
SYMMETRIC FlEERED LINKS

Deborah L. Goldsmith

O. Introduction

The main points of this paper are a construction for fibered links, and

a description of some interplay between major problems in the topology of

3-manifolds; these latter are, notably, the Smith problem (can a knot be

the fixed point set of a periodic homeomorphism of S3), the problem of

which knots are determined by their complement in the 3-sphere, and

whether a s imply connected manifold is obtainable from S3 by surgery on

a knot.

There are three sections. In the first, symmetry of links is defined,

and a method for constructing fibered links is presented. It is shown how

this method can sometimes be used to recognize that a symmetric link is

fibered; then it reveals all information pertaining to the fibration, such as

the genus of the fiber and the monodromy. By way of illustration, an

analysis is made of the figure-8 knot and the Boromean rings, which, it

turns out, are symmetric and fibered, and related to each other in an

interesting way.

In Section II it is explained how to pass back and forth between dif

ferent ways of presenting 3-manifolds.

Finally, the material developed in the first two sections is used to

establish the interconnections referred to earlier. It is proved that com

pletely symmetric fibered links which have repeated symmetries of order 2

(e. g., the figure-8 knot) are characterized by their complement in the

3-sphere.

I would like to thank Louis Kauffman and John W. Milnor for conversa-

lions.
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I. Symmetric fibered links

§l. Links with rotational symmetry

By a rotation of S3 we mean an orientation preserving homeomorphism

of S3 onto itself which has an unknotted simple closed curve A for

fixed point set, called the axis of the rotation. If the rotation has finite

period n, then the orbit space of its action on S3 is again the 3-sphere,

and the projection map p: S3 .... S3 to the orbit space is the n-fold cyclic

branched cover of S3 along peA).

An oriented link L C S3 has a symmetry of order n if there is a rota

tion of S3 with period n and axis A, where An L ~ ep, which leaves

L invariant. We will sometimes refer to the rotation as the symmetry,

and to its axis as the axis of symmetry of L.

The oriented link L c: S3 is said to be completely symmetric relative

to an oriented link Lo' if there exists a sequence of oriented links

Lo' L 1 ,", L n = L beginning with Lo and ending with L n ~ L, such

that for each i 1= 0, the link L i has a symmetry of order ni > 1 with

axis of symmetry Ai and projection Pi: S3 .... S3 to the orbit space of the

symmetry, and L i_ 1 "'" p/L i). If Lo is the trivial knot, then L is

called a completely symmetric link. The number n is the complexity of

the sequence. Abusing this terminology, we will sometimes refer to a

completely symmetric link L of complexity n (relative to Lo) to indi

cate the existence of such a sequence of complexity n.

Figure 1 depicts a completely symmetric link L of complexity 3,

having a symmetry of order 3.
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§2. Symmetric fibered links

An oriented link L C S3 is fibered if the complement S3 - L is a

surface bundle over the circle whose fiber F over 1 (SI is the interior

of a compact, oriented surface F with JF ~ L.

Such a link L is a generalized axis for a link L'c S3 - L if L'

intersects each fiber of the bundle S3 - L transversely in n points. In

the classical case (which this generalizes) a link L'c R3 is said to have

the z-axis for an axis if each component L'i has a parametrization L'i(e)

by which, for each angle 00' the point L'i(eO) lies inside the half-plane

e", 00 given by its equation in polar coordinates for R3. We will define

L to be an axis for L'C S3 if L is a generalized axis for L' and L

is an unknotted simple closed curve.

We wish to investigate sufficient conditions under which symmetric

links are fibered.

LEMMA 1 (A construction). Let L' be a fibered link in the 3-sphere and

suppose p: S3 --> S3 is a branched covering of S3 by S3, whose branch

set is a link Be S3 - L'. l£ L' is a generalized axis for B, then

L = p-l(L') is a fibered link.

Proof. The complement S3 - L' fibers over the circle with fibers Fs'

s ( SI, the interior of compact, oriented surfaces Fs such that JFs = L'.

