Also | Vf(p)| is continuous in R; hence | Vf|, is finite if @ is
compact. Clearly (using (1.3))

(6) V@ Z|Vi@ | |v| | VSiv],
M |f@—F® || VSflelg—p| if segment pg C B.
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Let f and g be smooth mappings of open sets B C E” and S C E™ into
S and F' respectively; then gf = g¢fis a smooth mapping of Rinto E*, and

(8) Vigef)(p,v) = Vgl f(p), VS (2, 0)];
thus if Vf (at p) carries v into v", and Vg (at f (p)) carries v into v, then
V(gef) (at p) carries v into v”.

To prove this, say | Vf(p) | <
=p+t, q=f(@), 2=F(p)
Take any € > 0. By Lemma 2¢, we may choose ¢, > 0 so that
g, — ¢ —tVf(p,v) | S et|v],
l9lg) — 9@ — Veg, ¢ — D | S €| g — g,
and | Vf(p,) | < M, if 0 <t < ¢, Then
\Vglg, 0, — ) — tV9(g, VI (p, v) | = | Vglg. ¢, — ¢ — VS (p, v)) |
<| Vgl || g.—a—tVf(m o) | S et|v]|| Valg) -
Also, by (7), | ¢, — q| < Mt v|. Hence
| g(g)) — glg) — tVglq, V f(p, o) | S et | v|[| Vglg) | + M]
for 0 <<t < t,; this gives (8).

If we use the notation Vf(p)-w in place of Vf (p, ), as in (1.5), then
(8) reads

(8") Vig=f)p)v=Vg(f(p)IVf(p)v]
We may write this in the form
(8") Vigef)p) = Vyg(f(p)VS(p),

or V(gof) = VgoVf simply.
If ¢ and p are smooth real valued functions in R, and ¢y is their
product, the usual proof gives V (¢y) = vV ¢ + 6V v; hence

(9) Vigy) =9V + ¢Vy.

3. Differential forms. A dzﬁerential r form w, or r-form for short, in
the set @ C E7, is a function defined in @, whose values are r-covectors;
r is the degree (or dimension) of w. We say w is s-smooth if, for each
r-vector a, w(p)-a is s-smooth; see § 5 below.

A O-form in @ is a real valued function in Q. If K" is oriented, and w,
is the unit n-covector of E» (I, 12}, an n-form is uniquely expressible in

the form
(1) w(p) = B(p)w,, @(p) a real function;
see (I, 8).
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Supposing w is defined in @, define the magnitude | @ | and the comass
| @ |y of w by
2 lw|=swp{|o@]:pec@ |wly=—sup{|wp)|spe}
if these are finite. (See also (App. I1L, 5.1).) Then, by (I, 13.4),
(3) |w@)ya| <o) o] afo< [@lo] o
the same relation holds with | @ Llal

4, Smooth mappings. Let f be a smooth mapping of the open set
R ¢ E” into E™. By Theorem 1A, for p € R, Vf(p) is a linear mapping of
V(E") into V(E™). By (I, 10.1), a corresponding linear mapping V[ (p)
of V,,(E") into V[T](Em) is defined by

(1) Vfip, vyv--vy,) = Vf(p, v)v- - vVf(p, v,).
By (I, 10.2),
(2) Vf(p, avp) = Vf(p, a)vVf(p, B).

The mapping Vf p) of V(E") into V(E™) has a dual (App. I, 3),
which we denote by f . If w is an r-form in § ¢ E™, and f (R)c 8, then
for any p € R, o(f(p)) is an r-covector, and by (I, 10.3), f (o(f (p))
is an r-covector in E”, which we denote by (f *w)(p). 7Thus an r-form

f *w is defined in R:

(3) f*o(p) =f3w(@), q¢=1(p)

By (1, 10.5), for any r-vector « in E”,

(4) fro(p)a=frw(@)e= @) Vf(p «), g=Ff(p)
In particular, for » = 0, we have a real function ¢, and

5) (f*d)(p) = H(f(p) = (b°f)p);  thus[f*d = ¢f (¢ real valued).

We prove (see (8.8) for a generalization)

(6) *¢ F*(Vé)  (¢preal valued).
Tsi

V(f*¢ p)u = V(¢f {p, u) = V[ f(p), VS (p, u)]
= Vé(f(p)Vf(p, w) =f*V)p)u.

Given the differential forms @ and &, their (exterior) product wvé is
defined by (wvé)(g) = w(g)vél(g). By (I, 10.4),

(7) f *(wvE) = f *ovf *E.
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With f and ¢ as in (2.8), that relation gives
(8) Vigef)(p, 2) = Vglf(p), Vf(p, «
Hence, if w is defined in g( f (R)),
[(gf ) *ol-« = wl(gf {p)I'V (@f )(p, «) = olgf (p )]'Vg[f (p), VS (p, a)]

= (g*w)(f (p))Vf (p, &) = [f *(g*w))(p)a;

therefore
(9) (g°f)*w = f*9*o.

By (I, 12.28), (I, 12.29) and (I, 13.11), for r-vectors a and r-covectors w,
(10) [Vi(p, o) | <1 VF()]]
(11) Vi a) o < |V |alo S| VF | ale
(12) |f *olp) | < | V@) || of p))lélvfi'le
(13) | F*o@) o S| V)| ol f @) o Z | VI | @l

The Lipschitz constant of a mapping f into £™ (or mapping into any

normea linear spabe) 18

14) o, — 2(f) = sup | LOZID o),
[a—2|

define £y, requiring the above p and g to lie in @. Then

(15) | Vf(p) | < £, if f is smooth,

(18) | Vf| = &, if f is smooth and R is convex.

The first relation is obvious; the second follows from the first and (1.3).
We say f is Lipschitz if £, is finite.

5. Use of coordinate systems. Recall (App. I, 1) that arithmetic
n-space A" is the set of all n-tuples x = (z1, - - -, ") of real numbers;
it has natural base vectors €, - - -, €,, and a natural scalar product.

A mapping f of an open set R C E” into E™ is regular at p if f is smooth
in a neighborhood of p and V, f(p) 7% 0 for all v 3£ 0; equivalently, if
Vz:lf(P), -+, V, f(p)are independent, for some set of vectors v, - - -, v,
(and hence for all independent sets). If this holds, then m > %, and
Vf(p) is one-one in V(E™). fis regular tn Q if it is regular at all points of
Q; fis regular if it is regular in its domain of definition.

A smooth or curvilinear coordinate system in E™ is a one-one regular
mapping y of an open set O C A" into £™. The image y(0) is open (Theorem
7A). If p = y(x), the numbers z1, - - -, 2" are the coordinates of p. The
coordinate vectors at p = y(x) are the vectors

(1) e,(p) = Vyxlx, €) = op/ox t=1,+--,n).
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Since y is regular, these are independent, and hence form a base in V(E").
For any A = (4;, -+, 4,), set

(@) ex(P) = en (PIV- - Ve, (p).
Using (1) and (4.1) gives
(3) efp) =V &)  (p= ()

Let él, - -+, &" and el(p), - - -, e"{p) be the bases dual to the ¢, and
the e(p) respectively. Now e’ is a 1-form in E”, and hence y*¢’ is a
1-form in A", By (4.4) and (1),

x*ei(a) e = el(p)Vy(®, &) = ¢/(p)e;(p) = d}.
Hence y*ei(x) = ¢'. Also, by (4.7), y¥et = y*ely- - yy*el. Now

(4) g*ei(z) = &, y*ei(z) = &, all x in the domain of .
For any p in E” and r-vector a, using (3) shows that

b)) i a= z ale,(p) and &= z a*e,, then a= Vy(z,a),
(4 (4) '
where p = y(x). Thus Vy preserves components of r-vectors, and in

particular, of vectors.
By (4.4) and (3), y*w(x)¢; = w(p)e;(p). Hence

(6) (x*w)i(r) = w(p) (P = x(®)-

Thus y* preserves components of 7-forms. See also (13) below.
For affine coordinate systems, (App. I, 12.6) gives

(7) g(7h, <o, 2 = (0, -+, 0) + z z'e;,  (y affine).

If further, e;¢; = 8!, the coordinate system is Cartesian, or orthonormal.

The differential V¢ of a real function ¢ in R is a 1-form, with
components

(8) [Ve(@)]; = V(p, e(p)) = 0¢(p)/ox".

In particular, the coordinates x* of p have differentials, with components
(9) [Vai(p)], = 0x'/0x = d};

hence

(10} Vzi(p) = e(p), commonly written da*.

With this notation, an r-form @ becomes

(11) w(p) = Zwa(p)e (p) = Z wy(p) dattv: - vdz.

0]
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Given the real function ¢ in £%, set ¢*(x) = $(y(x)) in 0. By (6),
(12) Vé*(@)ye, = Vé(p)e(p)  (p= x(@)).
Thus ¢ and ¢* have the same partial derivatives:
(13) 0*(x)[0z'=0d(p)[ox’  (p* = x*¢, p = x(x)).

Let f be a smooth mapping of an open set B C E” into £™, and let y
be a coordinate system in E". Then, generalizing (8),

(14) of (p)/ox* = Vf(p, e,(p)).

Let us translate (2.8) into the usual nota,tl()n, using coordinate systems
in the three spaces. Let ;== ei(p), eJ = e, ( f(p})) denote the coordinate
vectors in £” and E™ at p and at f(p respectlvely. Ifvfip,v)(j=1,---,

m) are the components of V f(p, v} ete., (2.8) gives

I
Viaf)(p, e) = VgTf(p), D VFHp, eef]
%
: ’
= Z Volf(p), 1VFHp e,).
%
If xt, y*, 27 are the coordinates of p, f(p), and g( f (p)) respectively, this
L AV ol AN o I W
reads
0z’ oz’ oy*
oz’ oy* ozt

Consider a transformation of coordinates. Let y and y’ be coordinate
systems; at any point p, let the old and the new base vectors be related
as in (App. I, 1.1):

(15) efp) = D allpei(p),  ei(p)= > a'l(ply(p),
j j

and similarly for ei(p), e'‘(p). By (9),

ox* o, , _ g
s = V. ) = > aH PV, eip) = ()
k
ete.; hence
. ox'? , ax‘
(16) )=,  ilp)=
ox’

By (I, 5.8) and (16), the formulas for the transformation of components
of r-vector functions and of r-forms are

1) oMp)= > Diplatp),  wip)= > Dipo,p),

(42) ()

ox' M
oxti

where

3 D'i(])) =

(18) Di(p) = ‘
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Let f map R C E* into ™. With an affine coordinate system y in &”
as in (7), V, f(p) = of(p)/dx’; clearly V,f(p) is continuous in p for
each v if and only if the of (p)/0x are continuous. Iff (p) = (y, - -, y™),
this holds if and only if the dy’/9x* are continuous. This is the usual
definition of f being smooth (or continuously differentiable, or of class C?).
An easy proof by induction shows that f is k-smooth (or of class CF),
i.e. the partial derivatives of order <k exist and are continuous, if and
only if, for each set of vectors v,, - -+, v, in E™, V@,ch “e e Vz,lf(p) exists
and is continuous.

Let the coordinate system y be k-smooth. Then it is easily seen that
a real function ¢ is k-smooth if and only if all partial derivatives of ¢ of
order é k exist and are continuous; a similar theorem holds for r-forms
.

Let f be smooth. Then for any continuous r-vector function o(p)
and any coordinate system y, (14) gives

of ( af(
(19) Vf(p, p))-—Zoc“(p)Vf(p, BA(P))zz p) T T

@) @
Lemwma 5a. Let f be a k-smooth mapping of the open set R C E" into E™,

and let a(p) be a (k — 1)-smooth r-vector function in R. Then Vf(p, a(p))
ts (k — 1)-smooth in R.

This follows at once from (19).

Lemma 5b. With f as above, let w be a (k — 1)-smooth r-formin 8 D f (R)
Then f *w 1s (k — 1)-smooth in R.

Using an affine coordinate system in E”, the last lemma shows that each

[f*w(p)]; = o(f(p)-Vf(p,e,;)is (k — 1)-smooth; hence so is f *w.
Let f be as above, and let the e; and the ¢? be dual bases in £™. With a
corresponding affine coordinate system in E™, any y € E™ equals ¢, +

Y%, (g, fixed). We prove:
(20) if f(p)=qy + Zfi(p)ei, then f*e'= Vfi,
For (4.4) gives '

(f*ef)(p)v = ¢V, f(p) = e* Z V., [ (ple; =V, fi(p)
j
6. Jacobians. Let E" be oriented, with unit n-vector ay. Then given

the smooth mapping f of R C E™" into E™, the Jacobian, or Jacobian
n-vector, of fat pe R is

(1) J4(p) = V[ (p, &)

Using an expression a, = v,v* * *vv, shows that f is regular at p (see §5)
if and only if J (p) # 0; see (4.1) and (I, Lemma 9a).
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If J (p) # 0, then Vf(p, v) 7 0 if v £ 0. We prove
Lremma 6a. If f s regular at p, then for any vector v,

(2) | Vi@, v) | = | Ap) || v ]| VS (p) "2

We may suppose t v [ = 1. Choose an orthonormal base e;, -+, e
with e, = v; set w; = V[ (p, ¢,). Then, by (I, 12.16),

|Jf(p) | = I Vf (p, ey)v- - VVf (P, €,) [

S|Vip e) |- | Vi(p, &) ||V, 0) || VI(p) "L
which gives (2).

Suppose B™ = E'" is oriented, with unit n-vector «y. Then (compare
(3.1)) there is a unique real valued function J(p), the algebraic Jacobian
of f at p, defined by
(3) J (p) = J(p)ag-

This is the Jacobian in the usual sense of the word.
Lemma 6b. Let E" and E'" be oriented, and let f and g be smooth mappings
of RC E" into S C E'™ and of S into E™ respectively. Then

R

(4) I or(P) = J (DM ,( f (P)).
If, further, E™ = E"" is oriented, then
(5) T o) = T{D) (£ (P))-

With a,, a, as before, we have, by (4.8),
Jos(P) = Vgf(p, ag) = Vglf(p), V f(p, xy)]
= Jp)Valf(p), ag]l = T (P (f(p));

relation (5) follows from this.
With f as in the beginning of the section, let w be an n-form defined in
a neighborhood of f(R). Then

(6) [ *o(pyoag = o(f(p))V f(p, ag) = w(f(p))Jp).

Let E™ = E'", and let w,, wy be the unit n-covectors of E" and E™
respectively. Define @, ®* as in (3.1):

(7 w(g) = d(Q)wg, [ *w(p) = O*(p)w,.
By (6),

B*(ployag = f*w(p)ay= o(f(P)J(p) = &(f(p))wyd (p);
since wyay = wgay = 1, using (3) gives

(8) &*(p) = J(p)&(f(P)).

We discuss briefly the Jacobian of a transformation of coordinates.
Let y, x" be overlapping coordinate systems; then i = 3’1y, where
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defined, is regular, mapping an open set in A" into A". Say Vy(p,é,;)
= Ywlp)e,. By (I, 1.13), e, = €y, for u = (uy, -+, u,); hence

Jo(B) = V(p, &1..0) = qul(p)émv. VD WD),
i

= e P

Let 2* and y* be the coordinates of p under y and y’ respectively. Then
comparing with (5.15) and (5.16) shows that y!(p) = 0y’/dz’. Therefore

l iy * @i (p) oyt/oxt - - - OytfOz”
(9) J,(p) = l ........

---------

\ ayn/axl . e ayn/axn

7. The inverse and implicit function theorems. The theorem on inverse
functions is

THEOREM 7A. Let f be an s-smooth mapping (s = 1) of the open set
R CE™ into E'", and suppose J (py) 7= 0. Then there are neighborhoods
U of po and U’ of gy = f (p,) such that f 13 a one-one mapping of U onto U’
and f 1, considered in U’ only, 8 s-smooth, with J,1(q,) = 0.

Since f is regular at p,, F, (v) = Vf(p,, v) is a one-one linear mapping
of V(E") into V(E'"); its 1nverse F, 1 has the same property. Take
N=|F;!|, n<1pew.

Choose {, > 0 so that U 1,(Pe) C B. Letting @ consist of the point p,
only, choose { < {; by Lemma 2c¢ (with # in place of €), requiring also
that J, 5= 0 in Uy(p,). Set

P = §/4N9 U’ = Up(%)s U= f_l( U’) . U{(p(})
Now U and U’ are neighborhoods of p, and g, respectively, and f (U) C U".

To show that f is one-one in U, take any p, p' € U, with f (p} = f (p').
Then by the choice of {,

p' —p| S| FH | F 0 — ) | SN |f (') —f(p) — Vi(pe 2 — P)|
éNn]p —plg{p —pl/2,
proving p = p’.
To show that f maps U onto U’, take any ¢ € U’. We shall define in
succession vectors and points wy, vy, Py, ¢, We, * * *, and will have, for
i=1,2 ¢

() wy=q—¢, 4 v;,= F;:(wi): Py =Pia T % ¢=F(D)

(2) I w; l < (Np)? { Wy I < p[2-1,

(3) | v | < Ny |, | < Np[2",

(4) | — Do SN |wy|l + Ny 4+ (N~ < 2N |wy | < 2.
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First define w; and v; by (1). Since q € U (q,),
(5) jw | <p |o| < Nw | <Np,
giving (2) and (3) for + = 1. Define p, and ¢; by (1); then (4) holds for
1= 1.

We now use induction. Define w, ; and v, ; by (1). By (4), p; and
P;—1 are in U,(pg); hence

l Wiy ‘ = ‘ W, T3 — 4 ‘ = |f (Pim1) — F(P:)) — VI (Do, —v) ‘
g’””f‘g(Nﬂ)ilwﬂ,
proving (2}; (3) follows also. Define p,,; and ¢,,; by (1); since p,,; — P,
= (p; — Po) + Vi1, (4) follows by induction, using (3).
By (2), lim g, = ¢. Using (1) and (3) shows that, for ¢ <,

lpj—Pi|=lUi+1+"'+'vji——>O as 1,7 —> 00;
hence we may set p = lim p,. By (4), |p — py | < {/2; hence p € U(p,)-
Also f (p) = lim f (p,}) = ¢, and p € U, as required.
We show next that f~1 is smooth in U’. Since J,(p) 20 in U, F is

one-one in . Take any ¢* = f(p*) e U (p* € U\ and any veotor w;

we shall prove
(6) Vi-Yg*, w) = F i (w).
Since F . and hence F p,., is a continuous function of p*, the statement will
be proved
Given € > 0, take (supposing w = 0)
Ny=|F}l, n<e2Njw n < 1/20;.
Using p* in place of p,, find {; > 0 as we found { in the proof above,
requiring U, (p*) C U. Set
p1= L/4N,, Uy = Upl(q*)’ U, =U)nU.

Now take any ¢ such that g=¢* +twe U;; say g=f(p), peU.
Starting with p* and ¢* in place of p, and ¢, use the proof above to define
the w,, v;, p;, g, (¢ = 1). Since tw = ¢ — ¢* = w;, we have

|fUg* + tw) — fYg*) — F (tw)lm-lp p —v1|=lp-~pll

which gives (6).

Introduce coordinate systems (2%, :--,z") and (4%, --,y") into
E" and E'" respectively. Since f and f~! are smooth and f~1-fis the
identity in U, we have

ozt oy’
oyl ozt F

i
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Since the determinant | dy’/9z* | equals J (p), which is 0, we can solve
these equations for the 0x’/0y’ at each ¢ C U’. Also (6.5) with g = f-1
shows that J;.i(gy) = 0. Since f is s-smooth, the 0z'/dy’ are (s — 1)-
smooth; hence f~1 is s-smooth, and the proof is complete.

TuroreEM TB. Let f be a regular mapping (§ 5) of the open set R C E*
into E™ Then f is locally one-one.

That is, each p, € R is in a neighborhood U such that f is one-one
in U. Since fis regular at p,, Vf (p,) maps V(£") onto a vector space V,
of dimension z in V(E™); the points f (p,) - w (w € V), ) form the tangent
plane T, to f (R) at f (p,). Let m, be the projection of E™ onto T, ; set
Gp,(0) = T, (f(P), p€ B. Clearly Vg, (py, v) = Vf(p,, v); hence g,
is regular at p,. By Theorem 74, g,, is one-one in a neighborhood of p,;
hence so is f.

Using the inverse function theorem, we shall sketch a proof of the
implicit function theorem. (Usually the former is derived from the latter.)

Let the s-smooth real functions

(7) Fi(ul,..‘.’un; xl,...,xm) G=1,-"-,n)

vanish at (0, -+, 0), and suppose the determinant D= | 3F,[du;] is
#0 there. Set F, (u, +)=u=,for i=1,--, m. The complete set
of ¥, now defines an s-smooth mapping ¥ of a neighborhood of 0 in A*
into A"; since D £ 0, J5(0, * - -, 0) 554 0. Hence there is an s-smooth
inverse function ® near (0,-:-,0). Writing ® = (D, -+, D, ),
the relation FO® = identity gives

(8) FyDylty, - -5y, t)ye s Qb s 2y, 0 00), -0 )= {f;z_ng% Z;’}

Using the definition of ¥, shows that

(Dn+z'(tls"';x1="')=xz’ (i:l,'°-,m).
Set

(9) qsi(xl"."xm):q)i(o"“’();xl’”.’xm) (izl:“',n)'
Setting £, = 0 in (8) now gives

(10) Fi(qbl(x]_:”'sxm)z "':¢n(x1: ""xm);xla "':xm):O
fori=1,---, n Thus u, = ¢,(x, -+, z,) is a solution (the only one)
of (7) near (0, - - -, 0); the ¢, are s-smooth.

8. The exterior differential. To each smooth r-form o defined in an
open set R C E™ corresponds an (r - 1)-form dew, its exterior differential,
defined as follows. For each p € R, it is that linear function of (r + 1)-
vectors (see (I, Theorem 3A)) such that

r+1
(1) dw(p)(vyv: . vo,,) = 2(_1):‘-1\7%(0(?).(”1\/. *e 6:‘ te 'V'Ur+1)-
i=1
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Note that, since the v, do not depend on p,
V(@) vy - ) =V, [w(p) (v - )]

(For the reason for this definition, see (III, 11) or §§ 19 and 20 of the

Introduction.)
That the result does not depend on the representation of an (r 4 1)-
vector as a sum of products may be seen as follows. Given w, set

F(p; vy, *+ ¢, v,) = w(p)(vyv: - -vo,);

then this is an element of L],,(V(E™)), for each p € R (I, Theorem 4A). Set

r+1
dF(p; vy, * V) = Z(—‘l)i_lvv,.F(P; vy, t bt V)
i=1
This is clearly a well defined element of LIj(V(E™)), for pe R. The
isomorphism of (I, Theorem 4A) carries d into d, which is therefore well
defined. _

Note that the differential Vw and the exterior differential dw of an
r-form e are not the same if r > 1; Vw(p) is a linear transformation @,
of V = V(E") into V'), not an element of V"+1.  For r = 0, @} trans-
forms V into VI = 9, and defines an element of ¥ = V{; here,
Vo(p) = dw(p).

An intrinsic characterization of the operator d in smooth manifolds
will be given in § 13 below.

Some special cases of (1) are:

(2) r=20: dw = Vw; thus do(p)v= V o(p).
(3) r=1: dow(p)(uvv) = V 0(p)v — V o(p)u.

Of course dw = 0 if r = n.
We shall prove the following fundamental properties:

r+1
0
@) (do)y(p) = Z (1Y 2 g )
i=1
This relation, in the cases r = 0 and r = 1, reads
ow dw; Ow,
dw), = — dw),; = —? — -,
ok =75 Woly=gr— 5

Noting that (2) applies to the 0-form w,(p),
(5) 2 wp)(p) = > Vor(plve(p) = > dlw)(phve(p),

) o) D
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if the coordinate system is 2-smooth. In the notation of (5.11),

(5") d Z wy(p) dativ- - vdatr — Z V w,(p)vdativ- - vdi.
(4) )
For a smooth r-form w and a smooth s-form &,

{6) d(wvE) = dwvé + (—1) wvdé.
For any 2-smooth w,
(7) ddw = 0.

If f is a 2-smooth mapping of B C E” into § C E™, and w is a smooth
r-form in S, then
(8) df *w = f *dw.

First we prove (4) for an affine coordinate system (see (5.7)). Setting
AME) = (A, +++ A; - -+, A4q), we find

3

(o) (p) = o)D)y, = Y (—1)"1V,, wp)eq
= Z 1) 2o(p)] 0z’ ey = Z (—1)10wp)/ Oxs.

(The last step fails in the general case.)

Next we prove (5) for an affine coordinate system. Then w = Sw,(p)e?;
since d is linear, it is sufficient to consider the case w = w&, with w a
smooth function and & = ¢, Now

V. (wé)e, =V, [w(&e)] = (V,w)é, = (Vw)é,
Hence, with A(¢) as before, using (I, 6.7) gives

r+1
[wd))y = dwe)e, = > (—1)4V,, (wé)ey,
- i=1
Vw), fz(g) = (Vwvé),
=1

giving d(wf) = Vwv§&, and hence (5), for this case.

Next we prove (6). Using an affine coordinate system, and the result
just proved and (2.9),

¥, F Y ] v £ A L ‘-_\ - s = A 1t
dlwvé) = d D> wfe've = > V(wk,ve've
()

= 2 (V(D;{E# "I" w;_v EM)Ve}‘VQ'u
— Z leve‘vfye” + (—1)" Z wle‘vVEHve”

— ZVmAve v Zf et 4 —-1)’Zwle"vZV§pve”,

A (A (1)
which gives (6).
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We prove (7) first for a 0-form ¢. Take an affine coordinate system,
and set &£ = d¢p. Now & = 0¢/0x*, and hence (4) gives

(ddg);; = (dE)y; = ax(ng’) 3x’(gj) "

In the general case, using an affine coordinate system, and using (5), (6),
the result just proved, and the fact that de* = 0 (since ¢, is constant),

ddw = d Zdwlve" = Z (ddw,ve! + dw,vde!) = 0.
(4) 4
A direct proof that ddw-e; ..., == 0 is also simple.

We prove (8) first in the case that w = ¢*, a dual base element, with an
affine coordinate system in £™. Then f *de’ = f *0 = 0. Also, by (5.20),
df*¥e* = ddf* = 0,

Next we show that if (8) holds for both w and &, then it holds for
wvE: using (4.7) and (6) gives

df¥(wvé) = d( fXovf*E) = df *ovf*E L+ frovdf*E
= f*dwvf*E 4 f*ovf*dE = f*(dwvé 4+ wvdé) = f*d(wvE).
To prove (8) for any w, choose an affine coordinate system in §, and
write w = > ,w;ve’tv: - -ver. We need now merely prove (8) for w, and

for each e*; we have done this for e*, and (4.6) gives it for w,.
To prove (5) in any coordinate system y, use (5.10), giving

(9) de’(p) = ddz'(p) = 0;

hence applying (6) to the left hand side of (5) gives the right hand side.

Finally, to prove (4) in the general case, set & = y*w. Since the
coordinates in A" are affine, (4) holds for @. By (5.5) (applied to dw)
and (8), if p = z(a),

(dw);(p) = (g*dw)(x) = (dy*w),(z
By (5.5), @,(x) = w,(p); hence, by (5.13),

Therefore, applying (4) to @ gives

\ 0 .0
(dw)(p) = Z (—1)y-t ey Dy (T) = Z (—1)? pyey ;) (D)-

We give one more formula for dw, in a smooth coordinate system:

(10) doip) = > ey 2D,
x

If we replace the coordinate system by an affine system with the same
coordinate vectors at p, the quantities on the right are unchanged; hence

e
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we may assume the coordinate system is affine. Using (5) and (5.8)
{(applied to each w;) gives

dwy(p) o0
dew Z 6’; el(p)vel(p) = Ze‘(p)vgzwa(mez@),

(A i ¢ 1)
which is (10).

9. A representation of vecfors and covectors. We show how vectors
and covectors in E™ are represented by parametrized curves F and real
functions ¢ respectively. Let ¢ be the unit vector (the number 1) in the
reals.

By a p-curve F in E™ we mean a smooth mapping F of a neighborhood
of 0 in the reals into E*, with F(0) = p. It defines a vector in E":

(1) Wy = dF(t)/dt],.o = VF(0, e).

By a p-function ¢ in E™ we mean a smooth real function ¢, defined in
a neighborhood of p, with ¢(p) = 0. It defines a covector in £, namely,
the gradient V¢(p). (The condition ¢(p) = 0 is assumed merely for
convenience.) Clearly all covectors are obtained in this manner. Ifé =1
is the unit covector in the reals, then V$(p) = $}e.

Given ¥ and ¢, we have, by (1.5),

Vé(p) Wy = V(p, VF(0,e)) = V(peF)0, e);
hence

(2) Vd(p) W = d(¢pF)jdi|,_, = Lim $(F(t))/z.

-0+

LeEMMA 9a. Let f be a smooth mapping of the open set B C E™ into the
open set S C E™. Then for any p-curve F in R, if F'(t) = f(F(t)), then
V[ (p) carries Wy into Wy Also, for any g-function ¢ in S, if q&* (p’)

= ¢(f(p)) (p' € R) andf(p) = g, then f ¥ carries V ¢(q) into V ¢*(p

Since V( feF)(0, e} = Vf(p, VF(0, ¢)), we have

(3) Wg. = Vf(p, Wg),

giving the first part. The second part foliows from (4.5), {4.6) and (4.3).
Addition of vectors and covectors may clearly be carried out as

follows: For p-curves F and @,

4) Wpt+Weg= Wy it H{)=p+[F@) —p] + 60— pl;
for p-functions ¢ and v,

(5) Ve 4+ Vy=Vy if plg)= ¢@) + (@)

Also if F'(t) = Fl(at), then Wy = aWy; V(ad) = aVé.
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10. Smooth manifolds. In various places in mathematics and its
applications, one has to deal with spaces that, locally, are like Euclidean
spaces, but are not so in the large. Such a space, a “manifold’”’, may
appear as a subset of a Euclidean space; for instance, as a surface in
3-space {a sphere, a torus, etc., or a connected open subset of one of these).
Or it may be defined abstractly, as the phase space in a dynamical system.
The manifold M, in (IV, 9) appears in both ways. A manifold is a topo-
logical space; that is, open and closed sets are defined, with the usual
properties.

A smooth manifold, or differentiable manifold, M, of dimension =, is a
connected topological space, which we also call M, and a set of coordinate
systems, as {ollows. Each coordinate system is a homeomorphism y, of
an open set 0, C A" into M. (We could use only a single 0.) A finite
or denumerable number of the U; = y,(0,) cover M. If U,NU; 0,
then y,; = ;7 'y,, where defined, is smooth and regular (see §5). Any
homeomorphism y of an open set in A" into M which satisfies the above
conditions with these coordinate systems is itself a coordinate system.

If the y,; are required to be s-smooth, then M is s-smooth; s may be co.
If the y,; are analytic, so is M. A manifold may be s-smooth in terms of a
set of coordinate systems, and s’-smooth (8" > s) in terms of a subset of
these; if it is s'-smooth, then it is s-smooth (add the omitted coordinate
systems). Euclidean space E” is an analytic manifold, using all analytic
regular homeomorphisms of open subsets of A” into E™.

If a subset of the coordinate systems are picked out, such that the U,
cover M, and all corresponding y,; have positive algebraic Jacobians
Jw;,— (§ 6), these are said to orient M. M is orientable if there exists such a
set. The projective plane, for instance, is not orientable.

A mapping [ of one k-smooth manifold, M, into another one, M’, is
s-smooth (s < k) if the following holds. For any pe M, say pe U,
f(p) € Uj; then y; ~'fy, (where defined in %") is s-smooth. For M’ = ¥,
we have s-smooth real functions in M; for M = %, we have s-smooth
parametrized curves in M’.

11. The tangent space of a smooth manifold. Let M be a smooth
manifold. For any p € M, p-curves and p-functions may be defined, as
in §9. We call two p-curves F and G equivalent if, in some coordinate
system about p, W,.1p = W, .15 If 4" is another coordinate system about
p, and p = y"'y, then by Lemma 9a, W .1z and W .., are both the
image of W, .1 under y; hence the definition of equivalence is independent
of the coordinate system used.

By a vector tn M at p we mean a class of equivalent p-curves. We may
add vectors % and v at p in M as follows. Using the coordinate system ¥,
form H from y7'F and x~1G as in (9.4), and let the p-curve yH define



76 DIFFERENTIAL FORMS [Crar. I

u + v. By Lemma 9a and the linearity of Vy at y(p) (with ¢ as above),
the definition is independent of the coordinate system employed. If v is
defined by F, then av is defined by F'(f) = F(at). Now the vectors
in M at p form a vector space V(M, p), of dimension n, the tangent space
of M at p. The set of all V(M, p) (p € M) is the langent space of M.

Two p-functions ¢, O in M are egquivalent (at p) if V(3*d) = V(x*0)
at y71(p), in some coordinate system. By Lemma 9a, this is independent
of the coordinate system used. A covector in M at p is a class of equivalent
p-functions. Two covectors in M at p are added by adding corresponding
p-functions. The covectors at p form a vector space V(M, p). Using the
last expression in (9.2), P{M, p) becomes the conjugate space of V{M, p).

With a coordinate system y about p, V 4(q) (p == 7%(¢)) is an isomorphism
of V(E™) onto V(M, p), and y; is an isomorphism of V(M, p) onto V(E™).

Let f be a smooth mapping of the smooth manifold M into the smooth
manifold M’. Given the vector v at p in M, defined by F(t), set F'(t)
= f(F(t)); this defines a vector »" in M’, which we call Vf(p, v). Let g
and ¥’ be coordinate systems about p and f(p) respectively; set G({f)
= Y F(¢t)), G'(t) = ' ~YF'(t)); then @(t) = p(G(t)), where y = ' fy.
If F(t) had been used to define v in place of F(t), and F', G, @' are defined
as above, then @ and G would be equivalent; hence (Lemma 9a) ¢’ and
@' would be equivalent, and hence ¥’ and F’ also. Thus Vf{(p, v) is well
defined; it is clearly linear. By Lemma 9a, it agrees with the previous
use of Vfif M and M’ are Euclidean. Also, it agrees with the above defined
V7. The same considerations hold for f¥, a linear mapping of V(M’, f(p))
into V(M, p); moreover, (4.4) holds for vectors and covectors. If f and g
are smooth mappings of M into M’ and of M’ into M”", then (2.8) and
(4.9) (at the moment for covectors) hold.

12. Differential forms in smooth manifolds. For each » € M, let w(p)
be an r-covector in M at p (defined, using V(M, p)). Then w is an r-form
in M. Similarly r-vector functions a(p) in M are defined. If fis a smooth
mapping of M into M’, then Vf (p, a(p)) and f)w( f (p)) are defined, as in
§4; in particular Vy and x} are defined. Relations (4.1) through (4.8)
and the analogue of (4.9) hold, as follows from the discussion in § 11.

We say o is continuous if each y*w is continuous. More generally,
suppose M is s-smooth, and let s'< s — 1 be an integer. Then w is
8’ -smooth if each y*w is. If this holds near p with y, then it holds also with
2. For y™*w= (xy7'y Vo = yp*(y*w) (p=y7%x'), and since yp is
s-smooth, p* is §’-smooth (see (5.16) and (5.17)). (For r = 0, we may use
8' = 5.) Similarly we have continuous and s’-smooth r-vector functions;
in particular, vector functions.

We now study the exterior differential dw of r-forms w in M. For
r = 0, we may set dwo = Vo, as in (8.2). If r > 0, we cannot define
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V,w directly; for if ¢ +# p, then w(g) and w(p) lie in different vector
spaces, VWM, q) and VUM, p); and if a coordinate system is used to
define V w, the result in general depends on the coordinate system used.
However, the particular combination of derivatives in (8.1) is independent
of the coordinate system, as we now show.

Let M be 2-smooth, and let w be smooth in M. Given p € M, choose a
coordinate system y about p, and set

(1) do(p) = ydy*o(p).

Suppose we had used y, instead of . Then y = y; 'y is 2-smooth, and by
(8.8), w1*d = dy1*. Applying this to the form yp*y¥w gives

21 rdgte = q Py ¥ gte
= 1y Hdy*pto = y*dyte.

If fis a 2-smooth mapping of M into M’, then df *w = f *dw (w in M"),
as follows at once on using coordinate systems. The other properties of
§ 8 follow also. :

If M is not 2-smooth, the definition of smoothness of an r-form
w(r 2 1) in M fails; y*w might be smooth, but yfw might not be. Hence
dw cannot be defined by (1). It can also happen that dw exists but has
different values as defined with the help of v, and y,. We give an example,
with M an open set in E?2, and with ¢ = y; 'y, given as follows. Letting
(z, y) denote points of A2, set

x2y
flx, y) = WFE J ylz, ¥) = (x + flz, 9), ¥);
let £(0, 0) = 0. Then df/ox— 0 and dffdy — 0 as (x,y) — (0,0), and
hence we see that f and @ are smooth. Clearly J, # 0 near (0,0). Note
that the second cross partial derivatives of f at the origin are 1 and 0,

and hence
72 2
(%”’- ~ 2 "’) = (1, 0).
dxdy  oyox/ (0,0

Let & be a 1-form in A2, Set ¢ = (0, 0). A direct computation of the
single component of dy*£& and of p*d& gives

(dy*E)alg) — (p*d&)s(q) = E(q)-(—* — = —)q = &(9)-

This shows that if & in M is such that w,(x(q)) 4 0 (in the coordinate
system y), then dw has different values at y(g) in the two coordinate
systems.

13. A characterization of the exterior differential. Let M be a 2-smooth
manifold. Consider the class of all smooth forms defined in open subsets
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of M. We shall show that the operator d on these forms is characterized
by the following properties.t

(a) d(w; + w,) = dw; + dw, where w, and w, are defined.
(b} d(¢w) = Vve + ddw where ¢ and w are defined.
(¢) If o = Vgyv:--vV, in an open set, then dw = 0 there.

These properties are known to hold. Now let d’ be any operator with
these properties. Take any w, and any p in the domain of w. Using a
coordinate system in a neighborhood U of p, write @ = X ;,w;(p)eX(p)
in U. Applying the above properties shows that d'w is given by (8.5);
hence d’w == dw.

1 See Lichnerowicz, p. 166.



ITII. Riemann Integration Theory

The purpose of this chapter is to present the fundamental properties
of the integral of Riemann type in any number of variables, in a manner
that brings out clearly the geometric content. Beyond the elements of
the subject, we prove two basic theorems, the transformation formula
(Theorem 7A or (9.1)) and Stokes’ Theorem (Theorems 14A and 18A),
Though the definition and fundamental properties of the integral depend
only on the affine character of the space E", the metric is a very useful
tool; hence we take " to be Euclidean (App. I, 13).

As seen in the Introduction, the natural integrand for an r-dimensional
integral in E" is a differential r-form w in E”. (That w is of necessity an
r-form, with the simplest assumptions, will be seen in (V, Theorem 10A)
and (IX, Theorem 5A).) The simplest domains of integration are convex
polyhedral cells, and linear combinations of these, cellular r-chains.
In the first sections of this chapter, we show how to integrate r-forms
over cellular (or polyhedral (V, 1)) r-chains. In the case r = n, the
definition reduces to the usual one for the Riemann integral. We use the
fundamental properties of Grassmann algebra, in particular, the corre-
spondence between simple r-vectors and oriented r-volumes (I, Theorem
9A). The concepts of mass and comass in Grassmann algebra (I, 13) are
not needed here; in the few places they are used, for later purposes, we
could clearly do with the norms of (I, 12).

The transformation formula, (7.1) or (9.1), is in its broadest form if
we integrate over open sets; hence we first study improper integrals (§ 6).
The basic reason for the transformation formula is best seen through the
inequality (7.2). If the mapping is affine, this becomes an identity, as in
(8.1); in the general case, since the mapping is locally almost affine, we
have approximate equality. Our proof of the formula is carried out by
considering this local approximation. The usual formulation (9.1), using
Jacobians, follows at once from the more intrinsic formulation (7.1).
It would not be hard to translate the proof of (7.1) into a form not using
Grassman algebra, thus giving (9.1) directly.

Integration in a smooth manifold M may be defined with the help of
coordinate systems in M (§ 10); that the result is independent of the
coordinate system employed follows from the transformation formula.
If M is an r-dimensional manifold in E*, an r-form  in E? defines an
r-form w; in M, through the identity mapping of M into E™; see §§ 11

79
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and 12 of Chapter L. We may define | o= [ @, This situation
occurs, in particular, in Stokes’ Theorem. (One could approximate to M
by means of polyhedral chains 4,, and define fM w = lim L w, under

very general circumstances; see Chapter X.)

The simplest case of Stokes’ Theorem is taken up in § 11. Largely in
order to show the intrinsic reason for the theorem, we give a direct proof.
The extension given in § 12 is then sufficient for the proof of the much
more general case studied later.*

The principal difficulty in the general case of Stokes’ Theorem is
concerned with the structure of the boundary B of the region or manifold
considered; B is in general made up of pieces of various dimensions.
Actually, the parts of B of lower dimension play no part; hence it is well
to show how to eliminate them from the discussion. We do this with the
help of the concept of “zero s-extent” of a set. Using also partitions of
unity, we obtain a straightforward proof of the general theorem for
bounded regions in § 14. The theorem for bounded manifolds (Theorem
18A) is easily reduced to this theorem. Greater generality is achieved by
using ‘“‘regular forms” (§§ 16, 17), introduced by E. Cartan and others.

In the final section, the iterated integral in E™ is considered in a
geometric formulation; this could be easily generalized to the case of
smooth manifolds.

1. The r-vector of an oriented r-simplex. Let g be an oriented r-simplex
in E*, or, more generally, an oriented r-dimensional polyhedral subset of
an r-plane. Taking the r-plane P of ¢ and the oriented r-volume of ¢ in P
gives an oriented r-volume in £”, and hence a simple r-vector in E"
(I, Theorem 9A). This is the r-vector {o} of 0. The definition does not use
the Euclidean character of E”. For r = 0, ¢ is a point p; set {p}= 1.
We shall find a formula for {0} in terms of edge vectors of o.

For any r-simplex ¢ = p,---p, in E* the vectors u,; = p, — p;
(¢t % j) are the edge vectors of a. Any set of r edge vectors of ¢ which are
linearly independent we call a defining set of edge vectors of o. If o is
oriented, we call the set an orienting defining set for ¢ if they are given in
an order which defines the positive orientation of ¢ (App. 11, 5).

It is easy to see that a set of r edge vectors of ¢ forms a defining set if
and only if the corresponding set of edges of o contains no closed path;
also, if and only if any two vertices of ¢ are joined by a succession of these
edges, With the orientation of ¢ = p, * - * p, given by the ordered p, (App.
11, 5), two important orienting defining sets are

(1) Uor> Uggy ~° * 5 Ugys Ugyy Unzy * " "5 Yp_ g, 9

* For literature on the subject, see K. Krickeberg, Uber den Gausschen und den
Stokesschen Integralsatz. III. Math. Nachr. vol. 12, pp. 341-365 (1954).
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Tarorem 1A. Let v, - - -, v, be an orienting defining set for 6. Then

(2) {o} = vyve - vofrl.

= | ¢ |, denotes the r-volume of o (using the

As a consequence, if | o
Euclidean character of E™),

(3) | o= {o}f = |vyv- - -vo, |[rl.

We shall prove (3); then (2) follows, since v,v- * *vv, defines the positive
orientation of o.

Clearly (3) is true if r = 1. For the general case, we use induction onr.
It is easy to see that there is a vertex of g, say p,, which is an end point
of just one of the v, say v;,. Let o' be the face of ¢ opposite p,. Then
g, * * *, v, form a defining set for ¢’, and by induction,

o' |=|B|[r — 1)},  B=rvyv Vo,

The points g, = (1 — t)p, + tp (p € o), with ¢ fixed, form a simplex g,
for which clearly ‘
Lo | =t o' | =t B |[(r — 1)L

We can find a vector w = v; + ¢yv, + + -+ + ¢,¥, such that w-v; = 0 for
1= 2, -+, r; then ] w ! is the altitude from p, to the plane of ¢’. Using
(I, 12.20), we find

1 /
‘ ol = fo | o
which gives (3).
LeMMA la. For any simplex 0 = py - * p, in E® and any point g of
B if v, = p, — q, then

|w|dt=|p] | w|r= L wvogve v, |[r,

, N T
(4) {U}:;”!L("‘U%V”'”i"'V’Ur-
i=0

Since uy; = p; — Py = ¥; — Vg, We have

o} = wgyv- * vy, = (v — Vo)V * v(v, — Vo)
r

e A% \/s s e\s8% : RYIEEYET \sar Araw Afe 8 e\7AY
—_— U]_V VU,,. : Vv VU; (VtovdiV Vi,
=1

T
= pyV* VU, — Z (—1)ygvove - - b, ¢ * Vo,
i=1

which gives (4).

2. The r-vector of an r-chain. By a cellular r-chain Da,c] we mean a
set of oriented cells o7 (App. 11, 5), each with a real coefficient a,; we set
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a(—o) = (—a)o, and identify the oriented cell o; with the chain 1lof.

For the purposes of § 3, subdividing the ¢} will give a new chain; this is

contrary to the situation for polyhedral chains used in Chapter V and later.
The r-vector of a cellular chain is defined by

) 1> a0 = > afa).

This gives a linear mapping of the linear space of cellular r-chains in £*
into V(,,(&"). Forr=0,

(2) {Z a’t’pi} == Z a;.

TuroreM 2A. The r-vector of a cellular chain is independent of sub-
divisions.
This is clear for subdivisions of a cell; hence it holds for subdivisions

of chains.
THEOREM 2B. For any cellular chain A, with boundary 04,

(3) {04} = 0.
ReMArk. This clearly holds also for polyhedral chains defined in (V, 1).
It is suofficient to prove this for a simplex ¢=p, - p,. Set o,
= Po"*P; "+ P,; then (App.11,7.1) 00 = 2(—1)Yo;. Setv, = p, — p,.
By (1.2) and (1.4},
(r— Do} = oy B ove, (i3> 0),
r
(r — 1)a,} = (—1) gy -+ B, o - v,
{ 0} ; 1 r
These show that {0¢} = >(—1)/{o,} =
For another proof (usmg later matenal), suppose {06} = « # 0.
Choose w; so that w;a % 0 (I, Theorem 3A). Set w(p) = w, in E".
Then dw = 0, and (4.1) and Stokes’ Theorem give

Wy o = Law:de::O,
a contradiction. i
TuroreM 2C. {4} depends only on 0A.
For suppose 04 = 0B. Then &(B — 4)=0, and by (App. II,
Lemma 10a), there is a cellular chain ¢ with B — 4 = 2C. Hence
{B} — {4} = {oC} = 0.

3. Integration over cellular chains. First, supposing the r-form e is
defined at all points of the cellular r-chain 4 C E", we define an operation
w°A (which is not independent of subdivisions). With the “center” p} of
o; as in (App. II, 1.2) and the scalar product of (I, 2.2),

(1) woz a,0; = Z a,0(p;]){ol}.

(We shall use only simplexes ¢7 in general.)
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We next define Jf w for any oriented r-cell g, @ being defined and con-
g

tinnous in . Let &,0, G40, * * - be any sequence of simplicial subdivisions
of o, whose meshes — 0 (App. II, Lemma 3c); set
(2) fa) fw ) dp = len:ow S,0.
That the limit exists and is independent of the sequence of subdivisions
chosen follows at once from the following lemma and the uniform con-
tinuity of w.

LemMa 3a. Suppose € > 0, { > 0 are such that

(3) lw(g) —o(p) g <e  if pgeo, |g—p|Z L

Then for any two simplicial subdivisions Yo;, >0; of g, of mesh < ¢,

(4) ' a)oz o — w°z 7,

Let p; and p; be the centers of o; and o] respectively. Let 7, be a
common simplicial refinement of the two subdivisions (App. 11, Lemma 3b).
For each o}, let >;7;, denote its subdivision, formed by the 7, lying in it.

lo!.

T nd ‘k,\ J.LA center A~ [ L
L€V 0 1€ UILE CONLET O Ty wizIice

{Ui}:z{"'ik}’ ZH‘%}'—'

and diam(e;) < { (all ¢), using (I, 13.4) and (I, 13.9) (or (I, 12.10) if we
use | | in place of | o) gives

|
o2 20

’tk

r o !
Tik — w G’i

=130

=3 S g — @i
) k

<> Dl =€ > Joi|=e| ol
ik '

?
Similarly | e >7), — w° 3o} | < , and (4) follows.
We now define integrals over cellular chains by

(5) [s 0= af o

4, Some properties of integrals. From the proof of Lemma 3

LT3 8 EARGE]SEY ©r I TN

3a it 1
clear that the integral is independent of subdivisions of the chain. (Hence
it is defined for polyhedral chains; (V, 1).) The integral is bilinear:

ci0 C =
[ e + s = ¢ [y +cy [ oy,
fclA +e,4, W=104 fAl W + Cy jAg .

In particular, f w = —| o reversing orientation reverses the sign of
the integral.

is
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The definition of the integral, applied to constant forms, gives

(1) Lw = wy{4} if o(p)= v, alp.
The mass of a cellular chain is defined by

@ | D wol

use a subdivision if the ¢} overlap. (See Chapter V for further details.)
If S, is a subdivision of a cell o, then, by (I, 13.4) and (I, 13.9),

wngiéZIw(pi)-{ai}[g Z]w(?f) oo | Z]wlp|ol;

the definition of the integral now gives

— Z | a | i o’ t if the ¢ are non-overlapping;

3) Jo|Zlohla|< o]l 4l
Hence also
@ |fo—[&<ela] i o) —ipp<e ind
We give a lemma on the degree of approximation to { & by sums like

w°A4:
LeMmA 4a. Given the cellular chain A = Ja,07, suppose

(5) lwl(g) — o), <€, pand g in the same of.
Then if p; s a point of of,

(6) [0 =D aw@)re} < el 4]
For each 7, (1) and (4) give
o — 0ol |< | o

(6) follows at once from this,

5. Relation fo the Riemann integral. In this section we consider the
integration of an n-form w over n-cells o in E", supposing E™ is Euclidean
and oriented. Then we may write w(p) = @(p)w,, as in (II, 3 1) leen

. )
n
any polyhedral region & in E*, let o denote the

region, oriented like E™; we define
1) [o=[owdp=[ o

From the definition of Lw it is clear that f_ & is exactly the Riemann

integral of the real function @ over .
Thus the integral of § 3 is a generalization of the Riemann integral,
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in the following manner. First, for r-dimensional integration in r-space,
the real function @(p) is replaced by the r-form w(p); then the integral is
defined, independently of the metric character of £7; note that we now
integrate over oriented domains. Both integrals carry over at once to
r-dimensional integration over r-dimensional polyhedral regions in n-space;
in the Riemann integral, one integrates real functions over the domains,
using the metric character of E™, while in our integral, one integrates
r-forms over oriented domains. Finally, our integral extends at once to
an integral over cellular r-chains in E*. The additivity of the Riemann
integral over disjoint polyhedral regions is replaced by the linearity of
the integral as a function of cellular chains.

In the definition of f,w, there is no need for w(p) to be an r-covector;
we could use a function ¢(p, a), defined for points p and r-directions «,
which is continuous in p for each «. However, if simple continuity
properties are to hold, or if d¢ is to be definable to be a bounded function
(IL, 8), then it turns out that ¢ must define an r-form (possibly not con-
tinuous); see (V, Theorem 10A) and (IX, Theorem 5A). The algebraic
reason for this is given in (V, Theorem 94).

In the future, when we are working with n-dimensional integration in
n-space, we will use either integral in (1) interchangeably.

The following inequality is easily proved:

(2) [l =] owd|< [ |ow | dp;

the last integral is a Riemann integral.

6. Integration over open sets. Let w be a continuous n-form in the
open set R C E"; let E" be oriented. Then for any polyhedral region

Q C R, we can define f o™ orienting ¢) like £*. In defining jR w, questions

of convergence arise. This section belongs to the theory of improper
integrals.

We say w is summable over R if for each € > 0 there is a compact
set P C R with the following property. For any polyhedral regions

Ql:st
(1) ij’ome“Q a)i<e if PCQ,CR, i=1,2
D 4 1

We may clearly require P to be a polyhedron.
The following condition is clearly equivalent: For each € > 0 there
-is a compact set (or polyhedron) P C R such that

(2) ( fQ wl <e if QCR— P, Q a polyhedron.

Let @ be summable over R. Then clearly there is a unique number
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Jrw, the integral of w over R, with the following property. For each
€ > 0 there is a compact set (in fact, a polyhedron) P such that

(3) UQw—wa|<e if PCQCR, @ a polyhedron.

Conversely, if a number | pw exists with this property, then o is summable
over R, and {pw is its integral.

We say the increasing sequence of sets ¢, @,, - * - in R converges to R
if their interiors cover R; we write @, CQ, C -+ — R. It is easy to see
that such a sequence exists, with the ¢, polyhedral.

LemMma 6a. If o is summable over R, and @, CQ, C - - - — R, the @,
polyhedral, then
(4) tl_l:l; fin: wa-

For given € > 0, choose P to satisfy (3). Now P CQ,;0 for some ¢,
and (3) holds with @,, if v = 7,.

The usual definition of the Riemann integral fR ¢ of a real function ¢
is exactly like that of fR .

LEMMA 6b. o is summable over R if and only if | w(p) | is summable
over R.

Suppose that | &(p) | is summable. Then using (2) and applying (5.2)
shows that w is. The converse is easily proved, if we consider separately
the sets where @(p) > 0 and where @(p) < 0.

LemMA 6¢. If w is summable over R, and ¢ is a real bounded continuous
function tn R, then ¢w is summable over R.

This follows from the last lemma.

The volume (or Lebesgue measure, or mass) of the open set R may be
defined by the relation

(5) | R I — fR dp = sup {I Q: QC R, Q a polyhedron},

if this is finite. With the @, as in Lemma 6a, we have | R| = lim | @, |.
With the n-direction w, of E",

(6) |R|= ‘[R ;.

Lemma 6d. Let w be continuous in the open set R, and let| R | and | w |
be finite. Then w is summable over R, and
F
™) oo <ol B
Let @, CQ, C-++— R, the @, polyhedral. Given € > 0, choose 2 so
that | R —Q,| <efjw|. Then for any polyhedron Q@C E —@,

Ugw’g|wHQ|<e, and hence w is summable over R. Since

}.[Q-wl < ! W l f R ], (7) follows from (4).
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For a polyhedron P, we can define both {pw and fi,,»®; we wish to
show that these are the same. We need

LemMa 6e. Any (n — 1)-dimenstonal polyhedron @ wn E" is in the
interior of a polyhedron Q' with | Q' | arbitrarily small.

This is clear for an (n — 1)-simplex, and hence for Q.

Lemma 6f. If w is continuous in the polyhedron P, then w is summable
in int(P), and

(8) J w = .
P int( P)

Set P* = P — int(P). Given € > 0, choose @’ by the last lemma so
that (assuming w not identically 0)
P*Cint(Q), Q' |<eflw]

Now P’ = P — int(Q’) is a polyhedron, and P’ C int(P). Take any
polyhedron @ with P’ C @ Cint(P). Then

o[ ol<iP—@lloj<|@|loj<e

which gives the lemma.

The following lemma will be used in § 8 below:

LeMMA 6g. Let w be continuous tn R, and let I be a number. Suppose
that for each € > O there s a compact set P C R with the following property.
For any continuous function ¢ in R such that 0 < (p) < 1, p(p) =1

P, and spt(¢d) is a compact set in R, we have ' I — J:R gbw’ < €. Then
w ts summable over R, and J.R w=1I.

Given € > 0, choose P as above, using €/2. It is sufficient to show that
for any polyhedron @),

(9) \1—jgw\<e if PCQCR.
We may choose a number N and a polyhedron @' C R such that
QCIntQ), @ —Q|<e2N, lop)|<Ning

(compare Lemma 6e). Choose ¢ so that spt (¢) CQ’, ¢ =1 in @ (App.
IIT, Lemma la). Now

H‘Rqsw - .wi E - UQ'~Q¢“’ l = fQuQ( w| <2,
and (9) follows.

7. The transformation formula. We give here the fundamental
formula for the transformation of the integral, and an indication of a
direct proof. Since some details of this proof (on the approximation to a
curvilinear triangulation by a true triangulation) are not too simple to
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present, we shall give the complete proof, by another method, in the next
section. The usual formulation of the theorem, using Riemann integrals
and Jacobians, will be found in §9. Recall the definition of f*w in
(I1, 4) and of J, in (II, 6.3).

Tarorem 7TA. Let f be a one-one regular mapping of the open set R C E
onto the open set R'CE’ (B and E’ oriented and of dimension m), with
JAp) >0 1in R. Let w be a continuous n-form in R', summable over R’.
Then f*w 1is summable over R, and

(1) fRf o = fR’ w-

Remarks. If J,(p) < 0 in R, then the formula holds with the minus
sign, as we see by reversing the orientation of E’. If we think of R as an
n-chain and write f(R) in place of R’, this takes care of both cases.
In the general theory, (1) corresponds to (X, 8.1); but the whole of B
cannot appear as an n-chain there.

A direct proof of (1) may be given along the following lines. Given
€ > 0, cut ¥ into small cubes, form the regular subdivision (App. II, 3),

g lat 11 i 1 1
and let Q be the polyhedron containing those simplexes g; in int,(R),

for a certain A > 0 (notation in App. IT). The o; = f(0,) are curvilinear

simplexes in R’. Let g be the affine approximation to f in @ (see (X, 1)),

defined as follows: For each vertex p,, g(p,) = f(p,); let g be affine in each

o), (App. I, 12). Then (if the cubes are small enough, 4 remaining fixed),

the 7, = g(o,) form a triangulation of a polyhedron @’ filling most of R’
We suppose that we have made each of

UR’Q’_J.Q'G)" HRf*w—qu*w',
oo, o reSal

less than €/5; there remains to show that we can make

(2) Z | w°ty, — [ *weo, | < €/5.
. p
Take a typical ¢, = p, * - * ,, with center p;. Say
9; = f(p:) = 9(p.), Te=q0" " " T
Uy = Pi — Pi-1r Y, =4 G
Since g is affine in 7, v, = Vg(p};, ¥;) (App. I, 12.4); hence, by (1.2)

and (I1, 4.1),
(3)  {ruy = vy vo, il = Vo(pf, upve « va)nl = Vg(py, {0,})-
Therefore, if g; is the center of 7, using (II, 4.4) gives
] woty, — [*weo, I == l w(q;:)'{Tk} — w(f(Pi))-Vf(pZ‘, {%})'
< wlg}) — o(fOE)] | 72| + | o(F@E)] | Varr, {o) — VI(@E {o:});
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which may be made an arbitrarily small multiple of j O‘k! (compare (X,
Lemma 3a)). Summing over k gives (2).

8. Proof of the transformation formula. First we consider the case
that @ is compact; that is, if spt(w) is the closure of the set of points ¢
where w(g) #~ 0, then spt (w) isin R and is compact. If fis affine (App. I,
12), the proof may be carried out at once, as follows. Take a polyhedron
P such that spt(f*w) C P C R; thenspt(w) C P'C R’, where P' = f(P
An arbitrarily fine subdivision > ¢, of P gives an arbitrarily fine sub-
division >r, of P’, 1, = f(o,). Now (see §7) f(py) = g}, and

(1) {T}c} = Vf(p}:’ {Uk})’ Wty = f*woa'k;

hence
[R, w = lim a)oz Ty == limf*woz o) = ij*w.

»

For the general case with w compact, we shall express w as a sum
> w,, with each spt(w,) small; in a small region, f is nearly affine, and we
shall obtain an approximation which will prove (7.1).

Let O, C,, - - - be a subdivision of £’ into cubes of diameter 1; let
i, Cg, * - - be the concentric cubes of diameter 2. Let v, be a smooth
function in Z’ such that (App. III, Lemma 1c)

0<y@<1, %(@>0 inC, =0 inE&—-Cj
form g, by translating €| into C,. Set

q) = wé(q)/ Z ¥i(9)
;

this is a “partition of unity” in E’ (App. III, 2). Now for some L (see
(11, 4.14)),

zwi 1, ¢@=0 inE —0;, &, =L (alli)

Q' = spt(w), Q= f"UQ)=spt([f *w).
Sinee @ and hence  is compact, we may choose p, so that
R, =U,(Q), R, CR.

We may choose p, etec. so that we have
Bi= U Q)CR, L'=%m Lp<py
Set (see (I, 6))

J = sup {|J,(p) : pe Ry}
Now take any € > 0. Set (we may assume w = 0)
€, == €[22 M L', €= /3LL'J o]
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Choose p and p’ > 0 so that (see (II, 2.3))

(2) p'=plL' < py/3 (hence p < pof3),

3) |f(p) —f(p) — Vf(po 2 —20) | S 2|2 — w0 | (I |2 — Do | <p
(4) | T(p) — I (pe) | S /3| @] { and pg € Ry,

5) ol —wlg) | < 3] ifgoe Ry and |g — g, | < egp.

By contracting E’ by the factor p’, we form (from the C; and C?) a
cubical subdivision of E’ with cubes P, P,, --- of diameter p’ and
concentric cubes P, Py, - - - of diameter 2p’; the p; go into functions ¢,
such that

) 0< <1, $=0 nE P, >é=1 £ =L

We use henceforth only those ¢, say s =1, - - -, m, such that P; touches

Q'; by (2), these P, lie in R]. Let g, be the center of P;; set p, = f ~(q,).
Let F, be the affine approximation to f at p,; it is defined by

7) Fi(p) = J(p

A% 2

Since Vf (p;, t) is linear in v, (7) and (II, 1.1) give

(8) V Fp,v) = Vf(p; ), all p, ».
Set

(9) w; = ¢,w.

We show that

(10) spt (f*w;), |J spt (Fiw;) CU (p).

Suppose f*w,(p) 7~ 0. Then w/ f(p)) # 0, hence $,( f(p)) 7= 0, and
[ flp) —gq, ] < p'. By the choice of m, f(p) and ¢, are in R:.; hence, by (2),

|p_pi1§_‘gf-1,R'l1f(p)'—Qil <ps

giving spt (f*w,;) C U (p,). Also, by (8), (II, 4.16) for F; ' (defined in
E'), and (I1, 4.15) for f,

Lrpy = | VE7 = | Vi) | < Lryrps

hence the same proof holds for F¥w.
We show next that if «, is the n-direction of &, then

(11) [Ffo p) — f*op)la | <& if |p—p;| <p.
By (3),

0 — | e|p—pi| <ep if ¢ =PFip), 9= f(p)
Hence, by (6), (2) and (5),
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| og") — wdd) | < | ¢:id)) — bl || wlg) | + | @) | | w(g") — w(@) ]
<8 ld —qllw| +|ol)—o@|<LL|o] e+ f3J.

By (I1, 4.4), (8) and (I, 6.1),
Fro(p)ay= o {F(p))V Fy(p, ag) = o,{q")J«{D,);
similarly f w, p)-a(,: w,(q)J (p). Therefore, using (4),
[[Fiop) — f*odp)la|
g I wl7') — w;(q) | | J,p) | + | wlg) || I Ap;) — I (D)
< (LL |w| ey + 3 + ol &3]0,

which gives (11).
Since U (p;) is contained in a cube of side 2p, (10) and (11) give

12) [P, o) | <[ | Flo,— fro] <20

od TT of n.nf( F*r)\ onto a neichborhood

u AFLE UL A/ E 6!.].”\}

ghborh
U of spt(w,); b (8), Jp (p )> 0. Smce we have proved th theorem for
aﬂine F; and compact w,;, we have

® — * — S
Le o= fU-Fi @i = fU’- @i = [R’ D
H 3 *

Therefore, since > ;é,(p) = 1 in spt(w),

> o= [

t=1

Also 1?‘,_1le f*w;, = fR f*w; therefore

.[R'w o .[Rf*w - ifR(F?wi — f*w,).
i

ein Ry and| P;| = (p'[n!/?)", the number of values of i is

Now F, maps a neighbor

M.nti2) 0 wt/2Af T /0] 0
LF re IV _— AVA LS .[r-l
Therefore
'.[R'w — ij*w \ < m2"phe; <,
proving (7.1) for compact w.

Consider now the general case; we shall apply Lemma 6g. Given
€ > 0, choose a compact set P’ C R’ by Lemma 6b so that

J.R'—P'~ @ \ <€
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Set P=f~1(P’). Now take any continuous function ¢ in R with
spt(¢) C R compact, such that 0 X <1 and =1 in P. Set ¢'(¢)
= ¢(fg))in R’. Then

”R,w -—fR,cﬁ'w] = EfR,_P, (1 — ql)')a)' < ‘[R,_P, ’ “’[\ <e

Since ¢'w is compact and f*(¢d'w) == ¢( f*w) (which may be proved
directly from (II, 4.4)), the proof above gives

[prro=[ fro0= o

Hence

o= eproj<e

Therefore, by Lemma 6g, f *w is summable over R, and (7.1) holds. This
completes the proof.

9. Transformation of the Riemann integral. We show how Theorem
7A gives the usual formula for the transformation of the Riemann integral
under a change of coordinates. Let ¢(p) be continuous and Riemann
summable over the open set B’ (see § 6). Let fbe a one-one regular mapping
of the open set R onto R’. With coordinate systems in the spaces of R and
E’, this is equivalent to choosing a new coordinate system in R’ (see

(11, 5)). We wish to express fR, &(p) dp as a Riemann integral over E.

With the unit n-covectors w, and w, of the oriented spaces of R and
ER’, define @ and ¢* by

w(q) = $(Q)wg,  f*o(p) = ¢*(p)wy.

Then, by (II, 6.8), ¢*(p) = J(p)d( f(p)). Writing both sides of (7.1) as
Riemann integrals (see § 5} gives

M [ @dg=[ T p$(fp)dp if Jip)>0 inE;

the same formula holds with the minus sign if J (p) < 0in R. Also, taking
é(p) = 1 in R’ gives

= fR’ dg = J‘ij(P) dp if J(p)>0 inR.

10. Integration in manifolds. In Euclidean space, the simplest domains
of integration are oriented polyhedral cells. In smooth manifolds M
(I1, 10), the simplest domains are smooth images fo of oriented cells ¢.
If the continuous r-form w is defined in a neighborhood of fo, o an oriented
r-cell, we may define f*w as in (II, 12), and define (corresponding to

(7.1))
(1) [oo=[1*

(2) | ®
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We suppose next that M is a compact oriented smooth manifold of
dimension 7, and ® is a continuous n-form in M; we shall define fM w.

Let spt (w) denote the closure of the set of points p € M with w(p) £ 0.
Suppose first that this set lies in some coordinate system y. Then we may

define chu as in (1), using y. Thus

(2) [u w = fo x*ow if spt(w) C %(0).

Suppose we had spt (w) C '(0’) also. Then there are neighborhoods R
and B’ of y~1(spt (w)) and y'~1(spt (w)) respectively, such that p = "1y
is a one-one regular mapping of E onto R’: since M is oriented, .J (z) > 0
in B. By Theorem 7A,

.[0' x o= fR’ ¥ = fR pr o = fo rFew,

showing that the definition of fM w is independent of the coordinate

n." PREEpY [ |

_y Ull].PlUyUu

To integrate any w, one could take a triangulation of M (IV, Theorem
12A), and integrate separately over each cell. But it is simpler to use a
partition >¢, of unity (see § 8 and (App. III, 2)): Express w as Dw;,
w; = ¢, with each spt (w,) in a coordinate system, and sum the fM ;.
We show how to do this.

Let O and O’ be the open balls about 0 in A", of radii 1 and 2 respec-
tively. We may find a finite set y,, -+ -, x,, of coordinate systems, each
defined in O’, the y,(0) covering M. Define the smooth non-negative
function @(z) in A®, positive in O and zero in a neighborhood of A" — O,
as in (App. IIL, 1). Set ¢5(p) = O(y; Yp)) in y,(0’), and = 0 elsewhere in
M; then ¢; is smooth in M, and ¢; > 0 in y,(0). Hence we may set
$:(p) = $i(p)[2.4;(p) in M; now ¢; = 0 outside y,(0’), and 2¢;(p) = 1
in M.

Set w,(p) = ¢,(P)w(p) in M; then w = >w, We may define each
fu w;, and set (M W= fM ;. To show that the result is independent

of the y; and ¢, employed, let y; and ¢; (j= 1, - - -, m’) be another such
set. Using the invariance proof above, we find

. Z'O Xf(qbiw) = ZIO’ %y (Zcﬁj’-’cﬁiw) — Zfo' X?(¢}'¢aw)
=2 [, dser=3 [,5° (S d50) =3 [, 50

which gives the result.
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Now consider any open subset R of an oriented manifold M, with R
compact. Let w be a continuous n-form, defined in a neighborhood U
of B. We may choose coordinate systems X1 ' * s Xm @S above, so that
the 7,(0) cover R. Define the ¢; and the ¢, as before; for some neighbor-
hood U’ C U of R, the ¢, are defined in U’, and Zqﬂ- (p) = 1 there. We

may set
3) oo = [ ptibo o= Z [ b

for | 3}, | is finite in U = %, '(R), and | U] | is finite; now Lemma 6d
shows that each term is defined. As before, the definition of wa is

independent of the choice of the y, and ¢,.
Finally, take any open subset R of the oriented smooth n-manifold M,

and suppose.the n-form e is continuous in B. We say w is summable over
R if for each € > 0 there is an open set R, with B, compact, B, C R,
such that for any open set R’ with R’ compact,

(4) J’JrR’w-—Jarw;{,e if B,CR, R'CR.

If this holds, then wa 1s uniquely definable, as in § 6, and the properties

through Lemma 6a continue to hold, with polyhedra replaced by open sets
with compact closures; we see easily that Lemma 6¢ holds also. The
definition is equivalent to that in §6 in case M = E*, as follows from
Lemma 6f.

We give a generalization of Theorem 7A to the present situation.

TarorEM 10A. Let M and M’ be oriented smooth manifolds of dimension
n, and let f be a one-one regular orientation preserving mapping of the open
subset R of M onto the open subset R' of M'. Let w be a continuous n-form
in R’, summable over R'. Then f *w is summable over R, and (7.1) holds.
If [ reverses orientation, (7.1} holds, with the minus sign.

With the help of coordinate systems, this follows at once from the
discussion above and Theorem 7A.

Let us now consider the integration of r-forms w in M. For a domain
of integration, we take a subset R of an oriented r-dimensional submanifold
M’ of M, R being open in M’. We suppose e is continuous in a neighbor-
hood U of R in M (or simply, @ is an r-form in M, defined and continuous
at all points of B). We may consider M’ as the image fM’, f being the

identity. Now we may define wa to be fR f *w (which amounts to
considering w(p)-« just for « in the tangent space of M’ at p).

11. Stokes’ Theorem for a parallelepiped. We prove Stokes’ Theorem
for the simplest case; it then followsthrough approximations and partitions
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of unity for as general a case as desired. We say w is smooth in the cell Q
if V w(p) is continuous in @ for each ». It can be shown that this holds if
and only iff w can be extended to be smooth in a neighborhood of ¢.

LemMma 11a. Let @ be an oriented n-dimensional parallelepiped in E",
and let @ be a smooth (n — 1)-form in Q. Then

(1) .dea): jaQ .

We shall give a direct proof, not involving the theory of partial
integration. For the classical treatment, see §§ 19-21 of the Introduction.
The proof will be carried through for a more general case in (IX, Theorem
12B).

¥or some p, and independent vectors v,, - -+, v,, @ consists of all
points p, + >av, (0 < a, < 1). For each i, there are faces

A7 all points p, + z 25 Air: all points py + v, + Za,.vj.

J#t LET)
We may su p pose @ is oriented by the ordered set (vy, * - -, v,). Orient 4
+ e i e a n

and A;" by the ordered set (v, - - - 6, , v,). By (Apf IL, 7),

n
v _1 —_—
2) Z FHAF — A7),

=1

‘ Suppose € > 0 is given. Using (II, Lemma 2a), we may choose { > 0
so that

o) — @) |, |V,og — Ve |dog) — do(p) | are <e

if p,QEQ, lg—pl<i [o]=1

For some m, if we subdivide @ into m" equal parallelepipeds @, by means

of (n — 1)-planes parallel to the 4., we will have diam (Q,) <<  for each k.

Take any Q,; let By; and B} be its faces, corresponding to 4, and A;".

Let p,, p;; . p; be the centers of ,, B;; and B} respectively. Define v, by

pkz T ’D =Y /

By § 1 and (I, Theorem 9A),
@ =viv vy, (B} = (B} = Bu=viv- - 5 -

Applying the law of the mean to the function w(p)-8, over the segment
DiiDE (equivalently using (II, 1.3) and the contlnulty of V,w), we find
‘a point pj; on the segment such that

w(Pg;) °{Bm' — w(PE:)'{Bk—i} == Vv;w(Pfi)'lBi-

t H. Whitney, Functions differentiable on the boundaries of regions, Annals of
Math. 35 (1934) 482-485.
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Hence, letting £°@); denote &(p,){Q,} ete., using (II, 8.1) and (I, 12.16)
gives

d0eQ, — 0o30s | = | D (=17 y00(py) — Vya(pE)];

S Sl el

Now >@, is a subdivision of @, and letting B; denote those faces of the @,
properly oriented, which lie in 8@, > B; is a subdivision of 6Q. By the
choice of { and Lemma 4a,

fpto—do2 0]< ele)

iffaQa) —wosz !g el an.
Also w2 B = w°2 0@, and by the inequality proved above,

[doe> Q@ — > B [ <mefv| o, ].
These inequalities give
El,[de—.faQwiée[iQf +10Q| +n|vgl- vl
Since € was arbitrary, (1) follows.

12. A special case of Stokes’ Theorem. We shall extend Lemma 11a
in two directions: We consider a region with one face curved instead of
flat, and we do not require w to be smooth on this face; however, we assume
w vanishes on the other faces. No other case of Stokes’ Theorem is needed
in the proofs of Theorem 14A and 18A below.

Let A(x? ---,2") be a smooth function, defined for —2 < xf << 2
(t=2,++-,n), such that —1/2 < h(x? ---, 2") << 1/2. Let R be the
region In A" defined by

h(x?, - -+, 2" < ! <1, —1l<z<l =2, -,n).
Let A be the face where x! = A(2?, - - -, ), and let B be the sum of the
other faces, oriented so that ¢R — 4 4 B, for some fixed orientation of
R (App. 11, 5).

LeMMA 12a. Let R be as above. Let w be a continuous (n — 1)-form in
R, such that w is smooth in R, dw is summable in R, and w =0 in a
neighborhood of the closed set B. Then

(1) [A w = [R dw.

ReMARK. In place of assuming that o is smooth in R, we could simply
assume that o is regular there; see § 16 below. The proof would be
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slightly simplified, since we could then replace A, (x2 :-*) below by

h{z?, - - ) + 1/k.
Let R’ be the region defined by
0 < 2t < 2, —1l<zt<l (i1=2, +-,n);

we shall approximate to R by regions E, where w is smooth, and compare
each R, with R'.

For each integer k, let h,(x2, - - -, ") be a 2-smooth function which
approximates to A(x? ---, x") + 1/k, together with first partial deri-
vatives, with an error <C1/k, in the set where —1 < 2 < 1 (i = 2) (App.
ITI, Lemma 4a). Let R, be the region defined by

hoa? e a®) <ol <hg(a?--- 2™ +2, —l<ai<l (i=2,---,n).
Set @ = 0 in B, — R; now w is smooth in B,. Set

(2)  fulal, 2%, 2" = (@ L Rh(a? e, 2", 2 -0, 2") in R

this is a one-one regular 2-smooth mapping of B’ onto B,. Let A’, 4, be
the faces of R’, R, respectively corresponding to the face 4 of R. Since

fr is 2-smooth and o is smooth in R, (II, 8.8) shows that df foo = frdom
in R'; also ffw is smooth in B’. Hence, by Lemma 11a and Theorem 74,

ffk L kwﬁf,df:w_“fdwwj dow.
Now let £k — o0. Since dw is summable over R, [R dw — [R do.
JR; .

Define f like f, in (2), with %, replaced by A; we shall use this in 4’
only. Now f, — fand Vf, — Vf, both uniformly, as k — co. Hence

fro(p)a = o(fi(p) Vip, @) = o(f(P))VI(p, ) = f*o(p),

uniformly in 4’. Therefore, by Theorem 10A,
*
i [ st [0~ [

These relations give (1).

13. Sets of zero s-extent. We shall introduce a concept which, in a
sense, expresses the smallness of the s-volume of a set. For an actual
measure of s-dimensional volume, one should use Hausdorff measure

(an QQIIQ n V\'Q Halmne m1 B2 hut +ha mrogant na
3 % L SN t’ JLWILAJ.UD, 1—'- UU , IJ'LI.U UIID PLUD\—"-‘-U FYLW

handle, and is sufﬁment for our purposes.

Let ¢) be a subset of £” (or of any metric space). We say that @ has
zero s-extent if the following is true. For each € >> 0 there is a {; > 0 such
that for any { < {, there are sets Q,, - - -, @, (for some k) such that

(1) Q=" UG, diam (@,) é £ (all4), ki < e

Note that @ must be bounded. Clearly the union of a finite set of sets
of zero s-extent is of zero s-extent.
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LeEmMA 13a. A bounded subset @ of E*~1 is of zero s-extent; if f is a
Lipschitz mapping (11, 4) of Q into E?, then f (Q) is of zero s-extent.

To prove the second statement (from which the first follows), let @’
be a cube containing @, of diameter 4. Given € > 0, let {;, be the smaller
of €/2°2:710%1, £,6. Now take any { < {,. There is an integer m > 0
such that

g4/2m < L < go/2m 1,

Cut @' into 2¢-1'™ equal cubes; these are of diameter §/2™ < {/€,. This
cuts ) into pieces @, - - -, @, of diameter < {/€,, with k < 2¢-1™, Now

f@=Ff@Q)V---Uf(Q), diam (f(Q)) = ¢,
BLP < 26-Dm(Q §jam—T)s < 2sQE—1§-1p <,

completing the proof.

The following lemma is of general interest, but will not be needed.

LeEMMA 13b. A bounded closed subset @ of E* has zero n-extent if and
only if it has zero Lebesgue measure.

If @ has zero Lebesgue measure, it may be covered by a finite set of
rectangular parallelepipeds, of arbitrarily small total volume; it follows
easily that ¢ has zero n-extent. The converse is simple.

In the rest of this section we use a certain subdivision of a given open
set B C E™ into cubes, as follows. Take a cubical subdivision of E* into
cubes of side 1, hence of diameter n1/2; let K be this set of cubes, and let
K, be the subset of these cubes in R whose distances from E” — R are at
least 3n1/2. Having found K, K, -+, K, K, cut each cube of K,, — K,
into 2" equal cubes, let K, ; be this set of cubes, andlet K, , be thesubset
of these cubes whose distances from E" — R are at least 3nl/2/27™+1
The cubes of K,, K, - - - cover E.

Each cube C of K, is of side 1/2™ and of diameter n1/%/2™; it les in

R, and
(2) 3nt/2/2m < dist (C, E™ — R) < Tnl/2[2™ (m > 0).

To prove the last inequality, suppose C was formed by subdividing C’, of
side 1/2™1 in K,, ,— K,, ;. Since €' is not in K,,_;, dist (C', E® — R)
< 3nl/2/2m-1. But ¢’ C U,(C), b = n1/3/2™; hence

.
;2

dist (C, E® — R) << 3n1/2/2m-1 4 pl/2jom — Tpli2[om

We prove

(3) dist (K ) > 2nii2[am,

m—1?

Km+1

For any C in K,.,, dist(C, E® — R) < 7TnV2/2™"1 and diam (C)
= n1/2/2m+1; hence K, , C U,(E" — R), h=4nV/22™  Also dist (C",
E® — R) > 6n1/2[2™ for cubes C’ of K, _;, and (3) follows.
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Lemma 13c. Let R be an open set in E", subdivided as above. Let
Q@ C E" — R be of zero s-extent. Then given any € > 0, there is an my with
the following property. Take any m = my, and let N be the number of cubes
of K,, whose distances from @ are at most TnV/2[2™. Then N < 25™e.

Set a = 2 + 16012, ¢, — €/a®, and choose {, so that (1) holds with
€1, if { < L, Choose my, so that 1/2™ < [, Now take any m > m,. Set
{ = 1/2™, and choose @, - - -, @, to satisfy (1), with ¢,. For each 1, let
Q; be a cube with a point of ¢, as center, and of side a/2™. Since diam (Q),)
< {=1/2™ and diam (C) = n¥/2/2™ if C is in K, Q; contains all cubes
C' to be counted which are within 7n1/2/2™ of Q,. Since C is of side 1/2™,
there are at most a® such cubes. Hence

N < ok < ate[(® = 2.

We shall define a partition of unity in R corresponding to the sub-
division. Let C,, C,, - - + denote the cubes of all the K . For each ¢, let
C; be the cube concentric with C; and of twice the side length. Since
C;CUC), h=n122m if C;e K and similarly for cubes of K,,_,,
(3) shows that

4) C;NC;=0 if C,eK

m—1?

C;eK, .

m—1

Let ® be an oo-smooth funetion in A" which is >0 within a cube C and is
= 0 outside (App. I1I, Lemma 1b). Using an affine mapping of C into C;
gives an oco-smooth function ¢; in E" which is >0 within C; and =0
outside. Clearly, for some N,

| Véi| < 2mN, if C,eK,,

Set ¢;(p) = $;(P)[ Zadi(p) in R; ¢, is co-smooth, >0 in C;, and =0
outside; >¢,(p) = 1in E. Because of (4), there is a number ¢ such that
any point of R is in at most ¢ cubes C;. Consequently there are but a
finite number of combinations of shapes of cubes about any point of R.
This, with the relation above, shows that there is a number N, such that

(5) |Vé;|<2"N, inR if C,ekK,.

14. Stokes’ Theorem for standard domains. In this section we state
the Theorem of Stokes for domains in n-space which should be sufficiently
general for all ordinary applications; the proof will be given in the next
section.

By a standard domain in oriented n-space E", we mean a bounded
~ connected open set R, with the following properties. Set P* = R — R.
There is a closed set @ C P* of zero (n — 1)-extent. Set P = P* — (.
For each point p € P there is a unit vector »(p) such that if axes in £
are chosen with v(p) in the al.direction, then the set of points of P in
some neighborhood of p is given by a smooth function 2! = A(x?, - - - | z"),
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and the set of points of R in this neighborhood is given by the inequality
al < h(x2, - - -, 2"). We may suppose v(p) is the outward normal.

Sinece the topology of P is given by that of the surrounding space, P
is separable; hence it consists of a finite or denumerable set of smooth
manifolds. Thus a standard domain is a bounded connected open set,
whose frontier is the union of a closed set of zero (n — 1)-extent and a
finite or denumerable set of smooth (n -- 1)-manifolds, each of which
has the open set on just one side.

In the commonly used domains, @ consists of a finite set of manifolds,
of dimensions <<m -—— 1; by Lemma 13a and the preceding remark, @ is
of zero (n — 1)-extent, and thus we have a standard domain. We could
include, in @, any closed subset of P of zero (» — 1)-dimensional Lebesgue
measure in an obvious sense; see Lemma 13b. (We could not include a
larger set; compare Example 2 below.)

For each point p € P, the orientation of E and the outward normal
v(p) define an orientation of P near p (App. II, 5). Thus P becomes a set
of oriented manifolds.

THEOREM 14A*, Let R be a standard domain wn E*, and let w be an
(n — 1)-form such that

(a) e is defined, continuous, and bounded in B — Q, and is smooth in R,

(b) w s summable over P,

(¢) dw ts summable over R.
Then

1) [0 = [, do.

REmMARKS. We could assume merely that @ is regular instead of smooth
in R; see § 16 and Theorem 18A below. If dw is bounded, then (c¢) holds
automatically. In theusual applications, P will be of finite (n — 1)-volume
(defined through integration; we need not go into this here); then (b)
holds automatically.

Exampre 1. We cannot omit the assumption that w is bounded, as we
now show. Let R be the square 0 <<z <1, 0 <<y < 1, in the plane;
let @ be the set of four corners. For each point p of R — @, let O(p) be its
polar coordinate, 0 < 6(p) < 7;-/2 Set w(p) = V&(p). Then all conditions

n
are satisfied X CePL that ] is not ]00'1111'] d. Cl rly d

fpw = 71/2, so that (1) fails.
Examprre 2. If we weaken the hypothesis about @ too much, the
theorem may fail. To show this, take R as above. On the bottom side 4,

form a closed set Q, as follows. Remove the open interval of length 1/4
from the center of 4. Next remove the central interval of length 1/42

.p.

