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1. Introduction. Frânkl and Pontrjagin [ l ] and Seifert [2] have 
shown that for any given family of disjoint polyhedral simple closed 
curves in three-space, there can always be found a polyhedral orienta­
ble surface in three-space whose boundary consists precisely of the 
given curves. The following theorem extends this result to surfaces 
in four-space. 

THEOREM 1. Let M2 be a locally flat, polyhedral, closed orientable 
surface (not necessarily connected) in Euclidean four-space, RA. Then 
there is an orientable polyhedral three-manifold, M3, in R*, whose bound­
ary is M2. 

Local flatness means that for each vertex v of M2, the link of D on 
M2 (a simple closed curve) is unknotted in the link of v in RA (a 
three-sphere). This condition is purely local and absolutely necessary. 
On the other hand, the restriction to orientable surfaces is required 
by the nature of the proof, and I do not know whether nonorientable 
surfaces of even characteristic in four-space bound nonorientable 
three-manifolds in four-space.2 

2. Outline of the proof. M2 is first deformed so that its intersections 
with the horizontal hyperplanes i?f={(xi, x2, Xz, Xi):Xi = t} are as 
simple as possible. What we have in mind is to find orientable surfaces 
in the R* whose boundaries are precisely M2r\R$, in such a continuous 
way that when considered together they form an orientable three-
manifold M3 whose boundary is M2. The process is carried out with 
decreasing t, and the local flatness of M2 assures us that the construc­
tion can be begun. As / decreases, M2C\F$ changes isotopically, ex­
cept at a finite number of singular values of t. A slight deformation of 
M2 insures that we need only consider hyperbolic transformations, 
in which two arcs come together a t a midpoint and then separate 
like the cross-sections of a saddle surface, and elliptic transformations, 
in which a simple closed curve shrinks to a point and then disappears 
(or vice versa). In the hyperbolic case, these arcs already form part 

1 The author is a National Science Foundation Predoctoral Fellow and wishes to 
thank Professor Ralph Fox for his help in the preparation of this paper. The detailed 
arguments are contained in the author's thesis. 

1 Added in proof. This case is considered in a forthcoming paper. 
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of the boundary of a cross-sectional surface and the hyperbolic trans­
formation could be extended to the surface in the natural way, except 
for the possibility of a number of sheets of the surface being in the 
way. These sheets are simply pierced one after the other with de­
creasing /, the cuts being joined as in [3, page 4] , to preserve orienta-
bility of the cross-sections. Finally, when no more sheets are in the 
way, the original hyperbolic transformation is extended to the cross-
sectional surface. That this final transformation does not destroy the 
orientability of the cross-sections requires a special argument. 

In the case of the elliptic transformations, if with decreasing t a 
point opens up into a simple closed curve (which must be unknotted 
by the local flatness of M2), then we simply introduce another com­
ponent of the cross-sectional surface which with decreasing t opens 
up from a point into a two-cell. The serious case occurs when a com­
ponent of M2r\Rf shrinks to a point and then disappears with de­
creasing t. Call this component c\, and let c2, • • • , c* be the other 
boundary curves of the component G of the cross-sectional surface 
containing a. Since C\ is unknotted by the local flatness of M2, let D 
be a polyhedral two-cell in J?f bounded by ci. Let c' be a simple closed 
curve on G lying in a small neighborhood of c\ and "parallel" to C\. 
Because the cross-sectional surface, and hence G is orientable, the 
linking number of c' with C\ is the same as the sum of the linking 
numbers of the c2, • • • , £* with c\. But each of these linking numbers 
is zero, since C\ is about to shrink to a point away from all these 
curves. Because the linking number of c' with c\ is zero, the cross-
sectional surface can be deformed so that a small neighborhood of c\ 
on G meets D only at ci, while the total intersection of the crocs-
sectional surface with D consists of a number of simple closed curves. 
Each of these intersections can be removed by standard hyperbolic 
transformations with decreasing /, until finally D meets the cross-
sectional surface only at its boundary curve c\. By a slight deforma­
tion of M2, the original elliptic transformation can be altered so as 
to shrink C\ to a point along D, closing up a component of the cross-
sectional surface and completing the construction for the elliptic 
transformation. When finally t has decreased below the minimum 
value attained by the fourth coordinates of points of M2, the cross-
sectional surface consists of a number of closed orientable surfaces 
in a three-dimensional hyperplane R*. I t remains to shrink off the 
components of this surface to points with decreasing t. If the resulting 
Mz is to be a manifold, this must be done by first changing these 
components into two-spheres. But R. H. Fox has shown in [4, 
Theorem 2] that whenever we are given a number of polyhedral 
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closed orientable surfaces in three-space, not all of which are two-
spheres, a hyperbolic transformation may be found which either de­
creases the total genus or else increases the number of components 
with positive genus while leaving the total genus unaltered. We carry 
out such a transformation with decreasing t, and repeat the procedure 
until all the components of the cross-sectional surface are two-
spheres, which may then be shrunk to points as / decreases further, 
completing the construction of Af3. 

As the various transformations undergone by the cross-sectional 
surfaces are topologically equivalent to those experienced by a cross-
section of a hypersurface in R4 (with due regard being taken of the 
fact that Mz has a boundary), it is easily seen that Mz is a manifold. 
Furthermore, since the cross-sections are orientable and the various 
transformations preserve orientations, Mz is also orientable. 

R. H. Bing has pointed out to me that if we are willing to allow a 
three-dimensional cross-section, then the argument can be completed 
as soon as the cross-sectional surface becomes closed, for every closed 
surface in three-space, whether connected or not, is the boundary of 
a three-dimensional region. 
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