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IKTRODUCTIOS 

FOLLOWIKG G. W. Whitehead, [14; p. 2331, let G(n) denote the space of maps of degree 1 

of S” -+ S” and let F(n) c G(n) be the subspace of those maps which are base point pre- 

serving. We have a natural fibration For) -+ G(H) -+ s”. 

Both F(rr) and G(n) are associative H-spaces with multiplication given by composition 

and by 141, they have classifying spaces which we denote by BF(n) and BG(n) respectively. 

BG(n) is the classifying space for n-sphere fibrings [I I]. The suspension of maps induces 

natural inclusions F(n) c F(n + 1) and G( n c G(/r t 1) which preserve the multiplication. ) 

Let F = U F(n), G = U G(n). Th en F and G are of the same weak homotopy type. 

Similarly Ane defines St: and BF which are also of the same weak homotype type. 

Let SG(n + 1) be the special orthogonal group of R’*+l. We have a natural inclusion 

.SO(n + 1) c G(H). If we identify SO(n) with the subgroup of those rotations in SU(n i 1) 

which leave the base point fixed, we obtain a natural inclusion SC(/r) c F(n). This map 

induces in the limit SO c F and a map of classifying spacesf: BSO -+ BF. 

BSO is the classifying space for stable orientable real vector bundles, and similarly 

BF is the classifying space for stable orientable sphere fibrings. Given a stable sphere fibring 

< over X with classifying map x : X -+ BF, we say that r admits a stable orientable ortho- 

gonal structure if % lifts to a map 2 : X -+ BSO. 

With any coefficients, the elements of H*(BF) are called characteristic classes for orien- 

table sphere iibrings by analogy with the characteristic classes for orientable vector bundles 

which come from H*(BSO). In particular, for p an odd prime, we have defined Wu classes 

qi E H”(BF; Z,), where r = 2(p - l), as follows: Let < be an orientable (n - I)-sphere 

fibring over X. Denote the Thorn complex of 5 by T(t) and by T, the Thorn isomorphism 

T: I?(X) -+ H”C”(T(<)). 

The Wu class qi(<) is given by T-‘3’T(l) where 9 is the Steenrod power [7; p. 1201. We 

denote by qi the universal WLI class defined by taking c to be the universal (n - I)-sphere 

fibring over BG(n - l), assuming iz much bigger than i. 

t Supported in part by National Science Foundation grant NSF-GP2440. 
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Considerf * : H*(BF; Z,) -+ H*(BSO; Z,). We knowf‘*q, # 0 but that H”(BS0; Z,) 

= 0 if n $ 0 mod 4 [7; p. S4]. Milnor [9] shows that pqi # 0, i < p vvhere /I is the Bockstein 

coboundary mod p, and that {bqi, I 5 i < pi form a set of generators for the ideal Kerf* 

in dimensions 6 pr - 2. More generally any class in the kernel off* is an obstruction to 

a stable orientable orthogonal structure. Those which are not given in terms of Bockstein 

coboundaries of Wu classes we refer to as esotic classes. 

In this note, we prove that in fact HPrvl(BF; Z,) = Z, with generator a class e, which 

can be obtained from a “twisted” secondary cohomology operation acting in the Thorn 

space of Bf. Since pr - I $ 0 mod 4,f*e, = 0. It is the first exotic class. 

If p = 2, then H3(BF; Z2) g Z, + Z2 where a generator of one of the summands 

projects onto the Stiefel-Whitney class ir3 and the generator of the other summand, also 

denoted by e,, is produced in a similar fashion to the class et mod p. Thus e, E Kerf* 

and in fact the class e, mod 2 is the first obstruction to a cross-section off: BSO + BF. 

Using the class e, with Z2 coefficients we show there is a sphere fibring S2 + E, + S3 

such that E, satisfies Poincare duality with integer coetlicients, but E, is not of the homotopy 

type of a PL-manifold. We wish to express our thanks to W. Browder for pointing out this 

example. (C.T.C. Wall has informed us that he has an example of a 5dimensional space 

which satisfies integral Poincare duality but is not even cobordant to a P&manifold. He 

also uses the class et.) 

We also acknowledge helpful conversations with B. Sanderson and especially with 

J. Milnor. 

#I. FUNCTIONAL COHOMOLOCY OPERATIONS 

In this section we review the concept of functional cohomology operations in a slightly 

more general framework than that considered by Steenrod in [Ill. 