Let Fs = p-l (Fs ) be the inverse image of the surface Fs under the

branched covering projection. Then aFs = Land Fs - L, s ( SI, is a

locally trivial bundle over SI by virtue of the homotopy lifting property

of the covering space p: S3 - (L U P-1 (B)) -, S3 - (L'U B). Thus S3 - L

fibers over SI with fiber, the interior of the surface Fl'

REMARK. An exact calculation of genus (F1) follows easily from the

equation X(F1 _p-l(B)) = nx(F1 -B) for the Euler characteristic of the

covering space F1 - p.-l(B) ., F1 - B. For example, if p: S3 --> S3 is a

regular branched covering, L has only one component and k is the
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number of points in the intersection B n F
1

of B with the surface F
1

,

we can derive the inequality: genus (F1) ~ n genus (F1 ) + ~ + n(ki2~.

From this it follows that if k> 1, or genus (F1 ) > 0, then genus (F1 ) > 0

and L is knotted.

Recall that a completely symmetric link L C S3 (relative to L o) is

given by a sequence of links Lo' L 1 ,.··, L n = L such that for each i 1= 0,

the link L i has a symmetry of order ni with axis of symmetry Ai' and

such that Pi: S3 --+ S3 is the projection to the orbit space of the symmetry.

THEOREM 1. Let L C S3 be a completely symmetric link relative to the

libered link L o' defined by the sequence of links L o' L 1 ,. .. , L n = L. If

for each i I- 0, the projection Pi(Li) of the link L i is a generalized

axis for the projection Pi(A i) of its axis of symmetry, then L is a non

trivial fibered link.

Proof. Apply Lemma 1 repeatedly to the branched coverings Pi: S3 --+ S3

branched alol'g the trivial knot Pi(A i) having Pi(Li) "'" L i_ 1 for general

ized axis.

The completely symmetric links L which are obtained from a sequence

L o' L 1 ,.··, L n = L satisfying the conditions of the theorem, where Lo is

the trivial knot, are called completely symmetric fibered links.

EXAMPLES. In Figure 2 we see a proof that the figure-8 knot L is a

completely symmetric fibered knot of complexity 1, with a symmetry of

order 2. It is fibered because p(A) is the braid a2" l al closed about

the axis p(L). The shaded disk F with JF = La intersects p(A) in

three points; hence the shaded surface F= p-l(F), which is the closed

fiber of the fibration of S3 - Lover Sl, is the 2-fold cyclic branched

cover of the disk F branching along the points F n p(A), and has

genus 1.

In Figure 3, it is shown that the Boromean rings L is a completely

symmetric fibered link of complexity 1, with a symmetry of order 3.
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This link is fibered because p(A) is the braid a2
1a1 closed about the

axis p(L). The surface F = p-l(F) which is the closed fiber of the

fibration of S3 - Lover SI is not shaded, but is precisely the surface

obtained by Seifert's algorithm (se~ f12]). It is a particular 3-fold cyclic

brunched cover of the disk F (shaded) branching along the three points

F n p(A), ;1 nd hus v,enus I.
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Fig. 4.

Finally, we see from Figure 4 that these two examples are special

cases of a class of completely symmetric fibered links of complexity 1

with a symmetry of order n, obtained by closing the braid bn, where

b -1
= a2 a l ·

II. Presentations of 3-manifolds

There are three well-known constructions for a 3-manifold M: 1\1 may

be obtained from a Heegaard diagram, or as the result of branched covering

or performing "surgery" on another 3-manifold. A specific construction

may be called a presentation; and just as group presentations determine

the group, but not vice-versa, so M has many Heegaard, branched covering

and surgery presentations which determine it up to homeomorphism.

Insight is gained by changing from one to another of the three types of

presentations for M, and methods for doing this have been evolved by

various people; in particular, given a Heegaard diagram for M, it is known

how to derive a surgery presentation ((9]) and in some cases, how to

present M as a double branched cover of S3 along a link ([2]). This

section deals with the remaining case, that of relating surgery and branched

covering constructions.

§l. The operation of surgery

Let C be a closed, oriented I-dimensional submanifold of the oriented

3-manifold M, consisting of the oriented simple closed curves c l ,"', ck'

An oriented 3-manifold N is said to be obtained from M by surgery on

C if N is the result of removing the interior of disjoint, closed tubular
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neighborhoods T i of the ci's and regluing the closed neighborhoods by

orientation preserving self-homeomorphisms cPi: aTi ... aTi of their

boundary. It is not hard to see that N is determined up to homeomorphism

by the homology classes of the image curves cPi(mi) in HI (aT i; Z),

where mi is a meridian on aTi (i.e., mi is an oriented simple closed

curve on aT i which s pans a disk in T i and links ci with linking

number +1 in T i)' If Yi is the homology class in HI (aT i; Z) repre

sented by cPi(m i), then let M(C;YI'''''Yk) denote the manifold N ob

tained according to the above surgery procedure.

