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Introduction

1. The present paper is devoted to an exposidon of the foundations of th

theory of systems of integral equations of the following type:
n X

IMUED Kifm(l—b‘)zq(s)dwfp(t) Ot <oo; p=1, 2 1), (C

| y ey e
g=1 u

where kpq {¢) and fp (tY {p, =1, 2,---.n) are given funcrions, and Xp(t)

Ap=1,2,---,n) are unknown. Concemning the functions &_ {8) (p,g =1, 2,--

it is supposed throughout in the following that they are of class LI'(—w, o).
cerning the funcrions fp (#) and Xp ) {p=1,2,---,n), the first mentioned a
given, and the second are sought, in one of the Banach spaces £t (see 32),
cluding in particular the Banach space L;{0, =) and its adjoiat space—the s
of bounded measurable functions M{0, ).
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Using vector-matrix symbolism, the system of equations {0.1) may be written

more briefly in the form
(==}

x(fFSk(E—S)x(S)dszf{z) 0<t< o). (4)

b
With the sole exception of $13, during the course of the whole paper it will be
supposed that the following condition holds:

det (I — 3% (W) 0  (—co < k< ), {0-2)
where
G () = S k() e dr. (0.3)

Under ordinary circumstances, by using Fourier integral theory, the theory of

the integral equation

2@ = VEE—s)y@ds =) (= <t<oo), (0.4)

which différs from equation {A) in that both limits of integration are infinite, so
that the equation is considered on the whole, rather than half, of the real axis,
does not present any difficulty.

In fact, if, for example, one supposes that fp (¢} € L; (oo, o) (p=1,---,n
and that the functions X, (#) are sought in the same class L;{—e, o), then the
Fourier transform of both sides of equation (0.4) may be taken. Taking it, one

obtains
. (I — % ) X ()= F (3, (0.5)
X (1) = S p(Qeds,  F(N)= Sf(:)ew di (—oo <A< o).

From (0.3) it follows that
XW={ & (W) F () (0.6}
On the other hand, if condition (0.2) helds, from the known theorem of Wiener
(see $3, Theotem W) one may assert the existence of a matix [(s) = Hipq G
with elements lpq(t) [ L1 {—e0, =) such that
(I —&% (W) 1= T - S 1(t) it dy.

This relation permits rewriting (0.6) thus
o0

ro=10+ {te—976ds. (0.7
Consequently, if (0.2) holds, then for arbitcary right-hand side f(#) with coordinates
fp(t) € L (~o, ), equation (0.4) possesses one and only one solution {8} with
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coordinates Xp e LI(—na, e}, which is given explicitly by Formula (0.7).

As soon as the matrix-function f(t) has been obtained, the proposition ju
formulated can be easily extended to take care of the solution of equation (0.
other function spaces, in particular the space M{—e, o} or to its subspace o
bounded continuous functions, and others.

In spite of the similarity of appearance of equations (A) and {0.4), the th
of equation (A} is much more difficulc—in particular, condition {0.2) does not ;
antee the solvability of equation (A) in this or the other space.

2. The last mentioned circumstance occurs already in the case of the sc
equation {(A).

As was shown in [ 1], equation (A) possesses one and only one soluton ¥
for any given f € E% if and only if

1—aF (WN+£0 (— oo << k< ®) {

and the number

1 ¢ .
X Sdkarg(iwéiii £3);

is zero. —0
It was shown further in [ 1] that when (0.8) holds, and & > 0, then the no:
homogeneous equation (A} may always be solved, but not uniquely, because &

this case the bomogeneous equation
o

o (2) -~ S E(i—s)o@)ds=0 (0<{< o)
0

possesses, in all spaces E+(Ll (0, ), M(0, o), erc.), the same x-dimensio:
manifold of solutions, and all these solutions are absolutely continuous and :
proach zero as £ - oo,

¥ the condition (0.8) holds and the number x <0, then for eack f(t) €E

the equation (A) will possess a solution if and only if

S FN o dt=0,
0
where /{} is an arbirary function of the k—dimensional set of all solutions
the transposed homogeneous equation
O (L) — S E(s—1)d(s)ds=0.

In proving these results, an edsential rdle is played by the representato
the funceion (I — X0 )_1, when condition (0.8) holds, in the following form

(1= () =@, M8 () (= h o), (
wirere the factors €, (X) are of the form
E, (N =1+ S Y{t)ertdy, T{HELD, )  (ImXi>0),

0
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oo

G (=1L % Ye(Deindt, o ()EL, (0, coy (Im ) > 0),
0
and at least one of these functions is not identically zero in its half space of

definition,
It may be shown that in 21l cases where (A) is solvable, one of its solutions
is given by -
1 @=F+ 10 9fds  (0<t< o), (0.10)
i

where

T )=yl —s)+y=(s —1) + \ TE ="y (s —r)dr,
¢

and where y(t} =y (=0 for t <O
3. In the case of the matrix equation, n > I, the réle of the representation

{0.9} is played by the representation

220 ... 0
(=& M)y =% () 0_ e 9 N_O) (=il (e <h< @)
0 0 ... gw (0-11)

which will be referred in this paper as the “left standard factorization” of the
matrix T = — KO, where Ky 2 Kg 2 === 2 K, are cerrain whole numbers,
and %i()t) are certain matrix functions, holomorphic in the interior of, and con-
tinuous even on the boundary of, corresponding half planes Hi,l) and having non-
zero determinants.

In this representation the numbers k;, Ky, +»+, K are uniquely determined.

n

In the ‘scalar case{n = 1) the possibility of the factorization (0.9) follows
rather easily from the known theorems of Wiener and Wiener-Lévy (see [1) about
functions with absolutely convergent Fourier integrals.

The anthors do not concern themselves with the proof of the existence of the
ieft standard factorization by means of harmonic analysis, wnder the general
hypotheses (0.2), (0.3). Here this will be avoided; use will only be made of several
facts from the theory of integral equations which are related 1w the factorization
{0.11), which may be proved without appeal 10 the general theory of linear oper-
ators in Banach spaces, in particular of the property of aormal extension of equa-
tion (A), and specifically of the fact thar the homogeneous equation (B) possesses,
in all spaces E+(n x 1)r the same set of solutions, constituting a linear marifoid

of finite dimensionality a.

1} The notation ll; refers to the closed half planes ImA> 0 and Im A< 0, together
with the point.
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Among other things, it is shown that the number « coincides with the sun
positive indices K while the sum of the absolute values of all negative K; i
dimension of the linear manifold of all soludons ¥{t) of the transpose equati

B~ \F (=)o ()ds=0  (0<i< )

. 0
(k°Ct) being the transpose matrix of & {¢}).
The factorization {0.11) permits the extension to the general case of n >

of formula (0.10), and also leads to other resulis.

It is emphasized that the fundamental theorem concerning the facrorizatio
{0.11}, which is used {see §7) to establish the fundamental propositions con-
ceming the integral equations (A} and (B}, plays the same essential t8le in Ia
considerations.

4, The carrying out of the factorization (0.11) is based on the solution o:
homogeneous Hilbert problem for the matrix function {3 =/ — HON ™ (see
$6). After the fundamental papers of Hilbert £ 2], {3] and Plemetj {4], and the;
important extensions in the works of N. I. Musheli¥vili and N. P. Vekua (see
and [6]), the existential part of the solution of this problem appeared to have
reached a definitive aspect,

However, these considerations tumed out w be insufficient for our preser
purposes, because in all of them it is always supposed that the elements of th
fundamental matrix are functions which satisfy a Hélder condition, In view of
it was necessary for us to establish anew the fundamental facts concerning th
homogeneous Hilbert problem, employing new analytic and abstract functional
means.

Among these, many constructions in $6 are analogous to the correspondin
constructions used by the authors quoted, and this fact simplified our task a
great deal,

The “partial indices” x; (j=1,2,---,n) play a fundamental rdle in the
theory of equation (A}; in the homogeneous Hilbert problem they were first inu

duced by N. L. Musheli&vili and N, P, Vekua [71.

The theory of the integral equation {A) (see $9) reveals a new meaning o!

K; there corresponds a set <,‘b(_{)(t), ¢'(§) (&, -.-

pactial indices,
To gach positive index’
-, 9’5.‘(]' (¢) of solutions of equation (B} in LI (0, e}, all absolutely continuo

and apptoaching zerc as ¢t — s, and such that

1) For reasons coucerning certain definitions (see §7) in this paper they are call
"left indices™ {or "left exponents®).
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def )
=l (), 9 (0)=0 (k=1, 2, ..., %,—1) and 9:,(0) 5 0,

These sets, called “D—chains”, form a basis for the solutions of equation (B) in

all spaces E¥.

Analogously, to the negative pardal indices K; there correspond D—chains
of length |Kfi of solutions of the transpose equation (B”).

In the paper there occur new results concemning the partial indices which are
due to the young mathematicians Yu, V. gmul'yan (8, [9], and G. N. Cebutarev
[10}. These results can be immediately exrended to our Hilbert problem. Further

developments are to be found in sections 8 and 11.

According to this theorem, the indices K {j=1,2,---,n} are not altered by
an arbitrary “suffic.ently small 7 perturbation of the kemel matrix % (¢} (or what
is the same, of the watrix M{A)) only in case they have the following values

Wy m= A, = =Y == - P — .
1=y ==, =g+ Kpal ™= oo =, =,

w~here the integers ¢ and r are defined by the relation

t=qn-tr {O<r<n,

where -

= ;;_ S dy arg det IR ().

The method of proof of this theorem may be applied in the general case of the

Hilbert problem for one or for several closed contours, in the usual formulation.

It is remarked that in recent times the problem of the facrorization of marrix
functions (X} (~o0 <A <o0) of the type considered by us has played an important
role in inverse problems of the quantum theory of dispersion (see [12] and [13]).

It should also be noticed that the results of the first thirteen sections may be
readily exrended so as w apply also to the discrete analogue of equation (A) (com-
pare the infinite system of linear equations (14.1)) and to the related problem of
factorization for the homogeneous Hilbert problem on the unit circle, involving
matrix functions whose elements are expandable in uniformly convergent Fourier
series (for these maiters see also [ 14] and [ 1]},

5. In this paper we put aside the problem of determining all the cases in which
equation (A} may be explicitly solved. However, one such case is considered,
namely that in which £(2) is a triangular matrix fincton, In this case it is shown
in section 1I how the left standard factorization {0.11) may be actually carried
out, which permits the determination of all solutions of the homogeneous equation
(B}, and also of the simple and the generalized resolvents of equation (A). The
explicit solution of equation (A) is also achieved when # () is a rational func-

tion matrix, because then the standard factorization of (I - X {N))~! may be ac-
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complished by means of simple algebraic operations {6].

However, this does not cover all the cases of equation (A} occurring in
cations which admit explicit solutions. To verify this it is only necessary
to the papers of V. V. Sobolev [ 15} and S. Chandrasekhar {16] who give an
of cases in which the integro-differential equations of radiaton energy tran
may be effectively solved. On the other hand, these equations are equivale
certain systems of integral equations of type (0.1}, when the so called disp
indicatrix is a polynomial in the cosine of the dispersion angle, which is a:
in the papers of the authors mentioned.

6. The central r8le in the theory of the integral equations (A) and {B)
played by the “factorization idea”. This idea first made its appearance in1
paper of Wiener—Hopf {17] on the solution of the homogeneous scalar equati
when k£ (¢) is an even function satisfying

Ey =01t or il (1e L, (— oo, o), (c>0).

Further developments are to be found in the papers of Reissner [18], v
Fok [ 191 and 1. M. Rapoport £20]. This last mentioned author first called at
w the relation between the theory of the scalar equation (A) and the homog
and non-homogeneous Hilbert problems for a straight line. The discovery o
a relation, ogether with the use of the known results of F. D, Gabov [21] £
non-homogeneous Hilbert problem, enabled 1. M. Rapoport t remove the rest
of type (0.12) and to obtain general propositions about equation (A} without

suming the funcrion k() to be even,

However, the complete results {some of which have been published alr
for the scalar equation (A}, considered in various spaces ET under the sin
hypothesis that the function k(1) € L, (— e, 20) and satisfies (0.8), were ol
by one the authors in the paper [ 1], which is of particular importance for th
sent paper.

It is remarked that certain of the basic propositions of the theory expo:
here were presented by the authors to the Third All-Sovier Mathematical Co
(22,

$1. Auxiliary considerations from the general theory of linear operato:
the following we shall have occasion to employ some relatively new wols ¢
tional analysis, a full discussion of which may be found in [11}, Here the :
will be presented without proofs.

All operators mentioned in the present section will be supposed to {wi
further mention being made of the fact) operate on a Banach space B and:
linear continuous operators. By BT we shall designate the adjoint space ¢

i.e., the space of all linear continuous functionals on B,
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If A is an operator then A will denote the adjoint operator of 4, i.e., if
$ € B and f=A" ¢, then #(4x) = f(x) for every x in B.

The subspace 3{4) consisting of all solutions of the equation Ax =0 is
calied the null space of the operator A. The subspace of all zeros of the operator
AT is denoted by Bt 4y,

The dimensions of the subspaces 5 (4), 37 (4) are d;noted respectively by
oAy and B{4).

If the numbers a{4) and S{4) are finite, then the difference

« (4) =a (4) — 3 (4)
is called the index of the operator 4. '

We shall say that the operator 4 possesses an inverse if a(4) =0, and
A®B =B. For only in this case does there exist an operator 4 such that

R AA = A1 = T
where [ is the identity transformation of the space B,

As usual, the operator 4 is said to possess a nommal extension, provided
that for eachk ¥ € B the equation Ax =y has a solution if and only if f{y) =0
for all f€ 3 {4).

The last condition is equivalent to the fact that the range of values of the
operator A is closed. The normal extensibility of one of the operators A, At
carries along with it the normal extensibility of the other.

In order to check the nomnal extensibility of an operator AT itis not neces-
sary to have recourse to the second adjoint space (BT} and w the second ad-
joint operator {ATY . For it is rrue that (see [23] or [24]) thar the operator AT
is normally extensible, i.e., that the set of its values A'®' s closed in B if
and only if this set coincides with the serof 2]l f € B which are orthogonal to
HA): f(B(A)) = 0; in other words, the equation AT g=f{f€ $7) has a solution
if and only if flx) =0 for every x € 3(4).

The operator 4 is called a ®—operator provided that it is nomally exiensi-
ble and that both numbers {4} and B8(4) are finite.

If one of the operators 4, A7 is a O—operator then the other operator is also
a ®—operator,

The following important propositions hold for ®—operators: (see section 2
of [111):
A) To each $—operator A there corresponds a positive number p suck that

every operator B With | BY| < p, has the property that the operator A + B is alseo
a @—operator and further

w{A - B = (A} and g {4+ B) Lal(d).
B) If 4 is a ®—operator and T is a completely continuouns operator then the
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operator A + T is also a S—operator and

2{A+T)=n{A4).
C) The produce AB of two ®—operators is alss a ®—operator, and
#(AB) = (4)+=(B).

Propositions A) and B) above can be extended to the case when only one
the numbers ald) and B{4) is finite.

§2. General theorem about equation (A). We shall consider several spac
of complex valued functions defined on the positive half axis.

We shall employ the following notarion. As usual, L {P}0, ) {p>21 wi
designate the space of all measurable functons f(2){0 <t < =) possessing ¢

finite integral for | f{t)|P over the half axis, the nomm in this space being giv
= {

!Efi%L(pj{U‘ o) :( g 2/{‘;) P di )7)
o .
The-letter M+ will designate the adjoint space to the space LT =1 (g, o

is well known, ¥ consists of all bounded functions f(£) (0 <t <), the no:
being defined by | J il = sup ess |/ ()1-
[l el
The spaces M': and M'; are subspaces of the space M T. The first one
sists of continuous functions, and the second of uniformly continucus functio:
Further, C denotes the subspace of all continuous functions f(2) € Mt
{0 < ¢ <o) for which the following limit exists:
flec)=lim f(z),
o0
and (7} designates the subspace of all f(2) € C™* for which fleo) =0,
It is remarked thart in the spaces C¥ and C7 the norm may be equivalen
defined as follows: . :
fi /e = max!f ()]
bxigen
In the sequel, the letrer £7 wiil be used 1o sitand for one of the spaces
L0, eo)(pzl), CCCCM, oM CM* {
and the letter DT for one of the spaces L P10, =) (p> 1), M™.

To each space DT corresponds its adjoint space D;’f, which coincides

L0, ) (gL p~t =D), it D= L0, o} (p > 1); and wich M* if D -
and with Lt if DY =Y+

Analogously, one may intoduce the spaces of functions L (p){_,_ oo, ) (p
and M (~ oo, o=}, defined on the whole real axis.

The letter U will be used to designate one of these spaces,

Let B be a linear set. Then the set of all n—dimensional column vecror
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f= (fp fz""

If B isa Banach space then B(sz) will become a Banach space also, once a

) with coordinates in B {f € B) will be designated by B(nxl}

norm is defined in it by the relatdon
”
The set of all square matrices of the nth order with elements in B will be
denoted by By, .