* A very general theorem has been proved by H. Federer, The Gauss-Green
Theorem, Transactions of the Am. Math. Society, 58 (1945) 44-76.
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from each of the two remaining parts. Next remove the central interval
of length 1/43 from each of the four remaining parts, ete. Then @, is the
set of points remaining. Let @ be @, together with the remaining corners
of B. (Clearly we could let @, be any closed set of positive Lebesgue
measure; compare Lemma 13b.)

Let ¢ be a real function which is smooth in B — @,, such that

bz, y) =1 if (*0eQ, ¢(» =0 ind—Q,
0 d(py<1,  dd(p)/oy = 0.

We may construct ¢ as follows. For each open interval H, = p,p; of

A — @, let g;(t) be the point at a distance t|p; — p, | above the mid

point of H,. Let C(t) be the part lying in R of the parabola through

Pi» qi(8) and p; (0 <<t <" 1). Set «(f) = 2t — 2, and set ¢(p) = «(f) in

Ci{t) (all 2), p(p) = 0in 4 — Q,, and $(p) == 1 elsewhere in B — Q.
Define w in B — @ by its components

A o then

thdw—j w—fw’ [el=senma <1,

-and hence Lz dw is bounded. Also {dw),5(p) = — 0w (p)/dy = 0; hence
clearly (c) holds.
Take any h > 0, € > 0. Since ¢(x, k) = 1if (x, 0) € Qp, Pz, h) > 1 — ¢

except in a finite number of open intervals, of total length << > 2i/47+1
i=0
= 1/2; hence

[[pman=12 it h>o.
Since @ = 0in 4 — @,,

fdw—fa).._hmf dw + | co—-—hmJ. o< —1/2,

h—0 h—0
and (1) fails.

15. Proof of the theorem. Take R, P, Q, w as in Theorem 14A. We
say w is @-free if @ = 0 in some neighborhood of . We prove the theorem
first in the case that w is Q-free, then in the general case.

Suppose w is Q-free; say w =0 in UN R, Q CU. Choose cubes
~about the points of B = R —- U, as follows. For each pe RN R, let
U(p) and U’(p) be concentric cubes about p, with U(p) C U'{p) C R.
For each p € PN R, let v(p) be the outward normal at p; let U(p) C U'(p)
be concentric cubes with center p and one face perpendicular to »(p);
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if these are small enough, then we may choose rectangular coordinates
in E" so that the region U'(p) O R is just the region R of § 12. A finite
number of the U(p) cover B; say these are U,, - - -, U,, and the concentric
cubes, Uy, - -+, U;. Let ¢;(p) be an co-smooth function >0 in ™ which
is >0 in U, and is 0 in a neighborhood of E" — U, (App. I1I, Lemma 1b),

Set ¢,(p) = ¢;(p)/ 2 ;¢;(p) wherever deﬁned Then the ¢, are co-smooth
in a neighborhood U* of R, and S¢,(p) =1in K. Set

(1) w,(p) = $i(p)w(p) in R, w,-(P) =0 inE"— R

Consider any w,; first suppose U, is about a point of P. Since V¢,
and @ are bounded, V¢,vow is summable over RN U;; ¢, dw is also, by
Lemma 6¢. By (II, 8.6) and (I, 8.2),

(2) dw, = Vv + ¢, dw;

this is summable over R N U., and we may apply Lemma 12a, giving

. =— w, = dw:fdw
j.P’ fprwg ¢ RNOU; t R

Since >w; = w, adding these relations gives

Joo= Z Jpoi = Z [ do, = | doo.

We now consider the general case. Take the subdivision of the open
set £" — @ (not the set R) into cubes, and the corresponding functions
¢;, as in § 13. For each integer m, set

®) pu®) = D" (B vup)=1—pup), in E"—Q

the sum being over all ¢ such that C; € K,,. for some m' < m — 1. Set

(4) Wy == P, w;n - ?/)?;zw = @ Wy, in R— Q.

0N

¥
l ==
s .|.D Wm, Dl ice Wm v

outside a compact subset of P, w,, is summable over P. Using (2) for
dw,, and the boundedness of Vy,, we see that dw,, is summable over E.

Hence we may apply the theorem to w,,, giving (p o, = [z dw,,. We:
shall show that

(5) lim fa) _fw, lim fda)m _fdw

m—r m—r

Mhan 3 i1a ) frvan Qineo an g R
14381 W, IS W-1T6E. WBIIce Y, alll W are

this will complete the proof.
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If P has finite (n — 1)-volume, the first relation in (5) is evident.
In the general case, the method of proof of Lemma 6a applies (see also
Lemma 6c¢ and § 10).

We now prove the second relation in (5). Let H,, be the union of all
cubes ('} such that O, €K, for some m’' > m; set H,=H, MR
Then by (4), (3) and (13.4),

(6) w,=0 in R—H, w,=w in H,,.

Take any € > 0. Since dw is summable over R, we may choose m so that
(see Lemma 6b)

(7) [ 0| < el2.

Each point of R is in at most b cubes (], for some fixed b. Say 1 w ] <N
in R. With N; as in (13.5), set ¢, = ¢/2"bN,N. By Lemma 13c, there is
an m; == my such that if m > m,, then there are at most 2("~1V"¢, cubes
in K,. Since Hy = H, — H, _, is covered by the cubes ( such that
0;€ K, and | C; | = 1/2"D" we have

()
Ve

* |
m |

h

HY | < gtlme fgm-bn — gnme if g > m

For any p € R, the sum in (3) contains at most b non-zero terms.

Hence, by (13.5), | Vy,, | < 2™ 1pN,, and if m > m,,
- (9) [ ] Vv | < 271N, - N-2m—me = ¢f2.
Since | g, | < 1, (7) gives
(10) [s | pmdo | + [, Jdo|< [, [do| <2

Therefore (see (2)), (6), (9) and (10) give

[al = [0 | Voo +vpdo| + [, [do|<e
for m > m,, completing the proof of (5} and hence of Theorem 14A.,

16. Regular forms in Euclidean space. Since the definition of an
r-form w (r > 0) in a manifold M requires smoothness of M, and the
definition of dw requires 2-smoothness, the study of forms in manifolds in
(IT, 12) applies only to 2-smooth ones. To obtain a similar theory for
smooth manifolds, we enlarge the definition of dw; this definition is due
to E. Cartan,}

We shall need a lemma showing that a continuous form is determined
by its integral over simplexes (we could equally well use paral slepipeds).

T See G. Papy, Formes différentielles exterieures - - - , Bull. Soc. Math. Belgique,
1953, pp. 62-69 (1954), and references given there. We follow the procedure given by
H. Cartan, Notes of lectures delivered at Harvard University in 1948,
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LeMMA 16a. Let w, and w, be continuous r-forms in the open set R,
and suppose f Wy = f w, for all oriented r-simplexes oin B. Then v, = w,.
2] a

Take any p € R, and any r-direction o. There is a sequence of oriented
simplexes oy, 0q, " *+ In R, with r-directions o = {a,-}/! a; |, such that
o, € Uy (p), {;— 0. By (4.1) and (4.4), for any continuous r-form w,

I 1
o [ ewre= - | W — oo,
} Uﬂ" L ‘ O',‘-l g;
hence
) 1
(1) w(p)oa =lim — f w.
f->a0 O'z-l a;
Applying this to @, and to w, shows that w,(p)a = wy(p)a for all
r-directions o; hence wy, = w,.
An r-form w in the open set B C E™ is regular if it is continuous there,
and there is a continuous (r 4+ 1)-form «’ in R such that

(2) by @ = Lw', all (r + 1)-simplexes o C R

(we could use parallelepipeds). Then w’is uniguely determined, by Lemma
16a; we call it the derived form dw of w. Note that it is sufficient to prove
(2) in some neighborhood of each point of . One could give a definition
of regularity without using integrals; see Lemma 16d below.

If w is regular, then so is dw, and ddw == 0; for if ¢ is an (r + 2)-
simplex, then J-aa dow == faaaw = 0.

If w is smooth, then (2) holds, with o’ = dw as previously defined;
hence smooth forms are regular, and the present definition of dw is an
extension of the previous one.

A regular r-form w need not be smooth, if » > 0. For example, with
n=2 r=1 set w = w,(x!)e! 4 wy(x?)e?, with real functions w,, w,
which are continuous but not differentiable. Then dw = 0. In general, if
w is smooth but not 2-smooth, then dw will be regular but not smooth.

For r = 0, a regular form w is always smooth. To show this, take
any point p and vector v 2 0. Set p, = p + tv. Applying (2) with
o = pp, and using (1) gives
V,o(p) = lim @ip) — olp) lim - o = w'(p)v.

—0+ 7 t—0+ t DD,
This is linear in » and continuous in p, showing that @ is smooth.

To prove various properties of regular forms , we shall smooth them
by taking averages A.w, as in (App. II1, 3). Recall that for a set R, R,
is the set of points p such that U,(p) C R, and

3)  Awp) = [ <ig— po@dg = |, < @olp + ) dv,
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defined in R, if o is defined in R. Also 4, is c0-smooth. Since w is
continuous, (App. I1II, Lemma 3a) shows that
(4) lIimAw=w  uecs,
t— w0
where “u.c.s.” denotes ‘‘uniformly in compact sets’’.
LEMMA 16b. If w is regular in R, then

For any (r 4 1)-simplex ¢ in Rlli’
fAdw dp—ff p +v)ydvdp
= f K, (v) f do(p +v)dpdv = fv K, (v) _[a w(p + v)dpdv
~—f f w(p +v)dvdp = [, Aw(p)dp= fdAw (p) dp;
(5) follows on using Lemma 16a.
Lemma 16¢. If w,, w,, -« - are regular, and
(6) lim w, = w, lim dw, = o', both u.c.s.,

then w 1s reqular, and dw = o',
Because of the u.c.s. property, w and ' are continuous. To prove

(2), we have
Lw' = lim dei = lim faaw‘ — fadw.

LemMMA 16d. w is regular and dw = o' if and only if there is a sequence
Wy, Wa, *** of smooth forms such that lim w; = w and im dw, = " u.c.s.

This follows from (4), (5), and the last lemma.

TaroreMm 16A. If w and & are reqular in R, so is wv&, and d(wv§) is
gwen by (I1, 8.6). In particular, ¢w is reqular if ¢ is smooth and w s
regqular.

For

lim (4,wvA,£) = lim 4,0vlim 4,6 = wv§,
also lim dA,w = lim 4, dw = dw ete., and hence
lim d(4,wvA4,8) = lim (d4,0wvA,§ + A,wvdAf)
= dwvf 4 wvdf.

Each point p is in a neighborhood U such that for some iy, U C R,;; for
i = 1. The above limits are all u.c.s. in U; hence, by Lemma 16¢, wvé
is regular as required in U, and hence in R.

In order to study smooth mappings f of open sets in E" into E™, we

first smooth them further, by applying 4,. By (App. III, Lemma 3c),
A4,fis oc-smooth, and

(7) lim 4, f(p) = f(p), lmV(4,f)(p,a)=Vf(p,a), bothu.cs.
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LeMMmAa 16e. Let f be as in the theorem below, and let w be continuous tn
R'. Then

(8) lim (4,f)*w = f*w w.c.s. in R.

Take any p € R and r-vector «. For ¢ large enough, f; = 4, f is defined
near p, and (7) gives

lim ffo(p)o = lim [o(f(p)) Vii{p, )] = o(f(p))-Vf (p, «) = f *o(p)-«.

Clearly the limits are u.c.s., and (8) follows.
LemMma 16f. With f as in the theorem below, let wy, wy, * * * be continuous
m R'. Then

(9 lim f*w, = f*o wu.cs. of limow,=w ucs.

The proof is similar to that of the last lemma.

THEOREM 16B. Let f be a smooth mapping of the open set R C E™ into
the open set B C E™, and let w be regular «n R'. Then f*w is regular in
R, and

(16) df*w = f* dw.
First suppose that f is 2-smooth. Applying (10) to the smooth form
A,w (I1, 8.8) and using (5), (4), and the last lemma gives

lim df*4,w = lim f*4, dow = f*lim A, dw = f* dw;

also lim f*4,0 = f*w; both limits are u.c.s. Now (10) follows from
Lemma 16e.

Now take the general case. Using (10) with the 2-smooth mapping
A, f and applying Lemma 16e gives

lim d(A,f)*w = lim (4,f)* dw = f* dw;
also lim (A4; f )*w = f*w; both are u.c.s. Again Lemma 16¢ applies.

17. Regular forms in smooth manifolds. Let w be an r-form in the
open set B in the smooth manifold M. We say w is regular if w is con-
tinuous, and there is a continuous (r + 1)-form ' in R with the following
property. For any coordinate system y, y*w is regular (where defined),

14

and dy*w = y*»'. Set dw=w'; ®" is uniquely defined, and
dy*w = y* dw.

If the property holds near p in one coordinate system y, it holds
near p in any other, y;. For if p = y~1y,, then y, = yv, ¥F = p*x*, and
using (16.10) gives

dyfo = dy*y*o = p* dy*o = p¥yro’ = gt

as required.
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A definition of regularity, using integrals, will be given in Lemma 17¢
below. If M is 2-smooth, then the condition of Lemma 16d could be used
as a definition.

The elementary properties of regular forms continue to hold.

We prove the theorems of § 16 for smooth manifolds.

THEOREM 17A. If w and & are regular in the open set B C M, then so
18 wvE, and

(1) d(wvE) = dové + (— 1) wvdé, r = deg (w).

For with any coordinate system y, y*w and y*& are regular, hence
so is their product, by Theorem 16A, and

dy*(wvE) = d(y*wvy*E) = dy*wvy*E 4 y*wvdy*E
= y* dovy*é + *ovy* df = y*dové + wvdé).

THrOREM 17B. If fis a smooth mapping of the open subset R of M into
M’ (both manifolds smooth), and «w is regular in a neighborhood of f (R), then
*w 18 reqular wn R, and

(2) df*w = f* dw.

For given p € M, choose coordinate systems y about p and y; about
f(p); then g = y{'fy is smooth. Now y¥w is regular, and hence so is
g*r¥w = y*f *w (Theorem 16B); since

dy*f*w = dg*yTo = g*xf dw = ¥ * do,
the theorem follows.

A smooth simplex fo in M is a one-one regular mapping f of o into M.

Define ff _w to be J.a f*w. We may define L » & similarly.

Lemma 17a. If w is a regular r-form in the open set R C M, and fo
ts @ smooth (r + 1)-simplex 1n R, then

(3) Law =J_‘faaw: fddw.
For
J}aaw == faﬁf*w = J; df*w — J;f* dw = J.fa dw'

LEMMA 17b. o, = wy 1n M if and only if J:fa Wy = ‘;a w, for all

smooth r-simplexes.
Suppose the condition holds. With a coordinate system y, and
simplexes ¢ in the domain of definition of y,

*p, o - Y S
w W Wy == w
J;X 1 w17 ],V J;Z 23

hence y*w, = y*w,, by Lemma 16a, and w; = w,.
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LevMa 17¢. Let w and & be continuous forms in the open set R C M,
of degrees r and r + 1 respectively. Then w is regular and dw = & if and

only if [f L= ff £ for all smooth (r 4 1)-simplezes ¢ in R.
The necessity of the condition follows from Lemma 17a. To
prove the sufficiency, note that the hypothesis gives fao x*w = J; x*E

for simplexes ¢ in the domain of any coordinate system y; hence y*w is
regular and dy*w = y*&, giving the result.

18. Stokes’ Theorem for standard manifolds. A “‘standard manifold”
is locally like a standard domain. By a partial standard domain in E*, we
mean a set of sets B, P, @, which have the properties of a standard domain,
except that B is replaced by an open set 0. Thus P* = RN O — R,
and P* and @ are closed in O, but in general are not closed in £*. Again R
is an oriented open set (which we need not assume connected), and
P is a set of oriented smooth {n — 1)-manifolds. Clearly the inter-
section of any standard domain with any open set is a partial standard
domain. ‘

A standard n-manifold M is a system of the following sort. There is a
connected compact topological space M, a closed subset dM of M, and a
closed subset d,M of M. There is a finite set (0;; R,, P,, @,) of partial
standard domains, O; being an open ball. For each ¢, y, is a one-one
continuous mapping of B, 0} into M, such that

2 (B)C M — oM, x:(P,) C oM — 30M, x:{(@:) C aoM'

There are interior concentric balls 0, such that the sets y,(R; N 0,) cover
M. Set p,,(q) = ;7 (xp)), where defined. Then y,; is smooth where
defined in R;, Vy,; having continuous boundary values in R,U P,
and (I1, 4.14) £, s finite.

Note that the coordinate systems y, make M — dM into a smooth
manifold; we say M is oriented if M — 0M is. By the hypothesis on Vy,,,
OM — 0,M is a set of smooth manifolds, all oriented if M is. We remark
also that since ), is of zero (n — 1)-extent and ‘Qw,-,- is finite, each y,,(Q;)
is of zero (n — 1)-extent, by Lemma 13a.

We may define r-forms w in M — 0, M. Say w is continuous if each
of = yFw is. Since

(1) w¥(p)a = phw¥(p)a = o (p;(p)Vy;p, ), ‘

and Vy,; is continuous where defined in B;U P;, the definition of con-
tinuity near a point of M — 9,M is independent of the coordinate system
chosen. Say w is bounded if each w} is. Since \ Vy,, | < 8, is finite, we
again have independence of the coordinate system.



§ 18] STOKES' THEOREM FOR MANIFOLDS 109

THEOREM 18A. Let M be an oriented standard n-manifold, and let w be
an (n — 1)-form such that

(a) w s defined, continuous, and bounded in M — 0,M, and is regular
in M — oM,

(b) w is summable over OM — 0, M,

(¢) dw ts summable over M — oM.

Then

@) ‘ faM—aon = -

To prove the theorem, we first reduce it to a local problem, as follows.
For each i, let ¢; be a smooth function >0 in E”, which is >0 in 0, and
=( in a neighborhood of E™ — O]. Set

$i(p) = ¢;(x7'(p)) in x,(0), =0 elsewherein M.

Now ¢; is continuous in M and smooth in M — d,M. The same is true of

$(p) = (D) Zp;(p), and 0K ()<L, Sh(p)=1, in M. Set

wf = y¥w, and

(3) w(p) = ¢(Plw(p) In M — d,M,

(4) wi(q) = yfw(q) = ¢{x(@)w}(q) in R,
We shall prove

(5) [ @i = [, doi,

(6) LM——BDM Wi = fP.,- P fM—aM de,; = .[Ri daw;,

everything being summable; this will prove (2) for w,, and summing over ¢
gives (2) for w.

First, since w is summable over oM — g,M and ¢; is bounded,
¢, = w, is summable over dM — d,M (Lemma 6¢, § 10). Also w, =0
outside y;(0;). By Theorem 104, y¥w, is sammable over P,, and the first
part of (6) holds.

Next, set

$1@) = @) = ), $u(0) = $j(:(a),
where defined in B,. Then
b:i(a) = &5 (xwi@))) = & (wi;(a)),
and since V¢; and Vy,; are bounded, so is Vé,; (outside @,). Also
¢F = ¢,/ ;b;;, showing that Vé¥ is bounded. By hypothesis, wf is
.bounded; therefore so is Véfvw*. Since R, is bounded, V¥vew?

= ¥V ¢,vw) is summable over R,. Applying Theorem 10A to this form
and the smooth mapping y;! gives

J-Ri VquVCUt* - xi{ Ry) xi—l*x?(v Q.’)iVCO) = fM—aM Vqsivw.
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Since dw is summable over M — dM and ¢, is bounded, ¢; dw is summable
over M — 0M. Applying Theorem 10A to the mapping y, gives

fM—aM ¢; dw = fR; % ($; dw) = fRi ¢ dorf.

Since dw; = Vé,vw + ¢, dw, and similarly for dw; = d(¢¥w]), adding
these relations gives the rest of (6).

By the hypothesis of the theorem, (a) of Theorem 14A holds for the
form ] and the partial standard domain with R;; also w{ =0 in a
neighborhood U of B* — O;. We have just proved (b) and (c) for w;.
We now follow the proof of Theorem 14A. Using only cubes U] so small
that any U touching O; — U lies in O;, we prove (5) in the case that w;
is @,-free. The last part of the proof of Theorem 14A goes through for
the present case; hence (5) follows, and the present theorem is proved.

19. The iterated integral in Euclidean space. Let @; and @, be poly-
hedral regions in E™ and E™: respectively; their Cartesian product
Q@ = @, X, s a polyhedral region in E*, n = n; 4 n,. If wisa eontinuous
n-form in @, we wish to give meaning to, and prove,

W foe=] o e@xadexe =], [],  opxqdp|dg
The partial integral
(2) Q) = |

Q@ xq
must be defined in a generalized sense; it is not a number, but an
ny-covector in @y, Using subdivisions >a,; of @; whose meshes —0, and
taking p; € g,, we define

(3) Q(q) = lim Z w(p; Xg)In{o;},

w(pXq)dp

using the interior product of (I, 7). Now Q is an n,-form, and the formula
to be proved is

) foo =1, Q@ dg.

Given any n,-vector § in E"2, we may write ()(¢q)'$ as an integral:
- o T . s
(5) Qgyp = (—1)™" | w(pXq)rf dp.

To show this, note that, by (I, 7.2) and (I, 6.2),
Qg)p = lim > [w(p, X018

= (— 1w lim > [w(p; X rpl{oi);

(5) now follows from Lemma 4a.
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To prove (4), take any € > 0. Set = €/(|Q;| +2| Q). From (5)
we see that  is continuous; hence we may choose { > 0 so that

| w(p”) —w(p)| <y i |p"—p' | <2V,
| QU ) —Qg) | <y if |¢—q|<L

Now let ¢, and >, be subdivisions of @, and @, respectively, of meshes
<. Take p, € 0,, q; € 7,; then p,;Xq, € 6;X7,;, By Lemma 4a,

Jo0— > 0wt <l
J

If p and p’ are in the same g;, then, by (I, 12.13) and the proof of (I, 14.4),

.
y

| o(p" XA — w(@X B | < | w(@' Xq) — wlpXq) | |8 < 9|8
hence, by (5) and Lemma 4a,

QB — (=1 [w(px@fHo)

Therefore

2 Q) — D olpxa)lodvin]

é’?'ﬁHQll'

<D alnlle =1l e =n|e!
J
Since > ; ;o,X 7; is a subdivision of @ of mesh < 2V/2(,

oo — 2 wmxa)oxn} < nlel
1]

Since {o;x7,} = {o;}v{7,}, combining the above inequalities gives
I J.Qw — fQ Q , < ¢, proving (4).
Supposé the spaces are oriented. Let a, be the unit n,-vector of E":.

Then for any $, using (5) gives an expression for {(g):f as a Riemann
integral:

(6) Qg)p = (—1)"m f& NwlpXg)nflagdp = fQ @(p X q)-(xgvf) dp-



IV. Smooth Manifolds

This chapter is divided into three parts, each being devoted to a basie
theorem in the theory of smooth (i.e. differentiable) manifolds. (Definitions
and elementary properties of smooth manifolds are given in §§ 10-12 of
Chapter II.)

The third part is the only one concerned directly with integration
theory. Its purpose is to prove the Theorem of de Rham, which gives the
cohomology structure of a smooth manifold M in terms of the differentiable
forms in M. Integrating a closed form over cycles gives the periods of
the form; through this, the cohomology spaces defined by differential
forms become the linear functions on the homology spaces. Moreover, the
products of forms correspond to the products in the algebraic cohomology
spaces. For the use of very general forms in de Rham’s Theorem, see the
end of the introduction to Chapter I1X.

It is habitual these days to treat algebraic topology from a very
abstract point of view; using some basic properties of differential forms,
de Rham’s Theorem becomes a corollary of general theorems. However,
the difficulty of grasping the large body of theory required for this, and
the resulting lack of evident geometric meaning, makes a direct proof
by elementary means desirable. The proof we give is closely related
to de Rham’s original proof. A proof making use of currents (and
also a proof of the imbedding theorem) may be found in de Rham’s
book.

The initial topological study of a smooth manifold M by H. Poincaré
was carried out with the help of a triangulation of M (cutting M into
cells); that this can in fact always be done was first proved by S. S.
Cairns. Perhaps due in part to the difficulty of the proof, using triangula-
tions has gone out of fashion. However, both for the sake of geometric
mtuition and for various applications, triangulations are very useful. The
definitions and proofs in the third part of this chapter are based on them.
For this reason, the second part 1s devoted to the proof of existence of
triangulations. The method of proof should bring the theorem into the .
position of being intuitively reasonable; the methods may clearly be
used to prove related theorems.

In the triangulation theorem, we assume M is imbedded in Euclidean
space £. That this is no restriction is proved in the first part. The
relation of M to the surrounding space is also studied here. This imbedding
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theorem is of importance because it enables the simple analytic tools
existing in £ to be carried over to the subset M.

We end the chapter with a discussion of the Hopf invariant of a
smooth mapping of a sphere 82%~1 into a sphere S”.

A. MANIFOLDS IN EUCLIDEAN SPACE

1. The imbedding theorem. Let f be a smooth mapping of the smooth
manifold M into Euclidean m-space E™ (II, 10). We say f is regular at »
(compare (1I, 5)) if independent vectors in M at p are carried into inde-
pendent vectors in £™ (11, 11); fis regular if it is regular at all points of
M. If M is compact, we say fis an imbedding if it is one-one and regular,

To consider the non-compact case, we introduce a further definition.
The limit set L, of the mapping f is the set of points ¢ € E™ with the
following property. There is a sequence of points p,, p,, * - + in M without
limiting point in M, such that f(p,) - ¢. (If M is compact, then L, is
void.) For instance, if M = U, and f is the identity, then L, is void;
but if f is a one-one mapping onto the open interval 0 <t <1, then L,
contains { =0 and t = 1.

The mapping f is proper if L, N f(M) = 0. If, for instance, f maps A
into a figure 6 in E2, then L, contains a point in f(M), and f is not proper.
It is easy to see that a one-one mapping f is proper if and only if the inverse
f~1is continuous in f(M), or, if and only if f ~! carries compact sets into
compact sets.

An imbedding is a one-one proper regular mapping.

TuEOREM 1A, Let M be a u-smooth manifold of dimension n, u > 1 or
u = 0. Then there is a u-smooth regular mapping f of M into E™, without
limit set, of m > 2n, and there is a uy-smooth imbedding of M info E™,
without limit set, if m > 2n + 1.

2. The compact case. We give here a quick proof that if M is compact,
it may be imbedded in some E™.*

Let O, be the open ball of radius a about 0 in A", and let ®(x) be an
co-smooth non-negative function in A" which equals 1 in 0y, is <1 in
A" — Oy, and is zero in A" — O, (App. 11T, Lemma 1b). Let y;, -, %,
be coordinate systems in M, defined in O,, so that the y,(0,) cover M.
In each U; = 2,(03), set

(1) fOJ(P) = (D(x)a fu(P) = x'(I)(x) (7’ = 1’ R n)’ P = Zj(x);

. *Itisthen possible (if u = 2) to project into some E2?"+! C E™ to give an imbedding
in E?+1; see H. Whitney, Annals of Math. 38 (1937) 809-818, Appendix I, and
Chapter I of de Rham. The proof of Theorem 1A we give below is a somewhat
simplified version of the author’s proof in Annals of Math. 37 (1936) 645-680. See
this paper for further theorems relating to imbedding and approximation. In
particular, the imbedded manifold may be made analytic.
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let the f;; vanish in M — U;. Thisis a set of m = »(n 4 1) u-smooth real
functions in M. Arranged in order, they are the components of a y-smooth
mapping F of M into £™; this is the required imbedding.

To show that F is regular, take any p € M; say p = y,(x), z € O;.
Let ¥, be the mapping of M into E” whose components are f,,, * -, fn;-
In O,, the mapping F;(z) = F(p) (p = y,(*)) has components f, (p) = ¢,
thus F; is an isometric mapping of O, into E", and hence is regular there.
Therefore F; and hence F is regular at p.

To show that F is one-one, let p and g be distinct points of M. If they
are both in some U ;== 1;(0,), then the proof above shows that F(p)
# F(g). If not, say p is in U, while ¢ is not. Then f,(p) =1 and
foi(@) < 1, and again F(p) # F(g).

3. Separation of subsets of Z™. We prove two lemmas, which form
the essential parts of the imbedding theorem. Say a subset 8 of E™ is
nowhere dense in E™ if int (S) = 0.

Lemma 3a. Let f be a Lipschitz mapping (11, 4) of a subset Q of E*
into E™, s << m. Then f(Q) 18 nowhere dense in E™.

Take a cube D in E™ of side length ¢; we shall find a point p € D — f(Q)
First suppose ¢ is bounded; let C be a cube containing @, of diameter §.
Choose k so that (28,0)™/2% << e™. Cut C into » equal cubes €y, - -+, C,,
of diameter §/2%; then » = 2%, Set Q; = f(QNC,). Then diam (@;)
< 2,0/2% if @] £ 0, and hence @’ lies in some cube D, of side length
28.8/2%. Now the sum of the volumes of the D, is

DDy | = 2428,8/24m < (28,0)m/2¢ < &

Hence there is a point (in fact, a cube) in D touching no D, and hence not
touching f(€).

Now consider the general case. Let Cy, C,, - - - be concentric cubes in
E?® such that diam (C';) — 0c0. By the proof above, we may find a (closed)
cube D; C D not touching f(Q M C,), a closed cube D, C D, not touching
fI@N (), ete. There is a point p in all the D,; this is in D — f(Q).

Given a set § C E™ and a vector v, let T,(8) denote the set of points
p + v, p €8 (translation of § by v).

LemMA 3b. Let Q and Q be subsets of E* and E™ respectively, let f
and f' be Lypschitz mappings of Q and Q' respectively into E™, and suppose
n+n' =38 << m. Then there is an arbitrarily small vector v in E™ such
that T,(f(Q)) does not infersect f'(Q'}.

Set Flgxq') =f'(¢') — flg) for g€@Q, ¢ €Q’; this s a Lipschitz
mapping of the Cartesian product @ X @' C E*® into V™ = V(E™). By the
last lemma, there is an arbitrarily small vector » not in F(@ X'); this is
the required vector.
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4. Regular approximations. We shall show how to find a regular
mapping of O, (see § 2) into E™ (m => 2n) approximating a given mapping.

Let y and v’ be u-smooth mappings of a neighborhood of the set ¢ C A"
into £™, and let #(p) be a positive continuous function in . Using a
fixed coordinate system in E™ we say y’ approximates (p, @, u, )} if the
components of the function W(p) = y'(p) — w(p), together with all
partial derivatives of,order < u, are at most #(p) in absolute value at
each point p € Q.

LemmA 4a. Let p be a u-smooth mapping of O, into E™, m > 2n. Then
for any € > 0 there is a u-smooth mapping v' of Oy tnto E™ which approxi-
mates (y, Oy, 1, €) and is regular in 0.

If u=1, let y, be a 2-smooth mapping of O; which approximates
(y, Oy, 1,€') for an ¢’ > 0 determined below (App. III, Lemma 4a); if
u>1, set p, = y. We shall find y,, - - -, p, in turn so that y, approxi-
mates (y,_;, Oy, i, €) and the vectors oy,/dx!, - - -, dy,/0x* are inde-
dependent in O;; the y, are y'-smooth in Oy, p' =sup {2, u}. If € is
small enough, ¢’ = p,, is the required mapping.

Suppose y,_, is found; we show how to find y,. Set

(1) v(%) = Oy, 4 @)[o)  (f=1,-"-,1);
then v, * * *, v,_, are independent in 0,. Let P(x) be the set of all vectors

i-1
(2) P4l -, ATl ) = > My(x) — vy(a),
JZ ’

and let P be the union of the P(x) for x € 0,. We shall find an arbitrarily
small vector » not in P, and shall set

(3) pi(@) = p;4(2) + v,
Then for v small enough, v, approximates (p,_;, O,, u, €). Also
dy,(x)[0x’ = v,(x) (j <4), Oyp,(x)[ 02" = v,(x) + v.

For each z € 0, since » is not in P(x), v,(x) + v is not a linear combination
of »y(x), -+ +, v,_y(x). Hence y, has the required properties.

Since y,_, is 2-smooth, the v,(x) are smooth; therefore ¢ is smooth in
the Cartesian product U™'x0; bdince @ — 1 4-n <m, Lemma Ja
shows that there is an arbitrarily small vector v not in ¢(A-1x0,) = P,
completing the proof.

5. Proof of Theorem 1A, ¥ compact. Lety,, ..., x, be the coordinate
systems of § 2. Choose ¢, € E™ and set fo(p) = qo(p € M); f,is y-smooth.
Supposing m > 2n, we shall define f,, - - -, f, = f’, each being u-smooth
in M, so that f; is regular in @, = U;U---U U, (U, = x,(0,)); then
fis regular in A.
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Supposing we have f,_,, we find f; as follows. Set

(1) p(@) = fi1(x/), x € 0.
For a certain € > 0, we shall find a g-smooth mapping y* of O, into ™
such that:
(a) y* approximates (y, O,, 1, ¢€),
(b) y)* =y n 03 - 02,
(c) w* is regular in 0.
Then if we set
(2)  flp)=*gHp) U, fi=fi, m MU,
f, will be p-smooth in M and regular in U,. Also, since f;_; is regular in
the compact set @, _,, f; will be also for small enough e.

For a certain € > 0, choose v’ in O; by Lemma 4a. With ® as in
§ 2, set

(3) p¥*a) = p@) + P@)y'(x) — p(@)], €0,
Then (a) holds if ¢’ is small enough, (b) holds, and since p* = v’ in 0,
(c) holds. Thus we find p* and hence f;, and finally, f'.

Supposing now that m > 2n + 1, we find the imbedding f. Since f* is
regular, it is one-one in a neighborhood of each point (1I, Theorem 7B).

Hence we may choose new coordinate systems y,, - -, y, such that
(with U, and U] as before) the U, cover M, and such that if U; N U] 5 0,

then f’is one-onein U; N U;. Let ky, - - -, x4 denote the pairs (4, j), i < j,
such that U; N U; = 0, arranged in some order. Set f; = f'. We shall
find pu-smooth regular mappings f1, * * +, f; so that each f is one-one in

each U U U} if U; O U} + 0, and such that for each k' < &, if s = (¢, §'),
then fi(U,) O fi(U;) = 0. Then f = [ is the required imhbedding.
Having found f;_;, we find f as follows. Say «, = (, j). Set

(4) p(@) = fr_1(x:(2), z € O3.
For a certain € > 0, choose a vector v by Lemma 3b with { v ‘ << €, such
that )

To(p(0) O fr1(U,) = 0,
set ¢’ (x) = p(x) + v, and define p* by (3). (Thus yp*(z) = p(x) + P(z)v.)
As before, this gives f in M; then f; = f;_, in M — U, in particular,
in U;. Now f (U;)Nf(U,)=0. For ¢ small enough, the required
conditions on f, _, continue to hold; thus f, is constructed. This completes
the proof.

6. Admisgible coordinate systems in M. We say a set of coordinate
systems in M (each defined in O,) is admissible if they are finite or denumer-
able in number, the U, cover M, and any compact subset of M touches
but a finite number of the U; (notations as in § 2).

LEMMA 6a. M has an admissible set of coordinate systems.
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Since M may be covered by a denumerable set of coordinate systems,
we may clearly find compact subsets H,, Hy, « - - of M such that H, Cint
(H,,,) and HHOUH,U:.--= M. Tor each ¢ there is a finite set of
coordinate systems such that the corresponding U, cover H, , — H,

(using H, = 0), and the U} do not touch H, , (if ¢ > 1); the set of all of
these forms an admissible set.

7. Proof of Theorem 1A, M not compact. Let y,, ., * - bean admissible
set of coordinate systems in M. With the notations of § 2, set

Dy Yp) in U,

1 (p) == = > ip.(p).
(1) pi(p) 0 i MU, p(P) ;@pz(p)

Choose ¢, € E™ and a vector v, 3= 0, and set

(2) fol®) = q4 + p(D)vy;
tlhl. D w M"ﬂllluoth aPp g n./l.r to Em W].t‘.l ]

Define f;, fo, - - - as in § 5; f; is regular in l7 U U U Since the
set of coordinate systems used is admissible, f' = 11m f; exists and is
regular in M, and has no limit set.

Now choose new coordinate systems y,, 9, * * * as in the second part
of § 5; it is easy to see that we may take these denumerable in number, and
with the U] compact. As in § 6, we may require these to be admissible.
Define xy, xg, - - as before but we use only pairs (¢, j) such that
U;NU; =0and f(U)N f(U;) #% 0. Since the y, are admissible and
L. is void, each integer ) occurs at most a finite number of times in pairs
(i, j).

We now define f), f, - - - as before. As above we may set f(p) = lim
fi(p); this is the required imbedding.

8. Local properties of M in E™. Let M, be a u-smooth manifold of
dimension 7, and let f be a y-smooth imbedding of M, in E™. We wish to

show how the set of points M = f(M,) has a “differentiable structure”
pqnnrn]nnf to that determined hv *MO

Take any g, € M,; set p, = f(q0 Since f is regular at ¢,, the images
Vf(qq, v) of all vectors v in M, at ¢, form a vector space V,, , of the same
dimension » as M; these are the tangent vectors to M at p,. The set of
points py + w (w € ¥V, ) form the tangent plane P, to M at p,. Let =,
denote the orthogonal projection of E"‘ onto P, ,and set F, (q) = m, (f(q)),
g€ M,. Since VF, (q,, v) = Vf(gy, v), F, is regular at qq; hence there is
a nelghborhood U, of ¢o in M, which maps under F, in a one-one manner
onto a nelghborhood U of py in P, (II, Theorem 7A) Let F, be the
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inverse of F, , mapping U onto Uy; set y, (p) = f(F;,o(p)), mapping U
onto U* C M Then

(1) Toe¥p0 = Tpol Fpy = Fp, F'p, = identity in U;

thus 7, and y, are inverses of each other. Both are u-smooth.

The plane P, and the projection 7, in M are defined by the point set
M alone. We may consider the inverse v, , in U, as a coordinate system
in M. The corresponding mapping of U into M, is f~1y, = F', ; since
this is smooth, the coordinate system y, in M is differentiably related
to the coordinate systems in M,. We may call M a smooth manifold in E™.

The following lemmas will be used in the proof of the triangulation
theorem. For convenience, we assume M is compact. In the contrary
case, we would use a positive continuous function &,(p) in M in place of the
number &;, etc. Set

(2) Pp,é = Pp m UE(P): Mp,E — wfp(Pp,E):

=

the latter being defined if £ is small enough,

LemmA 8a. Let M in E™ be compact. Then there is a &y > O such that
M, . is defined for all p € M. Moreover,

(3) dist (p, M — M, ) = &, £< &, _

It is clear that for each p € M there is an # > 0 such that M., is
defined for p’ in some neighborhood of p in M; since M is compact,
M P& exists for some & (all p € M). Choose &, so that

dist (P, M — Mp,f;,) —2— EO: pE M.
Since

dist (P, Mp,f- — Mp,f) ; 5: 5 < E(’): peE M’

&, has the required property.

Asin (I, 15), let 7_» be the orthogonal projection into P, of the vector
v; this is V& (g, v) for any q € E™,

Lemma 8b. Let M in E™ be compact. Then for any A > 0 there is

wresy

a & > 0 with the following property. For any p € M and any vector v
tangent to M, £

(4) v — 7| < A7 | < Ao

As a consequence, tangent planes at nearby points are nearly parallel.
Since 7 v = v for vectors v tangent to M at p, &,(p) exists for a given
pe M. Since M is compact, § exists as required.
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A secant vector to a point set ¢ in E™ is a vector of the form a{g — p),
p and ¢ in @, a real.

Lemma 8¢c. Let M, A and & be as in Lemma 8b. Then any secant
vector v to M, . salisfies (4). Moreover,

(5) |9’ — 7 ()| <A, peM,, (LG,
(6) MyeCUw(Ppe)s PpeCUM,e,  EX &
Suppose v = p; — Py, Py and pyin M. . Set
Qo =7y(Po) G =(D1), W= — o= T,
g = (1 —1f)gy +1tg, ;= Vuy,lq,)

Since m,y, is the identity in P, , m,v, = w = m,v. Applying (II, 1.3)
to yp, shows that

1
V— 0= fo (v, — mv,) di.

Since v, is a tangent vector to M, ., (4) holds for it; therefore it holds
also for », and hence for any secant vector aw.

Now take any p' € M, ¢, £ < &. Set v =p’ — p. Then v is a secant
vector, and hence

Ip!___ﬂ'pp’l:I'v——ﬂ'p'vléllﬂ'p?}{<l§’
proving (5). Relation (6) follows from this.

9. On n-directions in £™. Take a fixed orthonormal coordinate system
in E™. Now an n-vector « in E™ is given by naming its components o

(A, <---<4,); there are v = (;n) of these (I, 3). Thus a corresponds

to a point of A*, and vice versa. By (I, 12.7), the metric in ¥V, agrees
with that in A",

A certain subset M, of A’ corresponds to n-vectors which are n-
directions (I, 12). We shall show that M is an analytic manifold in UA”.

Take any n-direction o, and choose an orthonormal set v, «--, v,
such that o = wyv---vv,. Now take any n-direction a’ such that
|’ — a|<1lfn. Write o' = uyv--+vu,, the u, orthonormal. Let =
denote orthogonal projection into the subspace P of «, and set u; = 7u,.
Then (I, 15.7) gives

u— | S e — o [ u | <1fn,
and hence, by (I, 12.17),

| ugve s vy, — agve - vae, | << 1,
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proving ujv- * -vu,, =% 0. Therefore = maps the subspace P’ of a’ in a one-
one manner onto P, and we may find vectors vj, * - -, v, in P’ such that
7v; = v,. Now v; — v,is orthogonal to P, and hence is a linear combination

of v, q, "+, v, Alsoa = ¢(vjv---vy,) for some c¢. Therefore
m m
(1) o = c(vl + Z aljvj)v- . -v(vn + Z anjvi) if o —af<l/n.
j=n+1 j=n+l

Now take any similar expression

n

# ”
@ = c'(vv" " V), v =0; + Z b;sv;-
J=n+1

n
Write v; = > A,.v;. Then
T ] LA}

i=1

n n

= v, = A, = A.v
LUy =T = TV == iis
j=1 i=1

proving 4,, = 6!, and v = v/, b,; = a;;, ¢’ = c¢. Thus the expression (1)
for o’ is unique. Any choice of a set of u = n(m — »n) numbers a;;
determines an n-direction by (1). Hence a neighborhood of « in M, is
determined by a mapping of an open subset O of A" into M,. We use this
for a coordinate system in M.

Using (I, 2.5) to find «'*, we see that this is an analytic (in fact,
algebraic) function of the a,;. This gives an analytic mapping of O into
A*, which is easily seen to be regular. Hence also the relation between
overlapping coordinate systems is analytic, and M is analytic.

We shall find a “projection” =, of a neighborhood of M, in A" onto
M; details of proof of properties of n, are as in the proof of Theorem
10A below. Since M is compact, we may choose p, > 0 with the following
property. For each p € M, let P; be the normal plane to M, at p, and
setQy = Py N U, (p). Set mylq) = pforg € @5. The Q¥ fill up a neighbor-
hood U, of M, in A’ in a one-one manner, and 7, is an analytic mapping
of U, onto M.

Since the transformation ¢(a) = —a« sends =-directions into =-
directions, it is clear that
(2) mo(—p) = —my(f), p and —fin U,

10. The neighborhood of M in E™. Let M be u-smooth in E™. For
each p € M, let P, be the normal plane to M at p; orient it, and let o,
be its (m — n)-direction. With M, as in §9 (but with n replaced by
m — ), we consider «, as a point of M. Orienting the P; similarly in a
neighborhood U of p, this is a mapping of U into M. Since a, depends
on first derivatives in M, o, may be only (4 — 1)-smooth in M. Phrasing
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this statement differently, P, may be only (u# — 1)-smooth in M. We
shall define a family P, of approximately normal planes, which will be a
u-smooth function. (For u = oo, we may take P§ = P,.) Recall the
notations in § 8.

THEOREM 10A. Let M be a p-smooth n-manifold in E™, and suppose
A9 > 0. Then there is a u-smooth family of (m — n)-planes Py and a
positive continuous function O(p) (p € M) with the following properties.
For each p € M, P} contains p, and

(1) me| < A |v)  ifvisin P
Set
(2) Q;; = P; M Ua(p)(p)-

The Q5 fill out a neighborhood U* of M in a one-one way. Set
(3) m*g)=p if ge@;.

This ts a u-smooth mapping of U* onto M, and
(4) | 7*g) — g | < 2dist (¢, M),  ge U™

We may choose 4, < 1,/2 so that, with M, etc. asin § 9,
(5) Uy=U, (M) CUy | mox—a| <2f2 (xeUy).

Since P, is continuous in M, we may choose an admissible set of coordinate
systems y;, xg, * * * in M (§ 6) such that for a chosen point p; € U] = 3,(0,)
and chosen orientations of the P, (p € U/),

(6) loc;,—a;i|<11, peU,.

Let ¢, ¢o, - - * be a corresponding pu-smooth partition of unity. (With p,
as in (7.1), set $,(p) = pip)/Z;pip); then 0 ¢, <1, ¢, >01in U,
¢, =0in M — U], and >, =11in M.)

Given p € M, define Py as follows. Let U,,---, U; be the U,
containing p. Orient P, and orient the P;-"z. similarly (this is determined
by (6)). Using A’ as a vector space, set

(7) dy =D b(Ply,,  ah = meay;

the existence of a7 is proved below. Let P} be the (m — #)-plane through
P which, with proper orientation, has the (m — n)-direction ay. 1f we had
used the opposite orientation of P, then, because of (9.2), the same Py
would be found.

- Since the ¢, and 7y are p-smooth, P} is y-smooth in #. Because of
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(6), and since ¢,(p) = 0, Sd,(p) =1, we have |« — a, | << 4;; hence

o, € Uy, and (5) gives | o — o, | <C A¢/2; therefore
(8) la;f*oc;,f<lo.
Let m, denote orthogonal projection into P,. Then, for any v in P},
(I, 15.7) gives
i =o—mpl<lag —a o] S Ao fv),
which is (1).
Take any p, € M. Define y, asin §8, and let 73* denote orthogonal
projection into P;. For any vector v in E™, write
» — ’U’ __]L. vrf, ’U’ e Ppo, ‘U” c P*o
and define the mapping ¥ of a neighborhood of 0 in V(&™) into £™ by
setting
(9) p=1v, (P +?) g=Y@)=p +m*0")
(We may suppose 4, < 1in (1); then P} intersects P, in a single point.)
Since y, and P¥ are u-smooth, so is #}*, and so is ¥". Since
\% v"Pp.,(Po) =, VvV, (0) = (v' € P,
e (v") = v, vV F(0) = v (" € Pp),

V¥ is the identity at » = 0; hence ¥ is regular at 0. Therefore (II,
Theorem 7A) V" has a p-smooth inverse near 0; we may write

(10) v="20" +v" =T{q) + I'lg), Y(Ty(g) + Uy(9) = ¢.
Set

(1) m*(q) = V(I'y(9) = y,,(pe + 1'4(9))

near py; thisis a g-smooth mapping of a neighborhood of p, into M, such
that #*(¢) = p if ¢ € P}.

This shows that, given p, € M, §, > 0 exists such that the required
properties of @ hold in Uy (p,). Hence clearly d(p) exists as required.
(This would not be so if M were the image of a manifold under an improper
mapping.)

Clearly we may suppose 4, and d(p) small enough so that (4) will hold.
The proof may be given as follows. Take 4, < 1/4. Using 4 = 1/8, find
&(p) by Lemmas 8a and 8c (non-compact case). Take d(p) < &(p)/2.
Now suppose p = 7*(g), v=¢ — p, | v | =a. Then

dist (g, P,) = |v—mw| 2> |v| — Ay | v] = 3a/4,
M0, C Ugga(P,),  dist (g, M, q,) > 3a/4 — ajd = a2,

dist (g, M — M,,,) = dist (p, M — M, 5,) —a = a,
and hence (4) holds.
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Lemma 10a. Take 4 and & < &) as in § 8, and suppose A + g < 1.
Take any p, p' € M such that | p' — p | < &. Then P} intersects P, in a
untque point, and

(12) 7w | S (A2 |v| ifvisin PE.

Write v = v + w. Take any unit vector » in P,. Since w is ortho-
gonal to P, m,uw = 0. By (8.3), p € M, «; hence (8.4) gives

|ww|=|(w—mu)w| < A|w| < A

Therefore | ww | < A|v]. Alsc by (1), [m,v|{< Agiv]. These relations
give (12). If the statement about intersections were false, then there would
be a unit vector u in both P}, and P, But then (12) would give
|u!=|mu|<]|u|, a contradiction.

ExampLE. Let M be the smooth 1-manifold in E? given by y = |  |%2.
Then the normal line at the origin intersects neighboring normal lines in
points arbitrarily near the origin.

11, Projection along a plane. Let P and P’ be planes of dimensions n
and m — » respectively in E™, with just one point in common. Then to
each point p € E™ corresponds a unique point ¢ = ='(p) € P such that
g — pis a vector in P’'. We call 7’ the projection into P, along P’. Recall
the definition of ind (P, P’) in (App. 11, 14).

Lemma 1la. Given M in E™, let A and &, be as in Lemma 8c. Take
pe M, and let P' be an (m — n)-plane such that

(1) ind (P,, P') > X' > A

Then ', considered in M, . , is an imbedding in P,. We have
(2) (7)) —q| <AEA if geM,, £,
(3) P CaM,y, c=(1—iN)E EZ 4

First, let v # 0 be any tangent or secant vector to M, .. Then (8.4)
holds, and since 4 << A’, visnot in P’. Therefore »' is regular and one-one
in M, ., and hence is an imbedding.

Next, take any g M, ., £§ < &; set

¢ =79, ¢=mle ov=9—¢.
Then v is in P’, and hence
¢—q" | =|v—mp|[=1]v]
Usi\ng (8.5) gives

3 | 7) —q| =] < |q— ¢ ¥ < A,
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pe DOt In 7' (M, ). The
segment pp’ contains a point p* which is a limiting point of points in and
points not in #'(M,,). Since this set is compact, there is a ge M,
with #'(g) = p*. Ifqe M p.& then since o' is regular at ¢, a nelghborhood
of p* is covered but thls is not so. Hence l 7,(9) — p { = & But

Suppose (3) were false; then take p' € P

|p—m@) | < |p—p*| +|7'(@) —q| <c+ A3 =&

again a contradiction; hence (3) holds.

B. TRIANGULATION OF MANIFOLDS

12. The triangulation theorem. Let M be a u-smooth manifold.
By a u-smooth triangulation of M we mean the pair consisting of a simplicial
complex K and a homeomorphism 7* of K onto M, with the following
property. For each n-simplex ¢ of K there is a coordinate system y in
M (defined in some open set in ") such that y~1 is defined in a neighbor-
hood of 7*(o) in M, and y~ln* is affine in o.

THEOREM 12A.1 Every p-smooth manifold M has a u-smooth triangula-
tion.

REMARKS. (@) In the proof below, M is a manifold in E™. It should
not be hard to extend the proof to show that there is a (curvilinear)
triangulation of £™, of which a subcomplex corresponds to M.

(b) Suppose M is a “manifold with boundary”: It is composed of
pieces of manifolds M] of different dimensions, fitting together in a
simple manner. One might first imbed this in £, and then triangulate it.

(¢) One might ask if there is a triangulation of 3 with the following
property. For each vertex p; of K, there is a coordinate system y con-
taining St(p,), such that y~'n* is affine in each simplex of the star. This
cannot be done in general; it is impossible for any compact simply
connected manifold, for instance, for the 2-sphere.?

13. Outline of the proof. By Theorem 1A, we may suppose M is an
n-manifold in £™ (m = 2n 4 1), without limit set. We give the full details
for the case that M is compact; this will save some minor complications
(see below).

T 8. 8. Cairns, On the triangulation of regular loci, Annals of Math. 35 (1934)
579-587; Triangulation of the manifold of class 1, Bulletin Am. Math. Soc., 41
(1935) 549-552. (The affine property is not discussed here.) For an improvement in
the proof, see J. H. C. Whitehead, On Cl-complexes, Annals of Math. 41 (1940)
809-824.

1 If M, of dimension n, is ‘“locally affine” in this sense and is simply connected,
it is easily seen that there is a mapping of M into E® which is locally affine and
locally one-one; hence M is not compact. (For this proof I am indebted to
A. Nijenhuis.)
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A fine subdivision L, of E™ into cubes is chosen; let L be the regular
subdivision of Ly (App. II, 3). We move the vertices of L slightly,
forming a new triangulation L* of £™, which will be “in general position”
with respect to M. In particular, M intersects no simplexes of L* of
dimension <8 = m — n. Since the simplexes of L* are quite small
relative to the curvature of M, and M is at a certain positive distance
from do® for each ¢® which M intersects, M cuts ¢® at a unique point, at an
angle not too small. The intersections of M with the simplexes of L* are
approximately convex cells, and the desired complex K is like the regular
subdivision of this set of cells. The homeomorphism of K onto M is given
by the mapping #* of Theorem 10A.

We make some remarks on the proof for the non-compact case. Take
po € E™. In each R; = U,(p,), we have a compact part of M, to which
the above method of proof applies. We must choose the triangulation
L of E™ so that the proof (which is local in character) applies throughout.
Hence L, must contain cubes which are smaller and smaller as we go
further from p,. We may choose them so that the ratio of side lengths of
adjacent cubes is either 1/2, 1, or 2. Then a fixed ®, and N (see below)
may be used. Other numbers will be correspondingly smaller. In Lemmas
8a and 8c, we use a continuous function &(p) in place of the number &.

14. Fullness. Both in area theory and in the theory of integration in
several variables, it is well known that working with r-dimensional sets
such that the ratio of volume to rth power of the diameter is very small
may lead to difficulties. For instance, given a smooth surface § in E3, one
may find, in an arbitrary neighborhood of a given point p of § where § is
not flat, a triangle with vertices in S which is nearly perpendicular to S;
but the above ratio must then be small. This is the basis of the example of
Schwarz of a polyhedral surface inscribed in a cylinder, which has arbitrarily
large area.? We give some properties of the above ratio here.

Given the r-simplex ¢ (r > 0) in Euclidean space E™ (¢ could be any

set to which are attached a “dimension” r, a ‘‘volume” al, and a
“diameter” diam (o)), define its fullness by

(1) O(c) =1cl/d;, ,= diam (o).

If v, -+, v, form a defining set of vectors for ¢, then (III, 1.3) and
(1, 12.16) give

(2) $ o| =|oyv v it Koy | -oe o It L O,

hence '

(3) Koy < 1Jrl,  dim (o) = .

t H. A. Schwarz, Sur une définition erronée de l’aire d'une surface courbe,
Gesammelte Math. Abhandlungen, I, pp. 309-311. The example is described for
instance in T. Rado, Length and area, Am. Math. Soc. Colloguium Publications, 30
(1948) 6-7.
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An altitude of an r-simplex ¢ in E™ ig the distance from a vertex to the
plane of the opposite (»r — 1)-face.
LemMMa 14a. For any r-simplex ¢ and any altitude h of o,

(4) h = rO(c)d,.
Say ¢ = pg* " * P, 6 = Py * * Dy, and A is the altitude from p,. Then
lo|=h|d'|fr, || O7HE— DY,

and hence

h=rlo|fld|= | o' | = 10(e)d,.

An immediate consequence of thls is

(5) Dy — | = O)S, i jAL c=pe
Suppose o* is a face of ¢ = o". Choose a defining set v, - -, v,
of vectors for ¢ such that v,, -+ -, v, is a defining set for ¢*. Using
(I, 12.14) shows that
O(o) = | wyv- - -vo, |[r10] < [ vyve - -voy |frldf,
and hence
(6) rl®(c") < k1O(0F), o* a face of o”.

Lemma 14b. For any r-simplex 0 = py - p, and point p = uyp,
+ + u,p, in o,
(7) dist (p, do) => r'@(0)d, inf {pg, * * -, p,}-

Let q be a nearest point of do to p; then pq is parallel to an altitude
of o, say that from p, Now (4) gives

dist (p, do) = ‘ g—p } = poh = r16(0)d, inf {u,}.

The function (o) is of course continuous with respect to the positions
of the vertices of 0. We give a uniformity condition.

LEMMA 14c. Given r, @y > 0, and € > 0, there is a py > 0 with the
following property. Take any simplex o =p, - p, with Olo) = O,
and take any points ¢y, -, q,, with |9i — i < pod, (all i). Then
o' =gy q, 1s a simplex, and O(c') = Of — e.

Choose p, << 1/2 so that

(®) P it >0y~

(1 4+ 2pg)"  (r — D1 — 2pg)
Now take o', and set v, =p, — ps W, =4¢q; — ¢, Since l w; | é
(1 4 2p4)d,, (I, 12.17) gives

Lwyve - v, — o v, [ <K () 4 2pg)™10, 71 2p00,;

hence, by (111, 1.3),

0|2 || — 2po(l + 2p0) 305 /(r — 1)L
Since (1 — 2p4)8, < 8, < (1 + 2py)d,, using (8) gives the result.
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15. Linear combinations of edge vectors of simplexes. If v, --, v,
are orthonormal and v = Zazvi, then | v| = (Zaf)"2. If v, -+, v, are
unit vectors bu ' may be quite different, in particular,
much less (but not 0 if some ak is #0 and the v, are independent). We

wish some inequalities.
LemMA 15a. Given veclors uy, * + -, u, and numbers a,, + , a

DTS o] 2 sup -
Suppose not. Say a = [ a, | is the largest of the | a; . Set
W= blul —]" e br—lur—l + @ Uy,

with the b, chosen so as to minimize ‘ w ‘ Then

lwléizaiui

SlwlJualfw]=]w]

r

a,|} | uyve - vu,| ifeach|u; =1.

cova, | = ugyve s va, v

a contradiction.

LemmA 156b. Let uy, - -+, u, be independent unit vectors parallel to
edges of the r-simplex o. Then

(2) \ Z au,; | = rlsup {‘ |}®(U
(3) e, | < lZaju,.E/r!@(c), t=1,.--,r
Let #,, - - *, v, be the corresponding defining set of edge vectors of o.
Then u; = /| v,
rZaiui};a‘uIVH-vur‘ =a|oyv v, |f| vy || v,

= rla| o |/0} = rla®(a),

which is (2). The other relation follows from this.

We now show that if ¢ is near a plane and () is not too small, then
o is nearly parallel to the plane.

LEMMA 15c. Let 7 denote orthogonal projection into a plane P. Let
=Py P, be a simplex, and suppose

(4) o C UyP), |ps —po|=8>0 (i=1,---,1).

Then for any unit vector 4 in o,
(5) ! U — TU !

The vectors v, = p, — p, (t =1, -+, r) form a defining set for o.
Setting u; = v,/| v, |, we have

g — ] =0, — 0, o < 20
Say u = Y>au,. Then (3) gives

| {un—'n-ul 12 u-—q'rru
\

which is (5).

) | = r[1r1O(0)1[28/4],



128 SMOOTH MANIFOLDS [CHAP. IV

16. The quantities used in the proof. We shall indicate how various
quantities appearing in the proof enter. The cubes of L, are of side
length %; the simplexes of L are of diameter 8. The vertices of L are
pushed at most a distance p,0 to give vertices of L*; then the simplexes
of L* have fullness > ©, (Lemma l4c). Each vertex of L* is on at most
N simplexes of L*.

In pushing the vertex p; of L into the vertex pf of L*, we must
avoid at most N sets @,, whose total volume is less than that of a sphere
of radius p,0; hence p{ may be found. The volume of @, is determined by
the number p,. The distances from M to the vertices, the 1-simplexes,
etc. of L* are determined in succession, using (App. II, Lemma 14b) and
induction; each bound on distances is p = p;p,/4 times the preceding.
Finally, the distance from M to the (s — 1)-simplexes of L* is at least
406 = 2a; the distance from the part of any tangent plane P to M at p
which lies within 76 = & — § of p, to such simplexes, is at least a.

Each simplex ¢ of K has an altitude at least b = f$0; its fullness is at
least ®,;. The center p, of any n-simplex o, of K is at a distance = ¢ = »d
from doy; this is used in applying (App. II, Lemma 15a). The proof of
the above properties, and making the simplexes of K nearly tangent to
M, ete., give requirements on the rate of turn of tangent planes to M
relative to the sizes of the simplexes of K. Thus a number A is determined,
giving &, and hence % and §, by Lemmas 8a and 8c.

17. The complex L. If we take a cubical subdivision of £” and the
regular subdivision © of this, all simplexes of © have the same fullness,
which we call 2@,. (Actually, 20, = 1/m!m™2.) Let N be the largest
number of simplexes in any star of a vertex of S.

Choose p, < 1/4mY2 by Lemma l4c so that for any n-simplex
0 =Py Py if O(0) =20, and | ¢; — p, | < pe,, then 7 =g, - g,
is a simplex, with &(r) > ®,; with p* as in (App. 1I, Lemma 16a), we
take py < 2p*/mt'2.

There is a number p, > 0 with the following property. Let @ be any
ball in £™, of any radius a, and let @’ be the part of @ between any two
parallel (m — 1)-planes whose distance apart is < 2p,a. Then we have
the inequality on volumes
(1) @ <|Q|N.

Set,

(2) P = poprl4; %, = p'pop1/2, o« = &y 4/4,
(3) B = Opx/m2N,  O,=p"2"  y=(n—1)0,p82.
Choose py < 1/4 by Lemma 1l4c, using n, ®, and ©,/2 in place of r,
O, and e. Set
(4) A = inf {ay/128, peap/8}-
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Say the projection 7* of Theorem 10A is defined in the neighborhood
U* = U, (M); we take 2y < 1/4 in that theorem.

Choose &, by Lemma 8a, choose &, < &, by Lemma 8b, and set
(5) & =inf {&, ado[34}, O=E&8,  h=2§ml3,
(6) a = 2ad, b= f9, ¢ = V6.

Let Ly be a cubical subdivision of E™, the cubes being of side length %,
and let L be the regular subdivision of L, Then each 1-simplex of L is
of length = %/2, and the m-simplexes have diameter é.

18. The complex L*. ILet the vertices of L be p,, py, - - - . We shall
choose new points py, p3, « - - with

(1) DT | <ped  alli.

By the choice of p,, this will define a new triangulation of £™, and using
pod < 2/8 and (14.6) gives, for all simplexes 7 of L* of dimension > 1,

(2) hi4 << diam (7) < 24, O(r) = 0.
We shall obtain also
(3) dist (M, 77) > a9, all 77 in L*, r<s—1,

and hence, if L**-1 denotes the (s — 1)-dimensional part of L*,
(4) dist (M, L**1) > 2a.

Suppose p}, -+, p¥_; have been found, so that the complex L} ;
with these vertices satisfies (3); we shall find pf, so that L¥ satisfies (3).

Cask I, dist (p,, M) > 3d. Then we set pf = p,. Because of (2),
(3} will hold for LY.

Case II, there is a point pe M, |p ——piﬁ < 30. Let P, be the
tangent plane P, (§ 8). Let 1, °°*, Ty (¥ < N — 1) be the simplexes of
L} | of dimension < s — 2 such that r; = pfr; will be a simplex of L.
Let P, be the plane spanned by =; and P, (j > 1); its dimension is at
most (s — 2) +n + 1 < m. Set

(5) QJ = Upﬂd(pi) m Uplpga(Pa’), j — 0, 1, e, W

By the choice of p,,
satisfying (1), such that

(6) dist (pf, P;) > prped, J=0,1, -+,

Qj‘ <\ U,s(2:) l/N; hence there is a point pf

We show now that

(7) dist (;, P,) > 2a,_,6/3 if dim (+]) =r — 1.
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Since 7; is in L}_,, dist (7], M) > o, ,6. By (8.6), P, . C Uj;s(M); since
A< oy 4f24, A& < &, ;0(3, and (7) holds with P, . in place of P,. Since
|p — p;| < 38 and diam (p;r}) < 28, dist (], P, — P, ;) > 34, which
gives (7).

Applying (App. II, Lemma 14b) gives

dist (r,, P,) = dist (;, P,) dist (p}, P;)/diam (r,)
> (2ot,_10/3)(p1p0)/20 = 4, _; pb/3 = 4a,0/3.

Since A& < «,9/3, using (8.6) and (8.3) and the same argument as above
gives (3), for " = 7,, j > 1. Using j = 0 in (6) and the same argument
again gives (3) for 7" = pJ; hence (3) and (4) are proved.

19. The intersections of M with 7*. We prove some properties of the
intersections of M and its tangent planes with the simplexes of L*,
(e) For any p € M and r-simplex 7" of L*,

(1) dist (Pp, TT) >a if 77C U7a(_p), T:_<: s — 1.

For dist (P, — P, ) >&—T76>a, and P, CU,(M), A <a;
using (18.4) gives (1),

(b) If M intersects 77, p € M, and 7" C Uy4(p), then P intersects 77,
For if p'e MO 7", then by (8.3), p’e M, By (8.6), dist(p’, P,)
<< Af << a. Let 7° be a face of smallest dimension of 7 with dist (%, P,)
< a. By (1),t = s, and by (App. II, Lemma 14a), P, intersects 7'.

(¢) If r = s in (b), and P(7*) is the plane of 7%, then

(2) ind (P,, P(*)) > a.

This follows from the lemma quoted, (1), and (18.2).

(@) It peM, " CUyp(p), and P, intersects 7", then r>s, and
M, intersects . Let 7' be a smallest face of +" such that dist (P, =)
< a. By (1) and (App. II, Lemma 14a), t = s (hence r > ), P, has a
point p’ in 7%, and (2) holds. Let =’ be the projection into P, along
planes parallel to 7* (§ 11). By Lemma 11a, »'(M, ;) covers P,,, with
7= (1 — Aja)& >178. Since |p’ — p| < 78, there is a p* € M, with
' (p*) = p'; hence p* € P(r*). By (11.2),

|9 — p* | < Afa < pofd < o < a.

Since p’ € 7%, (18.4) shows that p* € +*,

(e) M intersects any 7° in at most one point. For suppose M had the
distinet points p, p’ in 7°. Then by (8.3), p’ € M, ¢, and M, ; has a secant
vector v =p' — p in 7. By Lemma 8¢, |v — = v ‘ < Afw ) But (2)
gives | v — v | >alv| > 2 ' v |, a contradiction.

(f) If M intersects 77 = ¢, - - * ¢,, then for each k, M intersects some
s-face of +” containing ¢,. Fortakep € M ) 7", Let 7* be a face of smallest
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dimension of +" containing ¢, which P intersects. Suppose { > s. Then
if 7'-1 is the face of =' opposite ¢,, P, intersects some s-face of L.
Because of (c), P, contains interior points of 7%, and hence intersects

ot — 71, a contradiction. Hence ¢t = s. By (d), M also intersects 7°.

20. The complex K. In each simplex 7 of L* intersecting M we shall
choose a point y(r); these are the vertices of K. For each sequence
79 C 7, C-- - Cr, of distinct simplexes of L* such that M intersects =,
(and hence all the 7,),

(1) c” = y(7y) - * p(7,)

will be a simplex of K.

First, for each 7* which M intersects, there is just one point of inter-
section, by (19(e)); let y(7*) be this point. Next, for any 77 (r > s) which
M intersects, let 77, - « - , 7}, be the s-faces of 7" intersecting M (see (19(f)));
set

(2) p(r7) = (Uk)p(r1) + « - + (1/k)p(rs).
We show that for any +* = ¢, - - - ¢, of L* intersecting M,

(3) pe>20 (k=05 i yr) = > ug,
For let 7, be the (s — 1)-face opposite q,. Let 4, and A4} be the altitudes
from g, and y(7°) respectively to P(r;). By (18.4) and (18.2),
i, = A4, > 2a]26 = 2a.
Next, if M intersects 77 = ¢, * - q,, then
(4) w,> 2N (k=0,--+,1) if @)= Z ug

Given k, let 7* be an s-face of 7 containing ¢,, which intersects M (19(f)).
By (3), the barycentric coordinate u’ of y(7*) corresponding to g, is at
least 2a. By (2), u, is the average of at most N barycentric coordinates,
one of which is u’; hence (4) holds.

The vertices of each simplex ¢ of K have a natural order; let alt (o)
be the altitude from the last vertex (vertex in the simplex of highest

dimension of L*). We prove
(5) alt (67) = rb.

For if ¢” is as in (1), the (r — 1)-face o™} opposite y(7,) lies in 7,_;. If
dim (r,) =t = r, Lemma 14b, (4) and (18.2) give

alt (6") = dist (y(r,), dr,) = t10(7,)9, (2a/N)
= r@y(6/2mV2)(2a/N) = rb.
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~ Since l 7| = alt (") | 61 |/r, we see at once, by induction, that
6" | = b, and hence

(6) O(a") 2 b/(20)" = f7/2" = ©,.

21. Imbedding of simplexes in M. We show that K is near M, and that
any n-simplex near an n-simplex of K is imbedded in M by #*.
We prove first, for any simplex o of K,

(1) if ¢ CUglp), peM, then o C U (P, ).

Say ¢ is in the simplex 7 of L*; then 7 C Ug(p). Each vertex p, of o is
an average of points y(7}), which are in M, and hence in U;«(P,¢);
therefore (1) holds for the p, and hence for ¢. As a consequence of this
and (10.4),

() KCUyi(M), [n*g) —q| <42 (g€K)

LemMmA 2la. Let a =1py- - p, be an n-simplex of K (vertices in
increasing order), and let p), « -+ , p,, be any points such that
(3) | pi — p; | < A¢fa, t=0,-",n

Then ¢’ = py -« * p,, 15 a simplex in U*, and =* imbeds ¢’ in M.

First, since Afja < poBE/8 = peb, O(a) = @, and diam (¢) = b, by
(20.5), the choice of p, gives BO(c¢’) > ©,/2.

Next, because of (2) and (17.5), ¢’ C U, (M), with

(4) n = Aéla + 22& < 3A&ja < by;

hence ¢’ C U*, and =* is defined in ¢’
Now take any ge g’ Say ¢ge@}, peM; then mn*(@q)=gp. By
(10.4) and part of (4),

g —p| < 2(3M¢/a) < 6

hence o C Uy(p), and (1) gives ¢ C U,;{P,). Therefore o' C Ugyep(P,)-
Also, by (20.5), | p; — p, | == b; hence

| i — po| = b — 2hfa > b — 2pgh = b/2.
Hence, if u is any unit vector in ¢’, Lemma 15c gives
L u— mou | < 2208/a)/(n — 1)(O/2)(5/2) = 642 [ay < 1/2.

Since we took 1, < 1/4, (10.1) shows that u is not in @}. Therefore 7*
maps each non-zero vector in ¢’ at ¢ into a non-zero vector, and 7* 1s
regular at g. Also, if ¢’ is another point of ¢’, then using v = ¢’ — ¢ shows
that ¢ is not in @}, and hence n*(¢’) # m*(¢). This completes the proof.
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22. The complexes K . For each p e M, let L} be the subcomplex of
L* containing all simplexes which touch U 4(p), together with their faces;
then

(1) Ly C Ugs(p).

Let K, be the complex in P, formed by the intersections of P, with the
simplexes of L}, and let K, be the regular subdivision of K,. By (b) and
(d) of § 19, P, intersects a simplex of L} if and only if M does. Hence,
if K, is the subcomplex of K containing those simplexes with vertices
w(7), T in L}, there is a one-one correspondence ¢, of the vertices of K
onto the vertices of X, and this defines a simplicial mapping ¢, which is
an isomorphism of K onto K.
We prove

(2) | (@) — q| < Affa, qEK,

First suppose ¢ = y(7°) for some 7° in L}. Then v = g — ¢,(q) is in 7%,
and using (8.6) and (19(c)) gives

FREY

z§>1q_ﬂp(q”=i”_7’wvi

v

| |
a|v|,

giving (2). Next, if ¢ = y(7"), r > s, then the definitions (20.2) and
(App. 11, 1.2) show that ¢ and ¢,(q) are the same averages of sets of points,
each corresponding pair satisfying (2); hence (2) holds for g = y(r7).
Finally, for any simplex of K, (2) holds for its vertices and hence for all
its points.

We must show that
(3) KN U26(.p) C K'p'

For take any point g in a simplex o = y(7,) * * - w(7") of K, ] q—p ‘ < 24.
Then 7" C Uyy(p), hence 77 is in L}, and ¢ and ¢ are in K,

Choose an orientation of P, and orient all n-simplexes of K;,
accordingly. Now K, is an oriented n-pseudomanifold (App. I, 15), and
(1) and the definition of L¥ show that

(4) K;; C Ugs(p), 0K, C p,— U,s().

Define the mapping =3 of K into P, as follows. Each g€ K is in a
unique @%; then p' = n*(g). By (1), ¢ —p|< 64, and by (21.2),
| p' — q| < 4A& < §; hence|p’ — p | < & By Lemma 10a, P¥, intersects
P, in a unique point, which we call 7}3(g). We prove

(3) | g) —q| <61, qeK,

Because of (21.2), we need merely prove | v } < 24§, wherev = p
Since 4 + 1o << 1/2, (10.12) gives |7v | < |v /2. By (8.5),
<C A&, Therefore | v | < |v|/2 + A&, and the statement follows.

" — mp(g).

v— mw |
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23. Proof of the theorem. Given p € M, choose an orientation of P,
and orient the n-simplexes of K, and K, correspondingly. Now X, is
an oriented pseudomanifold (App. II, 15). The proof of Theorem 12A
rests on the following lemmas,

LeMMa 23a. n} is a simplexwise positive mapping of K into P,

?
Take any n-simplex ¢ of K. Set
(1) bpd) = (1 =g +1d,(q) ino, o,=¢,0)
Since ¢, is affine in ¢, so is ¢, ,, and o, is a simplex. Say 0=¢qy" """ Gy

Foranyt (0 < ¢ < 1), set ¢,y = ¢, ,(q,); theno, = g4, q,, By (22.2),
| i —a:| < - A¢/a. By Lemma 2la, 7* imbeds ¢, in M; hence (by the
reasoning of that lemma) =¥ imbeds ¢, in P,. Since g is in P, 7} is the
identity in o, and hence J « >0 in o Since J_ «+ %0 in g, for all t,
g + > 0in gy = o, a8 required.

"For each p € M, let R, be the set of those points ¢ € K, such that

(g} € P

LEMMA 23b For each pe M,
and onto P g;.

First, let o, be an n-simplex of K, containing p; say o, = ¢,(0p)
(oo in K ), and let p, be the center of o,. By (14.7), (20.6), (20.5) and
(17.3),

wy, considered in R, only, is one-one

dist (pg, 00,) = n!Ob/(n + 1) = c.
Hence, by (22.2),

(2) dist (¢,(p,), 007) > ¢ — 2A¢[/a = ¢’

Now take any g € K, — 0,. Since ¢ is an isomorphism, (2) shows that
| $,(2) — ¢,(po) | > ¢’. By (17.4), (17.5) and (17.6),

4AEja 4 1248 << 164¢[a < vd = c.
Hence, by (22.2) and (22.5),

| mH(g) — mh(pe) | > ¢ — 2(Ak[x + 62E) > 0,

proving m3(q) 7& *(pg)- This shows that p* = my(Pe) is covered exactly
once, under 7 by simplexes of K . Also

and hence p* € P, 4.

By (22.4), (22.2) and (22.5), since 2(A&/a 4 6AE) <
(3) mH 0K ) C P, — Usy(p).

The lemma now follows from Lemma 23a and (App. 1I, Lemma 15a).
We now prove the theorem. First, given p € M, the last lemma shows
that #}(¢q) = p for some g € K;; hence m*(q) = p, and =* is onto. Next,
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suppose that n*(¢') = p also, ¢’ € K. By (21.2), |¢ —p| < 44§ < 6;
hence, by (22.3), ¢’ € K, and therefore ¢’ € R,. By Lemma 23b, ¢’ = ¢.
This proves that «* is one-one.

Finally, take any n-simplex ¢ of K. By Lemma 2la, =* is one-one
and regular in ¢, and hence in a neighborhood U of ¢ in the plane P(o) of
o. Let ¢ be an affine mapping of A" onto P(g); set Uy = ¢~YU). Then
x = m*¢ is defined in U, and is a coordinate system in M, and y'n*
= ¢~1is affine in ¢. This completes the proof.

C. COHOMOLOGY IN MANIFOLDS

24. p-regular forms. The theorem of de Rham (Theorem 29A
below) relates cohomology in a smooth manifold defined algebraically to
cohomology defined by differential forms. We must use a class of forms
which are invariant under the operation d of exterior differentiation. We
choose “‘u-regular forms”. We could clearly use c0-smooth forms if M s
o0 -smooth.

For some integer u > 0, assume that M is (u -+ 1)-smooth. Then
the r-form o in an open subset R of M is u-reqular in R if the following is
true. If u = 0, then w is regular (III, 17); if 4 > 0, then both w and
dw are p-smooth. If this holds, then dw is uniquely defined and is
p-regular. For r = 0, @ is y-regular if and only if w is (4 + 1)-smooth,
since the components of dw in some coordinate system are the partial
derivatives of w.

We say  is closed if dw = 0; w is derived if w = d& for some &; w is
p-derived if w = d&, £ being u-regular,

Using (I1, 8) (if g > 0) and (III, 17} (if 4 = 0), we have the following
facts. If w and & are y-regular, so is wvé. If fis a (g 4 1)-smooth
mapping of the open subset B of the (# -+ 1)-smooth manifold M into the
(4 + 1)-smooth manifold M’, and w is g-regular in a neighborhood of f(R)
in M’, then f*w is p-regular in B. The usual formulas for d(ewv&) and
df*w hold.

We say a given property of forms holds near a given closed set @ if it
holds in some neighborhood of .

LreMmMa 24a. Let w be a u-regular form near the closed set ¢ in M.
Then there is a u-regular form w, in M such that w, = w near ¢. We may
make w; = 0 outside an arbitrary neighborhood U of Q.

Choose a neighborhood U, C U of @ such that o is u-regular in a
neighborhood of U;. Let ¢ be a (u + 1)-smooth real function in M such
that ¢(p) = 1 in @ and ¢(p) = 0 in M — U,. (For instance, let f imbed
M in E™ by Theorem 1A, define ¢’ in E™ so that ¢'(q) = I in f(@) and
#'(q) = 0inf(M — U,), by (App. I11, Lemma Ic), and set ¢(p) = ¢'(f(p))
in M.) Set w,(p) = ¢(p)w(p)in U, and w,(p) = 0in M — U,; then w, has
the required properties.
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25. Closed forms in star shaped sets. (Compare § 22 of the Introduction.)
We say the set R C E" is star shaped if there is a point p, € R such that
for each p € R, the segment p,p is in RB.

LEMMA 25a. Let R be a star shaped open set in E™, and let w be a
u-reqular closed r-form in B, r > 0. Then w ts p-derived in B,

We shall define a u-regular (r — 1)-form w, in R such that

(1) ‘ 2y 01 = L w, all r-simplexes ¢ in R;

Then dw, = w, by definition if 4 = 0, and by Stokes’ Theorem and (III,
Lemma 16a) if gz > 0.

Say R is star shaped from p,. Define the affine mapping g of the
Cartesian product W X E" into £" by

(2) gt xXp) = (1 — t)py + tp.

For each p € R there is a number 7, > 0 such that g{tXp)e R for

—n, <t <1+ 75, Hence there is a neighborhood U of I X B in A X E"

(I = interval (0, 1)) such that g maps U into R. Then g*w is regular in U.
Define w,(p) as the partial integral (I1I, 19)

(3) wy(p) = J;xpg*w(tXp)dt, p € R,

then w, is p-regular in R. (For u = 0, p-regularity will follow from (1);
for u > 0, it is clear from (3) or (6) that w, is u-smooth; u-regularity
will then follow from dw; = w.)

Take any oriented (r — 1)-simplex = in RB. TFirst suppose its plane
P(7) does not contain py; let pyr = J(py, 7) be the join of p, with =
(App. 11, 10). With the obvious choice of orientations, the mapping g,
considered in int (I X7), is an orientation preserving smooth homeo-
morphism onto int (py7). Hence, by (I1I, Theorem 7A), (III, Lemma 6f)
and (III, 19.1),

(4) o= o= o

If py € P(7), then p,7 = 0 (App. II, 10), and f w is defined to be O;

a2 -

07

also, considering g in I X7 only, J, =0, hence (IL, 6.6) g*w = 0, and
J«rwl - 0.

Now take any r-simplex ¢ in R. By (4), (App. II, 10.3) and Stokes’
Theorem,

w — W, = W == w= dow = 0
J; 9g 1 L—-J(:po. 90) 8J(pg, @) J(Dg.0) ’

proving (1).
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We shall give an explicit formula for w,(p)-f for any (r — 1)-direction
3. Say f§ = e,v- - 've,_;. Let ¢, be the unit vector in 7. Now

7}
Vot xXp, eg) = Pr gt Xp) = p — Py,

1
Vg(t X p, e;) = lim 5 [9EX (D + hey)) — gEX p)] = te,
h—0

for i 2> 1, and hence

(5) Vgt Xp, egvf) = t"(p — po)vB.
We may define w, by
6) (p)f = [ (gt xp){(p — povBldL.

To show that this is the same w, as before, we prove (4). Setting
p= {7}/] T | and using the Riemann integral (III, 5) and (II, 4.4),

[ o= graltxpriend) = [ olgtxp)-Vaxp, euh)

BT od XT JILXT

— fo " 2w(g(t X p)) {(p — po)vpldtdp = J; w;(p)dp,

at least if p,7 is non-degenerate. In the contrary case, w = 0, and

. Py7
since (p — py)vf = 0, f w;f=0.

26. Extensions of forms. We prove two lemmas on the extension
through the neighborhood of a simplex of forms defined near the boundary
of the simplex.

LemMa 26a. Let w be a closed u-regular r-form near do (o = o* C E™),
with r 2 0, s 2> 1. Suppose that
(1) w=10 fs=r-41.

do

Then there is a closed u-regular form ' near o which equals w near do.

Lemma 26b. Let w be a closed p-regular r-form near o = o®* C E",
withr >1, 82> 1, and let & be a p-regular (r — 1)-form near 0o such that
dé = w near do. Suppose that

(2) .[aa &= L W ifs=r.

Then there is a p-regular form & near o such that & = & near do and
d&' = w near o.

Let (@,) and (b,) denote the lemmas, using r-forms (all s). We shall
prove (a,); then (b)), assuming (a,_,); then (a,), assuming (b,). This
will prove the lemmas.
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Proof of (a,): Since dw == 0, w is constant near any connected part
of d¢. If s > 1, then w is constant near do, and we may let w’ be the same
constant near ¢. If s = 1, and ¢ = pyp,, then

(py) — o(py) = faa w == 0,
and again w’ exists.
Proof of (b,): By Lemma 25a there is a u-regular (r — 1)-form &
near ¢ such that df; = w near ¢. Set 1= & — &, near Oo; then % is
closed near do. If s = r, then

Ba?]:faas_faaflzJ‘aw“—.[rd‘s]‘:o'

Hence, by (a,_,), there is a closed u-regular form %’ near ¢ which equals 5
near do. Set & = &, 4 7’ near ¢; the required properties hold.

Proof of (a,), r>0: Say o= py - ps set ¢’ =p, - p, Let @
be the union of all proper faces of ¢ with p, as a vertex. (Thus, for
8§ =2, Q@ = peyp;"J PoPs.) For some ¢ > 0, w is defined and closed in
U= U/Q). Clearly U is star shaped (from p,); hence, by Lemma 25a,
there is a u-regular &, such that d&y = w in U. This holds, in particular,
near da’.

Ifs — 1 = r, then letting 4 be the chain do — o', we have do’ = —0d4,

and hence
fa'w o faa' §o= L' ® + J:l dfy = faa w = 0;

hence we may apply (b,), using ¢, giving a y-regular form & near ¢’ such
that & = £, near o’ and d&; = w near ¢’. There is a neighborhood U’
of 0o’ in which &, and &, are both defined and are equal; let & be their
common value here, and set & == §, near ¢ — U’ and & = & near
o — U'. Then & is p-regular and d¢’ = w near do. By Lemma 24a
there is a y-regular form & near ¢ which equals & near do. Set v’ = d&
near ¢; the required properties hold.