When it is possible to find a longitude Ei on aT i (i.e., an oriented

simple closed curve on aT i which is homologous to c i in T i and links

ci with linking number zero in M), then Yi will usually be expressed as

a linear combination rmi + s Ei , r, s (Z, of these two generators for

HI (aTi ; Z), where the symbols mi and Ci serve dually to denote both

the simple closed curve and its homology class. An easy fact is that for

a knot C in the homology 3-sphere M, M(C; rm + s E) is again a homology

sphere exactly when r = ± 1.

§2. Surgery on the trivial knot in S3

An important feature of the trivial knot C c: S3 is that any 3-manifold

S\C; m+ kE), k (Z, obtained from S3 by surgery on C is again S3. To

see this, decompose S3 into two solid tori sharing a common boundary,

the tubular neighborhood T I of C, and the complementary solid torus

T2' Let 1>: T2 ... T2 be a homeomorphism which carries m to the curve
~ 3 3

m j- k E; then cP extends to a homeomorphism cP: S -> S (C;, + k E).

Now suppose B c: S3 is some link disjoint from C. The link

Be S3(C; m+ kE)" is generally different from the link Be S3. Specifically,

B is transformed by the surgery to its inverse image cP-I(B) under the

identification cP: S3 ... S3(C; m+ k E). The alteration may be described in

the following way:

Let B be transverse to some cross-sectional disk of T 2 having E

for boundary. Cut S3 and B open along this disk, and label the two
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copies the negative side and the positive side of the disk, according as

the meridian m enters that side or leaves it. Now twist the negative

side k full rotations in the direction of - e, and reglue it to the positive

side. The resulting link is <,6-1 (B).

For example, if B is the n-stringed braid b (Bn closed about the

axis C, where Bn is the braid group on n-strings, and if c is an

appropriate generator of center (B n), then Be S3(C; m+ke) is the

closed braid b· c k. Figure 5 illustrates this phenomenon. In Figure 6 it

is shown how to change a crossing of a link B by doing surgery on an

unknotted simple closed curve C in the complement of B.

Fig. Sa.

Fig. Sb.

Fig. 6.
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83. The branched covering operation

For our purposes, a map f: N -> M between the 3-manifolds Nand M

is a branched covering map with branch set Be: M, if there are triangula

tions of Nand M for which f is a simplicial map where no simplex is

mapped degenerately by f, and if B is a pure I-dimensional subcomplex

of M such that the restriction

fl N_f- 1(B): N_f- 1 (B) ,M-B

is a covering (see [5]). The foldedness of the branched covering f is

defined to be the index of the covering fiN - f- 1 (B).

We will only consider the case where the branch set Be M is a

I-dimensional submanifold, and the folded ness of f is a finite number, n.

Then f and N are determined by a representation 771(M-B). S(n) of

the fundamental group of the complement of B in M to the symmetric

group on n numbers (see [4]). Given this representation, the manifold N

is constructed by forming the covering space f': N' • M - B corresponding

to the subgroup of 77 1 (M-B) represented onto permutations which fix 1,

und then completing to f: N -> M by filling in the tubular neighborhood of

B and extending f' to f.

A regular branched covering is one for which f': N' ) M - B is a regu

lar covering, or in other words, one for which the subgroup of 77 1 (M-B)

in question is normal. Among these are the cyclic branched coverings,

given by representations 77 1 (M-B) -> Zn onto the cyclic group of order n,

such that the projection f: N -> M is one-to-one over the branch set. Since

I. n is abelian, these all factor through the first homology group

77 1(M-B) -> HI (M-Bj Z) -, Zn .