The intersection of two Banach spaces BI and B.‘Z is the set of all elemeats
common to B; and B,, the nom being defined by

ifii-"- e, + i flee  (FEB1BY).

In view of its definition, the intersection of two Banach spaces is again a

Banach space.

To each matrix fanction &(2) € Ly, 1y (= L((rfl }) we associate three
operators b,
Ey :SD (t—s)f(s)ds  (—co<t <oo; f€Dmxn), (2.2)
Kfm_"oi E{t—s)f{syds (0<t < o5 f€E&Hun) (2.3)
[
R ﬂoifb s)f(s)ds  (0<t < ; [E€ Epxn) (2.4)

It is easily shown (see [1] and [11]} that
EDxt) CD@xin KEbx1y T Exy and KEq ) CC Efu.

~ A
1In particular, in their corresponding spaces the operators K, K, and K are linear

and bounded, because their norms satisfy the inequalities

(Ol 1K llee<n Itllix

i, §=1, 2, .. n i, §=

n o (O s (2-9)

3 Ly oweny

1} The convergence of the improper integrals (2.2), (2.3}, (2.4) in the spaces D(nxl)’
E(:x”, with the exception of L(n(Px)I) (0, =), L(’{FQI) (—o0, ) (p > 1), is understood in
the usual sense,

In the exceptions mentioned, the convergence of the integrals is meaot in a special
sense, for example o

M
S E(t—s) f{s) ds:l. i. m. S kE{t—s) f (s5) ds,
—_—00
where l.i.m, is the limit ie the sense of the metnc of L((pgj) {— o, =), For more details
concerning this, see §10 of [11]. »

R R
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[E e <n - max kg @) e,

4, =1, 2, ..,

where &;; (), j=1,2,-+-,n} ate the elements of the matrix kA{z). It may

shown without difficulty that the operator K is completely continuous on ea
space Ey)-

Similar properties are possessed by the operators (2.3) and {2.4), consi
as acting on the intersection of two spaces (2.1).

The following theorem holds:

Theorem 2.1. Suppose that the matrix function k() € L¢3 satisfie:

det (I —o% (1)) 0, (o0 < k< oo},

where X\ is the Fourier transform of k(). Then each of the homogeneou.

equations .
q:(.i)——gk(i—us)?(s)ds=0 0<t< ),

0
{3)45/’» (s—8) 4 (s)ds == O<t < o)

possesses, on each space D(nx 1) Rot more than a finite number of linearl
independent solutions.
The nonhomogeneous equation
<o
s kt—sg@mds=1(n (0<t< ),
Q

where [(t} € D(ti %1} has at least one solution g(t) in the space D{': % 1)

only if the following condition holds: D

V79 () ds=0,
[
whenever (s} is an arbitrary solution of equation {B*) in the space D(";:

Proof. To equation (A) we associate the equation
(=)

g0 =920 ds=10) (g 1€Dpuy —o <t <o),
which may_bog written briefly as follows: g — Eg =f
Suppose at first that the vector function f(2) € L, . ;). and that the «
tion (2.7) has a solution g(z) in the space L (e x1)"
Taking the Fourier tzansform of both members of (2.7), we obtain
(= (W) =F() (— o < k< o),
where G(X), FN and ¥X) are, respecrively, the Fourier transforms of tt

B
1} The vector ¥ () we suppose 1o be represented as a column vector; by %I
denote the same vector, but written as a matrix having a single row.
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vector functions g(¢), f(¢), and the matrix function &{z).
According 1o Wiener™s theorem, about which mere will be said in §3, there
exists a matrix function ¢(z) € L(nxn) such that
(=& ) =l + Q) =1 + 5 g (tyet dy. (2.8)

T

From (2.8) it follows that
G (W = (T e 8 (3L
o IW=T )N F )= F0)+ Q) .F ()
or, what is the same
fos)
6’{5)=f(f)+s g{t— s} /(s)ds. (2.9)
— -
It is easily seen_that, conversely, for each f€ L (nx 1) the vecwor function
g(t) constructed by means of (2.9} will also belong to L (rx 1) and will be a solu-
tion of equation (2.7).
Moreover, it may be immediately verified, that, for an arbitrary right-hand tem
feb (nx1) formula (2.9) defines a vector function g(t) belonging to the space
D (nx 1) which is the unique solution of equation (2.7).

LA )

Th i 7
us, in each space D(nxl) the operator / - K, where [ is the identity
operator in the space D (Rx1) has a bounded inverse operator.

Coansider, on the other hand, the space Dﬁ, consisting of pairs of vector
funcdons (g} = if; (1), f,(e}} belonging to the space D(tle) {f. eD(““ 1)']'*1:2)
with the norm defined by ’ " ,

\ [fl=07lo+1falip*-
: . .
The S'pace DH is equivalent to the space D(nxl) in view of the following iso-
morphism: to each f€ D,y comesponds | € Dy which is defined by
AW=T0,  JO=f(=1) _ O<i< o).

In view of this equivalence, the operator / — K may be thought of as an oper-
ator acting on Dﬁ , in such a way that if

j=Kg,

-then

B =\ k-5 g (s)ds-+ \ k(49 g, (5) ds,
3] [

. . 0t <s)
= YE(—t =9 @t {E(~t 9 (9 ds
4

or, in abbreviated notation

fl:Kgl“i‘ﬁgz,

f‘l “K1€1+K1g2,
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or, in still another way, K f{
E = 'y
(K1 Ki) )

Together with the operator K we shall consider also the operators 5 an

~

which are defined by the equations
5o (’K 0 ) . 0 K\
0 K, T\K . 0 ) ’

The operator K; has for kemel the transpose of t}i\xe kernel of the operat
The operator K; is of the same type as the operator K, and consequently th
operator T is compietely continuous.

The operator I — B is expressible as the sum of the inverse operator of
and the completely continunous operator T.

fa¥) b avs land

Thus, | — B is a ®—operator, since «{I — B) =0, and hence the opera
T'_B is the direct sum of the operators [ — K and [ - K;, where I is the ic
transformation of the space D(le), each of which act on the space D(";X 1)
both of these operators [ — K and [ — K; must be ®—operators, and

w(I—-By=x({ —K)+x(I—K)=0.

From what was said concerning the definition of ®—operators follows t
truth of the theorem for all spaces D (nx 1) with the exception of the space

In the excluded case D(J; w1} = M(“; 1) the theorem is also valid becat
the operator [ ~ K may be considered as the operator adjoint to the operator
where "
Kio= \ ¥ (s—0p()ds,

i
and it is already known that the operator [ — K is a @ —operator on the spac
+

L{n x Iy

In concluding this paragraph we shall make two rematks.

1. The theorem proved remains valid if in its formulation the operator .
is replaced by the operator 4 — K 1 where A is a constant nonsingular m:
and the condition (2.6) is replaced by the condition

det (A -— % (1)) # 0 {—oo <k < c0).

The truth of this remark is obvious; because multiplying the operator 4
by the nonsingular constant matrix A~ one is led to an operator of the typ
sidered above.

2. From the proof of the theorem it follows that its hypotheses imply 1t
operator ! - K is a ®—operator (see the definition in &1y in any space E(:

and also in any intersection of any two spaces E('; 1)

1) 4 —K is an abbreviation for the operator 41 — K.
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$3. Auxiliary considerations from the theory of Fourier integrals. This sec-
tion is devoted to certain resulrs from the theory of Fourier integrals which will
be needed in the sequel.

The letter L will designate the linear normed ring of all complex valued, mea-
‘surable, absolutely integrable functions f{) (~e <t <), the norm being defined
by © >
= 17@)ar

wlon

and the product f = f1 * f; of two elements f; and f, in L is defined as their

convolution
1=\ hoht—9ds=\ Le-sf@ds

As is well known-
Hfosfolle <\ folin- 1 e e
We shall denote by L T{L ™) the subring of all functions of L which vanish
for £ <0 (¢ > O).

Whenever a lower case letter is used to designate an element of L then the

corresponding capital letter will used to denote its Fourier transform,
For example, if { € L. then
f==3
F )= S e () dt (—oo < i ).
—oo

it will be recalled that F{A) — 0 as A+ tw, forany [€ L.

Defining §§ (+ ) =0, we may consider the Fourier transform % (A} as 2 con-
tinuous function defined on the closed axis §{ — v, « |, obtained by identifying
the ends of the real axis.

It is well known that the Fourier transform of the convolution [ ¥ g of two
functions f, g € L. is the product of the Fourier transforms of the factors, i.e.,
ifh=f*g, then

S0 ()= F (1) §0).

Thus, the set of all functions % (A) {f € L} forms a cerrain ring R of con-
tinuous funcrions defined on the closed real axis {— oo, m ],

From the equalities

(=]

Ny e — -L:ri S Tp—ial ai

= Fe~wehtdr  (Ima < (),
0

r!

g
- i L
(h o) T = S {Me—int gikt gy (Ima > Q)

.

-

it follows that all functions of the type {A — & (Im a£ 0;n =1, 2,-++) belong
to the ring 17,
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Consequently, a rational funcdon R({A) belongs to the ring 29 if and on
R{e) = 0 and all its poles are non-real.

As is well known, all functions f{¢) which vanish for ¢ <0 and are of th
fle) = e—tp (8, with p(t) an arbitrary polynomial, form a dense subset of the :
space LT C L. Observe that the transforms of these functions are certain pol
mials in (A=)~ Iris easy to see that the functions obtained by replacing
¢ are dense in L, and that their Fourier transforms are polynomials in {r+

Since the space L is the direct sum of the subspaces Lt and L™, from
preceding it follows that every function $i(t} € L may be approximated (in th
of the metric of L) arbitrarily closely by functions of L whose Fourier trans
are rational functions.

Let us denote by § the ring obtained by extending RO by one dimensio
addiag to it all the constants. In other words, H is the ring of funcrions %0

the form

sW=c+ | 1@emd (- <h< o, JEL)

Functions of the ring % will be denoted by gothic lerters.

In the following, an essential 1éle will be played by the following result
to N, Wiener (see [25]).

Theorem W. If the function § (X)) € R does not vanish at any point of th
closed line 1— oo, o } then the function % ~L(N) also belongs to the ring R.

Let us denote by II_{II ) the closed upper (lower) half plane ImAz>0(
together with the point A = o, -

By R¥(CR) we shall designate the subring of functions (A} of the

o

%()‘}=C+Sf(i}8mdi (fe L*, ¢— a number

and by RY+ the set of funoctions %€ RO+ for which ¢ =0.

An analogous interpretation is to be given to the symbols R, RO,

The right-hand side of (3.1) makes sense for an arbitrary complex A € [
In view of this, every function % (A) € R¥ may be thought of as being defin
means of a function which is holomorphic inside H+ and which is continuou
to the boundary. An analogous statement may be made for functions of R,
r6le of the half plane ﬂ+ being taken over by the half plane I |

For the rings R * one has the following theorem, which is analogous to
Wiener's theorem (see [26], pp. 60-63) b,

1) The simplest and most elegant proof of the Theorems W and W+ is that by tl
method of normed rings of L. M. Gelfand {27].
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Theorem W,. If the function TN € RY does not vanish at any point of the
half plane 11, then the function £~1(A) also belongs to the ring R+,

An analogous formulation gives Theorem W_,

An immediate verification readily substantiates the truth of the following
preposition {see [ 1, section 1). .

Lemma 3.1, If the function

co

B0 =)+ \fmendr  (fer),
o
belongs to Y, and kas the value zero at a (Im a> (), then the function 8(}) =

={aA-a)! %N belongs to the ring §RO+, that is
(=)
@())ﬁ S g{z}eilfdz {geLq)
[ 0
Tke functions (&) and glt} are related by the equations
; i_'f —ag () =F(t), ig{0)=F ()
Theorem W _ may be used to prove the following proposition (see [, sec-
tion 1),
Lemma 3.2. Suppose that %5, @ € R ond satisfy the following conditions:
1) () £0{~50 A <o) and 2) every zero of the function B(X} interior to the
half plane Il is also a zero (of rot smaller multiplicity) of the function F(X).
Then the function (1) /@) € BT,
If, ir particular, F(X) € RO then also Fw /8 € RO+,
Let us introduce now 2 simple concept which will play an important dle in
the following.
Suppose that (A} is a function which is continuous on the whole closed

axis |-, o} and never vanishes there. Then the index of the function P(X)

is defined to be the integer
N o0

ind @ = 5 farg @ ()] T = o S dy, arg ® ().

If the function ®(A) admits of an extensio;fvhich is holomorphic in the
interior of and is continuous on the boundary of H+ (II_); then, by Rouché&’s
theorem, ind & gives the number of zeros (minus the number of zeros) of @ in-
side 11, (If ), each zeto being counted as many times as its muldplicity.

if R(X) is 2 raricnal funcron from R, with R{w) £ 0, then indR equals
the difference between the number of zeros and the number of poles of the func-
tion R inside L ; of, what is the same, the difference berween the number of
poles and the number of zeros of the function R inside II_.

$4. Calculation of the index of equation (A). In this section we shall prove
the following assertion:
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Theorem 41. Suppose that the matrix function k(1) € Ly satisfies

condition

det (A —a (W) =0 (— oo < A< ),
where A is a constant, nonsingular matrix. Then the index of the operator U
in the space Esz 1) oS well as in the intersection of any two EG’I 1) SPes
may be computed by means of the formula
# {0} == — ind det {4 — & (W)
The proof of the theorem will be preceded by an easily provable remark.
Suppose that K; and KZ are operators, defined on the space E(tlxl) b

equations
R syd Ot <oy =1, 2},

]
where isf- BHEL (2 xn) {j =1, 2). Then the product of the operators, K; K,,

fers from the operator

Kg= g Er—se(s)ds (0 <t< o),
0

where
k()= Ski(: — $) by (5) ds,

by a completely continuous operator.

Proof of the theorem. The pwof will be divided into three parts.

1) Suppose at first that the matrices A and k(t) are triangular. Consic
the matrices K#{t) and A#, depending on a complex parameter p, which ar
fined by L

fop (1) == ph () + (A — @) R (D85, 15 Aw=pA+ (L)l apgbp I
where k q(t) and apq(z) (p, g=1,2,---, n} are the elements of the matrice
and A, respectively.

Consider the operator
Up&“ﬁﬂu(?(t)—gky(ﬂm,s)cp(s)ds (0 <t < o)
4

in the space E(le).
Since for an arbirrary complex p:
deh(AFw%'g(}\)):det(A—r%'{}\));_LO {— o <A< oo},
it follows from Theorem 2.1 that for an arbitrary complex number g the oper
U# is a ch—operator. The function «{p) = K(U#), which is defined on the wi
complex plane, is continuous and takes on only integral values; consequent

must be a consrant. In particular,

w(Iy =2 (1} =2 (0} thatis =2{U)=x(Uy}
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The matrices ko(z) and Ao, which are obrained from the matrices &, () and A,u
by putting p =0, are diagonal. Thus the operator UO is decomposed into a direct
sum of n scalar operators a].].I - K].]. (j=1,2,---, n), each of which acts on the

space £t and has the form

€K
(a; 0 — K de=a9 (1) — R ki(t—s)o(syds (O<i<Too; j=1, 2, ..., n).
b
‘Consequently tie index of the operator U/, is the sum of the indices of the oper-
ators ., [ —K.. (j=1, 2,---,n). Taking into account the formula for the index of

bjj
a scalar operator (see[1l]), we obtain

(U= — ,21 ind{a;; — %, (\))= —ind jl_:[i (a;;—# 3(\))=—ind det (A% (A)).

Hence e

(I} = — ind det (4 — 3% (\)).

I} Consider the second case, when the matrix function k€t) is such that its
Fourier transform ¥ {A) is a rational marrix funcrion.
From the theory of polynomial A—matrices [26], it follows that the rational

matrix function M(A) = 4 ~ {(X} may be represented as a product of rational ma-
wix functions ‘J'RI, Eﬁfz, (e %(an) }:

T O) ==, (MDY, (M.
Where (A} is a diagonal matrix, and S.UE (M) (j=1,2) are the products of certain
constant matrixes and certain tuangula: matrix functions in %(nm) whose deter-
mlnan(s are unlty-
Thus, the matrices S}tj(,\) have the form
A, (MN=4;— S hi (£)eitde (€ Lpnsemyy =1, 2)

and

m,
j w
3 x == Ly, — i
m; (1) h}l (B, € L (@) (1€ Ly =1, 2),
where A]-(j= I, 2) and B]-k(j =1,2,k=12,-- -,mj) are constant nonsingular

mateices, ljk (Bj=1,2,k=12,---, mj.) are triangular matrices, some of which

are identically zero; but for which
[eed

det(Bjk—S ljh(a:}emdt)zi (j=1,2, k=1,2,..., m). (4.3)
From what has been said above it follows that the operators Ujk
(j: L2 Ek=12,---, m}.) defined by
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(=]

U = Byup (t) — S L (t—3)g{s)ds 0t < o),
0
are ®—operators, since condition (4.3) implies that

(U =0 (F=1.2; k=1,2,...,m).
The operators

Yj<p=AJ-<?{t)~«§hf(t——s)cp{s)ds 0gt<<oo; j=1,2)
differ from the corresponding products of operators

H Uy (j==1,2)
by complerely continuous terms; consequently they are $—operators, it beiny
called that according to assertion C) of section 1 concerning the index of th
duet of operators one has that
2(T)=0 (j=1,2)

The operator
Yo=Be()—\ pt—sig(@)ds (0 <1< ),
DM=B—{ p@edt  (pO)ELwcm),

-is a ®—~operator, because
det D (N =det (A— & (3)) 5= 0 {—co < k< o).