27. Elementary forms. By Theorem 12A, there is a triangulation of
M, as follows. K is a simplicial complex, and 7 is a homeomorphism of K
onto M. For each simplex 7 of X, ¢ = =(7) is a smooth simplex in M
(ILI, 17), and there is a coordinate system y in M containing o, such that
y 17 is affine in 7.

The smooth simplexes ¢ = =(7) form a “curvilinear complex” L; we
may define algebraic chains 4 = >a.0] in L, and integrate r-forms «w over

A; Stokes’ Theorem J;a W = J; dw holds (I11, 17.3).

Given the r-form w in M, the function fA w of r-chains of L is linear,

and hence defines an r-cochain pw of L (App. 11, 6):
(1) powd = J:d w.
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Since, for (r 4+ 1)-chains B,
ydw B = fB dw = J;B 0 = yw 0B = dyw- B,

we have
(2) pdo = dyow.

Conversely, we wish to define forms ¢X corresponding to cochains X
of L, with the following properties:

(3) ¢o0=0 near M — St (o) (o in L),
) $dX — dpX,

(5) pdX = X,

(6) ¢I° =1,

19 being the unit 0-cochain of L (App. 11, 6), and 1 being the real function
equal to 1in M. The “elementary forms” ¢o will be sufficient to generate
the differential cohomology spaces (§ 29).

We construct a partition of unity (compare (App. II1, 2), (IIL, 10))
in M as follows. Let p,, p,, - - - be the vertices of K; the g, = n(p,) are
the vertices of L. For each ¢ = n(p) in M, write p = > u,(p)p,, as in
(App. 11, 2.1); write

(7) ) = pdp), 1= D v(@ge

Thus we have introduced “barycentric coordinates” in L. For each 1,
let @, and @; be the subsets of M such that

{8) Q:: v(9) = 1/(n + 1), Q;: v Z 1f(n + 2).
Then
(9) Qa C St (g,), int (Q’i) DM — St (Qi)-

Let ¢(p) be a (u -+ 1)-smooth non-negative real function in M which
is positive in ¢, and is zero in @, (see the proof of Lemma 24a); set

(10) $dp) = $i(p)| D, 41(p).

Take any p € M; since p has at most » -+ 1 non-zero barycentric co-
ordinates, at least one of these, say v,(p), is = 1f{(n + 1); hence p €@,
q'>;.(p) > 0, and ¢,(p) is defined (all 7). Now ¢, is (u + 1)-smooth, and

(11) D=1, >dpp)=0 inM.

For each oriented simplex o =g, - ¢q; of L, set*

12) By, G =1 D (Vb e dfy v gy
i=0

* Compare A. Weil, Sur les théorémes de de Rham, Commentaric Math. Helvetici,
26 (1952), formula on p. 127.



140 SMOOTH MANIFOLDS [Cuar. IV

For instance,

(13) ¢(q;) = b $(q.9;) = $dd;, — $,d¢..
By (1, 1.13) and (App. II, Lemma 5a), a permutation of the vertices either
leaves unchanged or changes the sign of both i, ", and the right
hand side of (12); hence ¢o is well defined, and we may set ¢Da;o;
= a0,
To prove (3), take any o=gq, ---q,, and any p such that v, (p)
< I/(n ) for some j. Then p EQ,L y c;'>,1J = O near p, and (¢o)(p) = 0.

Because of (13), (6) is simply the first part of (11).
To prove (4), we need consider only X.— 0 =gq, **-g,. Note first
that applying d to (12) gives

(14) @m;~%

¢>d(q1(, @ )/r + D=3 ¥dlqrgs, - -+ ¢ )/(r + 1)

r

— Z *[fedepy v * v — Z (—1)igy depy vdghy v - 1+ v, ]

i=0

z brd; v« - - vdd, + Zr (—1)id,, Z de;, Vd¢z v “ e vdd, ]

kall A i=0 i=0
T
= D uddyv e vdy + > g by v v,
k#all A i=0
= d,v' * vdg, = ddlg;, - - ¢ )/(r + 1)1,
as required.

To prove (5), suppose first that r = 0. Taking X = ¢, and using (1)
with 4 = ¢, and (13) shows that we must prove the last part of

wdlg,)q; = [dg.)g;) = i(g;) = d1.

Since ¢, = 0 outside St (g,), this follows from (11).
We now use induction on r. We need merely prove

(15) wga—ﬁjdzﬂ

If j £ 4, this follows from (3); suppose j =t Say o= gd], 0o = ¢’
+ -+ -. Using (4), and (3) in both dimensions r and r — 1, we find

[, do = L ddo’ = J;dq!’a’ = faa o’ = fa' do’ = 1.
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28. Certain closed forms are derived. We prove

Lemma 28a. Let w be a closed p-regular r-form in M (r > 0), and let ¥
be an algebraic (r — 1)-cochain of L, such that ww = dY. Then there is a
u-reqular (r — 1)-form & in M such that df = w and p§ = Y.

We define forms §,, &, - -+, &, in turn such that:

(a) £, is defined and u-regular near the s-dimensional part L* of L.

(b} @, = w near L* and §, = &, , near L*! (s > 0).

(c) v&, =Y.

Then & = £, is the required form.

To begin with, choose &, near each vertex ¢, of L so that df;, = w
there, by Lemma 25a (use y as in the proof below). If r =1, choose
numbers a, and set £, = &, 4 @, near g,, so that p& = Y; if r > 1, set
5 0o ’5(,)

Now suppose &,_, has been constructed; we construct &, It is
sufficient to define &, = &, ; near each s-cell ¢ of L; since these agree
near L1 the single form &, near L® may be built up from them.

In the case that s = r, note that (c) gives, for any ¢ = o,

~ -

. J 2 1= 9,100 = Y00 = yoro = Ja w.
Let y be a coordinate system containing ¢ = o} such that if § = y1,
then 67 is affine in n~1(g); then 7 = 6(0) is an s-simplex in Y". Set

Then d&¥_; = y*d&, | = w* near dr, and if s = r, (1) and (III, Theorem
10A) (applied to int (¢) and to int (¢} ') for each face of o) give

R A

Hence, by Lemma 26b, there is a u-regular form £}, near 7 such that
xi= &F_, near 0r and d&;; = w* near 7. Set
£, = 0%, near o;

then df,;, = 0*w* = w near o, and we may set £, = §;; near o if

§Fr— L

Suppose s=1r — 1. Form §,_; from the & _,;. We may define
J‘o;“lg;—l’ and hence define p&,_;. Set
Z=Y —p&_,, E,_ =& _1+ ¢Z near L1,

By (27.3), &,_; = &,_, and hence &, = &,_; near L™2% == L*-1. Also, using
(27.4), and the fact that ¢dZ = 0 near L* (by (27.3)),

dé, 1 =d& |+ ddZ=w near L.
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Also, by (27.5).
voa=v5k 1+ Z=1Y,

completing the requirements on £, ; = £&,. The lemma is now proved.

29. Isomorphism of cohomology rings. Given the (u +- 1)-smooth
manifold M, triangulated as in § 27, we have the complex L, and hence
“algebraic’”’ cohomology spaces H"(L), as in (App. II, 8); these form a
ring of operators on the homology spaces H,(L), as in (App. II, 9).

In a similar fashion, we define the u-regular differential cohomology
ring H% of M, as follows. For each r, the closed u-regular r-forms in M
form a linear space, and the derived u-regular forms form a subspace;
the quotient space (App. I, 5) is H; HJ, is the direct sum of these spaces.
Then each closed u-regular form w defines an element of H},, and w and
o’ define the same element if and only if ®" — w is y-derived.

Suppose h e H, and h' e Hj are defined by w and o’ respectively.
Then wve' is a closed y-regular (r 4 s)-form, defining an element h” of
H*%. Using (II, 8.6) shows that this element depends on h and h’ only;
we call it the product h—h’ of h and h’. With this product, H% becomes
a ring.

A O-form is closed if and only if it is constant (assuming M is connected);
no O-form = 0 is derived. Hence {pretending the 0-form identically zero
is derived ) Hﬁ is isomorphic to the reals %; the element corresponding to
the function 1 identically 1 in M is the unit in HY.

Because of (27.2), the linear transformation y defines a linear trans-
formation ¥ of H), into H" for each r; if h is defined by the closed y-regular
form w, then Wh is the cohomology class of yw.

The theorem of de Rhamt is

TaEOREM 29A. Let M be a (u -+ 1)-smooth manifold (u = 0), and
let L = 7w(K) be a triangulation of M as in Theorem 12A. Then the above
WV is a ring isomorphism of HY onto H*.

This proves, incidentally, that any two such triangulations give
isomorphic algebraic cohomology rings, and also that the H’, are inde-
pendent of u.

Proof that ¥ is onto: Given h € H’, defined by the cocycle X, set
o = ¢X. Then dw = ¢dX = 0, and w defines an element h’ of H’,. By
(27.5), yw = X; hence Yh' = h. '

Proof that ¥ is one-one: Suppose Yh = 0, he H],. Let w define h;
set X = ypw. Then X defines'V'h. First suppose r = 0. Then X = 0, and
hence, for each vertex ¢, of L, w(q,) = X'q,= 0. Since dw =0, o is
constant, hence w = 0, and h = 0. Now suppose r > 0. Then X = dY
for some (r — 1)-cochain ¥. By Lemma 28a, @ is u-derived, and h = 0.

t G. de Rham, Sur 'analysis situs des variétés a n dimensions, Journal de Math.
Pures et Appliqués (9) 10 (1931) 115-200. Compare Chapter IV of de Rham’s book.
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Note that the proof shows that ¢ defines an isomorphism @ of H*
onto HY, inverse to Y.
Proof that ¥ preserves products: Define a product operation in H*

by setting
(1) X_ Y = pl¢dXvdY).

By (27.3), ¢o"™v¢o® % 0 only in St (¢") St (¢°), and property (a) of
(App. 11, 9) holds. Property (b) follows from (II, 8.6), using (27.2) and
(27.4). Property (c) follows from (27.6) and (27.5). Hence this product
defines the product operation in H*. Now (1) (with the fact that ® and ¥
are inverses) shows that W' preserves this operation: W(h,_h,) =
Yh,-Yh,. This completes the proof.

Remark. If M is not compact, then L is infinite; the cochains may
have an infinite number of non-zero coefficients. We may, however,
restrict ourselves to finite cochains on the one hand, and compact forms
(forms vanishing outside of some compact set) on the other. The proof
shows that the theorem, with these restrictions, continues to hold.

30. Periods of forms. If w is a closed r-form, then the integrals |
for r-cycles 4 in M (for instance, cycles of L) are the “periods” of w. Itis
immediate that if A — B= 9C, then {, o = [z @, and if © — & = dp,
then {, w= [, & hence the periods depend only on the cohomology
class of » and the homology class of A. Since [, w = yw4, this
operation corresponds to that which shows H* to be isomorphic to the
conjugate space of the homology space H; see (App. 11, 8.3). Thus, the
various linear functions in H are given by the various cohomology classes
of the closed y-regular forms in M. This is the original formulation of the
theorem (without mentioning products).

31. The Hopf Invariant. As an example of the use of forms in smooth
manifolds, we shall find a number y, defined by a smooth mapping f of
an oriented (2n — 1)-sphere 8’ into an oriented n-sphere S (n = 2),
which is invariantt under homotopies of f; y, is an integer (see § 33).
We follow the procedure given by J. H. C. Whitehead.}

The theory is capable of great generalization;t1 also, we could clearly
use ‘“‘flat forms” and the technique of Chapter X.

ARl forms we use will be regular; see § 24 and (I1I, 17). For examples
of mappings f with. y, % 0, see Hopf and Whitehead, loc. cit.

t H. Hopf, Uber die Abbildungen der dreidimensionalen Sphire auf die Kugel-
flache, Math. Annalen, 1604 (1931) 639-665; Uber die Abbildungen von Sphéaren auf
Spharen niedriger Dimension, FPundamenta Math. 25 (1935) 427-440,

tJ. H. C. Whitehead, An expression of Hopf's invariant as an integral, Proc.
Nat. Ac. of Sci. 33 (1947) 117-123.

11 See N. Steenrod, Cohomology invariants of mappings, Annals of Math. 50
(1949) 954-988.
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Given f, we define y, as follows. Let @ be an n-form in S such that
s =1. Now f*o is an n-form in 8" (II1, 17), and df *w = f*dw = 0.
Since the cohomology groups of 8§’ vanish in dimensions between 0 and
2n — 1 (this is elementary in algebraic topology), de Rham’s Theorem
shows that there is an (n — 1)-form & in 8’ such that df = f*w. Set

(1) ye= [ Evf*o.

We show first that this is independent of the choice of & Suppose
d§’ = f*w also. Then d(& — £) = 0, and hence there is an (n — 2)-form
nin 8’ such that dy = & — &. Considering S’ as a chain, we have 88’ = 0;
since df*w = 0, using the formula for d(nv f*w) gives

f.s" Evf*w — [g Evf*w = [g dnv f*w

w

= fs [dnvf*o £ pvdf*w] = fas, nvf*w = 0.

Now suppose we had started with o’ instead of w. Then g (0" — w)
= (0. If X is an n-cochain corresponding to «’ — w, then X-§8 = 0;
hence X is cohomologous to 0, and ' — w = d{ for some (n — 1)-form {
in§. Saydé = f*o. Since {vw’ and wv{ are forms of degree 2n — 1 > n
in S, they vanish; hence also dévf*{ = f*(wvl) =0,

(£ + f*Ovf*e’ — &vf*o = Evf* (o — o) + f*(lva')
= {vf*dl = Ld(Evf*l) £ dévf*{ = Ld(Evf*l),
and
Jo €+ 10vrre’ = [ &vfro.
Also
d& + f*X)=dé + f*(o — w) = f*';

hence the two integrals above define y, with the help of o' and
respectively, and these definitions of y, are the same.

We must show still that
(2) ¥s,= 7s, if fy is homotopic to f,.
Let I be the unit interval (0, 1). There is a mapping F of the Cartesian
product IS’ (which is a manifold with boundary) into S such that
F(0, p) = fo(p) and F(1, p) = fi(p). We first suppose that F is smooth.

Choose w in 8 with [yw=1. Since dF*w = 0, we may find £ in
I'x 8" such that df = F*w. (We may define F in I' xS’, where I’ is an
open interval containing I; then I' X8’ is a smooth manifold, to which we
may apply de Rham’s Theorem to give £.) Since

oI x8) = 1x8 — 0xS, dF*w = 0, wvew = 0,

we have

fle’ EVF*w _.. .[0 x.8" EVF*w = fIxS’ d(EVF*w)

—= Lxs, div F*w — fIxS’ F*¥(avw) = 0.
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The part of F*w in 08" is the same as the form ffw in 8, and
the part of £ in 0 X8’ gives a form £;in 8" such that d&, = f¥w; similarly
we have df, = ffw. Hence

Vi, = _[S, vz = _[OXS, §vF*w = LxS' EvF*m =y, .

The case that F is merely continuous is taken care of by the following
lemma.

LemMa 3la. If the smooth mappings f,, f, of the smooth manifold M’
into the smooth manifold M are homotopic, then they are smoothly homotopic.

That is, there is a smooth mapping F of I XM’ into M such that

— Jip) i =0, 1).

We may suppose that M lies in a Euclidean space £ (Theorem 1A),
and that there is a smooth mapping = of a neighborhood U of M onto M
(Theorem 10A); similarly with M’ E', U’, #'. Let G be the given mapping
of IX M. We may clearly suppose G defined in I' x M’ (I Cint (I')), and
such that

t, )= folp) < 1/3),  G(t, p) = fi(p) (t = 2/3).
Set

i, 9 =0¢79@) (@el)

this is a mapping of an open subset I' X U’ of a Euclidean space U x £’
into M. By the Weierstrass Approximation Theorem (App. III, Lemma
4a), we may find a smooth mapping G* of I' XU’ into E approximating
arbitrarily closely to ' in Ix M'.

Let A(t) be a real smooth function which equals 0 if ¢ < 1/6 or ¢t = 5/6,
and equals 1 if 1/4 < ¢ < 3/4. Set

F'it, p) = G, p) + ADIG*(E, p) — G(¢, p)]

in I'’XM’. For t in a neighborhood of (1/3, 2/3), F’ = G* is smooth.
For ¢ << 1/3 or t > 2/3, G{t, p) = fo(p) or f(p), and hence ¢ and G* and
therefore F' are smooth. Thus F’ is smooth in I’ X M’. We may suppose
the approximation good enough so that F'(I x M’) lies in U. Then we may
set

Fit, p) = =(F'(t, p)),

which is the required mapping;

32. On smooth mappings of manifolds. This section will be used in
§ 33. Let f be a smooth mapping of the smooth manifold 3’ of dimension
m into the smooth manifold M of dimension »n, with m = n. For each
p €M, Vf(p) is a linear transformation of the tangent space V(M’, p)
into V(M, f(p)}); we say fis normal at p if this transformation is onto. For
any g € M, we say [ is normal above q if f is normal at each p € f-(g).
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Lemma 32a. Given f and q, as above, there is a smooth mapping g
homotopic to f, arbitrarily close to f, which is normal above g,.

Using coordinate systems about g, and about any point of M’, we
see from the considerations of § 5 that the deformation can be found if we
prove the following. Let £’ and E be Euclidean spaces of dimensions m
and % respectively, and let f be a smooth mapping of a neighborhood U’
of the m-cell ¢’ C E' into E. Take g, € E. Then we may find g arbitrarily
near f which is normal in ¢’ above g,

There are two ways in which this may be proved:

(a) Let S be the set of points of £ above which f is normal; then S is
open. As a consequence of f being m-smooth, § is dense; this follows at
once from a theorem of A. P. Morse and A. Sard.? Hence a small trans-
lation of f gives the required g.

(b) A small translation plus rotation will give the required g, provided
merely that f is smooth.}

LemMma 32b. Let f be a smooth mapping of M’ into M (m = n), and
suppose [ is normal above gy € M. Then

(8) M ,;o = f1(gy)
is a smooth manifold (not necessarily connected) tn M, of dimension m — n. -
Suppose f(py) = q,- Using coordinate systems about py in M’ and

q, in M, we may replace neighborhoods of these points by open sets R,
R in E', E respectively; let p,, ¢, be the corresponding points, and g, the

corresponding mapping of R’ into B. Choose a base e, -, e, in B’
such that
Vg(py, e;) =0 (t=mn-+1--,m).
With a base e, - -, e, in £, we may write g in terms of components:
yi = gial, - -, gL e g™ (=1, -+, n);
Since the Vg{p,, e;) are independent fori =1, - - - , n,

agllaxl co agl/ax”
e e e e =V, ey vel)
og™|dat - - - 9g"|dx"

Of al] Gl‘l‘l“ Fa% a2kl n“‘ Il! xy b 2l ]’\‘IT
5 N WUUILALID UL H\I}, — (11 LA ul 1}1 13 ELVULL UJ
xnz¢9(xn+l,...,xm) (J:L...,n)’

the ¢’ being smooth. Set also ¢i(x™+1, - - -, 2™) = 7 for x > n; the set
of all ¢’ gives a smooth mapping of U™ " onto a neighborhood of p, in

+ See R. Thom, Quelques propriétés globales des variétés différentiables. Com-
mentarii Math, Helvetici 28 (1954), 17-86, Théoreme 1. 3 (p. 20).

1 See H. Whitney, Differentiable manifolds, Annals of Math. 37 (1936), 645-680,
property (D) on p. 655. It is clearly not necessary that f be locally one-one for this.
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M, , whichis a coordinate system in M, about g,. Overlapping coordinate
systems are clearly smoothly related.

33. Other expressions for the Hopf Invariant. We give further formulas
for the y, of §31 (see Whitehead, loc. cit.), relating it to the original
definition of Hopf.

Take §’, S, f as in §31. Choose g €S, and suppose that f is normal
above g. By Lemma 32b, M = f-l{g) is a smooth manifold (not
necessarily connected) of dimension » — 1. We orient M, as follows.
Choose a base ef, * -, e, in V(S’, p), where f(p) = ¢, so as to determine
the positive orientation of §’, so that Vf(p, e.) =0 for i+ < n — 1, and
so that

€= Vf(p: e;a)’ L ey = Vf(p, eén 1)
determine the positive orientation of §; then e;, *++, e, , determine the
positive orientation of M,

We shall show that if w is an n-form in Ssuch that ¢ w = 1,d§ = f*e

in 8’, and f is normal above g, then

1y £ o rx f &
(1) ve= g S *e =], &

The definition of normality shows that there is a neighborhood U
of ¢ such that f is normal above each ¢" in U; then each M (¢" € U)is a
smooth manifold, and these manifolds form a ‘‘fibering” of f=1(U).
Take U to be connected. We suppose first that w = 0 outside U. Given
q' € U, let A be a smooth arc in U joining q to ¢’. The set f~1(A4) is clearly
a smooth bounded n-manifold M , C8’, with OM , = M, — M, Letting
f4 denote f, considered in M , alone, f, maps M , into A; since n > 1,

b

J, == 0 at all points of M 4, and hence fw = 0 in M ;. Therefore
A
—_ — e == * — U.
©) .Luqr § _[Mq §= .[BMA § .[MA dé .[MA Jao=0

Given p e M,, choose €, -, ¢, and e, -, e, as above. Since
vf(p, e)) =0 fori <mn,
fra(p)en,..on_1 = O(f(D))es.n
is the only non-zero component of f*w(p). Hence, by (I, 6.6),

r DY SR o 2N

[E(P)Vf*o(p)ley...on—1 = [§(D)er.. 1 Mo(f(D)) e

CE:

1
J.

Hence, using an expression of f §vf*w as an iterated integral and

4T
remembering (2),

[y tvfro= [ 800 = [ o@) [, s(p)dpdq'

=Lt loe= L5

proving (1).
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Now take any w and corresponding £. Choose o’ like the above w,
and choose { as in § 31. If f, is f, considered in M, alone, then fel=0;
hence

[ &= [ €+ 0=—[, rit=o.
Since d(& + f*{) = w’ (see § 31), we have

J 6= [ €+ 720 =1,

Finally, we interpret y, as the degree of a mapping, which shows that
v, is an integer. We suppose f is normal above ¢ (see Lemma 32a), and
suppose A is a smooth chain bounded by M . (That is, there is a simplicial
complex K, an algebraic n-chain 4, in K, and a simplexwise smooth
mapping ¢ of K into 8, such that 4 = ¢4, and M = ¢$04, This
exists, since S is a sphere.) Now

(3) yf:qu‘E:faA‘EzfAf*w:.LAw'

Since f maps the boundary d4 == M | into a point, fA is an n-cycle in 8.
and hence equals (algebraically) DS, D being the “degree” of the mapping
fin 4. By (3),

4) yy= [ o=D[ =D
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V. Abstract Integration Theory

We now introduce r-dimensional integration in n-space E™ from a
postulation point of view. As seen in the Introduction, §§1, 2, domains
of integration must include polyhedral r-chains, and a given integrand,
which we call a ““cochain’ X, must be alinear function of chains. According
to what further conditions are put on X, we obtain ‘“flat” or “sharp”
cochains. The basic facts, though derived with the help of the Euclidean
character of £™ (App. I, 13), clearly hold irrespective of a choice of metric,
and hold therefore in an affine space; compare (VII, 10). In this chapter,
we assume a knowledge of the major portion of Chapter I, part of Chapter
I, the beginning of Chapter III, and parts of the appendices.

There is a natural definition of the ‘“‘mass” lA| of the polyhedral
chain A. In terms of this, we give explicit definitions of the ““flat norm”’
| A |” and the “sharp norm” | 4 |¥ of 4. Completing the space of polyhe-
dral r-chains in these norms gives Banach spaces (App. I, 14) €’ and C*
respectively; the elements of these spaces are called “‘flat chains” and
“sharp chains” respectively. The requirement that the function X-4 of
polyhedral chains 4 be bounded in one of these norms is the condition
that X be an element of the conjugate space of one of these spaces; X isa
“flat” or ‘“‘sharp’ cochain correspondingly. The sharp norm has simple
analytical properties (see § 10), but is less important from the topological
point of view, since the houndary 94 of a sharp chain A is not defined in
general.

It is elementary that in the dimension 0, the notions of “flat” and
“sharp” coincide. A flat (or sharp) 0-cochain X corresponds to a real
function ¢(p) which is “‘sharp’ (we could call it “flat”), i.e. ¢ is bounded
and satisfies a Lipschitz condition. In the dimension », the flat norm and
mass of a chain are the same.

The definition of the ‘“‘comass” lX ] of X is dual to that of mass.
Formulas for the flat and sharp norms of a cochain X are found in terms of
| X |, |dX |, and the “Lipschitz constant” £ of X; see (4.8), (7.2) and
{7.8). A characterization of the norms by simple inequalities is given in § 8.

An algebraic fact is proved in § 9 which is basic in § 10. In the latter
section, we show that there is a one-one correspondence between sharp
cochains and differential forms which are bounded and satisfy a Lipschitz
condition. A similar theorem in the flat norm (Wolfe’s Theorem) requires
Lebesgue methods; it will be given in Chapter IX.

151
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A fundamental problem is to obtain results of this sort with weakened
conditions on the cochains. We give one example. Say the linear function
X of polyhedral r-chains A4 is semi-sharp if the following hold:

(@) | X | is locally finite; that is, for each bounded set R there is an
N p such that

| X-A | < Ny | 4| for any polyhedral chain 4 C R.

(b) For each point p and € > O there is a { > 0 such that for any
(r + 1)-simplex o,
|X-00| < eldo| if oCUp)

(c) We may choose { in (b) such that for any r-simplex ¢ and vector v,
| X(Tyo—o0)|Ze|a| if oCUlp), v/ < L

The proof in § 10 goes through with these assumptions, without any
essential modifications; we find that there is a one-one correspondence

between semi-sharp r-cochains and continuous r-forms.
The obhiect of S 12 is to show that anv flat cochain is the “weak limit”’

EaE L i 203 WAL RDaaSs VALIVY VAl ¥ LAWY WLSURAUEALL A VALV AAR Aiamas

of a sequence of sharp cochains. This has various important applications;
for example, any flat chain may be considered as a sharp chain.

The definitions of the norms treat | D | and | 9.D | as quantities of the
same sort (numbers), though D and 0D are of different dimensions. In
the “p-norms” of § 15, thinking of p as having the dimension of distance
brings back dimensional consistency.

The “mass” of a general (flat or sharp) chain may be defined in any of
three ways; we show in § 16 that all definitions agree. (In general, mass
will be infinite.) This gives a generalization of the notion of area of a
“rectifiable’’ surface; compare (X, 4).

We end the chapter by showing that the spaces of chains are separable,
while the spaces of cochains are not; hence these spaces are not reflexive.

1. Polyhedral chains. First we consider polyhedral r-chains in r-space
E'. Let oy,---, 6, be bounded non-overlapping oriented polyhedral
regions in £” (App. II, 2). To each o, we assign a coefficient a,; then we
call the expression a0, a polyhedral r-chain A in E7. We may determine
4 by orienting E”, and defining a function 4(p) in £, which equals a; or
-—a, in int (0;) according as o, is oriented like or opposite to A7, and
equals O elsewhere in £7. We let 4 = B if the corresponding functions are
equal except in a finite set of polyhedral cells of dimension <r. Note that
if > ;7;; 18 a subdivision of g,, then the polyhedral chains > ,a,0;, >, 4,7;:;
are the same.

Define a4 by the function ad(p), and A + B by the function A(p)
-+ B(p); the chains obviously form a linear space. Given two chains
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A = Sa,0,, B= b;,; we may find a common sub-division, with cells o;,
of the o, and 7, (App. II, Lemma 3b); then if 4 = Ja;o;, B= 2b;0;,
we have A + B == >(a; + b;)o;.

A polyhedral r-chain A in E™ consists of a finite set of distinct r-planes,
together with a polyhedral r-chain in each. We may drop out an r-plane
if the part of 4 in it is 0. We may define 4 by orienting each r-plane,
and defining A(p) in each.

The definition of a4 is obvious., To define A 4 B, take all r-planes
occurring in 4 and B, and add A(p) and B(p) in each. Again the chains
form a linear space, which we call CP°'(E™).

As before, any expression >a.0f determines a polyhedral r-chain;
subdividing the o] does not alter the chain, and we may drop out or add
the term a,0] if ¢, = 0. The ¢} may overlap; of course an expression may
be chosen with the ¢} non-overlapping. We could allow “degenerate” o}
(App. 1I, 1), this representing a set with no interior points in the corre-
sponding E”; we count a,0] as 0 in this case. (This arises for instance in
the proof of Theorem 3A below.)

For r = 0, we have 0-chains >a,0); the ¢ are points, which need not
be “‘oriented”. For r = n, the definition reduces to that given above.

For any representation > a,0] of 4 such that the o] are non-overlapping
cells and the a, are 70, the set of points on the (closed) cells o] is the same.
This set of points is the support spt (4) of A. We say 4 lies wn R, and
write 4 C R, if spt (4) C R.

The boundary 04 of A = Ja,0} is defined as >a,00]. That this is
independent of the expression of A is easily seen by computing (04)(p)
from A(p). For instance, if 4 = ac -+ br, 0 and 7 in £" and oriented like
E,and 0o =01+ -++-, 0r= —o™! + -, then in the oriented plane
E1 of o1 (04)p)=a—b in o1 Of course 0(ad)= add,
o4 + B)= 04 + 0B, 004 = 0.

2. Mass of polyhedral chains. Recall that for an r-cell o, o‘| = l o |,,
denotes the r-dimensional volume of o. For r = 0, 0'| = 1. The mass
of a polyhedral chain >a o] is defined by

| Dag

If 4 is defined by the functions 4,(p), * - - on the distinct r-planes P,, - - -,
an obviously equivalent expression is

(@) 4| = Z IP’_ | 4,(p) | dp.

For r =0, | Ya,0] | = 3 | a,| if the ¢} are distinct. Clearly
3) jad|=lal[4], |4+ B|<|4]|+]B]
and | A4 | £ 0if 4 7 0; hence the mass is a norm (App. I, 8).

— Z |a;||o}| if the ¢} are non-overlapping.
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LemMA 2a. Let m be the orthogonal projection of E™ onto an s-plane P°.
Then
@ nd|<]4].

By definition, 7> @,0, = > a0, Either 7o, is degenerate (App. II, 1),
in which case it drops out of 74 (§1), or | mo | < ’ o‘} ; thus (4) holds.

LemMa 2b. Let Q be a convex polyhedral cell in E", and let = be the
projection of E™ onto Q defined by

(5) (p) = point of ¢ nearest to p.

Then (4) holds.
Tt is not hard to see that E* breaks up into polyhedral regions, in each

of which = is affine; write 4 = >a,0,, each o, lying in one of these regions.
Consider any o,, We see easily that = increases no distances; using
coordinates in o, as in the end of (I, 12), we see that | 7o, | < |0, ].
Thus (4) holds. (Compare the proof of (VIII, 1.29).)

3. The flat norm. The flat norm | A " of the polyhedral r-chain 4 in

E™ ig defined by
1) |AlP=inf{|4 —3D|+|D|},

using all polyhedral (r 4- 1)-chains D. See also § 8. Clearly
@ ladp—|a||dp, |4+BP|AP+|B
we prove later (§ 12) that

(3) | AP =0 ifandonlyif 4 =0.

—

b

’

It follows that | |’is a norm. With this norm, the space €I (E™),
when completed, becomes a Banach space C2(E") (App. I, 14). We call
elements of this space flat chains. We define mass in this space in § 16.

From Lemma 2b it follows that in (1), we may require D to lie in the
smallest convex set containing spt (4). See also (VII, Lemma 5b) and
(VIII, 1.1).

The logical structure of the next sections is as follows. Read through
Section 12, using polyhedral chains only, with the semi-norm ]A ]b; this
being proved a norm, all facts in these sections now follow. Similarly for | 4 |*.

We prove two elementary inequalities, at first for polyhedral chains:
(4) AP <4< ]4].

The second follows at once on taking D = 0 in (1). To prove the first,

given € > 0, choose D so that |4 — dD|+|D|<|A4[' +e Now
setting D' = 4 — 0D, we have

104 — D' | +|D'|=|d—3D|<|A] +&
hence | 04 [P << | 4 | + ¢, and (4) follows.
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We now define 04 for any flat chain A4, and prove the first, part of (4).
Say 4 = lim® 4,, the 4, polyhedral. Then | 4, — 4,|” — 0, and hence
| 04, — 04,|"— 0, by (4). Therefore 04,, 04,, - - - is a Cauchy sequence,
and defines an element of C!_,;, which we call 04; the element is inde-
pendent of the sequence chosen. Since | 04,!" < |4, letting ¢ — o
proves the first part of (4) for 4. Clearly ¢04 = 0. Because of (4), 0 is a
continuous operation.

Given an oriented r-cell ¢ in E*, and a vector v, let T, denote the
similarly oriented cell containing all points p 4+ v, p € 0. Set

T, Z a,0" = Z aT,0, T,him’A4,=1m’7T.4,.

Let 9,0 (called Z,(IX0) in (App. 11, 13)) be the oriented (r + 1)-cell
containing all points p + tv, pe o, 0 < ¢ < 1; define &, 4 for polyhedral
A by linearity. By (App. 11, 13.5) (for polyhedral 4),

0D, A = TA— A — B0oA.
Clearly
®) 9,4]<|v]]4].
These relations give, using (4),
(6) | 7,4 — AP < |ol(|4]+]|24]).
(This holds for any flat 4; see (VIII, 3.7).)

TuroreM 3A. If oy, * - -, o, are parallel and similarly oriented, and the
a; are = 0, then

| Senl =[S |- 3

in particular,
(8) o’ =]0].

Set @ = | 3 a0, | ; this equals Fa, | o,
that for some D,

AE

, even if the o, overlap. Suppose
lZaiaiﬂ aD} —t—lD‘ < a.

Choose an r-plane P parallel to the o, and let 7 be the projection into P.
~ Then, by Lemma 2a,

*Zaiwai—— 8111)‘ +«1r1)|l < a.

Since D is (r 4 1)-dimensional, 7D = 0; hence also o7D = 0. Also
| 3 a;mo; | = 3 a,|0,| = a, & contradiction. Therefore (7) holds. For

another method of proof, see Theorem 6B below.
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For small simplexes o, | 90 |” = | o
Note that, for 1-simplexes o1,

(9) |00t P =i

; we shall not need this property.

ot|}=inf {2, o' }.
THEOREM 3B. If 7 is as in either Lemma 2a or Lemma 2h, then
(10) md <A,
For, for any D, the lemmas quoted give
’wA—BwD]+|1TDI§IA-—8D|+,D}.

See, in this connection, Theoram 16C.
We give one more property of the norm:

(11) A =inf{|4—08D) +|D}}
Setting D = 0 proves =>. The reverse inequality follows from (2) and (4):
For any D,
4P <|A—0oDP +[0DP<[A—3D] +|D].
4. Flat cochains. A flat r-cochain X in E™ is a linear function, which
we write as X-4, of the flat r-chains 4 in Z7, such that for some N,
' X-A| < N| 4. Thusitisanelement of the conjugate space (App. 1, 8)

(1) € = 0" = C"(E™)

of the Banach space of flat r-chains in E". (Until we have read § 12, we
must consider C"" as the semi-conjugate space of C?; see (App. I, 15).)
For chains in open sets B C E", see (VIII, 1). The ﬂat norm | X ]b 18,
by definition (App. I, 8),

(2) | X"= sup |[X-Alf|A|P= sup |X-4].
|4 (b0 [d1P=1

We may require 4 in (2) to be polyhedral; see (App. I, Lemma 14a).
From general theory (App. I, Lemma 8¢), for any flat r-chain 4,

(3) IAlbw— sup [XA]/'XP— sup [XA[
| X |7 | Xh=1
in fact (App. I, Lemma 8b) there is a flat 7-cochain X such that II X |”’ =1

and X-4d=|4.
We define the comass | X | of X by

@ x| =

with A polyhedral; because of (3.4), this is always finite, and | X | < | X |".
and ! X ‘ are the smallest numbers such that

(5) X4 |XP|al,  |X4]<|X|[4],
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for all polyhedral 4, respectively. The first of course holds for all 4; the
second will be proved for all 4 in § 16.
The coboundary dX of X is the linear function of (» -+ 1)-chains defined

by
(6) dX-4 — X-24.
As in (App. II, 7), ddX = 0. By (5) and (3.4),
XA | = | X204 | X Pl oA P < | X AP
for all (r 4 1)-chains 4; hence dX is a flat cochain, and |dX |" < | X |?

Now
4 X|<|XP lax|<|axp<|Xp

We now prove a converse of these inequalities; in fact,

(8) }-

We must prove <. Take any polyhedral 4, and any € > 0. Choose D so
that |4 — 0D |+ | D|<|A|" 4 e. Now if M is the right hand side
of (8),

X || X4 — 2D)| +| XD | < | X||4 — 2D + |aX || D|
< M(4—2D|+| D)< M{4P + o,

hence | X-4 | < M | A |, and the inequality follows.

THEOREM 4A. If X is any linear function of polyhedral r-chains such
that | X | and | dX | are finite, it defines a unique flat r-cochain, and (8) holds.

For the proof above shows that considering X over polyhedral chains
only, | X |* is finite and satisfies (8); therefore X is uniquely extendable
over €2 (App. I, Lemma 14a), and (8) holds.

We show that | X | is determined by using simplexes in (4):

(9) | X | =sup {{ X-oif|o|: simplexes o}.

Since > holds, it is sufficient to show that for each € > 0 there is a simplex
o such that | X0 |/ | ol > ( X [ — €. We may choose a polyhedral chain
A, expressed as 4 = Ja,0,, with non-overlapping simplexes g,, such that

A= lafla|=1 |X4|>|X|-c
Then the required property holds for some o,; for otherwise,
XA|< S Vo[ X < S (X]— a0 = | X|—e

a contradiction.
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Using dX in place of X above shows that
(10) |dX | =sup {{ X-20 [l o|: simplexes o).

Consider the case » = (. Since each point p of E" is a 0-cell, each flat
0-cochain X determines a real valued function Dy: Dy (p) = X-p.

We say a function ¢ with values in a Banach space is sharp if 24 (I, 4)
and | ¢ | are both finite; compare (7.9) and § 10.

TuroreM 4B. The flat 0-cochains X correspond to the real valued sharp
functions Dy; n fact,

(11) | X | =] Dyl, | dX | = &(Dy).

The first relation follows at once from (9), since l o0 f = 1. For any

l.simplex o! = pgq,

X-00' = X-q — X-p = Dzlqg) — Dy(p);
since | ol| = | ¢ — p | (length of the vector ¢ — p), (10) gives the second
part of (11).

For r = n, each bounded continuous function ¢ determines an
n-cochain X, with the definition X:o0 = |, ¢. More generally, the =-
cochains correspond to the bounded measurable functions; see (IX, 1).
Since every polyhedral (n 4 1)-chain in £* is 0, dX = 0 for n-cochains X,
and [ dX} = (0. Hence, by (3.1) and (8),

(12) l4Pp=]4]|, |X|P=|X]|, forr=n.

5. Examples. (¢) Let 4 be a l-chain, formed of the two oriented
segments P P,, P,P;, with an angle at p,. Insert a small triangle
D = pipapy, i in p;py, so that 4 — 0D = p, p, + p1p; + pypy; if D is
small enough, then |4 — 2D | +[D|< | 4|, showing that |4
<] A4|. We may now insert smaller triangles in the corners at p] and pj,
etc. We know no formula for ] A 'b. —

(b) Let o be a l-simplex, | 0| =a < 2, let | v|=b < af2, and let
A=T,0— 0. Now D =9, is a parallelogram, and (3.6) gives

| 4P <bla+2)<2a=]4].

We may replace two sides by polygonal lines which cut somewhat into the
above D, showing that | 4 > < b(a + 2).

(¢) In E1, let o, and 7; be the points —1/2¢ and 1/2¢ respectively. With
these points as 0-cells, define the 0-chains

A =1,~0, A, =A)+ A, +- -+ 4

Let B, be the segment from o, to 7, Then |4 (> =8B, ' =] B,|
= 2/2¢ and hence 4 = lim"4, exists (limit in the flat norm). Clearly
we cannot assign 4 a finite mass.
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(d) In Example (c), let A,,, contain the points gy, - - -, 0; with the
coefficient —1, and the points 7, * - *, 7,,,; With the coefficient 1. Then
A* =1lim}  _ A, exists and “contains” the same points as 4. (The
supports are the same; see (VII, 3).) However, 4% ¢ 4 for m # 0.
For instance, if X is the 0-cochain defined by Dx(p) =1 (all p}, then
X-4A=0, X-A* = m. See in this connection (VI, 1).

{(¢) We can construct similar 1-chains in E* with pairs of segments.

(f) One can easily take a sequence 4,, A,, - * - of oriented broken lines
in the plane so that the limit lim” 4. exists, and is represented by an arc
which is non-rectifiable between any two of its points. We may use the
graph of a non-differentiable function.

(g) In B, let the l-cochain X be defined by

Dy(t) = 1/(1 +¢?), X.0= L Dy

Then | X I_:-— 1, 4dX =0, and hence | X }t’ = 1. For any l.simplex o,
X-6 <|o|. Infact, X-4 <<| 4| =| 4| forall 4. For clearly 4 would
have to be “concentrated” at ¢ = 0, which is impossible (see (VII, 9)).

6. The sharp norm. In example (b) above, if we push one segment ¢
(of length @) into the other, 7' 0, (through the distance b), the chain 4 is
reduced to zero. This suggests defining a new norm for A, in amount
L ab<|A!". We carry out this idea as follows.

Given the polyhedral r-chain A4, consider all expressions >a,0, of 4;
we translate each o, as we like, replacing 4 by >a,T, 5;, and find the flat
norm of the result; adding the “amount of push,” > |a;|o,|{v;],
except for a factor, gives a quantity we reduce to the minimum. Thus the
definition of the sharp norm of A is (see also § 8)

) a,llo;||v; b
(1) ;A]#sz{z' NAH l—f—\ZaiTwo‘i
The reason for the factor r -+ 1 is so that we may prove (7.8); see Example
(e) of § 11. Note that cells ¢, may be used which are not in spt (4); see
for instance the proof of (7.7). Because of (VIII, 1.29), we may require all
the o, and T, 0, to lie in any given convex open set containing 4.
Taking the v; = 0 shows that

@ aF<|ap,

Clearly ad F=la||4A|} |4+ BFL|AF 4| BJf; we prove
A ¥ £0if A % 0in §12. Complete the space of polyhedral chains with
this norm to obtain C¥(Z"), the space of sharp r-chains in E™.

We do not define 04 for sharp chains 4; see § 11, Examples (c) and (d).

THEOREM 6A. For any polyhedral r-chain A and any vector v,

(3) | T, A —AFZ A |ftr + D).

A= aio;.}.
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First suppose 4 = ¢. Set
o,b=0, 06g=Ty, vy=29 v,=0, g;=—1, a,=1L

Thena, T, 0y + a3T', 05 =0, and (1) gives | Tyo —o|*< | o ’ | vlj(r +1),
asrequired. The relation now followsfor any polyhedral chain 4, expressed
as >a,0;, the o, non-overlapping.

THEOREM 6B. With the conditions of Theorem 3A,

(4) J Zaiai = 2,0, [ = zai l 0 , .

We prove this with the help of later theorems. Define P {oriented

like the o,) and 7 as in the proof of Theorem 3A. Define X, in P by~

Xy0=|0| (o oriented like P). Define X in E" by X-4 = X, nA.
Then dX = 0, £(X) = 0, and hence, by (7.8), | X [F = | X | = 1. Clearly
X-Ja,0,= Ja,|0;|. Hence > holds in (4); the opposite inequality is
known.

Consider the case r = 0. We show that

(5) |Af=|4) if r=0.

Because of (2), we need merely prove 2>. Take any expression >a o} for 4,
and any vectors v;. Let o; be the 1-simplex from ¢? to Tv'_cr‘z?; then

do; = T,00 — o}, |of|=|v!.

Now setting D = — >a,0; and using (3.11) gives

Dladl o] o] +| Dal,gb = |allof| +| Dol + Dadoi|
2|D|+[4-aDPz|AP,
as required. For another proof, we may use (7.9) below.
For = n, we note merely that we may have | 4 |¥ < | 4 P =]4].
For instance, if 0 and T, o are disjoint and I v } < 2, then
|Tyo~oP=|Tyo—0c|=2]c|, |To—cff<]|v||o]|<2]|0].
WARNING. Theorem 3B is not true in the sharp norm. For take

r=mn=1. Let @ be the interval (0, 1). Let ¢ and ¢’ be the oriented
mteA rvals (1 — ¢, 1} and {1, 1 4 €) respectively. Set 4 = ¢’ — ¢. Then,
y(3),|AF< €22, But |[mdf=|—c|f=e>|4|Ffore<]l.

7. Sharp cochains. A sharp r-cochain is an element of the conjugate
space C¥(E") of CHE"). Define | X | as in §4. Relations (4.2), (4.3) and
(4.5) hold with ¥ in place of ». Because of (6.2),

@) X[ XP=] X[
Hence every sharp cochain is a flat cochain.
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Define the Lipschitz constant of a cochain by
| X«(T,4—4)|
[4]]2]

By (6.3), this is finite for sharp cochains, and

2) LX)=ZLyx=sup { v#0,47#0 polyhedral}.

(3) r + LX) | X
We show that
(4) X)) = sup {’ X.(livﬁ ;_l 9 . simplexes cr} .

Given € > 0, choose A -~ 0 and v 74 0 so that
| X(T, 4 — A) | Z[8X)— €] | 4]|v].

Write 4 = Da,0;, the o, non-overlapping and the a, = 0. Tt is sufficient
to show that for some 1,

| X{(Tyo, — 0,) | Z [X) — €] | o, || v].
If this were false for all 7, we would find

b |

l X(T,A — 4) [ = ‘ Zaix'(Tvo}‘ — 0}

<> a|[8X) — el o, ||v] = [8X) — €] [ 4] v],

" a contradiction.
The coboundary dX of a sharp cochain need not be sharp; see § 11,
Example (a). We have

® jax| < | Xp<|XP
Corresponding to (4.8), we now prove
(6) | X | =sup{ X}’ (r + 1)2(X)};

see also (8) below. Because of (1) and (3), we need merely prove <.
Take any € > 0, and any polyhedral chain 4. Write 4 = Ja,0,, and
choose vectors v,, so that

Dlal|o|v]

r +1 + ‘ ZG‘TWU"
Now

) | XA | =| X[~ Dall,0,— o) + Do,
< Z| a; 1 l X'(T-v,.o'z' — 0;) I + i X.ZaiTviai
<X Do |[v ]+ X | Dal,o]
< sup {(r 4+ 1)(X), ! X Jb}(| A |# + €),

which gives the required inequality.

b§|Al#+e.
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THEOREM TA. Any flat cochain with finite (X) vs sharp.

This follows at once from the inequalities above.

REMARK. A linear function of polyhedral chains with | X ] and £(X)
finite defines a sharp cochain, provided some local finiteness of | dX | is
assumed; compare Theorem 8B below. We cannot omit such a condition;
see § 11, Example (g).

We now prove that

(7) | dX | < (r + 1)Q(X) if X is sharp.
Because of (4.10), we need merely show that for any (r + 1)-simplex o,
| X-00 | < (r + 1)Q(X)| o |.

Given € > 0, we may cut the plane P of ¢ into equal cubes, so that if
oy, ***, 0,, are the cubes lying in ¢, and ¢,,,4, - * *, 0, are the parts of
cubes filling up the rest of o, then 3!_, ../ 0,| < ¢/|dX|. Each cube
0; (1 < m) has 2(r + 1) faces, which can be expressed as g, and T, 0
(k=1,-+-,r41). Also, with suitable orientations, 0o, = 2 ,(T, o
— ;). as in (IT1, 11.2), Now for ¢ < m,

X-da; | < XATy, 00— 0
| X-0a | zk;l |

< ZB(X)! G| [0 = (r + 1)R(X) | 0, .

Consequently

| X-00 | = , iX-aoi

m !
g;(r—u)ﬂ(xnaiifz X || o]

i=m+1
S+ DRAX) | o] +¢
giving the required inequality.
Relations (6), (4.8) and (7) give

(8) | X |*=sup {| X|, (r + 1)Q(X)}  if X is sharp,
Because of (6.5), we have
(9) | XF=]XP if r=0.

A direct proof may be given as follows. If the 0-cochain X corresponds
to the real function Dy: X-p = Dy(p), (4) shows that @(X) = &(Dy).
Now (8), (4.11) and (4.8) give the result.

For r = n, we show near the end of § 10 below that X corresponds to a
real sharp function Dy ; hence:

TrEOREM 7B. In Euclidean E™, both sharp O-cochains and sharp
n-cochains correspond exactly to real sharp functions.

For n-cochains, the correspondence between X and Dy depends on
the metric.
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8. Characterization of the norms. In the linear space of polyhedral
r-chains in £7, there are various norms; we shall consider semi-norms | i'
satisfying one or more of the following properties (¢° denoting an
s-simplex):

@ jom| < o7,
(2) ’ oot | < | o™ |
(3) | Tyo" — o™ || < | om||v]|/r + 1).

Recall that the supremum of a set of semi-norms, if finite, is a semi-norm
(App. I, Lemma 15b).

THEOREM 8A. For each dimension r, the mass, the flat norm, and the
sharp norm are the largest semi-norms in the space of polyhedral chains
satesfying (1), (1) and (2), and (1) and (2) and (3) respectively.

Since the norms satisfy the stated conditions, we need merely show that
any semi-norm satisfying the stated conditions is less than or equal to
the stated norm.

For the mass, the proof is immediate: Given any polyhedral r-chain 4,
write 4 = Da,0,, the o, being non-overlapping simplexes. Then since
| {’ is a semi-norm,

IA|'§Z|“z‘|’“ii'-<_—2|“i“‘7i|=|*4|-

For the flat norm, we note first that if -| |’ satisfies (1) and (2),
then for r-chains €' and (r + 1)-chains D,

orsiel, |apf<|D|.

The first relation was proved above. For the second, write D = >d,0,,
the ¢; being non-overlapping; then

(oD < 3 ]| 2o < D> ||| 0| =| D|.

Now take any polyhedral 4. Given € > 0, choose D so that | 4 —¢D |
+1D|<|AP + e Then

4V<|4— oD +]eDP<|4—~2D|+]D|<|A] +e
proving | 4 "< | 4

For the sharp norm, take any 4, and € > 0. Write 4 = >a,0,, and
choose vectors v,, so that

z*aiHGiH”il/(?"Fl) +1Z“"'T”igi I7<]A|# + e
Assuming (1), (2) and (3) hold, and hence |C'|' < | €', we have

} A4S Z ‘ a; ‘ l Tv‘-‘fi — 0y i’ + lzaiTﬂiUi |"
which is bounded by the quantity above; hence | 4| < | 4 ¥,

b, as required.
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Levma 8a. For each s-simplex o there is a number N with the following
property. Let K be any cubical subdivision of the plane P of o, the cubes

being of diameter 6 < diam (o). Let 7y, - - -, 7, be the parts contained in ¢
of those cubes which touch 0a. Let 7y, -, 7, be the s-simplexes of the
reqular subdivision (App. 11, 3) of the ;. Then

(4) 01 < N.

Note that each (s — 1)-face of each 7] is of diameter < 6 and hence of
mass < 6*1; hence | 07, | < (s +1)6*, and setting N’ = (s + 1)¥/ | 9|,
we have (N’ depending on o)

(5) ZlaflfJgN'jaaj.

Set r = 8 — 1. Any r-face of any =, is either part of a face of a cube
of K or part of a face of 0o; hence 7, has at most M; = 3s 4 1 r-faces.
Each face of r; of lower dimension is an intersection of r-faces; hence
there are at most M, faces of all dimensions, for some fixed M, Each
simplex 7, in 7, is defined by a sequence of incident faces of 7,;; hence there
are at most M, simplexes 7; in any 7,, for some fixed M.

BEL 0 o == Qlalll \Jj. D&Yy 00 = 2 Gp. LEU £ OC UG pPrail L T, SCU

R,=P,NU,(o}), N= 233/2M3Z R, |.

Now take the =, and +; as above. Let R, be the set of those points of the
plane P of ¢ which are distant at most é from P,, and whose orthogonal
projections into P, lie in RB,; then i R, =26| R, 1 Let 7} be the cube
containing 7,, Each 7} lies in some R;. Since ! i ] = (d/s'/2)*, the
number ¥, of 7¥ in R, is at most s°/2 ' R,':‘ /6°. Hence

vé M, zvk g M3 Zzsslzé ' ch , /as — N/(Ss—l_

LrMma 8b. For any s-simplex o, if § = diam (o),

(6) la}éé’@al/s(s—l—l)g 6%/sl.
Write ¢ = pyo,, o, being the smallest r-face of o (r =5 — 1). Let
vy, * * *, ¥, be vectors along the sides of ¢, and v, a vector from a vertex

of g4 to ps. Then by (IIT, 1.3) and (I, 12.14),
|00 | = (s +1)| oy | = (s + 1) | wgve - *vm, | [,
|0 =y v, | sl K 8| wgve e v, | sl
and (6) follows,

LeEmmaA 8c. Let| |'be a semi-norm in the space of polyhedral r-chains
which satisfies (1) and (3), and also the following:
(H) For each point p and ¢ > 0 there is a { > 0 such that

(7) [ oo l' < e[diam (g)]" for (r + 1)-simplexes o C U(p).
then the semi-norm satisfies (2) also: | 0o ' < |0 |-
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REMARK. Since I oo | < (r 4 2)[diam (6)]", we could replace (7) by
(8) iao”geiaa] if o C Upgp).

Given the s-simplex o, (s =r -+ 1), define N by Lemma 8a. Given
e > 0, set ¢, = ¢/N. Using ¢, in place of ¢, let {(p) satisfy (7), for each p.
Choose a cubical subdivision K of the plane P of g, so that each cube
(of diameter §) which touches 0o, lies in some U,,(p). With the notations

in the proof of (7.7), we have
r+4+1

r+1
| ao‘il'éZ‘Tﬂkaik—aik < Zlgik l”k|/3= ’ 0; E:
£=1 k=1
fori=1,+++, m. Let 7}, -+, 7, be the simplexes of the regular sub-

division of the g, for j > m (the 7, of Lemma 8a); then 6" < N. Also,

by the choice of K, | 07; |' < €,0". Hence
m v
| 0oy || < ]80’1’—}—2!8;’
i=1 i=1
m
ngGz! ‘!"'-”fiérg!‘-’ﬁ[ + €
i=1
giving | 80 |' < | o |, as required.

TarorREM 8B. The sharp norm in the space of polyhedral r-chains s
the largest semi-norm satisfying (1), (3) and (H).

First, the sharp norm satisfies (H), because of (6). The theorem now
follows from the last lemma and Theorem 8A.

REMARKS. We cannot omit the condition (H); see Example (f) in
§11. 1In place of (7), we could use (8); or (see (6)) we could assume that
for each p there are numbers N and { > 0 such that

(9) |00 " < N|o| if oCUp)

9. An algebraic criterion for a multi-covector. In the next section we
shall find, at each point p, a function Dx(p, «) of simple r-vectors a,
with certain properties. We wish to show that this defines an r-covector.
Recall (ITI, 2), in particular, (II1, Theorem 2B).

TuEOREM 9A. Let H(a) be a real function of simple r-vectors such that

w Hlax) = ag(),
@D (—Ud({pe B P =0 for any simplex Py + < By
i=0

Then there s a unigque r-covector & such that &o = ¢(a) if a 18 simple.
The uniqueness is clear; we prove existence. First note that

(3) $lo}= D #lo}  if D o, is a subdivision of 0.
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For {0,} = a,{o} for some a,, and since {o} = >{o,} = Sa,{o}, Ja,=1.

Therefore
D dlo} = D dafoh) = Daglo} = ${o}.

We now define a function of polyhedral r-chains 4 in V by setting

(4) (D( Z“io'i) = Zai‘ib{"i}-

This is independent of the representation of 4. For if 4 = Ya,o; also,
then, using (App. II, Lemma 3b), we may write 4 = >b,7,, where each
o, and o] has a simplicial subdivision with simplexes 7,. The statement
is now an easy consequence of (3) and (1). Now @ is a linear function of
polyhedral r-chains.

We now prove

(5) d(0B) =0 for polyhedral (r -+ 1)-chains B.

For if B is an (r 4 1)-simplex o = p; -+ p,.;, this is an immediate
consequence of (2) and the linearity of ®. Hence it holds for all B.
Define a function F of ordered sets of r vectors by

(6) Flog, -, 0,) = glogy - vo,);

because of (1) and (I, 1.13), F is alternating. We shall show that it is
linear in »y; it will follow that it is linear in each v,.
Consider the following points and simplex in V:

Po— 0’ pl - v]_: p2 =v 1+ ‘Ui, 0.2 = p0p1p2'
If r =1, then
F(v)) = O(popy),  F(v)) = O(pyp,),  Flog + v1) = O(pepy),

and (5) gives F(v)) + F(v;) — F(v; 4 v;) = 0. Supposing r > 1, let
7771 be the oriented parallelopiped formed by the vectors v,, - - -, »,, and
let ¢™1 be the Cartesian product

o™l = g2 X ™1

Now o™ consists of all vectors u; + u, u, €0% u,ec7™1; thus

Uy = a0y + a0y, Uy = @yw, - ¢ -+ 4 a,v,, the coefficients ranging between
0 and 1, with a; < a;. The cells may be degenerate (App. II, 1). Now
T =7"1has2(r — 1)-faces 7, and 7;" (¢ = 2, - - -, r), and as in (IIT, 11.2),

071 = > (—)i(r — 7).
Hence (App. I, 12.1)

00™! = pop; X 7 + P1Py X 7 — PP X 7 + z (—1)i(o® X =

— % X 77)-



§ 10] SHARP r-FORMS 167

Since 7t and 77 are parallel, {+1}= {77}, and hence {0? X +;}
= {02 X 7; }. Therefore ®(do"+!) = 0 gives

D(pepy X 7) + P(PyPs X 7) = D(pyps X 7).
This is equivalent to

F(@Jl,’vz,"')+F(”1,1)2,"')ZF(’U]_—}'—'U;,’UZ,"'),

which is the required linearity.
By (I, Theorem 4A), there is an r-covector & such that

E(vyve - vo,) = F(vy, <, v,) = d(ovyve - -ve,);
this completes the proof.
ExampLE. Taking r = 1, let ¢(ae,) = a, and ¢(v) = 0 for all other ».
Then (1) holds, but ¢ corresponds to no covector. Compare § 11, Example
(g) below.

10. Sharp r-forms. We shall show how sharp r-cochains in E* corre-
spond exactly to certain differential forms. For a corresponding theorem
in open subsets of " see (VIII, 1). For the case of flat cochains, see
Chapter IX. Recall the definition of the comass | @ |, of an r-form in
(II, 3.2). The Lipschitz comass constant Ly(w) we define by

1 Q () — su | o(g) — o(p) | .
We say w is sharp if both \ W ]0 and g,(w) are finite; the sharp norm of w is
(2) I w l# = sup {I w lﬂ’ (r 4+ 1)Lo{w)}.

For the existence of dw, see (IX, Theorem 12B).

The normed linear space of sharp r-forms is easily seen to be complete
(this follows also from Theorem 10A).

THEOREM 10A. To each sharp r-cochain in X in E™ there corresponds a
unigque sharp r-form D x such that

(3) X-0o—= f Dy for all oriented r-simplexes o.
This correspondence 1s one-one onto, and '
4 Dxl=|X| L@x)=2X), |Dxff=[X.

Uniqueness follows from (III, Lemma 16a). Given X, we find a
“corresponding form w = Dy as follows. First, take any p and any
r-direction « (I, 12); let gy, 05, - - - be a sequence of r-simplexes containing
p whose r-directions are « = {0,}/| ¢, | (ILI, 1), and whose diameters — 0,
and set

(5) Dx(p, o) =1lim X-0,/| 0, | .

T—>w
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The existence and uniqueness of the limit follow at once from the following
relation:

Xo X0
(6) — —

o] "iv ]

< 49X)L if o, o' CUp),

¢ and ¢’ having the r-direction o.
To prove (6}, set

e =48(X)l, ¢ = inf {f%{l’e [: ‘},52—_-

€1
x|
and choose an r-cube 7 through p with r-direction « so that the following

holds. There are vectors »,, -+, v, such that TvlT’ SN T,,Ifr are in ¢
and are non-overlapping, and

o —T,70 - UT, 7| < e;

also a similar inequality holds for ¢’. Now

' X0 — ZX'T%T <

| v,
,A.'.lvT-—A"T
k

and since | v, | < {,
| Xoo—sX7|< g +38X) |7 LL 6 + X)) |0 L
Therefore '
| (Xa) || — (X0 o]
<X o) ] | X3~ o]
Sta a0 lofal i +1x1l-]
Xo X7

[o] I7]

€1

£]|+MXC+

A similar inequality holds for ¢’; these give (6).
Using the definition of Dy (p, «) for r-directions « alone, we can define

Lo(Dx); see (I, 13.2). Since
| X-T

. i e )
‘ (7

| To | -_"cr

< £

L¥'s 1
& S

we find
(7) L4(Dx) < L(X),

incidentally proving that D(p, «) is continuous in p.
We shall show below that if ¢ has the r-direction «, and ¢ = diam (o),

(8) | Dx(p, «) — X-0lf| 0| £ 8(X)0 if peo.
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For the moment, it follows at once from (6) if we put in a factor 4.
We now show that for any ¢, with r-direction «,

) X0 = [ Dy(p,a)dp,
using the Riemann integral (III, 5). Given € > 0, cut ¢ into simplexes
oy, "+, 0, of diameter < { = e/5E(X)] o|. For each o, choosing

P; € 0; and using (8) (with the factor 4) and (7) gives
X0, — [, Dotp. o) o |

<[ X0, — Dx(p )| 0 || +| [, (Dx(po @) — Dx(p, )] dp
< 5(X

hence lX-cr — L Dx(p, a)dp ‘ < e, giving (9). Now (8) follows at once

on using (7) and
Dx(p, @)| 0| — X0 = [ [Dx(p, @) — Dxlg, «)] dg.
For any simple r.vector a £ 0, set

(10) Dx(p, ®) = of| )

set Dx(p,0) = 0. It is evident from (5) that Dy (p, —a) = —Dx(p, a)
for r-directions «; hence Dy (p, aa) = aDx(p, «) for all simple « and
real a.

We now show that for any p and (r + 1)-simplex ¢, if 06 = >0, then

(11) D Dx(p,{o}) =0

(See § 8 of the Introduction for a slightly different proof.) We may suppose
p € 0. Let ¢; be o contracted towards p by the factor 1; say ¢g; = D oy,.
Now

joa| =2 o], jou|=4]a].

If § = diam (¢) and «; = r-direction of ¢, using (7) gives
121& (p. {0 — [, Dx|= IZ [, [Px(p. @) — Dx (g, %) da |

<> (X)W | oy | = AHL(X) | 20 | .

Also, using (9),

o Dx| = |2 [, 0 @) da | <[ 3 X

=|X-80,1’=|dX-aA]§Z”+1(dX|IG\.
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Combining these inequalities gives, on dividing by A%,
\Z Dy(p, {o.) ‘ < AQX)8| B0 | +|dX || o],

Since A is arbitrary, (11) follows.

Because of Theorem 9A, there is a unique r-covector D (p) for each p
such that Dy(p)a = Dx(p, «) for simple a. Now (3} follows from (9).

Since | X-0,|< | X||0;], (5) gives | Dx | < |X|. Conversely,
given € >0, (4.9) shows that we may choose ¢ so that [ X- a'[
> (|X|—¢€)lo|; using (9) shows that | Dy(p)a|=|X|—e for
some p € o, proving | Dy | > | X | —e; thus | Dylo=|X|. Next,
given € > 0, we may choose ¢ and » by (7.4) so that

| X-Tyo—Xo| = [2X)—€]|v]|lo];

EH

using {(9) shows that, if « is the r-direction of ¢,

| Dx(p + v, a) — Dx(p, ) | = [R(X) — €] | v]

for some p € o, proving (D) = 2(X) — €; hence, using (7), we have
L4(Dy) = (X). Now (7.8) and (2) give IDX [# = i X F, proving (4).

Now take any sharp form w. Set X-0 = |, w; this determines X
uniquely. If we show that setting X->a,0, = Ja,X-0, defines a sharp
cochain X, the proof will be complete. Clearly | X [ < [ w ]0, LX) < 24(w).
Because of Theorems 7A and 44, it is sufficient to show that |dX | is
bounded. We may suppose w 7% 0. Because of (4.10), given an (r + 1)-
simplex o, it is sufficient to prove

(12) | X00|=|[ o|<|of].

Define a semi-norm in the space of polyhedral r-chains by setting
XA 1 f )
[0 F ol

The conditions for a semi-norm are clearly fulfilled. We prove the conditions
of Lemma 8c. First,

(13) A =

| o

fw#ém|0|§’°

o =,

1

, 1 Lo(@) v ||a _{v]]a],
| Tyo— o | =,W’L[w(p+v)—w(p)]dpf§-—°—ljj‘?“-—'_i7%"

To prove (H), take any p and € > 0. Choose { > 0 so that
o) —o@) | <¢=|ofe if |[g—p|<{
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Take any (r + 1)-simplex ¢ C Uy(p). Say 0o = Jo,, a,= {0}/ 0;].
Using (I11, 4.1) and (I1I, 2.3), we find

fwo| =12 [ @ — ownd| < oo,

Hence

2

‘Ba

do

- Lol

giving (8.8), and hence (8.7). By Lemma 8¢, we have, for any (r 4 1)-
simplex o,
| Xoo|=]of|to] <lalf|q],
completing the proof of the theorem.
Let wq be the n-direction of oriented E” (I, 12). Then (II, 3.1) there

1s a one-one correspondence between n-forms w(p) and real functions
a{p), given by

(14) w(p) = o(p)w,;
clearly
(15) 2(D) = Lw) = Ly(w), deg (w) = n.

Theorem 10A now gives the last part of Theorem 7B.

We say X is smooth if the corresponding differential form D y is smooth.
We may then define the exterior differential dDy as in (II, 8). More
generally, we may do this if Dy is regular, as in (III, 16). See also
(IX, Theorem 12B).

THEOREM 10B. Let X be smooth, or, let it be sharp and let D x be regular
(II1, 16). Then Dy, defined as in (5), exists, and

Given the point p and (r 4+ 1)-direction «, let oy, o,, - * - be a corre-
sponding sequence of (r 4 1)-simplexes as in (5). Using the Theorem of
Stokes (III, 14) if X is smooth, or (III, 16.2) if Dy is regular, we have

X-0, = X-00,= [ Dy= f dDy.
Since dD x is continuous, we find ‘ ,

dX-o, 1

D = lm e 2 - Bim ——
ax(P, o) i1—1>n; o7 %_lirg‘at_! Gide(q, a) dg
== (dDX)(p: a):

proving (16).
11. Examples. (2) Taking n — 1, r = 0, set
(1) (@) =inf (x|, 1), Xz = ().
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Then | X |=1, |dX|=1, &X) =1, and X is a sharp 0-cochain with
| X|#=|X | =1 Within the interval (0, 1), dX is sharp, and (see
(10.14)) (10.16) and (II, 8.2) show that D,¢(z) = d¢(z)/dx = 1; in the
interval (—1, 0), D y(x) = —1. Hence £(D,y) is not finite, and dX is
not sharp. In fact, if ¢ is the oriented segment (—e¢, 0), and v is the
number ¢, 0 << € << 1,

dX¢ = X000 = —e¢, dX-T,o=ce,
dX-(T,c —06) 2 2

(v]ja] & €
(b) Define o, », X asin (a). Set 4 = T',o — o. By (4.12),| AP =[A4]|.
By (6.3), | A|*< ||| v|/2=e?2. Define the sharp l-cochain Y by
Dy(xy==2/2if |2|< 2, and Dyp(x) =1 (x=2) and = —1 (2 < — >
Then £(Dy) = 1/2, and (10.4) and (10.2) show that | ¥ |# = 1. Since

!

J‘ex e2 2
YTo=| Dp=1| -de=-, Yio=—-—,
o9 Tyo ¥ 0o 2 ’ 4 d 4

we have Y4 = €2/2, and hence | 4 [¥ > €%/2. Thus
lAlb=!A|=2e, ’A'“:ez/Z.

Since X064 = 2¢, we have ‘ 04 |* > 2e. Also | oA }# = | 04 }bg__ ]A I"
= 2¢; hence | 04 ¥ = 2¢. Note that

A= (oA, | T,00 — o [F = (2fe) 0P|

showing that (3.4) fails for the sharp norm, and that fA’ cannot be
replaced by | A * in the right hand side of (6.3).

(¢) The impossibility of defining ¢4 properly for sharp 4 may be
seen as follows. Let ¢, and ¢, be the segments (0, 1/27) and (—1/2, 0)
respectively. Set A, = 2g,, A = 2%0]. Now, by (b),| 4] — 4, | =1/27,
Also, cutting A; into 2% pieces and sliding each into A4, , (a distance
<1/2%), we see that | A, ,— A,|¥ <1/2"+1; similarly for the A;.
Therefore A4, Aj, Ay, Aj, - -+ is a Cauchy sequence, with a limit 4 in the
sharp norm. Now with X as above,

b

h ' | wo~ al

X-04, =1, X 0A;

hence we cannot reasonably define X:-0A. In this connection, compare
(VI, 1) and (VIL, 7).

(d) Let S;, S,,  *+ be a sequence of squares in EZ, of side lengths
bys by, * + + with b, — 0, such that the concentric squares of three times
the side lengths 3b,, 3b,, - - - are disjoint. (We may keep them in a bounded
part of E2) Choose a,, a,, - *+ > 0 so that Ya,b? is convergent but
Sab, is divergent (say a, =1, b, =1/i). Let A, be the part of 9§;
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formed of two opposite sides, oppositely oriented with the coefficient «,.
Then | 4, |* < ab7/2, and hence the sum in the sharp norm 4 = 3*%4,
exists. But >¥2.4, does not exist. For, choose a corner p, of §; (1 = 1, 2,

- such that 04, = a;p, + - -+, let U be the union of the U, (p,), and
define the sharp 0-.cochain X by Dx(p)=dist (p, E2 — U). Then
Dx(p;) = b;, and we should have X-04 = >X-04, = Ya,b,.

(¢) We show why the factor r - 1 is necessary in (7.7). We shall
define a sharp r-cochain X in the unit sphere in £* (we could define it in
E™) so that Q(X) = =r -1 Let Dy =w. With an ortho-
normal coordinate system, set

W).gey 1(F) = (—1)71, other w,(x) == 0.
By (11, 8.4), we find dw,...,  ,(x) = r 4+ 1; the other (dw), are 0. Hence
dX | =r+ 1. Itis easy to see that (X) = Ly(w) = 1.

We can define X-o geometrically with n = r + 1, as follows. Let
¢(o) be the distance from the origin to the oriented plane P of o, with the
-+ or — sign according as the half plane (oriented like £7+') bounded by
P does or does not contain the origin; set X-¢ = ¢(0) o j For a cube C

£
with faces pa.rallel to the coordinate planes, it is easy to see directly that

dX-C = {r ) C ! That £(X) = 1 is evident.

(f) We show the need of (H) in Theorem 8B, Take n = 2, r =1, and
let L be an oriented line in £2. Any polyhedral 1-chain A can be written
as >a,0; + 0,07, the o, parallel to and oriented like L and the o; not

parallel to L; set | A} = Sa,|. Then |A|'<|[4|and [T,4— A4/
= 0. But we may take a 2-simplex = with one side o lying on L; then
' 07| =] o/, and we may make | 7| arbitrarily small, keeping ¢ and

hence | o7 | fixed. Hence (8.2) fails.

(g) The need for boundedness of ’ dX | in the remark following Theorem
7A may be seen as follows. Given any polyhedral 1-chain 4 in E2, express
itasin (f), andset X-4 = Sa, Then| X | = 1,2(X) = 0; but considering
T as above shows that | dX | is not finite.

(k) See the polyhedral chain 4, in (XI, 17} for further information on
the sharp norm.

are norms. We prove this with the
y

help of sharp forms.
LemMA 12a. For any r-stmplex ¢ C E™ and any { > 0 there is a sharp
r-cochain X such that

(1) |X|=1 QX)=1 Xo=]|o],
(2) Dy(p) =0 in E" — Ugo).

Choose an orthonormal base e;,--, e, in E" such that ¢, -, e
determines the oriented r-plane of ¢. Set wy = e!"". Then

| g lo =1, wy{o}=|o B

r
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Define the real valued function

(3) P(p) = ¢, ((p) = sup {1 — dist (p, 0)/{, 0};

then ¢(p) =1 on ¢ and ¢(p) goes to 0 as p moves away from ¢. The
triangle inequality shows that

(4) L) = 1/L.

Set w(p) = ¢p(p)w,. Then |, =1, Ly(w) =1/, o{p) =10 outside
U(p), and hence, by Theorem 10A, the corresponding X has the required
properties. That f, w = wy{c} =] o | is clear; see (III, 4.1).

Lemma 12b. Let oy, * * +, a,, be r-simplexes in E™ such that

(5) dist (0,, 6;) = 2{ >0, i~ .
Then there is a sharp r-cochain X such that
© |X|=1, X)=1j{, Xo=|c| (i=1-,m)

Define X, for o, by the last lemma, and set X = > X,.
LeMMA 12¢. For any polyhedral r-chain A C E" and any € > O there
is @ sharp r cochain X such that

(7) | X|=1, XA>|4|—e

Remark. We will prove this for sharp chains in § 16 below.

We suppose r > 0; the proof is simpler if r =0. We can write
A = Ya,0, with the ¢, non-overlapping and the a, > 0. Set ¢’ = ¢/2] 4 |.
For each 1, let 7, be a simplex interior to ¢, such that

‘Giw—f,’ge’!aiL

Then the 7, are disjoint, and hence, for some { > 0, (5) holds for the 7;.
Now if B = Ya,r, and X is as in Lemma 12b, then

[X-A—X-B}=Jzaix-(a,.—ri)fgzai X|lo,— ]

< Dae o] =¢2
’ A ’ —XB= z"’i(l o | — X1) £ Zaiff‘ 0y ! = ¢/2,

which gives (7).

TueoREM 12A. If A 0 is polyhedral, then | A" > | A |¥ > 0.

Since 4 #£0, | A|>0. Set e = | A |/2, and choose X by the last
lemma. Then X-4 > 0. Since [ X-4|< | X * ’ Alf,1AF >0,
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13. Weak convergence. Corresponding to the two norms, we have
two kinds of limits:

(1) im' 4, =4 if 4 —A,|"—0,
(2) lim¥ 4, =4 if [4— 4,0,

with similar definitions of lim? X,, lim* X,. We also write 4, *, A4, etc.
We shall use also weak limits: The functlon X of flat r-chains is the

wéak flat limit of the sequence X;, X,, - - - of flat r-cochains provided
(3) lim (X4) = X-A, all flat 4.

We write o

(4) X = twklb X,

(We use, generally, the criterion in the lemma below.) Then (Banach,
p- 123) X is bounded and linear, and hence is a flat cochain. Clearly

3 X < liminf! X | dX | < iminfldX.| Y b < iminfl X Ib
\U’ F4 N | __é AllL i z i,L Wik I ;-.__ 11111 1111 } u;.-cn.,l i, i LA { é Aklll k111 ! .4).2‘ I
LEMMA 13a. Let X, X,, - - - be a sequence of flat cochains, and let X

be a function of simplexes o, such that for some N,
(6) X, P< N (all7), lim(X;0)=X0¢ (all o).

Then X is uniquely extendable to be a flat cochain, and (4) holds. Conversely,
(3) tmplies (6).
Clearly X is extenda.ble to be linear over polyhedral chains 4, and
" X-A|< N|AP; hence X is a flat cochain (§4). We must prove (3)
for any flat 4. Given € > 0, choose a polyhedral B such that |B— A"
< €[4N, and choose 44 so that | (X; — X)-B < ¢/2 if i > i, Now for
1> 1y,

DX, —X) 4| < (X, P+ | X B—A]P+ (X, —X)Bl<e¢

as required. For the converse, see Banach, p. 123.

REMARK. In place of simplexes, we may use any set of chains whose
linear combinations are dense in C?.

ExamPLE (a). In K1, the real functions

$,(t) = (sinit)fi, () = d,(t)/dt = cos it,

define the 0-cochain X, and l-cochain Y, respectively, with ¥, = dX,.
Clearly these converge weakly to 0.

Define the weak flat limit (12) with the continuous variable »n by the
criterion of the lemma; then (3) holds, with 5§ — 0. Define weak sharp
limits similarly.
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In the dimension 0, the conditions in Lemma 13a for weak convergence,

stated in terms of the corresponding real functions Dy , Dx, become:
| Dy (p) | S N, LDy)S N, im Dy (p) = Dx(p) (all p).
%—)'w

We can strengthen the last condition:

Lemma 13b. If wkl® X, = X, in the dimension 0, then lim Dy (p)
== D {p) uniformly in compact sets.

For let @ be compact, and let € > 0 be given. Choose 6 > 0 so that
0N < €3, and choose p,, - -, p,, in @ so that the sets U,(p,) cover Q.
Choose i, so that

"Dy (p) — Dx(py) | < €f3,  k=1---,m, if iz4,
Now take any p €@, and any ¢ 2> ¢,. Choose & so that | p — p, | < 6.
Then

| Dy (p) — Dx(p) | < 8Dy ) |py —p| + €3 +LDy) | — 1| L e

Given the flat (or sharp) r-cochain X in E", we smooth it by
an averaging process: With «, () as in (App. 111, 3), set

(8) X, A= J K, (V)(X-T,4) dv, A polyhedral.

By (3.6), X-T A is continuous in » (it is, in fact, for all flat 4, by (X,
Theorem 7B)); hence this is well defined.

TuroreM 13A. For any flat r-cochain X in E", X, (n > 0)is a sharp
r-cochain, D X, 18 00-smooth, and

(9) dX, = (dX),,
10 1XI<|X|,  |dX,[<iex], (X0 IXP
(11) UX,) < a,20x) X |,
(12) wkl’ X, = X,

n—0

a, being the volume of a ball of radius 7.

ReMARK. If X is defined in the open set R only, then X, is defined
in int, (R); see (VIII, 1(g)).

To prove (9), we have (for A polyhedral)

dX, A = X, 04 = f (N X-T,04) dv

=[x () dX-T,A) dv = (dX), A.
Jy Ta A v
Since [, «,(v) dv = 1, the first part of (10) is immediate, and the
rest follows; hence, by Theorem 4A, X, is a flat cochain. Because of

(IX, 5.6) and (App. 111, Lemma 3c¢), DXn is co-smooth (we do not need
this fact here).
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To prove (11) (which shows that X, is sharp), take any vector u.
We have

X, T,0= f K (0)( KT, 0) o = [V k(v — u)(X-T,0) dv,
| X (T — )| < [ w0 —w) — 0, 0) || X || o | do
S8k ul | X[]o]a, u)

since the integrand vanishes outmde U, 0 c =7 + | ul Using (7.4),
(11) follows easily (apply this to o, 7,0, o, with w = ufm,
m large).

Take any r-simplex 0. Set M =|o| + | do|. By (3.6),

{m—1)w

| To—oP< ML if |0 L

Using (App. 111, 3.2) gives
(X, — X)- a|._H ()X(T,6 — o) dv
Hence lim,_,, X -0 = X g, and (12) follows.

EXAMPLE (5). Take r=n=1. Set ¢t} =0 if t <0 and () =1
if t > 0, and set X-g = [ ¢. Then | X, — X |>1/2 for 5 > 0; lim’X,
= X is false, though wkle = X holds. Note that £(X,) > oo as 4 — 0.
The following relation is an immediate consequence of the theorem

and (4.3):
(13) | A|” =sup { X-A|: X sharp, |X|" =1}

<lebMC if <.

Hence (see also (VI, Lemma 8d))
THEOREM 13B. The flat chains A and B are equal if and only if
X-A = X B for all sharp X.

14. Some relations between the spaces of chains and cochains.

TuroREM 14A. % is weakly dense in CV".

First, every sharp r-cochain is a flat r-cochain; hence C¥ C CP’,
The theorem now follows from Theorem 13A.

ReMaArRK. C# is not in general dense in O""; the cochain X of (13,
Example (b)) is clearly not the flat limit of any sequence of sharp cochains.
The subspace of C* consisting of those X with D smooth is complete
and separable; C* is non-separable (§ 18).

TreorEM 14B. For any flat chain A = lim® A; (the A; polyhedral),
set VYA =1im* A4,. Then ¥ is a linear one-one mapping of G into CF.
Hence we may consider any flat chain as being also a sharp chain. W€} is
dense in C}, in the sharp norm.

Since |4, — A4, *< A, —A4,Pb \ , ¥ exists and is unique; it is
clearly llnear Now take any 'flat 4 # 0. Then | 4 * 3£ 0, and by (13.13),



178 ABSTRACT INTEGRATION THEORY {CHar. V

we may choose the sharp cochain X so that X-4 > (. The definition of
¥ gives X-WA == X-A4; hence

X[FIVAF> | XYAl=|X4]|>0,

hence | ¥4 F > 0,and ¥4 3 0; therefore ¥ is one-one. Since the set of
polyhedral chains is dense in C¥, so is W'C?.

15. The p-norms. For each p > 0, define the flat p-norm and the
sharp p-norm of a polyhedral r-chain A by

(1) (AP =inf{{A —0D| +|D|/p},
b
(2) A # =inf ZI C:;'Lai)lfl) % + 12%7’0;_02- ,, ; A= Zaiai}.

One may think of the mass and norms of an r-chain as having the dimension
of distance to the rth power, and of p as having the dimension of distance.
As in §§ 3, 6, we find (at present for polyhedral chains)

) 0AR< [ Afp,

(4) |T,)A—A|§§]A|lv|/('r+1)p.

The corresponding norms of cochains are clearly

(5) | X p=sup{{X| p|dX |},
(6) X | =sup {| X | (r + 1)pQ(X)}.
Letting | |© denote either | |* or | |#, the following relationsare
evident:
(7) l A |S é E A léﬁ é (Pl/Pz)] A |§i (pe é P1)’
(8) (P2/P1)}X|8§!X|2§!X}g (Pzé p1)-

For each p > 0, the space of polyhedral r-chains in the flat p-norm
has a completion Cz’r, etc. The inequalities above lead at once to the
following Theorem (compare Theorem 14B):

THEOREM 15A. The elements of C., are independent of p, only the

norms differing. For each o the function b (A = | A b of flat r-chains 18
Y o VRS YE Vivy . MARLIY ey VIV WP ] YP\ 7 lp b; of #r -
continuous in each space €2, .. The same is true for C%,, C;7, C¥.
Relations (5) and (6) give

TueorEM 15B. For each flat cochain X there is a py > 0 such that
©) Xp=|X| i p< e

The same is true for the sharp p-norm. .
We prove a slightly weaker theorem about polyhedral chains. (For

general chains, see the next section.)
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TueoREM 15C. For any polyhedral chain A,
(10) lim| A} =1Lm|Af=]4]
p—0 p—0
Given € > 0, choose X by Lemma 12¢; choose p, by Theorem 15B,
using the sharp pg-norm. Then for p < p,,
(A2 ]Af=]X[[4]F=
, (10) follows.

X'A|;>:|A|——e.

16. The mass of chains. As noted in Example (¢) of § 5, we may not
be able to assign a finite mass to a flat or sharp chain. There are various
ways of assigning a mass, finite or infinite, as follows:

(1) | A |, =inf liminf| 4,]: A, polyhedral, 4,_*% , A},
i—> 0

(2)

(3) | A J{b] = sup {I XA | : X flat, < 1}

There are corresponding definitions of | A |,, | 4 |4, | 4 |i4;- All six have
meaning for flat 4 (see Theorem 14B).

THEOREM 16A. For a polyhedral chain, these all equal | A |. For any
Sflat chain, all siz definitions are the same. For any sharp chain, the three
corresponding definitions are the same.

We shall let | A | denote any of the masses that are defined.