First we need some definitions. Let A be a Hopf algebra over the field Z, and M an 

algebra over A. We may form the split extension olgebrut A(M) of A4 by A. As a vector 

space A(M) = M @ A. The multiplication is given by the following diagram: 

I@+‘,8181 1018~31 
M@A@M@Ap M @ A @ A @ M @ A ____* 

(1.1) 
l@L@l wzr@cn, 

M@A@M@A@A --+M@M@A@A- MQA 

where I//,, is the diagonal in A, f is the permutation of factors, i. is the left A-module structure 

of M and qnr, qA are the multiplications in M and A respectively. 

If N is an M-module over A, then we make N into an A(M)-module by the rule: 

(1.2) (m @ L9)n = nz.O(n). 

t This name was suggested to us by N. E. Steenrod. 
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The algebra A(M) has been introduced by Massey and Peterson in [5], where it is called 

the semi-tensor product of M and A. Also J. P. Meyer in [6] considers the algebra A(M) 

for purposes very similar to ours. 

Let now .Y be a space and .A the mod p Stsenrod algebra. The cohomology ring H*(X) 

of X with Z,-coeflicients is an .d-module. so we may form .-I(H*(S)) which we will denote 

simply by A(X). Letf: Y--f .Y be a mapping, thenf’induces in a natural way a ring homo- 

morphismf* : A(X) --* .A( Y). More generally, if (,I’, .I’!) is a pair, the cohomology sequence 

of (X, X,) is an A(X)-sequence and if .f: (Y, Y,) --t (X, X,) is a map of pairs, then the 

induced mapping in the cohomology sequences is compatible withf* : A(X) --) A(Y). 

Suppose thatf: Y--t X and that ~1 E HY(X) and 0 E A(X) are such that Orr = O,f*u = 0, 

where 0 is a homogeneous element of degree r. Following Steenrod [l2], we can define a 

functional operation O,-K It is a coset of H’I”-I( Y) modf*Hq’r-‘(X) + (f*O)H4-l( Y). 

Using the relative mapping cylinder we can define 0, in the relative case, just as in 

[l2; p. 9741. 

In the same way as in [l2; (15.7)] and [l2; (15.8)] one has the following two naturality 

properties, which we state for convenience in the relative case: 

PROPOSITION 1.3. Suppose 1l.e are giwn : 

(Z, Z,) - (’ (Y, Y,) i’(X, X,) 

0 E A(X), II E H*(X, X,), I/ten go,,(u) is dejned, O,,,(u) is defined and 

g*uh(lt) = O,,,(lt). 

PROPOSITION 1.4. Suppose 1l.e are girett : 

(Z, Z,) 2 (Y, Y,) ” - (X, Xl) 

0 E A(X), u E H*(X, X,). Then ifU,,,(u) is dejned, (h*O),(h*u) is dejned and 

O,,,(u) = (h*O),(h*tr) 

module the indeterminac>, of rite right hand side. 

We have a natural inclusion i : A -+ A(X), given by i@) = I @ t(, for r E A* 

1 E H’(X; Z,) the unit of the ring H*(X; Z,), when X is connected. 

PROPOSITION 1.5. Let f: (Y, Y,) + (X, X,) be a map, 0 E A(X), u E H*(X, X,), then 

if 0 = i(u) and 0, is de3tted, ,t.e hare u,-u defined and 0,-u = CL+ 

The proof of (1.5) follows immediately from the construction. 

The algebra A(X) turns out to be a natural algebra to consider when one studies sphere 

fibrings. 

Let < = (E,p, X) be an orientable (n - I)-sphere fibring. We denote by T(c) or T(E), 

the Thorn complex of I$ and by T the Thorn isomorphism, 

T: I?(X) --* H4’“(7-(5)). 
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Associated with < one can define a mapping 

(1.6) <* : A + A(X) 

as follows. If 0 E A and ii/(O) = C Or @ ei’ under the diagonal, then set: 

(1.7) i*(o) = CT-‘&7-(1) @ 0;. 

Let C*(g) c H*(X) be the characteristic ring of i, i.e. the minimal subalgebra of 

H*(X) closed under A generated by T-‘&‘-(I) for 0 E .-1, and let A(X, <) be the split extension 

algebra of C*(t) by A. 