Does there always exist an n-fold cyclic branched covering N -> M

with a given branch set Be M? The simplest case to consider is the

one in which M is a homology 3-sphere. Here HI (M-B; Z) ~ Z Ell Z Ell .. • Ell Z

is generated by meridians lying on tubes about each of the components of
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the branch set. Clearly all representations of HI (M-B; Z) onto Zn

which come from cyclic branched coverings are obtained by linearly ex

tending arbitrary assignments of these meridians to ± 1. This guarantees

the existence of many n-fold cyclic branched coverings of M branched

along B, except in the case n = 2, or in case B has one component,

when there is only one.

Should M not be a homology sphere, an n-fold cyclic covering with

branch set B will exist if each component of B belongs to the n-torsion

of HI (M; Z), but this condition is not always necessary.

§4. Commuting the two operations

If one has in hand a branched covering space, and a surgery to be per

formed on the base manifold, one may ask whether the surgery can be

lifted to the covering manifold in such a way that the surgered manifold

upstairs naturally branched covers the surgered manifold downstairs. The

answer to this is very interesting, because it shows one how to change

the order in which the two operations are performed, without changing the

resulting 3-manifold.

Let f: N -> M be an n-fold branched covering of the oriented 3-manifold

M along Be M given by a representation ep:"1 (M-B) .... S(n), and let

M(C; YI "", Yk) be obtained from M by surgery on C C M, where

C n B = ep. Note that the manifold N - f-I (C) is a branched covering

space of M- C branched along B C M- C, and is given by the representa-

tion

where i:"1 (M - [C U Bj) .... "I (M-B) is induced by inclusion. Now let the

components of f-I(T i) be the solid tori Tij , j = 1,· .. ,ni , i=l,···,k;

on the boundary of each tube choose a single oriented, simple closed

curve in the inverse image of a representative of Yi' and denote its

homology class in HI (aT ij; Z) by Yij'
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THEOREM 2. Suppose Yi ,"', Yi are precisely the classes among
1 I'

YI ,''', Yk which have a representative all of whose lifts are closed curves;
I'

let B' = C - U c·. Then f: N -, M induces a branched covering
j = 1 Ij

of the surgered manifolds, branched along BUB' C M(C; YI'''', Yk)' The

associated representation is r/>': 771(M(C; YI ,''', Yk) - [B U B']) .... Sen),

defined by the commutative diagram

and off of a tubular neighborhood f- I (UT.) of the surgered set, the maps
1

f and f' agree.

Proof. One need only observe that the representation r/> does indeed

factor through 771(M(C; YI ,"', Yk)-lB U B']) because of the hypothesis

that there exist representatives of Yi ,"', Yi all of whose lifts are closed
1 I'

curves.

The meaning of this theorem should be made apparent by what follows.

EXAMPLE. It is known that the dodecahedral space is obtained from S3

by surgery on the trefoil knot K; in fact, it is the manifold S3(K; m- n.
We will use this to conclude that it is also the 3-fold cyclic branched

cover of S3 along the (2,5) torus knot, as well as the 2-fold cyclic

branched cover of S3 along the (3,5) torus knot (see [6]). These pre

sentations are probably familiar to those who like to think of this homology

sphere as the intersection of the algebraic variety IXfC3 :xi+xi+x~=OI

with the 3-sphere IXfC3 : Ixl ~ 11.

According to Figure 7, the trefoil knot K is the inverse image of the

circle C under the 3-fold cyclic hr;lllched cover of S3 along the trivial
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knot B. By Theorem 2, S3(K; m-£) is the 3-fold cyclic branched cover

of S3(C; m-3£) branched along Be S3(C; m-3£). Since C is the trivial

knot, S3(C; m-3£) is the 3-sphere, and Be S3(C; m-3£) is the (2,5)

torus knot, as in Figure Sa. We deduce that the dodecahedral space is

the 3-fold cyclic branched cover of S3 along the (2,5) torus knot.

A similar argument is applied to Figure 8, in which the trefoil knot is

depicted as the inverse image of a circle C under the double branched

cover of S3 along the trivial knot B. By Theorem 2, the space

S3(K;m_£) is then the 2-fold cyclic branched cover of S3(C;m-2£)

along Be S3(C; m-2£), which according to Figure Sb is the (3,5) torus

3-foId c~cllt lp bl'a.rK-hed c.~e ... elF S~
a./oT19 B

B

c

Fig. 7.

c

Fig. 8.
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knot. Hence the dodecahedral space is the 2-fold cyclic branched cover

of S3 along the (3,5) torus knot.

