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SIGNATURES OF COVERING LINKS 

C. McA. GORDON, R. A. LITHERLAND AND K. MURASUGI 

1. Introduction. A (tame) knot kn in 53 is said to have period n if 
there exists a homeomorphism </>: 53 —» 53, necessarily orientation-
preserving, such that 

(i) the fixed point set of <j> is a circle disjoint from kn; 
(ii) 4>(kn) = kn; 

(iii) </> has order n. 

Several necessary conditions for a knot to have period n have already 
been established in the literature; see [3] [11] [14] [18]. Here we establish 
the following further condition, involving the signature a(kn) of kn. 

THEOREM 1.1. Let kn be a knot with period n = pT, where p is an odd 
prime, and suppose that the Alexander polynomial A(t) of kn satisfies 

(1) A(/) is not a product of non-trivial knot polynomials, and 
(2)A(0 ^ 1 (mod£). 

Then 
(i) A(0 = (1 + / + . . . + tx-l)n~l (mod p), for some X, and 
(ii) <r(kn) = 0 (mod 4), X odd; 

n — 1 (mod 4), X even. 

Assertion (i) is Corollary 2 of [14]; assertion (ii) is a consequence of 
the main result of the present paper, which we now describe. 

We first define a signature invariant rm{l) for a null-homologous link / 
in an oriented 3-manifold M, together with a specified w-fold branched 
cyclic cover, in terms of an appropriate m-fold branched cyclic cover of 
a 4-manifold bounded by M. For m = 2, this is just the classical signature 
of /. Next, we consider the situation in which we have two disjoint null-
homologous links k,f in an oriented 3-manifold M, an m-fold cyclic 
cover of M branched along k, and an w-fold cyclic cover of M branched 
along / . Let fm be the inverse image of / in the first cover, and kn the 
inverse image of k in the second. Suppose also that these branched covers 
are induced by infinite cyclic covers of M — k and M — f respectively. 
Our main result is then 

THEOREM 3.1. In the above situation 

Tm(kn) — nrm{k) = Tn{fm) — mrn{f). 
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Theorem 1.1 (ii) follows from this by taking M to be the quot ien t of 
5 3 by the periodic homeomorphism 0, k the image in M of kn,f the image 
of the fixed-point set of <£, and m — 2. 

§ 2 contains the definition of rm(l) and its interpretat ion in te rms of 
a Seifert matr ix for /. In § 3 we prove Theorem 3.1. T h e approach here is 
similar to t ha t taken for the case m = n = 2 in [6], where the main 
result of [13] was reproved in a more general context . Theorem 1.1 (ii) is 
derived from Theorem 3.1 in § 4, and in § 5 a further application of 
Theorem 3.1 is given, to signatures of torus links. Finally, in view of the 
fact t ha t some a t ten t ion has been directed towards determining which 
periods can occur for the knots in the classical knot tables, we showr in 
§ 6 t h a t 2-bridge knots which are not torus knots have only period 2. Th i s 
is independent of the earlier sections. 

Throughou t the paper, we shall be implicitly working in the smooth 
category, and all manifolds, including those of dimensions 1 and 2, will 
be oriented. Homology will be with integer coefficients unless otherwise 
specified. T h e linking number of disjoint, null-homologous 1-cycles x, y 
in a 3-manifold will be denoted by Lk(x, y). We shall use • to denote 
either algebraic intersection number of homology classes or geometric 
intersection number of chains, as appropr ia te . If x is a homology class, 
we shall write x2 for x • x. 

2. S i g n a t u r e s of l i n k s . Let / be a null-homologous link in a closed 
3-manifold M, and ir: Mm —> M an w-fold branched cyclic cover with 
branch set /. We shall always assume t h a t each oriented meridian of / 
corresponds to a fixed generator of the group of covering t ransformations. 
Let F be a surface properly embedded in a 4-manifold N with d (N, F) = 
(M, I), and suppose T extends to a covering Nm —> N branched along F. 
Then 

rm(l, TT) = a(Nm) - m<r{N) + ~ - ~ ^ [F, dF]* 

depends only on / and 7r. (If (N, F) and (N', F') are two pairs as above, 
apply the G-signature theorem [1] to the resulting Z/m-ac t ion on the 
closed 4-manifold Nm\Jd( — Nm'), together with Novikov addi t iv i ty . ) 
Note t ha t [F, dF]2 is well-defined since [F, dF] is in the image of 
H2(N) —> H2(N, dN). Also, the existence of an w-fold cyclic covering 
branched over F implies t h a t m2 divides [F, dF]2, so r m ( / , w) is an integer. 