In particular, from what was shown in I) one has that k() = — ind det D).

The operators ¥; YY, and U differ from each other by a completely co
uous operator, hence

2 (=2 (Y YY) =2 (¥} = —ind det® {(3) = — ind det (4 -~ & ()L

HI) Lert us now consider the general case. According w assertion Al o
tion 1, there exists a positive number & such that any linear bounded opera
satisfying the inequality

Hu-vil<sg

will also satisfy « (U} = «{V)

Select the matrix function {(t) = || [pq(t) [1F (€L, .,y such:shatits.
transform L ()) is a rationa! matrix function and that
N =L@l <e (o g=1 2. .. 7).
Let the number ¢ > 0 be chosen sufficiently small, so that: a) the oper
¥, defined by the equality V=49 — [ 7 1{t - s)ds, (0 <t <), satisfie
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inequality (4.4); B) the determinants (4 — L(A)) does not vanish on the real axis;

and C) .
ind dot (4 — &% (W) = ind det (4 — £ (W), {4.5)

In view of (4.4), k(U) = «(V}, and from what was proved in II}
% (V)= —ind det {4 —F (). .

Employing (4.5), we conclude that
«(I)= —inddet (4 — & (M-

The theorem is proved.

§5. Coincidence of the solution of the homogeneous equation {B) in different
classes of functions, The purpose of the present brief section is the proof of the
following theorem:

Theorem 5.1 If'?]; matrix function k{(t) belonging fo the class L(nxn)

satisfies condition (0.2) then the homogeneous equation
<o

‘9{3)—81%(3"“8):?(5}073:0 (0t << o)
§
has one and the same set of solutions in all spaces E(nx )

Proof. Denate by € one of the spaces L((r{)if) 0, =) (p2 1), Cg(nxl)
and by @12 the Banach space which is the intersection of two arbitrary spaces
&, and G, of &. Let us recall tharin §,, the norm is introduced by means of
the equation

feli=leli+lol (P€ & 1E,).
Denote by U].(j =1, 2) the operator defined on the space @j(j =1, 2} by
the equality

Ugp={t) - S Et—s)e(s)ds  (0<t< w), (5.1)

and by 0 the part of the operator U; which acts in the space (5312 Accordmg
to Theorem 2.1 and remark 20 to thxs theorem, the operators UI’ U2= and U are
(P—operators.
Since @12 C @j {j =1, 2), one has that
a(U) a{l;) (=1, 2). (3.2)
The set €, is dense in each of the spaces € (=1, 2) in the sense of the norm
of each of these spaces. Consequently, @;’ C @;’2 {(f=1,2). From this last re-

8@)>B(U)  (=1,2). (5.3)
Comparing the inequalities {5.2) and (5.3) with the fact that the indices of the

lation it follows that

operators are the same: K(U ) == K(E’) (j =1, 2), we obtain that

a(U)W“cz(U) andB(U)__B(U) (7=1,2).
Finally, the relations 8(0’) C S(U 3{j=1,2) lead us to the equation
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3W)=3>). {:
It remains for us to prove that equation (5.4) continues 1o hold when & denote
one of the spaces M(-;xl)’ M:(nxl)’ M:{n 1) and C(-;xl)‘ In order to do th
all that is needed is to prove that equation (B) has one and the same set of so
tions in the spaces L(le) and M(txl)‘ Let us suppose that U/; denotes the
opetator defined by (5.1) on the space LC’l x1)» and that U, denotes the oper:
defined by the same equation on the space M(t;xl)‘ All solutions of equation

in L(sz 1) e bounded continuous functions, because they belong to the spac

ct . Thus
0l xD) a (U <a(Uy). (

Comnsidering the transposed equation (B* ) it is easy to establish that
BUY=a(U)>a (U)=8U),
where the subscript L attached to @ means that the operator UI, defined on
space M(nx 1)» is now considered on the space L (e 1"

Consequently
B(U,Y) 2 B(Uy)- (¢
Comparing inequalities (5.5) and (5.6) with the equation «(U;) =«(U,), weol
a(U)=a(lsy), BUI=E(U2)
Taking into account, finally, the relation B(Ul} C B(U,), it follows that
3(U,) =B (Uy)-

The theorem is proved.

$6. The homogeneous Hilbert problem in the ring of functions a(nx i
1. As is well known, the homo geneous Hilbert problem on the closed real ax.
{— o, 00} for a continuous nonsingular function matrix (A} consists in the d
mination of all pairs of vector functions (&, (M), ®_(3)) holomorphic inside a
continuous up to the boundary of, the corresponding half planes I, and 1,

are related to each other by the equation

WD, () = B_ (0. (
In the pair (9, ®_), the function ®, is uniquely determined by the func

®,. Hence, when speakmg from now op about the solution of the Hilbert probl
we shall always have in mind the determination of the function @, (A).

We shall give below the solution of the homogeneous Hilbert problem {6.]
for 2 nonsingular matrix function W{A} belonging to %(an). it should be nos
that in this case the vector functions @, (A} satisfying (6.1) always belong &«
corresponding classes 3?-(“ w1}

Without loss of generality we may put #{oo) = I, i.e., suppose that the &
tion matrizx M(A) has the form

IR ) =T — 88 (),
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where (X} € g%(nxn)'

First of all we shall prove a lemma which plays a fundamental téle in what
follows.

Lemma 6.1. If the vector function @ (N} € %('; x 1) is @ solution of the problem

(=2 () 0, () =& (), (6.2)
has the value zero at Ay (Im Ag> 0Y, then the vector function (A -~ :\0) =1 @_,_()L}
belongs to the class 9%&'; ;) end is alsoa solution of the Hilbert problem (6.2),

Proof. In fact, if Im A, > 0, Lemma 3.1 implies that (A 1\0) =l <D+(‘\) €

w0+
(rx 1)

The vector function (A—Ap) “Lon e %?;x 1) since ()\.—AG)_I € R+, Thus, upon
muldplying equation (6.2) by (A —Ap) ~I we see that the vector function (A~ Ay -1y ALY
is a solution of the problem {6.2).

Consider now the second case: Im A, = 0. Let us denote by f(z) the soludon
of the differential equation

fi+in@)=9@, [0 =c (6.3}

-where

o (y=ct oW endl  (g€Lixn).
i

Obviously

i
]: {Z} = ce—ilol _14 S g+o (f'““s)(;’) (S) das.
4

The vector function f(t} is bounded and continuous, and

[==]

lim eof (1) = e+ | etotg (5)ds = ®, (0) = 0.

{—co
[

Therefore, f{t} € C?J-(n %)

Equation (6.2} is equivalent to the following:

‘i)em (q)(.t)w- cguk(i —s)o(s) ds)dZ: (i)k(t) ceRidr,
0 0 6

from which it follows that
(=)

p—EE—seds=s)e  (O<I< )
b
Inserting, in the last equation, the expression for ${f) given by (6.3), we

obtain

O+ 0= { BG—9) (7 () +inf () ds=h() e (02 < )
0
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that is

L0

d i d, . ,
& (enatf () — | enot=9k (e —5) 7 (B0 () ds — ek (t)e (< <c
]
Let us integrate the last equation between the limits ¢ and =. The dout

integral obtained in this process is absolutely convergent. Interchanging the

of integration in this double integral we obtain
(== Ry == o

— gihlf (1) — \' S eihou; () du % (8057 (5)) ds = S etk (2) ¢ du.
G s ¢
Integrating the second member of the left-side by parts, we find
giotf (1) | Mt —s)f()ds =0  (0<t< o)

[\]
or, what is the same,

F ) — ﬂ Bt—-8)f(ds=0  (0<t< o).

In view of the fact that equation (B} has one and the same set of solutio:
all spaces E(-;xl)’ we conclude that [ € L(-lr-:xl)‘

From equation (6.3} it éos obvious that

F ()= ﬂ £ (2 €Mt = (A= )", (1) € B ety

Finally, applying the lgouriez transformation to equation {6.4) we deduce
the vector function 3+(}\) = (A~ )\0)_1 ®, (V) is a solution of the problem (6.
The lemma is proved. :

2. In section 11 it will be shown thar the matrix function (A} may be
plied by a suitable integral power of the quotient ;;—z in such a way that the

equation
$ (1) — S E(s—)dl{s)ds=0 (0t < o)
Q

has only the zero solution in L(t.-.xl)'

Thus, for our purposes, without loss of generality we may assume that e
tion {B”) has only the zero solution.

Under this assumption, the following assertions are valid.

1) The problem (6.2} has n solutions in 9%('; wn) whose valves at infin
are linearly independent.

Under the stated restrictions concerning the matrix function M (}), the &
o

gy~ k=g ds=10)  (0<1< )
1]
has, for arbitrary right-hand teem f(2) € L{t‘ w1} Bt least one solution g{z) €
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The mattix equation

TO-§ kt—97©ds=k() (0t < o) (6.5)

0
reduces to n egquations of type (A); consequently, it has ar least one solution
y(s) with elements belonging to the space L(: « 1) Let us define y(t) =0
(¢ <t < =) and denote by 6(t) the function defined by the equation
bt)= — k() — S E@—s)y(s)ds (—o <t <0}  bO=0 (O<t< o).

o

Then equation (6.5) may be written in the form

w

y(t)mgis(t—s)y(s}ds=k(t)+b(t) {(—oo <t < )

e s

Applying the Fourier transformation ro both sides, we obtain
(YT ) = 8 0) -+ (),

-where the function matrices I'{}) and B{}) belong respectively to the rings
?&;n) and 3?(?1'; ) Adding B(X) to both sides of the last equation, we obrain
W) +T () =T+ 8 ().

From this it follows that the columns of the function matrix [ + ['(}) are solu-
tions of the problem (6.2), and their values at infinity are linearly independent,
because [ + F'(oo) = 1.

2) The maltiplicity of any zero & (Im Ay > 0} of a solution @, (N (6%("2 xl))
of the problem (6.2) does not exceed the number  of linearly independent solutions
of the equation:

(1) — g BE=9)9()ds=0  (0<i<om; geling)
Let m be the multiplicity of a zero A, (Im A; 2 0) of a solution VRO

(€ R 1)) of the problem (6.2).
Then the vector function _
B ) =0~ 2)7B, (3) =12, ..., m)
according to Lemma 6.1, belongs to the class 3%@'; 1) and is a solution of the
problem (6.2), that is

{Dj (?\) == S Bi;“tf?)- {[} dl‘: ((?)'EL?;IXI)): m()\) q)]ng(_,;xg) (]' = 1, 2, ey, m).

0 . .
From this it follows that

R giMt ((?j(l)_‘ S a’f(tms)goj(s)d.s)dim{} J=1,2,..., m
0 i}
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or, what is the same
fenl

250 A S El=s)g(0)ds =0  (0<i<oo; i=1,2, ..., m)
8
Since the functions CDI- (A) are linearly dependent, so are the functions qu

and thus m < a,

3. l.et us denote by %+()l) (€ 3??(; Xn)) an arbitrary matrix function whos
column vectors are solutions of the problem {6.2). It is obvious that

WM S r=F_() (
where §§_{A) € %(;XR)'

A marrix function such as %-t—(’\) will be called a solution of the problem (
In the sequel attention will be restricted only to those solutions i}’+(n\) of the
trix problem (6.6) for which det %+(m) #0.

Let us denote by lc]. (G=1,2,---,n) the muldplicity of the zero at A =7 .
jth column of the solution %_l_(:\) of the matrix problem (6.6); the n dimension
vector k = Ucl, kz, e, kn) will be called the index of the solution %+(:\). Tt
indices of the solutions of the matrix problem (6.6) may be ordered lexicograp}
cally, i.e., we shall say that the index k =(k;, £o, -+, k,) is greater than thi
index 1= (ZI, lo,ooe, ln) if kl > 11, of if there exists 2 whole number p( <z},
that kal]. (j=1,2,--,p) and .Icp+1 > l'p+1.

The indices of all the solutions in ?'?(; wr) of the matrix problem (6.6) are
bounded, since according w property 2) the coordinates of the indices of a sol
tion of the matrix problem (6.6) never exceed a. Consequently, among all the i
dices of all solutions of (6.6) which are regular at infinity and belong 33(;)(
there must be a greatest. Let us denote it by & = (KI, Ky oo ’Kn)‘ It is obviou
that K7 2 Ky 2eee 2 K.

All solutions of the matrix problem (6.6} with index &k will be referred to
standard solutions.

Theorem 6.1, Suppose that the matriz function %+{A) (€ %(.;xn)) is a st
ard solution of the mairix problem (6.6). Then for every A in the upper hoif ple
with the exception of A =i, the determinant of %+(1\) does not vanish:

det F, (M) =0 (el k).

The multiplicity of the zero of det %+(AJ at A=1i is equal to
JE{ ;= —ind det 31 (1),
and, consejuently, the determinant of the matrix function F_=1W &, ()
never vanishes on the lower half plane:

deb §_ ()40  (heIl).

Proof. Let us denote by @}-(A) (j=1,2,---,r) the column vectors of a stz

ard solution %+(A).
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Suppose that at a certain point Ay{Im Ay > 0) the determinant of ¢, (A) has

the value zero.

Then there exist numbers ¢, €q -+, °p (p <n; cp #) such thar the vector

function

p .
o
D= % e, ®, (1),
is a solution of the problem (6.2) which vanishes at Aj. According to Lemma 6.1,
the vector function ;
—1

by=—TE D)

also belongs t R{tzx ;) and is a solution of (6.2). In particular, at A =i the vec-
1)

fo

tor function ®(A) has order */ greater than .

Substituting in .'c‘h.e,‘matrix {E+(A) the column vectors of the vector function
@P(A) by those of $(\)} one obrains a solution of the matrix problem (6.6) which
is regular at infinity and whose index is greater than &, which is impossible.

The first assertion of the theorem is proved.

Ler us now prove the second assertion. If at A =i the determinant of ey

had order greater than K; + Ky + ++ + K, then there would exist numbers ¢, €4, -

e, (p<n, ¢, £ 0) such that the vector function

. ol
POy = X e 007 0) (6.7)

3=

would vanish at the point A = i, Multiplying the equation (6.7) termwise by (A—i¥p,

we find that the vector function

i (y=(h— iy T ()
belonging to the class SEC; w17 would be a solution of the problem (6.2) having,
at X =, an order greater than x_. Replacing the column vectors of the matriz
@P (A} by those of the matrix function $(1) one obtains a matrix function, regular
at infinity, which is a solution of the matrix problem (6.6} and has index greater

than k, which is impossible.
Since, in view of what has already been proved
det F_(M)=det P (})-det F, (M) =0 {(— cohgL o)
and that
ind det §_ (%) = ind det M (1) - ind det ¥, (),

to be complete the proof of the theorem it only remains to prove that det %W
is never zero for Im A < 0.

Suppose the contrary, that is, that for some Aa(lm Ay < 0} one has der
E_(g) =0.

1) The order of @A) at A=Ay is zewo if PlAg) #0, and is equal o the multiplicity
of the zero of the vector funcrion @A) at A =Ap, when DAg) = 0.
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Then there exist numbers ¢4, €9,° " cp(p <y cp #£ 0} such that the vecto:

function

o) = ;,2 ¥, (),

i=1
constructed from the column vectors of the matsix 35_ (A}, vanishes at A,;. Sinc
the vector function (A — 1) (A = Ap) ~1 Q(X) belongs to the class 3%(_” x 1), the ve

wr function 0
R
X0 =575 > @0,

alzo belongs to %R('; x1), andisa solution J(—)_fl the problem (6.2). In particular, X
has order greater than kK at A =1L, Replacing, in the matrix function %+ W, &
vector columns of @P {X) by the vector columns of X (A}, we arrive at a contra-
diction, similatly to what was done previously. The theorem is proved.

Theorem 5.2 nEvery vector function © (A} of ihe form
B, (1) = 2’1 (@0 + ap (=07 + .- T4 (h—1)7) @; (1), (6.
where the a; ar?ewarbitrary complex numbers, and the ®.(N=1,2,--, na
column vectors of o standard solution %, (W) of the matriz function (6.6), is a
solution of the problem (6.2).

