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MORSE-NOVIKOV THEORY, HEEGAARD SPLITTINGS AND

CLOSED ORBITS OF GRADIENT FLOWS

HIROSHI GODA, HIROSHI MATSUDA, AND ANDREI PAJITNOV

Abstract. The works of Donaldson [2] and Mark [14] make the structure of the

Seiberg-Witten invariant of 3-manifolds clear. It corresponds to certain torsion

type invariants counting flow lines and closed orbits of a gradient flow of a circle-

valued Morse map on a 3-manifold. We study these invariants using the Morse-

Novikov theory and Heegaard splitting for sutured manifolds, and make detailed

computations for knot complements.

1. Introduction

Let K ⊂ S3 be an oriented knot, put CK = S3 − K. The canonical cohomology

class ξ ∈ H1(CK) = [CK , S
1] can be represented by a Morse map f : CK → S1. In

this paper we study the dynamics of the gradient flow of f .

Milnor pointed out in [16] a relationship between the Reidemeister torsion and

dynamical zeta functions. His theorem applies to fibred knots, that is to the case

when we can choose the map f without critical points. The theorem implies in

particular that the Alexander polynomial of any fibred knot in S3 is essentially the

same as the Lefschetz zeta function of the monodromy map of the fibration f . The

periodic points of the monodromy map correspond to the closed orbits of the gradient

flow of the fibration CK → S1; thus Milnor’s theorem establishes a relation between

the dynamics of this gradient flow and and the Alexander polynomial of the knot.

When the knot K is not fibred, the Morse map f necessarily has critical points.

The Milnor’s formula is no more valid, however it can be generalized to this case at

the cost of adding a correction term, as it was discovered by Hutchings and Lee ([11],

[12]). This correction term is essentially the torsion of the Novikov complex associated

with the circle-valued Morse map f (see [18], [20]). This complex is an analog of the

Morse complex for the circle-valued case, and is obtained through counting the flow

lines of the gradient joining the critical points of the map.
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The torsion of the Novikov complex and the Lefschetz zeta function are in general

very difficult to compute due to the complexity of the transversal gradient flows used

in the construction of the Novikov complex. In the paper [14], Mark introduced a new

class of gradient flows for circle-valued Morse maps (symmetric flow), which are not

transversal but, somewhat unexpected, the Morse-Novikov theory can be extended to

this case. He used these flows to give a yet another proof of the Meng-Taubes theorem

(see the original paper of Meng and Taubes [15] and the later works of Turaev [24]

and Donaldson [2] for alternative proofs of the theorem).

The symmetric flows have a simple geometric structure allowing to carry over to this

setting a large part of the Morse-Novikov theory, and on the other hand to perform

explicit computations with these flows. This is the main aim of the present paper.

We begin by studying the geometric properties of symmetric gradients (we work actu-

ally with a slightly wider class of vector fields called half-transversal gradients), and

establish the basic theorem of the Morse-Novikov theory for this class of flows. This

theorem is valid in a more general context than the Mark’s results, and we believe

that our proof is simpler.

Then we proceed to detailed study of the geometry of the Morse map f . In the

case when f is a fibration the first return map from a regular fiber to itself is a

diffeomorphism, called the monodromy of the fibration; this is the basic notion which

helps to understand the dynamics of the gradient flow. We generalize this notion to the

case when f has critical points. Our monodromy is a diffeomorphism of two surfaces

constructed from a Heegaard splitting for the complement of a knot [6] (we recall the

basic notions of the theory of Heegaard splittings in Section 5). This diffeomorphism

depends on the choice of the gradient, however it can be efficiently computed in

particular cases, which leads to the computation of the Lefschetz zeta function of

certain symmetric gradients for the twist knots and the pretzel knot of type (5, 5, 5).

The monodromy enables us also to compute the determinant of the boundary operator

in the Novikov complex for the case of these knots (the so-called Novikov torsion).

The dynamics of the gradient flows of circle-valued Morse maps are closely related

to the Seiberg-Witten invariants of 3-manifolds. Meng and Taubes [15] showed that

the Seiberg-Witten invariant of any closed 3-manifold M with b1(M) ≥ 1 can be

identified with the Milnor torsion. Fintushel and Stern [3] proved that for any knot

K in S3 the Seiberg-Witten invariant of the manifold M×S1, where M is the result of

the zero-surgery on K, equals the Alexander polynomial of K multiplied by a certain

standard factor. In [2], Donaldson gives a new proof of the Meng-Taubes theorem

by applying the ideas from Topological Quantum Field Theory. These TQFTs were

used by Mark to prove a conjecture of Hutchings-Lee concerning the relation of the
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Seiberg-Witten invariants with the Novikov torsion. Some results in this paper have

been announced in [10].

2. Half-transversal flows

Let f : M → S1 be a Morse function on a closed manifold M . The dynamics of the

gradient flow of f is best understood when f does not have critical points. In this case

we choose a regular surface for f , and the dynamics of the gradient flow is determined

by the first return map of this surface to itself. This map is called the monodromy

of the gradient flow. If f has critical points the situation is much more complicated

since for every transversal f -gradient the first return map is not everywhere defined.

It turns out however that in the case of 3-dimensional manifolds there is an important

class of non-transversal gradient flows for which the first return map determines a self-

diffeomorphism of the level surface. We will first give a definition of the corresponding

class of gradient flows on cobordisms.

Let Y be a 3-dimensional cobordism; denote ∂−Y, ∂+Y the lower, respectively the

upper boundary of Y . Let ψ : Y → [a, b] be a Morse map without critical points of

indices 0 and 3. The subset U1 of all points x in the upper boundary ∂+Y such that

the (−v)-trajectory starting at x reaches the lower boundary ∂−Y is open in ∂+Y and

the gradient descent determines a diffeomorphism (−v) : U1
≈
−→ U0 of U1 onto an

open subset U0 ⊂ ∂−Y .

For two critical points p, q of f we call a flow line of v from q to p an integral curve

γ of v such that

lim
t→−∞

γ(t) = q, lim
t→∞

γ(t) = p.

We shall identify two flow lines of v which are obtained from each other by a repa-

rameterization.