PROPOSITION 1.8. 5" : /i + A(X) is a ring homomorphism. irk fact Im <* c A(X, <). 

hforeocer for 6’ E A 1r.e hate 

OT = T<*(O). 

We omit the proof since it is straightforward. 

$2. SECONDARY COHOMOLOGY OPERATIONS 

In [l], Adams associates with every relation in A, a family of secondary cohomology 

operations, such that any two operations in the family differ by a stable primary operation. 

By enlarging the natural indeterminacy so as to contain all the stable primary operations 

one thus obtains a “unique” secondary operation. In this section we construct the analogous 

notion of a unique secondary operation associated to a relation in A(X). 

Let X 2 X, =, X2, then H*(X,, X,) is an A(X)-module. Let x,!J’, aJk = 0 be a rela- 

tion in A(X) of degree r + 1. Following Adem [2; p. 981 we represent the above relation 

by the composition a/3 = 0. Let u E H4(X,, X,) be such that /?u = 0, i.e. bkzd = 0 

for k = 1, . . , m. We define a coset {c(, /?, U) of H4+‘(X,, X1) modulo a subgroup 

Q’+‘(c(; Xi, X2) as follows. Let d: X, + Xi x Xi be the diagonal map, then n induces 

a map of pairs A : (Xl, X2) --f A’, x (Xl, X2). Let K = K(Z,, q) and k a point of K. Let 

f: (X,, X2) -+ (K, k) be such that f *y = II, where y is the fundamental class of K. Let 

i : Xl --) X be the inclusion, and g : (Xl, X2) -+ X x (K, k) be given byg = (i x f)A. Then 

g*(l x y) = II. 

Let 71 : X x K -+ X be the projection, which induces n* : A(X) --t A(X x K). 

Then 7r*(X) = U x 1, 7?(b) = /I x 1, so g*(B x I).(1 x 7) = fiu = 0 and 

(z x 1)*(/I x I)( 1 x r) = 0. Therefore as in $1 we may define 

u,B(l x 7) E Hq+‘(Xi, X,) 

modulo C z~H~+‘-~” (X,, X2) + g*Hq+‘(X x (K, k)) where t, = deg elk. We now describe 

Im g*. In fact, if we let [A(X)u] denote the graded subalgebra of H*(X,, X,) generated by 

elements of the form f?u, where 0 E A(X), we claim that g*Hqf’(X x (K, k)) c [A(X)u]. 

This follows readily from the results of Cartan on the cohomology of K. With the above 

notation, define 
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(2.1) (2, /9, u) E Hq+‘(X,, A-2) 

mod Q4’r(r; X,, X,) = I r,H q+‘-*c(X,, X2) + [A(X)u] to be @‘(I x y). Then {r, 8, u} 
satisfies the following naturality conditions. 

PROPOSITION 2.2. Let ,Y 3 X, 1 X2 ml Y 2 Y, 2 Yz be triples andf :(Y, Y, Yz) 

-+ (X, X, , ,I’,) be a map. Suppose that {r, /?, II) is de$ned, then {f *x, f *p, f *u} is defined and 

f‘*{z, /;, Cl) = (f*l,f*j7,f*lr:. 

Proof. This follows from the definition of {r, p, II) and (I .3). 

PROP~SITI~S 2.3. ff X 3 X, 2 X, md .Y is ncJ,clic, then {r, /?, u} contuins O(u), 

Ithere @ is nuy secondary. operation associated with the relation r/? = 0 in A. 

Proof. The result follows from (1.5) and the first paragraph of this section. together 

with the second formula of Peterson-Stein as given in [2; (5.2)]. 

83. A SPECIAL SECONDARY COHOMOLOGY OPERATION 

In this section we work with 2, coefficients, p odd. 

Consider as in $1, the algebra A(X) associated with the space X. Let r = 2(p - 1). 

Let q(x) be the element of .-1(X) given by 

cp(s) = 10.9’ -i x0 I. 

where I E H’(X) and .9’ is the Steenrod power, which is also of degree r. 

PROPOSITION 3.2. For on! space X and U,J_I’ c/ass s E H’(X), n’e hare: cp(.u)” = 0 is a 

relation iu A(X). 