Conversely, every solution ®+(A) of the problem (6.2) has the form (6.8},
consequently, belongs to %Gxxl)'

Proof. The truth of the first assertion of the theorem is obvious., Letus
ceed to the proof of the second one. Suppose that ®_(N) is a solution of the ¢
lem (6.2). In view of (6.6) the equality

WHR L. (W=C (W)
is equivalent two the following:
FINO, (=3 (TN

From the preceding relations it follows that the vector function %ZI(A) 0]
may be continned analytically to the whole lower half plane I1_, At all points
the half plane Il , with the exception of A =i, the matrix function %11(1\) is
holomorphic, and at A =i its jth row vector has a pole of order K; (j=1,2---

‘Consequently, the vector function %11()0 @+()\) is holomorphic througho
the half plane I, with the exception of A=1i, and at A =3 its jth coordinat
has a pole of order not greater than K].(j =1, 2 ++-,n). Hence

5= ),
where P(2) is a polynomial vecior function, whose coordinates are polynomia

of degree <k, (j=1,2,---.nh

Thus the solution ¢+(a\) may be represented in the form

2. 0)=50F (3= )
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which is just another way of writing (6.8).

The theorem is proved.

Theorem 6.3. Any solution © (X of the problem (6.2), which kas order m
at A =i, where xp>m>i< e Y <p <ny kg =0) must be of the form

D, (M) = 2 (@50 agy (o= iyt
where @}.()\.} (] =1 2,-
tion of the matriz problem {(6.6).

e ()TN (), (8.9)

., m)—are the column vectors of an arbitrary standard solu-

Proof. Suppose thar @ ()t) is a solution of the problem (6. 2) having order

m at A =i, where xp >m ?_ K Consider the vector functions (13 (A}, defined

p+l-
by the equalides .
)¢ & R)=0—i (N (j=1.2, ..., ).
It is obvious that the vector funcuons (I) =1 2 -, n) belong to class
?(n % 1) because the determinant of which they are column vectors never vanishes
on the upper half plane.
According to Theorem 6.2 the vector function ®  (A) may be represented as

follows n

D (W)= j=21 (a5 (b — D)% a; (hoe £y

Putting A = i in this equation, one obtains

cAan) B0 (6.10)

ke
N1 b4 .
2_1 P HOELY
from which one has that
g, = =1,2,...,n}%
Dividing both sides of equation (6.10) by (A ~ i} and then serting A =i, one

obtains

ajxjﬁ1=0 =1 2,...,n).
Repeating this operation m times, one obtains
B, (M= 2 (@ A= iP5 gy (A= iP5 b G ) NS
which yields {76‘—3). The theorem is proved.

Remark. According to Theorem 6.1, any standard solution %+(A) of the ma-
uix problem (6.6) has the property that the multiplicity of the zero at A =1 of the
determinant det §_ (1) is equal to minus ind det M|,

It is to be observed that from any solution %_,_(?t) of the matrix problem (6.6)
which is regular at infinity, and whose determinant has a zero, of multiplicity
—ind der M(X), at A =i, one may, by a simple sequence of operations, obtain a
standard solution of (6.6).

Indeed, without loss of generality, it may be supposed that the columns
(Ilj()t} G=12.-
spective orders ki' (j=1,2,---,

-, n} of the matrix function %+()‘) are so ordered that their re-

n) at A =i are non-increasing.
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If
2 k= —ind det M (), (6.

J“
then it is easy to show that §§_ (A} is a standard solution of the problem (6.6).

1f, on the other hand, Ekj < — ind det M(A}, then there exist numbers €15 €oy°

e (p<nm; c, # 0) such that the vector function

)
&)= _2.1 c; (h—8)=* @, (3) (6.

=
vanishes at A = i, Multiplying equation (6.12) by (A — i) kp it follows that the

QO)=0— @) | (€Rinxr)),

is a solution of the problem (6.2), having order &> k_ at A=1{. Replacmg, ir
matrix function %P (A), the columns of CIJP (A} by the columns of @(A) one obt
a solution %’ {A), regular at infinity, of the problem (6.6), for which Ek is ge:

tor function

than before. If it equals —ind det W{A) then it is the desired standard solutxm

If it is still less than the number in question; then, repeating the mentione
operation a finite number {< —ind det 1(X) — k) of times, one finally amive
a standard solution of the problem (6.6).

$7. Fundamental standard factorization theorem. 1. Definition: 4 left s
ard factorization of a nonsingular continuous matrix function Ay (—eo <X <=
is a representation of this matrix in the fomn

MO =R (MNDOR_(, (7
where D(A) is a diagonal marrix function

20~ (55 ),

i1
n are certain integers, and the matrix functions 7 t()t) admit

2

K12K2Z°'° ZK

analytic continuations, holomorphic in the interior of and continuous up to the
boundary of, the corresponding half planes I 4» such that the determinants of

these continuations is not zeto:
det b, (W= 00nglL), detp_(3)==0 (e i),
1f the factors 0t i(/\) are interchanged in (7.1), then the resultant factoriz:
of the matrix function M (A) will be called a right standard factorization.

The factors D(X) in the left and right standard facrorization will be refer
o as diagonal factors.

It is readily seen that each left (right) factorization of a mauix function I
generates a right (left factorizarion of the matrix functions M=), 33},1 {A}, !

1) Indeed, all the considerations involved in the proof of Theorem 6,11 may be us
in dealing with 2 matrix funcrion 5.{}) which possesses property (6.11). In view of 1
the equaliry T—1(A) = F_ (0 5&:1(:\) immediately yields a left srandard facronzauon («
the next paragraph} of the maerix T-21{X) with left indices kj (] =1, 2-

From Theotem 7.1 concerning the independence of the indices reIauve to the facrc
zation it follows that kj = Kf (j w I, 2 r),
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obtained respectively by replacing A by — A in (7.1}, taking the transpose of both
sides of (7.1), and taking the inverse of both sides of (7.1).

One has the following

Theorem 7.1. Suppose that the matrix function LACVAC ge(nxn)) has a left
(right) factorization. Then all the left (right) standard factorizations of the matrix
function M(X} possess exactly the same diagonal factor.

Proof. Let us suppose that the following are two left standard factorizations
of the matrix function M{A):

MO =R, WDMR() (7.2)
and
‘ Wy =R, (D 09 T (), (7.3)
where - T
20= (555 ) b ana B =] (557 )7 0
From equations (7.2) and (7.3) it follows that
2, MM =M. M), (7.4)
where
D.=ROR 0, S_m=R_OF®. (1.5)

Equation (7.4} is equivalent w0

A—iN'a A—iNE,
B () =) w0 (oa=12,...,m,
where the functions qu (A} are elements of the matrices £1.{A}.
In all cases, when K > %q’ one has the equality

pg (M) =g (1) =10 {—oo < h< )

Indeed, the equations
h— 1 Nxplx -
A M gy (0 g=1 2 )
-imply that the functions
N AT -
qm(")Cl_H) e, {f.6)
are holomorphic in the upper half plane and bounded at infinity, and may be con-
tinued analytically to the whole lower half plane. Hence the functions (7.6) must
reduce to constants. In view of the fact that they vanish for A =i, we obtain
TN =q7 =0,

a N =q, M)

Suppose that k_ is the largest number among the numbers Kp, Kg, "=, K,
which is not equal w the corresponding one of the numbers &, Ky, -+ -, K thatis

=y (f::fl.,‘?,...,?‘—-i) and xr-_#;c;_
Without loss of generality it may be supposed that x> ®,. Then it follows
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easily that the inequality Kg > R‘q holds for all subscripts p and ¢ satisfying

p=r,r+l r+2, .00 g=12, ..., 1

v

and that
Grg (M =40 {(p=r,r=%, ....0n, g=1,2,..., 1)

From the preceding equations we obtain that every minor of order r, constnt
out of the first r columns of the matrix 4 (A} is identically zero. Thus, by Lapl:
determinant expansion, :
det D, (M) =0,
which is impossible. Consequently

wy=r (j=1,2,...,n) and DN =DM.

PITTI

The theorem proved implies that if a nonsingular matrix function RN po:
sesses z left (right) standard factorization, then the exponents &; (=1,2,---
are uniquely determined by the matrix Tt(x). The exponents Ky, Kg,***, K, ®
be called, respectively, the left (sight) factorization indices {or exponents) of
matrix function B{MN).

In section 11 it will be shown, by a consideration of the standard factoriz
of triangular matrices, that in general the left and right indices of a matrix do
coincide.

On the other hand, from equation (7.1} it follows that always
"
2 %, =ind det M (A).
j=1

2. In the course of the proof of the inequalities Ky= 2‘}. (G=12,+--.m
was shown in passing that the equations

0 0 (555) 7 =02 0 (
imply that
Og (V) = qrg (N =10
It is o be observed thart if Ky =Ko then {7.7) implies thar the functions

qpf; (A} reduce to comstants.

f, finally, KP < rcq, then from (7.7) it follows thatr the functioas appearin
the left-hand side of (7.7) are holomorphic in the whole upper half plane, with
exception of the point A =i, at which they have a pole of order < Ky~ Ko an
may be continued analytically to the wbole lower half plane. Thus, they must
polynomials in (A — N7 of degree < Ky = Kge Hence

+ _ i
Gpg () = Doq (R_:[:_z) ,
where g (z) is a polynomial of degree < Ky =Ko
Taking equation (7.5) into account, this leads to the:
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Theorem 7.2. If the nonsingular continuous metrix function LA (o0 <A <o)
possesses a left standard factorization (7.1), then the most generel factors %i(h)
in such a factorization are given by the formulas

B (=% 000, R )=STRRO) (7.5)
where DN is an arbitrary nonsingular matrix function, whose elements Uik {a)
(j, k=1, 2,--+,n) satisfy the following conditions: >
3] qjk(h) =0 if k> K
2 Cr]-k(.\) is constant if Ky =K,
3 4 (W) is a polynomial in (A + Y1 of degree < Kj = K if Ky <K
Thus, the matrix £(A) has the form
Q, 0...0 1

i
Q()‘)"’“H % oni ’

Y

| n

where Qj (=12, n} is a nonsingular constant square matrix, the asterisks

denote the places occupied by matrices with elements which are polynomials in
(A + Y7L, of the appropriate degrees; and, finally, the determinant of () is the
number

det £ (1) = det @, det @, . . det .

Let us notice that the considerations involved in proving the theorem have
yielded the fact that i£ (7.2} and (7.3} are left standard factorizations of M(A},
then the factors %i(:\) are connected by (7.8), It is easily verified that, no matter
what the noasingular matrix £1{A), satisfying the specified conditions, one obtains
from any left standard factorization {7.2) a new lefr standard factorization by means
of (7.8).

An analogous theorem halds for the right standard factorization.

3. The following important theorem holds

Theorem 7.3. Ewvery nonsingular matrix function pACI NS %R(n xn) Possesses
a left (right) standard factorization ard for each such foctorization the factors
mi{}t) € ‘R(In wn)

Proof. Without loss of generality we may suppose that M (o0} = 1. According
to the Theorem W of N. Wiener, the matrix function m-In may be represented
in the form

M) =1— (2,
where ¥ (X} € ﬁ& wn) )

Consider first the case when the equation
v)— (K -9p@ds=0  O<t< ) (B)

b
N +
has only the zero solution in the space E(n w I

Let %4_(&) (e ?RC;XR)} denote an arbitrary standard solution of the matrix
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Hilbert problem L . _

T 098, ()= B_(, (7.
by '@i()t) (j=1, 2,-+-,n} the column vectors, and by (k}, kg, -~ ,K,) the expt
nents of such a solution.

The matrix function B, (A} may be represented in the form
B, () =R. (0D (),

where the matrix function T, (X)) belongs to the ring R« py and det RN A£G
(A €11}, and the matsix function J(A) is of the form

a gy _#‘E A Y Xp ]
2’(*)—]15 P qu!

n
e

By what was proved before, det B (A) £ 0\ €IL), consequently, accord:
to the Theorem W of Wiener which was recalled before, the matrix funcdon % _(
=BT ERG

Using equation (7.9) we obtain easily a left standard factorization of the s
aix fanction BN = {7 - )7

MO =R, DM Be_ (1) {—cog heg o).

Let us now consider the general case. Let £ denote the number of linear
independent solutions of equation (B}

Consider the matrix function kl {t), with elements in the space L, whose
Fourier transform satisfies the equation

- h—i\B ,.
T—a, =35 ) d-& o).

[
The equation

L@\ Ks—Dy(9ds=0  (0<t< ) (7.
0

unlike equation (B}, does not have nonzeso solurions in the space L(-;XI)‘ ]
suppose that equation (7.10) did have 2 solution y(# 0}, and apply the Four
transformarion to both sides of equation (7.10); we obtain that
(=2 (=) XM=2.0) (—eo<i<o; 2 ERuxn)
or, wkat is the same
ot A—iNE -
I (-0 ) X0 =209
T

The vector functions

o (7)~”“"i)$ij(}) (=01, 2 5
I Gaap W MER A

are linearly independent, belong 1o the ring ‘SR?:xI , and satisfy
(I—# (=¥, (=007 9.0 (j=0, 1,2, .- 8
where (A~ & _(W) € Sﬁ(n_x ) The last relation is equivalent to

fes]

Vet (£ 6—0g@andi=0  (=0,1,2 ...9)
0 [
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Thus, equation (B’) has 8 +1 linearly independent solutions !,b]. (j=0,1,2---.8),
which is impossible.
According to what was shown above, the matrix function (7 - 5{1 o pos-

sesses a left standard factorization: »
(I—o, () =%, () D R_0)-

Muldiplying both sides of the last equation by h=DF (= 5)18, one obtains

a left standard facrorization of the matrix function (A
MOy =%, ()DMR_(),
where
h— IR =
20)= (35 )50
To complete the proof of the theorem it remains only to remark that, in view

of Theorem (7.2), the factors 1t (A) of an arbitrary lefr standard facrorization of
the matrix funcdon M{X) are related w the gii()\) just constructed by the equations
R0 =%, @00, T =D 0RO
where @i(/\) is a rational matrix function belonging also to (in wn)
4. 1f all the left exponents of the nonsingular matrix function WM (A} are zero,

then the left factorization of (X)) has the form
IO =T, GIR_)- (7.11)
Obviously, in equation {7.11) the factor %_l_(?\) may be normalized by the require-
ment that
R, (c0)=1. (7.42)
A& left standard factorization (7.11), where the factor %_l_()t) ts nommalized by
(7.12), will be called a left canonical factorization of the matnx function W{A).

Similarly, a right standard factorization

. g () =T )R, O
in which the factor &t_(=0) is normalized by the requirement that
R ()=,

will be called a right canonical factorization.

The factors 1, (M) of a left (right) canonical factorization of ¢ metrix furc-
sion W) € R, ) ore uniquely determined.

Moreover, if the continuous nonsingular marrix function M(A) possesses a
left canonical factorization (7.11), then for every one of its representations in
the form

MA)=G. (WO () (—o <k <o B (0)=1),
where the matrix functions @i{h) may be continued analytically so that they are
holomorphic in the interior and continuous up to and including the boundary of the
corresponding half planes 11, and such that at least one of these analytic con-
tinuations never vanishes, one must have
G (1) =T (- (7.13)
In face, suppose for definiteness that det 8 (M40 (A €11}, Then the
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equation

N, N=C_NI(x) (- <hTo)
implies that the matrix function @f()&) ‘:7‘[4_ (A), which is helomorphic in the upps
half plane and bounded at infinity, possesses an analytic continuation to the wi
lower half plane. Hence @:_1()\) %, () must be a constant matrix. Further, sinc
@;1(90} N (=) = I, one obtains that

&7 )R, ()= O (YT () =1

which is (7.13).

&8, Facrorization of hermitian and pseudopositive matrix functions. 1. B
M*(A) we shall denote the hermitian conjugate of the matrix function A, that
M*()) = (1), where the bar above (A} stands for the operation of taking the
complex conjugates of the elements of MoA).

A matrix function H(}) is called Hermitian provided that S =% ). As
customary, the real part of the matrix function YA} denotes the matrix

Mp () = LTI
and the imaginary part of the matcix T{A) denotes the matriz
My ) = ZR=TED)

2i
The matrix functions sﬁiR(A}, ‘.YR].U\) are, obviously, Hermidan,
A matzix function $()) is called definite provided that for all values A of

closed real line {— o0, «} the quadratic form

EPME

where £ is an arbitrary n—dimensional columa vector, and £¥ is the correspon
row vector with complex conjugate elements, has only real values (£ 0) havin
consiant sign.

Cbviously, every definite marix funcdon is hermitian,

In order that the hermitian matrix function H{A} be definite it is necessar
and sufficient that H{A) be nonsingular and that (A) be definite in at least ¢
point.

One has the following

Theorem 8.1. If the real or the imaginary part of the ronsingulor matriz fi
tion MV (€ %{nxn)) is definite, then all left (right} exponents of the matrix '
are zero.