T o avoid over-burdening the notat ion, we shall usually abbrevia te 
Tm(l, 7r) tO Tm(l). 

Suppose now t h a t M is a homology sphere, and let V be a Seifert 
matr ix for /, corresponding to a spanning surface F , say. Let f be a 
primitive m-th root of uni ty, and write &$% (V) for the signature of the 
hermit ian matr ix [1/(1 - ^)](V - ^VT) (see [9], [17], [19]). By consider-
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ing the ra-fold cyclic cover W oî M X I branched along a pushed-in copy 
of F x {0}, Viro shows in [19, Theorem 4.4, § 4.8] that 

m— 1 

rm(D = E*s<(V). 
2 = 1 

The proof proceeds by decomposing H2(W; C) into its £*-eigenspaces Eit 

and showing that on Et the intersection form is given by the above 
hermitian matrix. 

This analysis of the intersection form of W can also be used to show 
that, if we take F to be connected, then Mm is a rational homology sphere 
if and only if 

m— 1 

r i d e t (V- ^VT) ^ 0 . 

(In fact, 
rn—l 

dim Hi(Mm;Q) = £ nullity (V - ^VT), 
2 = 1 

and, if this is zero, 
m—1 

orderHi(Mm) = I I det (V - ^VT). 
2 = 1 

Formulae equivalent to these are obtained in [8] when M = Ss, but from 
a different point of view.) 

Now consider the case when / has a single component and m is a 
prime-power pr. Then det (V — ^VT) 9e 0 (otherwise, some cyclotomic 
polynomial <t>pS (t), 0 < s ^ r, would divide A(t) = det (V — tVT), con
tradicting (j>ps (1) = p, A(l) = ± 1 ) . This shows that the rank of 
V — ̂ VT is even, and hence that rm(l) is even. 

Although we shall not use this in the sequel, we remark that the above 
interpretation of rm(l) in terms of a Seifert matrix, when M is a homology 
sphere, generalizes as follows. Let I be a link in a closed 3-manifold M 
and let 7rœ be an infinite cyclic covering of I f — / such that each oriented 
meridian of / corresponds to a fixed generator of the group of covering 
transformations. Associated with 7rœ is a homotopy class of maps 
M — / —> S1; transversality then yields a surface F C M with dF = I 
such that the epimorphism Hi(M — I) —» Z which determines -zr̂  is given 
by intersection number with T7. We shall say that F is a spanning surface 
for (l, 7rœ). Let i+: F-* M — F be an embedding given by a small 
translation in the positive normal direction. Let 

#1(70 = ker (H^F; Q) -> H^M; Q)). 

Define a pairing 

0: i W ) X Xi ( /0 - > Q 
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by 
6(a,P) = Lk(a,i«+(i8)), 

and let F be a matrix representing 6 with respect to some basis of Ki(F). 
Now let 7r: Mm —> M be the ra-fold cyclic cover of M branched along I 
which is induced by 7rœ. We then have 

m— 1 

r„(/, T) = 2> { , (7) . 

The proof is almost exactly the same as that of [19, Theorem 4.41. 

3. The main theorem. Let k a n d / be disjoint null-homologous links 
in a closed 3-manifold M. Let irœ (pœ) be an infinite cyclic covering of 
M — k (M — f ) such that each oriented meridian of k(f) corresponds 
to a fixed generator of the group of covering transformations. Let 
7r: Mm —» M (p: Mn —> Af) be the m-fold (w-fold) branched cyclic cover 
with branch set &( / ) corresponding to 7rœ(pco). L e t / m = 7r _ 1 ( / ) , and 
&n = p-1(&)- These are null-homologous links in Mm and Mn respectively. 
The coverings IT and p correspond to epimorphisms 

a: HX(M - k) -> Z/w and 0: ^ ( M - / ) -> Z/n. 

Hence wTe obtain an epimorphism 

H^M - ( f e U / ) ) -» Z/ra X Z/w, 

and a corresponding regular branched covering M —» Af, writh branch set 
k^J f. This gives rise to a commutative diagram of branched coverings 

M 

y\ 
M 

where 7r(p) is an ra-fold (w-fold) covering branched along kn(fm). 