First, for any flat 4 and X with ] X ‘ = 1, there is a p > 0 such that

= | X | =1 (Theorem 15B). Now using (15.7) gives
[ XA|S|XR[AL=]4F=]4 |y

hence |4 |,;< |41, Next, given e>0, choose p>0 so that
AP >4, » > 1/e if | A |, is infinite). By (4.3) for
the p-norm, there is a flat cochain X (compare Theorem 15A) such that

[ X|P=1  XA>|A]— 2
Hence X-4 > | 4|, — ¢, and l A ![b] = | A |(b)’ provmg that these two

Maogang nra arstinl

LLIARICD alt SYyual. Slllll}.dolly | 11 |[#] == l 11 [(#) IU]. blldﬂlp 1'1

Clearly | 4 |, < | 4 |mfor flat chains. To prove the reverseinequality,
~given the flat chain 4 and e > 0, choose a flat cochain X such that
X|=1 and X4 > | 4|, — €2 ( (take X-A > 1/e if | A |, is infinite).
By Theorem 13A, (13.10) and (13.12), we may find a sharp cochain Y
such that

YI<|X|=1 |VA—XA|<e2
Hence Y4 > | 4 |;,, — ¢, proving | Aly1=| Al thus these are equal.
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Suppose lim” 4, = A, the A, being polyhedral. Given € > 0, choose
p so that | AP >4}, —e (take | A7 >1/e if |4 ], is infinite).
Since | 4,1 > | 4, bandlim, .| 4," =| A > (Theorem 15A), lim inf| 4, |
> | A4 |, — e proving A, < | 4|, Similarly |41, < |4/, for
sharp 4.

To prove |4 |, < | 4|, for flat 4, we may suppose | 4|, finite;
taking any € > 0, we need merely find a polyhedral chain B such that

(4) B—A]<e |B|<|4|y+e

Choose p > 0 such that p(| 4|, 4 €/2) < €/2. Choose a polyhedral
chain 4’ so that

[ A" — A <ef2;
then | A’ |8 << | A > + /2. Hence there is a polyhedral chain D such that-
4~ 90| +| Do < Al + <2
Set B = A" — dD; then the second relation in (4) holds. Also
B AP |4 —ap+|DPL |4 — b+ |D

< €f2 + p(; A IE + €/2) < e,
as required.
To prove | 4|, < | A |y, for sharp A (assuming | 4 |,, finite), we
prove (4) with # in place of *. Choose p so that 2p(| 4 |, + €/2) < ¢/2.
Choose a polyhedral 4’ so that

'A'—-Aif < €f2;
then | A" ¥ < | A |* -+ ¢/2. Hence we may write

A= N Z!“i“"iH”e‘l 7
—Z 104> (r +1)p ‘{“Zai v, 04

Choose a polyhedral D so that
‘Za,Tﬂiai— aD[ +|Dlfp<|AfF+e2,

b
<|A‘f—|—e/2.
p

and set
R — Tﬂ..’l’ g, — 0D,

Then | B| << | 4 |4, + ¢, and using (6.3) gives
[B—AF<|A— A +]|Da(T,o— o) |f +|3Df

e Dlallall ‘ -
<‘§‘|‘ r+ 1 +|D‘<§+2P(|Alp+2)<e’

as required.
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Finally, for polyhedral A, Theorem 15C shows that the above masses
equal | 4 |.
Note that (3) gives

(5) | X-A4|<|X|A4] (X and A flat, or X and A4 sharp).

THEOREM 16B. In each space CF , or €}, mass is a lower semi-continuous
function.

By Theorem 154, ¢ (4)= A} is continuous in each space C%,.
Since ¢,(4) increases and ——>| y: | ; as n— 0, lower semi- oontmuous
Since the imbedding of €2, in C#, (Theorem 14B) is continuous, the
conclusion is true in C?, also

TreEOREM 16C. Let E " be a subspace of E, and let A be a flat chain in the
space E'. Then A may be considered as a flat chain in E,and | A" . = |A |\ ,
\Alg = |A |z The same is true in the sharp norm.

A polyhedral chain B in E’ is also in E, and clearly | B) , < | B} ..
The opposite inequality follows from (2.4) (compare Theorem 3B). If
lim’ ;. A, = A (polyhedral 4, in E’) tlllen LA — A4, ’p B r 0, and 4 may
be considered as a chain of E; also | 4 b= hm | 4; ;g =1lim |4, IpE
= | A |’ . Using (16.2) shows that | 4 |p. = | 4 |. The same proof holds
in the sharp norm, using the relation 7', 0, = T, ma;.

17. Separability of spaces of chains. We prove

TrEOREM 17A. The spaces C?, CF are separable.

Let py, Po, - - * be a sequence of points dense in E". The set of poly-
hedral chains 4 = Ya,0,, where the a; are rational and the vertices of
the ¢, are among the p,, is denumerable. We shall show that it is dense
in (7; hence it is dense also in C¥.

It is sufficient to show that this set is dense in the set of polyhedral
chains; this will follow if we show that for each simplex ¢ =g¢4- - g,
and € > 0 there is a simplex o’ = p, - - - p, suchthat| ¢’ — o’ < e Set

¢ = diam (o) + 2, N =@+ Y(r — ! + crl.
We shall show in fact that

(1) o' =P N if [p,—q|SIZ1 0 (alli)
Set

Te =40 " " %P, " " Pap 4= Z(—l)i‘rz‘;

then (App. II, 124), 94 = ¢’ — ¢ — S B,, where B, is formed from
0;=qo" " q;" ¢, the same way A4 is formed from o. By (III, 1.3),

|7 | £ {23, — ¢; | [diam (7)T7/(r + 1)1 < Lef(r + 1),
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and hence | 4 | < {¢7fr!. Similarly | B;{ < {eY(r — 1)!. Therefore

(0 —0)— a4 | + | 4| U(r + Ve H(r — 1)t + ¢'[rl] = N,
which gives (1), and completes the proof of separability.

18. Non-separability of spaces of cochains. We shall show that though
¢’ and Cf are separable, their conjugate spaces are not; hence these
spaces are not reflexive (App. I, 14). Note that for r = n = 1, Theorems
18D and 10A show that the space of functions ¢ with | ¢ ]0 and £, finite,
which vanish outside an interval I, with the norm ]_qS ]5, is non-separable.
(Make use of (VIII, 1(f)), with an interval B, B C 1) However, the
subspace of functions which are smooth is easily seen to be separable.

We prove first two general theorems. In the first theorem, we shall
consider a normed linear space of elements Z, each of which has a
“support’’ [Z], which is in £, such that the following holds:

(1) 2] C[Z], [Z+ Z']C[Z]V[Z].

THEOREM 18A. Let n be = 1, and let C be a normed linear space, with
supports satisfying (1), and with the following properties:

(P)) To each open set R C E™ corresponds some Z - 0 with [Z] C R.

(Py) If [Z,] and [Z,] lie in disjoint cubes, then | Z, + Z, I = | Zy .

(Py) If [Z,], [Z,), * - - lie in disjount cubes, the union of these cubes is

bounded, and there is an N such that | Z, | < N for all i, then 3 Z, exists
n C. i=1

Then C is non-separable.

Let @, @,, « - - be a sequence of disjoint cubes with centers on a line
in E", and lying in a bounded set. By (P;), we may choose Z; so that
| Z;| =1and [Z,) CQ, TFor each sequence of numbers 8 = (a,, @y, * * °),
set

ZP=aZ, + - +a.Z, Z, = lim Z%;
k—w
by (P;), Z, exists if the a, are bounded. The Z, with each ¢, = {1 are
non-denumerable in number; if we show that | Z, — Z,{ > 2 if b~ a
(using only -1-1), the conclusion of the theorem will follow.

Set ¢, = b, — a,; since ZF = Z¥ — ZF, and all three limits exist as
k- 00, we have Z, = Z, — Z,. Let j be the first integer such that
¢; 7+ 0; then lc,. | = 2. We may enclose @,,,UQ;,,---ina cube Q}
disjoint from Q,. Since f¢;,Z;,; + - * + 2] C @, (Py) gives

]Zﬂ = f ¢;Z; + (¢j41Z444 + "+ cr ) ! ; J c,.Z,.] = 2.

Letting k¥ — oo proves the statement.
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THEOREM 18B. Let C be the linear space of polyhedral r-chains in E"
(n=>1, 0< r< n), with a norm Let | Z | denote the norm in the
conjugate space c of C. Suppose:

(P,) For each oo-smooth r-form w in E™ with bounded support, the

linear function $(A) = L w of polyhedral chains is bounded in the above

norm, and hence defines an element Z,, of C.
(Ps) For each w as above, | Z,,| > | w |,
(Pe) For w, and w, as above, if their supports lie in disjoint cubes, then

(2) | Z, + Z,, | = sup {| Zy || Zo, 1}

Then C is non-separable.

Let €' be the subspace of € consisting of all Z,, w as above. Set
[Z,] = spt (w); then (1) holds. We shall prove (P;) and (P,) in C’, and
shall show that (P;) holds if Z, = Z, and the cubes are as in the proof of
Theorem 18A. Then that proof gives "the present theorem.

Given the open set R, we may choose an oco-smooth w # 0 with

\(_P Then [Z, 1C R. Also, for some g, r‘q_;:,é(}; hence

H

..... \lso s, | @7
w' O ;é 0, and Z, 5~ 0. Property (P,) follows from (Pg).
Now take cubes @, ¢, - - + as described, and suppose

cbi is co-smooth,  spt (w;) C Q,, | Z,, | < N.

Set

Zy= By + 0+ Ly

we must show that lim Z; exists in C.
First we show that w(o) = lim (Z,-0) exists for each r-simplex g.
Let 7, be the part of ¢ in ¢,. Using (P;), we find

I (Z“’Hl +or Zwk).gl - iffnl @1 +oo frk wk‘
k k
Z CANEARS Z | Z,,
t=j+1 i=j+1 iS711

given € > 0, we can choose j, so that the last sum is < /N if j, < j < k;
this shows that y(g) exists.

Now 9(Da,0;) = 2ay(o;) defines the linear function y(4) of poly-
hedral chains uniquely, as is easily seen, and y(d4) = lim (Z;-4). To
complete the proof, we need merely show that this function is bounded.
We show in fact that | p(4) | < N| 4|". Take any k. Then repeated use
of (Pg) gives (using the cubes ¢; as in the proof of Theorem 18A)

]ZI’;"4|=|(Zw1+"'+Zwk)'A‘§|Zw1+.”+Z‘-"kHAl’
=S‘IP{|Zw1""':|Zwk!}|A|'§N|Al"
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Letting k — oo gives the desired inequality.

The following properties are of interest:

(P,) | 4|'< | A4/ for all polyhedral 4. (This follows at once from:

a\'é \ o'\ for all ¢.)

(Pg) If spt (w) C @ (Q a cube), then for each € > 0 there is a polyhedral
chain 4 CQ such that |4 | =1, [ @ >[Z,| -«

(Py) If @ is an n-cube, and m is a projection of E” onto ¢, defined for
instance as in Lemma 2b, then | 74 |' < | 4 | for all polyhedral 4.

TuroreM 18C. In the last theorem, we can replace (P;) by (P;). We
can replace (Pg) by the weakened hypothesis (Py), defined by using < in (2),
and either of (Pg), (Py).

First, assuming (P,), we prove (P;). Take any ¢ > 0. Since w is con-
tinuous, the definition of | w |0 shows that we may choose a simplex ¢~

such that J; 0> (|wlo— €)| o|. Using (P;) gives

Lwig([a)]o—e)la\’,

ERIE

proving | Z,, | = | @ |y — € and hence (Pj).

Next, using (Pg), we prove = in (2). We need merely prove l Zy, + 2, [
> | Z, |. Say spt(w,) CQ, Given >0, choose 4 as in (Pg), using
wy, @ Then

(Z,, +zw2)-A=L1 wl+L w2zL w > |2, | —«

giving | Z,, + 2, |=>|Z, | — and hence > | Z, |.

Finally, (Pg) follows from (Pg). For the definition of | Z,, | shows that
for some polyhedral B, | B|' =1 and fB w>|Z,| —e SetC=nB.
Then fo W = [B w. We may suppose | Z,, | — e > 0; then( 3 0, and we.
may set 4 =CJ|C|. Now |4|'=1, and since |C|'< | B
have Z, 4 > Z,C >| Z, | — e, as required.

It seems not easy to find conditions on the norm | 4 | from which <
in (2) may be proved. In this connection, the following example is of

interest.

ExampPLE. Take r =n = 1; let p==0. Let | 4|’ be the least norm
satisfying (8.1) and (8.2), and also (8.3) in case ¢ and 7' o lie on opposite
sides of p,. We leave this for the reader to study.

TaEoREM 18D. Suppose 0 < r<n, n>1. Then C and C¥ are
non-separable. The same holds for C”(R) and C¥(R), for any open set R
(see (VIII, 1)).

This follows from the theorems above, for instance as follows.
Property (P,) is clear in both cases, since w is sharp (use Theorem 10A
and (7.1)). Also (P,) holds. (Pg) for # is clear from Theorem 10A and

"1, we
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(10.2). (It holds for ? also, by Chapter IX.) Since (P,) holds for , by
Theorem 3B, there remains to prove < in (2), for °.

Given spt (w,) CQ,; (¢t =1, 2), Z, = Z,, a polyhedral chain 4, and
€ > 0, it suffices to prove ‘

(2 + Zo) A | < sup {| 2, | Z, PH| A + o).
We may choose ¢’ and D so that
C=A4— 0D, 10\+|D|<|A\b+e.

Let C; and D, be the parts of ¢ and D respectively in ¢,, and set C,
=(C—0;, Dy= D — D,. Then

|C]=|Co| +[Cs|, | D|=|Dy| +|Dyl.
Now

(Zy + Z)A | < | 20y | + | dZy Dy |+ 12,0y + | dZy D, |
<sup{iZ|,|d2|,| Z;|,|dZ,|}(|Cr| + | Dy| +|Cz] +| Dy
which, with (4.8), gives the required inequality.

)s

bJ




VI. Some Relations between Chains
and Functions

In the last chapter, norms were introdueced into the linear space of
polyhedral r-chains in £*; completing the space gave a Banach space.
The new chains thus formed (flat or sharp) have in general no obvious
geometric or analytic representation. Chains of finite mass, however,
may be represented by additive set functions; see Chapter XI. In this
chapter we study some special representations of certain chains. Section
7 is the only section used directly in the rest of the book.

The first six sections are devoted to the study of chains on the real
line; such chains are of dimension 0 or 1. In §1, we show how a real
function 4;6 may correspond to an r-chain A4, both for r = 0 and for r = 1.

(S0 Q aomtiniin raTi M nta
Luppose 'P is buumuuuua, and vanishes outside the interval (t’,'rf b) Then

an approximating polyhedral chain 4’ to the chain 4 may be determined
as follows. Take a fine subdivision of (a, b), by the points {; = a, ¢;, - - -,
t, ="0; let I, denote the interval (,_,, ;). Then, letting ¢ denote the
point ¢, considered as a 0-simplex,

I
¢
A' == f_ , e * d s f ) 0,
;ak k1 " J;k_ ¢(x) de, if r
A = b1, b, = ¢(tk_1), if r=1.

In §§2-5, we discuss a different correspondence between O-chains
and real functions. We show that there is a one-one correspondence
between 0-chains of finite mass and normalized functions of bounded
variation. If we replace the function of bounded variation y by the corre-
sponding additive set function B, defined by B(I,,) = y(b) — p(a)
(I,, = interval (a, b)), we have the special case n — 1, r = 0 of the m more
general theory in Chapter XI. We give further relations with standard
theorems of analysis in § 6.

In § 7 we show how a cellwise continuous summable function «{p) in
E™ whose values are r-vectors defines a flat r-chain A. Chains 4 of this
sort are dense in the space of chains (sharp or flat); hence norms of cochains
X are determined by their values X-4 on these “‘continuous chains”.
Using these in place of polyhedral chains gives an analytic rather than a

186
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geometric background to the theory; thisis of importance in various ways.
More general chains will be used in (IX, 15) and (XI, 14).

After some lemmas in § 8, we show in § 9 that if « is smooth, then the
boundary of the corresponding chain A4 is given in terms of the partial
derivatives of «; this is the“dual” of the operation of exterior differentia-
tion of forms. A brief discussion of integration in smooth manifolds
(where polyhedral chains are not defined) is presented in §10. This
relates the exposition to methods such as are used in the theory of
harmonic integrals (see de Rham).

1. Continuous chains on the real line. Recall (V, Theorem 7B) that in
E*, both sharp 0-cochains and sharp 1-cochains correspond to real-valued
sharp functions in a one-one manner. We shall show that a cellwise
continuous summable function ¢ (App. III) corresponds both to a sharp
0-chain and to a sharp 1-chain. The converse is not true; see the end of
this section for a summary of facts. We use here a particular E', namely
A itself.

For both r = 0 and r = 1, we say the cellwise continuous summable
function ¢ corresponds to the sharp or flat r-chain 4 if

M [ Dxt)p(t) &t = X-4

for all sharp cochains X of the same dimension. (Define D(f) as in
(V, 10).) This corresponds to a real-valued function D (f), asin (V, 10.14),
forr = 1; forr =0, Dy = Dy.) Clearly 4 is unique; we denote it by
#, and call it a continuous chain.

For r = 1, given ¢, we define approximating polyhedral chains 4,, 4,,

- - - as follows. Given the integer £, choose an interval @, in E! so that

[q, @ <125

Express @, as the union of a set of non-overlapping subintervals @, - -
Qpm,» 50 that

| $() — $(t) | < 1/2%41[ @[,  #,¢ in the same int (Qy).

‘We may suppose ,_; C @, (k¥ > 1), and that each interval of @, _, is the
union of intervals of @,. Say @, = (¢, , 1, t;,). Let a,; be a number
nearest 0 which is a limit of values ¢(¢) with ¢ € int (@,,); set

(2) Ar = D Q0
;
With the @, oriented like £, this is a polyhedral 1-chain.
We now prove that 4 = lim® 4, exists, and hence is a flat (hence also
a sharp) chain. Take any k, and any I > k. For some set of indices j,
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the interval @, is cut into intervals @,;, We have the inequality on mass
l Z“UQM — @y @i | = i Z(aw — a)Q; | < \ Qrs |/2k+1 | Qr ‘ .
j i

Let >'a,;@,; denote the part of 4, outside of @,. By the choice of @,
and the a,;,

z’auQu = Z’ [ a,;,-| } @y [ < J.Q:.—Qk () < 1/2%+1,

Combining these inequalities gives

(3) |4, — A, =4, — 4, <125 1>k,

proving the existence of 4 = lim® 4,.
Take any 1-cochain X. Since

‘ kae Dy — X-0;,Qs

-

o, DxO$() — a1 di|
<X || Qi |2 [ Qs

H

we find at once
[ Dx$ — X4,

letting £ — o0 gives (1). Hence A = (,'Z;

TueorEM 1A. The mapping ¢ — ¢ ts a one-one linear mapping of
cellwise continuous summable functions into flat (and hence sharp) 1-chains.
We have

4) 6= [ @,
and for the approximating polyhedral chains 4, above,
(5) [§— A4S 125 (AL é

The 1-chains ¢ with ¢ continuous are dense in C and hence in CF.
Clearly the mapping is one-one and linear. Since

]Ak|=2\aki”Qki|§f<¢>s

£

< | X%

we have | ¢ | < | (¢) (V, Theorem 16B). (We could prove this also by /
using a sharp X such that | X | < 1 and X-¢d>|¢|—e) To prove the
reverse inequality, take any sharp X such that | X | < 1. Then

X1 [ Da] < o

which gives the result. The inequalities (5) are clear.
To show that the ¢ are dense, we need merely find one arbitrarily
t,). Let pt) =0fort < &) —eandt >4, + ¢,

-

near a 1-simplex ¢ = (¢4,
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let ¢(t) = 1 fort; < t < 1, and let ¢ be linear in the two remaining inter-
vals. Comparing | Dy¢ with X-o for any sharp X shows that ¢ is as
close to o as desired (see (V, 10.3)).

We now show that the boundary of a smooth 1-chain is found simply
by differentiating:

TueoreM 1B. If ¢ is smooth and summable, and yp = dp[dt is summable,
then

(6) F — —i.
First we prove
(7) Iim () =0.
—+4 w

Given € > 0, choose b so that [° (y) < e. Then for ¥ > b,

90— 40| = | [} v &e| < [ ) <

hence lim, ,  4(t) exists. Since ¢ is summable, the limit is 0; similarly
at —oo.
Now let X be any 0O-cochain with smooth Dy =— w. Then, using

(V, 10.16),
o0 b d
o —@© —a,b—o Ja dt

b d
= lim [W(b)sﬁ(b)-—w(a)sb(a)—J = ]

— @t ,h—co a dt

b
= —lim D,y¢ = —dX-¢ = X-(—04),
—a,b—>w Ja
which proves (6).

A flat 0-chain need not correspond to a summable function if its mass
is not finite. There may be a function simply related to the chain, but
the chain need not be uniquely determined by the function. For example,
consider first the function

logt + a, 0<t<l,
gba(t):{ /
| log (—1), —1 <t <0,

with ¢,(¢) == 0 elsewhere. This is summable; even though it is not cellwise

continuous, it clearly determines uniquely a flat 1-chain 4, = ¢,. Since

déyjdt =1ft, 0<it|<],

we may think of the function 1/t (0 << | ¢ < 1) as corresponding to any of
the O-Chf.LIIlS —0¢,. We may define B, = — 94, as the limit of a sequence
of 0-chains B, = 7,,, each corresponding to a function y,; Which equals
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1/¢ in (—1, 1), except in an interval ¢, , about 0, where y,, = 0; but the
intervals depend on a. For a = 0, we may take the intervals with center
at 0. Compare (V, 5(d)).

There is an extension of Theorem 1B to the case that y is Denjoy
integrable, convergent from —o0 to c0; compare Saks, Chapter VIII, in
particular, the theorem on p. 246.

We shall show in (IX, Theorem 15B) that flat 1-chains in E? (in fact,
flat n-chains in E") correspond in a one-one manner to measurable
summable functions. Recall that the flat norm equals the mass in this
case.

We show in the sections below that 0-chains (for which the flat and
sharp norms are the same) of finite mass in E' correspond in a one-one
manner to normalized functions of bounded variation (equivalently, to
additive set functions; see Chapter XI).

In Chapter XI we show that sharp r-chains of finite mass in E"
correspond in a one-one manner to additive set functions whose values are
r-vectors; flat r-chains of finite mass correspond to a subset of these.

WaRrNING: For " C E™ (m > n), there can be sharp r-chains 7 0 in
E" (r > n); for instance sharp r-chains “at a point’’; see (VII, 7) below.
This cannot happen in the flat norm; see (VII, 9).

2. O-chains in Z' defined by functions of bounded variation. Our
object in the next few sections is to show that there is a one-one corre-
spondence between 0-chains (for which the flat and sharp norms are the
same) and normalized functions of bounded variation on the real line
El' — ; see Theorem 5A below.

We recall some facts about functions of bounded variation. Let y(f)
be defined for all real £. Given a set of points {, << f, < --- <t,, consider
the expression

W

Z I v{E) — y(tiy)

t=1

H

the variation |y | of y is the least upper bound of all such sums. The
£ .

ariation if |y | is finite. In this case, y is con-
tinuous except at an at most denumerable set of points; the right and

. . . . . . |
left hand limits exist at these points, and the sum of the jumps is < I Vi

We shall say y is normalized if

f I .
IUnNCion ¥ is o1

(1) y(—oo) = lim yp{¢) =0, lim y(t — A) = (1) (all ¢).

If ¢ is bounded and eontinuous, then there is a uniquely defined number

[ é dy, the integral of ¢ with respect to y, with the following property.
Jba
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For every e > 0 thereis a { > O such that,ifa =1, <<#; <+ <, =,
and ¢, —t,_; < {and¢,_; <t < i, for each 7, then

1 ¢dy—z¢(t rt) — vt | <

For 'i ¢ dy, we may either take lim, , _ L ¢ dy, or use the above defini-

tion with any ¢, < a’ for —a’ large enough; similarly for f “ and fw . A
—_ a — 0G
different normalization of ¥ would not affect the integral.

We say the function y of bounded variation corresponds to the 0-chain
A if (in contrast to the definition in § 1)

(2) |7 Dxydyty = x4

for all 0-cochains X. If ¢(¢) = dy(t)/dt exists and is continuous, then ¢
corresponds to 4, as in (1.1). Clearly A is unique.

To prove the existence of 4, let S, be the subdivision of the interval
(—2%, 2%) into equal intervals of length 1/2*, For any number ¢, let ¢
denote the point ¢, considered as a 0-chain. (Thus {, — ¢ is a number,
f, — I, is a 0-chain.) Set

Sk

| A= zakifki’ b = —2% 4 if2F,
(3) 3 i=1

By = Y(txi) — Ve, im1)s 8y = 226+,
If ¢(t) exists, then (in contrast to (1.2), the case » = 1)

R Ly Ly
4) A, = Za’kitki’ Ap; — ¥ J,h é (¢) dt

sz1 ki1

Let us denote by 7(a, b) the variation of y from a to b, i.e. the least upper
bound of the sums defining E y |, except that we require a < ¢, ¢,, < b.
We prove

(B3) A, — A, < H(—o0, —25) 4 |yl 2F + 52 ), 1>k

Write A, = A} + A7 + A}, corresponding to the parts of 4, to the left
of @ = (—2% 2¥), the parts in @, and the parts to the right of @,
respectively. Clearly

AL S ploo, 28, |4} < p(2F, o0).

Take a typical interval (f, , ,, t, ;) of S, divided into intervals (¢, , ,, ¢, ;)

of S,. Letting >%) denote the sum over such values of j, define the
1-chains

(N o
Dkli = [V [ ,) — V(tl,j—l)]tljtki’ Dm - ZDkli‘
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Then
(i) -
aDm = ['}”(tk,e‘) - ‘J’(tk,pl)]iki Z [7’ l : }’(tz,j_ﬂ]tw
j
oD, = A, — A}.

IDMI<ZZ”IM,)—~WU1></zk< y| /2"

we find that | A, — 4, — 0Dy | ++ | Dy, | is bounded by the right hand

side of (5); hence (5) follows.
Because of (5), A = lim" 4, exists. For any X,

(6) XA, = Zakz (X-t) = ZD‘X (i)

i

by definition of the integral,

Since

XA=lmXd,=[" Dydy;

k— 0

hence y corresponds to 4.
Let y© denote the 0-chain corresponding to y. We prove

) |72 =17l
If ¢ = dy/dt exists and is continuous, and ¢ = p© denotes the corre-
sponding 0 chain, (7) gives (as in (1.4) for 1-chains)

®) [F1=]" 60|
Since, by (6),
XA, < X{Z,am|< X1
we have | y© | < |y ; see (V, 16.1).

To prove the reverse inequality, we note first that because of the
normalization (1),

. (b2 b
Iim [_z dy = L dy = y(b) — y{a).
A0+ '
Suppose &,(t) =1 for a << b — 22, &(t) =0 for t < a — 4 and for
t > b — 1, and &, is linear in the two remaining intervals. Then it is clear
from the above that

lim [ &) dptt) = y(b) — y(@)
A—-0+

Now given € > 0, choose points £, <t < <{{, such that

D Ipit) — plt) | > |y — <
i=1
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For small enough 4, define &, as above in each interval ({,_, — 4, ¢, — 4)
if p(t;) — y(t;1) = 0, but with the minus sign otherwise; set & =0
elsewhere. This defines a 0-cochain X, with | X, | = 1. Then

lim X;-y© = Z { y(t:)
i=1

A—0+

and. it follows that ‘ y© ! ~ ‘ y | — €, and hence 2> |y | . This completes
the proof of (7).

3. Sharp functions times 0-chains. We shall define a chain ¢4 for any
sharp function ¢ (V, 4) and any 0-chain 4 in E*; for the case of r-chains,
see (VII, 1). The following inequalities will hold:

(1) | A< |4 4],
(2) | ¢4

The operation will be bilinear.
First, for any polyhedral chain >a,p,, set

3) b Dupi= D $(papi

clearly (1) holds. To prove (2) for 4 = Ya;p,, given € > 0, choose D
so that

' A—9D + | D|<|AP + e
Say D = >d,(p;p;), the pj'- pj’ non-overlapping. Set

"= > #r)) d,(wp)).

A4—0D = Yap,— Ddp + >d.p;,
B4 — 0D = > fipJap, — > $)) dp] + qu () dp

+ Z[cﬁ $(p; ]d,p,

Part of the last expression is simply ¢(4 — dD). Hence, using (1),

Now

43D |4 D[ 4] |4~ 00| £ 2D +[4]] D]
< (1 +8)(1 4] + o),
which gives (2).
Now let 4 be any 0-chain. Say 4 = lim” 4,, the A, polyhedral. Then
set ¢4 = lim® ¢4,. Because of (2), the limit exists and is independent
of the sequence chosen. Now (2) holds in the general case. We may suppose

lifn sup | 4, | <A |; because of (V, 16.1), applying (1) to each A,
gives (1) for ¢A4.
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As a further consequence of (2), we see that if lim’ A, = A (the 4,
not necessarily polyhedral), then lim” ¢4, exists, and

(4) lim® ¢4, = ¢ lim® 4,.

We give a condition under which the mass of the sum of two 0-chains
equals the sum of the masses; see (VII, 3.22) for a generalization. The
support spt () of v is the closure of the set of points where y is not zero.

LeMMA 3a. For any sharp y,, y and O-chain A wn E7,

(5) | (py +yp)d|=|pA |+ pA] i dist (spt (y1), 5Pt (93) > 0.

We suppose that | y,4 | and | y,4 | are finite; an easy modification of
the proof takes care of the contrary case.
Given € > 0, choose X, X, so that

IX': él’ Xi.y)iA;|TPiAi_e’ 1 =1, 2.
The definition of yp,4A shows that if we alter DX,- outside @, = spt (,),
X ;A will be unchanged. Hence we may suppose Dy = 0 outside a set

Q;, with @; N @, = 0. Now Dy and Dy, together form a sharp function,
and hence a 0-cochain X, with

XSl Xypd=ZXppd (i=12)

Hence
Xy +9)A 2> | pd | + | pd | — 26

proving => in (5). The reverse inequality is clear, and the lemma is proved.

4. The part <ZT of a chain of finite mass. Given a 0-chain A4 of finite
mass in E!, and a number T, we shall define the “‘part A, of A which
is <<T.” We shall define the part of an r-chain of finite mass (defined
in E") which lies in a given Borel set in (X1, 13).

ExamrLE (a). Let A = T (notation in § 2). Then naturally the part
of A which is <7 is 0, while the part <T is A # 0. If 4 is continuous
(see §1), it is easy to see with the definition below that the part <T
equals the part < 7.

ExamprLE (b). Let A be the 0-chain in Example (¢) of (V, 5). We

divergent.

ExampLE (c¢). With 4] as in (V, 5(c)), set A4’ = lim? A;; then
A’ =0, so that (4’), = 0. We cannot define (4'), to be lim?, , (4;)o
for (4;), = 0;, and lim® ¢, = 0.

With 7' fixed, define continuous functions do. D1, * -+ as follows:.
1, t < T — 2[4,
M) #O=\0, =118,
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and let ¢,(f) be linear in the remaining interval. Set
(2) Ap=1lim ¢ A4.

3> 00

To prove the existence and properties of 4, define the functions

(3)  Polt) =olt), i) =) — .t} (=12,

Since spt (dy), spt (ds), spt (by), - - + are disjoint, as are spt (), spt (¢3),
, repeated use of Lemma 3a gives

(Bo + ot o)A = ded] + | A+ hyd ],
X ¢i+¢é+'-°+¢éj+1)A\:!¢1Ai+\¢éA|+---+\¢;j+1A§.

Also, since >¢;(t) < 1, (3.1) shows that the two left hand sides are each
< A|. Hence

[dod |+ A |+ H[hA|S2]4] (=12
Therefore the series of masses converges, and hence
(4) A —dA || d +oo | A =0,

proving the existence of Ay; in fact, lim | 4, — ¢, 4| =0.
We prove some properties of 4 ,:

(5) |Ap| + |4 —Ap|=
(6) lim Ap_, = Ay,
A—04

=0, where Ap=A4 5 + (4 — Ap).

T—c0
- Foranyi,spt (¢,) and spt (1 — ¢,;,) aredisjoint. Alsod, + (1 — ;)
< 1. Hence Lemma 3a and (3.1) give
l¢iA1 _}_'(1—¢i+1)Al“_"}(¢i+1_¢i+1)A!§‘A]'

Letting ¢ — oo gives < in (5); the reverse inequality is clear.

Given € > 0, choose ¢ such that |$,4 — ¢, 4| < /2 for all j > .
Now take any 7' = T — 4, 0 << 1 < 1/4%. Choose j such that 7" < T
— 2/4. Now for any k such that T’ — 2/4* > T — 1/4*, we have (if ¢,
is defined for 7' like ¢, for T)

bib: = by, bt = di5
hence, using (V, Theorem 16B)

|A ¢A‘<hmmf|¢k qS |<e/2

Also | g4 — A| < ¢/2, henee | Ay — 4| < € and (6) holds.
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Choose { so that | A — A" < { implies |4’ [=>]4|—¢€ (V,
Theorem 16B). Choose a polyhedral B, |4 — B < (:/3 Choose ¢ with
spt (¢) bounded, and [ gﬂ =1,2,<1,¢=1o0n B; then

— |4 — B[ < (! +8)|4— B 23

Hence

g4 —APSL pAIZlA] e
Now take any 7T such that spt (¢) C (=7, T —2). If A_p=lim¢ A
A, = lim ¢4, as before, then

Ap =lim y,A4, v, = ¢; + (1 — &)
Now by Lemma 3a,

pd |+ g =y + P4 <A,

and hence | y,4 | < ¢, all 5. Therefore | A7 < ¢, proving (7).
We note a generalization of (5): Let

®) to< <ty AP=d, A, (=1, m);
then
(9) A =14, |+ [AFF AN 1A —4, .

For (A4,), = 4,  clearly, and hence (5) gives
tA,l =4, 1~}-|A — 4, i;

combining these with (5) for 7' =t gives (9).

9. Functions of bounded variation in E' defined by O-chains. Given
the 0-chain A of finite mass in £, we define a corresponding function ¢ , by

(1) 74t) =1%4,
I% heing the unit 0-cochain: 1% = 1. We show first that y , is of bounded
variation. Take any points £, < t, < - -+ < ¢,,; then (4.9) gives

Z‘ Y alty) _yA(ti—l)':Z!IO'A?}_g_ ZIA*
- =1 i=1

hence ; ya < < | 4. We shall prove that 4 corresponds to y 4 (§2); then

We need a lemma which compares a chain near a point with the chain
“squashed” into the point; compare (VIL, 7.2) below.

LeMMA 5a. Let C = lim® C,, the O, being polyhedral O-chains in (8, t"),
and let t' < ¢t < t". Then

(2) ] C — (IO} |° < N(@" — t', N = lim sup | C, |

k—» 0
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Say C, = Sy, D¢k | SN + €, €,—>0. Set gy, =, f. Then
since 10y = > ¢4,

¢, — (I%C)f = —9 Zcm% 1[I0, — O],
[Co— TOCRP £ D {0 | + [ 190, —0) |

S (N Fet" —¢) +

letting k —> <o gives (2). (Taking a subsequence, we see that lim sup can
be replaced by lim inf.)
Using (4.8), we now prove

(3) | A — (IOANE P < | AF | (8 — )
Say 4, = lim;, . ¢;;4 (the ¢,; like the former ¢,); then
A} = lim b4, = i — Piay
j—w

Let w;(t)=1 for t, , — A< t<¢t, let it =0 for t<t, ; — 24 and
i > t, + A, and let it be linear in the remaining intervals. Then for j
large enough, y;¢¥ = ¢¥; hence, using (3.4),

A¥ =lim ¢} A = lim ;% 4 = p,4F.

j—ow j—w
Choose polyhedral chains A% such that
A —_;}ImA:i’ A} i<|A*|—|—ek, Llimekzo;

then, using (3.4) again and (3.1),
A¥ =Iim 4%, |1p1A !<]A*\—|—ek

k—w

Since y,4% lies in (t,_, — 24, ¢, + A), Lemma 5a gives
| AF — (IO-A:‘)tz- P Aty £ 30,

Since 4 is arbitrary, (3) holds.

Let B be the 0-chain corresponding to y ,. To prove B = A, take any
€ > 0. By the results of § 2, and by (4.7), we may choose k so that the

aANSASRIN dw RINS Rladdu W UAa%y

following is true. Let t, — —2 b = -—2" 4 1/2%,--- ¢t = 2% asin §2, and
let B’ be the corresponding polyhedral 0-chain. Then, with A as in (4.7),

| B"— B <¢f3, |Ap | 4 |/2% < ¢f3.
By definition of B’,

== zbiii’ b, = V.alt;) — yaltiy) = IO'A;"!-
i=1
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Hence
4— B =4, +z *bl) 4+ (4 —A4,),

and because of (3) and (4.9),
A—B P[4+ D A6 —t) + A — 4, | <263
i=1

Hence j A— B ‘b < ¢; therefore A = B.

TuEOREM 5A. There is a one-one linear correspondence between 0-chains
A of finite mass in E' and normalized functions y 4 of bounded variation,
defined by (2.2); we have

(4) val=4]

Given A, y, was determined above; y , is normalized because of
(4.6) and (4.7). The correspondence is clearly one-one and linear. Relation
(4) follows from (2.7).

N PV S PRy VLTS I & R .

6. Some related analytical theorems, We first give an analytical
formulation of some preceding theorems. Let M be the linear space of
normalized functions of bounded variation in E!; the variation may be
used as norm. Another norm in M is the sharp norm, defined by

Falom
ILI

(1) |y F = sup U‘jn Dydy: X sharp,

X<

(The “flat norm” is the same, since r = 0.) Because of Theorem 5A and
(2.2),

(2) [ valf =14 =]4]

Now (V, 4.1), with Theorem 5A and (V, Theorem 4B), gives

TaroreEM 6A. The space C of real sharp functions in E* is the conjugate
space of M, with the sharp norm.

The following theorem states that, conversely, M is the space of linear
functions in €, which satisfy a certain continuity condition.

THEOREM 6B. Let A be any real valued linear function in C, with the
following property. Let ¢y, ¢, * - - be any sequence of functions in C such that

a) | ¢ l < N (all i) for some N,

(b) ¢(p) — O uniformly on all compact subsets of E*.

Then there is a unique v € M such that A(¢) = [ ¢ dy for all ¢ eC.
We have

(3) |yl =sup {A(¢): |$|=Z 1}

This theorem is the case n = 1 of (XI, Lemma 7b). See also (XL
Theorem 8B).



§7] CONTINUOUS r-CHAINS IN E* 199

Take any O-chain A of finite mass, and set A (Dy) = X-4. Using
(4.7), we see easily that A, satisfies the condition of the theorem; hence

y 4 exists such that X-4 = [ woo Dy dy,. We thus have an alternative

proof of Theorem 5A. Compare (XI, Theorem 11A).

Consider the space M’ of normalized functions of bounded variation
in (0, 1), with variation as norm, and the space €’ of continuous functions
¢in (0, 1), with | ¢ | as norm. Then, in contrast to the situation in Theorem
6B, one can show that M’ is the conjugate space of C'. This is a famous
theorem of F. Riesz (see Banach, p. 61). |

7. Continuous r-chains in £”. We generalize the definition in §1 as
follows. let « be a cellwise continuous function in £” whose values are
r-vectors. We say o is summable if | (o), is finite; equivalently, if | (a)
is finite, or, if { (a)is finite for each 2 (4, < - - - << 4,). Wesay the cellwise
continuous ‘summable function o« corresponds to the flat r-chain 4 if
(using the Riemann integral)

1 [ Do(p)ra(p)dp = X-4
\ Jpn TXNETRLS

We prove below that 4 exists; it is unique, by (V, Theorem 13B). Let us
denote it by a&; we call it a confinuous chain. We prove furthermore that

(2) &= (@

For more general theorems, see (IX, Theorem 15A) and (XI, Theorem
14A).

We use sharp X only in (1) because the proof of existence of Dy
(V, 10) is relatively simple in this case, and this suffices for the definition
of &.

For r = 0, the definition becomes that in § 1 (for n = 1). For r = n,
we may write a(p) = $(p)o,, ®, being the unit n-vector; then { Dy«
= [ ¢Dy, and (1) again reduces to (1.1) (if n = 1).

With r = n, if we allow all measurable summable «, we obtain all
flat n-chains (IX, Theorem 15B). For r << »n, we do not obtain all 7-chains;
for instance, we obtain no polyhedral r-chains, and no r-chains of infinite
mass. But we do obtain a set of chains which is dense (Theorem 7A).
If, in place of functions «, we consider additive set functions whose
values are r-vectors, we obtain in a similar manner all 7-chains of finite
mass (flat or sharp); see (XI, Theorem 11A). This generalizes Theorem 5A.

To define & in terms of «, we consider first the following special case.
Let @ be an n-cube, with an oriented r-face Q” and a complementary
(n — r)-face @'. Let « be the function equal to the r-direction of Q” in @,
and =0 outside. For each q €Q’, let P(q) be the oriented r-cube through
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g in Q, formed by translating @”. Then for any sharp r-cochain X,

(V, 10.3) shows that

(3) ‘fQ Dy (p)adp :fQ, p(q)DX(P)'“ dp dq :fQ‘ X-P(q) dg.

Let S be a subdivision of @ into cells @1, - - -, @,,, of mesh < # (App. II,
3). Choose ¢; € Q;, and set

@) A©) = D | @ | P

this is an approximation to &. We shall show that for any sharp X,

6) |, Dxtoradp —X4@) | S| X P (O] + 0D ]@

1.

For any ¢ € @;, (V, 3.6) gives
[Pl — PP <by,  b=|Q |+ |3

Hence
L Neww A NI I N B V1 e |
| Jo Dxtpradp — XA4(@) =] ) | X1Plg) — Plg)ldq |
t
P by | Q)| — | X 2Bl O
< DX Poy| Q| =] X8 |n

THEOREM 7TA. There is a one-one linear mapping of cellwise continuous
summable r-vector functions o into corresponding flat r-chains &; (2) holds.
The images & with o continuous are dense in C2, and hence (V, Theorem 14B)

also in CF,

Given o, which we suppose continuous at present, we choose a Cauchy
sequence 4, 4,, - * - of polyhedral r-chains which will define &, as follows.
Take any k and 4 = (4,, - -+, 4,). We may choose a cube @ with edges

parallel to a chosen set of axes, so that

f () < e = 1/3-2F (") all A.
E" - Q r

Since o is uniformly continuous in ¢, we may cut @ into cubes @, - * *,
@,,, and define the function 52, constant within each ¢, and 0 outside @,

so that
[ Bi—ah <2q, alll

For each Q,, (5) shows that we may define a polyhedral r-chain Bj; in Q;
so that for any sharp X, '

F [Q Dy pie; — X-Bi i = | X efm.
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Therefore, setting By = >, B}, B, = >, B}, we find

| [ Dxwtes— X:BL| < [, (D)o@ — 1) + > | [, Dxbhea — X B}

<2|X|q+> | XPem<3| x|,

(6) [ Dxa — X-B, S| X Pj2.
Take any integers k and I, £ << {. Then (6) gives
' X-(B,— B, | < 2| X /2",
and (V, 13.13) shows that
(7) ' B,— B, "< 2/2k, 1>k

Hence A = lim” B, exists. Because of (6), (1) holds; hence 4 = &
corresponds to a. If a is not continuous, we need merely choose «,
continuous so that { (o, — o) << 1/2%, find B, corresponding to «, as
above, etc.

REMARK. In the terminology of (VII, 7), we can form an approximation
to & as follows. For a sufficiently large cube @, subdivided into sufficiently
small cubes @,, choose ¢, € Q,, let (8, q) denote the sharp chain at ¢ corre-
sponding to the r-vector §, and set

8) B=>|q,

A sequence of such chains will converge to & in the sharp norm.

The mapping o« — & is clearly one-one and linear. To show that the
o with o continuous are dense, it is sufficient to show that for any oriented
r-simplex ¢ and any e > 0 there is an « such that

[ Dya— Xa| <X Pe

for any sharp X; for this gives | & — ¢ |" < e. Choose an (n — r)-cell @’
through ¢, € ¢ orthogonal to ¢. The simplexes o(g) = Ty g0 withqe@’
form a cell @. Take @’ so small that

(x(g:)s )

|olg) — 0" <¢/2, qe@Q.

Then (compare the proof above) if 8 = {5}/ @ inQand §=0in E* — @,

i f Dyf— X0

1
=1 | — Xolg) — o] | < | X 2.

We may choose a continuous function o in E" so that f(B— o) < €f2;
then the required inequality follows.
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To prove (2) (see (XI, 14.7) for the general case), we note first that for

any sharp X,
x| = | [ Dn| <X [

hence (V, Theorem 16A) | & | < § (). |
To prove the reverse inequality, suppose first that o is a constant «, in

a cube @, and vanishes outside. Choose an r-covector e, so that ’ w, | p=1
and ooy =] o o (I, Theorem 13A), (App. I, Lemma 8b), and set

D+(p) = w, in E*. Then
iX‘ = 1, [Q D‘Y'OCI == i o !0 \ Q\ = J‘E" <“>0’

Now given any cellwise continuous summable «, choose a cube @,
subdivided into cubes @,, and choose (p) (compare a proof above), con-

stant within each @, and zero outside @, so that rE" (B — a)y < €/3.
Choose X, as above so that

!1 X, ‘ = 1, le Dxi'ﬂ = J‘Q {Bo-
By altering Dy near the faces of @, and outside Q,, we may make it
— ] and J‘E" .DX;'ﬁ
arbitrarily near '(Q. Dy f. Thus, setting X = 3 X;, we obtain | X | =1

and

.[n A“> D},ﬁ“—>2j Aﬁ‘—u>f (%)g — €&

hence | & | > [(a),, completing the proof.

vanish outside, and thus define a cochain X| with X

8. On compact cochains. The first lemma below is used in the proof
of Theorem 9B; the last lemma is also necessary if the chain A4 is not
compact (see § 9). Wesay w is compact if it vanishes outside some compact
set. Say X is smooth if Dy is; X is compact if spt (D) is.

LeMmA 8a. For any compact smooth (n — 1)-form @ in B,

(1) .‘.E“ do = 0.

For let @ be a cube containing spt (w). Then by the Theorem of
Stokes,

fEﬂ do) —= fQ de = faQw =-0.

The next lemma will be considered in a more general setting in (VII, 1).
Recall the definition of | @ i¥ in (V, 10.2).



§ 8] ON COMPACT COCHAINS 203

LemMA 8b.  For any sharp function ¢ and sharp r-form ,
@ | [l|of+Or+10eH |0, < +2)[$f|of

For an easy calculation gives
(3) 24(h0) < L) | © |y + | ¢ Lo();
setting s = r + 1, we find
| pw |* = sup {| pw |o. 88y(dw)}
< sup {!quw 0,81<;6|90(0)) -}-3,8(:;3)]0)[0}

{ ¢ | sup {‘ @ !0’ 8Lo(w)} -+ sL(e) "w lo:

which gives the result.
Given the sharp function ¢ and the sharp r-cochain X, define the sharp
r-cochain ¢X by setting

(4) D,y = ¢Dy;

compare (VII, 2) and (IX, 7.6). Then (2) and (V, 10.4) give
|
l

I

. € F
.

¢ $IXF+r+ B[ X[+ | X

In (V, Theorem 13A) we showed how a flat r-cochain may be expressed
as the weak limit of smooth cochains. Here we show that any sharp
r-cochain is the weak limit of eompact sharp cochains.

LEMMA 8c. Let ¢y, ¢y, - - « be sharp functions such that, for some N and
open sets R,

®) [fF<N, $p=1inR, RCR,, |JR=2E"
Then for any sharp r-cochain X,
(7) wkl¥f¢ X = X.

We may choose the R, and ¢, so that ¢; and hence ¢, X is compact.
Suppose (6) holds. Then, by (5),

¢ X< (r+ 2N | X

For any r-simplex g, ¢,(p) = lin gif ¢ C R;; hencelim, , (¢, X 0) = X-o.
Now (7) is a consequence of (V, Lemma 13a). The last part of the lemma
1s simple.

ReMARK. The lemma holds also for flat X, using wkl” in (7). We
need merely use (VII, 2.2) below in place of (5).

We show that | 4 |* may be found with the help of compact smooth
cochains (see also (VII, 4.6)):

(8) | 4% = sup {| X-4|: X compact and smooth, | X |¥ < 1}.

L<.3t Ry and Rj be concentric spheres, we may define a smooth
function ¢y which is 1 in R, and is 0 in R}, and such that | ol =1; by
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s of an expansion of £", we may define B;, R; and ¢, so that | é; | -1

and lim £(¢;) = 0. Then (5) gives
lim sup | ¢, Y [F = | Y ¥,  allsharp Y.
Given € > 0, choose X so that | X[f< 1, Xd> A —e By (V,
Theorem 13A), we may choose 7 so that X,-4 > | A |* — 2e. Using (7),
we may choose ¢ so that
$X, A> Af —3¢ |$X,[FS[Xf+eslte

Since € is arbitrary, (8) follows.

LemMA 8d. Let the sharp or flat r-chain A be such that X-A =0 for

all compact smooth X. Then A = 0. o
This is an immediate consequence of (8); recall that any flat chain is

also sharp.

9. The houndary of a smooth chain. We say the continuous r-chain
A = & is smooth if o is smooth. We shall show how to find d4 by differen-

tiating «. Define the continuous (r — 1)-chain f§, f = d*u« having the
components, in an orthonormal coordinate system,

(].) (d*m)ll---lr_.}_ — Z 5% allm;{r—lk_

kA 2y

We do not require 4, < - -+ < 4,_;.
The following theorem shows that the result is independent of the
coordinate system used.

THEOREM 9A. With the dual operations of (I, 11), applied at each point,

(2) d*o = D'dDa.

Take any gy, -+, g,_,.1 in the natural order. Let uj, -, u,_, be
the complementary set, in natural order. Foranyi=1,---,n—r + 1,
let ui, -, u! be complementary to uy,* -, fi* "% WUp_rerr in natural
order. By (II, 8.4) and (I, 11.3),

n—r+1
* : 0
(d.@a)l‘l Hrp_ril = Z (—I)Z—IW (ga)ﬂlmﬁl‘"'-“n—r+l
n—r+1 =t
— (—1)ile . 0 i
—_ — G.Ui“'!"rﬂl'"/7;‘“'.“"_”1 —a_.ﬁl_:?‘f o
i=1
The index u; appears in ui - - - u’. Moving it to the right in both € and
o gives
—r+1
19 _ O ppitiam,
( m)nul"'nun-f+l - Eui"‘,ﬂ;_ll»‘l"'ﬂn—r+1 axnu,;
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Using (I, 11.4) gives

n—r+1

(D ADoy” = e, (dD), Z 2w = @,

Let a, denote the unit n-vector in £”. Recall from (I, 11.9) that for
any r-form @ and any r-vector function a, w'a = (wvZa)a, Hence
(compare (III, 5.1))

(3) faroz == f(wv@oz)-oco = fwv@a.

We shall use the notation
(4) D= §.
THEOREM 9B. For any smooth summable r-vector function «,

(5) 00a == (— 1) d*u.

By Lemma 8d (or an easier argument if A is compact), it is
sufficient to show that for any compact smooth X,

X [00x — (—1)Dd*a] = 0.
Set § = Dy, w = Da; these are smooth forms. By (7.1), (V, 10.16) and
(3),
X000 = dX- O = fDdX'oc = fdfvcu.
Also, since 22'n = 7 (I, 11.2),
X-Qd*a = [DyD'iDs= [£DD'do = [Evdo.

Now &vw is smooth and compact. Hence, by Lemma 8a and (II, 8.6),
X [0Ds — (—1)Dd*x] = f [déve + (—1)1&vdew]

= [d(&vw) =,
completing the proof.
10. Continuous chains in smooth manifolds. In a smooth n-manifold
M, polyhedral chains are not defined; hence we cannot set up a theory
of chains and cochains in M as in Chapter V. In place of r-cochains X,

we may use r-forms w, as in (V, 10). We shall show how, in place of
r-chains 4, one may use ‘‘continuous chains” «, define an operation wex,

and replace X-4 by fM wee. (We shall not discuss here requirements of
continuity and integrability.)
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Case I. M is Riemannian and oriented. We may let « be an r-vector
valued function in M, set (wea)(p) = w(p)-a(p), and use the Riemann

integral J.M w-a, as in (7.1).
Case II. M is oriented, but not Riemannian. Then the Riemann

integral |- ¢ of a real function ¢ is not defined. We may let « be an
M

(n — r)-form, and use fM wve; the definition in (III, 10) applies.

The artificiality of « being an (n — r)-form is due to the artificiality of
integrating over M. To make the integral look more like the scalar
product, use a polyhedral region @ in E™ in place of M; then, as in
(IIT, 3.2), using subdivisions 2g; of @,

1) [ wve=1lim D lo(p)vap)l{o} = lim > olp)E,
where, by (I, 7.1),
(2) & = a(p)r{o;},  an r-vector.
If o is continuous and the o, are small, &, is approximately the “part of &’
in ¢;. (See (XI, 13) for a discussion of this concept.)

Cask ITI. M is not assumed to be orientable; then there is no unique
expression of M as an n-chain. Let &(p) be a function of the following

sort. Given p € M, and an orientation of a neighborhood of p, &(p) is an
n-covector; it is replaced by its negative if the opposite orientation is

chosen. Now for any orientable part R of M, fRS may be defined as
follows: Choose an orientation € of R, forming an n-chain 4, let £ (p) be
the n-form which uses the orientation e near each p € R, and form fA &,

If the opposite orientation had been chosen, we would obtain

f—A be= f—A (—é = L b

Thus ’. R = L &_ is independent of the orientation chosen.

If £ is defined in M, we may define [ & in the following manner. Let

¢y> b, * * - be a partition of unity in M (III, 10), each spt(¢;) lying in an
inate sv: hen

orientahla nart 7. of M (for ingtance 1n a conrdinate
s A W Ly z A -V \‘.‘_’1 AL RN UOATLAAYS AL U ASLILS A LA AL

LAVILUDY AT, pry Ty &

J'. M § = zf Ufbié'

Suppose that «(p) is like the £(p) above, except that it is an (n — 7)-
covector depending on orientation. Then for any r-form w in M, w(p)va(p)

is like the £(p) above, and we may define f

I it

p- 21, we may call x an “(n — r)-form of odd. kind.” For r=n, a is &
“sealar of odd kind”’; «(p) is a number depending on a chosen orientation
about p, changing sign if the orientation is reversed.

wve. Following de Rham,



VII. General Properties of Chains

and Cochains

We give a variety of techniques and theorems in this chapter that are
important for further study. First we consider the multiplication of
chains and cochains by real sharp functions; also supports of chains and
cochains, and some approximation theorems. Next we consider ‘“‘sharp
r-chains at a point,” and show that there is no such thing in the flat case
for r > 0. Finally we study cohomology in complexes.

Up to the present, we have considered the space of flat r-cochains in £7
as a Banach space, without further operations. We now introduce the real
sharp functions as a ring of operators on this space. Let 4 = >a,0] be
polyhedral, and let ¢ be sharp. For each ¢, y(p) = ¢(p)a, is a continuous
function in ¢;, and defines a ‘“‘continuous chain” B, in ¢, and hence in £,
by (VI, 7); set ¢4 = 2B, We show that the definition of ¢4 is extend-
able to all sharp or flat 4. By requiring ¢X 4 to equal X-¢A4, the real
sharp functions become operators also on the spaces of flat or sharp
cochains. (A more general theory of products will be given in Chapter IX.)

The “support” of a chain or cochain is, roughly speaking, the smallest
closed set outside of which it has no effect on cochains or chains respectively.
With the help of sharp functions as operators, the basic properties of
supports are derived. We next show how to approximate to a chain 4 by a
chain 4’ which is compact (i.e. has compact support); we may make | A’
close to | A | if the latter is finite, and similarly for | 84’ |. A theorem of
the same nature is given, requiring 4" to be polyhedral.

The definition of the r-vector {4} of a polyhedral chain 4 given in
(I1I, 2) extends at once to any sharp or flat chain. We show that sharp
r-chains 4 = 0 exist whose support contains only a single point p, even
for r > 0; then 4 is determined by the pair p, {4}. One may approximate
to any sharp chain 4 of finite mass by splitting it up, writing 4 = >4,,
4,= ¢, A, with >¢,= 1 and each ¢, vanishing outside of some small
region U,, and replacing 4, by a chain B, concentrated at p, € U,, with
{B,;} = {4,}. In contrast with this, the support of a flat r-chain 4 = 0
cannot lie in any plane of dimension <r. (We prove this with the help of
results from Chapter X.) It would be valuable to find further conditions
on the supports of flat chains. For instance, a line segment P can be the
support of a flat 1-chain 4 5 0, but {4} must be a vector along P.

In (IV, C) we showed how cohomology could be introduced into a

207
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smooth manifold M in different ways, namely, algebraically (through
triangulations), or through differential forms; we showed that the result-
ing cohomology rings were isomorphic (de Rham’s Theorem). (In algebraic
topology, further ways of introducing the ring are given.) One may define
flat cochains in M (we suppose for simplicity that M is compact); using
these gives another definition of the cohomology ring. This definition may
in fact be used in a complex (§ 10); we show (§ 12) that the cohomology
ring thus determined is isomorphic to the algebraic one. In fact, one may
replace the flat cochains by “flat differential forms,” thus obtaining a
theorem like de Rham’s, for complexes; see the introduction to Chapter

IX.

We shall use | [© commonly to denote either |7 or | |%.

1. Sharp functions times chains. Let ¢ be a sharp function in £* (V, 4);
we wish to define ¢A for any sharp or flat r-chain 4 in E”*. This will be
the case s = 0 of the product X*~4" in (IX, 16), obtained by setting
¢ = Dy. The special case is more easily studied, and of especial
importance. We will consider ¢4 with more general functions ¢ in

(X1, 12). o
We begin by defining ¢o for an oriented r-simplex o. Let P be the
oriented r-plane of o, with r-direction «. Using (VL, 7) in P, set

1) do=F  pp)=¢Pa ine, ApP)=0 in P—og;

this is an r-chain in P, and hence in E*. By (VI, 7.2), applied to P,
and (V, Theorem 16C),

) g0 | = [ Gay= [

For any polyhedral r-chain 4 = >a,0,, set ¢4 = Sa,do;.
For any sharp r-chain 4, write 4 = lim*4,, the 4, polyhedral, and set

(3) A = im¥ ¢A4;

similarly with the flat norm.
The existence and uniqueness of the limit is an immediate consequence
of the following inequalities, applied to 4; — A4, (A being an r-chain): -

(4) (GAFSNQIAF,
®) AP <N QAP

The last inequality will be strengthened in (IX, 16.19). Note that if ¢ is
considered as a sharp 0-form, (V, 10.2) gives

(6) [$f< NP (r+2)] ¢ 7

}Ng):‘l‘f’!“f‘(”*‘l)ﬁw
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We give an inequality that is a consequence of (2) for A = ¢, and hence
for A polyhedral:

O [p4|=[¢i]4].

We shall prove these inequalities for sharp or flat r-chains 4, and also the
following for flat r-chains 4:

(8) | $04 — 0¢A | < r2, | A

(9) | oA | < r@y A| +|d]]04].

(a) One can prove (4) by using X-¢A4 = ¢X A4 (see § 2) and (VI, 8.5);
we give another proof below.

(b) To prove (8) for polyhedral 4, we may suppose that 4 is a simplex
0. Given ¢ > 0, we shall find polyhedral approximations H to ¢o and K
to ¢do such that

10) {lH—qbay<e/2, | K — ¢00 | < ¢/2,
Jom K| <20+

then setting B = dH — K, we will have
¢0c — 0o + B|P < | 00 — K| + | 0o — H)|" < e,

which, with the last relation in (10), will give (8) (see (V, 16.1}).

Cut the plane of ¢ into cubes of side length &, let oy, - -, o, be the
cubes in g, and let ¢,,,,, * * +, 0, be the parts of the remaining cubes in ¢,
asin (V, 7). Let p, be the center of ¢,, and set ¢, = ¢(p,). Set

i
1=1

the uniform continuity of ¢ together with (2) shows that the first relation
in (10) holds if % is small enough.

Let 7, + - -, 7, be the parts of the (r — 1)-faces of the ¢, which lie in
int(c), and let 7, - -+, 7, be the parts in do. Then if 7, is a face of o,,

(k > s), setting
t
k=s+1

gives the second relation in (10), for small enough &.

For k< s, say 7, is on o,, Positively and on o; negatively. Now

OH — K = > ($,, — dy)my.

k=s
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Setting ¢’ = €/rg,, we may suppose k small enough so that

" < |o| €, s<rl<r(|o + €)h.

Also
' gb;ck - qb&k i _-<—_ E¢ l pﬂk _pik ‘ é Q‘j,h;

hence
OH — K< D 8| m| S o8 <rg ol + e
k=s
completing the proof.
(c) Using this result gives, for r-simplexes o,

| pdo |” < rg,| ol + | 0o P < Nf;_” | o).

(d) We now prove (5) for polyhedral 4. Take any € > 0. Choose D so
that| A — @D | 4 | D| < | A|" + €. Thenusing(8)and (7)for polyhedral
A gives

| ¢4 — 34D | 4| $D| <[ $(4d — OD)| +|$0D — 94D | + | $D |
<[$/(4—8D|+ D))+ (r + ]| D|
SOo|+ @+ AP+ e,
giving (5).

(e) For a direct proof of (4) (and of (5) again), we use the following
inequality:

(1) | $T0 — Todo|= [ |$(p +v) — $(p)|dp < & 2] | 0

hence, by (V, 6.3) (which holds for polyhedral approximations to ¢o and
hence for ¢o),

(12) (T — a)F X N |v]| a|(r+ 1)

.
H

We apply this in (f).
(f) Define semi-norms for polyhedral chains by setting (with ¢ = 0

fixed)
Al = [$APIND, | A = | A FIND.

Since, using (c),

(<[ g0 NP [ S]] 07 NP =107,

i do™+1 lr _ | ¢ao.r+1 |b/NS¢r) é | g™+l I’
(V, Theorem 8A) shows that | 4|’ < | 4 |°, giving (5); since | 4 [" <TA Y,
(12) and (V, Theorem 8A) give (4). Both relations are proved for

polyhedral chains.
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(g) The definition of ¢A is therefore satisfactory in either norm; it
follows that (4) and (5) hold in the general case. Note that these give
(© denoting either ? or #)

(13) lim® ¢4, = $lim® 4, if Lm©C A4, exists (either norm).
(h) Relations (7) and (8), and hence also (9), hold for flat 4. For let
== lim® 4,, I A } = lim [ A, !, the A, polyhedral. By (13),
4, = ¢4,  $04, — 0¢4, "> $04 — 344,

A

giving (7) and (8).

(i) Similarly, (7) holds for sharp A.

The following properties are evident for simplexes; they hold therefore
for polyhedral chains, and hence also for flat or sharp chains:

(14) $(4 + B) = ¢A + ¢B, (b +p)A = ¢4 + p4d,
(15) (dp)d = $(pd),
(16) dAd =ad i ¢(p)=a,allp.

We give a condition under which the mass of a sum equals the sum of
the masses (see also (X, 12.11)):

(17) (1 + o)A |=|dAd| +[dod| if ¢y(p), ¢a(p) = 0.
As a consequence,
(18) ¢4 | < |ypd| i 0= 6(p) S wip)

If A= g, (17) is clear from (2); hence it holds for polyhedral 4. We
prove it for any sharp 4 (hence for flat 4; see (V, Theorem 14B) and
(V, Theorem 16A)). We need merely show that for any € > 0,

| A | + [ dod | <[ ($1 + )| + &
We may choose a number M and a sharp function ¢, such that
$3(p) = M — ¢y(p) — ¢o(p) = 0.
By (V, Theorem 16B), there is a { > 0 such that
|B|=|$A|—cf6 if [B—gAff<! (=123)

Set n = inf {{/N{?: ¢ =1, 2, 3}, and choose a polyhedral chain A’ such
that

[A.'——A|#<?7, |A!

< I A | + €2M.
Then
|pd" —pAFIND |4 —AF< L,
and hence ‘ B
\qS,.A’|g[q$,.A|—e/6 (t=1,2,3).
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Therefore, since A’ is polyhedral,
DI$AIS DA | + 2= M| 4

Also
MAIS | (e + A ] + ]| b4
these inequalities give the required result.

2. Sharp functions times cochains. For any sharp ¢, we may define ¢ X
for any sharp or flat X by setting

+e/2<M‘A]+e.

y

(1) $X-4 = X-44,
A being sharp or flat correspondingly. Then (1.4) and (1.5) give
@) [PXPS NP X[, [XPSNQ[XP;

see also (IX, 14.25).
From (1.7), (1.8), (1.11), (V, 7.4)and (V, 7.2) (which holds with 4 = g),
we find at once, for r-cochains X ,

3) X[ (4] X,

(4) |$0X —dgX | < (r +1) 8, X |,
() X< 14]1dX |+ + 18| X,
(6) LxSid|8x + 8 X1
Hence, by (V, 4.8) and (V, 7.8), with either norm,

(7 ’¢X|O:<;|¢||X'|O+(7‘+1)E4,1X[,

again giving (2).

We prove that (VI, 8.4) follows for sharp X from the present definition.
Take any point p, and any r-direction «. Choose 0y, Oy, * ** to define
D x(po)-, as in (V, 10.5). Since, by (1.2),

1 $o; — $(py)s; I < L, diam (Gi)l 0; % ’
we find
Dqsx(po)'“ = lim (X'?So'i)/l 0; ! = ¢’(Po) lim (X'O'i)/| g; !
- d’(pO)DX(pO)'a:
which gives the result.
Clearly (1.14-16) hold for cochains,
We prove that if 4 is a continuous chain, defined by «, then ¢4 is

defined by da; that is, using (VI, 9.4),
For take any sharp X. Then (1), (VI, 7.1) and (VI, 8.4) give

X-¢p®a = ¢X-& = fDéX'“ == fDx'¢¢ = X-Qpua.
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3. Supports of chains and cochains. We defined the support of a
polyhedral chain in (V, 1). We now give more general definitions.

The support spt (4) of a flat or sharp chain 4 is the set of points p such
that for each € > 0 there is a sharp cochain X such that

(1) X-4 #£0, Dy(g) = 0 outside U _(p).

Say A is compact if spt (4) is. The support spt (X) of a flat or sharp cochain
X is the set of points p such that for each € > 0 there is a simplex ¢ such
that

(2) Xo#0, oCU/p)

We prove that the first definition coincides with that in (V, 1} for 4
polyhedral. Write 4 = >a,0,, the ¢, non-overlapping and the a, 7 0;
we must show that spt (4) is the union @ of the ¢; under the present
definition. Using (V, 10.3), it is clear that spt(4) C Q. Now take any
p €Q; say p € ;. Take any € > 0. With the method of (V, 12), we find
easily an X with spt (Dy) C U (p), X-0; %0, X'0;, = 0 (j 7 1); now
X-4 #£0.

Supports are clearly closed sets. We say a chain or cochain is in & set
@ if its support is in §.

Recall the definitions of car (¢), spt (¢) (App. III). Any sharp function
¢ defines a 0-cochain Z; clearly spt (¢) = spt (Z). More generally,

(3) spt ( X) = spt (Dx), X sharp.

We shall prove the following properties, all (except (7), if 04 is not
defined) holding in both the flat and sharp norms; ¢ is always sharp:

(4) A=0 if spt(4)=0,

(5) X=0 if spt(X)=0,

(6) X-A4=0 if spt(X)Nspt(4d)=0,
(7) spt (d4) Cspt (4),

(8) spt (dX) C spt (X),

(9) spt (¢4) C spt (¢) N spt (4),

(10) spt (¢X) C spt () N spt (X),
(11) ¢4 =0 if car(¢)Nspt(4)=0,
(12) ¢X =0 if ecar (¢) N spt(X) =0,
(13) ¢4 =4 if ¢(p)=1inspt(4),

(14) $X =X if $(p)=1inspt (X).
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To prove (4), it is sufficient to show that X-4 = 0 for any compact
sharp )2, by (V1, Lemma 8d). Each p € Q@ = spt (X) is in some neighbor-
hood U(p) such that ¥4 = 0 for any sharp Y with Dy = 0 outside U(p).
A finite number of these neighborhoods, say Uy, ---, U,, cover @.
Define the partition ¢, ¢y, ** ", ., of unity as in (App. 111, Lemma 2a).
Then ¢4(p)Dx(p) = 0 for all p, so that $oX = 0 (see (VI, 8.4)). Now

X=(>¢)X= X+ +duX,
and Dy x = ¢,Dx = 0 outside U,. Hence
XA = Z(qs,X-A) = 0.

To prove (5), we show that X-¢ = 0 for all simplexes 0. Eachpe o
is in some neighborhood U(p) such that X'+ = 0 for all + C U(p). We
may find & subdivision Yo, of o such that each ¢, is in some U(p); then
Xo= >X0,=0.

To prove (9), take first any p not in spt(¢). Then ¢(g) = 0 in some
Up). Take any sharp X such that Dy = 0 outside U (p). Then ¢X = 0,
by (VI, 8.4), so that X-¢4 = ¢X-4 = 0; hence p is not in spt(¢4). The
proof of spt (¢4) C spt (A4) is similar,

Relation (10) is clear in the sharp norm. In the flat norm, we prove
spt (¢X) C spt (X) as follows. Take any pnotinspt (X). Say X7 = 0 for
all + C U/(p). Take any ¢ C U (p). Given { > 0, using a simplicial
subdivision >o; of ¢ and an approximation ¢’ to ¢ which is constant
interior to simplexes gives a polyhedral chain B = >b,0; such that
| B— ¢o| < { Now X-g,=0, hence X-B =0, and

| Xdo| = | X(do— B)| < {]X|;
therefore ¢X-0 = X-¢o =0, and p is not in spt ($X). The proof of
spt (¢X) C spt (¢) is similar but simpler.

We could prove (11) and (12) with spt (¢) instead of car (¢), then a
correspondingly weakened form of (13) and (14), and the remaining
properties, without the function ¢, to be described; but the stronger

properties, as well as the function ¢,, are of interest.
Define a numerical function y,(#), for > 0:

(15) =10 if —p<t<,
t+qn if t< —n

For any real function ¢, define ¢, by

(16) b, (D) = Yy (B(D))-

Clearly o '
(17) spt (¢,) C car (¢) if ¢ is continuous.
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For any sharp ¢, sharp or flat X, and simplex ¢, we have
(18) lim ($,X-0) = lim (X-¢,0) = X-¢o = ¢X-0.

n—0 n—0

To prove (12), use (10) and (17), giving
spt (¢, X) C car (¢) N spt (X) = 0;

5), ¢, X = 0. By (18), ¢X-0 = 0 for all o, so that $X = 0.
To prove (14), set wp(p)==1— ¢(p). Then y is sharp and
car (y) M spt (X) = 0, hence pX = 0, and

$X = ¢X + yX = (¢ + p)X = X.

Note next that | ¢, | < | 4], 24, < L4, and hence fo; < N®D. Hence,
by (2.2), letting © denote either norm,

[$X|CS ND[ X[ NP X[
This, with (18), shows that
(19) wkl® ¢ X = ¢X.

n—0

To prove (11), note that, by (9) and (17),
spt (¢,4) C car (¢) N spt (4) = 0,
and hence ¢, 4 = 0. Because of (19),
X-¢4 = ¢X-4 = lim ($, X" 4) = lim (X-¢,4) = 0

7—0 n—0
for all X (flat or sharp according as 4 is); hence ¢4 = 0.

Relation (13) follows from (11) as (14) did from (12).

To prove (6), suppose first that ¢ = spt (X) is compact. Then (App.
111, Lemma 1a) there is a sharp function ¢ which equals 1 in  and vanishes
in a neighborhood of spt(4). By (14), $X = X, and by (11) or by (9) and
(4), 4 = 0; hence

XA=¢X-A=Xd¢4=0.

For general X and 4, choose functions ¢, 962, . in (V
Then ]’\nnnnan of +h94— lamma and the annrl{ w g ‘t

- AN AM AV/IRIIIIGHN Ueise Uily A vwilales

, Lemma 8c).
nd what h
just been proved,
X-4 = lim (¢$,X-4) = 0.
1— 0

To prove (8), take any p not in spt (X). Choose € > 0 so that
X7 =0 for any r-simplex = C U(p). Then for any (r 4 1)-simplex
o0 CUp), dX-0 = X-0o = 0; hence p is not in spt (dX).

Finally, to prove (7), take any p not in spt (4). Choose € > 0 so that
U (p) N spt (4) = 0. Take any sharp {r — 1)-cochain X such that
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Dy = 0 outside U, (p). Then by (8), spt (dX)N spt (4) = 0, and by (6),
X-04 = dX-4 = 0; hence p is not in spt (94).
We strengthen (6) in the sharp case:

(20) X-A=10 if car(Dyg)Nspt(4) =0 (sharp X, 4).

Write D = = % Set 1
rite D5 (p) = o(p) 2(1) w;(p)e”. Set (see (16))
Oi(p) = yalon(P).  Dinlp) = &(p) = > w(p)e’
)
Then clearly wkl¥ X7 — X. Also spt (X") N spt (4) = 0, and hence X-4

= lim (X"-4) = 0.
From the definition of continuous chains (VI, 7) it is clear that
(21) spt (&) = spt (a).

We prove (compare (X1, 13.6))
(22) |4+ B{=|4|+|B| if spt(4)Nspt(B)=0.

Suppose first that 4 and B are compact. Then (App. III, Lemma la)
there is a sharp ¢, 0 < ¢(p) < 1, which is 1 in spt (4) and is 0 in spt (B).
Now (1.17), (11) and (13) give, if y(p) = 1 — ¢(p),

A+ Bi=[($+y)(4+B)|=|¢d+B)|+|p4+ B)|
—|4] +|B]
In the general case, the proof is reduced to the compact case with the help
of Theorem 4A below. Note that if one of | 4|, | B| is infinite, so is
A+ Bl
We prove (see also {XI, 12.5))
(23) ¢4 | = | (y4 | if | 4 | is finite. _
With ¢, as in (16), let ¢,7 and ¢, be its positive and negative parts; then
y = ¢ — &7, ()= + ¢, . Sincespt (¢;7)Nspt ($,") = 0, wehave
bA =TT Al (A= (b Al + g 4] = [($4

Since | ¢4 — ¢, A [ | — ¢, || 4| < | 4] ete., (23) follows at once.
We give the relations (using either norm)

(24) ¢$X-4=0 if $(p)=0 in spt(X)Nspt(4),
(25) |¢X-4| <N |X|| 4] if | $(p)| < N in spt (X) N spt (4).
To prove (24), take any » > 0. By (10) and (17),
spt (¢,X) N spt (4) C car (¢) N spt (X) M spt (4) = 0;
by (6), ¢,X-A = 0. Now by (19), $X-4 = 0.
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To prove (25), let y(p) be ¢(p), N, or —N, according as | $(p) | < N,

¢(p) >N, or ¢(p) < —N.  Then 6&(p)=¢(») —y(p)=0 in
spt (X) N spt (4), hence 6X-4 = 0, and

[$XA|=|pXA[< || [ X[[4|S V| X]|A].
Finally (for flat or sharp 4 and X),
(26) ¢4 | S N |A| if |[¢(p)| <N inspt(4),
(27) ’q&X’éNlXI if |qS(p)!§N in spt (X).

For take any X; then by (
and similarly (27).

(26) follows,

4. On non-compact chains, We shall show that most of any chain lies
in a compact set. This will generalize (VI, 4.7).

THEOREM 4A. For any flat chain A and any € > 0 there is a compact
flat chain A’ such that

(1) spt (4') Cspt (4), |4 —A4P <e
(2) | A" — A <e if|A]is finite,
(3) (A" — A)|<e if |A|and| 04| arefinite.

This is true in the sharp norm also if we omit (3).
Moreover, if a number N is given, we may find a compact set ) such that
for any compact sharp ¢ with

(4) 0<¢(M=1  ¢P=1inQ L, N,
we may use A" = $A.

To obtain (1), choose B polyhedral so that (if dim (4) = )

|B—A|° <¢N, N =2+ (r+1)N  (either norm),

and set @ = spt (B). Then for any ¢ satisfying (4), ¢ B = B, by (3.13),
and (1.4) and (1.5) give
¢4 — A{O<’¢A B)|I°+|B—APL (ND +1)| B—4|° <e.

If | A| is finite, choose { < € so that | 4, — 4 |© < { (either norm)
implies | Al‘ >| 4| — € (V, Theorem 16B). Choose B and @ as above,
using { in place of e. Then with 4" = ¢4 as above, (1) holds; also
¢4 | >4 | — €. Setting y(p) = 1 — ¢(p) and using (1.17) gives

4 — 4| = [pa| = | 4] —| 4] <

Suppose both | 4 | and | 64 | are finite. By what has just been proved,
applied to both 4 and 04, we may find a compact set @, such that for any
¢’ satisfying (4) with @,
(5) | #'4 — A < ef2rN, |$04 — 34| < ¢f2.
Let ¢, be such a function. Set

@=spt(d), wP)=1—4¢(p), A, = pA.
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& satisfying (4); then (1) and (2) hold with 4" = ¢4. Set

i

Y(p : i — &(p)- By (1.8) and (5) with ¢, since £, < N,
. w4, — op4d, { <L, I A4, [ < €/2.
Since car (y) M spt () = 0, (3.7), (3.9) and (3.11) give

pod = yd(d + p)d = y04,,  Opd = Oypd,.
Also
$04 — 0dA = —(p0A4 — dy4d),

since ¢ + == 1; hence
| $04 — 04 | = [ pod, — Oypd;| < €f2.

Combining this with the last part of (5), with ¢, gives (3).

Remark. If | 4| is finite, we may omit the hypothesis £, < Nin (4)
in obtaining (1) and (2) (in this connection, see (XI, 12)). For, first find
@, so that the first part of (5) holds, using N = 1, and choose a correspond-
ing ¢,. Set @ = spt (¢;), v, = 1 — ¢,. Now given ¢, define y as before;
then 0 < p(p) < y4(p), and (with either norm) (1.18) gives

p4 [P |p4 | S |pd| <e

ExaMpPLE (a). We cannot omit the hypothesis £, < N in obtaining (1).
To show this, let B, be the oriented interval (¢, ¢ + 1/2%) on the real line,
and set B==>B, 4= 0B. Given any compact ¢, we may find a
compact ¢ satisfying the first two parts of (4), with ¢(:) =1 and
¢(i + 1/2%) = 0 for some i. Then clearly | 4 — ¢4 |F=|4 — ¢4 > 1.

ExampLE (b). We cannot omit the hypothesis that ’ A ‘ is finite in (3).
To show this, construct a 1-cycle 4 in the plane E? as follows. Let @; be
the square with corners (427 4-2¢). Let B; be the 2-chain formed from a
set of 22! narrow rectangles, each stretching from the bottom of @, to the
top, evenly distributed over @;, of width 1/24; then | B, | = 2/2*. Let C;
be formed from a similar set of rectangles, crossing @, in the other direction.
Set,

B—>(B,+C), A=23B

Then 94 = 0. But for any ¢ not identically 0, clearly | ¢4 | is infinite,
and if ¢ is smooth and not constant, we see easily that | 9 ¢4 | is infinite.

Using (1) in the theorem, with either norm, we may give an immediate
proof of

(6) |4 |© = sup {X:4: X compact, xX|°<£1y,

and hence of (VI, 8.8) and (VI, Lemma 8d), as fﬁﬂOWS-I Choose ¢;using
¢ = ¢/2, choose ¥ so that | Y |© < 1 and Y-4= | A|° — ¢/2, and set

X = ¢Y. We find at once X-A —;—1—’-4,A ~> 1 A [o .
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5. On polyhedral approximations. We shall prove a theorem similar
to Theorem 4A, finding a polyhedral chain. For the proof of (5), we need
the second lemma below.

LeMma 5a. Given the polyhedral r-chain A, the sharp function ¢, and
€ > 0, there i3 a polyhedral chain B with spt (B) C spt (4), such that
(1) |B—¢4|<e |0B—¢od|<r, 4|+ e

Say 4= Ya,0, Set ¢ = 2¢> |a,|/3, and choose H; and K, to
satisfy (1.10), using ¢, and €. Set B= >a,H,; then (1) follows at once.

REMARK. The proof shows that we may require B to lie in an arbitrary
neighborhood of spt (¢).

LemMMA 5b. Given the polyhedral r-chain A and n > 0, € > 0, there
18 a polyhedral chain D such that

(2) DCU,(spt(4), |4—23D|+|D|<[L+(r+jml]dP + e
Take { < % so that
(r+ D] APIL<(r+1)[A][n+ ¢4
Choose a polyhedral chain D’ such that
|A—3D' |+ |D'|<|AP+ €, € =¢8+ 20+ 1)

Define ¢ = ¢, as in (V, 12.3), so that ¢(p) = 1 in @ = spt (4), ¢(p) =0
outside U,(Q), and £, = 1/{. Using D', ¢ and ¢, choose D by the last
lemma and Remark. Then

| D—¢D'| <€, |0D—¢aD'|<(r+1)2|D'|+¢.
By (3.13), ¢4 = A. Now |
|A—28D|+ | D|< |4 —aD)

+| 0D — ¢3D’ |
+|D—¢D'| +| 4D’
<|4—0D +(r+ 18| D'| + 2¢ +| D'
<[+ @+1)/5(|4—0eD |+]| D)+ 2¢
S+ @4 DL 4P+ 3¢/4,

P N PP 1y 1
WILICIL glVUB \4‘}.

TuroREM 5A. For any flat chain A, any neighborhood U of spt (4), and
any € > 0, there is a polyhedral chain B such that

(3) spt (B) C U, |B—A|b<€,
(4) |Bi<|A|+e if |A|isfinite,
(5) ‘aB’<iaA|—|—e if |A’and|aA|areﬁnite.

The same holds with the sharp norm, omitting (5).
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The proof is the same with either norm; we use the flat norm. Because
of Theorem 4A, we may clearly suppose that @ = spt (4) is compact.

Say U2n(Q) C U. .
To prove (3), choose a polyhedral chain B, such that

| B, — 4 P < €' = €/2[1 + (r + 1)/n].

Define ¢ = ¢, as in the proof of the last lemma. Set B, = ¢B,. Since
$A = A4, we have

| By— AP =|$(B, —A) P < NQ| B — A|P < ¢f2.

If B, = >b,0,, then B, = >b,do;. By approximating to ¢ by a cellwise
constant function ¢ in each ¢,, we obtain a polyhedral chain B in U with
| B— B, | < ¢/2; then (3) follows.

Suppose | 4 | is finite. We may then suppose | B, | <<| 4| + € in the
proof above. Since | B,| < | B; |, and we may clearly take | B| <| B,|,
weobtain}Bf<,A} + e

Suppose finally that | 4| and | 84 | are finite. Choose ¢ so that
(2 + r/n)2¢’ < e. By the proof just given, we may choose polyhedral
chains H and K in U, (Q) so that

H—AP<¢, |H|<|A|+e¢,
|K—04P<¢, |K|<|od]+¢.
Now |90H — K ” < 2¢/, and by the last lemma, there is a polyhedral
chain D in U such that
|0H — K — 0D | +|D| < (1 + r[n)2¢ + €.
Set B= H — D. Then
B AP<|H—4]+|D|<e
BI<|H|+]D|<|4] +e
|0B|<|0H — K — 0D |+ | K| < |04 | + ¢,
completing the proof.

6. The r-vector of an r-chain. Recall the definition of the r-vector
{4} of the cellular (and hence polyhedral) r-chain A in (III, 2). We
extend this definition to all sharp chains (and hence flat chains, see
(V, Theorem 14B)), by setting

(1) {4} =lim {4,}  if 4 = lim* 4,, the 4, polyhedral.
We show that the limit exists and is unique, and that

(2) | {4} o= |ATF.
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First we prove (2) for polyhedral 4. Given € > 0, write 4 = >a,0,,

and choose the o, and »;, and D so that

Z’a;-[l}-a;vai +|ZaiT,}£a,—aD’ +IDi<|AF +e

By (ILI, Theorem 2B), {9D} = 0. Itisclear that {70} = {¢},and | {B}|,
< | B | for any polyhedral B. Hence

A=—Da(T, 0,—0)+ (DaT, a.—aD) + D,
;{A}|0<{Za:ﬁ o— 3| <[4 +e

Another proof runs as follows. Set « = {4}, and choose w, so that
jwo [0: 1, wya= ’ oc!o. Define X by Dy(p)= w, (all p); then
| X |¥=|X| =1, and (I, 4.1) gives

XA = og{d}=| {4}]o
Since i XAl g l # i A I# (‘)\ follows,

haaaN 4 W &4 aXFaals

Because of this (1) is permlss1ble and (2) holds for sharp 4.
Relation (III, 4.1) now extends to

(3) XA=uwy{d} if Dx(p)=wy, alp (A sharp).