Proof. For definiteness it will be supposed that the matrix function ‘.’RR{
is pseudopositive, that is

E*mR(}x)E>0 for £20 (-—-OC:<)\< o). {E

The mauix function MOAY possesses a Ieft standard factorization, and th

MPFH=R MWD G @=R20D
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Or

mOE0=n0(7) (=12, (8.2)
where () (€ .%(n xl)) are the column vectors of the matdx 5 _(A), and n] A
(€§%(n 1)) are the column vectors of the mauix % (M), Muldplying equation (8.2)
by the vector function f {A)(e?ﬁ(n x 1)) one obtams that

BOmOLE-Fone ()7 (=12 ...m @3
All functional values of the funcrions
OO ) =17 () Ma () F; (155 (00 s OO, (1)

are different from zero and lie in the right half plane, consequently

e d MO =0
From equation (8.3) it follows that
ind £ () m, () = — 3,
The left-hand side of the last equation is negative, because T ()\,}n N eRrt
Therefore
ijO (J=1,2, ..., n). {8.4)
Let C (W {j=1,2---,r) denote the eigenvalues of the mauix W(A). Asis
well known from (8.1) it foillows that all the numbers é {A) lie strictly in the right
half plane, and hence
ind&; (M =0 (J=1,2, ..., n)

Since

M%m—ﬂ(m
we conclude that

ind det 3R (1) =0. (8.5

However, on the other hand

inddet M) = 2 =
=1

1=

J?
thus (8.4) and {8.5) imply that
IJ.:O (]’21,2,...,?1).
The theorem is proved.

Theorem 8.2, {n order that the nonsingular matrix funetion BiA) € ?(n )
possess a representation of the form
S =F NF ), (8.6)
in which the matrix function § (A} € VG |y and der § (N AONEIL), dtis
necessary and sufficient that §{A) be positive definite.
Proof. The necessity is obvious. Let us proceed o the preof of the suf-

ficiency. Suppose that the matrix function §{M\) is positive definite, then according
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t0 Theorem 8.1 all of its left exponents must be zero, Therefore 5(}) possess
a left canonical factorization
GM=N, MR R (o)=1 N_(w)= ().
Consider the matrix funcdons 3§ i(f\), defined by the equations
FW=M 04, FO=4TR0,

where A is any matrix such that 42 = H{es).

Then, obviously

SN =F. MF (M) 8. (0)=F.(c0) = 4. ®
Taking the conjugate of botht sides of (8.7) we obrain that
SOy =N FLH)-
‘Comparing the last equation with (8.6) it follows that
FOFTTO)=F. MBI
Since the lefr-hand side of the last equation belongs to the ring ?ﬁ{; wn)? and €
right-hand side belongs to the ring %(nxn), it follows that each of them must e
one and the same constant matrix. In view of the fact that % (o0} c?" vo =1, W
obtain the equation
SN =FT(N and F,M=FZM),

Which proves the theorem.

Remark. It is readily seen that in the representation (8.6) the factor (A
?r?(n xn) 1S uniquely determined, up to multiplication on the right by a constant
unitary matrix.

2. Let (A} € %(n ) be a nonsingular hemmitian matrix. It possesses a
standard factorization

S =% (DR,
Applying the operation of conjugation to both sides of the last equation, o

obtains another factorization of the matrix function

S =REM DRI (M-

Letting x, (=1, 2,---.n) be the left exponents of the matrix functon B
and recalling that ${A) = D7), it follows that
#ym= — Faogi (]":1) 2, “any -’?z}

This implies that the number n, of positive left exponents of B{A) coinci

with the number n_ of all negative ;eft exponents of the same matrix function.
analogous assertion is valid for the right exponents of the mamix function B

Before formulating a theorem which gives bounds on the numbers n,, ano
remark is in order. Since the matrix function B{A) is nonsingular and depends
tinuously on A, the number of positive and negative square terms in the hemi
form f* 5 £{£ 2 column vector) does not depend upon A. Let us denote the
numbers, respectvely, by p and 4.

Theorem B.3. The number of left {right) exponents of one and the same si
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of the kermitian nonsingular matrix function H(X) does not exceed min (p, q), end
hence the number of zero exponents of §{\) is not less than |p — ¢|.

Proof. The matrix function ¢ (A) admits the left standard factorization

N =T MNDMR_()

in which the numbers n,, n_ are the same as for the matrix 5(A). Let us denote by
(1)}. N ‘.’R('; xl)) (j=1,2,---,n.) the first n column vectors of the matrix func-
ton T, (A} RIOYN

Recall that the vector functions (13]-(:\) (j=1,2,---,n) are solutions of the

problem
BND, (1) =D_(,
having linear independent values of each real A, and vanishing at A =i.

l . .
Let hn be an p_dimensional vector space.

Define in gn a scalar product by means of the formula

(. Y=y Rz (T, y€&.)

where A, is a fixed real number. With respect to the scalar product just introduced,
the space Sn has an indefinite metric.

Let us show that

(@; () D lnd) = 0 (j k=12, ...,n) (8.8)

Indeed, the function y (A} = (I);(,\) 5N T, {}) belongs to both the rings &7

and R~ since it may be represented in the form
) . 7 (N =0F(N) ($ ()P, ()= (H (M) D; ()7 B (M),

where @j, b, €R .y and Oy zf)(b’_. € %(taxl)' Consequently, x{A) must be
a constant. Recalling that (b]-(i) =0(j=1,2,---,n) we obtain that x (A} =0.
This implies equation (8.8).

Thus, the linear envelope of the vecrors (P]-(KO) (j=1,2---,n) contains an
isotropic subspace of €n Since the dimension of such an isotropic subspace mus:

be < min (p, g}, one has that n,_ < min (p, ).

The proof of the following theorem is [eft to the reader.

Theorem 8.4. In order that the matrix function BH{A), satisfying the conditions
of the previous theorem, admit a representation of the form

B (1) =F. (1) AT (),

where %Jh) c 8%('; o) det %Jr()t) £0, (A€ H+), and A is an arbitrary nonsingular
constant kermitian matriz, whose associated quadratic form has p positive squares
and q negative squares, it is necessary and sufficient that all the left exponents
of 5(X) be zero.

Theorems 8.2, 8.3 and 8.4 and the method of proof of these theorems, in the
case of hermitian matix funceions, whose elements are functions defined on the
unit circle and satisfying a Hélder condition, were first published by Yu, L.

Smul’van {9} (in this connection see also section 14).

SYSTEMS OF INTEGRAL EQUATIONS 2

§9. Homogeneous integral equation (B). I. The following concepts are ae

for the exact formulation of our fundamental result concerning the integral equa
L==)

f_p(z)—Sk(z-—s}g{s)dS:O (0<t < o). (

A sequence of vect;: functions gﬁo(t), &, ) T (£) from the space
L(-;x 7y will be called a D—chain of length v provided that

1) The vector functions gb]. B0G=012,---, v} are absolutely continuot
in any finite interval;

2) ¢, =:5‘ (), $;(0)=0(j=0,1,2,-- v ~2) and

3) ¢, 0 £0

Condition 2) means that

I
9 (8) = S ea(8hds  (7=0,1,2, ...,v=2).
[

I we set

®,(1) = S e (1) (j=0,1,2, ..., v—1),
]

ther it follows that
B,00=(— B, (=012 ..., v=1)
from which, in particular, it follows that the vector funcdons qu.(a) (j=0,1,2---,v
are linearly independent.
In order to study the integral equation (B), let us introduce the function b
(b{-0 € L('; 1)) defined by the equations

b{z)=mgk(t-ﬂs}cp(s}ds (—o<i<oo) and b{t)=0 (0<t < e

9
and define &{z) =0 (== <t <0), Obviously, now equation (B} may be rewritt

o{t) — R ki—s)e(s)ds=b()  (0<t <o)
Applying the Fourier transform to both sides of this equation, we obtain
(I =&t (NO ) =F (), {

where the vector functions $(X) and 3{(}) belong respectively to the rings %?‘?:\
and 3%&; - These considerations are reversible; consequently, the set of th
Fourier transforms of all solutions of equation {B) coincides with the set of a.

-solutions ¢ A} (€ ?{';Xl)) of the problem (9.1), satisfying the additional cond
i) = 0.

Consider first the case when the homogeneouns transposed equation
jeed

¢ (8 — S E(s—)d(s)ds=0 (0<t< o)

u
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has only the zero solution. Then, from Theorem 6.2, the general solution of prob-
lem {9.1) can be obta.ined from the formula
(3} + {3 . i ey
@ (1) E (@’ +af’ (=0 el =iy @, (0,
F=1i

where a]Ef} (k=0,1,---, K3 j=1,2,--+,n) are arbitrary complex numbers, ‘i’]-()\}
(j=1,2,---,n) are column vectors of an arbitrary standard -solution of the matrix
problem (6.6}, and kg, Kg,+++, K, (k. > 0) are the left exponents of the matix func-

don (7 =KW1, Since the vectors (I)]. (e} {j=1,2,-+-,n) are linearly independ-

"
©(e0)= 3 aff’ @, (e0)
fe=t .
the ‘condition @ {ee) =  will hold if and only if afgf} =0(j=1,2--,n). Thus the
Fourier transform of the general solution of equation (B) is of the fomn
kil

=N @ =+

ent and

ai’? (=07 @; (M,
()

where a,/’ are arbitrary complex numbers,

The vector functions
gik(?~)=ik(?\“i)'h@;(:") (G=1,2, ...m k=12, ..., %)
are finearly independent; and, therefore, the vecror functions gjk(t) (e L('; " 1)),
defined by

Ga0)= gu0endl =12 k=12 %),
0

form a basis for all solutions of equation (B}, The vector functions g]»k(z)

(k=1,2---, Kf) are related w the functions g; (#) defined by the equations
@j(l)ﬁai*{”*ggju)e”-fdt (j=1, 2, RS ON

by the formulas
;7 d
(5= e=81. g:.0)=q,
d
(F=1)8n=gua()  8u(0=0 (k=2,3, ... .
In these equations the subscript j takes on integral values from I to n.

Besides the vector functions gjk(t} GG=1,2,---,n; k=12,--. ’Kf)’ another

basis set of solutions of equartion (B} is the set of functions

Poly =g,  wu(t)=gh(tr= 8, (B gppmn (D), -+,

Gt (1) == @l (t)-"“g:px (2) ( 1>§an-—i(¢ Y g ()
(7=1%,2,...,n).

SYSTEMS OF INTEGRAL EQUATIONS 2

Since, in view of Theorem 5.1, the vector functions
b G=1,2---,n k=0, Lok = 1)
:I1 belong w the space EC‘XI), one has thar
t

0=\ ou(ds= = guio)ds (h=1,2, ....x—1 j=1,2,...,
0

.and

Fimt = a,+ Y on ()ds= — { g5 (9)ds
1] t
—where
T 3] : F
935 (1) = 83, (D + (7 Y 3m1 (0 - 5,00

Thus, each vector function @ MNG=1,2,---,n) for which K;> 0, genera
a D—chain «;SJO, qﬁﬂ, v qf:]K _ of length K; of solutions of equation (B).

L er us now consider the genetai case, when equation {B) has S{# 0} linea

independent solutions. Obviously, the left exponent &, of the watrix function
F 30 is negative.

Let us adjoin to problem (9.1) the problem

s A——i™Nwn g .
(J_tﬂ{,\))(Hj) & () =2 (). (9.
Every solution $(A) € %{'F " I}) of the problem (9.1) generates a solution
B0 (}‘“L> ) (9.

of the problem (9.2). The converse is not always true. A solutien (D()L}(€§R(
of problem (9.2) generates, by means of formula (9.3), a solution ®{}) € %(n w1
of problem (9.1} if and only if ®(A) has a zero of multiplicity not less than —x
at A =i,

The left exponents of the marrix fanction (-:’)\L—_l-—_f:) T~ KON are precis
the non-negative numbers Ki— K, {(f=1,2,---,n). Letus assume that among tk
aumbers K]- (j =1,2,+++,n} there is ar least one that is positive; denote by x
the smallest of such positive numbers, Then the general soluzion ®{X) of the y
lem (9.1}, which vanishes at infinity and has a zero of multiplicity not less tha

-k, at A=i, is given by

@urﬂ(“ﬂ)”‘ wmuwn‘Ta@@—wﬂ+.u+aﬂa—a“w%o

Accordingly, the Founer transform of the general soludon of equation (B} 1
then the form

O = 3‘ (@ O P =) el (- )TN @ (),

e |
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where @J. WG=12,---, r) are vector columns of a standard solution of the

problem

P /R N,
#0557 ) B M=5.0
ot the vector columns of a matrix function @ (A), related to the factors in the left
standard factorization of the matrix function - 5‘{{)‘)}”1, .
U= () =R, (D IR (N,

by means of the formula

©, (=% (3 (

T

N i >max (“j' G)§
|

h-d I

Proceeding in this fashion, as was done in the case 3 =0, we can construct,
starting from the functions ‘I)]. (W{j=1,2--,p) exactly p D—chains of solutions
of equation (B), whos& lengths are respectively ®; (j=1,2,---,p).

We have thus

Theorem 9.1. If among the left exponents of the matrix function U — EAON
(€ Ry, ) there is at least one which is positive, and &, is the smallest of

these, then the equation
(1)~ S Bt —s)o(ds=0 (0Lt < o)
b

has exactly

i
o

M

&= ¥

i

j=i
linearly independent solutions; which, suitably chosen, generate p Dechains of
solutions of length K G=1.2,---, ph.

An analogous assertion holds for the solutions of the equation
<0
$0—\ ¥ s —00()ds=0 (0 <1< ),
il

the dle of the numbers K;, Ko, --, K, BOW being played by the numbers — x_,
— K, _g.trr.— K, where K is the “first” of the negative left exponents of the
matrix fanction [ — ¥ (M),

2. The above construction of D—chains of solutions of equation (B) was ob-
tained by means of a standard solution of the matrix problem {6.6), but such a con-
struction can also be carried out, in the following way, independenily of the stand-
ard solutions.

Suppose that 3 a is the a—dimensional linear set of Fourier transforms ®{A)
of all solutions of the homogeneous equation (B

Letus denote by k; the largest multiplicity of the zero of any vector function
®()\) € Ra at A=i. The subset of all vector functions ®(A)} € 3« having ar
A=i a zero of multiplicity not less than p{<k;), will be denoted by Ekl—p'

SYSTEMS OF INTEGRAL EQUATIONS 2

Thenonehas o — g ... O Eams CF =3,
because $(A) € 531;, implies that (A — ) ~Lype "C’j+1‘

Lert us denote by @ 0 (A (=1,2,---,py) an arbitrary basis for the linea
set £, By (I)Ij()t) {j=1,2-+,py; p; 2 2py) letus denote a basis for the lis
set ‘EO such thar the first p, of its vector functons coincide respectively wit
the vector functions (I)Gj (A (] =1, 2, -, po), the next p, vector functions 113‘
G=pg+ 1, 2py) satisfy the relations

Dy, 5ep, 0= (b= 070, (1) (=1, 2. ..., p)
and ihe remaining ones (if there are any) ate chosen arbitrarily.
In the linear set Sm (m=2--, kl) ler us choose a basis
CIJm]-(a\) (G=1,2,-.pp Pp > 2p,._3),
whose first Zp_ vector functions satisfy the relations
a) @y (1) = oy, 50 (=1, 2, -0y pnih
&) O (M =0 = Wiy, (0 =Pt 34, ooy Z2Pimeat).

Y p > 2p, ;, then the remaining vector functions (ij WG=2p, ;+L--.p,
are arbitrary.

Obviously, each vector function @m}. {\) which was left arbitrary in the p1
ceding process generates a D' —chain of solutions of equation (B).

It should be observed that a basis for the subspace B a may be splitup i
D—chains in various ways, The way chosen above is characterized by the pro
that it vields a minimum number of D —chains.

Theorem 9.2. In order that every D—chain of solutions of equation (B) ¢
sist of not more than one vector function it is necessary and sufficient that al
solutions &(£) of equation (B) differ from zero at ¢ = 0.

Proof. In fact, if there exists at leastone D—chain of solutions of equa
(B) consisting of at least two functions, then, by definition, the first of these
functions must vanish at £ = 0.

Conversely, suppose that qSO(L‘) {€ EG xl)) is a solution of equation (B)
such that ¢O () = 0. Since all solutions of equation (B) are absolutely contir

ous, the vector functon ¢ (£} may be represeated in the form
¢
wl(t= o (s)ds,
0

where & (£} is a vector function belonging to the space L(‘;xn)'

Let us prove that the vecwor function ¢, {¢) must be a solution of equati
(B). Hence, in view of this thete is a D—chain of solutions of equation (B) ¢
taining at least the o soludions ¢, () and ¢, (2).

Changing variables in {B) yields
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t

RO g Flaygg{t—uydu=0 (0<t< o).
Differentiating the Ia_sioequation, it follows thar
f
a@—\ ke)nt—w)di=0 (O<i<o),
which, in temn, means ;‘i:;;t
ol (1) — S kit —s)g{s)ds=0 (0<t< co).
4]

The theotem is pioved
Remark. From Theorem 9.1, in the scalar case, one has the following as-
sertion, which was mentioned in the introduction.