Definition 2.1. A ψ-gradient v is called a smooth descent gradient if

(i) the number of critical points of index 1 is equal to the number of critical points

of index 2, and they can be arranged in two sequences

S1(ψ) = {p1, . . . , pk}, S2(ψ) = {q1, . . . , qk}

in such a way that for every i there are two flow lines of v joining qi with pi

and these 2k flow lines are the only flow lines of v.

(ii) the map (−v) : U1 → U0 can be extended to a C∞ map g : ∂+Y → ∂−Y . ∗

∗ It seems to us that the point i) actually follows from ii), but we can not prove it at present.
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Now let us return to circle-valued Morse maps. Let f : M → S1 be such a map,

where M is a 3-dimensional closed manifold and v be an f -gradient. Cutting M along

a regular surface S of f we obtain a cobordism Y , a Morse function ψ : Y → [0, 1]

and a ψ-gradient v̄ = v|Y .

Definition 2.2. The f -gradient v is called half-transversal if there is a regular level

surface S such that v̄ = v | Y is a smooth descent gradient of ψ = f | Y and we have

the following transversality condition for stable and unstable manifolds:

(2.1) Wst(q) ⋔Wun(p)

for every critical points p, q of f with indq = 2, indp = 1.

It is not difficult to show that the subset of all half-transversal gradients is dense

in the set of smooth descent gradients.

Definition 2.3. Let v be a half-transversal gradient for a Morse function f : M →

S1 and S be the corresponding level surface of f . The first return map for (−v)

determines a diffeomorphism of S to itself which will be called the monodromy of the

flow generated by v, and denoted by g.

The notion of half-transversal gradient, introduced above originates from the paper

of T. Mark [14] where the class of symmetric flows was introduced. In our terminology

Mark’s symmetric gradient on a cobordism Y is a smooth descent gradient with the

following additional restriction: there is an involution I : Y → Y swapping the lower

and upper boundaries of Y and such that I∗(v) = −v and ψ ◦ I equals −ψ up to

an additive constant. We do not know if the class of smooth descent gradients is

really wider than Mark’s class of symmetric gradients. However the existence of the

involution I seems restrictive and we prefer to work with more general notion of

smooth descent gradients.

Now we will define the Novikov complex and the Lefschetz zeta function for half-

transversal gradient flows. The usual procedure of counting flow lines yields the

Novikov incidence coefficient

N(qi, pj; v) =
∑

k∈N

nk(qi, pj; v)t
k ∈ Z[[t]]

where

nk(qi, pj; v) =
∑

γ∈Γk(qi,pj ;v)

ε(γ)

(here Γk(qi, pj; v) stands for the set of all flow line of (−v) joining qi with pj and ε(γ)

is the sign attributed to each flow line with respect to the choice of orientations of
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the 2-dimensional stable manifolds). The Novikov incidence coefficients form a square

matrix D with entries in Z[[t]]. The chain complex

(2.2) 0←− N−
1

D
←− N−

2 ←− 0

where N−
i is the free Z[[t]]-module generated by critical points of f of index i is called

the positive Novikov complex of the pair (f, v) and denoted by N−
∗ (f, v) or simply

N−
∗ if no confusion is possible. The chain complex

(2.3) 0←− N1
D
←− N2 ←− 0

where Ni is the free Z((t))-module generated by critical points of f of index i is called

the Novikov complex of the pair (f, v) and denoted by N∗(f, v) or simply N∗ if no

confusion is possible. The first of the two chain complexes above is more convenient

in computations, however only the homotopy type of the second one is a homotopy

invariant of the map f : M → S1 (see Theorem 3.1).

Definition 2.4. The element detD ∈ Z[[t]] is called the Novikov torsion of the pair

(f, v) and denoted by τ(f, v) or τg.

Proceeding to the Lefschetz zeta functions, we will need to impose one more re-

striction on the gradient flow.

Definition 2.5. Let f : M → S1 be a Morse function on a closed manifold M and

v an f -gradient. We say that v is of finite dynamics if for every n ∈ Z the set of all

closed orbits γ satisfying f∗([γ]) = n ∈ H∗(S
1) (where [γ] ∈ H1(M) is the homology

class of γ) is finite.

For a half-transversal f -gradient of finite dynamics we can define the dynamical

Lefschetz zeta function of (−v):

ζ−v(t) = exp
(∑

γ

ε(γ)

m(γ)
tm(γ)

)

where the sum is extended over the set of all closed orbits γ of (−v), ε(γ) is the

Poincaré index of γ, and m(γ) is the multiplicity of γ. It is clear that ζ−v is equal to

the Lefschetz zeta function of the diffeomorphism g:

(2.4) ζg(t) = exp
(∑

n≥1

L(gn)

n
tn
)

where L(gn) is the graded trace of the homomorphism induced by g in the homology.

Let us now define the class of gradient flows with which we will be working in this

paper.
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Definition 2.6. Let M be a three-dimensional closed manifold, and f : M → S1

a Morse function without critical points of indices 0 or 3; let v be a half-transversal

f -gradient of finite dynamics. We say that (f, v) is a regular Morse pair.

We will also work with Morse functions f : M → S1 on manifolds with boundary.

The definition of the regular Morse pair (f, v) is carried over to this setting in an

obvious way, with the following modifications:

(1) The restriction f | ∂M : ∂M → S1 is required to be a fibration whose mon-

odromy is isotopic to identity.

(2) The gradient vector field v is required to be tangent to ∂M . Such gradient

is called a gradient of finite dynamics if for every n ∈ Z the set of all closed

orbits γ satisfying f∗([γ]) = n is finite.

For a regular Morse pair (f, v) on a 3-dimensional manifold with boundary we

define the Novikov complex N∗(f, v) and the Lefschetz zeta function ζ−v ∈ Z[[t]],

which counts the closed orbits of (−v) not belonging to the boundary ∂M .