THEOREM 6A. ®(4) = {4} is continuous in C}.
This follows from (2).

7. Sharp chains at a point. We say the sharp chain 4 £ 0 is af the
point p if spt (4) = p. Such a chain we call atomic; a finite sum of such
chains we call molecular. There are no flat r-chains £ 0 at p for » > 0;
see § 9.

THEOREM TA. For any point p and any r-vector o % O there is a sharp
chain A at p suck that {4} = «.

We may suppose « is simple. Let ¢, be an r-cube with p as a vertex
and {oo} = a. Let o, be the same cube, contracted towards p by the
factor 1/2%; set A, = 27¢,, 4 = lim¥ 4,. Say o, has side length 2/2*. We
may cut o, into 27 cubes a,,, and find vectors v,,, such that

Oue=T,, i1, ’ Vg [ < dj2', d=rZp[2.
Since ’ Ui+1! = A"[270+ D (V, 6.3) gives

Ay — A, = Qri(zr(’tﬂ z Oy) = 2" Z(Gz+1 z+1)

2n‘+r1 01 ‘ d/?i < pl2pre1
r+1 = (r - 1)2i41°

| A — 4, <
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“ovine the existence of 4. Since {4} = a, {4} = a. Clearlyspt (4) = p.
awTEID Y .
Turorem TB. There is a one-one correspondence between sharp r-chains at

p and r-vectors = 0, defined by A — {4}. |
Becanse of the last theorem, we need merely show that if {A} = 0, then

A = 0. Take any sharp X. Define X, and Y by
Dx (9) = Dy(p), allg; Yy=X— X,
Then Dy (p) = 0, and by (3.20), Y4 = 0. Hence, by (6.3),
X-A=XyA = Dx(p){4}=0, A4=0.
Taeorem 7C. For any sharp A ot p,
) XA=Dypr{d), |AF=|4]|=|{8

The first relation was proved just above. Because of (6.2), we need
merely show that for any ¢ >0, | 4 | < | o |0 + ¢, where o= {A}
Suppose first that « is simple. By the last theorem, we may express 4 as
in the proof of Theorem 7TA. Now

a1} I a1 t | | | 2l - | b |
| Ai| = (Ao | = 10| =], [4d][S][a]=]|%]p

|
For general «, choose simple r-vectors «; by (I, 13.1) such that

oz_—-Za,;, Zjoc,-[<la|0-i—e.

Choose 4, at p so that {4,} = «;, by Theorem 7A. Then {34} = Sa;=a,
and hence 4 = > A4, By the proof above, | 4;| < | «,; |. Hence

A4S | <[aly +e
We shall give a theorem about the approximation to sharp chains at p.
We prove first

) | AR [ {4} o+ 4ifr +1) if spt(4) CULp).

First suppose 4 is polyhedral. Let N denote the right hand side. It is
sufficient to show that | X-4 | < N | X ¥ for any sharp X. Set

(@)= Dx(q), (9 =o(p), alg
Using (6.3}, we have
X4 = [ oy dg + |, o@) — oo@) da,
[ o) dg| = | opr{a} | S| o) o {4} o< [ X ] {4)
[, 10@) — o4@1da| < 2yw)e| 4| S| X Feldjir 1),

which gives (2). For general sharp 4, (2) follows from the above, using
Theorem 5A and (V, 16.1).

0
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Tueorem 7D. Let Ay, 4,, - - - be a sequence of chains such that for some
N and «,

3) |4;|<N, spt(4)C U..(p) e, 0, {4;}—>«a.
Then
(4) A = lim¥ 4, exists and {4} = o.
We may suppose that €; < ¢, for j > ¢. By (2),
(A, — A FS [ {4} — (A} o +2Nef(r +1) i i<

hence 4 exists. By Theorem 6A, {4} = «.

ExampLE. We cannot replace | 4, | < N by | 4, ¥ < Nin (3). Forlet
o; be an (r 4 1)-cube of side 1/2%, so that |o;| = 1/20+1¢ | 9o, | =
2(r 4 1)/2". Set A, = 2"tVigg,. Then

| 4, |1F < 20 ’ 0; l. =1, {4:;}=0,

and if we choose the ¢, to be parallel but with alternating orientations,
lim* 4, does not exist.

8. Molecular chains are dense. We prove

TrEOREM 8A. The molecular r-chains are dense in C¥,

We need merely show that given a simplex ¢ and € > 0, thereare chains
4,,--- 4, at points py,---,p, such that |¢ — J4, < e Write
o= >0, the o, of diameter <{ = (r 4 1)¢/2 o‘l. Choose p, € o;, and
let 4, be the chain at p, with {4,} = {0,}. Then (7.2) gives

lAi—oiiﬁé—c(lAi|+{ai )/(T+1):2§[0}'|/("+1):

and the inequality follows.

We give more precise information for chains of finite mass:

TueorEM 8B. Let 4 be a sharp r-chain of finite mass in E*. Then for
each € > O there is a compact set ¢ and a number { > 0 with the following
property. Let ¢o, ¢y, -+, ¢, be sharp functions forming a partition of
unity, such that

D P+ dp)=1 inQ, diam(spt(p))< ¢ (E=>1).
Let A; be the r-chain at a point p, € spt (¢,), with {4,} = {$:4}. Then

o (Sacafee Sial=[3a
=1

Choose @ by Theorem 4A and the following Remark, using €/2; set
{ = (r+ 1)e/4| A|. Now let the §, be given. Then (7.2) gives

|4 — A P U A, +| g ir +1) < 2| b4 |Jr - 1)

<|4].
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17) and (1.7), 5| $:4 <4 |. By the choice of @, | (¢, + * ** + ¢,,)4
— 4 |# < €/2. Now

< Syl | < ¢f2
S, - g S22 | sl + D o2
i=1 i=1

and the first part of (2) follows. Also, using (3.22),

\ZAilZZMléZM,AIglA\.

As an application, we show how the mass of a chain may be approxi-
mated by sharp norms of “parts” of the chain. See, in this connection,
(XI, Theorem 13A).

TaroreM 8C. In the last theorem, we may choose @ and { > 0 such that,
with the ¢, as before,

DldAf>[4]—«

Choose {' < €/2 such that | B— 4 [ < (" implies | B| > | 4 | — ¢/2
(V, Theorem 16B). Now choose @ and { by the last theorem, with {’ in

place of e. Then with the ¢; as before, some inequalities above give

| A > | A, [F—20]¢A|lr +1)=|4,|—20]|$A|/(r + 1),

2"’5"‘4 =>4,

9. Flat r-chains in E"~* are zero. We prove (using Chapter X), in
contrast with the last section,

TaroreEM 9A. Any flat r-chain A of E™ with spt (4) C E*® is zero of
§ <. ‘

Suppose E* is the (xy, -, x,)-coordinate plane. With y, as in
(3.15), set

and

—2C}A|/(r+1)>(|A|——e/2)—e/2.

(1) oldy, ooy ®,) == (@, =+, Ty V(@ 1)y 05 Vy(®a))-
Then
@ =L [L@—p|<m  [OE)CE

and f, maps polyhedral chains into polyhedral chains. (Apply y, to each
coordinate in turn.) Also

3) |f(B)P<|B|’,  any polyhedral B,
which follows at once from the relation (for any polyhedral D)

|£,(B) — (D) | + | foD) | = |£o(B— 3D} | +|f(D);
<|B—9D|+|D|.
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Suppose 4 #0. Then |A|”=a>0. Let e=a/4. Choose a

polyhedral chain B with | B — 4|” <e. By (2) and (X, Lemma B5a),
| f(B)— B < nnf| B|+|0B|) <e

for 5 small enough. By Theorem 54, we may choose a polyhedral chain B’

such that

spt (B)CU,(B*), |B —A}<e.
Now f,(B’) is a polyhedral 7-chain in E*, and hence is 0. Also | B — B’
< 2e¢; applymg (3) to B — B’ gives

f,B|"=|f(B~— B) b < Ze.

"< |B— B
Hence
APSA—BP 4 |B— 1B +|1,B
a contradiction, proving 4 = 0.
We prove a partial converse of (V, Theorem 16C), from which the last

theorem follows at once. (This fails for the sharp norm; see § 7.)
THEOREM 9B. Let E’ be a subspace of E, and let A be a flat chain of E

m’lﬂm d e Ve 'Y "II) Vada s ] I’I)Mﬂl; O ﬂz)ﬂflm n"‘. F,

with spt (4) C E'. Then A may be considered as a chain of E

We follow essentially the proof of the last theorem. Given e, = 1/2¢,
find B, n;, B}, with B} =f, B, CE'. We do not have B} = 0; but
A—Bfy < 4/2" Hence lim}, B¥ = 4. Now By — B* b =| B¥
— B* ""E. — 0 (see (V, Theorem 16C)), and limt, B¥ = A* exists. But 4 is
premsely the chain 4*, considered as a chain of £ (see the theorem quoted).

10. Flat cochains in complexes. Let K be a complex {(App. II, 2).
Let o be a cell of K; its space P(o) is an affine space, which may be made
Euclidean by the choice of a metric. A flat r-cochain X in ¢ is a linear
function X-4 of polyhedral r-chains 4 in g, such that | X-A | < N [4 P
for some N; this condition is independent of the metric chosen. With 7 as

n (V, Lemma 2b), we could extend X through P(c¢) by setting X-4 =
X 7A; then | X j" is unchanged As noted in (V, 3), we can find [ A fb by
using polyhedral (» + 1)- », using chains
in ¢ only.

A flat r-cochain X in K is a set of flat r-cochains X (o) in the cells ¢ of
K, such that if (o 18 a face of g, then the part of Y{n’\ m gy equals X(Gl);
that is, X(0)'4 = X(0,)-4 for po]yhedral chams A in o;. We shall use the
same symbol X for all the X(o) when there is no need to distinguish
between them. A polyhedral r-chain A in K is a sum ZA of polyhedral
chains in the cells o, of K; set X-4 — > X(o; The result is
independent of the chmce of expression of 4.

Suppose that K’ is a subdivision of K. Let X be a flat cochain of K.
For each cell ¢’ of K’, choose a cell ¢ of K containing it; set X'(o') =

X(o)in ¢’. Thisis mdependent of the choice of o. Thus a flat cochain X’

i-
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in K’ is determined. Conversely, let X’ in K’ be given. Any polyhedral
chain 4 in a cell ¢ of K may be represented in the form >4, where 4, is
in a cell ¢) of K'; set X(0)4 = 3> X'(0;)4;. The result is clearly
independent of the representation of A, and determines a flat cochain
X(0)in o; these give a flat cochain X in K. Thus a one-one correspondence
between flat cochains X in K and flat cochains X’ in K’ is determined; we
may now speak of a flat cochain X in a polyhedron P. If 4 is a polyhedral
chain in P, we may define X-A4 with the help of any subdivision of P, and
the result is independent of the subdivision.

Lemma 10a. A flat cochain in the subcomplex K, of K may be extended
to be a flat cochain in K.

Tt is sufficient to show that if X is defined in the boundary do of a cell
o, it may be extended through &. Choose p, €int (5), and set p, =
(1 — ¢)py + tp, p € 0o. Let § be the subset of ¢ containing those points
p, for which ¢ > 1/2. Set =(p,) = p; this maps ¢ into do. For any
polyhedral chain A in @, w4 is clearly a polyhedral chain in do; setting
XA = X-wA defines a flat cochain X, in @. Set &é(p,) = 2t — 1 in Q,
and X = ¢X, in @; this is a flat cochain in @ (see § 1). Note that X is
unchanged in do, and X = 0 in the subset of @ where ¢ = 1/2. Setting
X = 0in ¢ — @ completes the definition of X. That X is flat is easy to see.

LeMMA 10b. Let X be a flat r-cocycle (r > 0) in the bounded star shaped
subset Q of K. Then X is a coboundary there.

REMARK. @ might be a cell of K, or the star of a cell, for instance.

Say @ is star shaped from p, Set

(2) Y-4 = X-J(p, 4}, A polyhedral in Q.
Using (App. IL, 10.3) and the fact that dX = 0, we have
dY-B= Y-0B = X-J(p,, 0B) = X-[B — d0J(p,, B)]= X'B,

anddY = X in @. Clearly | Y | and | dY | are finite, and hence Y is flat in
Q (see the proof of (V, Theorem 4A)).

We now consider differential forms in K. An r-form w(q) in K means a
set of r-forms w(o; ¢) in the cells ¢ of K, with the following property. If
0, is a face of o, then for ¢ € 0y, w(0; ¢):a = w(oy; ¢)-« for all r-vectors o
in g;; thus the part of w(o; ¢) in o; equals w(o;; g). We can define flat -
forms in K as in (IX, 6); these are needed only in the consideration of

products in Theorem 12A below.

11. Elementary flat cochains in a complex. In a complex K, we have
flat cochains X as in § 10, and also algebraic cochains z (App. IT, 6). Any
flat cochain X determines an algebraic cochain ¢X, as in (IV, 27.1), by
the formula

(1) ‘le'O'-—"—‘* X-0;
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thus pX has the coefficient X-¢ in the oriented cell ¢ of K. Clearly
(2) dypX = pdX.

Conversely, we shall define a linear mapping ¢ of algebraic cochains x
into flat cochains ¢x = W, such that the following properties hold (with
1% and 1 as in (IV, 27.6)):

(3) W, = 0 outside St (g),
(4) Wy = dW,,
(5) yor = yW, ==,
(6) W1

To relate this section to (IV, 27), we consider also certain differential forms
in K corresponding to the W,. The formulas (9) and (12) had been studied
by the author in 1947.

In the definition of W, we use the ratio of two r-vectors in an affine
space, in a certain case:
(7) a/ff=a if a=af and F£0 issimple.

We must define the flat r-cochain W, (¢ = ¢") in each simplex ¢’ of K.
If ¢ is not a face of o', set W, = 0in o’ (i.e. W_(¢’) = 0 in the notation of
§ 10). If it is, say
(8) O=1DPo"" " Pp O”:po" Pyt Py 0'”=p1'+1.'.ps if s > T
set

— {q() e qrpr+1 tt .ps}’
{pﬂ o 'prpr—{»—l vt 'ps}

Using joins, we may write this in the form

9 Wy.p, (2o q) , G 4. Cpy Py

(10) W 003 _ 1) o
{0} {o0"}

To show that this is a flat cochain in K, take any cells oy, g, of K, 0y a
face of 0,; we must show that the definitions of W, in o, and in ¢, agree
in ;. If o is not a face of g,, then W, =0 in ¢, and in ¢, Suppose
0y = o' as above, but ¢ is not a face of ¢;. Say o, Co*=1p,- "
Pr_1Pr11 " " " Dy Then for any 7 == g, - ¢, C 0,, the numerator in (9) is
0, since dim (¢*) < s (r¢” is ‘degenerate); hence W, = 0, using the
definition in ¢, as it is, using the definition in ;. Now suppose ¢ is a face
of 0;. Then the property follows from the formula

(Il) {% e Qrpr+1 e ps—l} — ;{QO e q'rpr+1 e Ps}
{Po B 5 2 B ps—-l} {po Y PrPryy Ps} ’

qO"'QrCPO"'ps—I'
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To prove this, let 4, and @, denote the two ratios. Then (see (III, 1.2}))

(g3 — Qo)V" " V(Pry1 — gV V(Pyq — Py_g) =
@y (P — Pl " V(Dem1 — Po—s)s

multiplying both sides by p, — D1 shows that ¢y =a,, Ifs=17r 41,
mlﬂtlp]y by Pry1 — pr') ]

Property (:":r) holds; since W, o = 1, (5) holds also. Using (9), (App.
11, 10.3) and (III, 2.3) gives, for g€ 0 = py " * " Py,

[Wwgl{o} = > (—1¥{gpo*B:- P} = {(g, B0)} = {o};
i=0

hence (6) holds. _

We prove (4) in ¢’, for x = ¢. Take any 7= ¢, * * ¢,y in o'. Since
{0(r0")} = O (irrespective of 7¢” being degenerate), using the notations
above gives

r+1

AW, 7o'y = [ D~y de )| {0}

Q

~3

= (ﬂl)i{qo e q'z R’ YRy L T ps}

1=0
s
— z (_l)k{qo Q1 Proi f’k . 'Ps}-
k=r+1
Also, by (App. II, 7.5),
L
Wior = PiPoePr

k=r+1

comparing these formulas gives (4) for x = o and hence for any .
Using a metric in ¢’, (III, 1.3) and (I, 12.14) give

| Wo'flgr!(s_r)!qu‘fﬂ ri(s —r — 1)} ¢" |

s! o' | = s! o

<

diam (o');

7|
T j
hence | W, | and therefore any | W, | is finite in ¢’. Because of (4), | aw, |
is finite also. Hence W is flat in each ¢’ and therefore also in K.

Let us define differential forms in K as follows. Set w;; = p; — Ps;

this is a vector in each simplex of K which has p,p; as a face. With
g, o', 0" as before, set

! Of-V(pH_l — GV g oV Ve

u01v. - .Vuos

(12)  ofqa=r

Using (III, 1.2), this gives

v — fgo™} _ {r"} ,
(13) wo(Q’)'{T}’: L{_’};VW} - {0.'} ’ gerC o' .
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Hence, by (111, 4.1) and (10),
(14) Wor= [ o,

showing that W and w, correspond.
Note that (4) may be proved through the use of the w,, with the help of
the formula

r+1
(15) Z (_l)i{% R PR Qri1Prp1 " " Ps}
=0

= (—1)+Ygy — go)v- - V(g — QO)V“r+1,r+2V' TVl s

whose proof is like that of (III, 1.4).
Finally, we give an explicit formula for o, in K, using the barycentric
coordinates yu; in K:

r

(16) 0@ = 1! D (—1)u(q) duglahv- & - vapla), 0= py- -,
i=0

Note that this is exactly (IV, 27.12), using the particular partition

(4q, tro, * - *) of unity in K. We could not use the y, (rather, the »,) there,

since they are not smooth in M.

Let @, denote the right hand side of (16); we show that &, = w,. In
any simplex ¢’ of K (using the notations (8)), u, is affine and du; is
constant; hence @, is affine. At any vertex of K not in ¢, @, is 0. The
definition of @, depends on the oriented simplex ¢ only, and changes sign
with reversal of orientation. The same properties hold for w_,. Hence we
need only prove that @,(p,) = w,(p,) in ¢'. Using the facts

(17) dﬂi'uﬁ - 1, d‘ui'u,k — 0 lf 1 # j, ’l: # k,
and p1,(py) = 0 (i % 0), we have

(I)G-(po)'(u()lv‘ - ‘Vuor) — r! ........... — r!’

@5 Po) (g;vB) = 0, j=r 41,5

ormulas determine ®,(p,). By (12), the same formulas hold for
wWo(Py); therefore &, = w,.

12. The isomorphism theorem. Define the flat cohomology ring H? of
K as follows. For each r, H’" is the space of flat r-cocycles in X modulo
the space of flat r-coboundaries; H” is the direct sum of the H?", with
multiplication defined through the use of (IX, 14). Let H* denote the
algebraic cohomology ring of K. Because of (11.2), the mapping v of

(11.1) defines a linear mapping ¥ of H” into H*.
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TaroreM 12A. W is a ring isomorphism of H® onto H*.
First we prove three lemmas.
Lemva 12a. Let W be a flat r-cocycle in do (r = 0, 0 = o*, s = 1).

Suppose
(1) W-ocg=0 if s=r+1.

Then there is a flat r-cocycle W' in o which equals W in 0.
Levma 12b. Let W be a flat r-cochain in 0 = ¢* (r =1, s 2 1), and
let X be a flat (r — 1)-cochain in 0o such that dX = W there. Suppose

(2) X0g= Wi if s=r.

Then there is a flat cochain X' in o such that X' = X in do and dX’ = W
in o.

Following (IV, 26), we prove (a,) at once. To prove (b,), choose X, by
Lemma 10b so that dX, = W in ¢. Set ¥ = X — X, in do. Then
dY = 0 in do, and

TX ncnnn Liws /.. A\ dlbhnnn to o Bk mnenF o T2 B L e T UV i Do Q.4

1101100, DY \w,._l), LIICIC IS & 1lal bUbyblU A 111 g WILICI) Uqu:JB 4 Ul yOU. WDOU
r 4

X' =X+ Y inco

To prove (a,), r > 0,say 0 = p, - * * p,; define ¢’, @, 4 as in (IV, 26).
Choose the flat cochain X in @ such that dX, = W there. If s — 1 =,
then

W-o' — Xy00" = W-o' + dXy4 = W-00 = 0;

hence, by (b,), there is a flat cochain X in ¢’ such that X; = X in do’ and
dX;,= Win ¢'. Set X'= X,in@Q and X' = X, in ¢’; then X’is flat in
do, and dX' = W. Let X be an extension of X’ through K (LLemma 10a),
and set W' = dX in o; the required properties hold.

Lemma 12¢. Let W be a flat r-cocycle in K (r > 0), and let y be an algebraic
(r — 1)-cochain of K, such that wW = dy. Then there is a flat (r — 1)-
cochain X in K such that dX = W and pX = y.

Let X = W, (§11) in K1; then X is defined and equals y, and this
will hold for any extension of X through K. Note that dX = W = 0 here
trivially. Take any simplex 0 = o” of K. Since

X-00 = W, 0o =ydo=dyo=yWao= Wo,

we may extend X through ¢ by Lemma 12b so that dX = W there; thus
extend X through K*. Extend X through the rest of K simplex by simplex,

using the same lemma.
The proof of the theorem now goes like that of (IV, Theorem {_ggA).
REMARK. One consequence of the theorem is that the algebraic

cohomology structure (using real coefficients) of a polyhedron P is
independent of the subdivision of P employed.



VIII. Chains and Cochains in
Open Sets

So far, we have studied chains and cochains in E™, with only brief
mention of the case that the cochain for instance is defined only in an
open set B C E". This case, of obvious importance, is the subject of the
present chapter. By defining ““ B-norms,”” sharp and flat, of cochains in R,
one brings into the theory a wide class of cochains, which need not be
extendable through £”. One may obtain these norms from similar norms
of chains in R. The general study of these norms occupies the first three
sections. In the last sections we give expressions for flat and for sharp
chains that are of equal importance for chains in ™.

The definitions of the R-norms are obvious modifications of the
definitions in £”. But one must be careful what chains are called *“chains
of R”. For instance, if R is the interior of a circle € in E2, we may orient
it and assign it the coefficient 1, forming a 2-chain A. It is doubtful
whether one should consider 4 to be a chain of B. If so, it should also be
considered as a chain of R’, formed from R for instance by cutting out a
line segment. Still less would one think of 94 as a chain of R (its support
is C). It is certainly reasonable to require the support spt (4) to lie in R.
But even this does not suffice for X4 to be defined for reasonable X; see
an example at the beginning of §1. It is sufficient, however, if 4 is
compact (Theorem 2D) or of finite mass (Theorem 3D), or if A is the limit
im the R-norm of a sequence of polyhedral chains of R (Theorem 4A).
If 4 is a chain of R (either norm), it is also a chain of any larger open set

(as will be obvious), and is a chain of some smaller open set (Theorems
5B and 6B).

The formulas for B-norms are essentially as in E*. If R is convex, the
norms are the same as in E"; moreover, cochains in R are extendable
through £* (we use Chapter X in the proof of this fact). Less elementary
properties of chains and cochains depend on extending to the present
situation the theory of sharp functions as operators and of supports (§ 2).
Properties of mass (§ 3) then follow, as in Chapter V.

Recall (V, 3.1) that for polyhedral 4, | 4 |* was defined as the lower
bound of | A — 9D | 4 | D|, with D polyhedral. In § 5 we show that the
same formula holds for any flat 4, allowing D to be flat. A similar theorem
in the sharp case (§ 6) is more difficult; we make use of the “translation

231
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norm’’ of a chain, larger in general than the sharp norm (and existing for
instance if | 4 | is finite).

ReMARK. For a more complete theory, one should consider cochains
in R which are flat or sharp in each compact subset of B; this corresponds
to the use of improper integrals as in (V, 6).

Given the point set @ and the vector v, define the point set Z,(Q)
as follows:

2,Q) = allpoints ¢ +tv, ¢e€@ 0t L

1. Chains and cochains in open sets, elementary properties. In applica-
tions, one may have a differential form with bounded first partial
derivatives in an open set R, which is not extendable through £” to have
this property. To work with these, one needs a new norm for chains and
cochains, depending on the set R. For instance, in E', if R is £ minus the
origin, r = 0, and D (¢ -simplex ¢ in R;
but X is not extendable to be a cochain in E’l If we cut out a small
neighborhood of 0, then the X thus formed is extendable to be a cochain
Y,but|dY | > |dX | In E?,if we cut out the closed positive z-axis, or the
set of points (z,y) with y2 << 23, we may set Dyl(z,y) = inf {z, 1} for
x> 0,y>0,and Dy =0 elsewhere, giving a non- extendable 0-cochain;
similarly for r = 1.

The non-extendable cochains X may not give values X-A4 for certain
chains 4 lying in R. For instance, if R is E? minus the closed positive
x-axis, and

po= 012, = (,—12), A= (p—4q),
then | 4 |” is finite, but with X as above, X-4 does not exist. With the new
norm | 4} to be defined, 4 would not exist, even though spt (4) C R.
Aga,in, if

= (1/2¢, 1/4%), q; = (1/2%, — 1/4%), A,=2 (p- — q%)

then | 4, = 22/, X-4, =1, and | X-4, /| 4, " is unbounded.

We shall define new norms relative to R, and show that in terms of
these, practically all the results of chapters V and VII go through.

(a) FLAT cHAINS OF R. For any polyhedral r-chain 4 in the open set
R,| A is defined as before. Set

(1) | 4|, =inf {4 —9D| + | D|: polyhedral D in R}.
This is a norm, the flat R-norm, and

(2) (Al =4k = ACR CR.

As before,

(3) 104 [ < | 4%



§1] CHAINS AND COCHAINS IN OPEN SETS 233

The space of polyhedral chains in R, completed in this norm, is a
Banach space C’(R). We shall use only a subset C2(R) of this space,
consisting of those chains A (in £*) with the following property. Thereis a
closed set @ C R, and there is a Cauchy sequence A4, A4,, -+ (in the
R-norm) of polyhedral chains in @, such that A = lim” 4,, Then 4 =
lim% 4, also. Such chains we say are flat chains of R, lying in Q. We will
define spt (4) in § 2; this is the intersection of such sets ¢ (Theorem 2A).
We will then say, more generally, that A is in spt (4). An example above
shows that for chains of E”", we can have spt (4) C R, while A4 is not a
chain of E; this is why we speak of chains “of” R, not “in” R.

Clearly for any flat chain A of R, 4 is a flat chain of R.

Suppose r = n, and R is bounded. Let A,, A,,--- be similarly
oriented polyhedral regions in R, whose union equals B. Though this is a
Cauchy sequence in the flat B-norm, the limit 4 is notin C2(R). Noris 94
a chain of R (which is quite natural).

If R is E' minus the origin, and A = do, o being a 1-cell containing the
origin, then | A 5% = 2. The reader may examine the R-norm for the
other examples above.

The former proofs (V, 3) go through for the following facts, at present
for A polyhedral:

(4) |T,‘,A'—A|b}{__<___1v1(|A|—i—|aA L) if 2, (spt(4)) CR,
(5) lo|p=|0olP=]|0c| forsimplexes o,
(6) ! A ‘b — inf {| A — dD B% 4- 1 D ‘%: D polyhedral in R}.

We compare | 4 |, with| A |’ in § 2 below. Because of (V, Lemma 2b)
(see also (h) below),

(7) A=A (all 4) if R is convex.

(b) FLAT cocHAINS IN R. A flat r-cochain in R is an element of the
conjugate space C°"(R) of C2(R). The flai R-norm | X |} and comass | X |
are, as before, the smallest numbers satisfying

®) |XA|<| Xy 4
As before,

% | XAl<|X||A] (polyhedral 4 in R).

(9) Ay =sup {|X-Al: Xin R, | X[=1}.

If X is in R, so is dX, defined as before; ddX — 0. We could define
dX-A if simply 94 is a chain of R; but we shall not use this. Again we
prove (considering X in R alone, even if it is defined in a larger set)

(10) | X fp=sup {| X|,|dX |}
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Note that if Xy denotes X, considered in S only, then
(1) | Xp e S| Xk S| X, RCE,

for X defined in E™, either because of (8) and (2) or because of (10). If

X is defined just in R, the first part holds.
As before, a linear function X-4 of polyhedral r-chains 4 of B with

| X | and ] dX ] finite defines a flat r-cochain in R.
Again we find

(12) | X | =sup|X-o|f|o

(c) SHARP cHAINS oF R. The sharp R-norm | A |} of a polyhedral
r-chain A in R is defined by (V, 6.1), using | |’ in place of | |, and with the
requirement that

|dX | ==sup| X-do|f|c].

2

(13) cach &, (0;) lie in R;

compare (2.8). This is a norm, and

(14) [ARZ 4% }A1§.2|A]§;1Aj“, ACR CR,.
Clearly (5) holds in this norm. Also

(15) 7,4 —-A%EZ vl Allr +1) if D (spt (4)) C R.

Sharp chains of R are defined as in the flat case.
For r = 0, the sharp and flat E-norms coincide.
(d) SmaRP cocHAINS IN R. Define 0¥ (R) like C""(R). Then

(16) XA | XA [ XRSIX

(17) | X % S| Xpk (Xpin R, R CR).

Every sharp cochain in R is a flat cochain in R. Set

(18) 8x p = sup {(X)(Zﬁ%ifl—)_’ : A polyhedral, & (spt (4)) C R} .

Again
(19) Ry p=sup {

As before, requiring that all deformations of chains by vectors lie in R, we
prove

(20) 1dX | < (r +1)2xp if Xissharpin R,
21) | X[, =sup{| X[} ¢+ 1Lxr}=sup {{X|,(r+1)Lxz}

Any flat cochain in R with 2y 5 finite is sharp .in R.
A sharp function ¢ in R is a bounded real function with

Hg) — $(P) |

| X(T,o — 0) | : simplexes ¢, Z,(0) C R} '

joliv]

: segment pg C R }
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finite; sharp functions in R correspond exactly to sharp 0-cochains in R.
For r = n, sharp functions also correspond to sharp n-cochains, the
correspondence depending on the metric.

(e) For each r, the mass, flat R-norm, and sharp R-norm for polyhedral
chains in R are characterized as the largest semi-norms satisfying the first,
the first two, and all of the relations

) 6" "< |6"| (6"CR), |90 ' < |0 | (o1 CR),
(23 o
| Ty — o™ | |o"||v]f(r+1) (2,07 C R)
respectively. The proof in (V, 8) goes through, requiring all chains and
deformations of chains to lie in R.
(f) SHARP 7-FORMS IN R. The Lipschitz comass constant in R of the
differential r-form w, defined in R, is

(24) Lo(w, R) = sup {| w(g) — w(p) |of |¢ — p|: pg C R}.
We say o (defined in R) is sharp in R if | w |, and €y(w, R) are finite; the
sharp R-norm of w is

(25) | & =sup {| w|o, (r + 1)€¢(w, R)}.
As in (V, Theorem 10A), the relation X-¢ = fo Dy (6 C R) defines a
one-one correspondence between sharp cochains and sharp forms in R, and
(26) | Dxlo=|X|, LoDy, B)= Lx p | Dx l% =|X &

(g) WEAK CONVERGENCE. Letting © denote either norm, write
(27) X=wklgX, if [X,|[RZN, lim (X, 4)= X-A,

for some N, and all chains 4 of R. Asin (V, 13), the last relation may be
replaced by lim (X -6) = X0 (all ¢ in R). If X has these properties, 1t is
a cochain in the corresponding norm.

Given the flat or sharp X in R, we may smooth it in int, (R):
(28) X, A= f )X T,A)dv,  Amint (R), <l

For we may write A = limZA4, the A4, being polyhedral chains in

Q = int, (R); then T, 4,CQ,= U, (@), Q, is closed and is in R, and
hence T' A = lim{T A, exists for 1@% 7, so that (28) h ]
(By (X, Theorem 7B), T', 4 is continuous.

The properties of (V, 13) hold in int, (R).

ProBLEM. Given the flat r-cochain X in R, does there exist a, sequence
of sharp r-cochains X, X,, - - - in Rsuch that wkl% X, = X? The difficulty
is in defining the X, so that the | dX, | are uniformly bounded.

Because the problem is unanswered, we cannot at once extend the

results of (V, 14) to the present case. In this connection, see the Remark
in the introductory pages.

ag meaning.

i

g
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(h) Coxvex oPEN SETS. We shall show that, in either norm,
(29) | A % = | A 1C if R 18 convex,

and also that any cochain X in R can be extended to a cochain Y in E so
that

(30) Y |°= X5 if R is convex.

In the flat norm, (29) is (7). Next, let = be the projection of E™ onto
B: 7(p) = nearest point of R to p. Then £_= 1. For, given p, g, set
p’ = a(p), ¢’ = =(g), and let P, @ be the (n — 1)-planes through p,q,
respectively, perpendicular to p’q’. Since p'q’ C K, neither p nor ¢ lie
between these planes; hence ¢ —p|> ¢ — P’ | Now suppose X is a
sharp cochainin R, so that | Dy | and £4(Dy) are finite. Extend Dy so as
to be continuous in R, and set Dy (p) = Dx(n(p)) in E*. Then | Dy | =
| Dx |, 8¢(Dy) = 2¢(Dx), so that Y, defined by Dy, is the required
extension of X. Because of this fact and (9) with #, (29) holds in the sharp
norm,

Finally, given the flat cochain X in R, we find the extension Y, with
the help of Chapter X, as follows. For any simplex ¢ = p, * * * p, with
vertices in R, choose a sequence p,, p;s, - - * — p, of points of E, and set

Yi(pg -+ p,) = m X(pgr "+~ D)

k—> o0

the existence and properties of ¥ so far follow from (X, Lemma 5a).
Next, for any Lipschitz chain 4 in R (X, 6), let 4 = lim’ B, as in (X,
6.1), and set Y4 = lim Y-B,. Finally, for any polyhedral chain 4 in £,
#A is a Lipschitz chain in R, and we may set ¥4 = Y-w4; (30) follows
from (X, 7.10).

2. Chains and cochains in open sets, further properties. The remaining
parts of Chapters V and VII which concern us, applied to an open set R,
are less easy to obtain. Some rearrangement and some new material is
necessary.

(a) SHARP FUNCTIONS TIMES CHAINS AND COCHAINS. Let ¢ be sharp in
R. (Usually ¢ will be the part in R of a sharp function in £*.) We define

A A Lror nnYerhindanl A jov B oo W feen AV.YETA N
(P.[i 10l pulylicllal A i L4 dd DOLULG. Yy ltll

(1) Nop=|¢|+ ( +1DLr

we prove, exactly as before, letting © denote either norm,
2) $4 13 < NGr| A4
(3) | 04 — 034 RS rRr| 4},

(4) | $(Too — o) [ < MR o]l olitr +1) if Do) CR,

o
R
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at first for polyhedral 4 in B. Since we have not defined mass for chains of
R yet, we give the weakened form (3) of (VII, 1.8); its proof clearly gives
(3). See (3.10) below for the strong inequality. Because of (2), we may
define ¢ A4 for flat or sharp chains A of R, and (2) still holds. We consider
proofs involving mass later.

The definition and properties of ¢.X go as before.

Lemma 8c of Chapter VI holds, in either norm:

(5) wklg X=X if [$,|R<N, ¢ =1inR,
R,CR,, UR =R

(b) SupporTs. The support of a chain or cochain of B is defined
just as before; take the neighborhoods U _(p) in E. Clearly spt (A4) s the
same as if we constder A in E*. If 4 is in the closed set @), clearly spt (4)C@Q;
see also Theorem 2A below. Supports of chains of R are closed sets which
lie in B; supports of cochains in R are closed subsets of R (which need not
be closed in £%).

Say A is compact if we can write A = lim§ A,, the A, being polyhedral
chains in a compact set in K. (Because of Theorem 2A below, this is
equivalent to requiring spt (4) to be compact.) Many properties can be
best proved for the compact case, and then extended to the general case
by means of the following lemma:

LeMMA 2a. Given the chain A of R (either norm) and € >> 0, there is a
compact sharp ¢ in E™ such that

(6) 0< ¢, <1, |¢d—AR<e

The proof of (VII, 4.1) applies, using (2).

The next lemma becomes trivial after properties of supports have been
obtained.

Lemma 2b. For any chain A of R (either norm), ¢ A is compact if ¢ is.

Write A = limg A,, the A, being polyhedral chains in the closed set
@ C R. We may approximate to ¢A, by a polyhedral chain B, with
spt (B,) Cspt (¢4,). Now ¢A == lim® B, the B, lying in spt (¢) N Q.

We prove that spt (4) = 0 implies that A = 0, first under the assump-
tion that 4 is compact (as defined above). Say 4 = lim§ 4,, the 4, being

nOthPdT'ﬂ] f‘.]"\ﬂfinﬂ mé) O B ecaommnant manl\ mefYic in a naoiochharhand
Pyt el UGS LYY, W £ COHIpacu. @Uil 7 Ty 1D i1l O UUIgliouluaviw

U(p) such that for any sharp ¥ with D, = 0 outside U(p), Y-4=10. A
finite number of these neighborhoods, say Uy, ++, U,, cover Q. Let ¢,,
¢1,* ** ¢, be a corresponding partition of unity (App. III, Lemma 2a).
Now take any sharp X in R. Then ¢X-A=0 (i>0), since
D, x=¢Dx =0 outside U, and ¢, X-4 =0, since P A, = 0.
Hence X-4 = (4, X-4) = 0. In the sharp case, this proves A = 0. In
the flat case, let the above X be flat. Then ¢, X-4 = X-lim $od;, = 0.
For ¢ > 0, we may extend ¢,X to be a flat cochain Y,inE, with Y,0=0
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for ¢ outside R (see (d) below, with p = 1). Let (Y,), be the average of Y,
(V, Theorem 13A). For » small enough, clearly D(Y‘_,,7 = 0 outside U;

hencequA——hm(Y) A= 0. Again X-4 = 0,and 4 = 0.

For general 4 in R, we may choose a sequence ?y15 ¢a, - - + of functions
as in Lemma 2a such that im§ ¢,4 = 4. Clearly spt (¢,4) C spt (4) = 0.
By Lemma 2b, $,4 is compact. By the proof above, ¢,4 = 0. Hence
A=0,.

All the other properties of supports, (VII, 3.5-14), (VII, 3.19-20), go
through with no essential change, except the following. To prove (V1I, 3.6),
suppose first that A is compact (as defined above). Then dist (spt (4),
spt (X)) > 0 ,and we may construct ¢ as in the former proof, and find
X-A = 0. For general A, use Lemma 2a.

The following lemma will be extended in Theorem 3C below.

LEMMA 2¢. For any chain A of R (either norm), any neighborhood U of
spt (A), and any € > 0, there is a polyhedral chain B such that

spt (B)CU, |B—A4[<e

The proof is the same as that of (VII, 5.3), using Lemma 2a.

THEOREM 2A. For any chain A of R (either norm), spt (A, is the inter-
seckon of all closed sets Q@ C R such that A is in ¢, in the sense of § 1, (a)

Clearly spt (4) C @ for any such @. Conversely, let @, @,, - be a
sequence of closed sets in R, each containing a neighborhood of spt (4),
such that their intersection is spt (4). The last lemma shows that 4 lies
in each ;.

Of course spt (4) need not be such a set @, for instance, if A is a 1-chain
formed by a curved are.

(c) THE R-p-Norms. We extend the definitions of (V, 15) to the case of
open sets. We need various properties in studying mass, and other
properties, with p = 1, for general purposes.

The flat R-p-norm of the polyhedral chain 4 of R is

(7) | A, =inf {{A —9D| 4| D|/p: polyhedral D in R}.
The sharp R-p-norm is

4= 20D g )

|R,p

A= Z a;0;, each Z, (0;) C R] .

Note that each o, is in B. Following former proofs, we find at once, at
first in the polyhedral case,

9) |04 |, < |4 [RlP,
(10) I T,A —Alﬁ.aé l 4] !v]/[(r + Dpl if D (spt (4)) C R.
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The first extends at once to any flat chain A of R (in the B-p-norm). See
also (3.7), (3.8). We find also, for X in R,

(11) |X|§’p—

(12) X|g,= + D)pLx r}-

The remaining formulas and theorems of (V, 15) go through.
As in §1, (e), the norms are characterized by two or three of the
relations (taking ¢ and Z,(¢) in R)

(13) |o iaaf'§|0]/p, |T,,o—a’_£_!a“v|/[(r+1)p].
With

(14) N, =|¢|+ (r + DpLy

we find, in either norm,

(15) [Pz, < N&’,’R,p (AR X R, = Nk,

be a flat or sharp COChaln in R such tha.t spt X)i )
Then we may define an extension Y of X in
will have

7|~

Y |=[dX]  Lr=SLpn [Y[P=[X[R,

To define Y, take any o, and write it as a polyhedral chain > ¢, such that
each o, either lies in R or has no points in spt (X). Write Y-0, = X-0;in
the first case and =0 in the second, and set Y- = > Y:0,. The result is
clearly independent of the expression > o, used (see (App. II, Lemma 3b)).

The first two relations in (16) are evident. The next will follow if we
prove the proper inequality on Y+(7T',c — o) for any sufficiently small o.
This will follow from the inequalities

1 Y'(qus/mo' — T(k—l)vlma) | :<: 'QX,R ] 2 ! l G ’/m, k — ]_, <t m.

With m large enough, the deformation chain concerned either lies in R or
has no points in spt (X), which makes the inequality clear. The last
mequality in (16) now follows also.

(e) ON THE NORMS OF COMPACT CHAINS. Let A be a chain (sharp or
flat) of R. Because of (1.2) and (1.14), it may also be considered as a chain
of R’,if RC R’; see (f) below. The converse need not be true; see the

beginning of §1. But it is true if A is compact. This is based on the
following theorem.

TarorEM 2B. Let A be a chain (either norm) of R; then
17 AR, ST+ (r+Dpfn] | 4]0 if U, (spt(4)C R
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Take any { < #, and any € > 0. Choose a cochain X in R (same norm)

such that

!X{Rpé 1, X-A;]A}I?!p——e.
Define ¢ = ¢q ., @ = spt (4), as in (V, 12.3). By (d), (15), (14) and
(VII, 3.13), we may extend ¢X to give a cochain Y in E™, with

| Y|0=|¢X[R, <1+ + pf¢,
VA= ¢XA—=Xgd=XA>=|4]3, —«

These relations prove
| 4192 (4|8, — &/l + (r + Dp[L],
which gives (17).

Note that with the flat norm, (17) is an immediate consequence of
(VII, Lemma 5b) if 4 is polyhedral; obvious changes in the proof are
required for p 5= 1. The case of general flat 4 may be reduced to this with
the help of Lemma 2c.

(f) RELATIONS BETWEEN SPACES OF CHAINS AND COCHAINS. Suppose
R’ C R. Because of (1.11) and (1.17), every cochain X (flat or sharp) in B
defines a cochain X . in R’, the part of X in R’. As noted at the beginning
of §1, a cochain in R’ need not be extendable to a cochain in . We
recall that we do not know if C¥ is weakly dense in C%.

Theorem 14B of Chapter V holds: flat chains of R may be considered
as sharp chains of B. We must show that if 4 % 0 is a flat chain of R,
then the corresponding sharp chain A4’ is #% 0. By (b), spt (4) # 0;
hence there is a point p € B and a sharp chain X in B with Dx =0
outside some U (p), such that X-4 % 0. If 4 = lim} 4,, the A4, poly-
hedral and in the closed set @ C R, then X-4 = lim X-4,. But also
A’ = lim¥% A;; hence X-A" # 0, and 4’ # 0.

THEOREM 2C. Suppose R’ C R. Let A be a chain of R’ (either norm).
Then it may also be considered as a chain of R, in the R-p-norm, for any p.
The point set spt (A) 18 the same in all cases. If A = 0 in one norm, the .
same 18 true in all; hence the mapping of CO(R’) into CP(R) is one-one.

Say A = lim§ A,, the A, being polyhedral chains in the closed set
Q C R’. Because of (1.2), (1.14), and (V, 15.7) for R, limg , 4, exists for
all p; hence a chain A’ of R in the R-p-norm is defined, which may be
identified with A as soon as we prove that A’ 7 0 if A % 0. The definition
of spt (4) shows that it is independent of R, provided R’ C R; as in (v,
Theorem 15A), we see that it is independent of p. If 4 # 0, then
spt (4') = spt (4) # 0, and A4’ # 0, completing the proof.

TarorEM 2D. Let A be a chain of R (either norm), and suppose
U, (spt (4)) C R'. Then A may be considered as a chaz':n of R, inﬁ_e/R'-p-
norm, for any p. In particular, if A 18 compact, this holds for any R’
containing spt (4). ]

This is proved like the last theorem, using Lemma 2C and Theorem 2B.
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3. Properties of mass. We shall show that the mass of a chain of R is
definable as in (V, 16), and is independent of R; former properties of mass

continue to hold.
Suppose 4 is a flat chain of R. Then we define

(1) | A|g,=inf {liminf| 4,|: lim} 4,= 4, 4, polyhedral,
A, in Q (all 1), @ closed, @ C R},

(2) | A |pgy=lim | 4},
>0
(3) | A |gp =sup {X-4: Xflatin R, | X|< 1}

Define sharp masses similarly; for sharp A4, these three at least are defined.
Because of the following theorem, we may let | A ‘ denote any of these.
THEOREM 3A. For flat chains, all six masses are equal; for sharp chains,
the sharp masses are equal. For polyhedral A, they all equal | A | They
are independent of R, and equal i , defined by considering A as lying in ™.
First we prove | A |g;o)= | 4 |g(o) (both norms) as before; also
|4 lpo=|4|ro

Next we prove
@ g < 4]

We may suppose the latter is finite. ‘Suppose first that 4 is compact; say
U, (@) C R, @, = spt (A4). Set R'= U_(Q), @ = R’'. Given € > 0, we
need merely find a polyhedral B in @ such that

(5) | B— AR <e | B|<|Al+ e
Taking first the flat norm, choose p < 1 so that
(r+1p| Alln<el2, p(|A|+€)<ef2.
Choose a polyhedral A" in R’ so that (see Theorem 2D)
! A — 4 \%,'P < €/2.

Then, since | A > < | A |, (2.17) gives

Ak, <| Ak, + 2SO+ + Doyl A + /2 <| 4| + e
Hence we may choose a polyhedral D in R’ such that
|4 —3D| +|Dljp<|A] +e
Set B— A’ — 9D. Then|B|< |A|—|—e,and
B— ARSI — AR |8D <[4 — Ay, +| D)
<e/2+p(lA]—}-e)<e.
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With the sharp norm, choose p and 4’ as before. Then | 4" % <
A | 4 ¢ and we may write 4" = Ya,0;, and find vectors v; and a

po]yhedra.l chain D in R’, such that &, (¢;) C R’, and

(r+ 1Lp ! ' ‘. p

Set B= Ya,T,0; — 0D. Then |B| <|A!+ ¢ and

R+ 10D

1B—A1%§§A—A’l%'.p+\zai(ﬂ" o
>, | a

< - + 1+1D|< +p 4| +e<e

r —|— 1

If A is not compact, choose a compact ¢ by Lemma 2a so that

| ¢4 — A |R < €/2. Choose a closed neighborhood @ of spt (4), @ C R.
Then U, (spt (¢4) ) C@ for some 7 > 0. Choose B in Q by the proof

by (VII 1.7), thls gives (5) and hence (4).
Since | 419 < | 4R, letting p — 0 gives

[4]=]4]c <4 [rcor

Hence all masses (whenever defined) equal ‘ y: | ‘, completing the proof.
THEOREM 3B. Mass ts lower semi-continuous in any of the spaces
considered.
This is an immediate consequence of (V, Theorem 16B) and the fact
that if a chain of R is considered as a chain of E*, its norm is thereby not
increased.

TueoreM 3C. Theorems 4A and 5A of Chapter VII hold for chains of R.

The former proofs holds. We obtain| A’ — 4|f <¢,|B— 4§ <€
(either norm).

TueoreEM 3D. For any chain A of R (etther norm) of finite mass,
we may consider A as a chain of any open set R’ which contains
spt (4).

Choose a neighborhood U of spt (4) whose closure @ is in £’. Choose a ~
compact ¢; by the last theorem, so that

IA“¢iA’<1/2i+la i:lsz)...

Say @, = spt (¢, 4), Uy, (@) C U. Choose a polyhedral chain B; in
Um_(Qi) by the last theorem, so that

l B, — ¢4 ig < € 1+ (r+ )/nle < 1/2i+1.
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Then, by (2.17),
| B, — $.4|2 <[ + (r + 1)/n,]| B, — $.4|° < 127,

Hence B,, B,, - - - is a Cauchy sequence, in the R’-norm, of chains in @,
defining therefore a chain 4’ of R’. Using B,, B,, - - - in the R-norm shows
that 4 equals 4’, considered as a chain of R.

The remaining elementary properties of mass hold, as before; for
instance,

6 | x4|<|X||4

( »

7 | T,A— Al <lvl|4 104

™ | hosivlldlle+ioah ) nCR
®) |T,4— AR, <[v][4]/r+1)p

(

(

9N A o] A] |94 A] +[4][04],
10) | 404 — 0pA | < 78,5 | 4.

In deducing (10) for flat 4 from the case of polyhedral 4, we use a
sequence of polyhedral chains B,, B,, * - - in a closed set @ C R, such that
lim} B, = A4, lim | B;| = | 4, found by Theorem 3C; similarly for (7)
and (8), requiring Z,(spt (B;)) C Q.

THEOREM 3E. Let a(p) be a cellwise continuous summable r-vector
valued function in E™. Set Q = spt (a). Then for any open set R D Q, «
defines a flat chain & of R, and | &| = (&), spt (&) = Q.

We may apply (VI, 7.2), Theorems 3D and 3A, and (VII, 3.21).

4. On the open sets to which a chain belongs. In § 1, we defined a
chain of R (either norm) as an element of the completion of the linear
space of polyhedral chains in the R-norm, provided a certain condition
was satisfied. Theorem 4A shows that an equivalent condition is
simply spt (4) C R. The next theorem shows that if 4 is a chain of R,
then it is also a chain of certain smaller open sets. See also Theorems 5B
and 6B.

We shall say the sets @, @,, - - - — o0 if each compact set touches but
a finite number of them. We say the functions ¢;, ¢, * - * form a spreading
sequence if 0< ¢,(p) < 1, the sets spt(¢,) are compact, the sets
spt (1 — ¢,) — o0, and for some N, Ly, < N (all 7).

LEMMA da. With either norm, let A;, Ay, -+ - be chains of R, such that
2| A;|R, converges, and the sets spt (4,) —> c0. Then A= S°A, isa
chain of R, and A —= DR Ay

Choose neighborhoods U, of spt (4,) so that U, C Rand U, — c0. For
each i‘a.nd k, choose a polyhedral chain A, in U, so that } A, — A, [%p
< 1/2"+* (Lemma 2c¢, 2(c)); set ’

By=Ad,, + - + Ay
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Then if k' > k, we see easily that

x
| Bk' — 'Bk II(%:P _<__ Z J'k lg,p + Z l A.’ik’ {I?,P
= \

Fi=k+1
k
j=k+1 ‘

hence B = lim® B, exists. Since
| By — (A4 + -+ +Aic)|o <1/2%,

we have B= 4. Now @ = UU, is a closed set in R, the B, are polyhedral
chains in @ which form a Cauchy sequence in the R-p-norm, and
A =1im® B,; therefore 4 is a chain of R,and 4 =1lim§ B,= >§ A4

TrEOREM 4A. With either norm, let A, A,, -+ be chains of R, let 4
be a chain of E, and suppose
{1) lim |4, — 4,18, =0, lim© 4, = 4, spt (4) C R.

t,J—> i—r o0
Then A is a chain of R, and A = lim§ , A,.

Recall that, as we showed by an example near the beginning of § 1,
the condition spt (4) C R alone is not sufficient; but see Theorems 2D
and 3D
< 1/2¢,
we see tha.t the conditions hold with the A in place of the A hence we
may suppose the A, are polyhedral. Also, taking a subsequence if
necessary, we may suppose that

2) |4, — 4,18, <1(r +3)2 i j=i.

Let ¢1, ¢s, * + * be a spreading sequence such that ¢, = 1 in spt (4,)
and £, < 1/p. Then using (VIL, 3.13), (2.15) and (2.14) gives

3) |4, — b4 |R, [ 4, — 4R, +{ 444, — 4) R,
<A+ NPp e+ 32K 12, G2

It follows that

(4) (b — ben)4,; 19, S 32, j=i.

By Theorem 2D, ¢,4 and (¢; — ¢;_;)4 are chains of R. We now show that
(6) lim}?,p ¢ d;= A, img , (b — $i1)4; = (b — . 1)4.

j—+ o j—m
Since lim? 4;= 4 (V, 15), these follow from (2.15), if we omit the R.
Since spt (gb) and spt (¢, — ¢;—) are compact, using (2.17) gives them
with R also.
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By (VII, Theorem 4A),

bod + > (i — pig)d = lmO® $d = A,
t=1

Also (4) and (5) show that | (¢, — ¢, )4 If, < 3/2°. Since spt
((¢; — $;_1)4) — 00, Lemma 4a shows that 4 is a chain of R, and
(6) A= }img , A
Given € > 0, choose k so that
l A4 — 44 IIC{).P < €3, 1/2F < ¢/3.
Then by (3), I A, — ¢ A, 'S,p < €3, j= k. By (56), we may choose
Jo = k so that
I GbkA — ﬁbkAy Jg,p < €/3, .72.70
These give |A — A;(R, <e€ j=j, proving A=1im§, A4, The
theorem is now proved,

In the proof of the next theorem, we need the following lemma.
Lemma 4b. Let X be a cochain (either norm) tn the open set E. Set

(7) S=spt(X)— R, R*=E—&.

Then there 18 a cochain ¥ in R* which equals X in R and equals zero in
E — R, such that

(8) [Yi'"—TIXI, ,d.YIZ;dX{, BY,R‘:BX,R,

} ¥ I?'.p — IX !S,p'

The proof in (d) of § 2 applies.
THEOREM 4B. Let A be a chain of R (esther norm). Set

(9) R = RO U (@), Q = spt (4).
Then A is a chain of R’, and
(10) | AR, S+ + Dp/nl| 4R,

Suppose first that 4 is polyhedral; then A4 is a chain of R’. Given
€ << 7, choose X in R’ so that
'Xlgipél’ X'A>“Aif?fp_€'
Set {=1n—c¢, =y, (V, 123), ¥ = ¢X; extend Y as in the last
lemma, using $X and R’ in place of X and R. Takeanype R. If p € R,

then p is not in 8; otherwise, dist (p, @) > n > {, pisnotin spt (#X), and
again p isnotin§. This shows that R C R*, and Y is defined in R. By (8)
(2.15) and (2.14),

| YR, =|9X |2, <1+ (r + 1)p/L.

>



246 CHAINS AND COCHAINS IN OPEN SETS [Crap. VIII
Also, using (VII, 3.13),
YA=¢XA=X¢4=XA4> |48 — e

Since Y- A< | Y[3,] 418, (10) follows.

Now consider the general case. Given e << n, set {= n — ¢, and
choose polyhedral chains 4, 4,, - in B" = RN U/{Q) (Lemma 2¢) so
that

| A, — A ‘I?.p < /2"

Set B,= A, — A, (1 > 1); then
R,= RN Uspt (B) C R,
and hence, by the proof above, if N, = 1 + (r + 1)p/{,
‘ Bi‘lci‘-)'-pé \ B,

I?i,pgNzl Bi

2.5 3Nce/2’:.
Also
| 4o |R, S N {4018, < N(| 4R, + o)

Now the A4, are chains of R’, im| 4, — 4|2 ,=0, im® 4, = 4, and
spt (4) C R’; hence, by Theorem 4A, 4isachainof R’,and 4 = limg,  4,.
Also

418, <] 4018, + D | B[R, S N 4] R, + 40,
and (10) follows.

8. An expression for flat chaing. We shall show that any flat chain 4
of R is the sum of two chains, one, 4 — 0D, of finite mass, the other, 0D,
the boundary of a chain of finite mass; moreover, as in (1.1), the sum of
these masses is arbitrarily near the R-norm of the chain. We shall use the
R-p-norm, and prove:

THEOREM 5A. Let A be a flat chain of R. Then for each € > 0 there is a
flat chain D of R such that
0 | 4—aD| 4| Dljp<|Afp, +<

First suppose 4 is compact. Say

U,,(@) CR, Q = spt (4).

Set N, =1 + (r + 1)p/n. Given € > 0, set ¢ = €/(1 + 3N,), and choose
polyhedral chains 4, 4, - - in U, (Q) (Lemma 2c¢) so that
I A, — A%, < €'[2¢.
We may choose a polyhedral chain D, in R so that
| Ag — 0D, | + | Dollp<|A4|r, + €
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For i > 1, setting R" = U,, (@), Theorem 2B gives
|4, — A, |, SN A, — A, ) <3N,€[25
hence we may choose a polyhedral chain D, in U,, () so that
|4, — A, , — oD, | +| D, | [p < 3N,€'[2%
Now D = > D, is a chain which lies in a compact set in E; hence D is a
chain of R. Also 4 = A4, + >(4; — 4,;), the sum being convergent in
the flat R-p-norm; hence
A—0D=(4,— 0Dy) + (4 — 45— 0Dy) + -,

and.
|4 —0D| +|Dlp<|Af,+¢ + D3N,2 =] A, +e

Now take any flat chain 4 of R. Given € > 0, define ¥, (n = 1) and
¢ as before. Choose a spreading sequence éo P> -+ (§4) such that
(Lemma 2a)

| p A — AR, < €'[2¢.

By the proof above, there is a flat chain D, of R such that

| ¢od — 0D, | +| Dollp <[ AR, + ¢
Set

R, = RO Uy(spt (p,4 — ¢;_14)).
By Theorem 4B,

l (b — hra)4 '%i,p SN | (h: — big)A B, << BNy€'[27;

hence there is a flat chain D, of R, such that
| (i — $in)d — 0D, | + | D;|[p < BN, €'[2",

Since 3| D,| converges and spt (D,) > o0, D= 3D, is a chain of R
(Lemma 4a, or Theorem 3D). Just as before, (1) holds.

As a consequence of the last theorem, we prove a continuity theorem:
TurorEM 5B. For any flat chain A of R, and p, € > 0, there is an

¥y LA

open set R’ such that R" C R, A4 is a flat chain of R, and
(2) A, <|4AlR, + e

Choose D by the last theorem, and let R’ be a neighborhood of

spt (4) U spt (D) such that B’ C R. By Theorem 3D, A — 9D and D are
flat chains of R’; hence so are 9D and 4. Also

Alp,<|4—3Dp, +|0D|% , S|4 —3D| +|Dljp<|A|, + e
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6. An expression for sharp chains. We shall prove a theorem bearing
the same relation to (2.8) that Theorem 5A does to (2.7). First we
introduce a new norm.

Given an open set R and p > 0, the translation R-p-norm|A|% of a
polyhedral chain 4 in R is given by (2.8), with the flat R-p-norm replaced
by mass. Clearly

(1) )AI%,pé‘AlgpglAl

This is a norm in the linear space of polyhedral chains in R. The elements
of the completion of this space, using sequences of polyhedral chains in a
closed set in R, form the space of translation chains of R. Translation
chains may be considered also as sharp chains, as in the case for flat

chains (2 (f)).

As in (2.10), we find at once (see (V, Theorem 6A); we need the
polyhedral case only)

(2) | 7,4 — 4

S| A|v|/r +1)p if 2,(spt (4)) C R.

THEOREM 6A. Let A be a sharp chain of R. Then given € > 0, ihere ts
a flat chain C of R and a flat chain of finite mass D of R, such that A — C
1s a translation charn of R, and

3) | A—CR,+1C—3D|+|Dilp<|4|k, +e

Suppose first that 4 is compact. Say U, (@) C R, @ = spt (4).
Set N, =1 + (r + 1)p/n, €’ = ¢/(1 4+ 3N,), and choose polyhedral chains
Ay, 4y, - in U, (Q) such that

’Ai—A‘%’p<e'/2", i=0,1,--"
We may write A= 380,00 Co = 238011, 00w such that 2, (o ) C R,
and find a polyhedral chain D; in R, such that
| 4o = Os &y +1Co— 0D | +[ Do llp <[ AR, + <"
Since U, (spt (4; — 4,,)) C R’ = U,,(Q),
|4, — A, |5, <N, |4, — 4, |F <3N,€[2,

and we may write 4, — 4, ) = >.a,0,4, C;= 2,a,;T, 04 such that
2, (64) C R, and find a polyhedral chain D, in R’, such that

ik

] A, —4,,—0C; ‘g',p + ‘ C; — 0D, i + ‘ D, ,/ p < 3Nn€’/2i-

Now A=A, + >(4,— A,,), and

¢=>0, D=>D,
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are defined. The last inequality shows that 3 | C; % ,and > | D, | converge;
hence C is flat, and D is of finite mass. Since

A —C=(4,—C)) + D (4 — 4,4 —C),

we see also that 4 — C is a translation chain. Since the approximating
chains all lie in a closed set in R, all are chains of B. The inequality (3) is
immediate.

The general case is carried out as in the similar proof in Theorem 5A.
We obtain | $,4 — A4 |§ < €'[2%, and

lﬁboA“Coig,p“]‘)Co“aDul +|D0|/P<|A‘¥z,p+€',

| (b; — bin)d — O, |3, + | C; — 9D, | + | Diff p < 3N€'[2,
ete.

THEOREM 6B. Theorem 5B holds also in the sharp norm.

Using (3), let R’ be an open set whose closure is in B, which contains
the supports of 4, C, and D, and also all the deformation chains &, (0,)
used; this is possible for each (¢, — ¢, ;)4 by construction, and in the
general case, since spt ((¢;, — ¢,_,)4) — 0. The last inequalities in the
proof of the last theorem now hold with R’ in place of R on the left, and
using Lemma 4a shows that 4 — (' is a sharp chain (in fact, a translation
chain) of R’. As in the proof of Theorem 5B, D and C — 0D are flat
chains of R’; hence so are 0D and C; now 4 — C and C are sharp chains
of R’, and hence so is A. Finally, (3) holds with R’ in place of R on the
left, and gives

Aigt’,pélA—Oi%’,p—l_‘O“aD\%Zp*‘laDlgi,p<|Aﬁi.p+e‘







PART II1

LEBESGUE THEORY






IX. Flat Cochains and Differential

Forms

In Chapter V we set up an abstract definition of r-dimensional
integration in E*; an integrand was called a flat or a sharp cochain,
according to which of two continuity assumptions were made. It was
proved in (V, 10) that a sharp cochain corresponds to a differential form
which is bounded and satisfies a Lipschitz condition. The more general
integral, and in many ways the more important, is given by the flat
cochains. The principal object of this chapter is to prove Wolfe’s Theorem
(Theorem 7C), that a flat r-cochain in E™ corresponds to a differential
form, a ‘“flat” r-form, and conversely. Flat forms are measurable, but not
continuous in general. (“Measurable” will always mean °‘Lebesgue
measurable” in this chapter.) With the help of flat forms, the theory of
products (“cup’ and “‘cap’ products in algebraic topology) is derived.

Besides the results of Chapter V, we need the theory of (VI, 7). In one
place (Theorem 12A) we use (VII, Lemma 10b); the proof of this lemma is
gsimple. Chapter VIII is used only in so far as we use cochains defined in
open sets; only elementary facts about such cochains are needed. How-
ever, the reader is expected to have a good understanding of Lebesgue
theory (see Appendix III).

We consider some extreme cases. For r = n, Wolfe’s Theorem becomes
the differentiation theorem about additive set functions ®(Q) satisfying
| D(Q) | < N| Q| for some N; the flat n-forms are the bounded measurable
functions. In this case, it is easy to remove the boundedness restriction;
in the general case, this is a very difficult problem. For r = 0, Wolfe’s
Theorem is elementary. For r= 1, using l-cochains which are co-
boundaries, the theorem, together with the approximation theorem of § 10,
gives Rademacher’s Theorem (§11) on the total differentiability of
Lipschitz functions a.e. (almost everywhere). For other cases, the theorem

The flat form D y(p) corresponding to the flat cochain X is defined by,
its values D x(p)a = D (p, a) for r-directions «, by the same definition
(4.1) as in (V, 10.5). However, as is usual in Lebesgue theory, there is a
restriction on the sequence of simplexes used; it must be “full”’, in that the
simplexes must not have too small volumes compared to their diameters.
This concept, used already in (IV, 14), is studied further in § 2. We study
projections of simplexes in § 3. The next section is devoted to proving that

253
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for fixed «, D 4 (p, «) exists a.e. and is measurable, and for fixed p, D x(p, «)
is defined over a closed set of values of @ and is continuous there. To
find further properties of Dx(p) (in particular, to prove linearity), we
smooth X (V, 13), forming X o find the corresponding sharp form Dxp
(V, 10), and let p — 0. (Wolfe’s proof did not use smoothing.) The form
Dx corresponds to X in that

[ Dy = X-o, all r-simplexes o,
as in (V, 10.3). Hence it satisfies two inequalities:

Dy < [ax || o]

l
J.a’,Dxtél-XllO'rp | Jaor+t

The converse theorem is as follows. Let w be measurable. For most
simplexes ¢” and ¢! (in particular, o must be measurable in them, which
need not be true in general if their dimensions are <(n), assume the above
inequalities are satisfied. (The first inequality states simply that w is
essentially bounded.) Such a form is called “flat””. Then the corresponding
flat cochain X exists, { w = X-¢ for most simplexes, and w is equivalent

Ja
to Dy, ie. w = Dy a.e. The flat cochains correspond exactly to the
equivalence classes of flat forms.

If we start with a flat form w, find the corresponding X, and construct
D, this Dy is in general an improvement over w; see for instance (5.2),
Theorem 17B and (X, Theorem 9B). That w* = lim,_, Dx, need not be
as good as Dy is shown by an example in § 13.

Though [ D, = X-o for all r-simplexes o, this does not mean,
however, that Dy (p)-a exists in ¢ for other r-directions o than that of o.

For example, define the flat 0-cochain Y and the flat 1-cochain X in the
plane by

Y(x,y9) =2+ |y, X=4dY.

With the unit vectors e, e,, let ¢, be any 1-simplex from a point p to a
point p + te;; then

hence X-at/[ 0,| =1, and Dx(p)e; = 1. ‘Therefore X0, = fat Dy for all

such simplexes ¢,. Yet D x(p)-e, exists for no p on the z-axis.

In §§ 8 and 9 we find assumptions on the values w(p)« for r-directions
« and on the components of w sufficient to insure that o be flat. Though
the definition of Dx(p, ) uses only sequences of simplexes with p as a
vertex, the approximation theorem of §10 shows that more general
sequences could be used. (Part of this theorem was found by Wolfe.)
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Though the exterior differential dw of a form  which is not continuous
hardly seems definable, we can define it to be D, 5, X being the cochain
corresponding to w. The requisite properties, such as ddw = 0 and the
fact given in Theorem 12A, hold; see also (X, Theorem 9C). The
analytical formula for dw holds provided w satisfies a Lipschitz condition;
see Theorem 12B.

Suppose & and 7 are flat forms. Then we can show (in part, with the
help of cochains) that the product &vy is flat. Given the flat cochains X
and Y, we can now define their product as the cochain corresponding to
the form DyvD;. The usual properties of products, in particular, the
formulas for d(X~Y) and d(&v#) and inequalities on norms of products (in
both the flat and sharp cases), are now easily derived. This is an example of
where the theories of flat cochains and of flat forms are, together, helpful
to each other. (The theory of products of cochains could be derived
independently of forms; see the end of § 18.)

In §15 an analytical representation of flat n-chains in E”* is given;
these chains correspond to the measurable summable functions. The
measurable summable r-vector valued functions correspond to a subset of
the r-chains. We use this correspondence in § 16 to define the product
X~A4 of a cochain and a chain; the expected properties and inequalities
on norms hold. A theorem on weak limits of produets is given in § 17; this
is used in the proof of the formula (X, 11.1) for f*(X—Y). The cup
products are characterized in § 18.

Recall that in (VII, 12), we showed that the algebraic cohomology ring
of a complex K (with real coefficients) was the same as that determined by
flat cochains. Using Wolfe’s Theorem and § 12, we see that the ring is
equally well determined by the flat forms in K. One may clearly define
flat forms in a compact smooth manifold M (compare (VII, 10); in the
non-compact case, use ‘‘locally flat” forms); using these, we have de
Rham’s Theorem on the cohomology ring of M, using flat forms in place
of smooth forms,

1. n-cochains in £". We show here that flat n-cochains in an open
subset B of E™ correspond to real valued bounded measurable functions
in R, or rather, to equivalence classes of such functions. As usual, we let
E™ be metric and oriented. Recall that two functions, each defined a.e. in
R, are equivalent if they are the same except on a set of measure 0.

TaEOREM 1A. The flat n-cochains X in an open set B C E™ are in one-
one correspondence with the equivalence classes of bounded measurable
Junctions ¢ in R, as follows.

(a) Given ¢, define X as follows. For any n-simplex ¢ C R, oriented like
B set

(1) Xo= | $(p) dp.
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(b) Given X, define ¢ as follows. For any p € R, choose a sequence

Gy, O, * * * Of n-simplexes oriented like E™, each with p as a vertex, of diameters
—0, and such that for some 5 >0, | o, |/[diam (0,)]" = 5 for all i. Set
(2) $(p) = .lim X'“i/' oy [,

provided that the limit exists, independently of the sequence.

In (b), instead of requiring that p be a vertex of each g,, one could
require simply that p € ¢;. One could use more general sets ¢, (for instance,
the union of a simplex not containing p and the point p), with the cor-
responding requirements; it is well known from Lebesgue theory that any
such resulting function ¢’ is defined a.e. and equals ¢ a.e.

To prove the theorem, first suppose that ¢ is given. Define X-o by (1),
and for any polyhedral n-chain 4 = Ya,0;, set X'4 = >a,X-0,. Clearly
X-A is uniquely defined, and is linear in 4. With | ¢ |, = ess sup | ¢(p) |
(App. I11,5.1), we have | X-0 | < | ¢ |g| 0 |; hence, by (V,4.9),| X | < | | o
Since there are no polyhedral (n + 1)-chains 4 0 in E", dX — 0; hence
by (V, Theorem 4A), X is a flat n-cochain. Clearly if ¢ = ¢’ a.e., the same
cochaln 1s defined.

Given X, any polyhedral region P (oriented like E™) is expressible as an
n-chain 4; now @(P) = XA defines an additive set function @. Since
| §(P) | < | X || P|,standard theory (App. ITI, 5) shows that ¢(p), defined
by (2), exists a.e. and is measurable, | ¢, < | X |, and (1) holds. The
theorem is now proved.

2. Some properties of fullness. We discuss some properties of simplexes,
some of which may be found in (IV, 14). Given the point p and the
simplex o, set

(1) 4, = diam (o), d,, = diam (pU o).
The fullness O(c") and p-fullness @ (o7) of 0" are

(2) o) = | 0" |[0;,  Op(0T) =] 0" | [0}

we assume 7 > 0. (We could set ®(¢®) = 1.) Note that

(3) 0,(0) < O(o), O,(0) = 0(0) if peo.

Recall, from (IV, 14), that if v, - - -, v, is a defining set of vectors for o7,
(4) o™ | = | o vy, |t S o5, Oo) S 1,

(5) k'@(c*) > r1@(c”)  if oFis a face of 0.

Using (4) gives
(6) 8ys = [| 0 |10, (V7 < 8,/(r1O, (o)1
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If 64, - - -, o, are the (r — 1)-faces of ¢, then
|0, | S 67 — D= | o |/(r — 1)!O(0)d,;
hence

(r — 1)10(0)d,

We say a sequence of simplexes gy, 05, * * * 18 a full p-sequence if p is a
vertex of each o;, @(0,) = 1 > 0 for some 7 and all ¢, and §, — 0; itisa
P-full sequence if ©,(c;) = n >0 and §,, — 0 (equivalently, §, — 0).

3. Properties of projections. Let P and P’ be r-planes in £", and let
7 be the orthogonal projection of E* (hence of P’} into P. Let k be the
distance (I, 15) between the r-directions of P and P’; we suppose b <C 1.
Then for any r-simplex ¢ in P’, (I, 15.6) and (I, 15.3) give

(1) |mo|=|cosb||o|=(1—h%2)c|<]|0],
(2) |o| — | ma|= k¥ o /2.

Let P and P’ have the point p in common. For any ¢q € P’, using
(I, 15.7) with v = ¢ — p gives
(3) lg—mq|<hlg—p| (pePNP, geP).

Given ¢ = p,* - p, € P’, set ¢, = =(p;), and

8

(4) H(o) = Z(—l)i”'p Ti=Po" " " P " Is
Then 0
(5) | H(o) | S { o |/s!O(0) if |g;—p| S L

FOI‘le‘?a"élPk“‘Pi|§5aa and hence

(S+I)W"'i[g‘f’l_f’o‘""%“‘"Pi‘"'I%““%—d‘gé63;
summing over ¢ and applying the definition of ®(o) gives (5).
We prove an inequality (from which the denominator could be
omitted; see (X, Lemma 5a)): For an r-simplex o,
k8l o| 4|00

R Y WY
ri{(o)

(6) |7'rcr—0‘[b§

By (App. 11, 12.4), 0H(0) = no — o — H(do). Say 06 = >0, Applying
(5) and (3) gives

I

111'0‘——0‘||’

| 0H(0) + H(do) " < | H(o) | + | H(d0) |

b 8,) 0] +Z h 8,0
r®(o) (r — 1)10(c;)

i

IA

using (2.5) gives (8).
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By (2.6), (2.7) and (2.3),

r+1

(7) (5,,,,‘ do ‘ é Nf,@,,(o)] Gl ’ Nf.n - (T _ 1) (T|)1/r771+1/r *

Hence (6) gives
h(apa + Nr,@,,(a))‘ Y ‘

(8) }wduﬁlbg ?’!@(0‘)
Because of (2),
ne 7o |a\—~|wa} _
EREd o] 2’

combining this with the last inequality gives

o o | h? (6'pa+ N'r @p(a))

lwa’—_lal :—2—+ r10(o)
Hence, if we set
©) Ny, = ot e
9 rlg
we have
7o o | , <
10 | T TSN RS 0, S1,0,0) 2,

4. Elementary properties of Dy(p,«). We first introduce some
notations. For any oriented r-simplex o, let P(g) and a(o) = {o}/| 0|
denote the oriented r-plane through ¢ and the r-direction of ¢ respectlve]y
Let o( P) denote the r-direction of the oriented r-plane P. Let P(p, o) be
the oriented r-plane through p with the r-direction .

Call o a p-a-simplex if it has p as a vertex and has r-direction «.
The p-a-simplexes ¢y, oy, * * - form a p-a-sequence if 3, — 0.

Let X be a flat r-cochain in the open set R C E*. For any point
P € R and any r-direction o, set

(1) Dx(p, «) =

. %1
1—> 0
where a;, 0y, - - * is any full p-a-sequence of simplexes, provided that the

limit exists and is independent of the sequence.
Suppose D y(p, «) exists. Then it is clear that for eache > 0Oandy >0

there is a { > 0 such that

(2) DX(p’ oc) | ‘ < € if o C U;( ) @(O') ; T],
]

and ¢ has p as a vertex a.nd «{o) = a.
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We could change the definition, allowing for instance p-full sequences
of simplexes in P(p, «); this would not materially affect matters, however,
as is shown by Theorem 10A below.

For r = n, ¢(p) = Dx(p, a,) (2, = n-direction of E") is the function
given by Theorem 1A. For r = 0, D, (p) is a sharp function; see (V, 10).
We henceforth assume 0 < r < n.

The definition (1) shows that

(3) Dx(p, —a) = —Dx(p, «).
Let P be any oriented r-plane. Then, by Theorem 1A, D, (p, «(P))
exists a.e. in PN R, and

4) Xo= f De(p, «(P))dp, oCPAR, o oriented like P.

LEMMA 4a. For a fixed r-direction o, D (p, o) exists a.e. in R and is
measurablein R; in factthis holdsin P* N R, for any s-plane P* containing o.

Let ¢(p, 5, {, {') be the least upper bound of numbers a such that for
some ¢ with p as vertex and with a(s) = «, we have

Qo) =n (<L8,<l Xofo|=ua

For fixed 7, {, {’, the function ¢ is continuous. For, given € > 0, choose ¢
so that

Xeoffa|> d(p, 0, L, ) — e

Using (V, 3.6) and (2.7) gives
' XTo Xeo
ol o]

90 |

o]

r+1 ]
(r— Dinl’{’
which is <e for l v | small enough. Thus ¢(p + v, ) > d(p, 1) — €

for v small enough. The same holds with p and p + v interchanged.
Set

< xplof(1+ 20 <pxprol 1+

96(19’ 77) = lim lim §6(P, ns §, Z’)a 9S(p) = lim qS(p, 77),

[0 {'—0 7~>0
these are measurable. Define similar functions v, using greatest lower
bounds. We now show that
p(p) = Dx(p, «) = ¢(p) if Dx(p, a) exists,

while 9(p) << ¢(p) otherwise. If D (p, a) exists, its definition shows that it
equals ¢(p, n) and y(p, 7); this being true for all 9, Dx(p, a) = $(p) =
w(p). If Dx(p, «) does not exist, there are full p-a-sequences oy, 0y, * - *
alnd. 'Tl, 'Tz, T Wlt’h

a == lim X'O‘z-fl o; | <7 lim X"Tt/] T, | = b.
Say 0(0;), O(r;) = n > 0. Then

PP) S Y.< a<b< (p,n) < (p).
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Note that ¢ and y are defined throughout R, though é(p, 5, {, {') and
w(* - *) need not be.

Let Q@ be the subset of B where ¢ = . Choose an (»n — r)-plane
P orthogonal to «. For each g € P*", §1 shows that (letting ‘ H ]s
denote s-dimensional Lebesgue measure in an s-plane)

]P(q,a)ﬂR——QL,:O.

Since ¢ and y are measurable, Fubini’s Theorem shows that l R —q | = 0.
Hence D 4(p, «) equals the measurable function ¢(p) a.e. in E, and the
lemma is proved, using R. Given P*, we need merely apply the proof with
E" replaced by Ps.

LeMMA 4b. For p e R, let H(p) be the set cf r-directions o such that
D (p, o) exists. Then H(p) is closed, and D x(p, o) 18 continuous 1n H(p).

First, let «, § be r-directions with h = | f — « | < 1. Let 7 be the
projection onto P(p, «}. For any p-f-simplex ¢, (3.1) gives

[mo] o Q=A%) | o] 1
(5) O(mo) = i = 5 = 5 O(o).
Next, let oy, 04, be a full p-8-sequence of simplexes; say

O(0,) = 29. Then ma,, mo,, - * - is a p-a-sequence, and O(mo,) > 5. If
«, B € H(p), then (3.10) shows that

| Dx(p, ) — Dxlp, ) | < | X |P N} b

Since we may use a fixed %, this shows that Dy(p, a) is continuous in
H(p).

Finally suppose « ¢ H(p). Then there are p-a-sequences oy, g, * * * and
Ty, Ty -+ With O(oy), O(7,) = n > 0, and

X'“i/l o, | La<bZ Xerf|r]-

Set e = (b —a)/3, h= e/N;mi X |P. Now take any p, l g — oc! < h.
Then if 7 is the projection onto P(p, ), (3.10) gives

X-mof| "’“i‘.—<=“ T+ € Xemrf|mr | 2 b —e,
showing that 8 ¢ H(p). Hence H(p) is closed.

5. The r-form defined by a flat ~-cochain. We shall now prove that to
each flat cochain there corresponds a differential form.

Let P* be an s-plane in E". Let &« be defined for certain r-vectors «.
We say £ is an r-covector relative to P? if £-a is defined for all « lying in Ps,
and is linear in these «. Let S be a measurable subset of P?. We say w is
a measurable r-form in 8 relative to P? if (a) for some ¢ with S —Q ,=0,
w(p) is an r-covector relative to P* for each p € Q, and (b) for each « in
P*, w(p)-« is measurable in S (as a subset of P*); equivalently, each
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component w,{p) (in some coordinate system for P?) is measurable. In
particular, w is a measurable r-form tn S if this holds with P*= E".

If w is a bounded measurable 7-form in the oriented r-simplex ¢ C P
relative to P’, we may define the Lebesgue integral

(1) o= [ opra) dp.
If w(p, a) is a function of r-directions «, with the same properties, we
define similarly La) = fw(p, a(o)) dp.

THEOREM S5A. Let X be a flat r-cochain in the open set B C E*. Then
there is a set @ C R with | R — Q| = 0, such that for each p € Q, Dx(p, «) is
defined for all r-directions a, and is extendable to all r-vectors o, giving an
r-covector Dy (p); Dy is a bounded and measurable r-form in B. For any
r-simplex ¢ in R, Dy is a measurable r-form in o relative to P(o), and

2) X6 = LDX.
The same facts are true for dX. Also
(3) | Dxlo=|X| [Dax|o=]dX].
To begin with, smooth X by taking averages, as in (V, 13):
(4) X A= f »)(X-T,A)dv, A polyhedral.

Then X is defined in int, (E) (see (App. 111, 3)), and is a sharp r-cochain
(V, Theorem 13A). Recall that

®  ax=wx, |E|<|X| |4x[<|ax)
We now show that Dy is the p-average of Dy:

(6) Dy,(p,0) = [ x,@)Dx(p +v,@)dv, peint, (B).

With « fixed, let ¢(p) denote the right hand side. Take any r-plane P with
«(P) = «, and any r-simplex ¢ C P. Applying (4), (4.4) and Fubini’s
Theorem gives

Xyo= [ w,0)[ Dx(p + v, a(0)) dp dv = [ $(p)dp.

That Fubini’s Theorem is applicable may be seen as follows. Write V as
a direct sum V, @ V,, V, parallel to ¢. Then

e T A o e Y Mg A

the function Dy(p, x(0)) having clearly the required measurability
property in each case. Since ¢ is continuous, (6) follows for p € P M int A R),
and hence for p € int, (R).
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Because of (6), (App. III, Lemma 3b) gives

(7) lim Dy (p, &) = Dx(p, «) a.e. in R, for each a.
p—0
Let oy, oy, * - - be a sequence of r-directions, which is dense in the set

of all r-directions. For each i, let ¢, be the set of points p such that
Dx(p, ;) exists and (7) holds with «,; then |R — @, | =0. Set
Q=0 NQ,N---. Now take any p €@Q. Then D x(p, a,) exists for all s,
and by Lemma 4b, D 4(p, «) exists for all r-directions a and is continuous
in «. By Lemma 4a, D y(p, «) is measurable in R for each a.

Let the first of the o, consist of the r-directions ¢; (4; <<--+ < 4,).
Take any p €@, and any r-vector a = >a’e,. Since (V, Theorem 10A)
Dy ,(p)a is linear in a (taking p so small that p € int| (R)), and (7) holds
at p for each a,,

lim [ Dy, (p)a] = lim > a*Dy (p, ) = » &*D(p, &),
=0 —0 % @

which is linear in «. Hence we may define

(8) Dx(p)a =lim[Dy (p)a] (p€@Q),

p—0

and D x(p) is an r-covector, p € Q. Now for p €@,

Dx(p, ;) = lim DXP(P, o;) = lim [DXP(P)'%] = Dx(p)a,
p—>0 p—0
for each 2. Since Dy (p, a) and D x(p)-a are both continuous in « (see
Lemma 4b), this proves

(9) Dx(p)oa = Dx(p, a) (r-directions o, p € Q).

Thus the r-form D y(p) is an extension of D x(p, a) in Q.