THEOREM 3.1. In the above situation 

Tm(kn) — nrm(k) = rn(fm) — ntTn(f). 

Proof. First suppose there exists a 4-manifold N and disjoint surfaces 
K, F in N with d(N, K, F) = (M, k,f ), and also homomorphisms 

a': Hx(N - K) -* Z/w and 0': fl^iV - F) -» Z/w 

such that a = a'i*, /3 = /3%, where i: M — k -+ N — K, j : M — / —• 

\ 
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N — F are inclusions. Then the diagram above bounds a corresponding 
diagram of 4-manifolds 

N 

N« Nn 

N 

where Nm —» N, Nn —> N, N —> Nn and N —•» Nm are branched covers along 
K, F} Kn (the inverse image of K in iVn) and Fm (the inverse image of 
F in iVm) respectively. 

We then have 

rm{kn) = <r(iV) - ma{Nn) + ^ j j j p ^ [*», 3iC]2 

rm(*) = <r(iVm) - ma(N) + ^ 3 ^ [#, dK]1 

rn(fm) = a(N) - na(Nm) + ^ 3 ^ [Fm, 3FB]S 

Tn(f) = a(Nn) - na(N) + - ^ ~ L [F, dFf. 

The result in this case follows readily from these equations and 

LEMMA 3.2. 

[Kn, dKn]
2 = n[K, dK]2 

[Fn, dFm}2 = m[F, dF]2. 

Proof. It suffices to consider K. Now [K, dK]2 can be computed as 
follows. Deform K slightly to K' so that K C\ Kf = int (K) H int (K') 
consists of a finite number of points of transverse intersection, and 

Lk (dK, dK') = 0. 

Then [K, dK]2 = K • K'. Now if Kn' is the inverse image of K' in Nnj 

one sees easily that Lk (dKn, dKn
f) — 0, and so 

[Kn, dKn]
2 = Kn • Kn

f. 

But each point of K C\ K', of sign e = dbl, gives rise to n points of 
Kn C\ Kn

r, each of sign e, so Kn • Kn
f = nK • K'. 

Next we prove 

LEMMA 3.3. If Lk (k,f ) is divisible by mn then there exist N, K, F} a!, /3' 
as above. 
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Proof. Let.K, F be spanning surfaces for (k, irœ) and ( / , pœ) respectively 
(see § 2). Let N' be any 4-manifold with dN' = M. It is easy to see that 
if K' is a surface in N' with dK' = k, there is a homomorphism 

a': Hi(N' - K') -> Z/w 

with a = afH if and only if [K', dK'] = [R, dK] in H2(N',k; Z/m), and 
similarly for/. Thus if we obtain K' and i7' by pushing int (K) and int (F) 
into int (N')} all the conditions will be met except that possibly 
K' C\F' 7* 0. We will modify N', K', F' so as to obtain the desired 
N, K, F. 

We may assume that K' C\ F' = int (K') C\ int (F') consists of a 
finite number of transverse intersection points. Now 

[K', dK'] • [F'f dF'] = Kf • F' - Lk ( £ , / ) ; 

hence K' • Ff = 0 (mod mn). Next, we can easily find surfaces A, B in 
CP2 representing m and n times a generator of H2(CP2), respectively, 
such that A • B = mn. By taking the connected sum of N' with the 
appropriate number of copies of ± C P 2 and piping the copies of A(B) 
onto K'(Fr), it follows that we may assume K' - F' = 0. Because A(B) 
is null-homologous mod m(n), a and /3' will still exist. Now we can add 
a tube to (say) K' along a path in F' joining two oppositely signed points 
of K' C\ F' to reduce the number of intersection points; this does not 
affect the homology class [K', dK']. Iterating the process we finally 
obtain disjoint K and F as required. 

To complete the proof of Theorem 3.1, observe that by taking the 
disjoint union of mn copies of M we can satisfy the hypothesis of Lemma 
3.3. Since the signatures are additive under disjoint union, the general 
result follows. 

4. Periodic knots. 

Proof of Theorem 1.1. Let kn be a knot in Ss with prime-power period w, 
and let M be the quotient of S3 under the corresponding periodic homeo-
morphism <t>. In particular, M is a homotopy sphere. Let k denote the 
image in M of kn, and / the image of the fixed-point set of <t>. Let M2 be 
the 2-fold branched cover of M with branch set k, and / 2 the inverse 
image of/ in M2. 

