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WHAT IS GLOBAL ANALYSIS?
3. SMALE, University of California, Berkeley

There has recently been a lot of activity in that branch of mathematics now
referred to as “global analysis.” For example, the subject of the 1968 Summer
Institute of the American Mathematical Society was global analysis.

My definition of global analysis is simply the study of differential equations,
both ordinary and partial, on manifolds and vector space bundles. Thus one
might consider global analysis as differential equations from a glabal, or topo-
logical point of view. _

Even the earliest studies of differential equations contained an element of
global analysis; this element had become quite important for example in the
work of Poincaré on ordinary differential equations. G. D. Birkhoff's develop-
ment of dynamical systems and especially M. Morse's theory of geodesics are
both excellent examples of global analysis. After the rapid recent progress in
topology, the subject of our exposition has been moving especially fast. After
mentioning a couple of references in partial differential equations, I shall devote
the rest of my article to an account of a theorem in dynamical systems to illus-
trate the global analysis point of view.

Recently there have been nice results in the topology of linear elliptic differ-
ential operators, especially in the work of Atiyah, Singer, and Bott (see for
example [2] and [4]).

One cannot expect to have a satisfactory {ramework for nonlinear partial
differential equations with linear function spaces. Thus it is important that
nonlinear partial differential equations are beginning to be attacked by a syste-
matic use of infinite dimensional manifolds of maps. A good survey of this is
Eells [3].

The work of Andronov, Pontryagin [1]and Peixoto [§] in dynamical systems
{or ordinary differential equations), on one hand can be explained in relatively
simple terms and on the other hand gives a real insight into this modern way of
looking at differential equations. I shall try to give a brief account of their theory
now.

Consider an ordinary differential equation (1st order, autonomous) defined
on a domain I} in the x, y-plane:

dx

- &
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1969] WHAT IS GLOBAL ANALYSIS? 5

We shall assume that these functions P, § defined on I are continuously differen-
tiable {or of class C1). Now the fundamental existence theorem of ordinary dif-
ferential equations yields for each (x4, ya) in D and real ¢ sufficiently small in
ahsolute value, ]ﬁl <¢, functions f(xo, ¥o, £}, £(%a, ¥e, ) which satisfy the initial
conditions f{xe, ¥, 0) =%, g{%s, ¥a, 0) =%, and the differential equation

4
(:i{t)(x“’ Yo, 8) = P(f{xo, yo. £}, g(xa ¥o, 1))

d
(Ei)(xa. yo, £ =Q(f (a0, y0, 1), £(a, 3, 1))

Let us look at this phenomenon from a more geometric point of view and in fact
get away from the particular choice of %, y-coordinates.

To each {x, ¥} in D associate the vector (P{x, v), Q(x, ¥)) of the x, y-plane
with the initial point at (x, ¥). This gives us what is called a C* vector field on D.
For each point p of D, we will call the associated vector for short X{p). Then
the existence theorem we just stated may be interpreted to yield a system of
plane curves ¢,(p) with ¢o(p) =p, and with the property that the tangent of the
curve at a point g of D will be the vector X{g¢} (see Figure 1).

¥

Fia. 1,

The right context for the study of this differential equation becomes clearer
now. More generally than a domain of the Euclidean plane, consider a 2-dimen-
sional smooth manifold 3. Roughly speaking, one can think of this as a surface
in 3-dimensional Euclidean space E? or better abstractly as a space on which
differentiation makes sense and a neighborhood of each point is a domain in the
plane. To each point p of M there is associated a 2-dimensional vector space
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To(M), the tangent space of M at p. If M is a surface in F? then T,(M) is the
plane tangent to M at p.

A vector field X on M is an assignment, continuously differentiable, p—X (p)
for in M to X(p), a “vector” in T',(M). The vector field on D defined previously
from the differential equation given by the functions P, Q on D is now a vector
field on the 2-manifold D in this sense.

To define the basic idea of this article, structural stability of a differential
equation, we need to develop two things: one, the space of differential equations
on M, x(M), and two, an equivalence relation on x{}), the phase portrait.

We have seen that the kind of differential equations on M we are studying
(which are really pretty general except for the low dimension} correspond to
vector fields on M. We call the set of all vector fields {C? as usual) on M, x(M).

Now x (M) has the structure of a vector space, using the fact that for each
pE M, the values of all vector fields lie in the same linear space T,(M}, That is
if X, ¥V belong to x(M), (X+V)(p)=X{p}+ Y(p). This space (M) will be
basic in what follows.

The solution curves ¢.{p) of a vector field X on M, defined earlier, may be
“pieced together * so that for each p, ¢.{p) will be defined for all a <t<b where
the interval {a, &) is maximal. If M is compact, for each p, this interval wiil he
{— «, =) so that we have a 1-parameter group ¢: of transformations on M.
Thus for each real £, ¢ is a C! transformation of M, ¢,: M— M, with a Ctinverse,
¢a is the identity and ¢.{(¢,) =P ey.. In short ¢, is a dynamical system.