If the function k(z)€ L and the function I — ()} does not vanish on the
closed axis, then:

1) X &k =~ind {J — KD > 0, equation (B} has exacily « linearly independ-

ent solutions in £, which may be chosen so us to form a single D'—chain; equa-

tion {B”) then has oaly the zero solution and; finally, the nonhomogeneous equation

(A} then has a solution for an arbitrarily given right-hand side,

2} k <0, equation (B) has only the zero solution in E*, and equation {(B”)
has exactly {«| linearly independent solutions, which form a single D—chain, if
suitably chosen.

These results were first obtained in [1].

$10. Stabilizy theorems for systems of exponents. 1. In the ting & there is

a narvral definition of a norm, f

k=]

S =F(w)+ \ Mr@a (el
then one sets -

IFH=1F )+ F ()]
Clearly, | 51 > FW foratl AE(- =0, o}, For any M()) € %(an) fet
us define
iMii=n  max  |[mal,
i k 2 n

=1, 2, ...

and then éR(n)m) will be a Banach space.

Further, %(n «n) ™ay be considered s a nomed ring, because, as is readily
seen, for any 9311, 5‘:’52 € %(nxn):

WM [ < [ |- R . {10.1)

SYSTEMS OF INTEGRAL EQUATIONS

It should be noticed thae, if g(A) € R, W € R (nxn) then

Theorem 10.1. Suppose that the ronsingulor matrix function M) € %E(n,
Then there exists a number 5(> 0) such that any matrix function Ay € R |
in the B—neighborhood of M: | M| — N} < &, is also nonsingular and for eack i
p its left (right) exponents satisfy

2 )—p)> iy () —
wiys AU uj(9§>p“’(%) p)- (1

Proof, Define
h— i -P
M=) me,

where p is any Integer satisfying the inequality
4 () < p < (M) (1t

Obviously
Ij(mi)ﬁﬁj(%)—}? (=1, 2, ..., n)\

Let us introduce the operator U/, acting on L(';x 1), defined by

Up=Ag(t)~ \ k(i —s)o(s)ds (0< < o),
0

_where

W= 4~ (E@e™d (~ o< <o),

In view-of Theorem 9.1

a(@= 20 (4 (M) —p)
(M) > p

From proposition A) in section 1, there exists a aumber pp(> 0), such th
each linear operator V{VL(';X ne LC; xl}) which satisfies
U=V <o, (1

alsc satisfies
a(V) < «(U). {1

Let 5(> 0) denote 2 number which is smaller than all the quantities

‘% ?‘-'—'. ~p§—1 .l 1190 H g - "
pr;(f;%) { GEO o, IR DT (e (M) € p <y (T))

“and so small that any matrix function in the S—neighborhood of the marix gJa‘.I
is nomsiangular.
Let us show that & satisfies the requirements made in the theorem,
Suppose that T(A} € 3%(" wn) and satisfies 1% -0 < 8.
Then for any p in the interval (10.3) the matrix functdon %l (A) = (%—3)—‘[

is nonsingular and satisfies the condition
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T =Tl << (LR 1P 0, L0 1) e

Consider the operator V, acting on the space L(-.:x 1) defined by the equation

V=4, (t)-+ S ki(t—s)g(s)ds (0 << o),
where ‘

RN = A+ § (D (8 (D€ L.

According to the inequality (2.5): | U -V| <| :‘[ﬁ;z(r\) - %;1{,\) ||, and since

957 ) 9852 0} < (LB

it follows thar the operator V satisfies the inequality (10.4). Thus the operator V
also satisfies the inequality (10.5). In view of Theorem 9.1, this relation is equiv-
alent to (10.2), Hence inequality (10.2) holds for all integers p in the interval
(10.3). In particular, for p =«;(#) and p = «_ (M) this inequality furnishes
% (M) >, (R) and =, (M) < =, (). (10.6)
Since the §—neighbothood of the matrix funcron ¥ consists of nonsingular

matrix functions, then for each matrix function % in this neighbothood one has

(M) =K(§R), i.e.,
Z" y"j (%):‘ 2 zj' (m)‘
je=1 =1

Together with (10.6) this implies that, for any p which lies outside the inter-
val (x (%), «; (M)}, the equality sign holds in the desired relations. The theorem
is proved.

2. Letus denote by & the set of all ordered sequences frj }7 of integers
Ky 2Ky 2eee>x . Let §K].}'}' and {Kj-’i}‘ be two sequences in § ; we shall say
that the second sequence is obtained from the first by means of an elementary
operation provided that for certain integers p and ¢{I <p < g <n) it is true thar

I D W
Further, we shall write
f Vs fa!
ek > {7 (10.7)
if either the sequence {K}.’}? coincides with the sequence {K}- {7, or is obtained

from it by means of elementary operations. It should be noticed that {10.7) implies
thar

T 2
. “ ! ’
ng e J%’i -
Relation (10.7) serves to iutroduce a partial ordering of &,
E 4
n - . . A

if {K]. i € Gn, then its mean is defined to be the sequence {K}- §'I‘, defined

by the equations
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~

xl_—-_':’.._,':-: - =xr$q—|—i, Uy =hpyg = ... U, =,
~where the integers ¢ and r are in mm defined by the equation
ki3
> xj=ngtT (D r<n)
=
It is easily seen that always
{437 > {rha-
Further, the sequence i?cj }? is minimal among all sequences {K].’E satisfying (1
It will be left to the reader to verify the foliowing assertion:
Let {x.17 and ikf?? be two sequences from G, satisfying condition (10
A necessary and sufficient that for any integer p one have
P 2 %5,

i 7
>’-J->P xj->p

is that Lk} > {w/37.

This assertion serves to justify the proposition that Theorem 10.1 is equit
leat 1o the following:

Theorem 10.1°. Let R(A) € éR{n «n) be @ nonsingular matrix function. Th
there exists a number 8(> 0) such that every matrixz function RN ER
the 8—neighborhood: [~ Rl <8 is also nonsingular and

o (IR > (o5 (R O (s (MDD

3. We shall say that a system of left (right) exponents for a nonsingular o
wix functon T} € ?R(nxn) is stable, provided that there exists 8 > 0 such-
any matrix function, which belongs the S—neighborhood of the matrix

M 4M -] <8,
also has the same system of left (right} exponents as .

It will be shown below that the stability of a system of exponents {K]. ()
of a marrix function R (A) € {%f{n x"}) is completely determined by its arithme
structure, to wit; the system of exponents (KI (m, Ky b, - .-, Kn(gﬁ)) is stabl
and orly if K; " - Kn(?}l) <1, i.e., when it coincides with its mean.

in other words, one has the

Theorem 10.2. Suppose that the nonsingular matrix function Ma) € %(m
and that x = ind det WQAY. Then the system of left (right) exponents (ky, Ko, * -+,
of the matrix function M(X) is stable if end only if
LT Ey T .. ='f-,-"~—”(]"i‘1, Fpe] = g = . =R, ==
where the integers q and r are determined by the equation

x=qnetr, 0< 7 <
Proof. The sufficiency of the condition is immediate from Theorem 10.2.

Let us proceed 1w the proof of the necessiry.
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It is obvious that it suffices to prove that if
% (M) — 2, (M) 2 2,
then a sufficiently small variation of the matrix function will produce a change in
at least one left index x {M). Without loss of generality it may be supposed that

all exponents KI.@ED {(j=1,2,---,n) are non-negative.

Let the matrix function %+f\)\) be a standard solution of the matrix problem

WG, () =35_(1)
Iz is readily seen that the column vectors DM =1, 2,-..,n) of the mamix
function (X} have zeros of order x. =« (M), respectively, at A =i, Let us inwo-
duce a new matrix function %+()\; ¢), which is obtained from %+()L) by replacing

irs first column vector by the column vector
v ; L-—i =1
D (¥ 2) =D (K)—= + ) e,

N Y
where { £ 0} 1s a complex number, and £y is a vector, the value of the vector
function (’\:') L] (:\) at A =1L

Obviously, %_1_()\; €) belongs tw the ring g%(szn)‘ If the absolute value of ¢
is sufficientdy small, then
detF. (M )%= 0 (—oo<h g w)and inddet §, (7, 2)= ind det 9 (M) ==
Let us define the matrix function M (A} by setting
e () =5, (s ) F2(0)-
The matrix function me (A} is nonsingular and belongs to the dng ?R{n wn}s
the norm of the difference M{A} — .\ may be made arbitrarily small by choosing

¢ suitably, because
1 ' m ; 2 e 2N
seGe) ™

(LN

where { ¢, || is the maximum absolute value of the coordmates of the vector ¢

It is also obvicus that ind det SRE(A) =K.

The matrix {function %+{)\; ¢) is a solution of the matrix problem
) WD F. (4 2) = (1) (10.8)

Since the sum of the multiplicities of the zeros of the columns of %+(A; €}
at A =i equals k — I{#£ &), the soludon %_'_(A; ¢} of the problem {10.8) is not
standard. Ler us transform the matrix % (A; & so as w obtain 2 standard solution
of (10.8), In order to do this, multiply the first column vector of the matrix %
(A; €) by the function ¢~/ ()L J )_KIHIJ'K“ and add it to the last column of this
matrix functdon. The same transformanon is to be applied o the matux funcdon
% _{A). Let the resultant matrices be denoted, respectively, by % {&; &), Clearly,
?5' (A 00 € 3'1’( xn)* Further, the last column vector of % {A; &) has a zero of mul-
eiplicity x, + 1 at A =1,

The marrix fanction §5,{X; ¢} has the property that the sum of the omldplicities
of the zeros of its columns at A =i equals x; consequendy, it is a standard solu-
tion of the problem (1¢.8).
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Thus, by means of a sufficiently small variation of LN omne obtains a m:
function 3316(?\), whose left exponents differ from the left exponents of the man
TN, in face

w (M) = () — 1, 1, (M) =4, (M +Land g, (M) =%, (M) (=2, ..., n

The theorem is proved.

Remark 1. let us generalize 10,17 and 10.2 as follows:

a) Given any sequence of numbers iK}.’i}‘ satisfying the “inequality”™

f (D13 > a1,
there is, in an arbitrary S—neighborhood of @ nonsingular matrix function TN
{g ?&(nxn)) e nonsinguler matrix function R () (€ %(n wn)) such that K o =
(j=1,2,---,n)

b} Given a matrix function M(N) (€ %(nxn) ), ir any arbitrarily small nei
borhood of it there always exists a matrix function with o stable system of lefi
and right exponents.

Indeed, in the course of the proof of Theorem 10.2 it was shown that, by v
slightly a matrix function with unstable exponents, one could increase one of
left exponents by unity and decrease one of the other exponeats also by unity.
repeating this procedure a finite number of times one finally will arrive ata m
which differs slightly from (X} and which possesses the system of exponent
{Kf, Ké’, e, K;) given beforehand. Assertion a) is therefore proved. In partici
in an arbitrary neighborhood of ! there is a matrix function % with a stable <
of left exponents. If the matrix function # has an unstable system of right ex
nents, then by altering it slightly orne may make sure that its right exponents |
come stable, while the left exponents remain as they were before.

Asserton b) therefore has also been proved,

Remark 2. A slight variant of the proof of Theorem 10.1, and of Theorem
as well, furnishes these theorems in a stronger formulation, (see £131), corres
ing to the following wider definition of the S—neighbothood of an element pAe
the ring R, ) as the setof all R(A) € R (4 xn) such that

- 5

xm?}; |1 (1) =y (W] < -
where the maximum is takenover all A € {—o0, el and j, k=1,2,---,n
It should be noticed that this new definition of a §-neighborhood of 2 ma
e %(n «n) corcesponds to the following definition of a norm
0 || = nomax jmy (V)]
Mok

under which 3%(” «p) is Do longer a complete linear normed vector space.

§11. Ezponents of triangular matrices and their factorization. 1. A mat
is called a left (dght) wiangular matrix provided thar all its elements above (&
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the principal diagonal are zero.

IHFRW E %(nxn) is a left nonsingular triangular matrix, then the transposed
matrix W (A) is right triangular, and the left exponents of one of the matrices are
righe exponents for the other matrix. If we denote by T, (W) t:he matrix obtained
from % (A} by reflection across the second diagonal, then we can again assert that
the ieft exponents of one of the matrices H{(A) and M, (A} are right exponents for
the other, and thar M, (A); like M{N) | is a left tr1anguIar matrix,

In view of this, we may always restrict our attention to the left wiangular ma-
wices (A} and o their left exponents, which will be denoted by K].(EIR) (G=1,2--,nh

We shall denote by k]. (M {=1,2,---,n) the indices of the diagonal elements

of the nonsingular triﬂgula: matrix T{A):

ka_-kj(ﬂﬁ):indm”(l) (j=1,2, ..., n).
Obviously
(M) + o, (M) =k, (M4 ... + &, () = ind det M ().
One has the

Theorem 11.1. Al left (right) exponents K; {(j=1,2,---,n) of atriengnlor

nonsingulor matrix function M{X) (€ %(nxn)) lie between the largest, k and

max’
the smallest, ki of the indices A:]. (j=1,2,---,n) of the diagonal elements

of ()
frin € 0y K Fpax (7=1,2, ..., n).

If X} is o left triangular matrix function and the numbers k (j=1,2,--- n)
do not decrease (do not increase), then, when suitably ordered, they coincide with
the left (right) exponents of the matrix function M(A).

The corresponding theorem for Hilbert's problem for matrix functions of the
second order {7 = 2), relative to the class of functions satisfying a Holder con-
dition, was first discovered by G. N, Eebotarev [10].

Proof. For definiteness let us suppose that M(A) is a lefr tiangular mawix
function, and that the theorem has to be proved for the left exponents K; (4

(j=1,2,---,m). Consider the riangular matrix function
. X— N Fmax
RV = (55 ) MO (€ R, (11.1)
which is such that
#; (R) =2, () — Emox and & (N) = ey (M)~ Fax (F==1,2, ..., n.

The mawix 7 (A) corresponds to the integral equarion

A?(x)ﬁgl(t——s)rp(s)ds-——O (0<t < o), (11.2)

where the triangnlar matrices 4 = || g [ and i{2) = | lpq(t) [5 €L, n ate
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determined by
[='=)
RN (1) == A — S enI(ydt  (heIL).
0

Equation (11.2) may be rewrirten as a system of scalar equations of the fe

lowing form:

ape, () —\ i, (E—s)e, (5)ds =0

c-c_..-—‘;B

59 () = { lon (L= )92 (9) 5 = — 30, (1)
o

S
lv
Cond

—
i
Z.
G
-
~
co
S
2.
UJ

ri—1 n—1 o

P (0 S%#bﬁﬂ@wwﬁamw ZS%@ )50 |
jum=t

where, since the matrix A is nonsingular, all ay; £0(j=1,2.--,7)

Since

ind{a,, — &£, A))y=indn })= —% R) >0,
the first equation of the system (11.3) (see section 9) has only the solution ¢
=(. Replacing ¢; by zero in the second equation and using the fact that

ind {ay; — Ly N =md n M) = — & () =0,
one obtains thar also ¢>2 ={, Continuing in this manner, one arrives at the co
clusion that the system (11.3) has the unique solution ¢; =S¢, =ch; =eeo =g
According to a theorem this means that all the left exponents of the matrix fun

tion R{A) are nom-negative, i.e.,

*j (M) < Frax (7=1.,.2, ..., n)
In order to prove the inequalides
% (?}J}}}kmm (]ﬁl, 2, Cee, T7) (’l‘
let us define the matrix function 5t {(A), not as in (11.1), bur as follows:
- kmin
RO)=(37) W) (€ o), a

and consider the corresponding system of equations (11.2) associared with thi

matrix, Since now

ind (a5, =L (M) =Ind 03 Q) — & R) = —{k; — kmin) <0 (F=1, 2,
then each of the homogeneous equations
Gt —{;0—9e@ds=0 (<t <)
0
has exactly kj —k ., linearly independent solution in L*, and for each [ €
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each of the nonhomogeneouog equations
a0~ Lt —9e)ds =)  (0<t< o)
0
always has a solution in L ¥, From this it follows at once that the exact number
a(M} of linearly independent soiutmns of the system (11.2} is equal w

Z k; (W) = ind det T (1)

In view of Thecrem 9.1, all exponents of R(A) are non-negative, from which

(11.4) follows. The first assertion of the theorem is proved.
Let us prove the second assertion of the theorem by induction.

For n =1 the assertion is trivial. Let us suppose that the assertion has been
proved for all niangular matix funcrions of order m < — I, and let us prove that
it continues to hold 15t % given matrix M(A) of order n. Again let us construct the
matrix

(k)= (55 )R 0) (€ Fewsn)
and consider the cotresponding system of in:egral equations (11.2). Since
ind (g, — L M) =indn (W =k — % =0,
the first equation of (11.2) implies that ¢, *0.