3. The Novikov complex and the zeta function of half-transversal

flows

The attractive feature of half-transversal flows is that the Novikov boundary oper-

ators and the Lefschetz zeta function of the gradient flow are accessible here through

calculations with homotopical quantities associated with the monodromy. Let M be

a closed 3-manifold and (f, v) a regular Morse pair on M . Let M denote the infi-

nite cyclic covering of M corresponding to f and ∆∗(M) denote the simplicial chain

complex of M . Set Λ = Z[t, t−1] and Λ̂ = Z[[t]][t−1] = Z((t)). Both N∗(f, v) and

∆̂∗(M) = ∆∗(M)⊗
Λ

Λ̂ are based free finitely generated chain complexes over Λ̂. The

next theorem asserts in particular that there is a chain equivalence between them. A

usual procedure allows to associate to each such equivalence its torsion, which is an

element in

Wh(Λ̂) = K1(Λ̂)/U

where U is the subgroup of all elements of the form ±tn. The group Wh(Λ̂) is easily

identified with the multiplicative group of all power series in Z[[t]] with first coefficient

equal to 1 (see [20] Chapter 13, §4 for details), so we shall consider the torsions as

power series with coefficients in Z[[t]]. The next theorem is the main aim of this

section.
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Theorem 3.1. Let M be a closed 3-manifold and (f, v) a regular Morse pair on M .

There is a chain homotopy equivalence

φ : N∗(f, v)→ ∆∗(M)⊗
Λ

Λ̂

such that

τ(φ) = ζ−v.

Observe that this theorem implies the isomorphism

H∗(N∗(f, v)) ≈ H∗(M)⊗
Λ

Λ̂.

Let us first outline the proof. Lift f : M → S1 to a Morse function F : M → R. The

regular level surface S ⊂ M (see Definition 2.2) lifts to a regular level surface of F

which will be denoted by the same letter S. Denote by S− the part of M lying below

S with respect to the function F . We will construct a certain chain complex Z∗ which

is free over Z[t] and computes the homology of S−. Then we construct an embedding

N∗(f, v) →֒ Ẑ∗ = Z∗ ⊗
P
P̂ , where P = Z[t], P̂ = Z[[t]],

such that the quotient complex is acyclic and its torsion is equal to the Lefschetz zeta

function of −v. The schema of the argument resembles that of the papers [12] and

[19], however the present case is in a sense simpler, due to a very particular nature of

the half-transversal flows.

Proceeding to details, let us first return to the cobordism Y obtained from M by

cutting along S. We have naturally arising diffeomorphisms ψ+ : ∂+Y → S, ψ− :

∂−Y → S. Put

ci =Wun(pi, v) ∩ ∂+Y.

Replacing Y by a diffeomorphic cobordism if necessary, we can always assume that

the circles ci, 1 ≤ i ≤ k are standardly embedded in ∂+Y as shown in Figure 1. They

are therefore a part of the standard cellular decomposition of ∂+Y which consists of m

disjoint circles ci, and m circles di having a common point A. For a subset X ⊂ ∂+Y

we denote TX the track of X, that is,

TX = {γ(x, t;−v) | t ≥ 0 and x ∈ X}.

We will now define a filtration E i in the cobordism Y . The term E0 of the filtration

contains two points: A and tA. The term E1 contains E0 and the following subsets:

the circles di, ci, the track TA of the point A, the circles

γi =Wun(qi) ∪W
st(pi) for i ≤ i ≤ k
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Figure 1.

Figure 2.

the arcs αi, βi as shown in Figure 2, the circles Ici, Idi ⊂ ∂−Y . The term E2 contains

E1 and the following subsets: the boundary ∂Y of Y , the stable manifolds of the

critical points of index 2 and the unstable manifolds of the critical points of index

1, and the closure of the tracks of ci and di. The term E3 is the whole Y . It is not

difficult to see that E i is a cellular filtration of Y , that is, the homology of the quotient

E i/E i−1 does not vanish only in degree i.

Now we shall use this filtration to explore the homotopy type of the covering M .

The natural map Y → M lifts to an embedding of Y to M whose image will be

identified with Y . The covering M is the union of the images of Y under the action
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of Z:

M =
⋃

n∈Z

tnY

where t is the downward generator of Z, so that F (tx) = F (x)− 1 for every x ∈ M .

The neighbor copies tnY and tn+1Y are intersecting by ∂−t
nY = tn∂−Y = tn+1∂+Y =

∂+t
n+1Y . Recall from Section 2 that the gradient descent determines a diffeomorphism

g : ∂+Y → ∂−Y . We endow ∂−Y with the cellular decomposition induced from ∂+Y

by g. Let h be any cellular approximation of the map ψ+ ◦ ψ
−1
− : ∂−Y → ∂+Y . Then

M has the homotopy type of the space

N =
( ⊔

n∈Z

tnY
)/
R

where the equivalence relation R identifies ∂−t
nY ≈ ∂−Y with ∂+t

n+1Y ≈ ∂+Y via

the map h : ∂−Y → ∂+Y . The space N has a natural free action of Z and we have a

homotopy equivalence M → N respecting this action. Put

N− =
( ⊔

n∈N

tnY
)/
R.

We will now use the filtration E of Y to construct a filtration of N−. Put

F i =
⋃

n∈N

tnE i.

The filtration S∗(F i) of the singular chain complex S∗(N−) of N− is cellular and the

homology

Hi(F
i/F i−1)

is a free P -module. Now we will describe the generators of this module. We denote

the stable manifold of pi by D(pi; v). The set D(pi; v)\{pi} consists of two arcs, their

closures will be denoted by λ+
i , λ

−
i (the signs correspond to the chosen orientations).

Put λi = λ+
i ∪ λ

−
i . Let βi be an arc in ∆i joining pi and Bi = ci ∩ di. Similarly let αi

be an arc joining tA with tBi. Let d′i be the part of di between A and Bi and denote

by χ+
i the following composition of arcs

χ+
i = d′i · βi · λ

+
i · αi · (td

′
i)
−1 where 1 ≤ i ≤ k.

Similarly, set

χ−
i = d′i · βi · λ

−
i · αi · (td

′
i)
−1 where 1 ≤ i ≤ k.

The fundamental class of ∂+Y modulo the union of ci and di is denoted by ω2. The

fundamental class of Y modulo the subspace E2 is denoted by ω3. Here is the list of
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the free generators of Zr = Hr(F r/F r−1) : as a Z[t]-module:

r = 0 : A

r = 1 : ci, di for 1 ≤ i ≤ m = genus(∂+Y ),

χ+
i , χ

−
i for 1 ≤ i ≤ k.

r = 2 : ω2,

∆̂i, ∆i, Tdi for 1 ≤ i ≤ k, and

Tci, Tdi for k + 1 ≤ i ≤ m.

r = 3 : ω3 = Tω2.