Since dX is a flat cochain in R, the same facts hold for it. Relation
(2) is clear from the definition of Dy. The proof of (3) is like the corre-
sponding proof in (V, 10). The theorem is now proved.

6. Flat r-forms. We turn now to the problem of determining a flat |
cochain from a differential form satisfying certain conditions; we take
these conditions from the conclusion of Theorem 5A.

Given @ and Q, we say an s-plane P* (s> r) is Q-good (for w) if
] POR—Q ;s = 0 and w (that is, each w(p)-a) is measurable in P*M R.
(We use all «, not simply those « in P°, for the purposes of the }Lrgof of
Lemma 6b.) We say the s-simplex o® in R (s = r) is @-good if I o — @ |,
— 0 and w is measurable in ¢*. We say o* is Q-excellent if o* and each of
its faces of dimension > r is @-good.
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We say w is a flat r-form in the open set R C E™ if there is a measurable
subset @ of R such that | R — Q| =0, and

(a) w is a measurable r-form in R,

(b) | w |y < N for some N (see (App. IIL, 5.1)),

(c) there is an N’ such that for any Q-excellent simplex ¢™1in R,

[RAES

If w is flat in terms of @, then it is flat in terms of any Q" C @ with
IR—@|=0.

We shall need some lemmas in the nature of Fubini’s Theorem,
showing that most planes and simplexes are ¢-good; w is assumed flat
in R in terms of Q.

LeMMA 6a. Let P(p) denote the plane ortkogonal to a fixed P** and
containing p € P (s > r). Then for almost all p € P"~*, P¥(p) is Q-good.

For each A = (4;, -+, 4,), 4, <--+<A,, Fubini’s Theorem shows
that there is a set H, € P** with | P** — H,|,_, =0, such that for
peH, |P(p)NR—Q!|,=0 and w,(p) is measurable in P*(p)N R.
Set H = ();H;; then P%(p) is Q-good for p € H.

LeMMA 6b. Let 0* = pyp, -+ - p, (8§ = 7) be a simplex in R, and let K
be the set of points p such that pe’ = pp, -  * p, 1s a (non-degenerate) simplex
in R. Let P™ be a plane through p, such that ¢* U P™ spans E*. Then for
almost all p e P" N K, po’ 18 Q-good.

Let P* and P*! be the planes of ¢® and ¢’ = p, - - + p, respectively.
Let P3¢ be a plane in P™ with only py in common with P*; then P* and
P}~ span E". Let H be the set of p € K such that pe¢’ is @-good; H is
measurable. For any ¢ e P" M P? let P"*(q) be the plane through ¢
parallel with P§~—°. For g e P"M P* — P*1, and p € P*(q), let P%(p)
be the plane through P*1 and p. Now (App. III, 5) for each 4,
[ P(p)NR—Q ]s == 0 and w,(p) is measurable in P*’(p) N K for almost
all pe P*%q); hence P%p) is @Q-good for almost all p in P"¥(g),
and | P**¢)NK — H|, ,=0. Hence, by Fubini’s Theorem,
]PmﬁK—H{mz().

(1)

C,.1'«{-1 I

7. Flat »-forms and flat r-cochains. Let w be a flat r-form in the open
set R C E" and let X be a flat r-cochain in R. We say o and X are
associated if there is a set @ C R with | R — @ | = 0 such that o is a flat
form in terms of Q, and

(1) J;w = X0 for any @-good r-simplex o.

We now prove a converse of Theorem 5A.

TureoreM TA. Any flat r-form in the open set R C E™ is associated with
a unique flat r-cochain in R. With N and N' asin (b)and (c)of §6,| X | < N
and |dX | < N'. o
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Given o, define X-¢ by (1) for all @-good ¢.

LeMMA 7a. Let o and ¢’ be Q-good r-simplexes, contained in an open
convex subset Sof R. Say o = py*** pp 0’ =my° * p,, 6, = diam (¢), and
(2) 5a+2‘:§5, lP;*P:léC
Then

(3) <

w--—...

[N & (r+ 1)Na'—1]
— 1)! '

Given {’ > 0, we shall find simplexes ¢” = pg - - - p, and
‘rz oa— po . * sptpg . w .p:, T;: e p(’} . @ .p;pg * & p:,
all in S, such that

|2} — 2|8 P —2 | LT,

and the 7, and 7, are Q-excellent. We choose p,, p,_;, " *, Py in succession.
Having found py, ---, p;,;, we must find p; so that =, and 7, are

@-excellent. Since

r " n

Py 'P¢P§’+1 Ry PPy Py
are good, we need merely make , and ™; and their r-faces which contain
p; good. That this can be done follows at once from Lemma 6b, using
Pm _— En
By (App. 11, 12.4), we have

az —1)ir, = o _G+Z”

the 7; being faces of the ;. Hence

[po=fe=2E0], o— RS
B3 J

USlIlg (24) and (b) and (C) of § 6 gives
Ua,.w ] SN |7 | S N&Lr 4 1),

| < N[ | < N1,

The two sums contain r + 1 and (r + I)r terms respectively, and (3)
follows with ¢’ replaced by ¢”. Also (3) holds with ¢’ and ¢”, with {
replaced by {’. Since {’ is arbitrary, (3) follows.

To return to the theorem, let ¢ = p,* * * p, be any r-simplex in R
which is not Q-good. By Lemma 6b, there is a sequence of points pg,,
Pog, * * * — P Such that each o, = pgpy - * - b, is @-good. Set
(4) X0 = lim X-qg,.

k— o

(We could in fact use 65 = Pgx " * * Pri Pix— Pi-) The lemma above
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shows that the limit exists and is independent of the sequence chosen.

If we prove | X-0|< N|g|, | X-00™ | < N'| o™, it will follow
from (V, Theorem 4A), or rather, (VIII, 1(b)), that X is a flat r-cochain in
R. The first inequality follows from (1), (4) and § 6, (b). To prove the
second, say o™l =1p,---p,.y Given { > 0, we see from Lemma 6b
that there is a Q-excellent ¢’ = pg---p;,; such that | p; —p,| < .
By (1) and (6.1), | X-d¢’| < N'|o’|. Using (4) gives the required
inequality.

The uniqueness of X is clear, and the theorem is proved.

THEOREM 7B. If w and w’ are both associated with X, then w(p) = w'(p)
a.e. in B.

It is sufficient to show that w,;(p) = w;(p) a.e. for each 4. There is a
set @ with | R—Q | = 0 such that (1) holds for both w and w’. Let P*"
be a plane orthogonal to e;. Lemma 6a shows that P(q, ¢;) is Q-good,
with both w.and w’, for almost all ¢ € P*~". For any such ¢, (1) shows

that La) = Lw’ for all ¢ in P(g, ¢;) N R. It follows that w;(p) = w;(p)

a.e. in P(q, e;) N B. By Fubini’s Theorem, this holds a.e. in R.

Say the r-forms w, w” in R are equivalent if « = w’ a.e. in R. Theorems
5A, 7TA and 7B give

Tareorem 7C. With the correspondence (1), the flat r-cochains in the
open set K correspond in a one-one manner o the equivalence classes of flat
r-forms in R. The norms agree; see (5.3) and (12.6) below.

It follows, incidentally, that the space of equivalence classes of flat
forms is complete, and hence is a Banach space.

LeEMMA 7b. Any form o’ equivalent to a flat form w is flat.

Suppose w is flat in terms of @, and 0’ = w in @, | R — Q1| = 0.
Set @ = QN ,; we show that ' is flat, in terms of Q’. We have
| R — Q| =0, and (a) and (b) of § 6 hold. We must prove (c); we use
the N’ given by w. Take any simplex ¢ = ¢™! which is @’-excellent for
w’. Let gy, -, 6, be the r-faces of 0. Since @' CQ, | o — @Q|,;; =0.
Also|o — @ .11 =0, hence w = w’ a.e. in g, and w is measurable in o.
Therefore ¢ is Q-good for w. Similarly each ¢, is Q-good for w; hence
o is Q-excellent for w, and (6.1) holds. Also | 9o — @, |, = 0; hence
®' = wa.e.in dg, and (6.1) holds for o’ ving (¢} for ’. T
the proof.

The next lemma will be used in § 14. Let ¢ be a function with values
in & vector space, which is measurable in R (i.e. each component, in some
coordinate system, is measurable). We say o® is ((Q, é)-good for w if
| 0° —@Q{,=0 and both w and ¢ are measurable in o°; similarly
for (@, ¢)-excellence. We say w is weakly flat in R if, for some @ and ¢,
the conditions for flatness of w hold, except that (c) is required only for
(@, ¢)-excellent simplexes.

!



266 FLAT COCHAINS AND DIFFERENTIAL FORMS  [Crmar. IX

LEMMA Te. Any weakly flat form is flat.
The proof of Lemmas 6a and 6b and Theorem 7A go as before, using
¢ throughout; this proves the existence of the flat cochain X such that

(5) f w=Xa, al(Q ¢)-good q.

The proof of Theorem 7B now shows that w = Dy a.e. By the last lemma,
w is flat.

We extend (VI, 8.4) to flat forms:

TaeOREM 7D. For any flut cochain X and sharp function ¢ in R,

(6) D, x(p) = () D x(p) wherever D 5(p) is defined.

Take any p such that Dy(p) is defined; set a = ¢(p). Take any
r-direction o; let gy, 0y, - - - be a full p-a-sequence. There is a sequence
€1, €g, * * *+ — 0 such that

| blg) —a| < e, q €0,
Now
|2

| o]

(T, ol
Ca o

13
a,|

which — 0 as ¢+ — o0, proving (6).

8. Flat r-direction functions. In the proof of Theorem 7A, no direct
use was made of the fact that w(p) was an r-covector for p € . We show
here how weaker assumptions on o are enough to insure that the corre-
sponding X exists; this in turn shows that w is extendable to be a flat
r-form a.e. in R.

We say w is a bounded measurable r-direction function in the open set
R C B if there is a measurable set @ C R with 1 R — Q1 == 0, with the
following properties:

(a’) For each p €@, w(p, a) is defined for all r-directions o and is
continuous in .

(b") o(p, —a) = —w(p, ).

(¢’) For each a, w(p, «) is measurable in R.

(d') | o(p, «) | < N for some N. o

We now give a condition from which (¢) of §6 may be deduced.
Define Q-goodness and @-excellence of simplexes as in §6. Given p € B

J\a } ’
6‘

using all full sequences oy, gy, -+ + of @-excellent (r + 1)-simplexes in
P(p, B) containing p and converging to p.

1
(1) dw(p, f) = sup l lim sup m

t—> o
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We say w is a flat r-direction function in R if it is a bounded measurable
r-direction function, and

(¢') for some N’, dw(p, ) < N’ for all (p, p).

The definition of w and X being associated is the same as in §7;
also the definition of equivalence of w and w’.

TueorEM 8A. Any flat r-direction function w in R is associated with a
flat r-cochain X in R, by (7.1); this establishes a one-one correspondence
between equivalence classes of flat r-direction functions and flat r-cochains.
Given w, there is a set Q' C R with | R — Q' | = 0 and the property that
for pe@’, there is an r-covector @&(p) such that w(p)« = w(p, a) for all
r-directions o; @ 8 a flat r-form in R, defining the same X that w does.

First we note that Lemma 6b continues to hold. For, let oy, oy, - - -
be a sequence of r-directions which is dense in the set of all »-directions.
Following the proof of the lemma, let H,(g) be the set of points p € P"5(q)
such that | P{p)NR—Q ’s = 0 and w(p, «,) 18 measurable in P¥(p) N R;
then | P**(q) — Hy(q) |,—s = 0. Set H(g) = [)1H4(q). Then for p € H(g),
each w(p’, «,) i3 measurable in P¥p)MN R. Take any r-direction o;
say o, ®,, " —>o Since o(p’, a,)—> (@, a) for p'e@, by (@),
w(p’, a) is the limit a.e. in P*(p) M R of a sequence of measurable functions,
and hence is measurable. The proof is now completed as before.

Next we prove (¢) of § 6 (which has meaning here). Let ¢ = ¢! be
Q-excellent. Consider w(p, «) simply in the plane P! of ¢, « being in
Prt1; g is also @Q-excellent in this restricted sense. Say ¢ = p4°* * 9,1
Take the standard subdivision S¢ of o, and consider any r-simplex 7
of So not in do. By (App. I, Lemma 4c), the plane P of 7 contains the
mid point p, ., of pyp,,;, but no other points of pop, ;. Say 7 = pg .17
let P~ be the plane of 7. Then P! and the line P! of pyp, ., span P+,
Set 7(p) = p7r’. By Lemma 6b, applied to the space P, r(p) is Q-good
for almost all p in P!, The same is true of each other r-simplex of So
not in do. Since the simplexes in do are §-good, we can find a point p’ in
PoPys1 arbitrarily near p, .., such that if &, is formed with »’ in place
of p,,.1, all the r-simplexes of G,0 are @-good, and hence all the (r 4 1)-,
simplexes are @-excellent (always using P! in place of £*). Continuing,
we find a sequence S0, S,0, - - - of subdivisions, like the sequence of

vaasae Haa

(r + 1)-simplexes are of fullness > # for some 7 > 0.

Suppose ”aa w ,a>N'. Let vy, -, 7, be the (r + I)-
simplexes of G,0. If ‘ J-af“ ® | < a| 7y, | were true for each 7, then adding
these inequalities would give a contradiction to the above equality.
Hence Uamw } = a|7y| for some i. If 7, -+, 7, are the (r - 1)-

simplexes of ©,0 lying in 7,;, then 1 fa 0 l = a | Ty, l for some j, by the
Tei

=alo
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same Treasoning. Continuing gives a full sequence r,;, 75, ‘- of @-
excellent simplexes, with a common point p, showing that dw(p, «(g))
= a > N', a contradiction; hence (c) of § 6 holds.

The determination of X from w now proceeds exactly as in the proof
of Theorem 7A. Again X is unique.

Suppose w and o’ are both associated with X. Let «;, a,, *** be a
dense sequence of r-directions, as above. For each i, the proof of Theorem
7B shows that w(p, «;) = ’'(p, «;) a.e. Because of (¢), w(p, o) = &'(p, «)
for all «, a.e. in R.

Given w, determine X, and then the flat r-form & = Dy (Theorem
5A). Then setting w'(p, &) = @(p)-a for r-directions « gives a flat
r-direction function o', associated with X. Hence there is a set @,
| R — @ | = 0, such that @, & and o’ are all flat in terms of @, and w(p, «)
= w'(p, «) for all « and all p €@Q. Hence w(p, ) = &(p)-« for all & and
all p € Q, and the theorem is proved.

9. Flat forms defined by components. With a rectangular coordinate
system, we give here conditions on the components w; of a form o
sufficient to insure that w be a flat form. The condition dw < N’ of §8
will appear in a form using coordinate intervals instead of simplexes.

A coordinate interval of type pu = (py, * * *, W,4q) is defined by a set of
relations
a, Jai<b, (@G=1---,r+1), 2*=a, (otherk).

Say an s-interval 4 (s > r) is Q-good if [A — @ is = 0 and each w, is

measurable in A; it is Q-excellent if it and each of its faces of dimension
. , 1

(1) d,w(p) = sup lhm sup

= ris Q-good.
i—w m J;Ac © H ’

For any u, set
using all full sequences A4,, 4,, - - - of @-excellent intervals of type u,
containing p and converging to p. The integral over each face of 4, uses
the corresponding component w,.

TaEOREM 9A. Lel the w; (A, < --- < 4,) be bounded measurable
functions, defined a.c. in the open set R C B*. Let d,w be bounded in R.
Then the w, are components of a flat r-form in R, and hence define uniquely a
flat r-cochain in R. The flat r-cochains in R correspond to the equivalence

classes of sets of w; 1 R.
Say | w; | < Ny, d,0 < No. We show first that

(2) I ’;A w \ <N, | A ‘ for Q-excellent coordinate intervals A.

Suppose not; say 1 J-aA wi =ald|, a> Ny, 4 of type u. We may find
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a coordinate r-interval B; cutting 4 approximately in half, so that B, is
@-good, B; being orthogonal to ¢, , for ¢=1,---,r+ 1. Thus 4 is
cut into m = 27! Q-excellent intervals 4,,, - -+, 4,,,, each approximately
w|=a iAh-%

for some ¢. Cut 4,; into Q-excellent intervals 4,,, - - -, zi;m, etc. Asin
the proof of Theorem 8A, we are led to a contradiction with (1).

For any p, > 0, we shall show that w = Jw,e* is a flat r-form in
R’ = int, (R), with fixed bounds N, N’ for | |o, | dw |o; then the same
is true in R itself.

For each p, 0 < p < p,, we may define the p-average w? of w; (App.
III, 3). Set w® = Swee’; this is a smooth r-form in R’. There is a set
@ C R’ with | R’ — @ | =0 and

of the same shape as 4. As in the proof of Theorem 8A,

[1}3

(3) lim w?(p) = w(p), peQ.

p—0

Let X, correspond to w® (V, Theorem 10A); then dX, corresponds to
£* = dw’ (V, Theorem 10B). We shall find a bound for | dX, |

First, take any coordinate (r + 1)-interval A. With slightly condensed
notation, we have

dX 4 = fu w?(p) dp =fu J‘V K, (v)o(p + v)dvdp

= | () |, @@ +v)dpdv;

compare the proof of (5.6). Applying (2) gives (since almost all the
T, 0A are Q-excellent)

x,(v)dv =Ny | 4.

Given p € R’ and p = (u;, -, f,44), using a full sequence of intervals
Ay, A,, - - - of type u shows that

y £5(p) | — |k]im dX -4, |/[ A, | < N,

Hence by (I, 13.3), (I, 12.18) (for covectors) and (V, 10.4),

(n\V2 o

p N/, —= N !wA | << N
\T} 0 ) E p|= *

AN | po
V=) | &

||/\

£ any
\&) 0

We now prove (c) of § 6, using Q. Since | w4 | < | w;| < N, using (3)
gives, for any Q-excellent ¢,

Jip o] = |tim f, 07

Hence w is a flat r-form in R’, and hence in B. The rest of the theorem
is clear.

= |limdX o | < N'|o]
—0 g T
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ExamMpLE. In the plane, set

el 4-e2, x4y <O,
w(z, y) =
0, r+y>0.
Then w = w;e! + wye? is flat, but w,e! is not, as we see by considering
small squares with diagonal on the line x 4+ y = 0.

10. Approximation to Dy (p) by X-a/] o | In the definition (4.1) of
D (p, «), sequences oy, G4, -+ of simplexes were used, each simplex
having p as a vertex. The limit might not exist if more general p-full
sequences were used. However, for given p, if the covector D x(p) exists,
then Dy(p, o) exists, for all «, using p-full sequences, as the following
theorem shows. For r — n, the theorem is standard (App. III, 5); for
r == 0, it is trivial. As an application of the theorem, we find the theorem
on total differentiability of the next section.

THEOREM 10A. Let X be a flat r-cocharn in the open set B C E™. Let
p € R be such that D x(p, &) exists for all r-directions «, and is extendable
to all r-vectors o, defining an r-covector D x(p). Then for each € > 0 and
1 > 0 there is a { > 0 with the following property. For any r-simplex o,

(1) | X0 — Dx(p)-{a}i < € l c' if 6CUlp), O,lo)=1n.
Dividing by | o ] gives
2) | X0/l 0| — Dx(p)a(o) | < e
REMARK. Suppose the hypothesis holds, restricting « to lie in a plane
Ps containing p. Then the conclusion holds, restricting ¢ to lie in P%.
For we need merely apply the theorem to X, restricted to the open subset

P R of the space P
We first define the affine approxzimation W to X at p, by

(3) W-A = Dy(p){4}, any flat r-chain 4 in E".
Using (I, 2.3), we find
(4) RAEYP S dW =0, (W) = 0.

Because of (4), W is a sharp cochain. (It is a coboundary; see (VII,
Lemma 10b).)

We start by proving a special case of the theorem:

LemMa 10a. The theorem holds if we require that o have p as a vertex.

With N, as in (3.9), choose r-directions ay, * - -, «,, such that any
r-direction is within €, = ¢/4N, | X |° of one of these. Using «, €2
and 7/2, choose {; > 0 to satisfy (4.2). Let { be the smallest of Cl,#-’:/-f, L

Now take any o with p as vertex, satisfying the last relations in (1).
Choose ¢ so that

| a(o) — a; l _-é_ €1
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and let 7 denote the projection onto P(p, «,). Supposing ¢, <1, { < 4,
(3.10) gives, if r = 7o,

| Xor/ | 7] — Xeof| o[ S N e | X | = /4

the same inequality holds with W, because of (4). By (4.5), ®(7) = #/2.
Therefore, by the choice of {, and the definition of W,

| W'r/i 'r’ — X'r/l ‘r[ [ < €/2.
These inequalities give (2).
We now prove the theorem. Set

(r + 1e
2’dX| )

€ rine

ST Ty T BT
Choose { < {, by thelemma, with e and 5 replaced by € and ' respectively.
Now take any ¢ € U,(p) with O (c) = 7. Let oy, -, o, denote the
(r — 1)-faces of ¢, and define the simplexes T = po, 7, = po, (some may
be degenerate). We shall show that

(5) | Xo7, — Wer, | <e|ajf2r +1), i=0,---,r
Given 1, suppose first that @(r,) = #’". Then the lemma gives
| X7, — Wry | < €[ 7).
Moreover, using (2.4),
|7 | SO K Gfrt = o |[r@,0)< | o |frtn;
these inequalities give (5). Suppose next that @(7;) < n’. Then

|7 | <78, <98, =1n"|0|/0,0c) < n|olln=1elao|

and hence |
|X'Ti|<€1’c||X1, |W'T,-[<el|c||X[;

these give (5) again.
We have, furthermore,
|dXr|< X ||| < |dX || o | Lt + 1) < €] o |j2.

Sinee (App. II, 10.3) 07 = o — > (—1)ir

;and dW =

X0 — Wo=dX-r + Z(—l)f(X-T,. — W)
Combining this with the above inequalities gives (1), completing the proof.

=

H

11. Total differentiability of Lipschitz functions. As an application of
Theorem 10A, we shall prove Rademacher’s Theorem :*

* H. Rademacher, Ueber partielle und totale Differenzierbarkeit I, Math., Ann.
79 (1919) 340-359. See S. Saks, p. 311.



272 FLAT COCHAINS AND DIFFERENTIAL FORMS  [Crar. IX

THEOREM 11A. Let f(p) be a real valued function in an open set R C E*
which satisfies a Lipschitz condition. Then there is a measurable set Q C R
with | R — @ | = 0, such that:

(a) For each p €@, Vf(p, v) exists (11, 1.1) and 1s linear in v.

(b) Vf(p) ts measurable in R; that is, each Vf(p, v) 18

(c) Foreach p, €Q, € > 0 and n > 0 there isa { > 0 with the following
property:

1) |fl@) —fp) — Vf(po g —P) | < €|qg—p]

if p,geUdpy). [a—P[Zn|p—Dol.

If we prove the theorem in any open bounded part R’ of R, it will
follow for R. Set Y:p = f(p) in R’; this defines a flat 0-cochain Y in
R’ (V, Theorem 4B). Set X = dY. Let @ be the set where D x(p) exists;
by Theorem 5A, = 0. We shall show that

(2) Vf(p’ ’D) = DX(p)va pPE Q.

Set p, = p + tv, 0, = pp, (if v #% 0). Then if ¢ is small enough so that pp,
isin R',

fp) — f(p) = Y-0(pp,) = X-0,,

Vi(p, v) = i P —fP) _
10+ ¢ t-——>0+! gy f
Property (a) now holds; (b) follows from Theorem 5A.
To prove (c), given py € @, € > 0,7 > 0,setn’ = n/(1 + 5), and choose
{ > 0 by Theorem 10A, using %’. Now take any p, ¢ € R" as in (1). We
may suppose n < 1; then

L% o1 = Dylp)o.

g — 2| <jg—p|t|p—0 | S A +1plg—p, =9—pl|H,

and hence diam (p,pq) < |g¢—p|/n’. Set 0 =pg. Then o C Uyp,),
and the above inequality gives ©, (¢) = 5. Hence we may apply (10.1),
which gives (1), completing the proof.

TaroreEM 11B. Let f be a mapping of an open set R C E™ into E™,
which satisfies a Lipschitz condition. Then for some Q with | R — Q| =0,
the following is true. Vf(p, v) exists and is linear in Q; V[ is measurable in
R; property (c) of Theorem 11A holds.

On writing f(p) in terms of its components f? in an affine coordinate
system, as in (II, 5.20), the theorem follows at once by applying the last
theorem to each f*.

12. On the exterior differential of r-forms. Let w be a flat r-form in the
open set R C E*. Let X = ¥w be the corresponding flat r-cochainin R.

Write ®X for Dy. By Theorem 7C, we have
(1) YoX = X, PV =w a.e.
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We can define dw by the formula
(2) do = @ d¥Vw;

it is a flat (r 3- 1)-form, defined a.e. in R, and dw = do’ if @ = ©’ a.e.
Because of (1) and (2).

3) VY dow = d¥Vw, O dX =ddX,
ddw = O dVYP dVw = ® dd'Vw = 0.

Because of Theorem 5A and (2), we have Stokes’ Theorem for the
flat forms D :

(4) faa w = f dw, all simplexes o, if = Dy.

We could replace ¢ by more general regions by the methods of Chapters
IIT and X.
For flat forms w, define (see (App. II1, 5.1))

(5) | P =sup {{ oo | do |o}.
Then, by (5.3),
(6) | X|”=|w[> if X and o are associated.

THEOREM 12A. Let w be a flat r-form (r > 0) in the convex open set
RCE" and let dw = 0 a.e. in B. Then there is a flat (r — 1)-form & in
R such that d2 = w a.e. in R.

Set X = Ww; then dX = 0. By (VII, Lemma 10b), there is a flat
(r — 1)-cochain ¥ in R withdY = X. Set £ = ®Y. Then by (3) and (1),

dE =PdY =PX =P¥w =w a.e.

Recall the analytical formula (II, 8.1) for dw, which we call d’w for
the moment:

r41
(7)  d'o(p)(vyv: - vo, ) = Z(—l)imlvviw(P)'(%V' CB vo,L,).
i=1
We shall show that for sharp forms (V, 10), this has meaning and equals
dw a.e.
THEOREM 12B. Let  be a sharp r-form in the
d’'w s a flat (r + 1)-form, and equals dw a.e. in R.
Let Yo = X; then dw is the (r + 1)-form corresponding to dX.
By Theorem 11B, there is a set Q C R with | R — Q| =0, and with the
following property: For the mapping w of R into V"), V w(p) exists and is
?inzar in v, for p €Q; it is measurable, and satisfies (c) of Theorem 11A
in Q.
Now V,w(p):(uyv- - -v#,) is linear in all the vectors for p €Q; hence
d’w(p) is an (r + 1)-covector (p € @). It is measurable in R. Let dpa)
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denote the component (dw),. If we show that for each y = (u;, * * *, fty44),
d,w =d,o a.e. in R, the theorem will follow.

First we show the following. Let P71 be any plane with the direction
of e,, and with I P+ R — Q| r+1 = 0, such that d’w is measurable in
P"+1OR Then for any p,€ P+1NQ, € >0, and 5 > 0, there is a
{ > 0 with the following property. Let A be any coordinate interval in
P+l Then

(8) w — d o(py){4} ‘ <eld| if pyedCUlpy), O(4) 27

o

Set €, = €/(r 4 1), and choose { for w, py, €, 5, by Theorem 11B.
Let vy =cje,, "+, ¥,43 = €,qe,  be the edge vectors of 4. Let 477, A
be the faces of 4; then |

(A} = vy * Vo, A7} ={Af}=vv- -0 Vo,
Take any p € A;; then ¢ =p + v, € A}". Set = diam (4). Then
(v, || A7 | =] A] = O(4)6™+ = norL.
Also | v,| < 6, hence | 47 | < 47, and
|q—P‘—‘” Znoz=nlp— Po .
Therefore, applying (11.1) to o,
| wlg) — o(p) — V,0(p,) |

and hence
| olg) {47} — o) {A7} — Vool ogve - 6, v,) | < e [ 4.

Letting p run over 4; and integrating gives

!,"A;’ w = J;: o — V’viw(po)'(le' - ﬁl . 'V’U,H_l) ‘ =

summing over ¢ gives (8), since 94 = > (—1)"1(4;} — 4;).

Take a plane P’ == P"""1 orthogonal to e,. For almost all g € P,
P(q, ¢,) has the properties of P! above. Take any p, € @ M Plg, ¢,),
and let 4,, A,, - - - be a full sequence of intervals as above. Then (10.1)
(applied to the regular subdivision of each A,) and (8) give

dX-A,

= lim —— J o = d'w(py)e, = d’ MOTY R
i oc ‘ Ai ‘

Hence d,0 =d,o a.e. in P(g, ¢,), and consequently a.e. in R. This
completes the proof.
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13. On averages of r-forms. Given the flat r-form w, let w” be its
p-average in int, (R) (§9). let X =YWw. Since Dy = w a.e., (5.6) gives

= (Dx)* = Dy,. Therefore also, by (12.1), X = YoX, = VYoo
Thus

(1) (PX), =PdX,, (Yow), =Yoo
These relations, with (12.2) and (5.5), give
(2) (dw)® = dw’.

Given w and X = Ww,set ® = D. Ingeneral & has better properties
than w; see Theorems 5A and 17B, and (X, Theorem 9B). We may find
o directly from w by a double limiting process, as follows. Given p and
the r-direction «, choose vectors v, v,, * * * — 0 such that for each j,
} Pp+v, a) NE — @ l,,, =0 and (g, &) is measurable in P(p + v,, a)
N R for all &', @ being a set in terms of which the conditions of § 6 hold.
Then (see (7.1))

hmf 0 =lmX-T,0=X0 aCP(p,a).

j—>oo * j—r oo
Choose a p-full sequence oy, g,, - -+ in P(p, a), a(s,) = «; then
X- 1
(3) &(p)o = lim =% — lim lim -~ f o.
i—> 0 ’ g; I z—»oo;-—»oo‘ a; T. o

An obvious method of improving w is as follows: First take the
p-average f, then let p — 0:
(4) w*(p, a) = lim [V K, (V) (p + v, a)dv

p—0

This is not as satisfactory as @; see the example below. So far as o*
exists, it has satisfactory values:

TaeorEM 13A. Given the flat r-form w in R, w* exists a.e. in R, and 13
a flat r-form; w* = w a.e. in R. For any r-ssmplex o such that w*(p, «(c))
exists a.e. in o, f o* = X0 (X =VYo).

Define the average X as in §5. Then Dy = «*; hence, for any «,

o——

5) w*(p, ) = lim Dy (p, «) if w*(p, a) exists.
p—>0
By (5.7), this holds for all « a.e. in R, and w* = D a.e.; hence o* is a
flat r-form equivalent to w.
Now take any ¢ as described. Then using (V, 13.12) gives

LY

o= lim Dy, = gLDXP = lim X0 = X-o.

ExampLE. We shall define a flat 1-form o in the 2-y-plane such that
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w*(p, ;) exists at almost no points of the z-axis. The key to the con-
struetion is (V, 13, Example (a)).
Define the strips

Ry 316 < y< 416, R, 2/16 < y < 5/16.

Cut R, into rectangles of length 4, which we call alternately “even’ and
“odd”. Let ¢(p) be 0 at the left hand end of each even interval, let it
climb with the slope 1 to the value 4 at the right hand end, and let it go
back to 0 in the next odd interval. Let ¢ be 0 on the edges of R), and let
it be linear on the vertical lines of Ry — R,, making it continuous in Ry

By contracting the plane towards the origin with the factor 1/16,
R, and R go into strips R, and R;; R, is cut into rectangles of length 1/4.
Define ¢ in R] as in Ry, ¢ having slopes 1 and —1 in the rectangles of R,,
and having the maximum value 1/4. Continue with R, R, etc. Set
#(p) = 0 outside the strips R.

Take intervals of length 2 on the z-axis El, each with its center below
the center of an even rectangle of R,; let 4, be the union of all such

:
intervals. Let B be the similar intervals uelew the odd rectangles of R,,.

Define A, and B, similarly, using R,. Set
A, =4,04,,,0---, A=A,NA N,
and define B;, B, similarly. Clearly | E' — 4| = 0; hence
|B' — A|=0, |B'—B|=0, |E*—ANB|=0.

The function ¢(p) defines a 0-cochain Y¥; set X =dY, w = Dy.
Define w? = Dy = p-average of w, and w* as above. We shall sketch
the proof that w*(p, ¢;) exists at almost no points of the z-axis, under
the assumption that « (v) equals its maximum value in most of U (0).

Take any p € A,, and consider the average o!. Since U,(p) contains
a portion H of an even rectangle of R, but no points of any odd rectangle
of R,, and w(p, ¢;) = 1 in H, (5.6) shows that the integral over R contri-
butes an amount a’ > 0 to wl(p, ¢;). For ¢ > 0, there are approximately
as many even as odd rectangles of R, in Ul(p) hence the contribution
of It to w*{p, 61) is small. Thus we see that CO‘U), 61} = a >0 for 1-’ S ‘10
Slnce Uy pe(p) N R = 0forj < i(p € E'), weseesimilarly that w1 (p, e)
=>a,ped, Hence for each j and for each p € 4] there is an ¢« > j such
that w” 1gf ( p, &) > a. Consequently, for pe A there is a sequence
iy, iy, - - * such that for each i, = k, w1 (p, e,) > a. For p € B, we find
similarly w1%(p, ¢) < —a. Therefore in 4 N B, w*(p, ;) does not exist.

14. Products of cochains. We first define products of forms; this
will give products of cochains.
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Let &(p) and #(p) be flat forms in the open set R C E”, of degrees r
and s respectively. Their product is the (r -+ s)-form &vy:

(1) (Evn)(p) = &(p)vn(p), defined a.e. in R.
By (I, 14.2) and (I, 14.3),

(2) lfVﬂ‘oé(rj—s)\ﬂoi’? 0

(3) Ev o< | Elo|nle  if & or g is simple ae.,

the latter being true if either » or s equals 0, 1, n — 1 or =; see (I, 9).
To prove that &vy is a flat (r + s)-form, we show that it is weakly
flat (§7), letting ¢ be the set of functions (&, », d&, dn). We shall use

the averages &%, 9* of £ and . By Theorem 13A, lim w” = o a.e. for any
p—>0

flat . Hence, using (13.2),
(4) Bk sy, A >dE,  dp—>dy,

a.e. in R as p— 0. Let these holdin @, | B — @ ! = 0. We must prove
(c) of §6, using (Q, ¢)-excellence. Take any ¢ = ¢"+*+! such that
| ag— @ |,,+s+1 =0, |do— @ [,,H = 0, and all the above functions are
measurable in ¢ and in d¢. Since the functions are bounded, and £° and
7® are smooth, we find

faa vy = J.ac, Lim (£°vy®) = lim LG Py

= lim L d(&*vy®) = lim L (d&Pvn’+ EPvdy®)

— f (im dgevlim 7 + lim £vlim dy) = f (dEvy + &vdy).
Hence, using (2),

®) | [, &n|< N0

0)>

. N'=c, (dE || nlo+ | &o|dn

with ¢,, defined by (15), as required. Hence &vn is weakly flat, and by
Lemma 7e¢, it is flat.

T.-Pf m — Evam eorraacnnand a0 WV Thoan +h
2400V 0 SV LVULITSpULIU WY . Al Ul

with ¢ as above,

[,d@m =aWo=wac=[ s
using the above equality proves (compare the proof of Theorem 7B)

(6) d(&vn) = dévy + (—1)&vdy a.e. (deg (&) = 7).
Given the flat cochains X and Y in R, we now define their cup product
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X_Y as the cochain corresponding to the product of the two forms
Dy, Dy

(7) X_Y =YW (DyvDy).
Using (12.3) and (6) gives
(8) XY =dX"_Y°  (—1)X"_dY?.
The unit 0-cochain I® corresponds to the funection identically 1.
Clearly
(9) I X = X_1'=X.
By (5.3), (2) and (3),
(10 x-ri< (") Xy

8
H]

(11) | XY | X7 Y if rorsequals0,1,n — 1 orx.

Because of the corresponding properties of the products of forms
(I, 6), the product (7) is bilinear and associative, and satisfies

(12) Xr_ Y = (—1)y*Y*_X".

We now find some inequalities on the flat norm of a product, taking
R = E for ssimplicity. In the general case, insert the subscript R; see

(VIIL, 1.10) and (VIIL, 1.21). Since (" T¥) < (" T° T, (v, 438
r - r
and (10) give
| X"-Y* ) =sup {| XY |, | d(X-T) |}

Sop (7711 ) (T raxti v+
("t Y)ixjari)

1 +s8+1
< (TTO T tax r i+ (7T T X e g vy
1 .
a3 |x-rp< (TEITY) axy iy (T )ix||¥P.

This gives
W) XY P <o XP| Y]+ X[ TPS 2, | XP Y,

1
(15) C,s == SUp {(r+j+1), (r+:+ )}
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For r = 0, using (11) gives
06 |Xooyrp<[ax|| Y|+ |X[|YP<|XP|Y]+]X| TP,
) Xy P<[X[|dy| 4| XD Y[ 2]X P TP

ExampLE (a). We cannot omit the factor 2 in (17). For, taking
n=1,r=s8 =0, R = unit interval 0 < x << 1, let

Dy (x) = =, Z=X_X.
Then, using D,,(x) = D (z)e,,
D ,(z) = 2% D, (x) = 2z, dZ| =2,
and hence, in R,
Xp=1  |zP=2=2|X] X}

Now suppose X and Y are sharp. Then they are flat, and the definitions

and properties above hold still. If Dy = &, Dy, = 9, (2) gives

H(Evnlg) — (Evp)(p) [o < (T J,f 8)[] Eq) o | n(@) — n(p) |o

+ | &lg) — &(p) lo | (D) |o];
therefore
(18)  LX-¥H < ("" }L 8)[1 X|Y)+eX)| Y[
Set @ = (" J: 8), b—r L s 1. Then, by (V, 7.8),

X' Y F=sup {| XY |, bR(X-Y)}
Ksup {a| X || Y|, ball X | &(Y) + (X)| Y [I}

< baf(X)| Y| +8+1a|X[sup{| Y|, (s + 1)2(Y)},
andsincer—l—s+1(r+8):(r+s+l) ete.,
s+ 1 r s +1

(19)4erysi#§(,.+1)(fjiir 1)53(X)| Y‘—|—(T+:+1)jXH Y [*,

This gives
20 | X-¥F <o (X[ Y] +] X || Y[ < 20, X[F| Y
For r = 0, (18) and (19) give
(21) XYY < | X |R(Y) + 2X)| Y
(22) | XY S (s+DRX) | Y| +|X|| Y
SUX|+ 6+ YFLS (s +2) | X[ T

b
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ExampLE (b). We cannot lessen the factor s 4 1in (22). To show this,
take E*t1, let Dy(x!, ---) = 2!, and let Dy(p) have a single non-zero
component, equal to 1. Then in a neighborhood R of the origin,

X)=1, |Y|=1, | X Y[f=(+DLX-TY)=s+1,

while for R small enough,
Recall (Theorem 7D) that for any sharp ¢ and flat X,

(23) D, x(p) = $(p)Dx(p) ae

We show now that the product ¥ X, Y being a 0-cochain, agrees with
the products of (VII, 1). That is, if ¢ is any sharp function, and ¢ is
the corresponding 0-cochain (¢'p = ¢(p)), then for any r-cochain X,
sharp or flat,

(24) X =X_¢=¢X.
Set W = ¢_X. By (7) and (23)
Dy =¢vDy =¢Dx = Dyy ae,
24) follows.
leen ¢ and flat X, recalling (V, 4.11) that |d$| = €, and using
(24) and (16) gives
(25) [$XP <[ XP + [ X[ (S| +29) | X,

which is a strengthening of the second part of (VIIL, 2.2). The first part
of that relation follows from (22).

1 ‘

15. Lebesgue chains. We shall generalize the discussion of (VI, 7).
Let a(p) be any measurable summable r-vector valued function in E"
(Euclidean and oriented); then the components a’(p) are summable. We
say o corresponds to the flat chain 4 = & if

(1) fE“ Dya= X-A, all flat 7-cochains X.

(We could use only sharp X, as in (VI, 7.1).) We call & a Lebesgue chain.
THEOREM 15A. The mapping o—> & gives a one-one mapping of

equivalence classes into G; the formula ] & ! “ J[;E"' (o) holds.

The proof of (VI, Theorem 7A) applies without essential change;
see (XI, Theorem 14A).
Note that

(2) |a+3|:1&|+\5| if car (a) N car (8) = 0;

for

&+ F] = [+ Bl = [ @0+ |y Bro=18&| + 18]
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Recall (App. III, 6) that L! is the space of equivalence classes of
measurable summable functions, with fE" {¢) as norm.

TaroreM 15B. With E™ Euclidean and oriented, the flat n-chains
correspond exactly to the elements ® of L1, by

(3) P&,  o(p)=dP(p)e., D

First, the & are dense in €, (VI, Theorem 7A). Next, since|&| = f (ay...,),
the mass, which equals the flat norm (since r == z), is the same as the norm
in L. Since L' is complete (App. III, 6), the & give all n-chains A4.

For r = n, we may write (1) in the form

) Xa=[ Dyi Dx(p)=Dx(pe"™ a(p)=a(ply..,.

Tueorem 15C. For any flat n-chain A = & in E", there is a flat
n-cochain X with

(5) | X|=1, Xd4=|4]

We need merely set D . (p) = 1 where &(p) > 0, == —1 where &(p) < 0,
and = 0 elsewhere.

Note that (VII, 2.8) holds for any measurable summable «; the
proof given there applies.

16. Products of cochains and chains. We take R — E for simplicity.
We first define the cap product X—~A of a flat s-cochain X and a Lebesgue
(r + 8)-chain 4 = & by the formula

(1) X~a=p, Bp) = Dx(P)ra(p),

using the interior product of (I, 7). Since « is summable and D 5 is measur-
able and bounded, 8 is summable, and hence 5 is a Lebesgue 7-chain;
see Theorem 15A.

We show that
(2) Yr.(Xs,.,Ar-H) . (Yr__’Xs).Ar-q—s,

first if A = & is a Lebesgue chain. We use (1), (15.1), (I, 7.1) and (14.7),
giving

Y-(X~8) = [ Dy(Dyra) = [ (DpvDyya = (Y-X)%.
We now prove, always for the moment for 4 = &, with ¢,, asin (14.15),

| Y8 Ar+s8 r+s+41 T—|—8—|—1
@ e p< (TR x4 (TF T ax |
® | Xomarst < 26, X b 4],

6 XA P (X[ 4 [aX])[Ap<2|XPp|Ap.



282 FLAT COCHAINS AND DIFFERENTIAL FORMS [Cmap.IX
To prove (3), take any flat r-cochain Y. By (2) and (14.13),

Y (X~ =Y X)A || XY Plap

s+r+1 s+r+1
(et I e IEY IEE

The inequality now follows from (V, 4.3). This inequality gives (4).
The last two inequalities follow from (14.16).
We now define X~A4 for any flat X and 4. Let A,, 4,, -+ be a

sequence of continuous chains, 4, LAy (VI, Theorem 7A); set

by

I

(6) X~4 = lim? (X~A4,).
i~ 0
That the limit exists and is uniquely determined follows at once from (4).
The properties given above now extend immediately to flat 4.
We prove next

) (xe—are | < (TT9) 1 x| 14,
I |—'—\ r /I [} I
(8) ]XSAA”+“[§|XHA| if s=0,1,n—1 orn.

To prove (7), take any flat r-cochain Y. We have, using (14.10),
| Y(X~4)| = | (Y-X)4| < | Y-X || 4]

< (774l

the relation follows from (V, Theorem 16A). To prove (8), use (14.11).
We set
(9) X~At=0 if s>t

Letting I? be the unit 0-cochain, we prove some further properties of
the products of flat cochains and chains:

(10) X~(Y~4) = (X-Y)~A4,
(11) A(X*~Am+) = (—1) dX~A + X~04,
(12) -4 =4, "X ~47)=ZXA.

To prove (10), take any Z of the right dimension. We have, using the
associative law for -,

Z[X~(Y—~A4)] = (Z-X)(Y~A) =[(Z-X)-TY]4
—=[Z(X-Y)}4 = Z[(X-T)~A].
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If r = 0, both sides of (11) vanish. To prove (11) for r > 0, take any
Y1, and use (14.8):

Y [o(X~A4)] =dY(X~A) = (dY-X)-A
=[d(Y-X) — (1) Y Y -dX)]'A = (Y-X)04 4+ (—1)(Y-dX)- A
= Y- [X~04 + (—1)" dX~A].
Finally, (12) follows from (14.9):
Yo (I0~A4%) = (Y°-1%)-4° = Y*A°,
I0(X7~A4") = (I°%_X") A" = X" A".

Now suppose X and A are sharp. First suppose A = &; then we may
define X—A as before. We have relations (2), (7) and (8) again, and also

(15)]X3AA1-+3|#§|1(?'+8+1) {X| +(T+S +1)(S+I)E(X)]|A #

r 41 r

o~

16) | Xomdreo [P < 20, | X | AJF

o urs | L2

|
| b
1) [ XA FS[X |+ +DeX|AFZ (r +2)| X[ AR
To prove (15), use (14.19): For any Y7,
| Y(X~A) | =] (Y-X)A| < | Y-X A

< [(s+1)(sj“fl“l)2(X)+(”Z“)NXI]IYI*IAI#,

which gives the result. (16) follows from this, and (17) is proved with the
help of (14.22).

As in § 14 for the cup product, the definition and above properties of
X~A4 for any sharp A now follow. Relations (10) and (12) continue to
hold, but not (11) in general, since 4 need not be defined.

For any sharp ¢ and sharp or flat A, using the notations of (14.24),
that relation gives

X$pA = $X-A = (X-f)yA = X-(§~4)
for any X; hence
(18) $A — F~A.
Now (5) gives
(19) [dAP < (4] + 8] AP,

which strengthens (VII, 1.5). The relation (17) gives (VII, 1.4) again.
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17. Products and weak limits. We shall prove

THEOREM 17A. If the limits on the right hand side exist, then
(1) wkl’ (X, Y ;) = wkl’ X,_wkl’ Y.

1,j—0 {0 j—> 00

Let X, Y be the limits on the right. Say | X, P,| ¥, < N. Because
of (14.14), we need merely prove that for any simplex ¢ of the proper
dimension,

(2) m [(X;-Y,) 0] = (X-Y)o.
t,j—> 0

We prove the theorem first in the case that X = 0.

Suppose first that X is a (-cochain. Given ¢ and € > 0, (V, Lemma
13b) shows that we may choose 7, so that | Dy (p) < =¢N|o ] in a
neighborhood U of o, if ¢ = 4,. Considering the cochains in U alone, we
have, for ¢ > 4, and for any j, using (14.11) in U,

(X =Y)o|<| X, || Y;|lo|<eN|o|=e

Now suppose X = X", ¥ = Y*; we shall use induction on r. Given
€ > (), choose 4 > 0 so that

(r+s)6N2, (T+S)6N2< €

r r—1 =g l o ‘
Cover ¢ by open spheres R,, - - -, R, of radius < 4. Let p, be the center
of B,. Asin (V1I, 10.2), define the (» — 1)-cochain Z,, in R, by setting
(3) Zypr = X, J(py 7);

then if X, = X, — dZ,,, we have, using (App. II, 10.3),
(4) | Z,]|<ON, |dZ,|< (1 +8)N, |Xi|<oN, |dXi|<N.
We may cut ¢ into cells g,, so that

o= Zok, g, CR,.

Since wk1? X, = 0, the relations above show that wkI® Z,, = 0 for each k.
Hence, by induction, we may find ¢, and j, such that, for each k,

| (Zy—Y )00, | < €f3m if 214y Jj=Jo
Now if 4 > 4, j = j,, (14.8) and (14.10) give
| (X~ Y:')'“| = ‘Z[X;k*-‘ Y, 4+ Zy—dY; + d(Z,~Y )]0 ‘
k
< SU XY, | +| Zamd¥, || 0n| + 2 | Za=T,000n]
k

k

' €
ékZ[(r—:s)[X;,,ll Y,|+(;ii)lz,-,,[[dlf,.\]]ak|+-3—ge.
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We now drop the assumption X = 0. Given ¢ > 0, using the case
just proved and the hypothesis wkl® Y, = Y shows that there are numbers
tg and j, such that if ¢ > 4,, j = j,, then

(X; — X)-Y,]e| < €2,
| Y (X~0) — Y(X—~0) | < €2.
Set ¥; = Y; — Y. Then

. (X-Y))o! = (Y;-X)o|=| Y (X~0)| < €2,
an

| (X=Y)o — (X-Y)o| <X, — X)=Y}o| + | (X=Y)) 0| <e

As an application of the theorem, we prove:
TrEOREM 17B. Leét X = X" and Y = Y* be flat in R. Then for any
subspace P = P! of E, with t > r + s, using only multivectors lying in P,

(5) D, =DyvDy ae in P if Z=X_Y.

For any simplex o C R of the correct dimension,

(6) (X=Y)yo=[ D;'= [ DxvDy.

Note that (5) does not follow directly from (14.7); we know only
that D, = DyvDy a.e.in R.

If we prove (6) for any simplex ¢ in P, then (5) follows, as in the
proof of Theorem 7B.

Choose a sequence of vectors v, vy, * * - — 0 such that D, = DyvD,
a.e. in each T, P’, P’ = P(c). Let X} be the cochain in part of P’
defined by

X:"T:X'Tv"r, +C PN T_U_R.

Let Xp, be X, considered in P’ R only. Define Y¥, Y, similarly.

1

Because of (V, 3.6), it is clear that in any P’Nint, (R),
wkit X* = X,, wkl’ Y* =Y.

By the definition (14.7) of W = X, —Yp, Dy = Dy vDy in
P’ R, and hence a.e. in ¢. Therefore

(XpYp)o=[ Dy vDy,=[ DyvDy.
By (1), this also equals
lim [(X}¥-Y¥)0] = hmJ‘ DyvDy = lim f D,

= lim Z'Tv_()' — Z'O',
as required. '
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Note that (5) is equivalent to the relation
(7) (X—Y)p = Xp—Yp;

this follows also from (X, 11.1), on letting f be the identity mapping of
P into X.

18. Characterization of the products. We prove

THEOREM 18A. The cup product of flat cochains in an open set R is
characterized by the following properties:

(a) Foreach X7, Y*, X"_Y?*is aflat (r 4 s)-cochain in R; this operation
is ilinear.

(b) There are numbers a,., such that

X_¥|<a, X7 7|
(¢) Forr =0, XO0_Y*= DyoY? asin (14.24).
(d) dX"-Y?*) =dX"_Y* 4 (—1)YX"_dY"

We know from § 14 that these products exist; we must prove unique-
ness. By (c), uniqueness holds for r = 0; we use induction on .
First suppose X — dZ is a coboundary. Then (d), applied to Z_7Y,
gives
X Y=d(Z_-Y) — (—1)1Z._4dY;

the right hand side is uniquely determined, by induction.

Now take any X. Take any o = ¢"*. For each sufficiently large
integer 7, we may choose spheres R, - - -, B, of radius 1/2% in R, which
cover ¢; write 0 = > ,0,;, 0, C R;,. Define Z,,, X/, asin §17. Then
since | X7, | < |[dX |/2° (see (17.4)), we have

D @24 Yyou — (X=Y)o| =| D@2, — X)- Yoy
k k

ézars|X;kH Y||ow| L a,ldX || Y || o|/2,
%

which — 0 as ¢ — o0. Therefore

(1) (X—Y)o = lim >(dZ,—Y) 0,
pa

i»>wo k

and the uniqueness of the right hand side gives that of the left hand side.
Note that since | Z;; | < | X /2, we may also write

2) (X—Y)-¢ = lim Zd(ZW.. )0,
t—w k

REMARK. We may give a direct proof of the existence of the products,
using induction, by means of the formula (2). One proves first the existence
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of the limit, then (b) and (d), and then finds a bound for | d(X-Y)|,
proving that X_Y is a flat cochain; the usual properties of products
then follow also. This procedure is rather laborious, and one does not

obtain so small values for the a,, as used in (14.10).



X. Lipschitz Mappings

In the applications, a domain of integration very commonly consists
of an oriented arc or piece of surface, or more generally, an oriented piece
of an r-dimensional manifold in £™. The first object of this chapter is to
represent these as chains. If 4 is a polyhedral chain, and f is a Lipschitz
mapping (II, 4) of the polyhedron P = spt (4) into £™, then f4 is a
“Lipschitz chain” (which is flat, hence also sharp). A domain of the
above sort (if compact) is a typical case.

More generally, let f be a Lipschitz mapping of the open set R C E*
into the open set S C £™. Then a polyhedral chain 4 in R gives a Lipschitz
chain f4 in §; this defines a flat chain fA4 of S for each flat chain 4 of R,
provided f carries the support of 4 into a set whose closure is in §. For
each flat cochain X in 8, setting f*X-4 — X-fA for such chains A of R
defines a flat cochain X in B. Moreover, flat forms in § go into flat forms
in B. The action of mappings on products, and some other miscellaneous
topics, are considered.

In the first part of the chapter, we study the Lipschitz chains mentioned
above. Take a fine subdivision > g, of P, and let f’ be the mapping which
agrees with f at the vertices and is affine in each ¢,. We must require the
o, to be reasonably shaped; see the example of Schwarz mentioned in
(IV, 14). Then the f’o, are in general close to the fo,, both in position
and direction, and the polyhedral chain f’A4 is an approximation to the
desired chain f4. We define fA = lim” f, 4, for a sequence of such approxi-
mations. To show that |f;4 — f,A |’ is small for large 4, j, deform f,
into f; along line segments; this defines a mapping F of I X P into E™
(I = unit interval). The image F(IX P) is not polyhedral in general;
but with a simplexwise affine approximation F’ to ¥, we obtain polyhedral
chains F'(Ix A), F'(Ix3A), of small mass, which may be used to give
the desired result.

Next we consider Lipschitz mappings f of open sets (see above).
If f maps E” into E™, we do not need the conmdera.tlons of Chapter VIII;
but the proofs in the general case are hardly more difficult. For an
example of the situation we deal with, let R be the set of all points (r, )
in the plane (using polar coordinates) such that 0 < 6 < 2w, r > 0;-set
f(r, @) = (r, 6/2). This is not Lipschitz; for the points (1, 8), (1, 2 — 0),
for § small, are close together, but are mapped into points not close

together. But if we use a new metric in R, with distance between two
288
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points equal to the lower bound of lengths of curves in R joining them,
then with this metric, f is Lipschitz; we say that f is “R-Lipschitz”. If
this conditions holds, then flat chains A of B go into flat chains f4 of §,
as noted above. Besides the usual properties of mappings, we give a
continuity theorem. The theory of f*X for flat cochains X in § follows
easily.

Let e be a flat r-form in 8. Then there is a corresponding flat r-cochain
X in 8, this gives a flat cochain X* = f*X in R, and this corresponds to
a flat form D y. in R, which we call f*«. The desired properties of this f*
hold; in particular, df*w = f*dw. In the usual analytical formulation,
both w and f are assumed differentiable. Though one cannot expect the
analytical formula for f*w to have meaning for a general flat w, we prove
(Theorem 9B) that if we replace w by the equivalent flat form Dy, then
the formula actually gives f*w a.e.

If f is smooth and its first partial derivatives satisfy a Lipschitz
condition, then f*w is sharp whenever w is sharp, as is easily seen. This
is not true for more general f. For example, let f map E! into E! by
setting f(x) = 2%% (x > 0), f(x) =0 (= < 0). Let w be the unit 1-form
in E*. Then, with the unit vector e in £7,

Fro@re = o(f(2)Vf(z, &) = df@)/jdz = B3[2)='7, x>0,

and f*o(x)e=0 for x < 0. Thus f*w is continuous, but does not
satisfy a Lipschitz condition.

In §11 we prove that f*(X-Y)= f*X_f*Y (the special case
dim (X) = 0 was considered in §10). The proof uses Theorem 9A, and
also the theorem on weak limits in (IX, 17). Other properties of the cup
and cap products follow easily.

A formula for the norm of a Lipschitz chain is given in §12; in § 13,
we give an improved version of the continuity theorem of § 5.

REMARK. Without the assumption that f is Lipschitz, one cannot
obtain the results given in this chapter. For example, there is a curve ¢
in the plane E2 and a smooth function ¢ in EZ? such that the difference

#(q) — $(p) (p, g € C) cannot be obtained* by integrating derivatives of
¢ along C.

1. Affine approximations to Lipschitz mappings. Let K be a simplicial
complex, and let f be a mapping of K into E™. The corresponding simplex-
wise affine approximation f' to f is that mapping which is the same as f
on each vertex of K, and is affine in each simplex of K (App. I, 12).

* H. Whitney, A function not constant on a connected set of critical points,
Duke Math. Journal, 1 (1935) 514-517.
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If py, p,, -+ are vertices of K, and u,, u,, *-- are the barycentric
coordinates (App. 1L, 2), then f’ is defined by

M F(Dmpe) = > pal ).

Recall (App. I, 12.4) that
(2) (@) — f'(p) =V f(p*, ¢ — p) in each simplex of K,

and V f’ is constant in each simplex.

In the case that K itself is a simplex ¢, we wish to relate the Lipschitz
constant £ .. (II, 4) to L.

LemMmA 1a. If f' is the affine approximation to f in the r-simplex o, then

(3) L. < 8,/(r — 1)10(a).

ReEMark. With a more careful analysis (studying segments in ¢ of
maximum length in each direction), we could replace (r — 1)! by (3) by 7!.
Since f’is affine, we need merely prove

I

| VP w) S & fulir —1)!®(0),  p*eint (o),
for any vector « in ¢. Say
C=Po" P U= (Pi — Po)l|D; — Po|} U= Zaiui-
By (2) and (IV, 15.3),
; V f'(p*, u,) | — If(Pi) — f(Dy) m P; — Do I g L,
Lo, | < |u|/rB®)  (all4).
Hence

| Vf'(p*, u) 1 = | Zaivf’(’}’*, u;) | < &, ! U |/T!®(0')-

ExaMpLE. Let o be the triangle in the (x, y)-plane with vertices at
(0, 0), (1, €), (2,0). Let f map these vertices into (0, 0), (1, €), (1, 0).
We may extend f over o so that , = 1 (project points to the right of
x = 1 into this line). Clearly €, > 1/2e.

By (11, 6.1), (I1, 4.1), (I, 12.16) and (11, 4.15), we have the inequality
for any Jacobian r-vector

“ EAOIES
Applying this to f’ and using (3) gives
(5) |J(p) | < 25 < 23[(r — DIO(0)  in r-simplexes.

2. The approximation on the edges of a simplex. We shall show that
if V_f is nearly constant in most of a simplex, then the vertices are mapped
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nearly as expected by the values of V f. By (IX, Theorem 11B), Vf
exists a.e. and is measurable if f is Lipschitz.

LEMMvaA 2a. Let f be a Lipschitz mapping of the r-simplex ¢ info E™.
Let Q be a measurable subset of o in which V f exists, and let p be a number
such that

() 0—@|< s |0
(2) (Vi@ — Vi) < pl if pgel.
Then for any edge p,p; of ¢, tf § = diam (o),

(3) |f(p;) —f(p) — Vf(p*, p; —p) | <6p80 if p*eqQ.
Suppose first that r > 2. Let

, 0 <p<l,

ol = p,p,, ¢’ = opposite (r — 2)-face.
For any ¢, 0 < ¢ < 1, let 7, be the set of all points
p=(1—1tq+tq, q € g, q €.

The part of 7, with a fixed ¢ is an (r — 2)-simplex similar to ¢, of volume
t=2| ¢’ |, and the part with ¢’ fixed is a 1-simplex of length (I — #)| o
hence

| 7| = a(l — t)2,

a being independent of £. Therefore, if ¢, is the part of ¢ filled out by the
., with 0 < s < it

t t'r—l tr
]at|:bL178|ds:ab[T*1—;].

Fort =1, we have | 6| = | 0, | = ab/r(r — 1); hence

@ Jo| =0t — =1 o = [+ — D — oo
This gives
2 o, >t o] if t<L
Combining this with (1) gives, if H — ¢ — Q,
©) o, VH| < [H|<plo,|
Set
o™ = p,¢’, * — g1 s,

For each p € 7*, the line through p parallel with o! cuts out a segment I
from o; these segments fill o,. Say

IITOHI ZB(P)IIH (0 defined a.e. in *).
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Let 7" be 7*, projected onto a plane perpendicular to ¢!. Then, using
measure in 7' rather than in 7%,
[b®) Llde 1A,
= — 5 P < 1,
[T |dp  pio]

hence 6(p) << pin a subset of 7* of positive measure, and we may choose
p' € 7% such that

(7) L,NH| <pll,

and Vf is defined a.e. in I ,..
Say

»

vV =1DP; — Py Ip’ — prp”, v — p” . p,-;
then if p; = p” + #’, (II, 1.3) gives, for p* €@,
f ! r ]' ! r 14
f@") — f(p) — Viw*, o) | <[] VA, v) — Viw*, v) | dt
Dividing the integral into two parts f1 and J;, with those ¢ such that
p; €Q and p, € H respectively, (2) gives
fl < pg, [V | < p2),

while (7) gives
fz <28, (v

LOH| L] <228

Thus

(8) f(p"y — f(') — Vf(p*, ¥') |< 3p2,0, p*€q.
Say p' = (1 —t)p, +t'¢, ¢ € o’. Then

=t'|v[ < pd.

v = (1 —t'), |v-v'

Therefore
| VI(p*, v') — Vf(p*, o) | < | Vf(p*) || v — v | < £,p6.

Also | p" — p;| < pd ete.; hence
|f2) —f@) | < Lp0,  |flp) —F(P")

These inequalities give (3).
If r =1, say o = p'p”; we may then apply (8).

< 2,pd.

3. Approximation to the Jacobian. Using Lemma 2a, we can relate
the Jacobians (11, 6) J,, J,:
LEMMA 3a. With the hypotheses of Lemma 2a, let [’ be the-affine

approximation to f. Then
(1) ‘ Jf'(p*) _ Jf(P*) '0 g 6p£‘,}/(7’ — 1)!@(0), p* Q.
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Using (1.2), set
=D " Pps Y, = P; — Po» U; = Vf(P*, v;),

w; = f(p:)) — f(po) = Vf'(p*, v)).
Because of (2.3),

sz‘_ "’*"c‘i < 6p8,9, ’%\éﬁfa’ l wi|§9f65
hence, by (I, 13.9) and the proof of (I, 12.17),
| wyve v, — ugve s v, o << Brp Qo7
The r-direction of ¢ is, by (III, 1.2),

oy == vyv- - v frl | o |
Hence

EJf’(p*) — J(p*) !0 = ‘ Vf(p*, vyve - vo,) — Vf(p*, vyv- - o) lo/rl ‘ U|

b

= [ wyve v, —ugve e va ofr! | 0| < 6p2507/(r -~ 1) | o

4, The volume of affine approximations. The definition of r-volume
of a “‘rectifiable »-manifold” may be given for instance through integrating
the magnitude of the Jacobian or through finding the limit of the volumes
of approximating polyhedra; we show that these definitions are
equivalent;* see (7) below.

First note that for simplexes (or convex cells) o,

(1) {go} = a|J,(p), |g0|=|J,p) |0

for any p €int (0). For, defining the v, and w, as in ILemma 3a,

, if ¢ is affine,

ri{go} = wyve + vw, = Vg(p, vv* * vo,)
= Vg(p, r'{o}) =] o | J,(p).

Hence also (the first integral having values in V(5 compare (I, 19.2))

@) [ 740 dp = {go}, [194p)|dp=|go],  ifgis affine.

3

LeMMA 4a. Let f be a Lipschitz mapping of the oriented r-dimensional
polyhedron P C E* into E™. Then for each 77 > 0 and € > 0 thereisa { > 0
with the following property. Let 2.0, be any simplicial subdivision of P

* This is a standard theorem in area theory. See for instance (for r = 2, 5 — 3)
H. Rademacher, Uber partielle und totale Differenzierbarkeit von Funktionen
mehrerer Variabeln I1, Math. Annalen, 81 (1920) 52-63.
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of fullness > n and mesh < {, and let f' be the corresponding affine
approximation to f. Then

3) [ 90) = J,p) o dp < <,

) Dl e =] Jmds, <e
k

(5) ’ Py — [ I(p) dp ‘0 <e,

(6) DL = [ 9w dp| < e
k

(7) 1@ = [, Tim) |dp | <«

We shall prove (3); the other relations follow at once from this.
We may suppose that P is a cell. Choose p << 1 so that
o G| P« 2P| _
(r— 1)ty = 3’ [(T—l)' ]’_3
Set
(9) ¢ = [(r — )ln¥ pe/62;.

Since Vf is measurable (IX, Theorem 11B), we may choose a closed subset
@ of P by Lusin’s Theorem so that

(10) \ P—Q | <[, Vf is continuous in Q.
Choose { > 0 so that
(11) | Vilg) — Vfp) | < p8,  ifp, —p| <L

Now suppose P = Jo, is as stated. Order the o, so that, if
H=P—¢Q,

(12) o, NH|Zp ot (k=1,-+,m)
and the inequality fails for £ > m. Set
(13) P’:GIU"'UGm, P”ZGm_!_IU"'

For any k¥ < m, o, satisfies the conditions of Lemma 2a. Hence we
may apply (3.1}, which, with (8), gives

LnQIJ F_J|0<€|0'k|/3|P‘ k_<_m
By (1.5), (1.
J.GnH|J'_Jf|°§29 IO'kiEf/[(T—_l.ﬂ]féefa‘kl/3|PL
for £ < m. Hence

[ 15 = 1 o < 2¢/3.
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The definition of P”, with (10), gives
=D o] <D |onH|< [ H| <.

k=>m E>m

pr | Pﬂ

Hence, by (9),

[

Thus (3) holds.

Jp — o <20 [pNL/[(r — Dinl” = /3.

5. A continuity lemma. We shall give a generalization of (V, 3.6);
see also Theorems 6B, 13A, and 7B. If f and ¢ have the same domain of
definition ¢, we set

(1) 8,, =sup { g(p) — f(p) | PEQ}.

Let f be an affine mapping of the oriented r-simplex o into E™. Then
fo is an oriented simplex (possibly degenerate), and hence an r-chain,
in E*. If A = a0} is a polyhedral chain, and f is affine in each ¢},
then fA = Ya,fo! is a polyhedral chain in E*. We shall generalize this
in § 6.

LeMMA 5a. Let P be a polyhedron, expressed as a sstmplicial complex,
with simplexes o}, and let f, and f, be mappings of P into E", affine in each
o;. Suppose

(3) 2, and £, are < L in each of.
Then for any A = Ya,0l,
(4) [ frd — fod P < 6y (L[ 4] + L[ 04)).

If the points F(t, p) in (5) lie in the open set S, we may use | f;A — foA |3 in
(4).
Set

(5) F(t, p) = (1 — ) fo(p) + tfilp), 05tZ1, peP;

this is a Lipschitz mapping of the Cartesian product I X P (I = unit
interval) into E™. Let e, be the unit vector along I. Given any oy, let
ey, * '+, e, be an orthonormal system in of. Then ey e;, -+, ¢, Isan
orthonormal system in I X o}. Take p € int (a3). Then writing 6 =4, ;,
we have, fori > 0, | Vf,(p, ¢,) | < L, and hence

| VE(, p, e;) } = ‘ (1 — )Vfolp, €,) + tVfi(p, €;) l < L, 1> 0.
Also

| VE({E, p, o) | = | fo(p) — folp) | < 6;

hence

(6) | It p) | = | VFE, p, ep.,) | < SL* in IXd.
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For some 7 > 0, there is an arbitrarily fine subdivision of 7 x P of
fullness > #, which gives a subdivision of each IXaj; see (App. II,
Lemma 4b) and (App. I, 12). Say 94 = b6}~ 1. Given € > 0, set
e =¢/(>|a;|+ 3 |b;]). Considering the mapping ¥ in each I x of for
all k£ and for s = r and » — 1, choose { > 0 by Lemma 4a small enough
for all of these, using ¢’. Let F’ be the corresponding simplexwise affine
mapping of I X P. Since | I X o} | = | o} |, (4.7) and (6) give

L4

| F'Ixa}) | < ffxas SL* 4 ¢ = OL*| of | + €.

Therefore, using I X A = Ya,(I X o}) ete.,
| FIxA) LI Y |a]|of |+ D |al,

t %

| F'Ix04) [ L1 D [b,][ 71+ € Dbyl
J J

Since f, and f, are simplexwise affine, F'(t, p) = F(¢, p) for t =0, 1.
Hence

BN, A\
A

{ __ £ A i1~ AY — £
\U/\ﬂ)—Joﬂ, x ’--—

(1 A4) = f,4,
and (App. 11, 13.8) gives

(7) fid — fod = F'(IX04) + oF'(I X A4).
These relations give (4); the statement about 8 is clear.

6. Lipschitz chains. Let 4 be a polyhedral r-chain, and let f be a
Lipschitz mapping of P = spt (4) into E*. We define the corresponding
Lipschitz chain fA as follows. Let G, P, G,P, - - - be a full sequence of
simplicial subdivisions of P; that is, €, is a refinement of S,, and for
some 7 > 0, all simplexes are of fullness = ». Let f,, f,, - be the
corresponding simplexwise affine mappings of P into E™. For each k,
frA4 is a polyhedral chain in E" (see § 5). Set
(1) fA = lim f,A.

k—aw
To show that the limit exists, take any numbers k, !; say k<l

For each simplex ¢,; of G, P, both f, and f, are affine in g,;; by Lemma la,

RAiia prals TTEmSASE EEE YL TV

2.8, < L= A in g,
Hence, by Lemma 5a,
| fA—fAP L8, (L] A+ L[ 24,

Clearly &, ;, — 0 as k, I — c0; thus the limit exists. ,
To show that the limit is unique, consider another sequence &P

SLP, - - - and corresponding mappings fy, f5, - Say Ly < L' set
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Ly =sup {L, L'}. Take any k. Using a common simplicial refinement
of €, P and S, P (App. II, Lemma 3b), Lemma 5a shows that

| fid — [ AP < 6 (L5 A |+ Ly |04])) >0 as k— oo

Suppose f itself is simplexwise affine, in terms of a simplicial subdivision
of P. Using a full sequence of refinements of this subdivision, and corre-
sponding mappings f,, it is clear that f, = f, and hence f,4 = fA, for
each k. Therefore the new definition of f4 coincides with the old when the
old applies.

Levma 6a. Let f be a Lipschitz mapping of the oriented r-simplex o
wnto E*. Let g be an orientation preserving affine mapping of the r-simplex
a’ onto o, and set f'(p) = flg(p)) in o’. Then f'c¢’ = fo.

Take a full sequence of subdivisions of o', and let f7, f,, - * - correspond.
Since ¢ is affine, there is a corresponding full sequence of subdivisions of o,
and corresponding mappings f,, fy, - . Since f.(p) = fi(g(p)) at the
vertices of the corresponding subdivision, and these mappings are simplex-

wise affine, f,'c(p = filg(p)) in o’; therefore f,0" = f,(g0’) = f,0.

T atdine l'.. W Y PiTaa 4—“\ nnnnn ]“'
.IJUUUll.I.s n —> Ay ELVUD vile Tesuilv.

Because of the lemma, given fA, P = spt (4), we may take a sub-
division of P, replace the (closed) r-cells by disjoint r-cells in E, and
define a corresponding mapping f’ of the union of these cells; clearly f’
is Lipschitz. If A" is the corresponding polyhedral chain in E7, then
f'A" = fA. We may therefore obtain all Lipschitz r-chains as images of
polyhedral chains in E".

We show next that

@ fo| < [)17,1< o

Take S,0, Sy0, * + +, of fullness > > 0. Given € > 0, choose { > 0 by
Lemma 4a. Take any k such that mesh (S,) << {. Say G,0 = >,04;
Take p; € 0;;. Then with f, as in the last lemma, (4.2) and (4.3) give

o | < D) e = [ 1,1 < [ 1]+«

letting k — oo and using (V, 16.1) gives (2).

TueorEM 6A. For any Lipschitz r-chain fA (hence with J ; defined a.e.),
(3) |fA]_§_M{A‘ if |J,|< M inspt(4),
2 fa|< g5l 4l

This follows at once from (2). See also Theorem 7A.

THEOREM 6B. Let K be a simplicial complex, and let foand f; be mappings
of K into E™ with 8, , 8, < L in each simplex of K (or in K itself). Then
for any simplicial r- ckam A of K, the conclusion of Lemma 5a holds.
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For any o} of K, say Vf, and Vf, are defined and measurable in ¢} C o/,
|of — Qi |, =0. Asin §5, we find
| Tplt,p) | OL°, pe@f, 0t 1

by (3),
| FI x of) | < 6L |1 X af| = 0L | o} ].

Hence | F(I x A) |[< oL |A|, | F(I x 04)| < 0L™1| 241, and (5.7)
with F gives (5.4). Again § may be used.

7. Lipschitz mappings of open sets. Given the open set R in E™, set
(1) dist, (p, ¢) = inf {lengths of curves from p to ¢ in R}.

We set distg (p, ¢) = oo if there is no curve in R joining the points.
We could clearly require that the curves be formed of broken line segments.
Note that, if pg denotes the line segment from p to g,

(2) |¢g—p|Sdistg(p,q), |g—p|=distg(p,q) ifpgeR.
Let f be a continuous mapping of the open set R C E" into the open
set § C E™, The R-Lipschitz constant of f is

distg (f(p), f(9))
diSt'R (ps q) ’

provided this exists; if so, we say fis R-Lipschitz. We mention a few
elementary facts. The number £, 5 is independent of §; we could replace
8 by any neighborhood of f(R) or by £™. Any curve in R is mapped into a
curve at most €, , times its length. We have

(4) distg (f(p), (@) < & r|9—p| if pgCR.

Hence f is “locally Lipschitz”; in fact, letting f’Q denote the mapping f,
considered in the subset @ of R alone,

(5) L= 8 r iIfQCRis convex.

(3) L; r = sup {

It follows that f is Lipschitz in any compact subset of R; therefore, for
any polyhedral 4 in R, f4 is defined, as in § 6. If fA =1lim’f,4 as in
(6.1), then f,4 C 8 for all sufficiently large k, and lim} f,d = f4, as is
apparent from (VIII, Theorem 2B).

We show now how an R-Lipschitz mapping f determines a mapping
fA of flat chains 4 of R, provided A satisfies one condition. We use the
notation

(6) al"! = sup {a’, a1},

TuroREM TA. Let f be an R-Lipschitz mapping of the open set.R C E."
into the open set S C E™. Then the mapping fB of polyhedral chains B in
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R into Lipschitz chains in S is uniquely extendable to be a linear mapping
of flat chains A of R into flat chains fA of S, for all A such that

(7) flept (4) C S,

so that the following properties hold (r = dim (A4)):
(8) fod = dfA,

(9) fA| S Qfr|4),
(10) [fAR < 27k 4 %
(11) spt (f4) C flspt (4)).

ReEMarks. The condition (7) holds for all compact 4, and holds for

all 4 if f(R) CS; simple examples show that it is not true in general,
If we weaken the requirement on f, assuming only that it is locally
Lipschitz (Lipschitz in a neighborhood of each point, or equivalently, in
each compact set ), we could still define f4 for all compact 4 in R.

We first prove the above properties for polyhedral chains 4; clearly
fislinear on these. Take any oriented r-simplex ¢ in B. Let G, 0, Sy0,* -
be a full sequence of subdivisions of ¢; this defines also a full sequence of
subdivisions of do. If f, is the simplexwise affine mapping of ¢ defined by
f and &,0, then, as noted above,

lim} f,o = fo,  lim} f,d0 = fda.

Since f, is simplexwise affine, it is clear that f,00 = df,c. Since 0 is
continuous, (8) follows for o, and hence for polyhedral 4.

The inequality (9) for simplexes is an immediate consequence of (6.2)
and (5); hence it holds for polyhedral A. The inclusion (11) follows from
the definitions of f4 and supports.

To prove (10) for polyhedral 4, take any € > 0. Choose a polyhedral
chain D in R so that

4—aD|+|D| <4+«
Then (8) and (9) give
fAR< |f(A—oD)|j +| oDy
S Ur|4— 0D+ 25 | D| < LFR( 4R+ o)

which gives (10).
Now take any flat 4 in R satisfying (7). Then there is a neighborhood

Uy of @y = f(spt (A4)) with Uy C 8, and a neighborhood U of Q = spt (4)
with f(U) C U,. By (VILL, Theorem 3C), there is a sequence A,, Ay, -+
of polyhedral chains in U with lim% 4, = 4. Applying (10) to fl4,—4)
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shows that f4,, fA,, » - - is a Cauchy sequence in the flat S-norm; we
shall define f4 and prove

fA =1limb fA,.

Replacing 8 by E™ shows, first of all, that f4 = lim? f4, exists as a
chain of E™. Next, choosing a polyhedral chain B, in U, such that
|f4; — B, % << 1/¢ (VIIL, Theorem 3C) shows that B,, By, --- is a
Cauchy sequence in the flat S-norm, of polyhedral chains lying in the
closed set U,CS; now f4 = lim” B,. By definition (VIIL, 1), this
shows that f4 is a flat chain of 8 and equals lim} fA4,. Clearly (10)
continues to hold. Now spt (f4) C U,, and since U, was arbitrary,
(11) holds.

Given A again, since spt (64) C spt (A), dA satisfies (7); hence fd4
is a chain of 8. Write 4 = lim} A4, as above. Then g4 = lim} 94, and
(10) shows that fd4 = lim} f64,. Hence, using (8) for 4,,

04 — lim} 84, — 3 lim} f4, — af4,
rovin 1 general.
To prove (9) for flat 4, we may suppose | 4 | is finite; then (VIII,

Theorem 3C) we may choose the A4, above so that lim|A4,|=]|4]|.
Since (9) holds for the A,, we have

| fA | = | lim§ f4; | < lim inf | f4, |
S g pliminf |4, [ =87,14].
This completes the proof of the theorem.
We give a continuity theorem.
THEOREM TB. With R, S, f as in the last theorem, let A be a flat chain
of R satisfying (7). Then for any numbers L and € > 0 there isa { >0

such that for any R- Lipschitz mapping g of R into S and any flat chain B
of R, if g and B satisfy (7), then

(12) |gB—fAlf<e if |B—AlR<{ L rS L 6, , < &
Set Ly = sup {8, p, L}, and choose a polyhedral chain 4, in E so that
4, -4z < /4 LIr1.

Set P = spt (4,). For some % > 0, there is a sequence of simplicial
subdivisions &, P, G,P, - - - , of fullness 2> 7. Set L, = Lyf(r — 1)!5, and

{ = e/4sup {LI, LT 4| + L~ 04, |}

Now take any corresponding g and B. Let f, and g, be the simplexwise
affine mappings of P corresponding to &, P. By Lemma la, £, and £,
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are < L, in each simplex of &,P. Also, 6, , < (1 + 4,){, where
A — 0. Hence, by Lemma 5a, for k large enough,

| ds — fidy B S (U + Z)ULL [ Ay | 4+ L5704, ) £ (1 + A)e/4,

and letting k — co gives

, g4, — f4, )g' §_ €/4.
Also, by (10),

IfA—fAlg.< ["]IA A|R<e/4
|gB—9A1|g§L[ﬂ({B“A|t&+|A_A1|R)<€/2-

These relations give (12).

Finally, we prove a transitivity theorem.

Turorem 7C. Let R, R’ and R" be open sets in Euclidean spaces E, E’,
E” respectively, let f be an R- Lipschitz mapping of R into R’, and let g be
an R'- Lipschitz mapping of R’ into R". Then gf is an R- Lipschitz mapping
of R into R”; also for any flat chain A of R such that

Q=spt(4), Q@ =fQCR, @ =g@)CR,
(which holds, for instance, if A is compact), (9f)A is a chain of R", and

(13) (9)4 = g(fA).

Set k = gf. Suppose first that 4 is a simplex ¢. With a full sequence
of subdivisions of g, let f;, fs, -+ - be the corresponding simplexwise
affine mappings (into R’, if the subdivisions are sufficiently fine). Now
£, < L for some L, and lim}, f,o = fo. Hence (10) gives

Lim%. g(f,0) = g(fo).

Set h; = gf;. Applying Lemma 6a to each simplex + of the ith subdivision
gives ko = g(f,0). (If f;r is degenerate, then k1 = g(f;7) = 0.) Also
4, < L, 7 since, by (5), 8, < 8, g for each 7. Therefore Theorem
6B gives lim%. h,0 = ko. Hence

ha =

_l
::“"
“
——
Sy

Therefore (13) holds also for polyhedral 4.
Now consider the general case. Since clearly 8, » < €, p@, p and

h(@) CQ" C R”, kA is a flat chain of R”. Choose polyhedral chains A4,,
Ay, - -+ in R, with lim A, = 4. Then because of (10),

llmR.fAi = fA, hmR. g(fA;) = g(fA), limR, RA; = hA.
Since g(fA,) = hA,, (13) follows.
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8. Lipschitz mappings and flat cochaing. We prove
THEOREM 8A. Let f be an R-Lipschitz mapping of the open set R C E™

into the open set 8 C E™. Then for any flat r-cochatn X in S, setting
(1) f*X-A =X-fA

for any flat r-chain A of R satisfying (7.7) defines a flat r-cochain f*X wn R.
We have

(2) df*X = f*dX,
(3) | XS Gr| X,
(4) | X RS QR XS

If also g is an S-Lipschitz mapping into an open set ' CE’, and Y is a
flat cochain in S’ then

(5 {1 £
\w) \JJ)

Take any flat chain 4 of R satisfying (7.7). Then (1) and (7.10) give
| XA = [ XA | XRARS GRIX 3] 4]k
since these chains are dense in the space of flat r.chains of R, (1) defines
a flat r-cochain of R, which satisfies (4). Since, for any 4 satisfying (7.7),
df*X-4 = f*X-04 = X-f 04 = X-0f4A = f*dX-4,
(2) holds. Relation (3) follows from (7.9):
| frXA]|=|XfA]|< | X[| /A< Ga| X[ 4]
Finally, given f and g, take any polyhedral 4 in E. Then
@N*Y-A =TY-(gf)4d = Y-g(fA) = f*(g*Y)4;
hence (5) holds.

We give a theorem on weak limits (see (VIII, 1(g))):

TaroreM 8B. With f as above, and cochains X and X, (1 =1,2, - *)
n S,
(6) wkly, f*X, = f*X if wkl} X, =X.

i—» 0 1—>
Take any simplex ¢ in B. Then
lim (f*X,0) = lim (X;fo) = X-fo = f*X-0.
By (4), the | f*X, |% are uniformly bounded; hence (6) holds.

9. Lipschitz mappings and flat forms. Let f be a smooth mapping of
the open set R C E™ into the open set § C E™, and let w be a continuous
r-form in §. Then, as in (II, 4), there is a corresponding r-form f*w in R,
defined by
(1) fro(pya = fio@)e = wl@) Vi, «), g=f(p)
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Now let f be Lipschitz, and let w be a flat r-form in §. We cannot
expect that (1) may be used to define f*w; for instance, f might map R
into a subset of § where w is not defined. We shall define f*w by finding
the cochain X = %W corresponding to @ (IX, Theorem 7C), forming
X* = f*X (§8), and finding the form D,, = ®X* corresponding to X*:

(2) f*o =0f*Yo.
In terms of X, this reads
(3) f*Dx = Dpux.

Theorem 9B below shows that we can obtain a form equivalent to
f*ow (IX, 7) through the analytic formula (1), provided that we first
“improve” w by replacing it by Dy, X = We. Thus one of the important
properties of Dy is that it is always defined to a sufficiently large extent
to make the analytic formula work. Thisshows also that the two definitions
of f*w agree in the previous situation.

Note that the theorem shows that Dx(gq, §) exists for certain g,
namely, for 8 = Vf{p, «); but it does not state that D (g, §) exists for
other §. It might happen that Dy(g), as an r-covector, does not exist for
any ¢ = f(p). This is the case, for instance, in the example in the intro-
duction to Chapter IX, if we let f map ¢! into an interval of the z-axis.