Replacing ¢; by zero in the remaining equaticns of (11.2), one sees thart the
resulting system of equations corresponds to a triangular marix 3 ;(A) which can
be obtained from the marsix % (A} by striking out its first column and its first row.
By the inducton hypothesis, the exponents of the marrix R, (N are the numbers

'/-;-—wf"\'n - ]fl, '/.;:]L‘ﬂ_-lmkl, ey Hpet xkgmffl.

Consequently, the system of equations {11.2), by Theorem 9.1, has a basis of
solutions, which may be arranged in n ~ 1 chains of lengths KI, Koyt o+ K
Since, by the first assertion of the theorem, all exponents of N(A) are non-nega-

tive, the exponents of N(A) must be the numbers Ky, Koyt rey Ko 4. 0, and con-

sequently the exponents of M{A} must be: !
A=k b =k, o e, =y Ak =y, ow, =Ry

The theorem is proved.

From Theorem 11.1 and equatior (11.1) it immediately follows thar:

Conclusion: If M(X) is @ nonsingular triangular metrix function and the in-
dices 5:}- Gm1,2,---
more than unity, then, arranged in non-increasing order, these numbers are a system
of left, and of right, exponents K; MW G=1,2---,n of the matrix (N, which

,n} of its diagonal elements differ from each other by not

is thus seen to be stable.

2. Let us show thart the left (right) standard factorization of a triangular ma-

uix function M(X) may be effectvely carried out, as soon as the standard factori-
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zation of its diagonal elements has been accomplished.

Withour loss of generality it may be supposed that l{ce) =/ and that
EMH>0  (G=1,2, ..., ). (1

In view of Theorem 7.3, applied in the special case n = I, all the diagon:
funciions mj].()\} (G=1,2,---,

factorization

iy (M=g7 (Ngr (V) (j=1,2, ..., ), (L
where the factors g (A} € R * have the following properties: 85 T £ohelL
and g*‘()\) does not vanish on the halfplane f' » with the excepuorz of A=1i,

n) of the matrix function M(A) admit the srands

it has a zero of muldplicicty kj g=1,2,---, n).

As soon as the factorization (11.7) has been carried out, one can easily o
struct a nonsingular trangular solution % (A} of the marrix Hiibert problem:
DM T R =F.(N). (11
In fact, the first column of the solution §, (A} = || ‘fp; (M) |7 s determine
by the following system of equations
ay (M) =17 (1),
G O () = = a0y (1) (09 5 (1), "
Can (N7 (W= = O N — ot O () + 1700
Here, to simplify the writing, the second subscript has been omitted from |
functions TPI Wlp=12---,n.
Since €2 (&) = m;% (A}, the functions
TN =gi (V) and fr(N=gr (), (11.-
obviously satisfy the first equation of (11.9). In order to determine the functior
f;()t} let us substinite in the second equation of (11.9) the value of f}'(;\} al-
;(h} g5{A); then
g7 (M) f+(})—q‘z (R iz (7\}—32 (M ooy (1) g (3).
Since g5 (M) F (M) €R™, we conclude thas
ai (5 (= —P {gras,g7),

where P+ isa pro;ecnon operator, mapping the ring N on the dag R, i.e.,

ready obtained, and replace Gy (/\.; by m%: (.\\ =

)
P, (CT ( eirijy (i)dﬁj =c+\edh()di  (hel),
it o
Thus
i (W)= —gF () P, {gragai)-
Proceeding in this fashion, one obtains all the functons fz WNG=1,2---,1
The first function of the second column of §,(A) is zero. In order to determin
the remaining functions appearing in the second column of the matrix %+(A) w

can constnict 2 system analogous to (11.9), Itis clear that the matrix function
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this new system can be obtained from M=) by smiking out its first column and
its first row.

By the process:outlined above one can obtain all the elements of the matrix
funcrion % (A} which is a solution of the problem (11.8).

Since the functions g"i"(k} (=1,2,-

the determinant of the matnx function % (:\) has a zero of muldplicity k; + fc2+

., n) are the diag‘onal elements of % (2,

-~+k at A =i Inview of the fact that
hy 4 ky - o2k, =1ind det TN (A,

we arrive at the conclusion that, after a finite number of operations, which were
explained in detail in section 6, one can transform %+(A) into a standard solution
of the problem (11.8). This completes the lefr standard factorization of the manix
funcrion %+(A). o

3. Let us examine the case n =2 further. In this case the mawrix funcdon
%_'_(;\) has the form

ai (+) 0 1
Mai () () (11.11)
Q (W)= — P, (g7gras).

The function (A} may have a zero at A = i.

&R

where

In all cases, the function Q-T{n) may be uniquely represented in the form

9 =0 (5 )+ R0V,
where Qp () is a polynomial of degree g, > 0, and RI (X is a function which is
regular at A =i, and which vanishes there' R ()=
If R, (M) # 0, then the function R ()L) may be uniquely represented in the
form
B0 =015 )+ R,
where R,(A) is 2 polynomial of degree g; > I, and R4{\) is a function which is
regular at A = i, and which vanishes therer R,{i) = 0
If Ry(R) #0, the process may be continued to obtain a representation of
R 21()0 as a sum: QQ{——} + Ry(N), ete.
Thus, one may always formally expand the function @ in a finite or infinite

continued fraction

QR) = t _ .
Qo (1) + 7o (r=r= (11.12)
Qi (p)+ ...
whete Qj(iu) is a polynomial of degree qj(j =0, 1,+++}, and % >0, q].ZI

{(j=1,2,---), Letus put

=0y S =G+ G;,  Sa=g+ g+ Gy ..

SR

T,
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If the continued fraction (11.12) is finite (£ is a rational function} and Q?
is the last denominaror of this fraction, then we will set ¢, ; = <. Then the foi
lowing rule holds:

If sp2k;—ky, then &g () > max (&}, k,), ko (M) = min (&, ko); if sg. S
4 8g, Sy Sg L5+ 8 <k1 - kz, and Sy b s> k1 —k2, then the left ex
nents «,(W) and xy (M) coincide respectively with the largest and the smallest
the numbers ky~s; and ky — s 5

The first such rule was given by G. N. Ceborarev [10], in considering the
Hilbert problem for one and for several smooth contwurs. Repeating the conside
tions of this author word by word, one amives at the rule stared here.

Besides, for the integer [, for the [—th convergent of the continued fractic
(11.12) and for R, and R, ;, itis easy to obtain an explicit expression in termw
of the factor I (A.) of the standard factorization of the mateix %{A) (see[61).

Observe that, if 55 <k; - ko, inasmuch as s, >0, the num?’ers k; and k‘.
must be right exponents of the matrix T{N). According to G. N. Cebotarev’s rul
they must coincide with the left exponents of M{X)} only in two cases, namely:
Ni=0, SG=0, or if s, zkz — k.

On the other hand, for arbitrary integers k; > k, and d{0 <4 < % lky ~ky)
one may always construct a left triangular matrix M(A) with diagonal indices
k;, ko and left exponents k) —d, k, - d.

Indeed, supposing, for simplicity, that k, > 0, for example, that (A iso
the form (11.11}), where 3;" €ERT (] =1, 2} have in H+ a unique zero at A =i
multplicity k]- {j=1,2), and

ofym Lo (e=i),
Qo{2} + == Q o
where @) (p) is a polynomial of degree d, and Q;{p} is a polynomia} of degree
;> ky—ky—2d, so chosen that Q{N) has no rea! poles. Then, by G. N. Celx
tarev’s rule, I =0, s, = d, and, finally, the exponents of WA are equal w Ky

and &, — d.

§12. Simple and generalized resolvent of equation (A). 1. In this section
shall consider the question of the determination of the solution of the equatdon

9{41)—8&{&——.9)0{3)035_4(3} (0t < o) (.

in case a facto:izauon of the matrix function ([ — () is known. It will be
supposed throughout that the matrix function [/ - N is nonsingular.

At first, we shal! consider the case when the equations (B}, (B’) possess
only the zero solution. In this case, in view of the fundamenzal Theorem 2.1,

equation {A) has, for each right-hand side i) € E{'; xI) 2 unique solution
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S0 €EE oy
Let f(t) be a vector function from L(Tncl)’ and ¢ {t) {€ L{t;xi)) be the cor-

responding solution of equation (A). By setting
[==]

bty — { kt—s)p()ds  (—o0 <i=0),
0

pO)=f{Q)=b(—1}=0 (—o <t <®)

zquation {A) may be rewritten
(=]

2=\ Ht—s)e()ds=f(O+b()  (0<t < co)

Let us apply the Fourier wransformation w both sides of this zquation, w obtain
that T )

(=37 0NN =F{N)-F{n), {12.1}
where ®(OV), 3{0 € 31(2;1), and B € %(D;xl)‘

In view of the conditions imposed on the matrix function [ — ¥(X), the matix
funcrion {{ ~ ()~ admits the left canonical factorization
(8 (T =G, (1) @_ (1) (12.2)
From {12.1) and (12.2) it follows that
le=0 F+E »
and since @, 3 € 3?&'};( ;) and Be ?(C:le)’ this implies that
F-1e =P (G _F),
where P+ ,as in section 11} is a projection operator mapping %(nxl) into 3%{*; w1¥

ie., .

%o
P+(c—5— S eiuh(z)dx)=c+ S eMh(tydt  (h€ Loy
—x [i}
Thus, given f(s) € L(T:x ;) e Fourier transform of the solution of equation
(A) is given by the formula
=001 (G_F) (12.3)

Let us show that the operator (I — K) ™! may also be represented by means of
a certain matrix resolvent kemel. In order w obtain an analytical expression for
the resolvent, one has to apply the “inverse” of the Fourier transformation o both

sides of equation {(12.3), Putting

@+(}‘)=1+S"{(5)9"“d3 (Y10 € Lnsem) (12.4)

and ]
6. 0)=1+{e 8t (1206 L), (12.5)

0

one obtains that
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P (G F)= Xg(z) giM gt
B
where
gty =7{)+ S 1=t —7)F(ridr
b}
it being understood that ¥, (£) = y(2) = 0{~ o <z <0).

Once this has been done, it {ollows easily from (12.3) that

o) = g () -+ S Y —-P el dr
0
-Substituting here the expression for g(f) we obtain

oo

2O=F@+ 7 97(s)ds,

a

~where the kemel y(s, 5) (0 <, s < «) is given by

P19 6 -0+ (yt-nr—ndr  (0<n s <o)
b
or, what is the same
min{gi,s)
7t )=y —s)+y(s—1)+ B Tt —r)y(s—r)dr (0<t, s o)
]

{12.¢
the kernel y(s, £), being the resolvent of equation (A), satisfies the two func-

tional equations:
T sy=k{f—s+ S E(t—riy(r, $)dr, }
i
. O<s, t <o), (127
o
v{t, )=kt —s)+ 5 Y{t, Y E(r—s)dr,
b

R —

where each equation is meant in the sense that it holds for arbitrary ¢ > 0 (s > 0.
for almost all s >0 (¢ > ). Analogously :0 what happeas in the scalar case (sec
[1) itmay be estiblished that a kernel y (¢, s) of type {12.6) generates a bound

operatwor [ in any space E('; « 1)+ The telations (12.7} are the analytic equivalen
of the fact that, in L(sz 1

(I K)(I+T)=I, (I+D)(I—K)=1I, (12.8
and, as soon as they are established, from them follows the zruth of {12.8) for an
arbitrary space EC; x I}
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space L('; w 1)
The condition ||K§ < I.is always fulfilled, provided that
. i 1 .. .
[P & @ <= (i, j=1, 2, .... n), where k(t)=] Epo () 1iE

It should be observed that, as soon as equations (12.10) have been solved,

It should be noticed thar, although the kernel y(t, s) has an entirely different
structure than the kemel &{¢ - s), both of them are entirely detemined by their

values on the axes t = 0 and s = ; in fact
o

1 S =r(t=s, O =30 s =0+ {1t —r, 070, s—ndr (0<t, s <),

o one way ot another, then equations (12.4) and (12.5) serve to determine the facr

(12.9) in the left canonical factorization of the matrix function (/ — ¥(3))~.
For the understanding of this last equation it must be remembered that y(£) =
= y{t, 0) and y(s} =y(0, s) {0 <s, £ < o) (see (12.6)). In writing this equation
it was supposed that y{(¢, 0} = ¥(0, ) =0 for t <0.
We have thus established the following proposidon:

Theorem 12.1...»?}0 the matrixz function k() € L(an) there corresponds a
H(W) (—oe <A<+ o0) and the equations (B), (B

2. Consider the solution of equation (A) in the special case when
f(2) = ae™,
where a is an n—dimensional constant vector and Im > 0.

Denote by Xé’(‘) the solution of equation (A} for this particular right-hand
side. As before, we shall suppose that the hypotheses of the theorem proved ast
fulfilled.

Since exp (i £ 1} €L, one may use the formula

nonsingular matrix function I~
. . +
have only the zero solution in the space E(sz 1)» then, given fEED 1) the

solution ¢ € E(},y, 1) is given by the formula X 00 =6, () P, (5.0) F_ (). (12.1.
wlt)=[({)+ \ 1{t, §) f{s)ds, In the case under consideration
]

where y{t, s) {0 Zt, s <=} is a matriz kernel such that the matrix functions o

y(, 0) and y(0, £} belong to L(';Xn) and that y(t, s) is expressible in terms of
y(z, 0) and y{0, ) by means of equation {12.9).

Fy=a | erettdi—ai (1)
5
and, therefore

Remark. Setting s =0 and ¢ =0, respectvely, in che- equation% (i12.7), one O 0).F (N =i @ (?&)w@; (—0) o ®. (—:C) .
obtains that the matrix functions y(f) and y,(t) are the unique solutions of class FE EE
L(-tzxn) of the equations Since the matriz function @ _(X) ~8_(~ £} belongs 1o the ring %szn) an.
o vanishes at A =— £, the first term on the tight-hand side of the last equation is
1) — S k(t—s)y(s)ds= k(1) 0<t <), vector function in ga(;xl)' On the other hand, (A + {Y 1 a € 3%&; 1)+ Thus, in
6 (12.10) present case
Yc(t}_gk'(s"-i)“fc(s)d3=‘!‘{_f) (01 < o). : P+(@5_.s?):i%ij;—“a
] : hl

and {12.12) yield
Therefore, if the matrix function k(t) generates an operator ( ) yields
oo
K= S k(@ —sya(s)ds

o ={etya=i 8800 gen) 2
h -2

0 ..
(in the space L(.;X.Z)} with norm less than unity, then y{f) (and similarly yr(t))

may be obrained as a Neumann series

Y (1)=n§0 Fr (8) (12.11)
where
Ky (1) = £ (1), kﬂ(t)sz(t—s)k Lds (p=1,2 .0
[{]

and the convergence in {(12.11) is understood in the sense of the mewic of the

As in the scalar case (see [ 1]), it may be proved that, when Im A > 0, equ:
tion (12.127) holds also for real £.

It should be noticed that all the considerations of this section are ahnost
identical o the corresponding considerations for the scalar case {see [1]), All
the assertions of [1], section 8 remain valid for the matrix sitzation considered

here, but will be omitted for lack of space.

3. Letus now consider the general case, when equations (B), (B”) may
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possess nontrivial solutions. Although in this case equation (A) does not have a

resolvent in the usual sense, still it may be shown that if equation (A} does pos-

sess a solution, then one of its solutions is given by a formula similar o (12.3).
In fact, suppose that equation (A) does possess a solution for a cerrain

f€ L('; % 1)" Then the Fourier transform ®(A} of a solution of equation (A) satisfies

the equation

(I — % Q)Y () = F () + & 0. (12.13)

Let us now use the left standard factorization of the matrix (/ — H{{¥) yL
(L= (W) =T (1) DN)R_()-

Let us denote by $,(X) the mauix functons which are defined by

&, (V) =0 o)“ M)’aﬂ!;l ()\}_;; ;;[i) ,RJ%(L}

where x.(j =1, 2,+~ayn) are the left exponents of the matrix funcdon -

and K3 * = max (k. 0) and .K] —mm(K .
It is obvious that @ (A) belong respecnveiy to the rings %E( wn)s and that
(waf(?\}) =&, (L E_(). (12.14)

Let us denote by «_ the smallest positive left exponent of the matrix function
(7= KON, In view of what was shown in section 6, the Fourler transform of the

general solution of the homogeneous equation (B) may be represented in the form

&, ( ))@(m__>

where p(—) isa poiyno!mal vector function, whose components p]( . z) are

i) >‘ eP iy (=102, p);
h=1
\__,,,( oy gy b |‘) \ A4 4=
p] ..?.:.:ﬂ;J)ﬁ\) ( :':_!)-‘;"}, P, oo, N (1210)

If the vector function @, \A) is the Fourier transform of 2 solution of equation (A},
then the Fourier transform ® (A} of the general solution of equation {A) is given

by the equation
B (3 i 7] 1= . +
b =0,00—8 W& 1= ), (12.16)
where ]9(_!_) is a polynomial vector function, possessing the properties (12.15).