Here ∆̂i is the unstable manifold of pi in Y ; we have ∂∆̂i = ci, and similarly for

∆i. (By a certain abuse of notations we use the same symbol ci for the cycle and its

geometric support; similar convention holds for the other notations.) Now we shall

describe the boundary operators in the adjoining complex

∂r : Zr → Zr−1 :

∂1 : Z1 → Z0 :

∂(ci) = 0 = ∂(di), ∂(χ+
i ) = ∂(χ−

i ) = ∂(TA) = A− th(A).

∂2 : Z2 → Z1 :

∂(∆̂i) = −ci

∂(∆i) = th(ci)

∂(Tdi) = di + λi − th(di)





for 1 ≤ i ≤ k,

∂(Tci) = ci − th(ci)

∂(Tdi) = di − th(di)

}
for k + 1 ≤ i ≤ m, and

∂(ω2) = 0.

∂3 : Z3 → Z2 :

∂(ω3) = ω2 − th(ω2).

The chain complex Z∗ is chain equivalent to the simplicial chain complex of N−. Any

chain equivalence

ξ : Z∗ → ∆∗(N
−)
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has a well-defined torsion τ(ξ) ∈Wh(Z[t]) = K1(Z[t])/{±1}. This last group vanishes

(by the Bass-Heller-Swan theorem), therefore τ(ξ) = 0, and the torsion of the chain

equivalence

ξ̂ : Ẑ∗ = Z∗ ⊗
Z

Z[[t]]→ ∆∗(N
−)⊗

Z

Z[[t]]

in the group K1(Z[[t]])/{±1} vanishes. To prove our theorem it suffices therefore to

construct a chain equivalence

N−
∗ = N−

∗ (f, v)
σ
→ Ẑ∗

such that τ(σ) = ζ−v. We will embed N−
∗ to Ẑ∗ = Z∗ ⊗

Z[t]
|Z[[t]] and compute its quo-

tient complex. Let us first observe that the Novikov complex for our half-transversal

flow can be expressed in terms of the monodromy g or its homotopy substitute h:

∂qi =
∑

N(qi, pj)pj , where N(qi, pj) =
∑

k∈N

tk〈hk(ci), cj〉

where 〈·, ·〉 stands for the pairing in H1(∂+Y ). Now let us make a simple change of

basis † in Z∗ replacing ∆̂i by the element ∆̂i − ∆ which will be denoted by Tci (in

order to stress the analogy with the tracks of the circles di). Extending the map T by

linearity to a homomorphism H1(∂+Y )→ Z2 it is easy to check the following formula:

(3.1) ∂(Tµ) = µ− th(µ) +
∑

j

〈µ, cj〉λj .

Let us now make one more simple change of basis, replacing the cycle ∆i by

(3.2) ∆̃i = ∆i −
∞∑

j=1

tjT (hjci).

This infinite sum corresponds geometrically to the stable manifold of the critical

point pi. There is however one essential difference between the formula (3.2) and the

similar formulas for the case of the transversal flows (see, for example, formula (66)

from [19]). The formula (3.2) contains the term Tci = ∆̂i−∆i and similar ones which

are not strictly speaking the geometric traces of the cells. An easy computation using

the formula (3.1) shows that the homomorphism σ : N−
∗ → Z∗ defined by

σ(pi) = λi, σ(qi) = ∆̃i

† A change of basis is called simple if the torsion of the transition matrix vanishes in Wh
(
Z[[t]]

)
=

K1(Z[[t]])/{±1}.
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is an embedding of chain complexes. The quotient complex Q∗ is also easily computed;

here is the list of free Z[[t]]-generators for Qj:

j = 0 : A

j = 1 : TA, ci, di, χ
+
i

j = 2 : Tci, Tdi, Td
′
i, ω2

j = 3 : Tω3

We have ∂(Td′i) = χ+
i and

∂(z) = 0, ∂(Tz) = 1− th(z)

for every z from the following list:

A, ci, di, ω2.

After factoring out the chain complex generated by χ+
i and Td′i, we obtain the

chain complex of the mapping torus of the map h. It is well known that its torsion

equals the Lefschetz zeta function of h (see the classical paper of J. Milnor [16]). This

completes the proof of Theorem 3.1. �

Remark 3.2. The theorem above is valid also in the case of regular Morse pairs on

manifolds with boundary, and the proof is similar.

4. Novikov torsion and the Alexander polynomial for knots

Theorem 3.1 establishes a relation between two natural geometric objects: the

homotopy equivalence φ : N∗(f, v) → ∆∗(M) ⊗
Λ

Λ̂ and the Lefschetz zeta function of

the flow generated by v. For computational purposes it is convenient to reformulate

it in another way. Let (f, v) be a regular Morse pair on a 3-manifold M (with or

without boundary). Let F be a field.

Definition 4.1. We say that (f, v) is F-acyclic, if

H∗(M) ⊗
Z[t,t−1]

F((t)) = 0.

Put N∗(f, v;F) = N∗(f, v) ⊗
bΛ

F((t)). It follows from Theorem 3.1 that if (f, v) is

F-acyclic, then the homology of the complex N∗(f, v;F) also vanishes. The images of

the elements τ(f, v), ζ−v in the ring F[[t]] will be denoted by τF, ζF

−v. The F-acyclicity

condition implies that the torsion of the chain complex

∆̂F

∗ (M) = ∆∗(M) ⊗
Z[t,t−1]

F((t))
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is well defined as an element of

Wh(F((t))) ≈ K1(F((t)))/U,

where U is the subgroup of all elements of the form±tn. We will denote this torsion by

τF

M omitting in the notation the obvious dependence of this element on the homotopy

class of f .

Proposition 4.2. In the assumptions of Theorem 3.1 assume moreover that (f, v) is

F-acyclic. Then

τF · ζF

−v = τF

M .