The following definition seems natural at this point:

DEFINITION. Let L be a link in a 3-manifold M which is left invariant

by the action of a group G on M. Then any surgery M(L;Yl,""Yk) in

which the collection IY1'"'' Ykl of homology classes is left invariant by

G, is said to be equivariant with respect to G.

The manifold obtained by equivariant surgery naturally inherits the

action of the group G.

THEOREM 3 (An algorithm). Every n-fold cyclic branched cover of S3

branched along a knot K may be obtained from S3 by equivariant surgery

on a link L with a symmetry of order n.

Proof. The algorithm proceeds as follows.

Step 1. Choose a knot projection for K. In the projection encircle

the crossings which, if simultaneously reversed, cause K to become the

trivial knot K'.

Step 2. Lift these disjoint circles into the complement S3 - K of the

knot, so that each one has linking number zero with K.

Step 3. Reverse the encircled crossings. Then orient each curve ci

so that the result of the surgery S3(ci; m + P.) is to reverse that crossing

back to its original position (see Figure 6).
k

Step 4. Let C = . U c i be the union of the oriented circles in S3- K',
3 3 1=1 3

:md let p: S .... S be the n-fold cyclic branched cover of S along the

trivial knot K'. Then if L = p-l(C), it follows from Theorem 2 that the

n-fold cyclic branched cover of S3 along K is the manifold

S3(L;rlml+rl, .. ·,rkmk+rk) obtained from S3 by equivariant surgery on

the link L, which has a symmetry of order n.

Ex AMPLE (Another presentation of the dodecahedral space). In Figure 9,

I(,t p: S3 > S3 be the S-fold eye I i(' bra nehed cover of S3 a long the
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step.:!.

K

K

Fig. 9.

1<'

~~
C

trivial knot K'. Then if L ~ p-I(C) as in step 4 of Figure 9, the 5-fold

cyclic branched cover of S3 along the (2,3) torus knot K is the mani

fold S3(L;m I -rl'· .. ,ms-rs ) obtained from S3 by equivariant surgery

on the link L.

III. Applications

We will now derive properties of the special knots constructed in

Section I. Recall that a knot K is characterized by its complement if no

surgery S3(K; m+ k r), k (Z and k -t 0, is again S3. A knot K is said

to have property P if and only if no surgery S3(K; m + kP), k (Z and
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k -J- 0, is a simply connected manifold. A fake 3-sphere is a homotopy

3-sphere which is not homeomorphic to S3.
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THEOREM 4. Let K be a completely symmetric fibered knot defined by

the sequence of knots Ko' K1 ,"', Kn = K, such that each Ki , i -J- 0, is

symmetric of order ni = 2. Then K is characterized by its complement.

THEOREM 5. Let K be a completely symmetric fibered knot of com

plexity 1, defined by the sequence Ko' K1 = K, where K is symmetric

of order n 1 = n. If K is not characterized by its complement, then there

;s a transformation of S3 which is periodic of period n, having knotted

fixed point set. If a fake 3-sphere is obtained from S3 by surgery on K,

then there is a periodic transformation of this homotopy sphere of period n,

having knotted fixed point set.

THEOREM 6. Let K be a completely symmetric fibered knot. Then if

K does not have property P, there exists a non-trivial knot K'( S3

such that for some n> 1, the n-fold cyclic branched cover of S3

hranched along K' is simply connected.

It should be pointed out that the property of a knot being characterized

by its complement is considerably weaker than property P. For example,

it is immediate from Theorem 4 that the figure-8 knot is characterized by

its complement, while the proof that it has property P is known to be

difficult (see f71).
The following lemmas will be used to prove Theorems 4-6.

LEMMA 2. The special genus of the torus link of type (n, nk), k -J- 0, IS

hounded below by
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n2 !kl_4
4

Ikl (n2 _1)
4

(n-l) ( Ikl(n+l)- 2)
4

if n even

if n odd, k even

if n odd, k odd .