Letus seIect the solution ¢ (2} € L{ wx 1) of equation (A) is such a way that
the vector function @ 1(1\} CEOANS ge(nxn) where
oo
P (W)= S e (1yde.
[
This selection may actually be carried out by putting, in equation (12.16), the

polynomial P(.._.) equal to the principal part of the matrix function @ 1(1\} ¢\

in the ne;ghborhood of A =i. Obviously, the coordinates of the vector f\mcnon

3
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39(—1_:) have the desired form (12.15).
A comparison of equations (12.13) and (12.14) shows that
EME M) =C_()F M +E.(NF_(N,
and since @ IO.) P e 3?.( 1) 8 B € ER(onxl) one concludes that
gD (W)= P, (E_F).
Consequently, in all cases, whenever equation (A) with f € L(ﬁle) is solval
the Fourier uwansform of one of its solutions is given by

D) =§. P, (E_F)
or by

PN =8P (B 7, (12.1
where
B, () =6, () €7 () and G_ (1) = 6 (c0) E_ (1),

Repeating the considerations employed in obtaining equation (12.6) for the
resolvent of equation (A} in the case when the homogeneous equations (B) and (]
have only the zero solution, one verifies that equation (12.17) may be shown to
lead w

2=F 0+ { 1(t, 5)f(s)ds.

(12.1
b
The matrix kemel y(¢, 5) {0 <t, 5 <) is defined by
v, )=y {f—8)+y{t—s)+ S Y-y (s—r)dr (0gt, s <C o), (12,0
8
where
@, ()=1+ S v(ertds, ©_0)=1+ S ve{t) e de, (12.2
B b
and
YO =1-(0)=0 (—o0 <i<0), (12.2

Let us now show that equation (12.18) fumishes a solution of equation (A}
in any space EC"&)(I) whenever € E(-;x 1) and
o

Sf(S)¢§{8}ds=0 LB, (12.2:
0

where yflj(s) (j=1I,2,--+,B) is a complete system of linearly independent solu-
tions of equation (B”).

(]zi) 2;

o

L.et us denote, for brevity, by I' the operator generated by the kemel v(z, s
recalling that this operator I' is a bounded operator acting on EG; 1) Letus
denote by cn].(t) (j=1,2,---,B) a system of vector functions in the intersectios

E of these spaces, such that
N o

(e 0= k()0 ()ds =2, (G, k=1, 2,
Q

LB
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It is readily seen that, for any f € f’(tzx e the difference
;

jl=f_ Eil(f; q);,)w:,
Jume
belongs to the space L(sz ;) and that (7, I,[J]-} =0(j=1,2,---,0) Recalling

~

that the equation
v — Ko==7,

is soivable, one obrains one of its solutions by means of (12.18)
p=f T

Hence

(= K)(I+T) f,— f, =O.

Substituting the value of the vector function f; in the last equation one obtains

— 3
U =EY I+ =f= 2(F &)
i=
where the vector functions X, () (j=1,2,---, B) are determined by
p=U =Kyl 4 Dyo,—w,  (j=1,2, ..., 8)
and belong to all spaces E(T ;.

(12.23)

Making use of the arbitrariness of the functien fe L{J; w7} in (12.23) one ob-

tains that

7L, )= k{t—s8) -\ R -7y (r, s)dr 1, 9),

where
3

' z,iq;j,p (8375, (0) i

o

and qbi-p and x; (p, g =1, 2,--+,n) are the coordinates, respectively, of the
vector l,[!j and Xj(j'x 1,2,---, B

Suppose now that f(¢) is an arbitrary function in E(‘; % 1) satisfying equation

{12.22).
Then, upon multiplying both sides of (12.23) on the right by the vector func-
tion f() and integrating the resulting equation berween the limits zero and in-

finity, one obtains that
({ =Ky +T)f=].

Thus the vector function

[

()=1(0)+ { T I F5)ds (€ B

i}
is indeed a solution of equation (A}

We have proved the following theorem:

SR
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Theorem 12.2. If the matrix function | ~ ¥ () (E() € L} is nonsingular, th.
for every vector function (1) € E{'; w 1)» Setisfying the solvability conditions
(12.22), one of the solutions of equation (A) is given by the formula

o) =1+ \ 1(t, )7 ()ds (€ Biaay),

V]
where the “generalized resolvent” y(t, s} is defined by equations (12.19), (12.2
and {12.21).

§13. Spectrum of the operator K in the space E(t;xl)‘ Let us recall that
every matrix fonetion k{¢) € L(n «n) generates, in the space E(-:le)’ a linear,
bounded operator, defined by the equation

<0

Ko= \ Eig—s)o(s)ds (0t < ).
i

From Theorem 2.1 it follows that, for an arhitrary complex number ¢, satsfy

the condition

o

det(ilm S R(t)ein dz) w0

—c

{—co << h< o), (13.

the operator {I — K is a ®—operator. Consequently, any number ¢, satisfying
{13.1), is a P—number b of the operator K. From among the above @—points £
the points in the spectrum of the operator K are those and only those points for
which at least one of the numbers
a(Q)=a(f/—K), BL=8{L/—-K)

is not zero.

In the scalar case (see [1]) it was shown thar all points not satisfying con-
dition (13.1) are points of the spectrum of the operator K; further, these points

are not P—points, nor ©_ —points, of the operator K.
In the present matzrix sitmuation the following, similar, proposition is valid,

Theorem 13.1. The spectrum of the operator K, generated by a matriz k{t)
€ L(nxn), and acting on the space E(‘; « 1), consists of all points { satisfying
(13.1) for which at least one of the numbers «{{}, B{L} is not zero (these poin
are ¢—points of the operator K} and all points { for which det({T - XK =0
These last are neither ®—points nor ® ,—points of the operator K.

Proof. Taking into account the remarks made before the statement of the
theorem, it only remains to prove the second part of the theorem.

" Letus suppose that the point {,, at which the determinant det{{,/ - Ho
vanishes for some real number A,, is a ®—point of the operator K. Then there

1). A point of the complex plane, C, is called 2 @ —point of the operator 4 acring
on a Banach space B, provided thae the operator LI~ A is a O —operator. If the opera
{I—A possesses a normal extension, and least one of the numbers a{é), B (é) is fini
then the point £ is called a (I’i —point,
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exists a 8 > 0, such that for every operator Kl satisfying the inequality
JK,— K5, {13.2)
the point {, is also a2 ®—point.
Ler us select the matrix function #(f) = | i 7€ Li, xpn) S0 thatits
Fourier reansform 1(X) is a rational matrix function satisfying, firstly

0 " B
H — e
HK RJE ~ 20

where R is the operator defined by the equality
()
Ro={rit—se(9)ds  (0<i<w),
b
and, secondly, in the circle | {— (o{ <g there is at least one root 4‘1 of the
equation det (R{xy) — (1) =0.

Then the operator K; = R +({; — ¢} will satsfy (13.2). Consequendy, the
point 4’0 will be a ®—point of this operator, or, what is the same, the operator
¢;1—R will be a @—operator.

The rational matrix functon ¢,/ - R(X) may be represented in the form

Gf — A0 =M ()DOYI, (), {13.3)
where 3(M) (€ %(nxn)} is a diagonal rational matrix function, and the matrices
Erﬂj (v (€ %(nxn)} among other things are such that

det M, (3) =1 (j=1, 2, —woghg =)
The martrices %U!},(,\} {j=1, 2} correspond to the ®—operators
[=+]
Ug=A500)— S m{t—s)e(s)ds (0Kt <o) j=1, 2),
]
where

E)JEJTJ(TA),,—:_»'I}M S h"lj—(l)g?'-i.!dt /=1, 2, m; € L)

i
The operator

<

L‘@:B@—S He—s)g(s)ds (0t < o),

T
T
where

D)= B\ UM dl (L€ Lpicn),
[}

is also a @—operator; because, in view of (13.3), it differs from the product of the

®—operators U,{{ ;1 - R}U, by a completely continuous term.

Since the matrices B = || bii Sjk i 7 and HOES l}.}.(t) ii7 are diagonal ma-
trices, the $—operator U reduces w the direct sum of 2 scalar ®—operators V}.,
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each of which acts on the space £ according to the formulas:
(==
Vig=bye(t)— (, Lt s)e{s)ds Ot <Coo; j==1, 2, ..., nu
]

From the equality of the determinants of the marrix functions (X and CI

~ RN it follows that ac least one of the functions

bij— R Llgede  (G=1,2,. . n

marst be zere ar A = Aj;. 'l'hi;(f:omradicts the fact that all operarors Vj G=1,2---,,
are ®—operators (see [1]).

Similarly, it may be proved that the point CO can not be a $, —point of the
operator K. The theorem is proved.

$14. Factorization of a matrix functios on 2 circle, and discrete analogue
equation (A}. As the analogue of the nommed ring # of functions on the closed
axis {—, o | one has to consider, on the circle | {} = I, the ring (R) of all
absoiutely convergent series

o= 2 el (L=

with the ordinary multiplication, and with the norm

In 2 similar manner as the ring R was split into subtings R¥ and R~ one
may split the ring (R) into subtings (R7), (R7), where (R¥) and (R™) consis:
of those functions () € (B} for which, @, =0 for k <0 and, respectively, a;
=0 for k> 0.

Thus, each function ald) €(R™*) admits a unique continuous extension &f

to the cirele £, : |z] <1, hoiomorpi;ic inside this circle, to wit

a(z)= }{?T?O(Lkzh {lz]< 1),
and a similar assertion holds relative to the extension of the function (¢} to d
“circle® C_:|z|> 1.

Wiener’s Theorems W and W, conceming the tings ® and R * Carty over co
pletely w the rings (%) and (R *). As 2 matter of facr, Wiener first proved his
Theorem W for the ring (R).

Lt should be noticed thar ali theorems conceming the factorization of matrix
functions M(A) € ?rz(nx,l) catry over to matrices U(Z) € (R (nxn))» ™e proofs
becoming somewhart simpler and transparent,

By analogy w the definition of section 7, a lefe standard factorization of a

continuous nonsingular matrix function (L) (| £] = 1) will mean a representatic
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of this matrix in the form

g 0.0
o o] O Tl o
am=-v.0] ° U0 s,
0 0..0m

where K} > Ky > o0+ 2 K, are certain integers, and the matrix functions B i{C)
admit analytic continuazions B £(z) which are holomorphic inside of and continuous
up to and including the boundary of, respectively, the circles € ,, and also are
such that their determinants are not zero there:

detB-(z)=0  (lzlgl), det Bz} == 0 {iz]=1
Similarly to what was proved in Theorem 7.1, one can show here that the numbers
Kyy Kgow vy K are uniquely determined by the matrix %(LY; these integers are
called the left exponents of the matrix function "),

Analogously, oi& defines a right standard factorization and the right exponents
of 2 mawix function U(L).

The fundamental Theorem 7.3 has the following counterpart.

Theorem 14.1. Every nonsingular matrix function U({} € R (n xn)) edmits a
left (right) standard factorizetion and, in all possible factorizations, the factors
B0 € @E, ).

In analogy to what was proved in section 8, it may be asserted that if the ma-
trix function L&Y + L* () is posirive definite then all left (right) exponents of
%I(C) must be zero.

. For bermitian nonsingular manix functions q() € (§R(n « n)) one has Yu. L.
Smul’ian’s theorem, to the effect that the number of positive, as well as the num-
ber of negative, left (right) exponents of a nonsingular hermitian matrix function
#1{Z) does not exceed min(p, g), where p and g, respectively, are the number
of positive and negative squares of the form E*U(L)Y & Stictly speaking, Yu. L.
Smul tan proved his theorem under the tacit assumption that A{L) admitted a stemd
ard factorization.

It is reasonable to expect that all the results of the remaining paragraphs
carry over to matrix functions Ui} € (%?{ Xn)) In particular, Theorems 10.1°
and 10.2 conceming the stability of systems of exponents remain valid. b

Just as the theorems concerning the factorization of the matrix functions
T € %(nxn) lead to 2 series of important results and at the same time serve
as a basis for cerrain results, proved independently elsewhere, of the theory of the

integral equation {A), the theorems concerning the facrorization of the matrix func-

B. Fuzrther, in the note [28] the authors have shown that the method of proof of these
theotems applies also to the exponents in the matrix Hilbert problem for one or several
contours in the usual formulation involving functions satisfying a Holder condition.

R R R R
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tions (L) (| L] = 1) allow one to prove, and in certain cases serve as a basis
for, important propositions of the theory of infinizte systems of equations
g Aat=c;  (j=0,1,2,...), (14
where A]. (j=0, %I, £2,---) are matrices of a fixed order n, e (j=1,2,--2)
are n dimensional column vectors, and x, are unknown n dimensional column
vectors.

Supposing that the elements of the matrices A]. {(j=1,2,---) are absolutel:
convergent series, we may associate to the system (14.1) the matrix funcrion

Ll
A= T ap
jren 0

As in the corresponding coantinuous case, the study of the system (14.1) ma
be based essentially on considering it simultaneously in a whole family of spac:
U () 2 s md (o 1 () (1 00 (1) By the noration (B, py) we
shall understand any of these spaces, Let us explain the notation further.

As usual, by (lp) (p > I}, we shaill understand the Banach space of al} se-

quences & =1 ‘fj EE;

the nomm being defined by | {:]lp (;EO ! fj 1P} P, By (m) we shall denote the
Banach space of all sequences of complex numbers £ = | fj iy which are bounde
in absolute value, with the norm | nf“m = sup 1cfji; and, finally, by (¢) and

Lj oo

of complex numbers such that | ‘51 Pyl 62 [P+ +++ comverge:
o2 1

{¢g) the subspaces of (m)} consisting of all convergent, and convesrgent w0 zero,
respectively, subsequences. If {E) is any of these spaces, the notation {E){ <
will stand for the linear space of all sequences of n elements, where each elemer
for p=1,2,:--,n, belong o {E).

Almost all the propositions which were established for the integral equation
{A), (B) and {B“} have valid analogues in the theory of the sysrem (14.1) and its
associated homogeneous systems

<0

'}7;0‘4 =0 (7=0,1,2,...) (14.1
and
2 Aisy =0 (j=0,1,2,...), (14

=0

where Ajl are the transpose matrices of the /1]- {(j=0,1,2,---},

Thus, for example, the condition (0.2) has as counterpart
LA =0 (]L]=1)
and the following propositions hold if it is satisfied:
1. In all spaces {E(nxl)) the system (14.2) (the system (14.3)) has the
same solutions. The solutions of the system (14.2) (the system (14.3)) form a
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finite dimensional set, whose dimension coincides with the sum of the positive
{absolute value of the negative) left exponents of the matrix i ()

2. If the sequence § ¢; ES’ € (E(nxl) ), then the system (14.1) has a solution
{x].i? € (E(nxl)) if and only if one has that

fes]
Mo
]%f’] \Ch, U-J.) =O,
where {u}- i €& {nxl)) is any solution of the system {14.3).
Hence, the system (14.1) is solvable in (E(nxl))’ for any given {e¢, E? S
€ (E(n «1))s whenever all right exponents of the matrix A{Z) are nonpositive,
and has a unique solution if all these exponents are zero.

Suppose that all the left exponents of u-l {{) are zero and that
A= OF € (PO ER nxm)

is a lefr standarcd factorizationgg)f the matrix U7 € It
=
— NV g P N Ly
T (D)= 3‘2'0 et I' (D)= 26 TR
- J=

where }/]‘.I and },}? (j=1,2,---} are certain n-dimensional matrices, then the
soludon of the system (14.1) is always given by the formula

L=l

Ty = !ZD T U=0.1,...} (14.4)

where the matrices Yin e detemmined by the system
min (3. k)
.,‘,(_1) wrl2)

‘J"j'hf" Z::J ii—r {k——r {/, ]5: {}, 1, 2, R ),

The “generalized resolvent matrix” | Yik i ? furnishes, by means of (14.4), a
solution of the system {14.1), provided one exists; this matrix may be comstructed
a0 matter what the left exponents of the matsix L7 (£) happen o be. To see this
it is only necessary w proceed similarly o what was done in number 3 of section 12,

Ifus= iuj §5° is a solution of system {14.2) such that

Up=ly = ... =0, =0,
then, as is easily seen, the sequence {u’j+r §].:b(r =1,2,.--,x) will also be a
solution of the system (14.2). If Z, # 0, we will say that the solution » genecrates
a d-chain of length x of solutions of the system (14.2),

Proposition I above may be sirengthened oy adding that if &, &5, .-+, K are
all the positive left exponents of the matrix U™ (L), thea the system {14.2) has
exactly r solutions, generating, respectively, d—chains of soludons of (14.2) of
lengths «;, ky, -+, %, and that the solutdons appearing in these d-chains form
a basis for all the solutions of the system (14.2) {analogue of Theorem 9.1).

1), Iz x, ¥ are r—dimensional vectors, then (x, ¥) denotes the sum of all the products
of the cotresponding coordinates of the vectors x and ¥.
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Iz is left to the reader to formulate discrete analogues of other propositions
relative to the integral equations (A) and (B}
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