Proof. Tensoring by F((t)) the chain equivalence φ we obtain a chain equivalence

φF : N∗(f, v;F)→ ∆̂F(M)

of two acyclic complexes. The torsion of such chain equivalence equals the quotient

of the torsions of the complexes. �

Let K ⊂ S3 be an oriented knot, M = S3 \ Int N(K), and F = Q. Let (f, v) be a

regular Morse pair on M such that the homotopy class [f ] ∈ H1(M) ≈ [M,S1] ≈ Z is

the positive generator of this group. The condition of Q-acyclicity is fulfilled here, so

the above proposition is valid. It is well known that in this case the torsion τM equals

the Alexander polynomial divided by (1− t) and we obtain the following corollary:

Corollary 4.3. Let K be a knot in S3, let M = S3 \ Int N(K) and (f, v) be a regular

Morse pair on M . Let τ be the Novikov torsion of (f, v). Then

τ · ζ−v =
∆K

1− t

where ∆K stands for the Alexander polynomial of the knot K.

5. Heegaard splitting for sutured manifolds

The notion of a sutured manifold was introduced by Gabai [4]. See also [22]. In

this section, we recall the notations and define Heegaard splitting for the sutured

manifolds [6].

Definition 5.1. A sutured manifold (X,R+, R−) is a compact oriented 3-manifold X

with ∂X decomposed into the union along the boundary of two connected surfaces

R̃+ and R̃− oriented so that ∂R̃+ = ∂R̃− = γ and ∂X = R̃+ ∪ R̃−. Let A(γ)

denote a collection of disjoint annuli comprising a regular neighborhood γ, and define

R± = R̃± − Int A(γ). Thus ∂X = R+ ∪ R− ∪ A(γ). We regard R+ as the set of

components of ∂X − Int A(γ) whose normal vectors point out of X, and R− as those

whose normal vectors point into X. The symbol will denote R+ or R− respectively
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Figure 3.

while R(γ) denotes R+ ∪ R−. If ∂R̃+ = ∂R̃− = ∅, each component of R̃± = R± is a

closed surface.

Let L be a non-split oriented link in a homology 3-sphere, and R̄ a Seifert surface

of L. Set R = R̄ ∩E(L) (E(L) = cl(S3−N(L))). Let P be a regular neighborhood of

R in E(L), then P forms R× [−1, 1] where R = R×{0}. We denote by Ŕ+ (Ŕ− resp.)

R× {1} (R× {−1} resp.), then (P, Ŕ+, Ŕ−) may be regarded as a sutured manifold.

We call (P, Ŕ+, Ŕ−) a product sutured manifold for R. Further, let X = cl(E(L)−P ),

and R± = Ŕ∓, then we may also regard (X,R+, R−) as a sutured manifold. We call

(X,R+, R−) the complementary sutured manifold for R. In this paper, we call this

the sutured manifold for R for short.

Example 5.2. Let K be the trefoil knot in the 3-sphere S3 and R the genus 1 Seifert

surface as illustrated in Figure 3. The (complementary) sutured manifold for R is

homeomorphic to the manifold in the righthandside of the figure. (Note that the

‘outside’ of the genus 2 surface is the complementary sutured manifold.)

Definition 5.3. A compression body W is a connected 3-manifold obtained from a

compact surface ∂−W by attaching 1-handles to ∂−W ×{1} ⊂ ∂−W × [0, 1]. Dually, a

compression body is obtained from a connected surface ∂+W by attaching 2-handles

to ∂+W × {1} ⊂ ∂+W × [0, 1] and 3-handles to any spheres thereby created. If

W = ∂+W × [0, 1], W is called a trivial compression body.

We collapse a compression body W , so that we may obtain ∂−W ∪ (arcs), where

the arcs correspond to cores of the attaching 1-handles. We say the family of arcs the

spine of W . We denote by h(W ) the number of the attaching 1-handles of W .

Definition 5.4. A pair (W,W ′) is a Heegaard splitting for a sutured manifold (X,R+, R−)

if :

(i) both W and W ′ are compression bodies;

(ii) W ∪W ′ = X;
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(iii) W ∩W ′ = ∂+W = ∂+W
′, ∂−W = R+ and ∂−W

′ = R−.

If γ 6= ∅, then ∂−W and ∂−W
′ have boundaries so that ∂(∂−W )× [0, 1]∪∂(∂−W

′)×

[0, 1] = A(γ) and ∂(∂+W ) = ∂(∂+W
′) = γ. This case are treated in [6] and [7]. See

also [8] for the concrete examples. We should note that if R+ is homeomorphic to R−,

we have h(W ) = h(W ′).

Remark 5.5. This Heegaard splitting corresponds to a circle-valued Morse map M →

S1 for a closed orientable 3-manifold M with b1(M) > 0 or the complement of a

non-split link in a homology 3-sphere M . In both cases, we suppose that we have

a compact surface R as a representative of H1(M). Then, we obtain the sutured

manifold (X,R+, R−) from M by cutting along R. So, we have a Heegaard splitting

(W,W ′) of (X,R+, R−) as above. See [9] and [21] for the detail.

Definition 5.6. Suppose that R+ is homeomorphic to R−. Set h(X,R+, R−) =

min{h(W )(= h(W ′)) | (W,W ′) is a Heegaard splitting for (X,R+, R−)}. We call it

the handle number of (X,R+, R−). The Morse-Novikov number MN of (M,R) or

(X,R+, R−) is the minimal possible number of the critical points of the corresponding

Morse map.

Remark 5.7. By Corollary 2.8 in [9], we may see thatMN (M,R) = 2×h(X,R+, R−).

Definition 5.8. Suppose that (W,W ′) is a Heegaard splitting of a sutured manifold

(X,R+, R−), and let λ be a properly embedded arc in W ′ parallel to an arc in ∂+W
′.

Here “parallel” means that there is an embedded disk D in W ′ whose boundary is

the union of λ and an arc in ∂+W
′. Now add a neighborhood of λ to W and delete

it from W ′. This adds a 1-handle to W (whose core is λ) and also adds a 1-handle to

W ′ (whose cocore is a disk in D). Thus we have again the Heegaard splitting (Ŵ , Ŵ ′)

of (X,R+, R−) where the genus of Ŵ (Ŵ ′ resp.) is one greater than W (W ′ resp.).

This process is called a stabilization of (W,W ′).

