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1. Introduction. Frânkl and Pontrjagin [ l ] and Seifert [2] have 
shown that for any given family of disjoint polyhedral simple closed 
curves in three-space, there can always be found a polyhedral orienta
ble surface in three-space whose boundary consists precisely of the 
given curves. The following theorem extends this result to surfaces 
in four-space. 

THEOREM 1. Let M2 be a locally flat, polyhedral, closed orientable 
surface (not necessarily connected) in Euclidean four-space, RA. Then 
there is an orientable polyhedral three-manifold, M3, in R*, whose bound
ary is M2. 

Local flatness means that for each vertex v of M2, the link of D on 
M2 (a simple closed curve) is unknotted in the link of v in RA (a 
three-sphere). This condition is purely local and absolutely necessary. 
On the other hand, the restriction to orientable surfaces is required 
by the nature of the proof, and I do not know whether nonorientable 
surfaces of even characteristic in four-space bound nonorientable 
three-manifolds in four-space.2 

2. Outline of the proof. M2 is first deformed so that its intersections 
with the horizontal hyperplanes i?f={(xi, x2, Xz, Xi):Xi = t} are as 
simple as possible. What we have in mind is to find orientable surfaces 
in the R* whose boundaries are precisely M2r\R$, in such a continuous 
way that when considered together they form an orientable three-
manifold M3 whose boundary is M2. The process is carried out with 
decreasing t, and the local flatness of M2 assures us that the construc
tion can be begun. As / decreases, M2C\F$ changes isotopically, ex
cept at a finite number of singular values of t. A slight deformation of 
M2 insures that we need only consider hyperbolic transformations, 
in which two arcs come together a t a midpoint and then separate 
like the cross-sections of a saddle surface, and elliptic transformations, 
in which a simple closed curve shrinks to a point and then disappears 
(or vice versa). In the hyperbolic case, these arcs already form part 

1 The author is a National Science Foundation Predoctoral Fellow and wishes to 
thank Professor Ralph Fox for his help in the preparation of this paper. The detailed 
arguments are contained in the author's thesis. 

1 Added in proof. This case is considered in a forthcoming paper. 
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of the boundary of a cross-sectional surface and the hyperbolic trans
formation could be extended to the surface in the natural way, except 
for the possibility of a number of sheets of the surface being in the 
way. These sheets are simply pierced one after the other with de
creasing /, the cuts being joined as in [3, page 4] , to preserve orienta-
bility of the cross-sections. Finally, when no more sheets are in the 
way, the original hyperbolic transformation is extended to the cross-
sectional surface. That this final transformation does not destroy the 
orientability of the cross-sections requires a special argument. 

In the case of the elliptic transformations, if with decreasing t a 
point opens up into a simple closed curve (which must be unknotted 
by the local flatness of M2), then we simply introduce another com
ponent of the cross-sectional surface which with decreasing t opens 
up from a point into a two-cell. The serious case occurs when a com
ponent of M2r\Rf shrinks to a point and then disappears with de
creasing t. Call this component c\, and let c2, • • • , c* be the other 
boundary curves of the component G of the cross-sectional surface 
containing a. Since C\ is unknotted by the local flatness of M2, let D 
be a polyhedral two-cell in J?f bounded by ci. Let c' be a simple closed 
curve on G lying in a small neighborhood of c\ and "parallel" to C\. 
Because the cross-sectional surface, and hence G is orientable, the 
linking number of c' with C\ is the same as the sum of the linking 
numbers of the c2, • • • , £* with c\. But each of these linking numbers 
is zero, since C\ is about to shrink to a point away from all these 
curves. Because the linking number of c' with c\ is zero, the cross-
sectional surface can be deformed so that a small neighborhood of c\ 
on G meets D only at ci, while the total intersection of the crocs-
sectional surface with D consists of a number of simple closed curves. 
Each of these intersections can be removed by standard hyperbolic 
transformations with decreasing /, until finally D meets the cross-
sectional surface only at its boundary curve c\. By a slight deforma
tion of M2, the original elliptic transformation can be altered so as 
to shrink C\ to a point along D, closing up a component of the cross-
sectional surface and completing the construction for the elliptic 
transformation. When finally t has decreased below the minimum 
value attained by the fourth coordinates of points of M2, the cross-
sectional surface consists of a number of closed orientable surfaces 
in a three-dimensional hyperplane R*. I t remains to shrink off the 
components of this surface to points with decreasing t. If the resulting 
Mz is to be a manifold, this must be done by first changing these 
components into two-spheres. But R. H. Fox has shown in [4, 
Theorem 2] that whenever we are given a number of polyhedral 
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closed orientable surfaces in three-space, not all of which are two-
spheres, a hyperbolic transformation may be found which either de
creases the total genus or else increases the number of components 
with positive genus while leaving the total genus unaltered. We carry 
out such a transformation with decreasing t, and repeat the procedure 
until all the components of the cross-sectional surface are two-
spheres, which may then be shrunk to points as / decreases further, 
completing the construction of Af3. 

As the various transformations undergone by the cross-sectional 
surfaces are topologically equivalent to those experienced by a cross-
section of a hypersurface in R4 (with due regard being taken of the 
fact that Mz has a boundary), it is easily seen that Mz is a manifold. 
Furthermore, since the cross-sections are orientable and the various 
transformations preserve orientations, Mz is also orientable. 

R. H. Bing has pointed out to me that if we are willing to allow a 
three-dimensional cross-section, then the argument can be completed 
as soon as the cross-sectional surface becomes closed, for every closed 
surface in three-space, whether connected or not, is the boundary of 
a three-dimensional region. 
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