Recall that D (g, f) is defined by (IX, 4.1) if § is an r-direction, and
then by (V, 10.10) for any simple § = 0. Recall also that the existence
of D x(p) implies the linearity of Dy (p)a in «. ‘

THrEOREM 9A. Let f be an R- Lipschitz mapping of the open set R C E™
into the open set S C E™, and let X be a flat r-cochain in S, Set X* = f*X.
Then for any p € R such that f is totally differentiable at p (IX, 11) and
Dy (p) exists, Dx(f(p)) exists relative to the plane P, through f(p) in the
direction of Vf(p, « (p)) (1X, 5), and

(4) Dy«(p) = f3Dx(f(p))-

REMARks. The plane P, consists of all points f(p) + Vf(p, v). The
theorem would hold equally well if, in the definition of Dy, we used
p-full sequences of simplexes, not necessarily containing p. In place of
(8) below, we would use the following relation, coming from (IX, 2.6):

(5) diam (pU o) | do | < (r+ 1) | o /(r — UVTO ().

We prove the theorem first in the special case n = r. Since fis totally

differentiable at p, we may define the affine mapping F of R into E™
by setting

(6) F(p')=q+ Vfip,»" — p), q=f(p).
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We begin by showing that for any # > 0 and € > O thereis a { > 0
with the following property. For any r-simplex o,

(7) | X-Fo— Xfo|<e|lo! if Oe)=n peocCUlp).

There is a sequence of subdivisions of ¢ of fullness > n’ > 0, for some
7' < 7. Choose €' > 0 so that

(r + l)L"—l] ,
r 1)y €

Choose { < 1/2 by (c) of (IX, Theorem 11B), using ¢’ and #’. Now take
any o as above. By (IX, 11.1),

IA

X} [L" n ¢ L=9n

14

f(p)— Fp") | <€ |p—p < diam (o), p'eo.

Since 85 < £ p, Theorem 6B gives
| Fo—fo |3 < 6, p(L7 | 0| + L] 3o ).

R
r

o (T 7
Y (1 .

3}
4)., L] ’,
(8) diam (6) | 9o | < (r + 1)| o |/(r — L)In.
Hence, since (in o) §, p < € diam (o) < €,
(r + 1)Lr!
(r— 1)iy

Orient E” = E™ by choosing the r-direction «,. Suppose first that
J¢(p) = 0. Then, to prove (4), we need merely show that D,.(p, o) = 0.
Let 04, 05, - -+ be a full p-sequence of r-simplexes; since Jp(p) =0,
and hence Fo, is degenerate, X-Fg, = 0. Hence (7) gives

= 0.

IX‘(FO’_fO'”é%X,Sf’[LT‘]' ][o‘|§e‘o|.

DX:(P, fxo) = lim X*'O‘i/| ag; k = lim X‘fO‘i/| ag;

Now suppose J,(p) #% 0. Then F is a one-one affine mapping of E*
onto an r-plane P in E™ through ¢, and has an affine inverse #-1in P. Set

b= 4B, V=1 o =bAp);

then o is the r-direction of P, properly oriented. Let 7, 74, - - * be any
full g-sequence of simplexes in P, oriented like «y; we shall prove that

(9) b lim X"Ti/! T | = Dye(p, )
It will then follow that D (g, J,(p)) exists and

Dx(q, J(p)) = bDx(q, 0‘(')) = Dy.(D, xg),
which gives (4).
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Set g, = F-l7,; these are r-simplexes of E", and | 7,| =b]0,|, by
(4.1). Set L; = Lp1; then
— iO’,-; > b"Tl'l __b’®
Olos) = diam’ (¢,) = LI diam’ (r;) L} (70
and hence a,, 0,, - - * is a full p-sequence, and

lim X*-o‘i/i o‘,—| == Dy.(p, x4}-
Also, because of (7),

X.Ti X*-GG) . X.'.PYO"l -_— X'fO'i
— = lim = 0.
KT | o

lim (b

These relations give (9), completing the proof for the case n = r.

In the general case, the proof above shows that D (g, Vf(p, x)) exists
and equals Dy.(p, a) for each simple «; since the second of these terms is
linear in «, so is the first.

THEOREM 9B. Let f and X be as in the last theorem; set w = Dy in S.
Then (1) may be used to define an r-form f*w a.e. in R, and this form is
equivalent to that defined by (2).

This is an immediate consequence of the last theorem; recall that
w(g)-B is needed as a linear function of § only for certain 8.

TurorREM 9C. Let f, X and w be as in the last theorem. Then with

either definition of f*w, we have
(10) df*w = f*dw a.e. in R,

Recall that df is defined in (IX, 12.2). Since this definition uses only
the cochain corresponding to &, the last theorem shows that the left hand
side of (10) does not depend on the definition of f*w used; nor does the
right hand side, a.e. With (2), (10) follows at once from (8.2) and (IX, 12).

10. Lipschitz mappings and sharp functions. Given the R-Lipschitz
mapping f of R into S, and the function ¢ which is sharp in 8, define a
corresponding function ¢* = f*¢, sharp in R, by
(1) $*(p) = (f*¢}p) = S(f(p)).

It is clear that

@) 1Sl LS Lrlys | OFS S

With the notation of (IX, 12), write ¥ for the 0-cochain & corre-
sponding to ¢. The above mapping of sharp forms is equivalent to the
mapping of the corresponding 0-cochains; that is,

(3) ¥V =¥ f*4.
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For
[¥*¥ép =YV:f(p) = &(f(p)) = ¢*(p) = V¢*p

If X = &, (3) gives (9.4) in the dimension 0, for all p € R.
For any flat r-cochain X in S, we show that

(4) F¥X) = (f*)(f*X) = $*(f*X),
(5) Df*(qu) p) = &(f(p)) f*x(P) if Df-x(P) is defined.

Take any p for which D/.y(p) is defined, and set a = ¢(f(p)). Since
f*¢X-0 = X-¢fo (VII, 2.1), we find, as in the proof of (IX, 7.6),

Dyeyxy(p)a = lim Tfﬁ% , Dy (p)e = lim % ,
‘(‘f’—“)ff’i}é |‘i6

[ éfo, — afo, | < €8 p | o, } if ! d(p) — a ] < ¢ inf(o,),

and letting ¢+ — o0 gives (5). Using this and (IX, 7.6) gives (4).

11. Lipschitz mappings and products. We shall show that the usual
formulas of algebraic topology (and of differential forms) carry over.

THEOREM 11A. Let f be an R-Lipschitz mapping of the open set B C E®
into the open set S C E™. Then for any flat cochains X and Y in 8,
1) fHE-Y) = f*X_f*Y.

Set,

X* = f*X, Y* = f*Y, Z=X_7,
Z* = f*Z, Z'=X*_Y*
First suppose that X and Y are smooth (i.e. Dy and Dy are). Then,
by (IX, 14),
Dglq) = Dx(q)vDy(g), 8l ge€sb.

Let @ be the set of points p of R such that Dy.(p), Dy.(p) and D, .(p)
exist, D, (p) = Dyx.(p)vDy+(p), and f is totally differentiable at p; then
| R —@Q | = 0. Take any p €€, and set ¢ = f(p). By Theorem 9A and
(I, 10.4),
Dg.(p) = f;(Dz(!-'I)) = f;(Dx(q WD)
= }L(Q)pr Dy (g) = Dxu(p)vDyu(p) = Dg(p).

Therefore Dy, = DZ. a.e.in R, and Z* = Z'.
Now consider the general case. Set §, = int;;(S). Write

= wklf X, = wkif ¥ in each §;,

t— 0 {— 0
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X, and Y, being smooth cochains in S, as in (V, 13). Then in any R’
such that f(R’) C S, for some £, (IX, Theorem 17A), Theorem 8B, and the
proof above give

[HEY) = f*wkl} (X;-Y,) = wkl} f¥(X;-Y))
= wkl (f*X,—f*Y,) = wki}, f*X,_wkll, f*Y, = f*X_f*Y

in R’, and hence in R.
THEOREM 11B. With the notations of Theorem 11A,

(2) Dyu(p) = Dyu(p)vDys(p)  aee. in R.

This follows at once from (1) and the definition (IX, 14.7).

From this formula and Theorem 9A, we can get still further information
on the truth of D, = DyvDy:

THEOREM 11C. With the notations of Theorem 11A,

(3) Dz(f(p)) = Dx(f(p))vDy(f(p))in the image space of Vf(p), a.e.in R,
For we find

(4) 3D (2) = f3 Dx(f(p)vf; Dy (f(p))  ae.in R,

and this gives (3).

When the first factor is of degree 0, we have a product 55_.X = ¢X;
see (IX, 14.24). If we use (2), we find (10.5) a.e. in R.

We end with a formula about the cap product.

THEOREM 11D. With the notations of Theorem 114, for any flat chain
A of R satisfying (71.7) and any flat cochain X in S,

(5) f(f*X~A) = X~f4A.

For let Y be any flat cochain in § of the proper dimension. Then
(IX, 16.2) and (1) give

Yf(f*X~A4) = f*Y-(f*X~4) = (f*Y-f*X)-4
= f*(Y-X)A = (Y_X)fA = Y-(X~fA).
If X = § is a 0-cochain, (5), (IX, 16.18) and (10.1) give

(6) fo*d = ¢fd,  ¢*(p) = $(f(p))-
This follows also directly from (10.4) (and vice versa).

12. On the flat norm of Lipschitz chains. Just as the flat norm of a
polyhedral chain 4 was defined by minimizing |4 —8D|+ | D, using
polyhedral chains D, so we may find the flat norm of a Lipschitz chain A4,

using Lipschitz chains D. This is of interest in the study of chains in
metric spaces.
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THEOREM 12A. For any Lipschitz chain A in the open set R C E™,
(1) |A|gx=inof {{4 — 38D |+ | D|: Lipschitz chains D C R}.

Since the inequality < is clear, it is sufficient to show that for any
€ > 0 there is a Lipschitz chain D in R such that

|A—3D|+|D|<|Aly+e

Say A = fd,, Ay = Da,0,. Using a full sequence of subdivisions of the
o,, we find a number L and a simplexwise affine mapping f’ of a subdivision
>7; of the o; such that

Q. L, S (LM | Ag| + L 04, ) < €f2.

Let F(t, p) be the deformation of f into f’, as in (5.5). Then, as in (5.6),
\Jp | < 6 o L* in the cells I X 7i. Hence, by (6.3),

F(IXAg) | S8, ,L7 | Ay, | F(IX04g) | K6, L7 1|04,

Now D’ = F(I xA,) is a Lipschitz chain, and using a relation like (5.7)
gives | o
| ffAg—fAg— 0D" | + | D"| < ¢f2.
This shows, in particular, that | f'Ay % <|4 % + €/2. Since f'4,
is polyhedral, there is a polyhedral chain D" in R such that

| f'dg—3D" | +| D" | < |4k + €2

We now have

|4 — D" — D)

+ | D" —D'|<|Ah+ €
thus we may use D = D" — D',
13. Deformations of chains. We wish to generalize Lemma 5a. Givewn

a flat chain 4 in E", we shall define the product I X 4 in E*+1, and show
that

(1) IxAP<3|A, [IxA|=|4|

First suppose 4 = Ya,0, is polyhedral. Then letting I be the unit
segment, in the (n + 1)-th direction, I X g, is a cell in E*+1, and IxX 4 =
SalXo,;). Given € > 0, choose C and D in E" so that

A=C+0D, |[C|+|D|<|4]+e

Then IxA = (IXC+ 1xD —0xD)— oI xD). Since the second
part of (1) clearly holds,

|IXC 4+ 1XD —0xD|+ [IXD|<|C|+3| D],
|I><A|b§3(|Alb+ €),
and the first part of (1) follows for this case.



§13] DEFORMATIONS OF CHAINS 309

For a general flat 4, let A =lim®* 4,, | A] =1lim | 4,|, the 4, poly-
hedral. Then using the first part of (1) shows that lim” (I X A,) exists
and defines a flat chain, which we call I X A4, uniquely, and the first part
of (1) continues to hold; the second part is proved, using <.

The remaining inequality may be proved as follows. Given the flat
r-cochain X in E", we may define the flat (r 4- 1)-cochain ¥ in E*+1 by
setting

(2) Dy (p) = e"tlv D x(p)

(compare (IX, 9)). Then Y-(IxA4)=X-4, and | IxA|=>|A4| follows
with the help of (V, 16.3).

LrmMa 13a. Let A be a flat r-chain of the open set R C E™, let f and f,
be R-Lipschitz mappings of R into E™, and let F be the mapping of I X A
into E™ defined by the deformation (5.5) of f, into f;. Then

(2) |\ FIxA4) <0,  Lr|A] if 2,08 p< L.

Let A = limB 4,, the 4; being polyhedral chains in the closed set
Q@ CR, with lim | 4;|=|4| (VIII, Theorem 3C). As in (5.6), |Jp |
< d; ;L in the cells of each I x A4;; hence, asin § 5 or (6.3), (2) is true
for each A4,. Since imP F(Ix 4,) = F(I x 4), (2) holds.

TarOREM 13A. Let f, and f, be R-Lipschitz mappings of the open set
R C E" into the open set S C E™, and let A be a flat r-chain of R such that
the supports of fod, fi4, and of the deformation chains F(I X A), F(I Xd4)
are in 8. Then

B) |frd—foAEZ 6, ((Lr|A|+ L2 |04)) if 2 p 8 g < L.

The chains in 8 are all chains of § (Theorem 7A). Using (5.7) (with
F) and (2) gives (3).
Note that (3) expresses a stronger kind of continuity than (7.12).

We cannot expect this in general, as we show by an example.
[+.2]

ExamMpPLE. Set ¢(z) = Zai sin bz, 0 < < 1, with the e, and b,
i=1
chosen so as to give a non-differentiable function; this defines a flat
1-chain 4 = ¢ in E'. With the unit vector e in E1, it is easy to see that
there is no ¢ such that

| Thd — AP =|T),A —A|<c|h], allh



XI. Chains and Additive Set Functions

In this chapter, all chains considered will be sharp and of finite mass.
Given the r-chain 4, the function A (Dx) = X-A4 of sharp r-forms Dy
(see (V, 10)) is linear, and satisfies a certain continuity condition. The
principal theorem of the chapter (Theorem 11A) is that there is a corre-
sponding additive set function y, which, through integration, gives the
same function of sharp r-forms:

XA =ADx)= [ Dydy,  allsharp X.

The values y (@) are r-vectors; the integral is thus a generalization of the
usual Lebesgue-Stieltjes integral. Though the integration theory needed
is standard, it is not easily available in the form most suitable for our

nurnoses. Hence the first nart of the chanter ie devotad o antiineg 11 +ha
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required theory.

The basic properties of additive set functions v, with values in a
finite dimensional Banach space, are given first; the variation 7 of y is a
real valued set function. The definition and elementary properties of the

integral '[Q &-dy over Borel sets Q) are considered next. As a function of Q,

it is additive; we denote it by &y. In this notation, the formula | &-d(y-y)
= { (§'yp)-dy becomes the associative law: & (y-y) = (&y)y. In §5
we show that a set function and its variation may each be expressed as
an integral with respect to the other.

The next sections are devoted to proving that a linear functional
satisfying certain conditions is given by an integral; we consider first
non-negative functionals, then real valued ones, then the general case.
We then define the sharp norm |y ¥ of y, and consider molecular set
functions; the properties are similar to those for chains.

The theorem on existence and properties of y, follows easily from the
theorem on functionals mentioned above; moreover, the sharp norms
A ¥, |y |¥ are equal, and the mass of 4 equals the total variation of y 4.
Through this theorem, analytical properties of A4, in particular, of the
product ¢A, are easily obtained, generalizing various facts in Chapter
VII. The “part 4, of A in the Borel set ¢’ may be defined j",s_,lQA’
%o being the characteristic function of ¢ (§ 13); the r-vector {4} of
this chain (VII, 6) is precisely y,(Q). The relation of continuous chains
(VI, 7) to r-vector valued set functions takes on new meaning.

310
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The sharp norm |y |* is given an intrinsic characterization in § 15,
similar to the characterization of | 4 [¥ in (V, 8). A direct determination
of | y [F (for compact ), similar to the definition of | 4 |# for polyhedral 4
in (V, 6), is more difficult; it is obtained by “‘explosions’ of y, breaking
it up into pieces and moving them about. Some alternative definitions
of | y |¥ are shown not to work.

Since flat chains are sharp, all the results hold for these; but what
further can be said we leave completely unanswered. See for instance the
problem in § 11. The study of the structure of flat chains is a deep and
important problem. See in this connection (VIII, Theorem 5A).

1. On finite dimensional Banach spaces. In the study of set functions
whose values are in the finite dimensional Banach space V, we need the
two theorems below.

THEOREM 1A. Given V, there is a number v > O with the following

property. Let vy, -+ -, v, be any set of elements of V. Then there vs a subset
Vit Uy of these such that
(1 Ivy.lzfpvify.f
i) | L4 =T L7

Let S be the unit sphere in V (all v with | v| = 1). It is covered by a
finite set of sets 8, - - -, S,, of diameter < 1/2. Set = 1/2m. Now
given vy, * -+, v;, we may choose h so that if Vi Tt Yy, are those for

which some positive multiple is in §,, then

PEAEDIEY

Say
’ ’ o
’Ulj j— a.lj_’v;_j, ’UA}' E S}l—’ al] —— | 'UAJ

Choose u €8,. Then

l zvz,. = {Z“Aju + zaaj(?’z; — u) I
= )Zazjul — Zaz,- "’i, —u ’ = Zazj — % Day
=3 D4 |= 0> |

We show next that from a certain set of non-void closed sets, we may
pick a point from each in a reasonable manner. A Borel function ¢ is a
function such that for each Borel set @, ¢—1(Q) is a Borel set.

Lemma la. Let V, and V, be vector spaces, and let S be a closed subset
of VixV, For peV,, let S(p) be the set of points ¢ V, such that
(p,q) €8. Let 8(p) be non-vord for p € P. Then there is a Borel function
$(p) (p € P), with values in Vo, such that ¢(p) € S(p).

Let f(t} (¢=0) be a continuous function whose values cover V,
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(a “Peano curve”). Using this to give an ordering of points of V,, let
@(p) be the first point of S(p). Equivalently, we may define, for p € P,

(p) =inf {t: ft) eS(p)},  J(p) = f(=(p)).

The function 7 is lower semi-continuous. For suppose p;, — p, ¢, = 7(p,)
—t. Then q, = f(t,) € S(p,), ¢; — g = f(t), and since (p,, g;) €S, we have
(p, ¢) €S. Hence ¢ = f(t) € S(p), and 7(p) < ¢. From this it is easily
seen that T is a Borel function; since f is continuous, ¢ is a Borel function.

In a vector space with a scalar product, for each vector v 5 0 there
is a unique vector ¢(v) such that [@(v) | =1, (v)v =]|v|; in fact,
d(v) = v[} v | In a finite dimensional Banach space V, the following
weaker theorem holds.

TurOREM 1B. Given V, there is a Borel function ¢ defined in V, with
values in the conjugate space V, such that

@) [$0) [ =1, gloyo=|v| (V).
Let S be the set of all (v, f) € VX ¥ such that
fl=1 foe=|w|

|
Then S is closed. Let S(v) be the set of all f such that (f, ») €S. By
(App. I, Lemma 8b), S(v) is non-void. The lemma shows that ¢ exists.
REMARK. Asnoted in the Remark in (I, 13), ¢ is not uniquely defined
in general.

2. Vector valued additive set functions. By a Borel partition of the
Borel set @ C E™ = E, we mean an expression of ¢ as the union U Q, of
a finite or infinite sequence of disjoint Borel sets ¢),.

Let V be a finite dimensional Banach space. By an additive set function
in E with values in V, we mean a function y(Q) of Borel sets @ C E, such
that y(@) € V, and

(1) Q) = Zy(Q‘.) for Borel partitions @ = | J @,,

the sum always existing in the metric of V.
It is elementary (Saks, pp. 8-9) that

(2) v (lim@,) =lim y(Q,) if @ CQyC--- or ¢ IEyI-"".
The variation 7 of y is the real valued set function defined by
(3) (@) = sup {Z | 7(Q)) |+ Borel partitions U @ of Q].
Clearly
(4) Y@ | < 7Q)-
We could restrict the partitions in (3) to be finite. For if 7" is the
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resulting function, clearly (@) < 7#(@). To prove the converse, take
any Borel partition | J @, of . Then for each m,

D@ D 7@ |+ | ¥Uimsr @) | £ 7(@)
t=1 =1

and letting m — o0 shows that 7#(@Q) < 7'(Q).
We must prove that 7(¢) is finite. Suppose not. Then (compare
Saks, p. 10) we shall choose Borel sets @; D @, D - - * such that

(5) Q) =00, |p@)|=i—1

Set Q, — Q. Suppose @y, -+ -, @, have been found. Since 7(Q;) = o0, we
may choose a finite Borel partition @, = | J; @, such that

> 7@ | Z 1] @) | + Kifm,
with 7 as in Theorem 1A. There is a subset ¢, of the @;; such that
| AU, Qka,.) = l Z?(Qka,.) ’; | 9(Qu) | + k.

Set @' = |J; Q. If 7(Q') = 0, we may set @, = Q. If not, then set
Q1 = @ — @' Then clearly 7(@;,,) = 00 (see the proof of additivity

below), and | p(Qu4r) | Z | ¥(@) | — [ ¥(@0) | Z .
Set @* = lim @,. Then, by (2),

| 9(@%) | = | lim »(@) | = lim | ¥(@,) | = o,

a contradiction; hence $(@Q) is finite.

We now prove that 7 satisfies (1); this will show that ¢ is a (finite)
Borel measure. Take any Borel @, and any Borel partition @ = | J@;-
First we prove (@) < >7(Q,). Let @ = [ J@; be any Borel partition of @.
Set Q,; =Q,NQ;. Then |J,Q,, is a Borel partition of ¢;, and hence
3, v(@:;) | £ 7(@;). Therefore

STr@ =] Dr@)| < D@ < D7,
J J % t,7 1

uired. To prove the reverse inequality, given ¢ > 0, choose Borel

Z ‘ y(@:5)
J

Now | J, ;Q;; is a Borel partition of @, and ¥, .| y(@,,) | > 2.:7(@:) — <
which gives the result.

LEMMA 2a. Given any Borel set @ and € > 0, there is a compact sel
P C Q and an open set R D Q such that for any Borel @',

(6) |7@) — @ | <e if PCQCR.

&
wm
—

+ 3

=+ L2

> 7(Q,) — €/2%
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We may choose P and R (compare Saks, p. 69; Halmos, p. 183) so
that #(Q — P) and (R — @) are < ¢/2. Then
| 7(@) —y@ | =[y@ — Q) —y@— Q)]
SHQ —Q+7@—Q)SFRB—P)<e
The total value [y] and total variation | y | of y are defined by

(7) Y =vE), |y|=[p]l=7E).

If 4, -+ -, y,, are additive set functions with values in V, we may
define the additive set function
(8) y=Dayi Y@ = Day Q).

The additive set functions now form a linear space, and [Ya,,] =
2a,yil-
3. Vector valued integration. Let V, V' and V" be finite dimensional

Banach spaces, and let »’-v = v” be a bilinear multiplication of the pair
V’, V into V7, such that

(1) EE2RSEAIKT
The two cases we shall use most are:
(@) V' =realsand V' = V; awv = av.

(b) V' = conjugate space ¥ of V, and V" = reals. In particular, with
the vector space W = V(&) (App. I, 10), use V=W, V' = WUl and
let v'+v be the multiplication of (I, 2.2); the norms used are the mass and
comass. See (I, 13.4).

Let y be an additive set function in ¥ with values in V. We shall

define the integral JR &-dy, with values in V", £ being any bounded Borel

function defined at least in the Borel set R C E, with values in V.

First suppose £ is a Borel step function; that is, there is a finite Borel
partition R =Q,U---U@Q,, and there are elements &, ---, &, of V',
such that £(p) = &, for p €@Q,. In this case, we define

(2) [o&r = >, &v@)

Now consider the general case. For each € > ) we shall define a set
®_C V", as follows. An element v” of V" is in O, provided the following
is true. There is a Borel set 8 C V’ containing all values &(p), and a
Borel partition § = §; U - - - U S,, each 8, being of diameter < ¢; there
is an element £, € §;; and

(3) o = zf,—-y(Qi), Q, = £4(S,) N R.

Note that we may choose p, € @, (if @; 7~ 0), and use &; = &(p,).
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We prove
(4) diam (® ) < 2¢7(R).
For take two elements of @, defined by (S;, -+, 8 &, -+, &) and
(81, -+, 8;, &, -+ -, &) respectively. Set

8; =808, Q;=E&YS,)NER.
and choose §;; €8, if §;; % 0. Let >/, denote the sum over all (s, j)

such that §;; is non-void. Since | J,&,; is a Borel partition of @; (omitting
(i” j) ifSij = 0): a'nd ' 5;‘,‘ - 5,; ‘ g €, wWe ﬁnd

> 6vi@u) — D 6@ =] (6 — €7@,
Lj i 59
_—<_ Z, §iy— & f ’ Y(Qy)

A similar inequality holds with the 8} and £, and (4) follows.
Since @, £ 0, and @, C @, if ¢’ < ¢, there is a unique element of V”

which is in the closure of every @_; thisshall be | &dy. Thus the integral
Yy P gS g

is the limit of approximating sums of the form (3).
The elementary properties of integrals are easily proved; for instance,

(5) e |< [ @ar<le r@< ]|y,
(6) |, €y =&@ if &p)=¢ingQ,
(7) [Q Edy = z J.Qi Edy  if | JQ; is a Borel partition of @.

From these properties we see at once to what degree the expression
(3) approximates to the integral: For Borel partitions @ = | J &,

®) |2 &v@Q) — [y SeF@ I |Ep) —&|Se Qs

< e7(R)

One could of course define the integral by introducing coordinate
systems into the Banach spaces, thus reducing the definition to the real
valued case.

Given the set function y and the bounded Borel function £, we define
a set function &y, by

) (EVNQ) = [, &dy; then [§9]= [ &dy.

Now &y and [£+y] are bilinear functions of £ and y.
For any Borel partition | J@, of @, (5) and (7) give

DlEn@a| <> [ @ = [ @

hence we have the inequalities on variation

(10) PEQL [(©dn, &y | [ ® dp = 1@y
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These need not be equalities, for instance if (e, ¢,) is a base in V, with
dual base (¢!, e2), and the values of y and of £ are in the directions of
e, and e? respectively. But see (4.2) below.

The set function ) defines a semi-norm in the space of bounded Borel
functions ¢&:

(11) | &], =&y

One may define y-measurable functions, like Lebesgue measurable
functions; we do not need this, except for measures y: (@) = 0.

LemMwMa 3a. Given y, the bounded Borel function &, and € > 0, there is a
Borel step function n such that

(12) n—¢L, < fm—bdr<e |n]<

there is also a sharp function n with these properties.

For Borel step functions, this is an immediate consequence of the
definition of the integral. We shall find a sharp function #, assuming
£ is a Borel step function; compare Halmos, pp. 241-242.

Say E =@, U---UQ,, &p) = & in@Q,. Choosea compact set @; C @,
such that

}-’(Qz—“Q:)< e/mN, N =sup {I £i|}

For some { > 0, the sets UC(Q;) are disjoint. Let ¢, be a real valued
sharp function with 0 < ¢,(p) < 1, such that ¢, =1in @; and ¢, =0
outside U,(Q;) (App. III, Lemma 1a). Set

n(p) = P 1(p) = D nlp)
Then 7 is sharp, and since 5(p) = & in Q! and | 7(p) | < N, we find

[on—0ap< [ Ny<N 5@~ Q) <e

Remark. We cannot in general obtain 7 from & by smoothing as in
(App. I11, 3), unless § is absolutely continuous with respect to Lebesgue
measure.

8“-...1...-..“. Nian +ha +4‘.l

Y
the real bounded Borel function ¢, define the set function ¢y = ¢y by
(3.9). In particular, if y, is the characteristic function of @ (=1 i

and = 0 in £ — @),
(1) 2v(P)=7@QNP),  [1ov]=y@)-

We give a formula and an inequality for the variation of dy:

2) $y =7 Q= |$|7Q), ¢realvalued.
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That < holds in the first relation (for any Q) was proved in (3.10). To
prove the reverse inequality, take any € > 0. We may choose a Borel
partition Q = UQ so that Z | (@) | > 7(Q) — €, and so that for some

P €Qy | $(p) — $(p;) | < € in @, (each 1). Say
(@) | = 7(Q) — s
then 37, < e. Using (3.8) gives
| (@) — S(2Iy(@Q) | < €7(€Q),
| $(pa) | 7(@:) — ()P(Q) | S €7(Q),
|| (7@ | — | plpd) | 7@ | = | $(p) | 7o

and hence

Q=D | 7@ |2 D [@17@) — 27(Q) —| 4| 0

> ($)7(Q) — 267(Q) — | 8],

giving the required inequality. The second part of (2) follows from this.
We prove (compare Saks, p. 37; Halmos, p. 134)

@) [ Edey) = [ sEdy; thus &y = by,
Given ¢ > 0, choose a partition @ = | J@, and points p, € @, so that
| &(p) — E(py)|, | B(p) —$(p) | < € inQ,, eachy.

Then | §(P)E(p) — $(p)E(P:) | S ([ |+ [§])e in @, and
[, iy — D eadr@) | < r@ L 4] 7Q)
[, pedy — qu(p,-)s PIYQ) | < e[ $| + D@

| > ep)ivQ) — $(rr@0)] |

<1E| D[, @ —dpir < || 7(Q);

hence

[ gagy) — [ geay| <26 8| + | £)7@
giving (3).

REMARK. (3) clearly holds in a more general case: &, y and y have
values in vector spaces V,, ¥, and V, respectively (£ and ¢ being Borel
point functions, and y, an additive set function), and (v,-v,}-v; and
v,°(vyv3) are defined and are equal. Then &(y-y) = (&y)-y.
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We shall give some relations involving limits. Write
(4) limy, =19 if limy,(Q) = (@), all Borel @,
6) lmtg— or g4 i << o, lImb=4
and similarly for ¢, | ¢.

If (¢ — ¢;) ¥ O, then

| $y(@) — $(@) | = Uo (¢ — &) dy , = fQ<¢ — ¢ d7—>0

(compare Saks, p. 27, Halmos, p. 112); hence
(®) limgy =gy if $1é or Vb

Hence also, for real bounded Borel ¢, and ¢, using (2},

) dy=9r=Db7= Dby I Dhi=0$20
In particular,

10

8) i y i = 2 ilez’jj i , Borel partitions UQi 0
For bounded Borel functions &, §, ¢;, ¢, and a number N,

{9) lim &y =&y if & —¢, } &, ] <N (alld),

(10) lim¢y =¢y if ¢, — ¢, ] &; j <N (all9);

n:NQ) | S ((n)7)(@) — 0 (Saks, p. 29;

for instance, if n, = & — &,
Halmos, p. 110).

5. Relation between a set function and its variation. We wish to
express each of y, 7 as an integral with respect to the other. For measures
u, write £ = 5 a.e. (u) if the set  of points where &(p) # n(p) satisfies

p(@) = 0.
THEOREM 5A. Given y as in § 2, there is a Borel function I'(p) with
values wn V, such that

(1) (@) = fQ I'dy, all Borel@: y=T%7,
(2) [ T(p){=1 inkE.

The function T is unique up to p-equivalence.
Choose a base {¢;, * -+, €,) in V, and write

7Q) = D (@

then the y* are real valued additive set functions, and clearly, for some N,

V@S N| 7@ | S Np@Q), alli.
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Therefore, by the Radon-Nikodym Theorem (Saks, p. 36; Halmos, p. 128),
y-measurable functions I'? exist, satisfying (1), with *. There is a Borel
function T§ = I'¥ a.e. (%) (Saks, pp. 75-76). Then I'(p) = STi(ple;
satisfies (1). The usual proof of uniqueness shows that I'" is unique as
stated.

Suppose that | I''(p) | = 1 a.e. (j) is false. Then for some ¢ > 0 there
is a Borel set @ such that $(@) > 0, and | I"(p) | £ 1 — ¢ in Q. Now for
any Borel partition @ = | J@,,

Dl 3 |f, 0 —adr|=a—er@,

contradicting the definition of $(Q).
Suppose finally that | I''(p) [ < 1 a.e. (y) is false. Then there is an
€ > 0, a Borel subset S of V, and an element v € §, such that

0| >1+e  dism(9)< €2,
Q=TI"8), 7@ >0
Now ! M(p) — v | < ¢/2 for p €Q, and hence

Y@= | [pditw) | — | [(T) — 1 d5(p)]
= (1 + 7@ — (/27@) > 7@,

again a contradiction. Hence I'' =1 a.e. (), and we may replace I'’ by
', with | T'(p) | =1in E.
In the second theorem, we cannot apply the Radon-Nikodym Theorem

in the usual form, and we no longer have uniqueness (see the Remark
following Theorem 1B).

THEOREM 5B. With y as before, there is a Borel function f in E, with
values in the conjugate space V of V, such that

®  |f@)|=1 [ fdy=5@, allBorel@: 7=Fv.
Define ¢ by Theorem 1B, and set

(4) f(p) = $(I'(p)).

Mhar My Ty o | Ty b 0T e 7T a7 Oy fal ale TV . T, AL
Lhenj(p)i(p)=|1(p) = l,and (1) and (4.3) with the following Remark
give

fyv=fT9)=({I)y=7.
We give a further formula for #:

THEOREM 5C. With y as before, using Borel point functions f with values
in 7,

(5) 7@ =sup | [ fdy:| f]<1).
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We may requare f to be a Borel step function or a sharp function in E. If
Q 18 open, we may require f to be a sharp function, vanishing outside Q.
The inequality > is clear in each case, while < in (5) follows from (3).
That we may obtain <, using Borel step functions or sharp functions,
follows from Lemma 3a. To prove the last statement (with <), let @ be
open, and let € > 0 be given. Choose g, (Theorem 5B) so that [g, | =1
and { go'dy = #(@). Choose a sharp g; by Lemma 3a so that | g, | < 1 and

[E (91 — 9o¢) 47 < €/2. Choose a compact set @' C@Q so that $(Q — @)
< €/2 (Lemma 2a). Choose a real valued sharp function ¢ in £ so that
0 d(p)<L1,¢=1inQ and ¢ = 0in £ — Q (App. I1I, Lemma la), and
set f = ¢bg,. It is easy to see that [Qf-dy > P(Q) — e.

6. On positive linear functionals. We wish to show that a certain
linear function A of a certain class of functions ¢ is given by integrating
¢ with respect to a Carathéodory measure. This is a standard theorem in
Lebesgue theory. Let Lt denote the set of real valued non-negative sharp
functions in X.

LeMMA 6a. Let A be a real valued non-negative function defined vn L,
such that

(1) Alagd + by) = aA($) + bA(y) if a,b>0; ¢, pe Lt

(2) lim A{¢;) =0 if ¢, | 0.
Then there is a uniquely defined Carathéodory measure u in E such that
(3) M) = [ ddu, all ¢ € L+,

Note that every such measure u gives rise to such a A; see (4.6).
Take a =b =1 in (1). If we take ¢ = yp = 0, we find A(0) = 0.
If we use ¢, y — ¢ in place of ¢, y, we find

(4) Ad) < A(y) if ¢(p) < y(p)
Using ¢,;, ¢ — ¢, in place of ¢, yp, gives
(5) A(d) =lim A(d,) if ¢, + @, ¢, b€ L.
T nd T8 lon ;Le set 0: a1l hasanm And Foamatinng 4 avnragaible ag lim A A
E e Ll Pl v 1 &ll MPOUIIUCUL TULIVLIULLS l)() UAPI.UDDJ.UJ.U > LiiLR ’ Wir
¢, € Lt. Set
(6) A$) =1lim A(p,) if ¢, 4 ¢, ¢,elt, del*

Since A(d;) < A(B) ($(p) = | ¢, all p), A($) is finite. It is indéper’ldent
of the sequence chosen. For let ¢; 4 ¢ also. Set y,,(p) = inf {¢,(p), ¢;(P)}-
For each j, y,; 4 ¢;; hence

lim A(g,) = lim Aly,;) = A(d;),  allj,

t—> i—w®
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and hencelim A(¢,) > lim A(g;). The reverse inequality follows similarly.
Clearly (1) and (4) hold now with ¢, w € L*.
Give any open set R, its characteristic function ypisin L*. (We may
set ¢,(p) = inf {i dist (p, £ — R), 1}; then ¢, } xz). Set

(7) w(R) = Alxg)
For any set ), the outer measure u*(Q) is defined by
(8) u*(@) = inf {u(R): @ C R, R open}.

Clearly u*(@)) < u*(@y) if @, C@Q,, and u*(R) = u(R) if R is open.
Wé must prove (Saks, Chapter II; Halmos, p. 48 and Chapter X)

©) w(UQ) < D u*(@)),

(10)  p*(@,UQy) = u*(@) + p*(Qy) if dist (@), Qp) > 0.

If we prove these for open sets, they follow easily for the general case.
Suppose B = | J;2, B,. Let yp =lim*t,; _ v, y;; € L+ Set

¢; =1inf {g; + -+ 4 ¢y 1},
Then ¢, 1 xg, so that u(R) = lim A(¢,). Also

A) S Alyrs + o+ pi) = Alyag) + -+ Alpg) £ D u(R),
i=1

and (9) follows for open sets. To prove (10) for open sets (we need merely
RN Ry =0), let yp =1lim T, v, and set ¢; = y;; + yy;. Then if
R=R,UR,, yp=1m* ¢,, and

#(R) = lim A(¢,) = lim [A(¢)) + Aldg)] = u(B,) + u(Ry).

Thus u* is an outer Carathéodory measure. We shall write u(Q) = p*(Q)
for u-measurable sets, in particular, for Borel sets @.

To prove (3), take any € > 0. Let R, be the set of points p such that
¢(p) > te(t =0, 1, - - +); then R, is open, and for some m, R, is void. Set

() = (i + 1)e, peER, — R,
0, pel — Ry

then

™

p(p) =€ ant(p), p(p) — € < $(p) < w(p).
1=0

Because of (7), A(xg) = § xr, du; hence A(y) = { v du. Also
Aly) S M) + eu(B) < Aly) + eulh),
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and the same inequalities hold for the corresponding integrals. This shows
that

| A — [ du| < eud),
and (3) follows.
Using (3), it is clear that x must be as constructed; hence u is unique.

7. On bounded linear functionals. We give a lemma like Lemma 6a,
using the space C¥0 of all real sharp functions, and a different continuity
hypothesis. The two hypotheses are related by the following lemma.

LEMMA 7a. Let ¢, | O (the ¢, continuous); then ¢, — 0 u.c.s. (uniformly
in compact sets).

Given the compact set ¢ and € > 0, let @, be the set of points p €@
such that ¢,(p) > e. Then ()@, = 0, and since the @, are compact, some
@;, is void. Now ¢,(p) < €in Q for ¢ > 1,

Given the real valued function A in C¥0 define

1) (Al =sup {[A($)|: ¢sharp, |§|< 1)
A is bounded if this

LEMMA 7b. Let A be a linear function in G* with the following property.
Given the ¢, € C*0 and N,

2L r.,'nc J...
1 IS LHILILES.

2) lim A() =0 if |¢|<N, ¢ —0ucs

Then there is a unique additive set function y in E such that

(3) AP = [ ddy, 40 |A|=]y]

First we show that A is bounded. If not, then there is a sequence
bis oy -+ + such that |$,| <1 and | A(¢;)| = 4. Set y, = ¢,fi; then
; ~ Ouniformly, and hence A(yp,) — 0; but| A(y,) | = 1, a contradiction.

Define A, and A, in Lt (§ 6) by

(4) Ay(¢) =sup {A(y): psharp, 0 < ),
(5) Az(‘?s) = A1(‘J6) - A(?S)-

Taking 9 = 0 in (4) shows that A,(¢) > 0. For any v in (4), | A(y)| <
< ; hence A,(¢) is finite, and A,y(¢) is also. Taking
p = ¢ shows that A(¢) = A(g), Ax($) = 0.

To show that A, (and hence A,) is linear in L+, note first that A,(ad)
—ahy($) (a2 0). Now take any ¢y, dy ¢ =y + b in L+ Given
€ > 0, choose , so that 0 < y, < ¢, and A(y,) > Ay(d,) —€f2(G=1, 2).
Then 0 < p, + w, < ¢, and hence

A(d) = Alyy + po) = Afyy) + Alyy) > Ayd) + Al(?sz) —
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Conversely, choosing y so that 0 < p < ¢ and A(y) > Ay(d) — ¢, set
wy =inf {¢;, v}, v, = v — v, then we see easily that 0< v, < o
(¢ = 1, 2), and hence

Ay(dy) + Ajlde) = Alpy) + Alyy) = Aly) > Ay(d) — ¢,

which proves A;(¢) = Ay(¢y) + Ag(dy).

Suppose ¢; + 0. Choose p, so that 0 < w, < é,;, A(y;) > Ay(d,) — 1/2
By Lemma 7a, ¢,— 0 u.cs.; hence p,— 0 u.cs. Also |y, |< |4
Therefore A(y,) — 0, and hence A,(¢,) — 0. This gives also Ay(d,) — 0.

By Lemma 6a, there are Carathéodory measures u,, u, such that

A(P) = [ ¢ du,, d € L+. Set
(6) Y=t — pg: Y@ = (@) — ua(@Q).
Then

[bay=[gam —[ $dus = AP — Asld) = AP,  $e L.

o , 1

Given any ¢ € C*0, set ¢, = sup {¢, 0}, , = ¢; — ¢; then ¢, and ¢,
are in LT, and

A@) = Agy) — Algo) = [ dy —[ ody =[ g dy,

proving the first part of (3). For the other equa,hty and uniqueness, see
Theorem 8A.

8. Linear functions of sharp r-forms. The theorem below will be an
immediate extension of Lemma 7b. It is the basis of part of Theorem 11A.
We use mass of r-vectors and comass of r-forms (I, 3.2) as norms.

THEOREM 8A. Let A be a real valued linear function. of sharp r-forms
in E, such that

(1) lim A(w;) =0 if |w,[,< N, o,-0ucs.

Then there is a unique r-vector valued additive set function y such that

(2) Alw) = [E wdy = [wy], all sharp
we have ‘
®) A]="7].

Note that every y gives rise to a A satisfying (1) (without the “u.c.s.”);
see (4.9).

Let (e;, - - -, e,) be a base in V(E). For each 1 — (A =+ -, 4,), set
(4) A(p) = A(ge?), sharp real valued ¢.
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By Lemma 7b there is a real valued additive set function y* such that

Algeh) = [ ¢ dy*.
Set

y = Z-y"ez: Q) = Zy‘(Q)eA, Borel Q.

(A (%)

The definition of the integral in § 3 as the limit of a sequence of sums,
each sum using a Borel partition of %, shows that

fE wdy = lim ZW(Pz)?’(Qz)

=lim > > o,p)'@) =D [, e’
hence - ?

-~

Alw) = ZA(a)Aea) = Z fE w; dy? = JE wdy.

(2) (4)

To prove uniqueness, suppose also A(w) = fE wdy’, v # y. Set
yy =7  — y; then|y; | > 0. By Theorem 5C, there is a sharp w such that

fE wdy, > |7 |/2, fE wdy’ F# fE wdy,

a contradiction.

The relation (3) follows at once from (5.5) and (2).

We mention a theorem that can be used in place of Theorem 8A in
the proof of Theorem 11A below. Let K, be the normed linear space of
compact sharp r-forms w in ¥ (we could use compact continuous forms),
with the comass | w |, = sup {| w(p) |,} as norm. The completion K of K,
is easily seen to be the Banach space of continuous r-forms which “approach
0 at infinity”’; that is, given w € K and € > 0, there is a compact set ¢
such that |w(p) p<<ein E—Q. Let K, = K denote the conjugate
space of K, (or of K).

TarorEM 8B. With the above notations, K is the Banach space of

. e . . . . .
w_mortnr aaliod mdditins cot Fuumeteoame am B unith inlal varation os norm.
ARl SA LY AP VLW oW WA v v ooy J wirvwwevrvo [ L &) [ W PRIV UUVWY VT VWV YL IV W SYLeE

More explicitly, given A in K, there is a unique y such that
(5) Aw) = J:E wdy, allwek;

also, | A| = |y |- Conversely, each such y gives rise to such a A.
The theorem reduces at once to the real variable case. Using a decom-
position as in (7.5), we may apply Theorem D, p. 247, of Halmos to each

of A, A,.
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9. The sharp norm of r-vector valued set functions. Define | w |¥ for

r-forms as in (V, 10.2). If y is r-vector valued, its sharp norm is
(1) |y [f = sup UE wdy: o sharp, |oF< 1}.

That | y [¥ > 0 if y # 0 follows from Theorem 5C.
If w = w, is constant, then, by (3.6), [wy] = wy[y]. Hence, by
(I, 13.6) and Theorem 5C,

2) Py S|y

The support spt (y) of p is the set of points p such that for each
neighborhood U of p thereis a Borelset @ C U with (@) 7% 0; equivalently,
E — spt (y) is the largest open set R such that j(R) = 0. Write y C @ if
spt (y) CQ. We say y is compact if spt (y) is compact. We prove
(3) |y [F< ply|ltr+ 1)+ |21} if yCULp).

For take any € > 0. Choose a sharp w such that
lw F< T, [wy] > |y [f—e
Set wy, = w(p). Then, as in the proof of (VII, 7.2),
(4) 0| S|, g @ — wordy | +| [ wedy |

< pLo(@) | 7| + [ @ o[V ]o

which gives (3).
Note that

(5) spt () =spt (y),  spt (dy) = spt (¢) D spt ().

The second relation is easily proved if ¢ = 0, y = 7; in the general case,
use the first relation and (4.2).

10. Molecular set functions. We say the set function y is afomic, and
is at p, if spt (y) = p. Then [y] = p(p). If p(p) = «, we write y =y, ,.
A molecular set function is a finite sum of atomic set functions. Note that
for any bounded Borel w,

(1) [@0Y,..] = (D).

LemMmA 10a. The molecular set functions are dense in the space of r-vector
valued additive set functions, in the sharp norm.

Take any y and € > 0. Let @ be a compact set such that (& — Q) <
¢/2 (Lemma 2a). Let | @, be a finite Borel partition of @ such that
diam (@) < p = (r + l)e/4| v |- Choose p, € @;, and setQ, = E — @, and

o; = p(@y), Vi = VYoo, (@ = 1), Vi = X,y (1=0).



326 CHAINS AND ADDITIVE SET FUNCTIONS [Caap. XI

Then (4.1) and (9.2) give, for ¢ > 1,
[y = «; =[¥{], ’Vil:‘ai0§|7’;|'
By (4.8), Di=o| 7i | = |y | Hence, by (9.2) and (9.3),

= Dn (Sl D i nFS v+ el v+ 1)
i=1 =1

i=1

< €242 |y|lr+1)=c¢
as required.
ReEMARK. The molecular set function has the property

@) DXAEONAESEY!

i=1
For any molecular set function, the definition of total variation shows that
(3) ] Zy’p,-,ai = Z ; Vooous| = Z } o, [0 if the p, are distinct.

11. Sharp chains and set functions. Consider the following linear
spaces:

R,, consisting of all sharp r-chains in £ of finite mass, with mass or
sharp norm as norm;
M,, consisting of all r-vector valued additive set functions in E,
with total variation or sharp norm as norm.

We shall show that these are isomorphie, preserving both norms.

Say A € M, and y € M, correspond (compare (VI, 7)) if, for every sharp
r-cochain X in %,

(1) X-A = [ Dydy =[Dxyl.

TaHROREM 11A. The above correspondence A — y = y, s a one-one
linear mapping of M, onto M,, such that

(2) yad={4}  |raff=]4]  |rai=]4}

To each 4 corresponds a linear function A, of sharp r-forms, defined
by A (Dy)=XA. Suppose X;, X, --- is a sequence such that
| Dy, |[o<X N for some N, and Dy — 0 u.c.s. We shall show that
lim A (D)= 0. Given e > 0, choose a real compact sharp function ¢
(VII, Theorem 4A) such that

i ¢4 — A | < ¢[2N.

Set @ = spt (¢). Now ¢ Dy —> 0 uniformly, and (V, 10.4) and (VI, 8.4)
show that

0= | ?SDX} lo—*o-

| X,

Hence we may choose i, so that
]¢Xi}<e/2|A|, i = 1,

= | Dyx,
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Now take any ¢ => ¢,. Using (VII, 2.1) gives
|A (Dy)|=|X; 4| | Xo(4d — @A) | + [ $XA4]
<N€/2N—|—(e/2’A‘ tA|--e

proving A (Dy ) — 0. Hence, by Theorem 84, there is a unique y = y4
such that (1) holds. Clearly the correspondence is linear.

Take any r-covector w,; let X be the cochain such that D y(p) = w,
(all p). By (VII, 6.3) and (3.6),

wo'{A} = XA = jE wydy 4 = wgly4];

it follows that [y,] = {4}. By the formulas (V, 16.3) for | 4 | (the sharp
case) and (5. , with (V, 10.4) and (1) . By (V,4.3)
(the sharp case), (9.1), (V 10.4) and (1), | y4 |# == \ A {#
Suppose vy, = 0, i.e. y4(@) = 0, all Borel . Then for any X, X-4 —
[Dxy4] =0, and hence 4 = 0. Hence the correspondence is one-one.
Suppose 4 is the chain at p such that {4} = « (VIL, 7), and y = y,,
(§ 10). Then (VII, 7.1) and (10.1) give

X-A = Dylpya=[Dxy,,]
for all sharp X; hence y, = ¥, ,, which shows that the molecular chains
correspond to the molecular set functions.

To show that the correspondence is onto M,, take any y e M,. For
each integer k, let y, be a molecular set function such that |y — y, [F << 1/2*
(Lemma 10a). Say y, = y;. Now

‘Af_Akﬁ:lya'_YkF"*O!
and hence A, 4,, - - * i3 a Cauchy sequence in the sharp norm, and has a
limit A. By (V, Theorem 16B), (2) and (10.2),
A|<liminf| 4 2
which is finite. Also

lyA_“'VkI#=|A “"Ak]#—*'oa

hence ‘ Vai— 7Y F = 0 and y, = v, asrequired. This completes the proof.
Exampres. Forr = 0, y (@) is a real number. If 4 = >a,p,, v 4(Q) is
the sum of those a; for which p,€Q; [y = {4} == Ja, If 4 is the

1-chain dpﬁnpr‘] hv an oriented are from » to q IY ﬂ\ then rﬂu -l igs the

vaarai yg;

vector ¢ — p; if Q is a Borel set containing ]ust the subarc p'q’, then
v4(@) = ¢ — p’. (Compare § 13.)

ProBLEM. Let A be a flat chain of finite mass. Then A is sharp
(V, Theorem 14B), and hence X-4 — fE D x+dy 4, all sharp X. Does this

relation hold also for flat X?
We end by proving

(3) spt (v4) = spt (4).
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Suppose p € spt (y4). Take any neighborhood U of p. Say y,(@) # 0,
Q@ CU. Then y,(U)= 74(Q) > 0, and by Theorem 5C, there is a sharp
function w, vanishing outside U, such that [ew'y4] # 0. Say Dy = w;
then X-4 £ 0, proving p € spt (4). If, conversely, p is not in spt (),
then there is a neighborhood U of p such that y (@) =0 for al @ C U.
Now [wy 4] = 0 if spt (w) C U, hence X-4 = 0 if spt (X) C U, and p is
not in spt (4).

12. Bounded Borel functions times chains. If 4 is a chain of finite
mass and ¢ is a real bounded Borel function, let ¢4 be the chain corre-
sponding to ¢y, (Theorem 11A); thus

(1) Voa = PVa; bounded Borel ¢.
If ¢ is sharp, then for any sharp X, (1), (4.3) and (VI, 8.4) give

X-¢A =[Dxdy = [¢Dxysl = [Du:"}’A] = ¢X-A4;
using (VII, 2.1) shows that the definition of ¢4 agrees with that in (VII, 1)

. .
in thig faca
AAL WARLL WAL

If we define
(2) wd = fE wdy, = [0y4]

for the bounded Borel r-form w, then the proof above shows that, for
real bounded Borel ¢,

(3) pwd = wdd.

A particular case of (2) is D4 = X A (X sharp).
The function ¢A is linear in both variables. By (4.3) and (1),

) B(pd) = ($y)d.
By (11.2), (1) and (4.2),

(5) g | =[P4 = dyal = [, @ I
By (11.2) and (1),

(6) ($4) =gy = [, b dya
We prove, for bounded Borel ¢;, ¢, @, ®,
(7) lim | ¢4 — A | =0 if 44 or 414,
(8) lim| g4 —pA|=0 if >0, [P,
(9) lim w4 = w4 if w,>w0 |0 <N
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These follow from (4.6), (4£.9), (4.10) and (3.10), using (4.2). Thus
| — A | =] (d — vy | = (¢ — di)74(B)— 0,
(@ —w)d | < [0 — o)y, < (0 — 0)7.B) > 0.
Note that (7) and (8) give, for bounded Borel ¢,, ¢,
(10) ¢4 —F>ga if ¢;1d or $;i¢ or ¢, >4, |é|ZN.

Generalizing (VII, 1.17) (if | 4| is finite), we prove, for bounded
Borel ¢,, ¢,

(11). Dlbd|=g4] if $,20, D¢.=4.
For finite sums, this follows from (5); for infinite sums, apply (7).

13. The part of a chain in a Borel set. Let A be of finite mass, and

let @ be a Borel set, with characteristic function y,. We define the part
of A in @ by

{1\ A e owe A
By (12.10),
(2) Ay = ZAQ: if | J@; is a Borel partition of Q.

Thus @ 4(@) = 4, is an additive set function, whose values are sharp
chains of finite mass. We prove

(3) {do} = 74@Q);
for (4.1), (12.1) and (11.2) give

Ya(@) = [XeVal = Wyl = {204}
Because of (12.4),

{4) QS(AQ) = ‘?S(ZQA) = XQ(QbA) = (95‘4)@-
Setting ¢ = 3, in (12.5) gives

(6) |4y ] = 7.4@Q).

Hence

(6) Ay | = Z | 4o, |, Borel partitions | J@, of Q.

More generally, by (12.4) and (12.5),

(7) | $d)o | = (x4 | =], @) 7.

By (3), (VIL, 6.2) and (5),
(8) 1 y4(Q) |0 < ‘ AQ 1# é | AQ I = Y4(@).
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Note that (using the notation in (3.11)) ‘

(9) bla=|8,=|94]= [ @ dr

gives a semi-norm in the space of bounded Borel functions ¢.

We give a theorem similar to (VII, Theorem 8C); the latter could be
derived from the present theorem (if | 4 | is finite).

THEOREM 13A. For each chain A of finite mass and € > O there is a
Borel partition E = | @, such that

(10) Slde = [{do}h>]4]—«

By definition of | y , |, we may choose the @, so that 3 | y (@,) [, >
! Y4 l — ¢€; using (3), (8) and (11.2) gives (10).

14. Chains and point functions. Let 4 be an r-chain of finite mass.
By Theorems 5A and 5B, there are Borel functions I',(p) and & ,(p),
whose values are r-vectors and r-covectors respectively, such that

(1) v Q) = T,d5,, |Tup)l,=1,
A [P+ JQ <L f L1 | LAY e
2) 4@ = [ badya | Eap)o=1.

The function I', is uniquely determined a.e. (y,), but £, need not be.
Applying the Remark following (4.3) gives, for sharp X,

(3) Dxyy=Dx(U'y94) = (Dx T )P4
hence
(4) XA=[Dxy ] =[(DxT )4 = fE (DxTy)dy,.

ExampLEs. Let 4 be the 1-chain formed by a smooth oriented arc
(see (X, 6)). Then we may let I" ,(p) be the tangent vector at each point
p of the arc, and let ' (p) = 0 elsewhere. (I', is arbitrary outside the
arc, since 7, = O there.) If 4 is formed by a portion of a smooth oriented
r-manifold M, then I' (p) (p € M) is the r-direction of the oriented

tangent plane at p.
We now discuss the possibility of representing y,(€) in the form

fQ a(p) dp, o summable. Let u denote Lebesgue measure; then this
integral may be written as
[ja=[,«dn= ()@
Note that the proof of (4.2) gives
(5) oap = (o, |oap|= fE (a)g dpe == fE | «(p) |o dp-
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THEOREM 14A. The mapping o — & of (VI, Theorem TA) exists with

Lebesgue measurable summable o in place of continuous summable o, we have
(6) Vs = A

First, & is defined for continuous summable «, by the theorem quoted.
Given the Lebesgue measurable summable «, choose, for each integer ¢,
a continuous summable o, such that (App. III, 6)

| (o0 — edpe | < 1/2°
Then, as in the proof of (VI, Theorem 7A), 4 = lim” &, exists, X-4 =
fE D x-a du for sharp X, and hence y, = apu.
By (11.2) and (5),

(7) 4] =|ya|=]an|= [ (@ dp.

Note that the mapping « - & is one-one only in the sense that &’ = &
implies &’ = « a.e.

We prove

TrEOREM 14B. Given the chain A of finite mass, there is a Lebesgue
measurable summable r-vector valued function o such that A — &:

(8) X-A=[ Dyudy,  allsharp X,

if and only if y 4 is absolutely continuous with respect to Lebesgue measure.

If A = &, then for any sharp X, (11.1), (8) and (4.3) give [Dx"(v4 —
au)] = 0; by Theorem 5C, y, = au, which is absolutely continuous.
Conversely, if y, is absolutely continuous, then by the Radon-Nikodym
Theorem, we may write y, = au; now |au | =]y, |=|4|, and hence «
is summable; also, by (4.3), X-4 = [D gy ,] = [(Dxa)}u], and hence
A= .

15. Characterization of the sharp norm. Given the set function y and
the vector v, define the set function 7',y, the translation of y by v, by

(1) T,y(@) = y(T_Q),

T @ denoting the set of points p 4 », p Q.

TaeorEM 15A. The sharp norm |y ¥ (y e M,) is the supremum |y ¥
of semi-norms | y " satisfying

(@) |y|'< iy,

(b) | Ty —y "< o]y |ftr + 1),

(¢) for each point p and € > 0 there is a { > 0 such that

(2) v S e|lyl if yCULp) and [y]=0.
By (App. I, Lemma 15b), | ¥ is a semi-norm in M,.
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We show first that the sharp norm satisfies the conditions; this will
prove that |y [# < | v I¥, and hence that || is a norm. Properties (a)
and (c) follow from (9.2) and (9.3) respectively. To prove (b), take any
sharp w such that | w P‘ < 1. If w,(p) = w(p — v), then

@ @@y =] =] [0, — o) dy| < ofw) [v]| 7]

By (V, 10.2), 84(w) < 1/(r + 1); hence (9.1) gives (b).

Let diam (y) denote diam {spt (y)). We say the set functions y,, « - -,
Vm form a pure -partition of y if there is a finite Borel partition | J@,
of spt (y) such that

(4) ¥: = Xo (hence Zyi = y), diam (y,) < (.

If y is compact, this exists, for each { > 0 (take diam (Q,) < {).
To prove that |y [¥ < |y ¥, we start by showing that the semi-norm

||¥ satisfies (9.3). Take any p, p>0, and y CU,(p). Let || be

any semi-norm satisfying (a), (b) (¢). Given any € > 0, choose { >

by (c). Let Y Ym be a pure (, partition of Y; We may choose vec

v
v;| £ p, such that y' = 3T, », CU;p). By (b) and (4.8),

= <D |ulvellr + DS oyl + D).
Seta = [y], = 7,,(§ 10). Then[f — "1 =0,|B| = a |, and (c) gives
|8 — Y [ S|l o+ |7 )

P AP
-LOL

vl’-ll,fvm,

Hence, if N =
Iy Sy =B+ (B [e|y|r + 1)+ Net|[¥]]o

and (9.3) follows for | |, and hence for | |¥.

Next, by what has just been proved, we may apply the proof of Lemma
10a, showing that the molecular set functions are dense in the norm | !g
We shall show that the polyhedral set functions y, (4 polyhedral) are
dense also. It is sufficient to show that for any atomic set function

/ — ?‘,’DG wnd e > ethere 18 a Pgl}rher]rn] nhsnn A Qll(’h fhﬁf ] ‘U — ‘V f# <7 €.
By definition of | « [ (I, 13.1), there are simple 7- Vectors Upy "y Oy
such that
a:Zoc,-, Z]“z"<'°‘lo+1-
Choose p so that p(2]al|y + 1)/(r + 1) < e. Choose simplexes o in

U {p) and numbers a, such that

{a,0.} = a;, I ;0% * = [ % }
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Set 4 = Ya.0,, Now

{A}:foi=a, Al <jafy+1.
Also
y—ra| Slyi+l4]<2|aly+1,

and (9.3) for | ¥ gives (using (11.3))

vy —ralf S ply —vallr +1) <e
as required.

Next we show that |y, [¥ < |y, | for 4 polyhedral. Take any norm
|| satisfying (a), (b} and (c). Set |A| = |y, | for A polyhedral.
Using (11.2) and the fact that [y,,] = {00} =0, yp 4 = T,p4 We see
that the norm | A ] satisfies the conditions of (V, Theorem 8B); see (V,
8.8). Hence |y, =|A]'< |4 ‘# = | y4 ¥, proving the statement.

We know now that |y, |# = |4 |# =]y, |* for polyhedral chains 4.
Take any y. For each integer 1, there is a polyhedral chain A4, such that
Ly — Va4, ¥ < 1/2 (see above). Now

|y [ =1lim|yp, [F=lm|y, [F=]|p],

since | y — p, ¥ < |y —y,, [§ > 0. This completes the proof.

16. Expression for the sharp norm. We give an expression for the
sharp norm of any compact y € M,. For a general y, given € > 0, we can
choose a compact @ such that $(£ — Q) < ¢, and hence l Y — Yo !# <
i Y — Yo { < eif yg = xoy; thus a limiting process will give the sharp
norm of any ».

Let 9, - - -, ¥, be compact. A p-explosion & of this set consists of
the following:

(A) pure partitions (§ 15) > .y,, of each y,;
(B) a regrouping of the set of all y,, into a set of set functions S,,;
(C) a set of vectors v, such that, for some set of points p,,

T, B C U (1) (all &, 7).
(We could assume mply 21Ty B C U,(p), all k.)

e ekpuﬁsmu & , set

Nlv. +-- ) — Lo | e TN
(1) (Vl! s Vms (@) r + 1 + ﬁkl 0
k! k l

Thus we push the y,; around, so that they lie in a set of sets of small
diameter; we add the “amount of push” to the sum of the masses of the

r-vectors of the corresponding set functions. The analogy with (V, 6.1)
is clear.
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Define
(2) N,y s ym) =1nf {N(py, * -+, y,; &):  p-explosions &'}.
Since any p’-explosion is a p-explosion if p’ < p, we have

(3) No(yp s vm) = Ny o va) i p" <o

Hence we may define

(4) N(?’l’ T '}"m) = lim Np(yl’ T ym)'

>0

Finally, for any compact », set

) |yF=inf Ny, -, pm): v= zyi, the y, compact}.
Clearly

Np(?b e ?i’ cey) é Np(?p e} N,,(‘Vi, NNY
hence we see that ] ‘§ is a semi-norm. We prove
(6) ' 14 F = [ v |# if y is compact.

We prove first that |y [# < |y |¥ (y compact). By Theorem 154, it
is sufficient to show that the semi-norm | |¥ satisfies (a), (b) and (c) of
that theorem.

To prove (a), it is sufficient to show that N (y) < |y | for all p. Take
a pure p-partition >y, of y; use no regrouping, and let the v;; = 0. For
the resulting p-explosion &, we have (using (4.8))

=21l < D lml=171,
giving the result. z @

To prove (b), given y and v, take any p > 0. Let 4, - -, y,, be a
pure p-partition of —y. Set

Vm+i = T'vyi’ vy =1, Viri — 0 ('t'f =1---, m)

Group v, with y,,., for each 7; this gives a p-explosion & of the pair —y,
T,y. Also, by (1),

N(—y, T,y; &) = Z ,M:J_},_?;‘[ = I:L_lf

i=1
Hence N,(—y, T,y) < |v]|7|/(r + 1), and the same inequality holds for

N(—vy, ,,y) and for [ Ty —ylE,as requlred
To prove (c), given p and € >0, set { = (r + l)e. Now take any
y C Uc(p) such that [y] = 0. Take any p > 0. Choose a pure partition
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Sv; of v, and points p,, such that y, CU,(p,). Set v, =p — p,; then
v, |< L, and T,y,CU,(p). Also [3T,y;]=[y]=0. Grouping all
the y, together, we have a p-explosion & of y, such that

Ny &) = > o[ v:lir + DL Ly |+ 2;

hence N ,(y) < €|y |, and (c) follows.
We now prove that | y |¥ < |y |# . By (9.1), it is sufficient to show that

(7) 1[w-y]yg1y1g if of<1.
Take any € > 0. Write

y=n+Frm Nop vl <|vE+e

the y, being compact. Take any p > 0. Since N, (yy, - - ) < N(yy, * - 0)s
there is a p-explosion & such that

Niyp - oym ) <lyE + e
With the notations above, using (15.3), (9.4), (1) and (4.8) gives

w0yl = D@ B — To Bl + D [0 D To Bul
ki k !
g Lo(w) z ' Y] l ] B !

+ Z [Pgo(a’) '%Tvﬂﬁkt
k
_§ Z |“2’:%§ki_l + ;“_ffi Z | B | + Z , [Zﬂm]

k

o[ St

0
<yl et oS nlie+ ).

Since p is arbitrary,
proof.

[wy] | < |y | + ¢ and (6) follows, completing the

17. Other expressions for the norm. We shall say the expression
y = >y, of v is a Borel partition of y if there are Borel functions ¢,, - - -,
¢, in E" such that

1) 0< ML Do=1  yi=dr.

We say the expression y = 3y, is a Lipschitz partition if there are functions
as above which are Lipschitz.

THEOREM 17A. In the definition of |y [¥ (y compact) in § 16, the pure
partitions may be replaced by either Borel partitions or Lipschitz partitions.
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Let |y |} denote |y ¥, except that Borel partitions are used in place
of pure partitions. Since pure partitions are Borel partitions, | y |§ < | » |§.
Next, the proof of (16.7), using (4.7), shows that |[wy]| < |y |% for all
sharp w such that |w [ < 1; hence |y [F < |y [§. Since |y |f =y [,
we have | y % ,—_ly|¥

Define | y |f, using Lipschitz partitions; then clearly |y [f = | ¥ [b-
The proof that | y |f < |y [¥ follows exactly the proof in § 16 that |y I
S|y [ Thus [y | ={v[.

In the definition of | y |¥, we cannot use

(2) |y [§ =1lim [ inf {Np(yl, o) Zyi = y, the y, compact” :

p—0

For, let o be an (r + 1)-simplex, and take any p > 0. If we write 0 = > o,,
diam (0;) << p, and use y = y;,, ¥; = ¥,,, then considering each y,,
separately and letting the v, =0 shows that N (y,,--+) =0, and
l Yoo J‘? = 0.

1t is also not true in general that | y |§ = N(y). For, set y =y, , with
A, defined as follows. In E2 let 4 and B be two perpendicular oriented
line segments of length 4 = 0.1, with an end in common. Let 4" and B’
be formed by translating 4 and B by the vector v of length » = 1.8. Set

Ag=A+ B— A" — B

Let C and C’ be the corresponding hypotenuses, and D and D’ the
triangles thus formed. Now

|A0{#:]ap~ap'+(1’v0-0)|ﬂ
<D+ (D |+ |v][C]f2 = 22 + 22 < 23

We shall prove that N(y,}= 2Y24; in fact, if p=0.1, then
N,(y4) = 2V/2), Take any pure partmon of y4 ; wemay clearly partition
further giving partitions of y 4., .. This gives partltlons of A, B, 4’, B'.
Working with these, translations are grouped together into polyhedral
chains L,,- -, L, of diameter <p; we must study (16.1). Each L, is
formed by translating parts 4;, B,, A;, B] of 4, B, A’, B’ respectively.
Let &, be the minimum length of vectors used for the pieces of 4, and B,,
and %4, for the pieces of 4 and B;. Clearly

ki + B >k — 2p — 212), > 1.45 > 22,

(If L; contains no parts of 4; or B; for instance, we may set h{\=1.45in
what follows.) Set

20, = k| A, | + & | 4 |+ 22| 4| — | 4
2b; = by | B |+ K; | By | + 22| B, | — | Bi |l
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we shall show that the right hand side of (16.1) is at least

(3) @ — Z(ai +b,).
The algebraic inequality {a — b)2 = 0 gives a® 4 b2 > (a + b)?/2; setting
a, =4 | —[4i ], A= B|—|Bi]],

we have therefore
| {4, + B, — A] — B[} |o = (oF + AV > 27V%x, + B,),

and the statement follows.
Note next that using positive numbers, if # + A’ > k and « > o', then
hoo + B'oe’ = ko’; hence, for positive numbers,

ha 4 h'e’ + ko — o' | > ksup {o, &'} if &4+ 2 >k
Applying this gives
2a, = 22 sup {| 4,

. O 0 R
r <0,. I1CNCE

a> (2v2)2) Z[sup {] 4,

Al

similarly

by

A7 |} +sup {| Bif, | B; | }]
> (24) > (| A;| + | 4] [+ | B| + | Bf ) = 2%

This proves N(y, )= 2124 > | 4, ¥ =] V4, # as stated.
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Appendix I

Vector and linear spaces

Linear spaces are encountered throughout this book; in particular, the
set of domains of integration (chains) and the set of integrands (cochains)
form linear spaces (in fact, Banach spaces). The most important finite
dimensional vector spaces which occur are the vector space V = V(™)
(§ 10) associated with Euclidean space £E”, and the spaces V},, and pirl of
multivectors and multicovectors formed from V (Chapter I). We review
here the basic properties which are assumed in the body of the book.

The treatment of affine spaces (§ 10) is somewhat novel; an axiomatic
approach is given, based on the theory of vector spaces.

We recall a few common terms. A transformation f of a set § into a set
S’ is one-one if f(p) = f(g) implies p = ¢; [fis onto if the image f(S) of §is
the whole of §’, i.e. each p’ €8’ is f(p) for some p € S. If an operation
poq is defined in both § and 8’ (for instance, addition or multiplication), f is
a homomorphism if f(peq) = f(p)°flg). If 8’ is a group, the kernel of the
homomorphism f is the set of elements of § going into the identity element
of §°. A transformation of one algebraic system into another of the same
nature is an isomorphism if it is one-one, and all the operations are
preserved. A transformation of one metric space into another is an
1sometry if it preserves distances (hence it is one-one).

We use the symbol 0 equally well for the number zero or for the
identity element in an additive group (for instance, the vector 0).
Commonly 4, u etc. denote ordered sets of integers; thus, A = (4, -+, 4,).
The sum 3, denotes the sum over all sets-A, while

is the sum, with the restriction 4, << - - < 2

,
1)

Certain numerical functions are useful:

€= € 0f = o1,
€;i8 1 if (A, - -+, A,) is an even permutation of (1, - - -, n), is —1 if the
permutation is odd, and is 0 if the 4, are not all distinct; &% is 1 if the A,

and the pu, are each distinct and one of these sets is an even permutation of
the other, is —1 if the permutation is odd, and is ¢ in all other cases.

341
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Let { mean that this symbol is to be omitted. Thus

(pl’...,ﬁi...’pn):(pl’...’i,...,pn)
= (P1* " Pips Pigas """ 5 Po)-
We write ¢ &~ @' if the groups or vector spaces , ' are isomorphic.

1. Vector spaces. A linear space V is a set of elements, which may be
called points, or vectors, which form an Abelian group under the operation
of addition, and which may be multiplied by scalars (which are always real
numbers in this book), so that a(w + v) = au + av, (ab)yv = a(bv),
lv = v. We assume known the theory of linear dependence. The dimen-
sion dim (V) of V is the maximum number of independent elements of V;
V is a vector space if its dimension is finite. There is then a base e;, - * -,
e, (n =dim (V)}in V, such that any vector v of V may be written uniquely
in the form v = >v%,; the numbers »* are the components of v relative
to this base.

A set H of vectors of V spans the subspace H* of V, consisting of all
vectors » which can be written in the form }a;u,, the u, in H.

At )

Suppose e;, - - -, e, and e;, - - -, e, are bases in V. Then we may write
’ 1
(1) e; = a{ej, e, = Za le;
J j

Combining these gives ¢; = 3 a!5;a'%, etc.; hence

(2) ‘Zm Z”a_$

i.e. The matrices || af . Writing

T ? 1
v = Ew”’e' = Evfe. = Ev’ Ea"-‘e'
i 7 7
i 3 3 i

gives the law of transformation of components of a vector v:

(3) V't = Za}'vj, CAES Za’}v I
i j

A vector space V (but not a linear space in general) has a natural
topology: open and closed sets, also limit points of sequences, are defined,
with the usual properties. To show this, choose a base e, * - *, ¢, and use
this to define a metric, as in § 9 below; different choices of bases give
different metrics in general, but the same topology.

An important example of a vector space is arithmetic n-space Q(;; whose
elcments are ordered sets (a,,  * * , @,) of n real numbers, with the obvious

definition of addition and multiplication by scalars. It has a natural base:
4) & =(1,0,-+,0),6=1(0,1,...,0),,&=(0,0,"+,m).
Using this base gives the natural metric of A" (§ 9).
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9. Linear transformations. A transformation ¢ of a linear space V
into another one W is linear if

(1) d(u + v) = du + ¢v, Plau) = adu.

Clearly ¢ is one-one if and only if gu =0 implies © = 0.
The set of linear transformations of V into W forms a linear space
L(V, W), under the definition

(2) (b + pw=dv+yv, (ad)v=alpv).

If ¢ and y are linear transformations of V into W and of W into X
respectively, then yo¢ = ¢, defined by

(3) (pd)(v) = (¢v),

is a linear transformation of V into X.

3. Conjugate spaces. Letting % = A! denote the real numbers, the
conjugate space of the vector space V is the vector space

(1) V — L(V: QI):

thus the elements of ¥ are the real valued linear functions f in V. (For
the case of normed linear spaces, see § 8 below.) We call the elements of V
covectors of V.

Ife;, -, e,is abasein V, the dual base él, - - -, e* in V is the set of
elements in ¥ defined by

(2) ei(e;) = Ol

Since any element of ¥ is defined by naming its values on the e,, we see
easily that the e’ actually form a basein V. Hence also dim ( V) = dim (¥),
and therefore V and V are isomorphic (but the isomorphism depends on
the base chosen).

The components of the covector f = 3 f.¢’ relative to the above base are
the numbers f,, Working out e’(v) and f(e;) and using (2) gives

3) v =eil), fi=fle).
Also
(4) flo) = Z f.
For each vector v of ¥, set
(3) D,(f) = flv), [feV;

then @, is a linear function in P, i.e. an element of the conjugate ¥ of V.
Clearly @ is a linear transformation of V into 7.
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LeMMA 3a. The above @ is an isomorphism of the vector space V

onto V.

ReEmark. This may fail for Banach spaces; see § 14.

To show that ® is one-one, suppose v % 0. There are elements
€y, * * * , e, of Vsuch that v, ey, - - -, e_is a base. There is an element f of P

such that f(v) =1, f(e,) = 0; then @ (f) = f(v) # 0, proving ®, # 0.
Hence also dim (O(V)) = dim (V) = dim (V) = dim (ﬁ); therefore @
is onto.

Take two bases in V asin § 1, and let €l, - - - and €'}, - - - be the dual

bases. Using (1.1) and (1.2) gives
(Za};e")(e}) = (Zaﬁe’“ ) ( Za:';el) = Za’ga}; oF = &
k % ! PY)

a similar relation holds with ¢’%, ¢,, Hence

covector:
, . .
(7) fi=Ddifs  fi=Ydf;
J j

Let ¢ be a linear transformation of the vector space V¥ into the vector
space . Then thereis a dual (or conjugate, or adjoint) linear transformation

¢* of W into V, defined by

(8) @) (o) =f(gn), feW,veV.

Each ¢ gives a ¢*; thus we have a transformation of L(V, W) into
L(W, V), which is clearly linear:

(9) (o + do)* = T + 62, (ad)* = ag™*.

Also, if ¢ and y are linear transformations of ¥ into W and of W into X
respectively, then

(10) (vh)* = p*y*.
For, given fe X and v e V,
(pd)*1)(v) = f((ybl) = Flp(pr)) \
= (p*f) ($v) = (F**N)v) = ($*9*))0).

4. Direct sums, complements. If X and Y are sets, their Cartesian
product Xx ¥ is the set of all pairs (x, y) or Xy, withze X, y € Y. If
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V and W are linear spaces, their Cartesian product can be turned into a
linear space V @ W, the direct sum of V and W, by the definitions

(1) (o wy) + (vg, wg) = (o) + 05w, + wy), (v, w) = (av, aw).

Similarly we may define Vi ®--- PV, Clearly dim (VO W) =
dim (V) + dim (W) for vector spaces. Note that A*~ A D--- P U
(» summands).

Let ¥V, and V, be subspaces of the linear space V. If every element of
V can be written uniquely in the form v =v, + v, (v, € Vy, v, € Vy),
we say V, and ¥V, are complementary subspaces of V. Then clearly
VaV,®V, Thelinear transformation 7 defined by

(2) m(vy -+ vg) = 9 (vi€Vy, 06 Vy)

leaves all vectors of V, fixed and sends all vectors of V, into 0; it is the
projection of ¥V onto V,, along V,.

5. Quotient spaces. Let V, be a subspace of the linear space V. Write

This relation is reflexive, symmetric and transitive; hence the elements of
V fall into equivalence classes with respect to this relation. Let C, be the
class containing v. Setting

(2) C,+C,=0C, 0 aC,=0C,,

turns these classes into the elements of a linear space, the quotient, factor,
or difference space of ¥V over V;; we shall call it V mod V,.

If ¥, has a complement V,in ¥V, then each class C, contains exactly one
element 7w in V,; setting ®(C,) = =v defines an isomorphism of V mod ¥,
onto V,.

6. Pairing of linear spaces. The results of this section will be used in
the next one. We say the linear spaces V, W are paired if a bilinear
multiplication w-v is defined, with real numbers as values. For any sub-
space V', of V, the annihilator ann (V) is the subspace of W consisting of all
w such that wv = 0 for v € V; similarly for ann (W,).

LemMA 6a. Let H and H* be paired vector spaces, and suppose ann (H)
and ann (H*) contain only O in H* and H respectively. Then setting
[D(A*))(h) = h*-h gives an isomorphism ® of H* onto H.

Clearly @ is a linear transformation of H* into H. If d{h*) = 0, then
h* € ann (H); hence h* = 0, and @ is one-one; also dim (H*) < dim (I_I).
By the same reasoning,

dim (H) = dim (H) < dim (H*) = dim (H*);

hence @ is onto.
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7. Abstract homology. We use notations similar to those in (App. I, 8).
Given a vector space € and a linear transformation 0 of € into itself such
that 04 = 0, we shall define corresponding ‘“homology’ and ‘“‘cohomo-
logy’’ spaces H and H*, Write X-A4 for X(4) (4 €C, X €0).

Let Z and B be the kernel and image of o respectively, let d = d* be
the dual of 9, mapping € into C, and let Z* and B* be the kernel and image
of d respectively. We prove

(1) Z* = ann (B), (2) Z — ann (B*),
(3) B* — ann (Z), (4) B — ann (Z*).

That X € Z* means dX = 0, i.e. dX-4 = X-04 =0 (all 4 €0), i.e.
X c€ann (B). Hence also BC ann (Z*). Given A4 €ann (Z*), setting
$(dX) = X A gives clearly a linear function ¢ in B*, which has a linear

extension ¢, over €. Since € as C, there is an element B €€ with Y-B
= ¢,(Y),all ¥ €C. Now

X0B=dX-B=¢(dX) = HdX) = X4, allXeC,
proving A = 0B, 4 € B. Thus (1) and (4) are proved. Interchanging the

roles of € and € and using the isomorphism @ ~ C gives the other two
relations.

Since 04 = 0, BC Z. Also
ddX-4 = dX-04 = X-004 =0
(all 4 €C); hence ddX = 0, and B* € Z*¥. Therefore we may define
(5) H = Z mod B, H* = Z* mod B*
Define a pairing between H and H* by
(6) hW*h=XA if Xeh* Aeh.

From (1) and (2) we see at once that this is well defined. Suppose
h*h =0, all h e H. Take X € b*; then X-4 = 0, all 4 € Z, and by (3),
X eB*, and h* =0; hence ann (H)=0. Similarly ann (H*)=0.
Therefore, by Lemma 6a, the pairing defines isomorphisms

(7) H*~H, H~ H*

8. Normed linear spaces. Let V be a linear space. Any real valued
function | v | in V with the properties

(1) v+ w| < [v] + | w),
(2) |av|=|a||v],

we call a semi-norm in V.
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LEMMA 8a, For any semi-norm,
3) 0! =0o,
(4) v 2> 0.
The first relation follows on setting ¢ = 0 in (2), and the second from
2!v|=|v]+[——v[§]v——v|=0.
The semi-norm | v | is a norm provided
(5). |v|;/_-0 if v£0.
If this holds, we may define the distance between two vectors v and w by

b

(6) dist (v, w) = |w — v

this turns ¥ into a metric space. (The triangle inequality follows at once
from (1).) We now suppose that V is normed.

A real bounded linear function f in V is a real valued linear function
such that

17

[hrAY I:l h 2 I ay |n11-—-—-11
i) |J| = 8up y\v): vEV, | v =1y

is finite. Then |f| is the smallest number such that

(8) [ fo) || f ][

Because of (8), f is continuous in V.
LEMMA 8b. For any v e V there is a bounded linear function f in V

such that
(9) fl=1  fly=]v|.

This is an immediate consequence of the Hahn-Banach extension
theorem; see Banach, p. 27.

REMARK. In general, fis not unique; see the end of (I, 13).

The set of bounded linear functions in ¥ forms a linear space, in which
clearly (1) and (2) hold; (5) is an immediate consequence of the lemma.
Hence these functions form a normed linear space, the conjugate space V
of V.

LEMMA 8c. With the above norms,

(10) | | = sup {f(v): feP,|f]l=1}

Let | v |" denote the right hand side. Because of (8), | v
Lemma 8b, | v | > |v].

Let V be a normed vector space. Then any linear function fin V is
bounded; hence V, considered simply as a vector space, is exactly the
conjugate space of V as in § 3.

, allve V.

"< |v]; but by
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LemMMA 8d. Given the normed linear space V, let ® be the linear

transformation of V into 1% defined by (3.5). Then © is an isomorphism into.

Because of Lemma 8b, the proof of Lemma 3a applies.

Suppose V and ¥ are conjugate asin § 3. Let | v |and | f| be norms in
these spaces. We call these norms conjugate if (7) and (10) hold. By
Lemma 8c, it is sufficient to prove (7). We now show that it is also sufficient
to prove (10).

LeMMA Se. Let V and V be conjugate vector spaces, and let them be
normed. If (10) holds, then so does (7), and the norms are conjugate.

The norm | f| in ¥ determines a norm in V; with @ defined as above,

the norm of any element ®, of V is, by (10),
1) | ®,|=sup {O,f): |f|=1}=sup {f(v): |f|=1}=]v]
Therefore, applying Lemma 8c to the pair 7, ¥,

7] = sup @411 | @, = 1} = sup {f0): [o] =1}

as required.

9. Euclidean linear spaces. The linear space V is FEuclidean if a
scalar product wv, with real values, is defined, such that:

(1) The product is bilinear and symmetric.
(2) vo > 0if v £ 0.

Define norm and distance by
(3) |v| = (vo)¥3,  dist (v, w) = |w —v|.

We prove the Schwarz inequality:
(4) Jww [ K |u||v]
We may suppose | v |= 1. Setting @ = u-v, we find

0L |u—av|?=|ul?— 20(uv) + a® = |u|? — (wv)?

giving (4). (Another proof may be found in (I, 12.8).)
Using (4) gives

,‘u‘F‘”,z:’“lz—}-?(u"v)—I—lv]zg([ul—l—]vl)g,

proving (8.1). Hence we see that ] v | is actually a norm in V, and therefore
V is metric. X

The vectors u, v are orthogonal if uv = 0; if u # 0, v 7 0, we call them
perpendicular. The sets P, @ of vectors are orthogonal if uv = 0 for al}
u € P,v €Q. Thesetof vectorsv,, « - -, v, is an orthonormal set if v;v; = 8f;
thus they are mutually orthogonal unit vectors.
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Let ¢, -+, e, be an orthonormal base in ¥V (supposed of finite
dimension). Then writing vectors in terms of their components (§1), we find

® o (S (Sro) - S

i

(6) |v| = lZv’e Z v“')z] 2,

Note that the base é;, - - -, €, in A" (§ 1) is orthonormal.