We may regard a compression body W as a sutured manifold (W,R+, R−), that is,

we may suppose ∂+W = R+ and ∂−W = R−. A compression body W has a natural

Heegaard splitting: A surface S parallel to ∂+W splitsW into two compression bodies,

at least one of them is trivial. Call this the trivial splitting of W . A splitting is

called standard if it is obtained from the trivial splitting by stabilization. In [23],

Scharlemann and Thompson proved the next theorem:

Theorem 5.9 ([23]). Every Heegaard splitting of a compression body (W,R+, R−)

with γ = ∅ is standard.
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Remark 5.10. In [23], two types of trivial splittings, called ‘type 1 and 2’, are treated.

Here we have only to consider the ‘type 1’ trivial splitting.

This theorem induces the following theorem. The idea is due to Lei [13].

Theorem 5.11. Any two Heegaard splittings of the the same sutured manifold with

γ = ∅ have a common stabilization.

Proof. Let (W,W ′) and (V, V ′) be Heegaard splitting of a sutured manifold (X,R+, R−)

with γ = ∅ such that ∂−W = R+ and ∂−V
′ = R−. Let λW and λV ′ be the

spines of W and V ′. Then, the standard general position argument allows that

N(∂−W ∪ λW ) ∩ N(∂−V
′ ∪ λV ′) = ∅. We denote by X the sutured manifold with

R+ = ∂+W and R− = ∂+V
′, and let S be a Heegaard splitting surface for X. Then

S is also a Heegaard splitting surface for (X,R+, R−). Moreover, S becomes a Hee-

gaard splitting surface for the compression bodies W ′ = X − Int N(∂−W ∪ λW ) and

V = X− Int N(∂−V
′∪λV ′). Hence the Heegaard splitting surface S is a stabilization

of both (W,W ′) and (V, V ′) by Theorem 5.9. �

As in Remark 5.5, if there is a circle-valued Morse map f : M → S1, we have a

Heegaard splitting (W,W ′) of the sutured manifold (X,R+, R−). We also say that

(W,W ′) is a Heegaard splitting of M or Y . Let λW = ∪iλ
i
W (λW ′ = ∪iλ

i
W ′ resp.) be

the set of spines of W (W ′ resp.).

Definition 5.12. A family (W,W ′, λW , λW ′) is called a symmetric Heegaard splitting

of M if it satisfies the following conditions:

(i) (W,W ′) is a Heegaard splitting of M ;

(ii) there is one to one correspondence between the arcs λi
W and λi

W ′ (i = 1, . . . , k).

Further, ∂λi
W = ∂λi

W ′ for each i.

Remark 5.13. For a half-transversal gradient flow, we can construct a symmetric

Heegaard splitting so that ∪i(λ
i
W ∪ λ

i
W ′) are the circles of the half-transversal flow.

Conversely, for every symmetric Heegaard splitting H, there is a homeomorphism ϕ

of Y such that ϕ(H) is obtained from a half-transversal gradient flow.

6. Counting closed orbits

In this section, we establish a method to count closed orbits using the idea described

in the previous sections.

Let R be compact connected manifold, g : R → R be a continuous map. Assume

that g has only finite number of the critical points. The Lefschetz number is defined
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as follow:

L(g) =

ℓ∑

i=1

ind(xi),

where ind(xi) is the index of the fixed point xi (see [1]). Let Gi be the endomorphism

of the homology group Hi(R) induced by g. Then the Lefschetz fixed point theorem

asserts the following:

(6.1) L(g) =
∑

i

(−1)itrace(Gi : Hi(R)→ Hi(R)).

Let K be a fibred knot in the 3-sphere S3. Then K has a Seifert surface R and

the complement of K is the fiber bundle over S1 with fiber R. Let (P, Ŕ+, Ŕ−) be

the product sutured manifold for R, and (X,R+, R−) the complementary sutured

manifold for R. Then (X,R+, R−) has also product sutured manifold structure.

The monodromy g induces the transformation matrix Gi : Hi(R) → Hi(R). We

call G1 the monodromy matrix of the fibred knot K. Concretely, we can have a

presentation of G1 as follows. Let c1, c2, . . . , cm, d1, d2, . . . , dm be symplectic basis

of H1(R), where m is the genus of R. (See e.g. [17].) We suppose that ci · di =

1 here. Push them off along the normal vector of R, and put them on Ŕ+ and

Ŕ−. Then we may see that they are basis of H1(Ŕ+) and H1(Ŕ−). Since R± =

Ŕ∓, we may denote the basis of H1(R+) (H1(R−) resp.) by c+1 , . . . , c
+
m, d

+
1 , . . . , d

+
m

(c−1 , . . . , c
−
m, d

−
1 , . . . , d

−
m resp.). By using the product structure of (X,R+, R−), we

push further c−1 , . . . , c
−
m, d

−
1 , . . . , d

−
m into R+, and denote their images in H1(R+) by

c′1, . . . , c
′
m, d

′
1, . . . , d

′
m. Then,




c′1
c′2
·

·

·

d′m




= G1




c+1
c+2
·

·

·

d+
m




.

We show an example here.

Example 6.1. Let K be the trefoil knot and R the Seifert surface as shown in Figure

3. Set c and d as generators of R illustrated in Figure 4. The upper right-hand figure

in Figure 4 shows that the sutured manifold (X,R+, R−) for R with c±, d± ⊂ R±.

This (complementary) sutured manifold X is a product sutured manifold, that is, X

is homeomorphic to R × [0, 1] where R− = R × {0} and R+ = R × {1}. Then we

can consider a ‘flow’ ϕs (s ∈ [0, 1]) using this product structure such that ϕs(a) =

a × {s} ⊂ R × {s} for a subset a in R−. ϕs(c
−) and ϕt(d

−) (s, t ∈ (0, 1), (s 6= t))
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Figure 4.

are depicted in the lower left-hand figure in Figure 4, and the lower right-hand figure

shows ϕ1(c
−) and ϕ1(d

−), denoted by c′ and d′. Therefore we can observe that
(
c′

d′

)
=

(
d+

−c+ + d+

)
=

(
0 1

−1 1

)(
c+

d+

)
.

Thus we have

G1 =

(
0 1

−1 1

)
.

In this case, we can observe that trace(G0 : H0(R) → H0(R)) = 1 and G2 = 0.

From (2.4) and (6.1), we have :

ζg(t) = exp
( ∞∑

k=1

tk

k
(1− trace Gk

1)
)

= exp
(
log(1− t)−1 + trace(log(I − t ·G1))

)
( |t| < 1 )

=
det(I − t ·G1)

1− t

=
1− t+ t2

1− t
.