Proof. By naturality it suffices to prove that q(y)” = 0, where 7 E H’(K(Z,, r)) is the 

fundamental class. To this end, consider BSO(m) with m > r. Let <,, be the universal 

m-plane bundle over BSO(m) and let q1 be its first Wu class, i.e. q, = T-‘B’T(I) where T 

is the Thorn isomorphism associated with c,,,. As in (1.6) we have that <, induces 

(2 : A + A(BSO(m)) with <2(.9’) = (~((7~). Now (9’)” = 0 is an Adem relation and since 

<,*, is a ring homomorphism (1.8), opt = 0. We need now the following. 

LEMMA 3.3. Let f: BSO(m) -+ K(Z,, r) be such that f*y = q,. Then in dimensions 

5 pr, Ker f * is generated b)- those elements in the Cartan basis containing a Bockstein. 

Proof. First recall that H*(BSO(m); Z) has only 2-torsion and hence all the Bock- 

steins in H*(BSO(m)) = H*(BSO(m); Z,) are zero. Therefore any element in the Cartan 

basis containing a Bockstein lies in Ker f *. 

Now in dimensions 5 pr, H*(K(Z,, r)) is a free commutative algebra generated by 

9’7, /39”y, /?.9”/Ir, where k < p, with the single relation 9’p-’ y = yp. Therefore it suffices to 

show that {.@q,, 0 s k $ p - 2> generate a polynomial subalgebra of H*(BSO(m)). Recall 

that H*(BSO(m)) is a polynomial algebra generated by the Pontrjagin classes mod p and 

that the Wu classes qk generate a polynomial subalgebra [7]. Wu formulae give 

9’liqI = (k + l)q,,, + Qli 

where Qk is a polynomial in the classes ql, . . , qk. The above formula shows immediately 
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that the algebra generated by q I, . . . , .Ype2q1 is contained in the algebra generated by 

411 .‘. > clp-I. An easy induction, using the above formula, 3 aives the converse and thus the 

{.Ykql, 0 5 k 5 p - 2) generate a polynomial subalgebra. 

To complete the proof of (3.2) we observe that q(y) does not lie in the kernel of 

f * : A(K(Z,, r)) -+ ,4(SSO(m)). Also cp(y)” does not contain Bocksteins in its expression. 

However, f *q(y)” = (p(ql)p = 0 and therefore opt = 0 follows from (3.3). 

Using the fact that qua = 0 is a universal relation, i.e. valid in A(X), for all X, we may 

now construct a secondary cohomology operation associated with this relation, as in $2. 

Given classes xl, , .Q E H*(X), we denote by A[x,, . . . , xk] the minimal subalgebra 

of H*(X) containing _~r, . . . , .xk and closed under the action of A. We will denote by I/I any 

secondary operation in the sense of Adams [I], associated with the relation (9”)” = 0. 

We have then, 

THEOREM 3.4. Let (Xl, X2) be a pair, x E H’(X,), u E Hq(X,, X2) be classes such 

that g?(x)u = 0. Then we can define a coset 0(x, u) of H~Cp’-‘(Xl, X2) nroduulo 

A[u, xu, . . . ( x~-‘u]q+pr--l + (p(x)p-’ Hq+P-‘(X,, A’,) ic,hich is natural, i.e. if f: (Y,, Yz) 

-+ (X,, X2) is a map of pairs, then 4(f *x, f *u) is defined and Q( f *x, f *u) = f *@(x, u). 

Moreor!er ifx = 0 we hare @(O, u) = I(/(K) module (Y’)p-1H4+p-‘(X1, X2) + A[u]~+~‘-‘. 

Proof. Let X = K(Z,, r) and let i : Xl -+ X be such that i*;l, = x, where y, is the 

fundamental class of X. We may assume that i is an inclusion. Then consider X =J X, 2 X,. 

We have q(yr) E ,4(X) satisfies cp(~~,)” = 0 and q~(y,)u = 0. Thus we are in the 

situation of $2 and we have defined the coset {opt-‘, q(y’), u} of H4+p’-‘(Xl, X2) 

module the sub-group ~~(,Y)~-‘H~+~-‘(X,, X2) + [A(X)U]~+~~-‘. However it is easily 

seen that [A(X)U]~+~‘-~ = A[u, X-U, . . . , .x~-‘K]~+~~-~. Therefore if we define @(x,u) 

= {opt-‘, cp(y,),u}, the properties asserted in (3.4) follow from (2.2) and (2.3). 