Given a vector space V, we may choose a base ¢;, * - -, ¢, in it, and
define scalar products by (5), thus turning V into a Euclidean vector space.

LEMMA 9a. The mapping ¢ of the Euclidean vector space V into V
defined by $,(v) = u-v is an sometry onto; sefting ¢, b, = u-v makes V
Euclidean, with the same norm as in (8.7).

Since the scalar product is bilinear, ¢, € V, and ¢ is linear. If u # 0,
then ¢,(u) = |u|® #0, ¢, 7 0; hence ¢ is one-one. Since dim (V) =
dim (V), ¢ is onto. The norm in VP is

lgbui-_sup{qbu('v |'v|__1}__sup{uv |v|—-—1}

By (4), |¢u|< |u| Ifu 3£ 0, settmgv—u/lu]showsthat|¢ul> ||,
Hence | b, l = | u ] and (8.6) shows that ¢ is an 1sometry

Note that if v # 0, then setting u = v/| v satisfies (8.9) and
is the only element of ¥ with this property.

The scalar product ¢,-¢, = u-v satisfies (1). Also (¢, 96 W2 = (u-u)/?

=|u|='¢u| Finally, if ¢, [#0
proving (2).
Let el, , €, be an orthonormal base in V. Since e;-e; = &/, the set

96 953 18 the dual base.

Smce qSu (€;) = ue; = ¢, d, = e"d,, fle,) = ef. Also €'(v) = &, (v)
= ¢;v. Hence, by (3.3),

(1) v =¢€v) =e;v, f,=fle;) = e"f, with an orthonormal base.

Also (always with an orthonormal base)

(8) wv= Duv',  fg= ) fg.

Since ¢, = >v', = Sv'e’, we have
(9) fi=v i f=4¢,

10. Affine spaces. An affine space is, roughly speaking, a vector space,
but without a particular vector being chosen as zero. It may be defined
as follows.
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An affine space E, of dimension =, is a system composed of a set of
points p, a vector space V = V(&) of dimension n, and operations p -+ v
of ¥V on E, called translations, with the following properties.

(1) (p+uw)+ov=p+ (u+0o).

(2) p+0=p.

(3) ptvFEp if v#£0.

(4) For each p and ¢ there is a v such that p 4- v = ¢.

In other words, V is a simply transitive group of transformations on £.
We prove:

(5) Ifp+uwu=p-+v, then u=uw.
For
p=p+0=p+ (u+ (—u) =(p+ u) + (—u)
=(@+v)+ (—w)=p+ (v —u),
and (3) gives v — u = (.

Because of (5), the vector » in (4) is unique; we call it ¢ — p.

If p+v=y¢q, then ¢+ (—v) =p 4 (v + (—v)) = p; hence the
following relations are equivalent:

(6) p+v=gq v=q¢q—p, ¢+ (—v)=p, —v=p—q.
Since, by (1) and (6),
p+p —p2)+ (" —0)=[p+ @ —p)]+ @ —p)
=p +(p"—p)=1p",
using (6) again gives
(7) .Nﬂp=uffFH4ﬁ—pL

Choose a fixed point O € E, which may be called the “origin”’, and set
#(v) =0 + v (ve V). This sets up a one-one correspondence between

the vectors of ¥ and the points of E.
ExampLE. Let V™+! be a vector space, and V™ a subspace, of the

wd ot I ha tha

dimensions shown. Choose a vector O € V™! not in V", and let Z be the
set of all vectors of the form p = O + v (v € V"). Then E is an affine
space, with ¥ * as the associated vector space.

Any vector in V"t1 may be written in the form

(8) tp + v (teW, pek, velV™),
with ¢ uniquely defined; also
(9) tp +v=1tp’ + v’ ifandonlyif v —v=1p—p).
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We now show that all affine spaces are of the above character. Given
E and V = V(E), define V' to be the set of all expressions of the form (8),
subject to the rule (9). Clearly the relation (9) is reflexive, symmetric
and transitive; hence V' is a well defined set of elements. Let fp denote

itp + 0.
To turn V' into a vector space, choose O € £. Note that (9) gives

(10) tp + v =10 + v, v = t(p — 0) + ».

Thus any element of V' may be written in the form 20 +- ¢’; this expression
is unique, by (9). Set

(11) a(t0 4 v) = (at)0 + av,
(12) (0 +v) + ('O + ') = (t + t')0 + (v + v').

Take any O’ € E; set w = O’ — 0. Then these relations and (9} and
(10) give

a(t0’) = a(t0 + tw) = (at)0 + atw = (at)0’,

r I Fal 4 !
10"+ £0" = (10 + tw) + (0 + t'w

e
D

—
)

{4 \
\¢ I

=u+wq+a+ww=a+m0,

showing that the operations (11) and (12) are independent of the choice of O.
Define the direct sum V* (§4) and the one-one mapping of V* onto
V' by

(13) V*=ADPV, (i, v) =10 + v.

Since V* is a vector space and the operations are preserved by v, V' is
proved to be a vector space.

Setting ¢(p) = lp puts E into V', bringing the situation back to
that of the example.

The subset £’ of ¥ is an affine subspace of E if there is a vector subspace
V' of V(E) such that the operations p’ 4 v’ (p’' € E', v € V') make E’
affine, with V' = V(&").

11. Barycentric coordinates. We define certain ‘‘linear combinations”
of points of the affine space E; that in (1) is a point of £, and that in (2)
is a vector of ¥V = V(E). With a fixed O € E, set {for any k)

k k k
(1) Dapi=0+ Yafp,—0) if Za —

i =0 i=0 0

@) i Z a,(p; — 0) i

— ‘_0

-,
-,
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Define V' as in §10. The above have meaning in V', and are true
relations; hence, considering £ as imbedded in V’, the right hand sides
(which have direct meaning in £ and V) are independent of the choice of
0. (A direct proof is easy to give.)

The point p in (1) is the center of mass of a set of masses, in amount
a; at p,.

The points pg, - - -, p,, of E are dependent if they are contained in an
affine subspace of E of dimension < k; otherwise, they are independent.

If the p; are independent, different sets a; in (1) determine different
points p; the a; are the barycentric coordinates of p in terms of the p,.
In particular, the point

(3) (1 —8p + g =p + g — p)
runs from p to ¢ as ¢ runs from 0 to 1.

For another example, let py, p;, p, be the vertices of a triangle.
Operating in V', we see that the point two thirds of the way from p, to the
mid point of p,p, is

¢ = 4po + &30y + 3p5) = §po + dp, + §p2
The symmetry of the expression shows that the medians of the triangle
intersect at q.

Any non-void subset @ of K spans a subspace E’ of E, namely, the
smallest subspace of ¥ containing @. If p,, - - -, p, is a maximal inde-
pendent set of points in @, then £’ consists of all the points in (1).

There is clearly a natural topology in E, just as in V() (see §1).

12. Affine mappings. Let £ and Z’ be affine spaces, let @ be a subset
of E, and let f be a transformation of Q into E’. We say f is affine if

(1) f(Za,-p,-) = Za,-f(p,-) (Za,- = 1),

provided each p, and >a,p, are in @. ‘
Suppose f is affine in ). Then it is continuous (hence it is a mapping).
Let p,, * * -, p; be a maximal set of independent points of . Set

(2) F(p; — po) = f(p;) — f(Po);
this may be extended to define a linear transformation F of the vector

TF S I 1 1

space V(@) spanned by all vectors ¢ — p,, and hence by all vectors ¢ — p

(p, ¢ €Q) into V(E'). We show that

(3) fla) —flp)=Flg—p) » 9€@
For we may write p = >a,p;, ¢ = 2b,p,;; then

) —12) = 2 (b= o0 (p) = D (b — @)/ p) ~/(po)
= Z(bi — &) F(p; — py) = F[Z(bi —a)(p; — po)] = F(q — p)-
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It follows that

(4) @) — f(p) = Vf(p*, ¢ —»), Pp. q€Q, p*eint(Q),

and Vf(p, v) (v fixed) is constant in int ().

Conversely, suppose there exists a linear transformation # of V(¢)
into V(Z’) such that (3) holds. Then f is affine in @. For if py, - -+, Py
and p = >a,p, are in @, then

Saf(p) — o) = Dalf®) —fp) = D aF(p; —p)

- F[Za,(p, -—-—p)] ~ F(Zaipi — p) — 0.

An affine coordinate system y in the affine space £ = E” is an affine
transformation of 9" onto E. With the notations of § 1, set

(5) 0 = x(0), e; = Vx(0, €).
Then for any z = (1, - - -, ") in A", (4) gives
®) 1@) =0 + Vy(0, D) =0 + >

the 2* are called the coordinates of y(x).

13. Euclidean spaces. Let E be an affine space such that V = V(E)
is Euclidean (§9). Then we say E is a Euclidean space. Now |q — p | is
defined for p, q € B, and is the distance from p to q.

An orthonormal coordinate system y in E = K™ is an affine coordinate
system such that the corresponding mapping V x(x) (which is independent
of z) of V(A") = A" into V(E) preserves distances. An elementary
argument shows that it preserves scalar products also; hence, with the
notations of (12.5),

14. Banach spaces. A Banach space is a normed linear space V (§ 8)
which is complete. That is, if »,, v,, + - - is a sequence in V such that
1 v; — v, ) — 0 as 4,7 —> 00, then there is an element » of ¥ such that v, — v.

If V, is a normed linear space, we may complete it, forming a Banach
space V, as follows. Call two Cauchy sequences (v, v, * - *) and (v;, v3, - * *)
equivalent if lim | v; — v;| = 0; the elements of V are the equivalence
classes of Cauchy sequences in V. Let the norm of the equivalence class
of (vy, vy, ***) be lim | v,|. Imbed ¥, in V by setting ¢(v) = equivalence
class of (v, v, - -). Now V is complete, and ¥, is a dense subset of V.

The conjugate space P of a normed linear space V (§ 8) is complete,
and hence is a Banach space. Forletf, f,, - - - be a Cauchy sequence in V.
For any ve V, since |f,(o) — filo) | < |f; —fillv | — 0, the sequence
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fi(®), fa(v), - - - is Cauchy, and has a limit, which we call f(»). Clearly f
is a bounded linear function in ¥, and lim | f; — f| = 0.

LeMMA 14a. Let V, be a normed linear space, with completion V. Then
any real bounded linear function f in V  is unigquely extendable to be a bounded
Linear function in V. This defines a one-one isometric linear mapping of the
conjugate space V, onto V. The norm in V may be determined by using
V, alone:

(1) |f|=sup {f(»): veV,|v| =1}, feP.

Let f be bounded and linear in V,. For each v =1limv, e V (the v,
in V), set f(v) = lim f(v,); this is uniquely defined, and is clearly bounded
and linear in V. The rest of the lemma follows easily.

A metric space is separable if it contains a sequence of points p,, Py, * - *
which is dense in the space. Any vector space is separable. (With an
affine coordinate system, the set of vectors whose components are all
rational is denumerable.)

The Banach space V is reflexive if the mapping ® of ¥ into 7 of Lemma,
8d is onto. The conjugate space of a non-separable space is non-separable;

hence if V is separable and ¥ is not, then V is not reflexive. This occurs
in (V, 18).

15. Semi-conjugate spaces. Let V be a linear space with a semi-norm
|| (§8). Let V'* be the subspace of V containing those » with | v | =0,
and set V' = V mod V* (§5). Ifv, — v, € V*, then|v, | =|v,|; hencea
norm is determined in ¥’'. We may define bounded linear functions fin ¥V
as before, and use (8.7) to define | f|. These functions form what might
be called the semi-conjugate space ¥ of V. Forany fe ¥, |f(»)| < 0 and
hence f(») = 0 for all v € V*; therefore f defines a function f’ in .”"
which is clearly linear and bounded. Setting |f'|=f| defines |f’]|
uniquely. Clearly this definition is that defining the norm in the conjugate
space ¥’ of ¥'. We thus have a natural linear transformation of ¥ into ¥'.

LemMA 15a. The above transformation is an isomorphism of V onto V.
If the semi-norm in V is a norm, this transformation is the identity trans-
formation of V onto V.

The proof is simple.

The following lemma will be used in (V, 8).

LeMMa 15b. For each element k of a set H, let | v |, be a semi-norm. Then

(1) |v|=sup {{v},: heH}

if finite for all v € V, i3 a semi-norm.
Since [v + w |, < | o], + lehglv{ + |w|, all heH, (8.1) holds.
We prove av|< |a | | v| similarly; then also, if @ 7 0 and b = 1/a,

|blav) | < | b]]av], hence |av | = | a | [v|, and (8.2) follows.



Appendix 11

Geometric and Topological
Preliminaries

A good portion of the concepts and results in this appendix, in par-
ticular, Sections 1-3, 5-7, and 10-13, are used freely in the body of the
book (starting with Chapter III). Section 4 is used in Chapter VII,
Sections 8 and 9 in IV C and the end of VII, and Sections 14 through 186,
in IV B. Proofs of some elementary facts are sketched or omitted; other
proofs are given in detail. Though some small parts of the book clearly
have algebraic topology as a foundation, the few sections of this appendix
devoted to the subject give a sufficient background. In a few places,
proofs are given with the help of results in early chapters.

The elements of point set theory are assumed. The following definitions
and notations will be used. The sets will lie in a space S, generally an
affine or Euclidean space or a linear space. Write @; C @, if @, is a subset
of @,; p €@ if pis an element of Q. Write @, N @,, @; U @y, @ — @,, for
the Intersection, the union, and the difference (set of points in the first
set but not in the second), of @, and @, respectively; | @, and MN.Q:

mean the union and the intersection of the @, respectively. Write @ for

the closure of @, fro (@) = Q N8 — Q for the frontier of @, and int (Q) =
@ — fro (@) for the interior of . For cells o, int (o) is defined with reference
to the plane of ¢; see § 1.

A mapping f of @ into 8§’ is a continuous function with domain @
whose range f(@) liesin 8”. The set f~1(Q’) is the set of all points p such that
f(p) €e@Q’. We suppose the reader is familiar with the basic properties of
mappings and of compact sets. Recall that a subset of Euclidean space
is compact if and only if it is bounded and closed.

In a metric space, dist {(p, g) is the distance from p to ¢g; thisis i g—p ]
if the space is Euclidean. The distance from the set P to the set Q is
dist (P, @) = inf {dist (p, ¢)} (notation in (App. III)) for p € P, g€ Q.
The diameter diam (Q) of @ is sup {dist (p, ¢)} for p, ¢ € Q. The {-neighbor-
hood of @ is U,(Q), the set of all p such that dist (p, @) < {; let 7@
denote its closure. A set of the form U,(p) or U, ((p) is called an open ball
or closed ball respectively. Let int; (@) denote the set of all p such that
Uyp) Cint (Q); thus inty(Q) =8 — UyS — Q).

355
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A homotopy of f, into f, is a set of mappings f, (0 < ¢ < 1) such that
F(txp) = f,(p) is continuous in I X8 (I being the unit interval); f, and
fi are homotopic if this homotopy exists.

1. Cells, simplexes. A closed half space in an affine space ¥ of dimension
n is the set of points which lie on a given side of an affine subspace P of £
of dimension n — 1, together with P itself. A convexr polyhedral cell o
in K, or cell for short, is a non-void bounded (closed) subset of £ expressible
as the intersection of a finite set of closed half spaces. The plane P(o) of
¢ is the smallest affine subspace containing o; the dimension dim (o) of
o is the dimension of P(¢). If this is 7, we call the cell an, r-cell, and
denote it by o”. Note that if ¢, and ¢, are cells, so is g; N 0,, if non-void.

The frontier fro (o) of ¢, considered as a subset of P(¢), is the boundary
do of o; if ois oriented, then do is the set of points lying on the chain which
is called do in § 7 below. The interior int (¢) is ¢ — do. If dim (gy) =
dim (o,), say o, and ¢, are non-overlapping if int (o7) Nint (¢,) = 0.

We may express do as the union of a finite set of (n — 1)-cells, the
(n — 1)-faces of 0. Each of these has faces, etc.; the set of all these we
call the proper faces of 6. We consider ¢ as an improper face of itself.

The vertices of o are the faces of dimension 0; they are the points of ¢
which are interior to no segment lying in ¢. If p,, - * -, p, are the vertices
of o, then ¢ is the smallest convex set which contains these points; the
points of ¢ are expressible in the form

(1) p = MOPO“" cer b oup,, each Jui; 0, Zﬂi: 1;

see (App. I, 11). Allowing the y, to be negative gives all points of P(g).
The edges of o are the 1-faces of .

A simplex ¢ in E is a set of points expressible in the form (1), the p,
being independent (App. I, 11). Then dim (¢) = r, and the expression (1)
is unique. The y; are the barycentric coordinates of p in terms of the p,.
We write 6 = p, - - - p,. Then the simplexes p, --- p, are the faces of o,
and the p, are its vertices.

If ¢ is a cell, its center is the center of mass of its vertices; if py, * * , Pe
are the vertices, then the center is

(2) Py =apPy + " 1 apy, a = 1f(k + 1).

Let f be an affine mapping (App. I, 12) of the r-simplex 0 = py - - * Py
into an affine space E’; then f(o) is an r-simplex in E’, if the\g, = f(pg)
are independent; this happens if and only if P(f(0)) is of the sam dimen-
sion r as o, or, if and only if, considering f in int (o) only, the Jacobian
J, is # 0 there (IL, 6). If the g, are dependent, we say fis deg.enemte in o,
or, f(o) is degenerate. For more general cells o, we say flo) 18 degenerate
if J, = 0 in int (o).
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If the simplex ¢ is in Euclidean space, it is easy to see that diam (o)
is the length of the longest edge of o.

2. Polyhedra, complexes. A polyhedron @ in an affine space ¥ is a
(closed) point set which is expressible as the union of a finite set of cells;
its dimension dim (@) is the largest of the dimensions of the cells, If there
is an expression in which all the cells are of the same dimension as E,
we call @ a polyhedral region in E.

One could consider polyhedra abstractly, without reference to a
containing space; we do not need to do this.

A complex K is a finite set S of cells, with the following properties.
If o € 8, then each face of ¢ is the union of cells of §. No int (o) intersects
cells of lower dimension of S. Each intersection ¢ M ¢’ is the union of
cells of §.

We shall use only complexes in which each face of a cell o of § is itself
a cell of §; thus we shall not subdivide the proper faces of ¢ into smaller
cells.

The union of the cells of K form a polyhedron, which we also call K.
Note that each point of K is in exactly one of the sets int (o), 0 € 8.

A simplicial complex K is a complex whose cells are all simplexes,
each face of a simplex of K being a simplex of K. If p,, p,, - - - are the
vertices of K, then each simplex of K is of the form Dy, * Py, Bach
point of K may be written uniquely in the form

) p=Dmplp,  each ()20, Duip) =1,

with the condition thatif p € p; - -~ p, , then pu,(p) = Oforj £ 4y, -+ +, 4,.
The u,(p) are continuous functions of p in K; they are the barycentric
coordinates of p in K.

The star St (o) of ¢ in K is the point set consisting of all int (¢’) such
that o is a face of ¢’; it is an open set in the space consisting of the points

of K. The closed star St (o) is the closure in K of St (¢); the star boundary
oSt (o) is St (o) — St (o).
Note that in a simplicial complex K, p € St (p 3, " " pa,) if and only if

uln.) > 0 for each 2
PAPR G - ol o .

3. Subdivisions. If the polyhedron @ is the set of points of a complex
K, we say K is a subdivision of Q. If K is a simplicial complex, we say K
is a stmplicial subdivision or triangulation of Q. Occasionally we allow K
to be an infinite complex, for instance if, in place of Q, we use E* or an
open subset of £”. Since @ is in an affine space, barycentric coordinates
in g are well defined, for each cell 6 (App. I, 11). Through smooth mappings,
we may run into “cells” ¢’ = f(0) in an affine space E’ which are “curved”’
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in E’; thus we may find a “curvilinear” subdivision of a subset of E';
see for instance (III, 7). In this case, barycentric coordinates in ¢ do not
carry over to barycentric coordinates in E’.

LeMMma 3a. Any polyhedron has a subdivision.

This can be shown by elementary arguments.

Suppose K and K’ are subdivisions of P, with the property that each
cell of K’ is contained in a cell of K. Then we say K’ is a refinement of K,
Then each cell of K is a union of cells of K.

The regular subdivision K’ of a complex K is defined as follows. For
each cell o of K, its center p, (see § 1) is a vertex of K'; in particular, each
vertex of K is a vertex of K’. For each increasing sequence o, C oy C

- C g, of cells of K, there is a corresponding simplex r = Po, Po, """ P,
of K’. Thus K’ is simplicial.

Clearly each 1 as above is in ¢,. If we show that each point p of K is
in int (7) for a unique simplex 7 of K', this will prove that K’ is a refinement
of K. Say p€int (o). If p = p,, then p €int (p,) = p,. Suppose that
p # p,. Then there is a unique segment p_p’ containing p, with p’ € do.
Using induction, we see easily that there is a unique 7' C do with
p' €int (v'), and that if +" = Py, " " P, then peint(r) with 7=
P * " " Pg Py and 7 I8 unique.

LEmMMA 3b. Any two subdivisions K,, K, of a polyhedron P have a
common simplicial refinement.

Let K be the complex whose cells are the non-void intersections
g, M o, (0, in K, 0, in K,). The regular subdivision K’ of K has the
required properties. '

If the complex K is in a metric space, then the numbers diam (o) for
cells ¢ of K are defined; the largest of these is the mesh of K.

LeMMA 3c. Any complex K, has a sequence of consecutive simplicial
refinements K, K,, * * - with mesh (K;) — 0.

We may let K, be the regular subdivision of K, ;. The last statement
of the lemma is obvious if, instead, we let K, be the standard refinement
of K, , (i = 2); see the next section.

Let C be an n-cube; with its faces, it forms a complex K. Letv,---, v,
be the edge vectors of C. Let K’ be the regular subdivision of K. Then

far annh = mnlov - nf K’ 1+q ]guf vertex IQ fhp center nf'(" Ifq nm{t to the

AVvrL ov'wil l(l DJJ..I.I.IJI.UA i Wi oAy

last vertex is the center of one of the 2n (n — 1)-faces ' of C, the preceding
vertex is the center of one of the 2(n — 1) (n — 2)-faces C” of €', ete.
Hence there are 2"n! n-simplexes in K’, and each has +4vy, - ~-, +4v,
as a set of edge vectors.

4. Standard subdivisions. If K, is the regular subdivision of K, ,
(t=1,2,--), we get 31mplexes of worse and worse shapes, as is seen at

once in the case that K, is a 2-simplex; the numbers ®(o) (IV, 14) have
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no positive lower bound. We shall give a manner of subdivision which
corrects thist; it will be useful in Chapter IX.

Let 0 = p, - - p, be a simplex, with its vertices given in the order
shown; we construct its standard subdivision So as follows. Set

(1) piy=13p. + 49, 155
in particular, p,, = p;. These are the vertices of So. Define a partial
ordering among these vertices by setting

(2) P < py if k<iandj< 1
For instance, p,s << P93 << Py3, While py; and p,, are unrelated. The

simplexes of So are all those formed from the p,; which are in increasing
order. For example, if r = 2, the 2-simplexes are

PoPo1Po2s P1Po1Po2s P1P12Po2:  PaP12Poos

and if r = 3, the 3-simplexes are

PoPo1Po2Poss P1PorPo2Po3» DP1P12Po2Po3s P2P12Po2Po3
P1P12P13Pos>  PaP12P13Poe3s  P2P2sPi13Pos  P3P23Pi3Pos

There are 2" r-simplexes in So, which may be found conveniently as
follows. The last vertex is p,,. The next to the last is either p,,_, or p,,.
In general, having chosen a vertex p,;, the preceding one is either p,,, ,
or p, ; 4. Clearly the interiors of these simplexes are disjoint; it is not
hard to see that they actually form a simplicial complex, which is a
subdivision of o.

Set
(3) Vi =Py — Pia (?:=1,"',T);
using (1) shows that

(4) Piiil = Pij = ¥p1 Picry — Piy = — 0,

If K is a simplicial complex, and we order its vertices in some fixed
fashion, then &,K may be formed by subdividing each of its simplexes
as above. Now each simplex of S, K has its vertices ordered, and we may
subdivide again, forming G,K, etc. Thus we form the sequence of standard
subdivisions of K, relative to the given order of the vertices.

In the following lemmas, we use the notations of (III, 1) and (IV, 14).

LemMA da. If 0 =py- - p,, v; = P; — Ds_y, then each r-simplex of
S0 has -0,[2%, - - -, +v,/2* as edge vectors, and has volume | o |[2*".

This follows from (4) and (II1, 1.3).

LeMMA 4b. Given the simplicial complex K with ordered vertices, at

most a finite number of shapes occur among the simplexes of the G, K. For
some n > 0, O(r) = n for all simplexes + of all S, K.

T A similar type of subdivision was given by H. Freudenthal, Annals of Math.
43 (1942), 580-582.
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The first statement follows from the last lemma, and the second
statement follows from the first.

The following lemma is needed in (IX, 8).

LEMMA 4c. Let 7 be an (r — 1)-simplex of ©o, 0 = py -« * p,, which
does not lie in do. Then the plane P of + contains p,, but no other point
of PoP,-

This being trivial for r = 1, we use induction. First, r contains p,,;
for if not, then all its vertices would lie either in ¢y =p, - - p, or in
0, = Pg * * * P,_1,» Which would give + C do. Now the vertices of r other
than p,, form a simplex +’. Either v' C g, or +' C g,, say the former.
Suppose 7' C day; say + Cpy«--p,-+-p.. I j<<r, then+Cpy---
$;* -+ p, C 0o, a contradiction; hence +' Cp, - - - p,_;, and the plane P’
of +' does not contain p,. If " is not in dg,, then P’ does not contain p,,
by induction. Since P contains P’ and also a point p,, not in the plane of
6y PN oy = PO 0,, and P does not contain p,; hence the last statement
of the lemma follows,

5. Orientation. As seen in (I, 8), an affine space E of dimension
n (n = 1) has two orientations; an orientation is given by the choice of an
ordered set (v, -+ -, v,) of n independent vectors. For n =0, E is a
single point; we do not give it an orientation.

A cell o is oriented by orienting its plane P(o). If P(o) has already
been oriented, we say o is oriented like P(c), or o lies positively in P(0),
if the two orientations of P(¢) agree. We may do the same for a polyhedral
region in an oriented affine space.

By the oriented simplex ¢ = p, * - * p,, we mean the simplex ¢, oriented
by the set of vectors (p; — Py, * * * , P, — Do), OF equivalently, (p; — Do,
R mprﬂl)'

LeMMA 5a. For any permutation (Ag, + -+, A,) of (0, -+, 7), 1y """ P,
has the same or opposite orientation as py + - - p, according as the permutation
18 even or odd.

The proof is elementary.

We now consider the orientation of the (n — 1)-faces of an oriented
n-cell 0. If n = 1, then o is a 1-simplex pq; we say ¢ is in do positively,
and p, negatively. Now suppose n > 2, and o' is an (n — 1)-face. We may
choose (v;, - - -, v,) orienting ¢", so that v,, ---, v, lie in ¢’. Choose
p €int (6°); then either no point p 4 tv, is in ¢ for ¢ > 0, or all such
points are for ¢ > 0 sufficiently small; we say v, points out of o or into ¢
at ¢’ in these two cases respectively. In the first case, we say the orienta-
tion of ¢’ defined by (v,, - - -, v,) agrees with that of o, or, ¢’ thus oriented
lies positively in do; in the second case, the opposite is true.

In particular, suppose ¢ = pgp, ' P, and ¢’ =Py " Py oriented
as shown. Set v, = p, — p,_,. Then (v;, -+, v,) orients o, (vg, ** ", ¥)
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orients ¢’, and v, points out of ¢ at ¢’; hence ¢’ lies positively in do.
Using Lemma 5a, we see easily that p,- - %, - p, lies positively or
negatively in do according as 1 is even or odd.

Suppose R is an oriented open set in E", with fro (R) consisting in
part of a smooth (r — 1)-manifold ¢; near a given point p, say o is given by
the equation z, = f(x,, - - -, x,), using rectangular coordinates, f being
continuously differentiable. We may “orient” ¢ near p by orienting the
tangent plane there; the definition of ¢ being ‘“‘positively’’ in 0R is clear.

6. Chains and cochains. Iet K be a complex, and let its cells be
oriented. An (algebraic) r-chain of K is an expression of the form 4 =
>a,0f, the a, being real numbers. (We could let the a; be elements of an
Abelian group.) We write dim (4) = r. Two chains are added by adding
corresponding coefficients; to multiply a chain by a real number, multiply
each coefficient by that number. Thus the set of r-chains becomes a
linear space C, = C,(K). The dimension of this space is clearly the number
of cells of K of dimension r.

We allow ourselves to put in or drop out a term 0o with zero coefficient;
also, we may write ¢ in place of 1¢. Now the oriented r-cells themselves
become chains; they form a base in C,.

If we let —o denote the cell o oppositely oriented, we may identify
(—a)(—o) with ac.

In the case r = 0, if p,, p,, - - - are the vertices of K, then any 0-chain
is Ya,p;; questions of orientation do not arise.

An (algebraic) r-cochain X of K is an element of the conjugate space
C"=C, of C,. We write X-4 in place of X(4). Set X, = X-ol. If welet
¢} denote not only an oriented simplex or a chain, but also the cochain
defined by 0,";'-0;-’ = 6{, then the of form also a base for the r-cochains;
for any X as above, clearly X = > X,0!. Even if we occasionally use this
notation, we keep distinct the meaning of chains and cochains. Note that

(1) XA = ZX,;O';. zajo; = ZXiai.
R i

J
The unit 0-cochain 1% is > p,, summed over all vertices; thus for any

rertex p,, I%p, = 1. Now

(2) Io'zaipi = Za’i’

often called the ‘“Kronecker index’’ of the 0-chain Sa,p,.

The definition of polykedral r-chains in an affine space E is given in
(V, 1); see also (III, 2). We may clearly consider polyhedral chains in a
polyhedron. Each r-chain of a complex K clearly corresponds to a well
defined polyhedral r-chain in K.
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7. Boundary and coboundary. The boundary 04 of an r-chain 4 is
an (r — 1)-chain, defined as follows. For r = 0, set 4 = 0. Now take
any r-cell 0. If r = 1, then o = pg; set do = ¢ — p. If r > 2, let do be
the sum of the (r — 1)-faces of o, oriented to agree with o (§5). Set
0 da,0f = >a;00]. For a simplex, we have (see § 5)

n Apor - p) =D (—Lmo" By pr
i=0

Now the operation @ is a linear mapping of C, into C,_;, for each r > 1.

Each oriented (r — 2)-face ¢’ of an r-cell ¢ is a face of two (r — 1)-faces
0y, 03 of o (if r = 2); if 0; and o, are oriented to agree with o, it is easily
seen that the orientation of ¢’ agrees with one of these and disagrees
with the other. It follows that ddo = 0, and hence

(2) 004 = 0, all chains 4.

These considerations apply to polyhedral chains also.
The coboundary dX of the r-cochain X in K is defined by

T F] h > ol ]

(3) dX-A = X-0d4;

this is an (r 4+ 1)-cochain of K. Because of (2), we have

(4) ddX = 0, all cochains X.
Note that, in a simplicial complex, by (1) and (3),
*
(5) dpo-"p) = D Pbo" Py
k

summing over all £ such that p,p, " - * p, is a simplex of K.

Let @ be the oriented parallelepiped of (III, 11); we shall prove
(IIL, 11.2). Since the orientation of  is given by the ordered set (v, * * *,
v,), that of (—1)~1 @ is given by (v, v, -+, ¥;, -+, v,). Since (v, ***,
#;, "+ +, v,) orients AT and v, points out of Q at A}, A7 lies positively in
o[(—1)~1Q], and (—1)"141 lies positively in 0. Clearly —(—1)"47
lies positively in 6@, and the relation follows. (We may also use (12.2)
below and induction.)

8. Homology and cohomology. A chain A of K is a cycle if 04 = 0;
a boundary if A = 0B for some B. Define cocycles and coboundaries
similarly. Let Z,, B,, Z’, B" denote the linear spaces of cycles, boundaries,
cocycles and coboundaries respectively, of dimension r. Because of\(7.2)

and (7.4), B, CZ, and B" C Z"; hence we may define
(1) H =2Z modB,, H'=Z"modB"

These are the rth homology and cohomology spaces of K (with real coefficients)
respectively. :
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The cycles 4 and B of K are homologous, written 4 ~ B, if A — B
is a boundary; then 4 and B determine the same element of H,. Similarly
for cohomologous cocycles, written X «Y.

Let € be the direct sum of the spaces C,, Cy, - - - (App. I, 4); this is the
linear space formed by all chains of all dimensions of K. Let C* be the
direct sum of the (7, i.e. the linear space formed by all cochains; this may
clearly be considered as the conjugate space of 0. We have subspaces Z
and B of €, and Z* and B* of C*; defining H and H* as in (App. I, 7.5),
it is clear that these are the direct sums

(2) H=H 0oH ® -+, H=HQHQ®: -

The pairing of (App. I, 7.6) between H and H* defines a pairing
between H and H" for each r, and because of (App. I, 7.7) we have

(3) H ~ ﬁ,,, H ~ ﬁ’.

Hence also H, and H" are of the same dimension, and are therefore iso-
morphic; but there is in general no natural manner of setting up this
isomorphism.

It is shown in treatises on algebraic topology that the spaces H, and
H" depend on the polyhedron of K only, not on the particular subdivision;
the dimension of H, is the rth ‘“Betti number” of K. (A proof is given in
(VII, 12).)

9. Products in a complex. We discuss briefly pairings among the
cohomology and homology spaces of a complex K.

There exists a bilinear operation X" _Y* = Z™*, called a cup product
of the cochains X" and Y?, with the following properties.

(a) If o™* appears with a non-zero coefficient in ¢"—o¢?®, then ¢" and
o® are faces of o"+%

(b) d(X'_Y?®) =dX"_Y* - (—1)X"_dY?

() I X" = X"_I® = X"

Because of (b), this defines a bilinear operation between H” and H*, with
values in H™?®; this is also called the cup product. It may be shownt
that this operation is uniquely determined, independently of the choice of
product in the spaces G*. In this manner H* becomes a ring, with the
cohomology class of 70 as unit element.

Given the cup product, we define the cap product X'~A™* = B® of a
cochain and a chain, the result being a chain, by the definition

(1) Ys.(Xr,.,Ar+s) — (stXr).AH—s
T See for instance H. Whitney, On products in a complex, Annals of Math. 39

(1938), 397-432; S. Lefschetz, Algebraic Topology, Am. Math, Soc., New York,
1942, Chapter V.
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for all s-cochains Y*. This defines a bilinear operation between H" and
H, . ,, with values in H,, also uniquely determined. Now H* is a ring of
operators on H.

10. Joins. The join J(P, @) of two point sets P, @ in an affine space &
is the set of all points on all segments pq, p € P, ¢ €Q. We shall use
especially a corresponding algebraic operation.

Let 6 = pg - * - p, be an oriented r-simplex in ¥, and let p be a point
not in the plane P(g). The joirn of p with ¢ is then

(1) J(p, 0) = po = ppy " " * Py

this is an oriented (r - 1)-simplex in K. We could define similarly
J(o7, %) = o"t*+1, if this is a simplex. If p € P(o), we set J(p, o) = 0.
Define

(2) J(P: Zaioi) = Z%J(Pa 0;);
this is a polyhedral chain in £. We prove
(3) 0J(p, 4) = A — J(p,04) if dim (4)=>1,

(4) oJ(p, A) = A — (I%A)p if dim (4) = 0.

We may suppose A is a simplex ¢ = p, -+ * p,. Suppose first po is
non-degenerate. Then for » > 1, (3) follows at once from (1) and (7.1),
while for r = 0,

0J (p, py) = O(pPy) = Py — P = Py — (1%py)P.

If p € P(0), we must prove that the right hand side of (3), which we call B,
is 0. (This is clear for (4).) Now B is a polyhedral r-chain in the r-dimen-
sional space P(g), and using induction shows that dB = 0. From the
definition of 9B (V, 1) it is clear that B = 0.

LeMMA 10a. Let A be a polyhedral cycle in the convex subset @ of affine
space E; if dim (4) =0, suppose [*A = 0. Then A = 0B, B in @.

Choose p €@, and set B = J(p, A). That 0B = A follows at once
from (3) or (4).

11. Subdivisions of chains. Let K be a complex, and let K’ be a refine-
ment of K. For each oriented r-cell o of K, let So be the chain in K’
composed of the r-cells of KX’ in o, oriented like 0. Set GJa,0; = 28,50,
We prove

(1) 084 = G 04.

We may suppose A = 0. Say do = Do, Go = D0, So; = Za:j We
must prove >, 0o, = Z,.,,o'i,. Each cell of dimension r — 1 interior to ¢
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appears in some doj, and in some do;, with opposite signs; hence it drops
out of 3, dg;. The remaining cells make up exactly >, ;o ,.

Suppose K’ is the regular subdivision of K. We may define J(p, 7) if
p and 7 are both in some cell o of K. It is easily seen that

(2) So = J(p,, Sd0),

p, being the center of g; we may use this to prove (1) in this case.
RemMarxk. If we consider the chain 4 of K as a polyhedral chain in X,
then ©4 is the same polyhedral chain in K; see (V, 1).

12. Cartesian products of cells. Let 6™ and o* be cells, in affine spaces
P,, P,. The Cartesian product P;X P, (App. 1, 4) is clearly an affine
space P, and the subset "X ¢° is a cell in P.

Suppose ¢" and ¢° are oriented, by (v, '-,v,) and (w,, -+, w,)
respectively. Then we orient ¢"Xo® by (vy, -, 0,0, -, w,). If
Sa.o and >b;0f are polyhedral chains in P, and P, respectively, their
Cartesian product is the polyhedral chain >ab,(o7X oj) in P.

We shall prove the boundary formula (1); the case r = 2 is used in
(V, 9), but elsewhere, we use only the case r = 1.

Say 06" = >} 71, 9o* = >0i1, as polyhedral chains. Itis easy to see
that the (r 4 s — 1)-faces of "X o* are the cells ¢ "' X o* and 6" X 0?1,
Hence, to prove

(1) O(6"X 0°) = do" X 6* + (—1)"6"X do*,

we need merely show that each (r + s -— 1)-face has the correct coefficient.
Consider for example the face o"X of~!. We may suppose (w,, - - -, w,)

orients ¢} ~!, and w; points out of 6° at g ~1. Now (v, - -+, v,, wy, -+, w,)
orients o7Xx o5 —1 while w; points out of ¢"Xo° at ¢"X o] —1. gince
{wy, v, ", U Wy, o+ ¢, w,) orients (—1)76"X 0%, 0"X 0! lies positively

in the boundary of this cell, as required.
Let I be the unit interval 0 < ¢<{ 1 in 9; this is an oriented 1-cell.
Then (1) gives

(2) O0IxA)=1xA —0xA — Ix0A.

Let o0=py--p, the vertices ordered as shown; we give a
corresponding simplicial subdivision of X a. Set ¢, = 0X p,, ¢; = 1Xp;,
and

(3) Eylxo) = Z (—1)r;,  Ti=qo" " q4q """ q-
1=0

It 1s elementary to show that the 7; are non-overlapping and fill out 6. We
shall show that the orientations are correct. Set

V=0 —Piq1—=¢; —q; 4= Qi’ - 95—1-
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Let ¢ be the unit vector in 9. Then 7, is oriented by the set (v, - -+, v, ¢,
Vi1 "', Y,), and hence (—1)'7; is oriented by the set (e, v, -, v,),
which also orients I X 0.

Using the same definition of the subdivision of the cells of I X do, a
simple calculation shows that

(4) 0S,(IX06) =1X0 — 0 X 0 — Gy(IX do).

13. Mappings of complexes. Let f be a mapping of the complex K
(i.e. of the corresponding polyhedron) into an affine space X. We say fis
cellwise affine if f, considered in each cell alone, is affine. If f maps K into
another complex K’, we may use the same definition, provided that each
cell of K is mapped into some cell of K’. If K is simplicial, we speak of a
simplexwise affine mapping. If both K and K’ are simplicial, and f is
simplexwise affine and maps each vertex of K into a vertex of K’, then fis
simplicial. Then fis determined by its values on the vertices p, of K, and,
using (2.1),

(1) .f(z,ug-(p)pz-)=Z#f(p)f(;ng) (.u-.-(p);& zm(p)-——l)-

Now for each simplex ¢ of K, if f maps the vertices of ¢ into distinct
vertices of K', then f(o) is a simplex of K’, while in the contrary case, fis
degenerate in ¢.

Let f be a cellwise affine mapping of the complex K into £ (or into a

polyhedron P). For each oriented cell o of K, oriented by (v, - - -, v,),
f{o) is a cell, which we orient by
(2) (Vf(ps v1), 0, Vi, )

for any p € o; these vectors are independent if J, £ 0 in ¢. If this is so,
we let fo denote the cell thus oriented; in the contrary case, set fo = 0.
In particular, if o = p, - - - p, and f(p,) = q,, then fo = ¢, - - - q,. Setting
f>a,0, = Ya,f, f now becomes a transformation of polyhedral chains in
K into polyhedral chains in £ (or in P). In particular, if f is a simplicial
mapping of K into K’, and A is a chain of K, then f4 may be considered
as a chain of K'.
For any cellwise affine mapping f and chain A, we have

(3) dfd = foA.
It is sufficient to prove this in case A is an oriented cell o. This is obvious

if J, £ 0 in int (0); otherwise, fo = 0, and that f do = 0 follows as in the

proof of (10.3).
Let f be a cellwise affine mapping of K into the affine space E, and let v

be a vector in K. Setting

(4) fo(p) = f(p) +v, 2,(xp)= f(p)+ tv,
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defines mappings f, of K into £ and &, of I X K into £. The latter defines
a deformation or homotopy of f into f,, as ¢ runs from 0 to 1. These define
transformations f, and &, of chains 4 and IXx 4 respectively into poly-
hedral chains in . Since Z,(0X 4) = f4 and Z (1 X 4) = f,4, using (3)
and (12.2) gives

(5) 0D (Ix A) = f,A — fA — D (IX DA).

More generally, let S(Zx K) be a subdivision of Ix K, and let ¥ be a
cellwise affine mapping of this complex into E (or into a polyhedron P). If
fip) = F(iXp) (¢ = 0, 1), then

(6) OF(Ix Ay = fyA — fod — F(IX 04),
the chains again being polyhedral.

14. Some properties of planes. We prove some lemmas that will be
used in (IV, B); here, £™ denotes Euclidean m-space.

Let P and P’ be planes in £™, of any dimensions; let =pv be the
orthogonal projection into P of the vector ». The independence of P and

P! o dafina +n ha
A Y U/ LAVRLIAY UV U

(1) ind (P, P’y =inf {{v — mpv|: ve P',lv|=1}
This depends only on the directions of the planes (I, 12), not on their
positions. Clearly the independence is 0 if and only if the planes have a

non-zero vector in common, and is 1 if and only if the planes are
orthogonal.

Since the set of unit vectors is compact, we may choose a unit vector »
in P’ such that |7pv —v|=ind (P,P’). Supposing mpv 0, set
w=mpf|mpv|. Let Lbealine containingv; then |myu —ul=|mpw —v|,
and hence

|mpu—u| < |7 — | =ind (P, P'),

proving ind (P’, P) < ind (P, P’) if P and P’ are not orthogonal. This
works both ways; hence
2) ind (P’, P) = ind (P, P").

Recall that P(o) is the plane of o.
LemmaA 14a. Let o be an s-cell and let P be an n-plane in E™, such that

(3) s+n>m, dist (P, o) < dist (P, do).
Then s 4~ n = m, P intersects ¢ in a single point, and
(4) ind (P, P(0)) > dist (P, do)/diam (o).

Let d, d’ denote the distances in (3). Choose p and ¢ so that
P Ea, ge P, |9 —p|=d.
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(Actually, p = ¢.) Suppose there were a vector » = 0 common to ¢ and P.
Then for some a, p 4 ave do and ¢ + av € P, contradicting d’ > d.
Hence there is no such », which shows that s - #n = m. Hence also the
vectors of P together with those of ¢ span those of E™, and we can write

q—Pp=1u +uy,, u€o, u,el.
Set p* = p + u; = q — u,; then p* € P(6) N P. If p* were not in o,
then
p'=p* —au, €00 forsomea, 0<a<]l;

setting ¢" = p* + au, gives d' < | ¢’ — p’| < d, again a contradiction.
Hence p* € ¢. Since ¢ and P have no common vector 0, there is no
other point in P M .

Now take any unit vector v in P(g). Choose @ > 0 so that p’ — p*
+ av € 00, and set ¢' = p* + awpy. Then

d’g]q’—p’|=a|wpv—vi<dia.m(a)|1rpv——vi,

and (4) follows.

LeMMA 14b. Let P* be a plane in E, let P be a plane in P*, lot Q bea
closed set in P*, let p* be a point of E not in Q, and let Q* be the join
J(p*, ). Then

(5) dist (@*, P) > dist (@, P) dist (p*, P*)/diam (Q*).

Suppose this relation, which we write in the form ¢ > ab/d, were false.
Let ¢** be the set of all points on all rays which start at a point of @ and
pass through p*. Then we may choose p’ €@** and ¢’ € P so that

g — P | = dist (@**, P) < ¢ < ab/d.

Say p’ is on the ray from p” through p* (p” € Q). Since @ C P*, b < d;
hence ¢ < ab/d < a, and p’ # p”. Therefore p’q’ is perpendicular to
p"p’. Let L be the line through p” and ¢’, and let ¢* be the nearest point
of L to p*; then g*p* is perpendicular to L. Since ¢’ is nearer to p’ than to
2", ¢* and ¢’ are on the same side of p” in L. Now the triangles p"p’q’ and

n . .
2"g*p* are similar, and hence

£ q p” are
" —¢' | =4 —p"||¢* — p* || p* — " | = ab/d,
a contradiction, proving the lemma.
15. Mappings of n-pseudomanifolds into n-space. This section will
be used in (IV, B). We shall say a simplicial complex K is an oriented

n-pseudomanifold if K is of dimension 7, each simplex is a face of an
n-simplex, each (n — 1)-simplex is a face of either one or two n-simplexes,
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each n-simplex ¢? is oriented, and 02> o? contains only those (n — 1)-
simplexes on just one n-simplex. (Generally one assumes also connected-
ness in some sense.) We shall let 0K denote the set of (n — 1)-simplexes
Just mentioned, or the set of points on these simplexes.

We call the mapping f of K into oriented E" stmplexwise positive if
for each o7, f is smooth and one-one in ¢? (the partial derivatives being
continuous on the boundary), and J; > 0 there (II, 6). For any complex
L, let L*, or (L)*, denote the subcomplex containing all cells of L of
dimension <k. With f in K as above, any point ¢ of £ — f(K"1) is in
the image of a certain number A of n-simplexes of K; we say ¢ is covered
h times. (If some Jacobians were negative, we would consider the algebraic
number of times ¢ was covered.)

The proof of the following lemma could be somewhat shortened if we
used theorems from algebraic topology.

LemMA 15a. Let f be simplexwise positive in K. Then for any connected
open subset R of E" — f(0K), any two points of R not in f(K"1) are
covered the same number of times. If this number is 1, then f, considered in
the open subset R’ = f~1(R) of K only, is one-one onto R.

By the inverse function theorem (II, Theorem 7A), f{int (¢7)) is open,
for each of. We show first that for any o™ not in 0K, f(St (¢™1))
(see § 2) is open. Let o7 and o3 be the n-simplexes of K with 0”1 as face.
Take any p € int (¢™1); we need merely show that f(St (¢"1)) covers a
neighborhood of f(p). Since f is one-one in each ¢f, there is a neigh-
borhood U of f(p) not touching f(d St (¢"1)). Since f is smooth in ™!,
with Jacobian (n — 1)-vector 70, we may choose U so that f(g"1) cuts
it into two connected parts, U; and U,. (The proof is elementary.) Let
pp,;be a segment in o7, p, € int (o7), mapping into an arc A;in U (+ = 1,2).
If we orient ¢"1, it is in do? and do} with opposite signs; since J; > 0 in
each of, the tangent vectors to 4, and to 4, at f(p) are on opposite sides
of f(o™1) (see (13.2)); hence we may suppose f(p,) € Uy, f(p,) € U,. Now
suppose there were a point g € U — f(¢" 1) notin f(St (6"~1)). Thereisan
arc A in U — f(6™!) joining ¢ to either f(p,) or f(p,). There is a first
point ¢* in 4 which is in f(St (¢"1)); by the choice of U and 4, ¢* € U, =
f(int (a7)) for j = 1 or 2. But U; is open, contradicting the definition of
g*, and the statement is proved.

Suppose the first conclusion of the lemma were false. Then we may
express R — f(K™ 1) as the union of two disjoint sets R, and R,, such
that for some %, each point of R, is covered A times and each point of R,
is covered a different number of times. We may choose an arc 4 from a
point of B, to a point of R,, lying in B — f(K"~2), which crosses from R,
to R, at a point ¢; then ¢ € f(6™ ) for some 6™1. Let o"l‘_l, IR a’,:_l be
the (n — 1)-simplexes of K whose images contain ¢; say 0';-‘_1 is a face of
the n-simplexes o,, a‘f. Since f is one-one in the n-simplexes, we see at once
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that these n-simplexes are distinct. By the proof above, there is a neighbor-
hood U of ¢ such that for each i, each point of U — f(K"1) is in just one
of f(0,), f(o;). We may suppose U touches no f(a}"‘l) for any other j; then
any other f(o}) containing ¢ contains U. Hence all points of U — f(K"1)
are covered the same number of times, contradicting the choice of ¢.
Next we show that for any simplex o* of K, f(St (¢*)) is open. Given
p €int (o*), we must show that f(St (%)) covers a neighborhood U of
g = f(p). We may suppose U is connected and does not touch f(d St (c¥)).

Now L = St(c¢*) is an oriented n-pseudomanifold, and the proof above
shows that all points of U not in f(L"!) are covered the same number N
of times by n-simplexes of L. Since some points near ¢ are covered,
N > 1; hence all points of U are in f(L).

We now prove the last part of the lemma. Since the number of times
points are covered is 1, f maps R’ onto B. Now suppose f(p,) = f(p,) = ¢,
Py # pe. Say p, €int (o,) (dimension of o, unspecified). Since f is one-one
in all simplexes, St (g,) N St (0,) = 0. By the proof above, f(St (s,))
covers all points of some neighborhood U, of ¢ not in f(X"~1) a number of
times N, > 0, for « = 1, 2. But this shows that f, in K, covers points of
U = U,NU, at least twice, a contradiction, completing the proof of the
lemma.

16. Distortion of triangulations of £™. We show that if certain
triangulations of £™ are slightly distorted, they remain triangulations.

LEMmA 16a. Given the infeger m, there is a number p* > 0 with the
following property. Let K, be a subdivision of E™ tnto cubes of side length h,
and let K be the regular subdivision of K,, with vertices py, p,, **+. For
each 1, let p; be a point with

(1) |5 —pi| < pHhe

Let f be the simplexwise affine mapping of K into E™ defined by f(p,) = p;-
Then f is one-one in K onto E™, and the simplexes f(c) form a simplicial
subdivision of E™.

We may clearly suppose h = 1. Let ¢ = py* * - p,, be an m-simplex
of K,, with center p,; set ¢ = dist (p,, do). We may choose p* < ¢[2 so0
that if (1) holds, then pj -« - - p,, is a non-degenerate simplex, oriented like
o (see (IV, Lemma 14c)).

Now let the p; and f be given. Orient E™, and orient the m-simplexes
like E™. Clearly f(p,) is covered by f(c) only. The proof of Lemma 15a
applies, with 9K void, even though X is infinite, showing ths»t\f is one-one
onto. The last statement is a consequence of this.
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Analytical Preliminaries

We present here some results of analysis that may not be well known
to the reader, and are of importance in different parts of the book. The
special functions constructed in § 1 are used in § 2; partitions of unity
described there appear for instance in §§ 8, 10, 15 and 18 of Chapter III
and also in (IV, 27), (VII, 3) and (VIIIL, 2). A very useful tool is the
approximation to a continuous or measurable function by a smooth
function; this is discussed in §§3 and 4. Some topics from Lebesgue
theory are considered in §§ 5 and 6.

A function ¢ is k-smooth in an open set R if it is continuous and has
continuous partial derivatives through the order £ in R (using an affine
coordinate system). Then “0-smooth” and “continuous” are the same.
We say ¢ is smooth if it is 1-smooth. Say ¢ is cellwise continuous in E*
if, for some subdivision of E" (App. II, 3), ¢ is defined and uniformly
continuous in the interior of each n-cell; similarly if ¢ is defined in a
polyhedron. The definition of cellwise constant is similar. Two cellwise
continuous functions are considered the same if they differ only in a poly-
hedral set of dimension << n. Say ¢ (assumed continuous or cellwise

continuous or measurable) is summable in R if fR | () | dp is finite.

Say ¢ is locally summable in R if each p € R is in a neighborhood U such
that ¢ is summable in U. The carrier car (¢) of ¢ is the set ¢ of points

where ¢ £ 0; the support spt (¢) of ¢ is Q.
Write sup {a, b} for the larger of the two numbers a, b; write

sup {$(p): C(p)} = sup {$(p)}

for the least upper bound of the numbers ¢(p), using only those p such that
fhﬂ condition (Y hnlde TTaa inf 1 cimilarly Ffar tha grandact lawar
VAL MRAlarUiVIL W\ aaviaae. I 111 1)’ DLILLLIACLE j.‘y rUL [T} 8 Lo 51. Caveiduy 1uUywul
bound.

If ¢ is a real function, or if ¢ has values in a Banach space, let (¢) be
the function whose value at p is | ¢(p)| ; thus (¢)p) = | $(p)|. Define

| #|r=sup {|d(p)|: pe R}, | ¢ | =sup {| ¢(p)! }.

If| |, is used for the norm in the Banach space, as in (I, 13), we use the
notation (¢), | ¢ |o.
371
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Let | @ | denote the volume, or more generally, the Lebesgue measure,
of the set @ C E™. See also § 5.

1. Existence of certain functions. We prove the existence of real
valued functions with certain properties; for instance, they equal one in a
given closed set and equal zero in another set. A function is sharp if it is
bounded and satisfies a Lipschitz condition (11, 4).

LemMma la. Let @ and Q’ be closed sets in K™ whose distance apart is
{ > 0. Then there is a real sharp function ¢ in E™ which equals 1 in Q and
equals 0 in Q.

A formula for ¢ is given in (V, 12.3), with o replaced by ¢.

We now define some real functions which are co-smooth (i.e. all partial
derivatives exist). Set

(1) Wo(t) = 1/t(1 — 1), Dy(f) = e T if 0 <t <1,
and @ (t) = 0 for other values of . Then each derivative of ®, approaches
0ast—>0ort—1; hence @, is co-smooth for all £. Next, set

fr_ _ 1t
2) a= | Oot)dt, D)= | Dys)ds

then @, is co-smooth, and
Q) =0 (¢<0), OM=1 (@>1),
(3) 0<d(t) <1 (0 <t <)

Suppose 0 << £, << #;. Using @,, we may clearly construct an co-smooth
function ®*(?) such that ®*(t) = 1 for |¢ ‘ < ty, O*(t) = 0 for [t[; £y
and 0 << O*(¢) << 1 elsewhere.

LEmma 1b. Let Q CQ’ be concentric closed cubes or balls in E®. Then
there 18 an o0-smooth real function O(p) in E™ such that

O(p) = 11in @, D(p) =0in E* — @',

(4)
0<®p) <1 in int(Q)— Q.

If @ and @’ are balls of radii ¢, and ¢, respectively, with center p,, we
may set ®(p) = O*(|p — p,|). If they are cubes, defined say by
lx"|§tk(i=l,---,n), for k==0, 1, we may set ®(p) = O*(z!) -
Q*(z™).

LemMaA le. Let Q, and Q, be disjoint closed sets in E™. Then there is an
a0-smooth real function © in E™ such that

®(p)=1 in @, Qp)=0 in &

(9)
0 P(p)L1 in E™
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Let P, P,, - - - be closed balls not touching ¢,, whose interiors cover
¢, such that each point of £” is in a neighborhood which touches but a
finite number of the P,. (IfQ, is bounded, we need only a finite number of
P;). Let ®, be an co-smooth function in E" which is >0 in int {#;) and
= 0in E" — P, (Lemma 1b). Set ®'(p) = >®@;(p). Let U be a neigh-
borhood of @, such that ®’(p) > 0 in U. Define ®’(p) in the same fashion
as ®'(p) was defined, using E* — U and @, in place of ¢; and @,. Set

O(p) = ¢'(P)[P'(p) + P"(P)];
clearly the required properties hold.

2. Partitions of unity. We say a set of real valued functions ¢,, ¢,, - - -
in E" forms a partition of unity in E™ if

(1) 0< ¢ip) <1 (all p, ), ZqS,-(p)zl in E".

Commonly ¢, is required to vanish outside of a given open set U,. A
construction of a partition of unity is given in (III, 8). For a corresponding
construction in a smooth manifold, see (III, 10).

We shall give a particular construction here.

LEmma 2a. Let @ CE™ be compact, let Uy, -+, U, be open, and
suppose @ C|JU,. Then there are co-smooth functions ¢g, ¢y, ", dn
such that

(@) 0 (<L (E=0,1,--+,m),

(b) ¢o(p) =0 in a neighborhood of @,

(c) ¢t(p):01nE"—Uz (1=1,---,m),

(d) do(p) + o(p) + - + (@) =1 in £

For some { > 0, we may set (see notations in App. II)

U; = int, (U,), t=1-,m,

and will have U, C U,, @ C | JU;. (If the last condition failed for { = 1/k,
for each k, take ¢, €Q — | J U., using { = 1/k; there is a limiting point ¢ of
the sequence ¢;, g, - * * in @, and we quickly find a contradiction.) For
i=1,-++,m,let ®, be an co-smooth function in E” which is >0 in U;
and = 0 in E* — U, (Lemma lc). For some € > 0, I-IG(Q) C U U.. Let
®, be an co-smooth function which is >0 in E* — [ JU; and = 0 in
U.(@). Then ,.,®,(p) > 0 in E*, and we may use

()bt(p) - (I)t(p)/[q)O(p) + e —l_ (Dm(p)]s 1= O: ]-: e, m.

3. Smoothing functions by taking averages. The simplest way to
smooth a function ¢ in £ is to use ¢ (p), which equals the average of the
values of ¢ in a ball U (p) about p. If | U (p)| = a,p", then (the first
integral being in V = V(E"))

1
(1) $,(p) = H(p + v)dv =

a,p" JU 0) a,p" JU ()

P{q) dg.
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If ¢ is continuous, then g?;p is smooth. We wish to define ¢,, which will
be co-smooth. We will suppose that ¢ is continuous or cellwise continuous,
or more generally, Lebesgue measurable and locally summable. It may
have real values, or values in a Banach space. It may be defined in £", or
in an open set R C E"; in the latter case, ¢, is defined in int, (R).

Let «,(t) be an co-smooth real function, defined for ¢ > 0, which is
monotone decreasing, is constant in some interval (0, ¢;), and equals 0 for
t > p. (It may be defined asin § 1.) Set «,(v) =k, (|v])in V = V(E"),
Then «, is c0-smooth, and (multiplying &, by some constant ¢, if necessary)

2) Kﬂhﬂ)dﬂip%j?ﬂﬂ@:L

We define the p-average ¢, of ¢ by

B) $0)= [, o, 0p +0)do= [ xa— @) dg. peint, (R)
We will have occasion to use another notation also:
(4) ki (V) = k(v),  Ab(p) = by(p) (v=1,2,--).
Lemma 3a. Let ¢ be continuous in B. Then
(5) lim ¢ (p) = d{p), peR,

p—0
and this holds uniformly in any compact set Q C R.
Because of (2),

6) $0) — $(0) = [, <, ONBp + 0) — $)]dv, peint, (R).

Take p, such that U,(Q) C R and J P(p — p(p)| << e if pe@,
| v] << pg; then (6) glves‘gbp '<e;fp§p0,peQ.
Lemma 3b. If ¢ s measumble and locally summable, then
(7) lim ¢,(p) = ¢(p) ae. inR.
p—0

To show this, we first note that since « (v) depends on |v| alone, ¢,(»)
is expressible in terms of §,(p), 0 < 4 < p. To find such an expression,

set
(8) v,(h) = inf {t: «, () < R}

this is defined for 0 <A < b = «,(0); ¥, is the inverse of «, in any
interval where «, is decreasmg Take the graph of the functmn K,; @
section at the he1ght k(0 << b < b) cuts the graph in an open ball of
radius £ = » (%), which is of n-volume a,t". Hence, clearly,

b P d _
9) ‘}",,(P) == L “n["’p(h)]nﬁgvp(h)@) dh = J;) @nt" [“’" a", (t)] 5:(?) dt.
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This may be verified analytically as follows. Set

(10) i, a(t) = sup {&({) — h, 0},

(11) $on(p) = J‘Vfcph(| v l)qb(p + v) dv.

Then Oic(t)/oh = —1 if t << w,(h) and = 0 if ¢{ > »,(k), provided that
v,(h) is a point of increase of K,, and

2ue) fa" +v)dv-———f B(p + v) dv
Up(ny(0)

for such k; since ¢ o(p) = @,(p), ¢u(p) = 0, we have

aql’ph p) f’]J
d dvd
. on =] U,,(h)<o)¢(p+”) v dh,

giving (9). Note that taking ¢(p) = 1 (all p) in (9) gives

b P di
(12) fof&n[%(h)]" dh = foant“ [m d—t"] dt =1

It is well known (see §5) that lim,_,, &,(») = $(p) a.e. in R. We show
that (7) holds whenever this holds. Given e > 0, choose p; so that
| up) — $lp) | < eif t < py. Then (9) and (12) give

p di i
f at" [— %] [Bdp) — $p)1dt| <& p=< py

0

-

¢p(p) -

L $.(p) — (o) | =

LEMMA 3¢, ¢,(p) is c0-smooth in int, (R).
We first show that, with a basee;, -+ ,e,in ¥,

(13) Vool 2) = — [ Vereola — p)bla) dg.
{See also (4.1).) We have

te.) —
!qs"(p + e;) $lP) + Lveixp(q—p)wq) dq

k(@ — P — le;) — k(g — p)
t

<

— JU ()
P

—|—Vex Iqﬂ ldq,

and (13) follows from the fact that the first factor in the last integrand
approaches 0 uniformly (we may use (II, Lemma 2c)).

Since k, is co-smooth, we may repeat this process, and the lemma
follows.

4. The Weierstrass approzimation theorem. We prove
LEMMA 4a. Let ¢ be m-smooth (m = 0) in the open set R C E*. Then
Jor any compact set Q C R and any € > 0 there is a function &' which is
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c0-smooth in E*, such that the function w(p) = ¢'(p) — $(p), and all its
derivatives of order < m (in a fixed coordinate system), are < € in Q.

REMARKS. We suppose ¢ is real valued. If ¢ has values in a Euclidean
space E’, we may introduce an orthonormal coordinate system into E’,
and apply the lemma to each coordinate separately, thus obtaining it
for . For m = 0, ¢ is assumed merely to be continuous. We may phrase
the conclusion in the form “¢’ approximates to ¢ in @, together with
partial derivatives of order < m, with an error <C €, or, “‘¢’ approximates
(¢, @, m, €).”

Choose p, > 0 so that U;, (@) C R. Take a cubical subdivision of B*,
with cubes of diameter p,, and let P be the set of all points of cubes
touching U, (@); then P C R. Set ¢*(p} = ¢(p) in P and ¢*(p) =0 in
E" — P; then ¢* = ¢ in U, (@). For any p < p,, ¢7 is defined as in § 3,
and is c0-smooth in E*. Form = 0, we may use ¢’ = ¢¥ for a sufficiently
small p, as follows directly from Lemma 3a. For m = 1, use integration
by parts in (3.13) to give

(1) Vb (2) = | wlq—p)V.dlg)dg (¢ smooth),
1 e; 7 pri’s R i i’ e, i/ 1 L% o J

that is, (V, ¢),(p) = V, ¢,(p). Applying Lemma 3a to each of ¢, d¢/oz,
0¢/02%, - - - shows that we may use ¢’ = ¢, again. Repeating the process
gives the lemma for general m.

5. Lebesgue theory. In the last chapters of the book, we assume a
familiarity with the Lebesgue integral. We describe here a few terms and
facts of special importance.

We write “a.e.” for “almost everywhere” (everywhere except in a set
of measure 0). In Chapters IX and X, the term ‘“‘measurable” means
“Lebesgue measurable”; we let IQ{ denote the measure of the set @.
However, we often consider an s-plane P* in the space E*; if we say “‘¢ is
measurable in P¥’, we mean that considering ¢ in P* alone, ¢ is measurable
there. Also, if Q C P*, we let |Q Js denote the Lebesgue measure of @,
using measure in the space P*. If ¢ is a real measurable function defined
in the measurable set @, we let } ¢ | denote its essential supremum:

(1) || = esssup (#} = inf sup {| $(#) |: p €@} |@ — Q| = 0%

this agrees with the former definition if ¢ is continuous or cellwise con-
tinuous. The definition is the same if ¢ has values in a normed linear space.
If ¢ has values in V|, or V] and we use mass or comass as norm (I, 13),
we write | ¢ lo in place of , ¢ ’

The theorem on term by term integration is important: Suppose ¥
is measurable and summable in the measurable set R, ¢, (1 =1,2,- )
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and ¢ are measurable in R, 0 < ¢,(p) < (p) in R, and lim ¢,(p) = ¢(p)
a.e. in B. Then

lim [R b; = _[R é.

i—>00 "
We recall some facts from the theory of derivation (see Saks, Chapter
IV). For a bounded measurable set @ C E", set

(2) 0(Q) = | @ |/[diam (@)]”

(see (IV, 14), (IX, 2)). Let @ be a countably additive real set function
in the measurable set R C E?, such that for some N,

(3) D@ | N|Q, all measurable @ C R;

or more generally, assume that @ is absolutely continuous. For any
p € R, take any sequence ¢;, )5, * * - of measurable sets in R which contain
P, such that 0(Q,) = 7 (all ¢) for some 5 > 0 and diam (Q,) — 0; set

(4) Dg(p) = lim ©(Q,)/| € |,
if this limit exists and is independent of the sequence chosen. Then D,,
exists a.e. in R and is measurable, and
() D(Q) = fQ Dy, measurable @ C R.
We could use sequences ¢, ¢, - * - which do not contain p, provided

that, letting @; denote @, together with the point p, we have O(Q;) > #
(all 4) for some # > 0; for [Q;|=|@Q;|. We could restrict the type of
sets ¢, used; for instance, we could require them to be simplexes, as in
(IX, 4.1). Then Dy will be defined at possibly more points than the
former Dy,

One form of Fubini’s Theorem may be stated as follows. Let ¢ be a
real measurable and summable function in the measurable set B C £™,
Let P* and P™* be planes in £” with just one point in common (hence
they span £7). For each g € P"*, let P*(q) be the plane through ¢ parallel
to P*. Then for almost all ¢ € P"**, ¢ is measurable and summable in
P¥g) N R, and

14N T r

PV = |, |pupnr PO P 9.

Jr
Also, if Q C R is such that ‘ R — Q| = 0, then for almost all g € P"*,
| P@) O R —Q], = 0.

We shall have occasion to use the following extension of Fubini’s
Theorem. Let P"—* and P*-! be planes without common point (hence
they span E"). For each ¢ € P™*, let P%(q) be the plane spanned by P*!
and ¢. (The P*(q) cover almost all of E")) Let ¢ and @ be as before.
Then for almost all qe Pn-¢, ¢ is measurable in P%¢) N R and



378 ANALYTICAL PRELIMINARIES [Arp. IIT

| P(q) VR —Q|,= 0. (The formula for JfR & holds if suitably modified.)

This may be seen as follows. Any p, not in P*-1, but in some P?*(g,), is
in a neighborhood U covered by the P*(q); there is a smooth homeo-
morphism of U onto an open set U’, such that the P%4qg) M U go into
parts of parallel planes cutting U’. The function ¢ and the set @ go into
a function ¢’ and a set ¢’ in U’. By Fubini’s Theorem, for almost all of
these parallel planes P, ¢’ is measurable in P’ U’ andl POU — ¢ L
= 0. Hence, for some set Hy in P** of (n — s)-measure 0, ¢ is measurable
in P*(q) "YU and [ PigyNU —@Q ls = 0 for ¢ &€ P"* — Hy. The union
of the P*(q) — P*'is covered by a denumerable set of such neighborhoods
U, let H be the union of the Hy . Then |H|,_, =0, and each P(g)
(q € P"* — H) has the desired property.

6. The space I!. Consider the real measurable summable functions
¢ in E"; two of these are equivalent if they are equal a.e. The equivalence

classes @ are the points of L!; the norm of @ is fEn((ﬁ), for any ¢ € .

Since I is complete (see Halmos, p. 175, or E. J. McShane, Integration,
Princeton University Press, 1951, pp. 182-184), it is a Banach space.

Let S be the subspace of L' formed by the continuous summable
functions. Then § is dense in L!. This may be seen as follows. Take any
¢ €®e L. Given € > 0, we may choose a function ¢ which is bounded
and equals O outside a bounded set R, such that | (¢ — y) < /2. Form
the averages A, (1 = 1,2, - -)asin § 3. Since 4,y — ya.e. (Lemma 3b),
(A — w)—>0a.e. Also for some fixed summable ', (A4;p — ) <9’
in E", for all . Hence lim | (4, — ) = 0, and we may choose ¢, such
that [ (4 WY — p) << /2. Now A is continuous, and | Ay — P <e
In this connection, see also (XI, Lemma 3a).

We remark that the operation in L! defined by a translation in E"
(T,d(p) = $(p — v)) is continuous. A more general theorem follows from
(IX, Theorem 15B) and (X, Theorem 7B).
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Chapter VI
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Chapter VII
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208, 328
212
213, 237
214
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Chapter VIII
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Chapter X
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Index of Terms

additive set function (see ‘‘set function”),
312

adjoint linear transformation, 344

admissible coordinate systems, 116

a.e., = almost everywhere, 376

affine approximation: to cochain, 270;
to mapping, 289

affine coordinate system, 353

affine mapping: 352; cellwise, simplex-
wise, 366

affine space, 350

affine subspace, 351

almost everywhere, 376

algebraic Jacobian, 67, 16

alternating r-linear funetion, 39

altitude of a simplex, 126

angle between subspaces, 56

annthilator, 345

approximates (y, @, u, n), 115

approximation: affine, 289; to cochain,
270

arithmetic n-space *, 342

associated forms and cochains, 263

atomic: chain, 221; set funetion, 325

average, 373

ball, 355

Banach space: 353; reflexive, separable,
354

barycentrie coordinates:
complex, 357

base: 342; dual, 343; natural, in 9,
342

bivector (see ““‘vector’), 35

Borel: funection, 311; partition, 312, 335;
step funection, 314

boundary: of algebraic chain, 362; of
cell, 356, 362; of flat {or sharp) chain,
155; of polyhedral chain, 153; of
smooth chain, 189, 204; of star, 357

bounded linear: function, 347; functional,
322

bounded variation of function, 190

3561, 356; in

cap product, 363, 281

carrier of funetion, 371

Cartesian produect: of polyhedral chain,
360; of set, 344

cell: 356; boundary of, center of,
dimension of, edge of, face of, interior
of, non-overlapping, 356; oriented,
360; plane of, vertex of, 356

cellwise: affine, 366; constant,
tinuous, 371

cellular chain, 81

center of cell, 356

chain: algebraic, 361; at a point, atomie,
221; ecellular, 81; compact, 213, 237;
continuous, 187, 199, 28; continuous,
in manifolds, 205; flat, 154; Lebesgue,
280; Lipschitz, 296; molecular, 221;
of an open set, 233; polyhedral, 152,
153, 5; sharp, 159; smooth, 204

characteristic function, 316

circulation, 7, 20

closed form, 135, 25

coboundary: of algebraic cochain, 362;
of flat (or sharp) cochain, 157, 21, 28

cochain: 5; algebraic, 361; compact,
202; flat, 156, 6; in a complex, 225;
in an open set, 233; semi-sharp, 1562;
sharp, 160, 7; smooth, 171, 202; unit
0-cochain, 361

cocycle, 362

cohomology: 362; abstract, 346; dif-
ferential, 142, 25; flat, 229; space,
362

comass: of cochain, 156, 233; of form,
62; of multicovector, 52

compact: chain, 213, 237; form, 202;
set, 3565; set function, 325

complementary subspace, 345

complex: 357; curvilinear, 138; simpli-
cial, 357

components: of covector, 343, 12; of
form, 64; of multicovector, 40, 12; of
multivector, 40, 11; of vector, 342, 11

con-

383
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conjugate: linear transformation, 344;
norms, 348; space, 343, 347, 12

continuous: chain, 187, 199, 30; form in
manifold, 76

convergence (see also ‘‘limit”’): of fune-
tions, 318; of sequences of sets, 86;
weak, 175, 235

coordinate interval of type u, 268

coordinate system: 63, 75, 18; admis-
sible, 116; affine, 353; curvilinear, 63;
orthonormal, 353, 64; smooth, 63

coordinate vector, 63

coordinates: barycentric, 352, 356, 357;
of a point, 63

correspondence: of chains and functions,
187, 191, 199, 280; of chains and set
functions, 326

covector: 343, 12; in manifold, 76;
relative to plane, 260

r-covector, see ‘‘multicovector’

cup produet, 363, 142, 277

SUITVa: m.cnTun T4 TR
turve: p-cuirve, 7%, 19

decomposable multivector, 44

defining set of edges of simplex, 80

deformation of mapping, 367

degenerate cell, function, simplex, 356

degree: of form, 61; of mapping, 148;
of multicovector, 37; of multivector,
36

dependent set of points, 352

derivative, 58

derived form, 104, 135, 25

determinant of linear transformation, 47

diameter, 355

difference space, 345

differentiable manifold (see ‘‘manifold”’),
75

differentiability (see also ‘‘smooth’’): 371,
61, 66, 75, 76; total, 271

differential, 59, 15

avtonian. nf A .
LA VL AUL

(= ar sharn
A2 ALCV U A llwll—’

differential,
form, 273; of form, 70, 76, 21

differential form (see ‘‘form”), 61, 76, 13

dimension: of cell, 356; of chain or
cochain, 361; of polyhedron, 357; of
vector space, 342

direct sum of subspaces, 345

direction: of oriented subspace, 51;
function, 266
distance: between directions of sub-

spaces, 56; between points or vectors,

INDEX OF TERMS

347, 348, 353; between sets, 355;
R-distance, 298

divergence, 24

domain: partial standard, 108; standard,
99

dual: base, 343, 12; of linear transforma.

tion, 344

edge of a cell, 356

edge vectors of a simplex: 80; defining
set of, 80

equivalent forms, 265

essential supremum, 376

Euclidean: linear space, 348; space, 353

excellent: interval, 268; simplex, 262,
265

explosion, 333

extent: 97

exterior differential: (see ‘‘differential,
exterior™’}), 70, 273; form (see ‘‘form’), 61

exterior product (see ‘“‘product’), 41, 62

face of cell; proper, improper, 356

factor space, 345

flat: chain, 154, 233, 28; cochain, 156,
225, 233, 6; cohomology ring, 229;
form, 263, 265, 226

flat norm: of chain, of polyhedral chain,
154, 27; of cochain, 156, 27; of form,
273; of Lipschitz chain, 307; p-norm,
178; R-norm, 232, 233; R- p-norm, 238,
239

form: 61, 13; closed, 135, 25; compact,
202; in a complex, 226; derived, 104,
135, 25; p-derived, 135; elementary,
139, 226; flat, 263; in a manifold, 76;
measgurable, 261; measurable relative
to plane, 260; of odd kind, 206;

regular, 104, 106; pu-regular, 135;
smooth, 61, 76, 95; sharp, 167;
summable, 85, 94
flux, 7, 20

full sequence, 257, 296

fullness, p-fullness, 125, 256

function: Borel, 311; Borel step, 314;
bounded linear, 347; characteristic,
316; cellwise constant, continuous,
371; Lipschitz, 63;~locally summable,
371; measurable, 376; p-function, 74,
75; sharp, 372, 158, 234; smooth,
k-smooth, 371, 59, 66, 75; summable,
371
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f;un(itional, bounded linear, 322
tundamental period of a form, 26

good: interval, 268; plane, 262; simplex,
262, 265

gradient, 59, 16

Grassmann algebra, 42, 11

Grassmann manifold, 51

homology: 362, abstract, 346; space, 362
homomorphism, 341
homotopy, 356, 367
Hopf invariant, 143

imbedding, 113

implicit function theorem, 70

improper: face, 356; integral, 85

independence of planes, 367

independent set of points, 352

integral: 83, 84, 86, 13; improper, 86;
iterated, 110; in manifold, 93, 94;
partial, 110; Riemann, 84; vector
valued, 314 '

interior: 355; of cell, 356

interior product, 42

interval, coordinate, 268

inverse function theorem, 68

isometry, 341

isomorphism, 341

iterated integral, 110

Jacobian: 66, 16; algebraic, 67, 16
join of chains, of sets, 364

kernel, 341
Kronecker index, 361

Lagrange identity, 40, 13

Laplacian, 24

Lebesgue: chain, 280; integral, 376

limit, weak limit, 175, 235, 318

limit set of mapping, 113

linear space, 342

linear transformation: 343; adjoint =
conjugate = dual, 344

Lipschitz: chain, 296; comass constant,
167, 235; constant, 63, 161, 234;
mapping, 63; partition, 335; R-
Lipschitz constant, mapping, 298

locally summable function, 371

magnitude: of form, 62; of linear trans-
formation, 51

manifold, differentiable = smooth: 75,
118, 18; orientable, oriented, s8-smooth,
75; rectifiable, 293; standard, 108

mapping: 355; affine, 352; cellwise
affine, 366; Lipschitz, 63; proper, 113;
regular, 63, 113; simplicial, simplex-
wise affine, 366; smooth, s-smooth,
371, 59, 66, 75

mass: of cellular chain, 84; of flat or
sharp chain, 179, 241; of multivector,
52; of polyhedral chain, 153

measurable: form, 261; form, relative
to plane, 260; function, 376

mesh of a complex, 358

mod (vector space and subspace), 345

molecular: chain, 221; set function, 325

multicovector: 37, 36; simple, 44; unit, 51

multivector: 36, 76; of oriented cell or
simplex, 80, 8; of cellular or poly-
hedral chain, 82; of flat or sharp
chain, 220; simple, 44, 11; unit, 51

natural base in Y~ 342

natural topology in space, 342, 352

near & set, property holds, 135

neighborhood, 355

non-degenerate cell, funection, simplex,
356

non-overlapping cells, 356

norm (see also ‘“‘flat norm,”
norm’’), 347, 348

“Sl].arl'p

one-one, 341

onto, 341

orientable manifold, 75

orientation, positive, 360

oriented: cell, simplex, 360; manifold,
75; pseudomanifold, 368; vector
space, 44; volume, 45

orienting defining set, 80

orthogonal vectors, 348

orthonormal: coordinates, 353; set

overlapping cells, 356

paired linear spaces, 345

part of chain: less than T, 194; in set,
329

partial integral, 110

partition: Borel, 312, 335; Lipschitz,
335; pure, 332; of unity, 373, 89, 93

p-curve, 74, 75

period of form: 143; fundamental, 26
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perpendicular vectors, 348

p-function, 74, 75

plane: of cell, 356; tangent to manifold,
117, 18

polyhedral: chain, 152, 5; region, 357

polyhedron, 357

positive orientation, 360

product: Cartesian, 344, 365; of co-
chains, cohomology classes (‘‘cup’),
363; of cochains and chains, cohom-
ology and homology classes (‘‘cap”),
363; of differential cohomology classes,
142; exterior, 41, 10, 11; of flat or
sharp cochains (“‘cup™), 277, 279; of
flat or sharp cochains and chaing
(“cap”), 281, 282, 283; of forms, 62,
277; of functions and chains (“‘cap”),
193, 208, 236, 328; of functions and
cochains (“‘cup’), 203, 212, 237; of

functions and set functions, 316;
interior, 42; scalar, 348, 37, 48;
vector, 51, 14
projection: along plane, 345, 123;

orthogonal, 56
proper: face, 356; mapping, 113
pseudomanifold, 368
pure partition, 332

quotient space, 345
@-good, Q-excellent, 262, 265, 268

ratio: of r-vectors, 227; of volumes, 45

r.covector (see ‘‘multicovector’), 37

r-chain, r-cochain {see ‘‘chain,” ‘“co-
chain”’)

R-distance, 298

rectifiable manifold, 293

refinement of subdivision, 358

reflexive, 354

region, polyhedral, 357

regular: form, 104, 106, 135; mapping,
62, 1132; subdivision, 358

r.form (see ‘‘form’), 61

de Rham, Theorem of, 142, 208, 25

Riemann integral, 84

R-Lipschitz, R-norm (see ‘‘Lipschitz,”
I&norrn!!)

r.vector (see ‘‘vector’), 36

scalar product, 348, 37, 48
Schwarz inequality, 348, 49
secant vector, 119
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semi-conjugate space, 354

semi-norm, 346

separable, 354

sequence: full, p-full, 257; p-a-, 258

set function: additive, 312; at a point,
atomic, compact, molecular, 325

sharp: chain, 159, 234, 28; chain at a -
point, 221; cochain, 160, 234, 7;
form, 167, 235; function, 372, 158, 234

sharp norm: of chain, of polyhedral
chain, 159, 234, 28; of cochain, 160,
234, 28; of form, 167, 285; of set func-
tion, 325, 333; p-norm, 178; R-norm,
234; R-p-norm, 238, 239

simple multivector, 44, 11

simplex: 356; oriented, 360;
107; p-o-, 258

simplexwise affine approximation, 289

simplicial: complex, 357; mapping, 366;
subdivision, 357

smooth: chain, 204; cochain, 171, 202;

gy 1 cxrata

y W P =Y s 20, L. Q21 ro
COOTQINAave Bysiwoin, vo, IOIIl, UL, 0,

smooth,

95; function, mapping, 371, 59, 66, 75;
manifold, 75, 118, 18; simplex, 107;
triangulation, 124

smoothing: of cochain, 176; of function,
373

space: affine, 350; arithmetic, 342;
Banach, 353; cohomology, 362; con-
jugate, 343, 347; Euclidean, 353;
Euclidean linear, 348; homology, 362;
linear, 342; semi-conjugate, 354;
vector, 342

span, 342, 352

spreading sequence of functions, 243

s-smooth (see “‘smooth’’)

standard: domain, 99; manifold, 108;
subdivision, 359

star, 357

star shaped set, 136

step function, Borel, 314

Stokes, Theorem of, 99, 108, 94, 273, 21

subdivision (triangulation): ecurvilinear,
358, 87; of polyhedron, 357; regular,
358; simplicial, 357; standerd, 358

sum, direct, 345

summable: form, 85, 94; function, 371;
multivector valu ction, 199

support: of chain, of cochain, 213, 237;
of form, 89; of function, 371; of poly-
hedral chain, 153, 213; of set function,
325
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tangent plane, space, 76, 117, 18

tensor, alternating, 35

topology, natural, 342, 352

total differentiability, 271

total value, variation, of set function,
314

transformation: of coordinates, 65;
linear, 343; one-one, onto, 341

translation: in affine space, 350; chain,
norm, 248; of chain, 155, 6; of set
function, 331

triangulation: 358; u-smooth, 124

u.c.s. = uniformly in compact sets, 105
unit: multicovector, multivector, 51, 14;
0-cochain, 361

387

unity, partition of, 373, 89, 93

variation: bounded, 190; of function,
190; of set function, 312

vector: 342; in manifold, 75, 117, 18

r-vector (see ‘‘multivector’’)

vector product, 51, 14

vertex, 356

volume: of open set, 86;
ratio of volumes, 45

oriented, 45;

weak limit, 175, 235
weakly flat form, 263
Wolfe, Theorem of, 253, 265

zero s-extent, 97