Here I is the unit matrix. Note that the Alexander polynomial of the trefoil knot is

1− t + t2. In general, if a knot K is fibred, the numerator det(I − t · G1) equals the
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Alexander polynomial of K. Therefore we have the following well-known theorem.

See [16] for example.

Theorem 6.2 ([16]). Let K be a fibred knot in S3, and we denote by g the monodromy

of K. Then,

ζg(t) =
∆K(t)

1− t
.

Here ∆K(t) is the Alexander polynomial of K.

Now let us consider the case of non-fibred.

Let M be a compact orientable 3-manifold with b1(M) > 0. Let f : M → S1 be

a Morse map, and R a regular level surface for f . We obtain a sutured manifold

(X,R+, R−) from M cutting along R. As pointed out in Remark 5.5 and Definition

5.12, there is a symmetric Heegaard splitting (W,W ′, λW , λW ′) corresponding to f .

Set k = h(W )(= h(W ′)) the number of the attaching 1-handles of W .

According to Definition 2.3, the monodromy g induces the transformation matrix

G1 : H1(S)→ H1(S), which can be obtained as follows. We denote the symplectic ba-

sis ofH1(∂+W ) (H1(∂+W
′) resp.) by c+1 , , . . . , c

+
k , c

+
k+1, . . . , c

+
m, and d+

1 , . . . , d
+
k , d

+
k+1, . . . , d

+
m

(c−1 , . . . , c
−
k , c

−
k+1, . . . , c

−
m, and d−1 , . . . , d

−
k , d

−
k+1, . . . , d

−
m resp.). Here c+j and d+

j (c−j and

d−j resp.) (j = 1, . . . , k) are derived from the attaching 1-handles of W (W ′ resp.),

namely, c+j (c−j resp.) (j = 1, . . . , k) is a cocore of the attaching 1-handle of W (W ′

resp.) and d+
j (d−j resp.) (j = 1, . . . , k) is a ‘longitude’ corresponding to c+j (c−j resp.),

so that c+j · d
+
ℓ = δjℓ = c−j · d

−
j (j, ℓ = 1, . . . , m). cf. Figure 1. As in the case of a

fibred knot, the generators c+j , d
+
j and c−j , d

−
j (j = k + 1, . . . , m) are obtained from

corresponding generators of H1(R) using the half transversal flow associated with f ,

see Figure 5. Let c′1, . . . , c
′
m, d′1, . . . , d

′
m be the images of c−1 , . . . , c

−
m, d−1 , . . . , d

−
m in

H1(∂+W ). Then we may describe:
(
c′1 · · · c′k c′k+1 · · · c′m d′1 · · · d′k d′k+1 · · · d′m

)T

= G1

(
c+1 · · · c+k c+k+1 · · · c+m d+

1 · · · d+
k d+

k+1 · · · d+
m

)T

.

We call G1 the monodromy matrix . For n ≥ 1, we have:
(
gn
∗ (c+1 ) · · · gn

∗ (c+k ) gn
∗ (c+k+1) · · · g

n
∗ (c+m) gn

∗ (d+
1 ) · · · gn

∗ (d+
k ) gn

∗ (d+
k+1) · · · g

n
∗ (d+

m)
)T

= Gn
1

(
c+1 · · · c+k c+k+1 · · · c+m d+

1 · · · d+
k d+

k+1 · · · d+
m

)T

Here (·)T stands for the transposition of a matrix.

The monodromy g is an orientation preserving diffeomorphism between surfaces,

then G1 ∈ Sp(2m,Z), in particular detG1=1. Further R is a closed or once punctured



20 HIROSHI GODA, HIROSHI MATSUDA, AND ANDREI PAJITNOV

Figure 5.

surface in our setting. If R is closed, then trace(G0) = trace(G2) = 1. So, if |t| is

sufficiently small,

ζg(t) = exp
( ∞∑

k=1

tk

k
(2− trace Gk

1)
)

= exp
(
log(1− t)−2 + trace(log(I − t ·G1))

)

=
det(I − t ·G1)

(1− t)2

If R is a once punctured surface, we have:

ζg(t) =
det(I − t ·G1)

1− t

by the same argument, if |t| is sufficiently small. Here I stands for the identity matrix.

7. Counting flow lines

In this section, we consider counting gradient flow lines from critical points of index

2 to those of index 1, which are obtained from a circle-valued Morse map M → S1,

according to Section 2.

In our setting, there are only critical points of index 1 and 2, we can observe the

torsion τg(t) of the chain complex ((2.3) 0←− N1
D
←− N2 ←− 0) as follows.

As in the previous sections, we consider only a monodromy matrix which is ob-

tained from a symmetric Heegaard splitting and a half-transversal flow. The Novikov

module N1 (N2 resp.) of the pair (f, v) is generated by S1(f) = {p1, . . . , pk} (S2(f) =

{q1, . . . , qk} resp.), i.e., the center points of the disk bounded ci (tci resp.) (i =

1, 2, . . . , k). See Figure 1 and 2. Therefore the i× (m+ j)th-component of the matrix

G1 stands for the algebraic number of the flow lines between qi and pj (1 ≤ i, j ≤ k).
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Figure 6.

See Figure 6 for the schematic image. Let D
(n)
ij be the i × (m + j)th-component of

Gn
1 , (1 ≤ i, j ≤ k). Then we have:

Definition 7.1. We define

τg(t) = det(Dij(t)), where Dij(t) =

∞∑

n=1

(D
(n)
ij · t

n−1), 1 ≤ i, j ≤ k.

If M has no critical points, i.e., M is the fibre bundle over S1 with fibre R, then τg(t)

is defined to be 1.

By taking |t| sufficiently small, we have:

∞∑

k=1

Gn
1 · t

n−1 = G1(I − t ·G1)
−1.

Therefore, Dij(t) is the i× (m+ j)th-component of G1(I − t ·G1)
−1, (1 ≤ i, j ≤ k).

We present the concrete examples for τg(t) in Section 8.

8. Examples

In this section, we consider twist knots K2n−1 (n = 1, 2, 3, . . .). Note that the

Alexander polynomial of K2n−1 is −n+ (2n− 1)t− nt2. A twist knot has a genus one

Seifert surface Rn as illustrated in Figure 7. The twist knot K1 is the trefoil knot,

then it is fibred and treated in Example 6.1. So, we assume that n ≥ 2.