By Theorem 1 of [14], 

A(0 =Z?(0"fU(U') 

where A(/) is the Alexander polynomial of kn, D(t) that of fe, D(t, u) the 
reduced Alexander polynomial of kVJ f, and £ a primitive n-th root of 
unity. Since, by assumption (1), A(/) is not a product of non-trivial 



COVERING LINKS 387 

Alexander polynomials, we have either 

(i) A«) = D(t) or 
(ii) D(0 = 1. 

But (i) implies A(t) = 1 (mod p) (see [14, proof of Corollary 2]), con
trary to our assumption (2). Therefore D(t) = 1. 

By Theorem 3.1, 

a(kn) -na(k) = r n( / 2) - 2 r n ( / ) . 

Moreover, as noted in § 2, rn(f ) is even, and since £>(/) = 1, a(k) = 0. 
Hence 

(4.1) a(kn) = rn( /2) (mod 4). 

Since Z>(0 = 1, M2 is a homology sphere; let F be a Seifert matrix 
for/2 corresponding to a connected spanning surface. Then (see § 2) 

Tnih) = !>« . • (7). 

We claim that det (V — VVT) j* 0. If X is odd, so t h a t / 2 is a knot, 
this follows from the fact that n is a prime power (see § 2). But in any 
case, the n-fold cyclic cover M of ikf2 branched along /2 is also the 2-fold 
cover of 53 branched along the knot kn. Hence M is a rational homology 
sphere, and so 

det (V - eVT) * 0 

also holds if X is even (again, see § 2). The rank of V — ^VT is therefore 
even or odd according as /2 has one or two components, giving 

/ m - i ° (mod 2), Xodd 
a ^ V ) = U (mod 2), X even. 

Also, since ^n~i — \\ <r^(V) = o-$»-»(F). Hence, if n is odd, 

(t\ 9 ("V /2
 m _ / 0 ( m o d 4 ) , X o d d 

Together with (4.1), this proves the assertion (ii) of Theorem 1.1. 

As an example, let K be the knot 946 of Reidemeister's table. Then 
A(0 = - 2 + 5/ - 2/2 and a(K) = 0. Since A(t) = (1 + t)2 (mod 3), 
it follows from Theorem 1.1 (ii) that K cannot have period 3. (All 
previously known conditions fail to rule out period 3 [3] [11] [14] [18]; 
also K is not a 2-bridge knot so Theorem 6.1 does not apply.) 

5. Signatures of torus links. Let Kn,q denote the torus knot or link 
of type (n, q). Since Kn,-qi K„ntQ and —KntQ are all of the same link type, 



388 C. MCA. GORDON, R. A. LITHERLAND AND K. MURASUGI 

we need only consider n, q > 0. In the case of a link we assume t h a t the 
orientat ions of the components are such t h a t when Kn>q is represented on 
the boundary of an unknot ted solid torus V, each component represents 
the same element of Hi(V). Let rm{n, q) denote rm(KntQ). 

T H E O R E M 5.1. rm(ntq) = rn(m,q). 

Proof. In Theorem 3.1, take M = 5 3 . Let V be an unknot ted solid 
torus in S3, let k be a simple closed curve on d V going q t imes meridionally 
and once longitudinally about V, and let / be a core of V. Since / and k 
are both unknot ted , Mm = Mn ^ S3. Also kn(fm) is KnA (Km>Q), so the 
result follows from Theorem 3.1. 

In this theorem, we must have m, n > 0 since only in this case have 
we defined rm, rn. However, the result also holds, with the same proof, 
if q < 0, and trivially if q = 0. 

It is well-known tha t the m-fold cyclic cover of 5 3 branched along 
KnJl is diffeomorphic to the intersection of the complex algebraic var ie ty 

{(zi,*2,Z3)|zr + z2
n + zz« = 0} 

with the unit sphere in C 3 ; see, for example, [12, Lemma 1.1]. In fact, the 
intersection of 

{(z i ,Z2,z 3 ) |z r + *2n + z*q = 0} 

with the unit ball is, for small non-zero |<5|, an m-fold branched cyclic 
cover of Z)4, with branch set spanning KniQ [5, Lemma 2] [10, Lemma 5.1]. 
This gives an al ternat ive proof of Theorem 5.1. 