$1. THE CLASS el FOR p ODD 

In this section we apply (3.4) to sphere fibrings to obtain the class e, E HP’-‘(BF; Z,) 

mentioned in the introduction, 

Let { be the universal (n - I)-sphere fibring over BG(n - l), the classifying space for 

such fibrings, where n is large (n > pr). Let E0 be the total space of s’ and E the mapping 

cylinder ofp : E,, -+ BG(n - 1). Then we have the Thorn isomorphism 

T : Hq(BG(n - 1)) -+ H”+“(E, E,) 

given by cup product with the Thorn class UE H”(E, E,,). Set ‘jr, = ql(<) = T-‘@“Cl. 

Then 

(4.1) q(-qr)LI = P’U - q,u = 0 

and we have 

LEMMA 4.2. @(-q,, U) is defined with zero indeterminacy, thus 

@(-q, U) E HnfP’-‘(E, E,). 
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Proqf. Using (4.1) and (3.4) we see that @(--c/~, C’) is defined. We need to see that it 

has zero indeterminacy. From [9], we have H'-'(BG(II - I)) = 0 and therefore 

H ‘I’‘-‘(E,Eo) = 0. The assumption n >pr implies that J[C’,q,L’, ,q~-l(/‘]“‘p’-’ contains 

no terms in c”. Thus a typical element of this group is of the form ~“0’ + r,(c/, Lr) + *.* + 

+ zp_l(q~-lLr), where rk E ‘-1, C’_e) _, for k = 0, 1, . . . , p - I, and A, is the subspace of ‘4 

of homogeneous elements of degree t. Now it is easy to verify that A,, C’-kJ _L = 0 for 

I; = 0, I, ,p - I. 

For II sufficiently large, we have HP'-'(BF) 2 HP'-'(BG(n - ljj and we define 

E, E HP’-‘(BF) to be the class which corresponds to T-‘cp(-q,, U) under this isomorphism. 

THEOREM 4.3. HP’-‘(BF) z Z, brith getterator r,. 

We first show that e, # 0. In fact we now construct a sphere fibring 5 over a sphere 

with e,(t) # 0. 

Let us recall [I I] how given f: S’ -+ G(n - 1) one constructs a sphere fibring 
P 

Sn-l+Eo+S’+l associated with!: Let g: S’ x S”-‘ ---t S”-’ be the adjoint map off: Then 

E, = (e’+’ x S”-‘) ug S”-’ and p is induced by e”’ x s”-’ 2 e’+’ 2 S’i’ where ~1 is pro- 

jection onto the first factor and c shrinks the boundary of e”’ to a point. Let E be the 

mapping cylinder of p. Then T(E) = E/E, is the Thorn complex and is of the form 

e ‘+“‘I u,, S”. In the case of orthogonal sphere bundles the class of 11 in rc,+‘(Sn) coincides 

with the image off under G. W. Whitehead’s J-homomorphism, [S; Lemma I]. A corre- 

sponding homomorphism 

(4.4) J’ : n’(G(r~ - 1)) -+ TI’+,(S”) 

is readily defined from the suspension G(n - I) -+ F(n) and the Hurewicz isomorphism 

n,(F(n)) Z n,+,(S”). Iff: S’ -+ G(tl - I), then J’[f] is represented by g where S”+’ is repre- 

sented as a quotient of I x S’ x S”-’ and g(t, _r, y) = (f,f(x)y). From the explicit con- 

structions it is not hard to verify the analogue of [8; Lemma I]. 

PROPOSITION 4.5. The artaching map h in T(E) is given by [/I] = J’[f]. 

PROPOSITION 4.6. If r < 2n - 4, then 

J’ : n’(G(n - I)) --t xn+‘(Sn) 
is an isomorphism. 

This follows from comparing the EHP sequence with the homotopy sequence of the 

fibring F(n - 1) + G(n - 1) -+ S”-‘. 

For tI > r, we may identify n,+‘(Y) with the stable group z,“. Toda in [13; (4.15)] 

defines an element PI E x;‘_~. Let 0, E 7rp’_,(G(tz-- 1)) be such that J’(fll) = fil. Recall that 

by ti we denote a secondary cohomology operation based on the relation (9’)” = 0. 

PROPOSITION 4.7. Let (.s”+‘, E,,, Sp’-’ ) be the sphere fibring associated wirh PI. Let 

T(E) be the Thorn compie.r of this jibring and I/ E H”(T(E)) be a generator. Then It/(U) is 

dejined, has zero itdeterminac), ant-l is a generator of HnCp’-‘(T(E)). 