Let Xn be the complement of the knot K2n−1.

Lemma 8.1. MN (Xn, Rn) = 2 for any n (n = 2, 3, . . .).

Proof. Let λ and λ′ be arcs whose boundaries are in Rn as illustrated in Figure 8, and

(Xn, R+, R−) the sutured manifold for Rn. Note that ∂λ = ∂λ′, and R+ (R− resp.)

intersects λ (λ′ resp.) transversely in one point. Then the regular neighborhood of

R+ ∪ λ and R− ∪ λ′ in Xn are compression bodies. Therefore we have only to show

that the sutured manifold cl((Xn, R+, R−)− (N(R+ ∪ λ) ∪N(R− ∪ λ′))), denoted by
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Figure 7.

Figure 8.

Figure 9.
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Figure 10.

(X̆n, R̆+, R̆−), is a product sutured manifold. We consider the case of K5 (n = 3)

since the other cases can be seen by the same method.

Let D1 be the product disk in (X̆3, R̆+, R̆−) as illustrated in Figure 9 (shaded

part), that is, the disk D1 is properly embedded disk in X̆3 such that ∂D1 ∩ R̆+

(∂D1 ∩ R̆−resp.) is an arc properly embedded in R̆+ (R̆− resp.). We decompose X̆3

along D1 and connect the suture naturally, then we obtain a new sutured manifold

(X̆1
3 , R̆

1
+, R̆

1
−). This decomposition is called a product decomposition [5]. Similarly, we

decompose (X̆1
3 , R̆

1
+, R̆

1
−) along the product disk D2, then we have a sutured manifold

(X̆2
3 , R̆

2
+, R̆

2
−). See Figure 9. Thus we have a sequence of the product decompositions:

(X̆3, R̆+, R̆−)
D1→ (X̆1

3 , R̆
1
+, R̆

1
−)

D2→ (X̆2
3 , R̆

2
+, R̆

2
−)

D3→ (X̆3
3 , R̆

3
+, R̆

3
−)

D4→ (X̆4
3 , R̆

4
+, R̆

4
−),

where X̆4
3 is homeomorphic to the 3-ball and both R̆4

+ and R̆4
− are disks. This shows

that (X̆3, R̆+, R̆−) is a product sutured manifold by [5]. By the same argument, we

have that (X̆n, R̆+, R̆−) is a product sutured manifold. This completes the proof. �

We denote by (Wn,W
′
n) the Heegaard splitting of (Xn, R+, R−), which is obtained

in the proof of Lemma 8.1.

Lemma 8.2. The Heegaard splitting (Wn,W
′
n) is symmetric.

Proof. Since ∂λ = ∂λ′ and (X̆n, R̆+, R̆−) is a product sutured manifold, we have this

lemma. �

For the simplicity, we discuss the case of K3 (n = 2) in the next lemma. The general

case can be obtained by the same method.
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Lemma 8.3. The Heegaard splitting (W2,W
′
2) induces a monodromy matrix presented

by

G1 =




1 1 −2 −1

0 1 −1 0

0 0 1 0

0 −1 0 1


 .

Moreover, we have

ζg(t) = (1− t)3 and τg(t) =
−2 + 3t− 2t2

(1− t)4
.

Proof. We take a basis c2, d2 of H1(R) as illustrated in Figure 10, then we have a basis

c+2 , d
+
2 of H1(R+) (c−2 , d

−
2 of H1(R−) resp.) as in the upper right-hand figure (lower

left-hand figure resp.) in Figure 11. Note the positions of λ, λ′ and c2, d2 in Figure 10.

Let (X̆2, R̆+, R̆−) be the sutured manifold cl(X2, R+, R−)−(N(R+∪λ)∪N(R−∪λ′)) as

in the proof of Lemma 8.1. Here we see that c+1 , c
+
2 , d

+
1 , d

+
2 ⊂ R̆+ and c−1 , c

−
2 , d

−
1 , d

−
2 ⊂

R̆−. Since (X̆2, R̆+, R̆−) is a product sutured manifold, we can move c−1 , c
−
2 , d

−
1 , d

−
2

by a free homotopy from R̆− to R̆+. We denote their images by c′1, c
′
2, d

′
1, d

′
2. Then

we can see that they sit as in the lower right-hand figure in Figure 11. Hence we have:

c′1 = c+1 + c+2 − 2d+
1 − d

+
2 , c

′
2 = c+2 − d

+
1 , d

′
1 = d+

1 , d
′
2 = −c+2 + d+

2 . Therefore we have

the monodromy matrix G1 in the statement of this lemma, and we have

ζg(t) =
det(I − t ·G1)

1− t
=

(1− t)4

1− t
= (1− t)3.

Note that the convergence radius is 1.

On the other hand,

G1(I − t ·G1)
−1 =




1
(1−t)

1
(1−t)3

−2+3t−2t2

(1−t)4
−1

(1−t)2

0 1
1−t

−1
(1−t)2

0

0 0 1
1−t

0

0 −1
(1−t)2

t
(1−t)3

1
1−t



.

Thus we have τg(t) =
−2 + 3t− 2t2

(1− t)4
. �

By the same argument, we have:

Proposition 8.4. The Heegaard splitting (Wn,W
′
n) induces a monodromy matrix pre-

sented by 


1 1 −n −1

0 1 −1 0

0 0 1 0

0 −1 0 1


 .
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Figure 11.

Moreover, we have

ζg(t) = (1− t)3 and τg(t) =
−n + (2n− 1)t− nt2

(1− t)4
.

Example 8.5. Let K be the pretzel knot of type (5, 5, 5) and we consider the sym-

metric Heegaard splitting associated with Figure 12. Then,

G1 =




1 0 1 −5 −2 0

0 1 0 −3 −5 1

0 0 1 0 1 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 −1 0 1




.
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Figure 12.

Thus we have ζg(t) = (1− t)5. Further,

D11(t) = D22(t) =
−5

(1− t)2
, D12(t) =

−2 + 3t

(1− t)3
, D21(t) =

−3 + 2t

(1− t)3
,

τg(t) =
19− 37t+ 19t2

(1− t)6
.
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