In [2] Brieskorn calculates the signatures of the varieties referred to 
above. T h u s one can obtain a formula for rm(n, q) similar to t h a t given 
by Hirzebruch [7] for the case m — 2, n, q odd and coprime. Th is is 
somewhat unwieldy; below we give reduction formulae for the classical 
signature a(n, q) = T-2(n, q) which permit swift computa t ion . 

T H E O R E M 5.2. Let n, q > 0. (I) Suppose 2q < n: 

If q is odd, a(n, q) — a(n — 2q, q) + q2 — 1. 
If q is even, a(n, q) = a(n — 2q, q) + q2. 
(U)a(2q,q) = q2 - 1. 
( I I I ) Suppose q ^ n < 2q. 
If q is odd, a(n, q) + a(2q — n, q) = q2 — 1. 
If q is even, a(n, q) + a(2q •— n, q) = q2 — 2. 
(IV) a(n, q) = a(q, n), a(n, 1) = 0, a(n, 2) = n — 1. 

T h e values for a(n, 1) and a(n, 2) follow from the rest of the theorem, 
bu t they do shorten computat ions . 

T h e formulae for <j(n, 3) and a(n, 4) given by Murasugi [15, Proposi
tions 9.1, 9.2] and for a(n, nk) given by Goldsmith [5, Lemma 2] can be 
derived from Theorem 5.2. 
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Theorem 5.2 may be proved either from a Hirzebruch-type formula 
for cr(n, q), or by using the equation a in, q) = rn(2, q) and working with 
a Seifert matrix for K2iq. Instead we shall make use of the following 
result, whose proof is more in keeping with the spirit of this paper. 

Suppose V is an unknotted solid torus in 53. Let l0 be a link in int (V), 
and let X be the non-negative integer such that Z0 generates \Hi(V). Let 
ht\ V —-> V be the homeomorphism given by twisting t times about a 
meridian disc (where t is an integer), and set lt = ht(h). 

THEOREM 5.3. In the above situation, if m is a positive integer dividing t 
and if n — h.c.f. (m, X), we have 

,/ 2 _ 2\ 

Tm(h) — Tn(lt) = Tm{k) — Tn(l0) + ^— 

X t(m — ri)(mn + 1) 
Smn 

A corresponding result for eigenspace signatures (from which the 
present theorem may be deduced) is given by Litherland [10, Corollary 
6.2], with essentially the same proof. 

LEMMA 5.4. Let V be an unknotted solid torus in S3, t an integer, and m 
a positive integer dividing t. Suppose c is a core of V. Then there exists a 
4:-manifold N and an m-fold branched cyclic cover Nm

f —> N, with branch 
set F, such that 

(i) d(N, F) = a(S3, c) for some integer a > 0; 
(ii) each component Fi of F is a 2-disc, and 

[Ft,dFt]* = -t (i= l , . . . , a ) . 

Proof. Let L(p, q) denote the lens space of type (p, q). Since m\t, there 
is an (unbranched) m-fold cyclic covering L(t/m, 1) —> L(t, 1). Since 
Î23 (K(Z/m, 1)) is finite, there is an m-fold cyclic covering Wm

A —> WA 

such that 

d(Wm -> W) = a(L(t/m, 1) -> L{t, 1)) 

for some integer a > 0. We may construct N by adding 2-handles to W, 
one to each boundary component, and F is the union of the co-cores of 
these handles. 

One could also give an explicit construction of Wm —> W, as follows. It 
suffices to consider the case m = t. There is a /-fold branched cyclic 
cover 2 —» S2, branched over t points, and a generator x of the covering 
transformation group such that each fixed point has a neighbourhood 
{z G C: ||z|| ^ 1} on which x acts by multiplication by e2iri,t. (Here S is 
the closed surface of genus \t(t — 3) + 1.) A semi-free action of Z/ / on 
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S X 2 is generated by x X x. Let Wt be 2 X 2 with an invariant open 
ball about each fixed point deleted, and set W — Wt/(Z/t). 

Before starting the proof of Theorem 5.3, we introduce some notation. 
Fix positive integers m and n with n\m. Let f(X) = Xn — 1, g(X) = 
(Xm — 1) (Xn — 1). If F is a vector space over 0 and x is an auto
morphism of V with xm = 1, we have F = V © F" , where 

F = Im (/(s)) - Ker (g(x)) and F " - Im (g(x)) = Ker (f(x)). 