Fic. 2a.

To abstract the qualitative features of a differential equation on M, the
concept of a phase portrait becomes important. Usually the phase portrait
means the picture of the solution curves of the differential equation, For ex-
ample, Figure 2a is the phase portrait of a differential equation in the plane.

To give a precise mathematical content to “phase portrait,” we proceed as
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follows. Say X, Y in (M) are topologically equivaleni when there is a homeo-
morphism A: M— M taking solution curves of X into those of ¥. Thus the differ-
ential equation in Figure 2a is topologically equivalent to that described in
Figure 2b.

-

F16. 2h.

Then two differential equations on M have the same phase portrait if they
are topologically equivalent. A definition of phase porirait is thus a topological
equivalence class of differential equations on M. A main goal of the qualitative
study of ordinary differential equations is to obtain information on the phase
portrait of differential equations.

To make progress in this direction, one soon sees the need to avoid “degener-
ate” cases. For example a differential equation that is zero on all of M, or even
on some nonempty open set of M should be considered degenerate and excluded
from most considerations. I think that engineers and physicists will agree
with this statement.

To aid in discussing the question of degeneracy, a topology or metric on
x{M) is useful. To simplify matters in defining this metric, in the rest of our
article, we will assume M compact. This excludes many or even most interesting
examples, but on the other hand the main features are not lost.

Assuming M compact define a norm ” | on x(M) as follows. Let Uj,

»«+, Uy be a covering of M, T;CV, with each V;a plane domain. Then on
each Vi, X in x{M} is represented by Pi(x, v), Qi(x, ¥) as at the beginning. Then
“X” is defined as the maximum of the following finite set of numbers:

su |P(x,y)| =1,k
@nel,
su |Q(x:y)| g1k

-0 U¢
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dF )
su "“‘(x:)’) °=1)"'1k
@€Y, | dx
5F (x, ¥) i =1 k
50 — X 4 = PR
<x.m£v¢ dy Y ’ ’
d
swp || i=t,
ey, | d
d
su —-—Qﬂ(x,y) i=1, -,k
anev; | dy

This gives x (M) the structure of a complete normed space or a Banach space.
A metric on x{ M) is then defined by (X, ¥) = HX— Y”

With this metric on x(M) it is possible to say when differential equations
are “cloge.” In terms of local coordinate representations, two differential equa-
tions are close when the P and Q are uniformly close, with their first derivatives
uniformly close as well.

With this background, we say that X in (M) is structurally stable when
there is a neighborhood N(X) in x{M) with the property that every ¥ in N(X)
is topologically equivalent to X. Thus X is structurally stable when nearby
differential equations have the same phase portrait. A little thought will indicate
that this excludes degeneracy; a structurally stable X cannot be degenerate (in
some senses at least). It is an important concept for the engineer who studies
qualitative differential equations, since in engineering the differential equations
one works with are only approximations of the real equations. The engineer
wants the qualitative conclusion he malkes to be valid for the actual differential
equation which describes his world. In fact the original idea of structural stabil-
ity was the joint work of an engineer, A. Andronov, and a mathematician,
L. Pontryagin.

Thus it becomes important to know if most differential equations are struc-
turally stable.

TreroreM. (M. Peixoto) If M is a compact 2-dimensional manifold, then the
striccturally stable differential equations in x (M) form an open and dense set.

This theorem is an excellent theorem in global analysis. One sees in two ways
how it is global. First the differential equation is defined over a whole manifold,
and structural stability depends on its behavior everywhere. Second, the theo-
rem makes a conclusion about the space of all differential equations on M.

The proof gives much information on the structure of differential equations
on 2-manifolds.

We state the main [emma which indicates how this is so.

The nonwandering set 2(X) of X is defined as the set of x in M such that for
every neighborhood U of x and £, there is a t> ¢ with ¢ (INNU# .
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MAN Lemma. If M is a compact 2-manifold and X is in x(M), then X is
structurally stable if and only if the following conditions are met:

{a) Each closed orbit and each singular point of X is “nondegenerate.” This
nondegeneracy is defined in terms of derivatives associated to the closed orbits and
singular points.

(b) The separatrices of saddle potnis don’t meel.

(¢) UX) consists of the finite union of closed orbils and singular poinis.

[Separatrices are the trajectories which come to and leave from the saddle
points. ]

If & is a singular point or closed orhit, let We(a} be the set of x in M with
P{x)—a as t—«, Then if X is structurally stable, it provides for a decomposi-
tion of M as the finite union of W*{a) as a ranges over the closed orbits and
singular points. This decomposition gives a good practical understanding of the
differential equation X.

A survey of this subject with many references is {6].

This article is based on an address before the Mathematical Assaciation of America, San
Francisco, 26 January, 1968.
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