Proof. By (4.5) and (4.6), it follows that T(E) = S” u en+p’-l where the attaching map 
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of the top cell represents fil. Proposition (4.7) is a consequence of the following lemma, due 

essentially to Toda. 

LEMMA 4.5. Ler X = S” vg en+pr-l, nhere [g] = /II. Then for II a generator of 

H”(X), $(u) is defined and II f 0. 

Proqf. From [13: (4. IO)], there exists a CW-complex 

L(i\f, k) = S” u e”+‘” e’f+2r ” . . . ” e”+“‘, ksp-I, 

such that if s E H,“(L(M, 1~)) is a generator, then .9’s # 0 for 0 5 i s k s p - 1. 

If 12 is large, let 4 : S”+2p-3 -+ S” represent a generator of the p-primary com- 

ponent. Then q extends to a map G : L(IZ + 2p - 3, p - 2) -+ S” such that if 
f, : y+l7--2 + L(u + 2p - 3, p - 2) is the attaching map for the ceil enfpr-’ of 

L(n + Zp - 3,~ - I), then Gh = g. Then we obtain a mapping F: L(n + 2p - 3,~ - 1) + X 

which is topological in the top cell and such that :Y$ = .Y, where .Yi is the functional 

operation. Then using the first formula of Peterson-Stein as given in [2; @.I)], we have 

F*rj/(u) = .p-'(y;l,) = .p-'.Y f 0 

but since F* is an isomorphism in the top dimension, (4.8) follo\vs. 

COROLLARY 4.9. Let t = (S”-‘, E,, Y-l ) be the sphere jibring associated with PI. 

Then et(<) E Ifp’-‘(9’-‘) is CI generator. 

Proqf. Tn the notation of (4.7), T-‘(I~(u))EF~~~-‘(S~‘-‘) is a generator. By (3.4), 

I)(U) = (D(0, u) and by naturality of the Thorn isomorphism and of the operation Q’, together 

with the definition of e,, the corollary follows. 

Milnor, in [9], shows implicitly that H P’-‘(BF. Z ) , p z 0 or Z,. Since e, is non-zero in 

the special case above, it is non-zero in the universal example and therefore HPrml(BF; Z,) 

z z,. 

$5. THE CLASS el mod 2 

In this section we indicate the necessary modifications that are needed to define the 

class e, E H3(BF; Z2) and give an example. 

Let p : H*(X; Z) + H*(X; ZJ be the reduction mod 2 homomorphism, and let A be 

the Steenrod algebra over Zz. If s E H2(X; Z2), let O(x) E A(X) be defined by O(s) = 

S$ @ 1 + 1 @ s. It is easy to verify that for any u E Im p, (U(S))‘U = 0. Then as in $3 

we may define 0(-r, u) for classes u E Im p which satisfy O(s)u = 0. In fact if u E H4(X; Z2) 

then 0(x, U) E Hqf3(X; Z2) modulo A[u, ,YU]~“~ + O(x)Hqf’(X; Zz), and similarly to (3.4) 

we have, O(0, U) = ‘pl 1(~), where ‘p,, is the secondary cohomology operation based on the 

relation Sq2Sq2 = 0, which is valid for reduction mod 2 of integral classes. 

In particular consider BG(n - 1) and r(t), the Thorn complex of the canonical (11 - l)- 

sphere fibring 5 over BG(rz - 1). Let U E H”(T(<); Zz) be’its Thorn class and, as usual, let 

bvk E N”(BG(n - 1); Z2) be defined by it’s = T -lSqkiJ. Then by definition, 0(1v~)ci = 0. There- 

fore O(W,, U) is defined and lies in Hnf3(T([);Z2) modA[U, ~~(i]““~ +O(W~)H”+’ (T(r);Z,). 

NOW H’(BG(n - I); Z2) = 0, and the indeterminacy reduces to (Sq1w2)U = w,U. 

So that if Cl = T-‘@(IV,, Cl), then z1 E H3(BG(n - 1); Z,)/(W,). 



THE FIRST EXOTIC CLASS OF BF 265 

Now to show C, # 0, \ve have by (4.6) that for n > 3, n2(G(n - I)) ;=: R,+~(S”) = Z2. 