Now suppose 7rm: Jlfm —> ilf is an m-fold cyclic cover of the closed 
3-manifold M, branched along the null-homologous link /. Extend 7rw to 
a branched covering Nm —» N of 4-manifolds, branched along T7, say. Let 
7rn: Afn —> M and Nn-+ N be the corresponding w-fold coverings. The 
canonical covering transformation of Nm induces an automorphism of 
H = H2(Nm; 0 ) of period m, so H = Hf ® H" as above. Moreover, this 
splitting is orthogonal with respect to the intersection form, so 

a(Nm) = a'(Nm) + a"(Nm), 

where a'(Nm) (a" (Nm)) is the signature of the restriction to Hf (H") of 
the intersection form. By a standard transfer argument, a"(Nm) = 
a(Nm), and so 

rm(l, TTm) — rn(l, Tn) = cr'(Nm) — (w — fl)a(N) 

im - n)(w» + 1) r ]2 
+ " 3 ^ [F> W ] 

Proof of Theorem 5.3. Let iV, T7 be as provided by Lemma 5.4, and let 
Mi be the i-th component of dTV. Let I?* be a tubular neighbourhood of 
Fi, and set 

F = cl \N\ U S«) • 

Let 4>i\ DA-+Bt be a homeomorphism such that ^ ( F ) = Bt C\ dN. 
Because [Fu dF{]

2 = —t, 

Let Go be a surface in Z)4 spanning Z0, and set 

G\ = <t>i(Go) and G = U G*. 
i = i 

Then [G, <9G] = \[F, dF] = 0 in if2(JV, <9iV; Z/ra), so there is an ra-fold 
cyclic covering Nm —» N with branch set G. We have 

ct[rm(lt) - rn(/,)] = *'(#„,) - (m - n)cr(iV) 

3raw 
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and 

[G, dG]2 = \2[F, dF]2 = -\2aL 

Now, a core of the solid torus Y P\ Bt has linking number X with G, 
and n divides X; it follows that 

HjttYr^BtUQ)' = 0 for all j . 

Splitting each space in the Mayer-Vie tor is sequence for 

a 

Nm= F m U U (Bt)n, 

we obtain 

H2(Nm;Q)' ^ f f 2 ( F m ; Q ) ' ® 0 #»((B4)m; Q)', 
i=l 

and so 

*'(#„) = *'(FW) + i>'((5<)m). 

But (Bi)m is homeomorphic to the ra-fold cover of P 4 branched along 
Go, so 

*'((£<)m) = rm(/0) - rn(/o). 

Thus 

(5.1) rm(/,) - rn(lt) = rm(/0) - rn(/0) + ~ *'(FW) - ^ - — - W ) 
a a 

(m — n)(mn + 1) . 2 
3ww 

In this last equation, take /0 = c, the core of V, and replace m by m/n. 
Then X and n are each replaced by 1; also /0 and /* are both trivial, so 
we obtain 

1 t( . (m/n - 1) , n (m/w - I) {m/n + 1) . 
0 = - a {Ym/n) a{N) - , t. 

a a Sm/n 
Notice that a'(Ym/n) comes from the splitting of H?(Ym/n] Q) by the 
polynomials X - 1 and (Xm/n - 1)/{X - 1). 

Now, since Lk (7, G) = XLk (7, F) for any 7 £ Hi( Y) and n = h.c.f. 
(m, X), Ym consists of n copies of Ym/n. Moreover, if xm and xm/n are the 
canonical covering transformations of Ym and Ym/n} respectively, then 
xm permutes the copies of Ym/n cyclically, and on each copy (xm)n = 
(Xm/n)x\ where \'\/n = 1 (mod m/n). Since (xm/„)x/ generates the group 
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of covering transformations of Ym/n, it follows that ar{ Ym) = na'( F w / J , 
and so 

1 / 2 2 \ 

1 ,/T_ x m — n /7VTX . (m — n ) ± 

a a 6m 
Together with (5.1), this gives the desired result. 

Proof of Theorem 5.2. Part (IV) is well-known. To prove (I)-(111) we 
shall need the formula a(n, 2) = n — 1 from (IV), and also the facts 
o-(0, q) = 0, <r(-n, q) = -a(n, q). 

Now Kn<2 can be obtained from Kn^q,2 by the construction of Theorem 
5.3, with X = 2, m = q and t = —q. (Whether t = ±q depends on which 
of the two enantiomorphic forms of a given torus knot is chosen as 
Kn,q\ t = —<1 is consistent with (IV).) Hence, using also Theorem 5.1, 

a(n,q) - a(n - 2q, q) 

= rQ(n, 2) - rq(n - 2q, 2) 

_ (q2 — 1 q odd 
\r2(w, 2) — r2(n — 2q, 2) + ?(? — 2) q even. 

This is valid whether n — 2q is positive, zero or negative; these three 
cases give (I), (II) and (III), respectively. 

We remark that the cases where q is odd can also be obtained by 
applying Theorem 5.3 directly to relate <r(n, q) and <r(n — 2q, q)\\iq is 
even this yields no information. 

6. Appendix on 2-bridge knots. We outline a proof of the following. 

THEOREM 6.1. Let k be a 2-bridge knot which is not a torus knot. Then k 
has period 2 and no other. 

This can also be derived from the fact (established by Thurston) that 
the complement of a 2-bridge knot is hyperbolic of finite volume. For this 
approach, see [16, § 5]. (But note that Lemma 3 of [16] fails for torus 
knots; in line 8 on p. 27, "inner automorphism" is confused with "identity 
automorphism". Compare the first part of the proof below.) 

Proof. For any knot k, write X = 53 — k and G = wi(X). Let 
4>: X —-> X be induced by a periodic automorphism of k of period n. We 
claim that, if k is not a torus knot, the image of 0*: G —> G in the outer 
automorphism group Out (G) has order n. Replacing <j> by an appropriate 
power of <£, if necessary, it suffices to show that if <t> has prime period, then 
0* cannot be inner. But if <j>* is conjugation by g, say, then, since <j> has 
finite order, some power of g lies in the centre of G, which is trivial. Thus 
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g = 1 (since G is torsion fret) , and hence 0* = id, contradicting Conner 's 
assertion [4, Theorem 4.2] t ha t the fixed subgroup of </>* is either trivial 
or infinite cyclic. (Conner deals explicitly only with involutions, bu t 
remarks t ha t his methods apply to transformations of any prime period.) 

From now on, let k be a 2-bridge knot which is not a torus knot . I t has 
been shown by Conway (unpublished) t ha t Out (G) is then isomorphic 
to either Z / 2 X Z / 2 or an extension of Z / 2 X Z / 2 by Z / 2 isomorphic 
to the dihedral group DA of order 8. I t follows from this and the previous 
paragraph t ha t the only possible periods of k are 2 and 4. I t is well-known 
tha t k always has period 2; we shall show tha t period 4 cannot occur. 

Recall t ha t k is determined by a rational fraction p/q (the 2-fold 
branched cover of k being the lens space L(p, q)). I t tu rns out t h a t the 
case Out (G) = D4 occurs when the continued fraction expansion of 
p/q is palindromic; this corresponds to q2 = ± 1 (mod p). Now in both 
cases a geometric symmetry \p: X —-> X of order 4 representing the 
unique element of order 4 in Out (G) can be seen from an appropria te 
projection of k. In the first case, q2 = 1 (mod p), one sees t ha t \f/ has no 
fixed points, and in the case q2 = — 1 (mod p), \p reverses the ambient 
orientation. 

Suppose k has period 4; we then have </>: X —•» X of order 4 with a 
circle of fixed points. Since <j> and \p represent the same element of Out (G), 
and X is a K(G, 1), </> and \p are homotopic. Since <t> is orientation pre
serving, this is an immediate contradiction in the case t ha t \p is orienta
tion-reversing. 

In the other case, let ht: X —> X , 0 ^ t ^ 1, be a homotopy with 
ho — 4>, hi = \p. A homotopy Ht: X —> X such tha t Ho = Hi = id is then 
defined by composing the homotopies ht4>~1, \l/ht(j)~

2, \p2ht(jr
z and \[/%t- Let 

x be a base-point in the fixed-point set of </>. Then the track of x under Ht 

is a loop L. Since i70 = Hi = id, L represents an element of the centre 
of G, hence L is null-homotopic. Note also tha t L is invariant under \f/. 
Let X be the universal cover of X (so I = R 3 [20]). Since L is null-
homotopic, it lifts to copies {Lg: g G G) in X. Let \p: X —>X be the lift 
of ^ such t ha t $ (Li ) = Zi . Now \£4 covers ^4 = id, and is therefore some 
covering transformation. Since Li contains only one lift of x, it follows 
tha t i£4 = id. By Smith theory, \p then has a fixed point, which implies 
t ha t yp does also. This contradiction completes the proof. 
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