In fact, this remains true for 17 = 3 as can readily be checked using the fact that ‘In z 

nS(S3), by suspension. Let S’-’ -+ E, -+ S3 be the sphere fibring associated with the nor.- 

trivial class. The Thorn complev T(E) of this fibring is of the form S” u en’3, where the 

attaching map of en-t3 is then the generator of x,+? (S”), by (4.5). However this element is 

detected by cpI1 (see [2; p. 1041). 

Define e, E H’(BG(n - I); Zl) to be a representative of the coset C,, and identify it 

with its corresponding class in H’(BF; Z,). 

THEOREM 5.1. N3(BF; Z2) z Z2 + Z, ~\Yth grwrators IL’, ad e,. 

ProoJ rz2(G(u - I)) x x:n+Z (57) z Zz for II 2 3, so a quick glance at the Postnikov 

system shows H3 has at most four elements. 

Let PL(n) be the group of piecewise linear homeomorphisms of S’-’ into itself and 

SPL(n) the subgroup of those homeomorphisms of degree 1. We have an inclusion SPL(t7) c 

G(n - 1) which induces a map of the stable classifying spaces BSPL -+ BG. A stable sphere 

fibring t over ,Y with classifying map 1 : A’ ---) BG has a stable SPL-structure if x lifts to 

2 : A’--) BSPL. 

In [l5] it is shown that H3(BSPL; Z,) z H3(BSU; Z2) and hence e, is an obstruction 

to an SPL-structure; in fact it is the first obstruction. From the above, the sphere fibrings 

S”-’ -+ E, ---f S3 do not admit SPL-structures. Notice that they are the only non-trivial 

sphere fibrings over S3. 

In particular we have 

THEOREM 5.2. Consider the non-tririul sphere jibring < = (S’, E,, S’). Th E, 

satisjies PoincarP (!ualit~~ OL‘W the integers, but it is j7ot of the homotopy type of an SPL- 

manifold. 

Proof. It is easy to see that E, satisfies Poincare duality over the integers. From the 

above, s’ does not have an Sf’L-structure. Let 17 be a (/i - I)-sphere fibring which is an 

inverse to 5, i.e. the Whitney join of < and q is a product, or equivalent!y the classifying maps 

are inverses in x,(BF). Then q does not have an SPL-structure. Moreover, since I!‘~(<) = 0, 

e,(5) = T-‘cp,,(U), where U is the Thorn class of 7(g). By Whitney duality, Use = 0 and 

therefore e,(q) is defined as e,(rl) = T-‘cp, 1( c’), where 1’ is the Thorn class of T(q). Now, as 

in [3; (3.2)], one can show that e,(q) = e[(<). Let 71 : E, -+ S3 and consider the induced 

fibring x*(q). Since z has a cross-section [nz(l’-(~? - I)) maps onto n,(G(n - l))], 

T(* : H3(S3; Z,) r H3(E,; Z,). By naturality rr*(e,(rj)) = e,(rr*;rl) # 0, hence rc*q does not 

have an SPL-structure. 

We now show that T(x*q) has top class stably spherical. Let < + 7 be the Whitney join 

of 5 and q and let EO(< * r/) be its total space. Similarly let E,,(x*r/) be the total space of 

n”~ and define a map g : E,(< c q) -+ SEO(7-r*q), where S&,(z*r/) is the suspension of 

E,,(n*r/), by g(.u, t, J) = (t, I, y), Now we have the following homotopy equivalences, 

E,(t * II) z S3 x Sk+’ and SE,,(is*q) z SE, v T(n*q). Furthermore it is easy to see that 
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g mapq the top cells with degree 1. Now SE,, (5 * 7) = S’v Sk+-’ v Sk’6 and Sg induces 

then g’ : Sk’6 -+ ST(;r*q) of degree I, so ir (n*q) has top class stably spherical. The result 

(5.2) now follows from a theorem of Spivak [IO; Th. A] which states that if X satisfies 

Poincark duality, then there exists a sphere fibrin g v over X, such that T(r) has top class 

stably spherical and the stable class of v is unique. If E, were of the homotopy type of an 

SPL-manifold, the stable class of 1’ would be the stable normal bundle of E,, and hence 

would have an SPL-structure. But rc*q has top class stably-spherical, hence is a represen- 

tative of Y, but does not have an SPL-structure. 

I. 
2. 
3. 

4. 

5. 
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7. 
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