Proof. The special genus of an oriented link L is defined here to be the

infimum of all geni of connected, oriented surfaces F locally flatly em

bedded in 0 4 , whose oriented boundary JF is the link L C a04
• This

*special genus, which will be denoted g (L), satisfies an inequality

ia (L)I s:. 2g*(L) + Il(L) - 1/(L)

where a(L) is the signature, 11(L) is the number of components and

1/(L) is the nullity of the link L (see l8] or [10)). The lemma will be

proved by calculating a(L), Il(L) and 1/(L), where L is the torus link

of type (n, nk), k > a (see [6]); then the result will automatically follow

for torus links of type (n, nk), k < 0, since these are mirror images of

the above.

In what follows, assume k> O.

(i)

2_n2 k
a(L) = 2 if n even

if n odd .

The signature a(L) is the signature of any 4-manifold which is the

double branched cover of 0 4 along a spanning surface F of L having

the properties described above (see [8]). The intersection of the algebraic

variety !XfC 3 : xr + x~k + x~ = 81, for small 8, with the 4-ball

!XfC 3 : Ixl s:. I! is such a 4-manifold. Its signature is calculated by

Hirzebruch (l3J) to be at - a-, where
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i i2 !.<1+ =ti!(i1,i2 ):0<i1 <n, 0<i2 <nkl such that 0< 1. ~ (mod 2)(J - t-n nk 2

(1-= til (i1 ,i2 ):0< i1 < n, 0< i2 < nkl such that
i1 i2 !. < 0 (mod 2).-l<n -t -t

nk 2

In other words, if we consider the lattice points {(i ' ~~): 0 < i1 < n, 0 < i2 < nk}

in the interior of the unit square of the xy-plane, and divide the unit square

(0,0

(0, I~)

( ii)

(.-!i) \)
(I) ,)

(I, Y.t)

X
(~,O) 0)0)

Fig. 10.

7J(L) n-1

n

1

into positive and negative regions

as in Figure 10, then a+ is the

total number of points interior to

the positive regions, a- is the

number of points interior to the

negative region, and their differ

ence af- - a- is given by the

formulae in (i).

if n even

if n odd, k even

if n odd, k odd .

The nullity of a link L is defined to be one more than the ran\< of the

first homology group H1(M; H) of the double branched cover M of S3

branched along L; it follows that ll(L) is independent of the orientation

of L. The result in (ii) can be easily obtained from any of the known

methods for calculating nullities (see [11]).

( iii) Il(L) = n .

Substituting these quantities into the inequality gives the desired

lower bounds for g*(L). Note that except for the (2, ±2) torus links,

nOlle of the non-trivial torus links of type (n,nk) has special genus O.
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In the next few paragraphs, Bn denotes the braid group on n strings;

a single letter will be used to signify both an equivalence class of braids,

and a representative of that equivalence class; and the notation b will

stand for the closure of the braid b Ci.e., the link obtained by identifying

the endpoints of b).

LEMMA 3. If b f BnCn :::: 3) is a braid with n strings which closes to

the trivial knot, and c f Bn is a generator of the center of the braid

group B n, then the braid b· c k , k (Z and k -J- 0, closes to a non

trivial knot.

Proof. First observe that if bl and b2 are n-stranded braids which

have identical permutations and which close to a simple closed curve such
* - * - Ithat g Cb l )= gl and g Cb 2)= g2' then the closed braid bl ·b2 is a

link of n components whose special genus g*Cb l l 'b2)< gl + g2' This

is illustrated schematically by Figure 11. Imagine that the two abutting

cubes are 4-dimensional cubes 11 and Ii, that their boundaries are S3,

and that the closed braid b/i = 1,2) is positioned in It as shown, with

the intersection bl n b2 consisting of n arcs. Span each closed braid

bi by a connected, oriented, locally flatly embedded surface of genus gi

in the cube It. The union of the two surfaces is then a surface in 14
=

11 U Ii, whose boundary in the 3-sphere aI4 is the closed braid bl l
. b2

Fi I

/' III /
/II /II I

/I I II " II I .I

ll~~
- --1/

-. - . -7
I --

~,.

Fig. 11.
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The boundary bi
l . b2 has n components because the braid bi

l . b
2

with n strings has the trivial permutation; hence attaching the two sur

faces at n places along their boundaries does not increase the genus

beyond the sum gl + g2' The conclusion that g*(bi
l . b2)::; gl t- g2 is

immediate.

Now suppose the conclusion of the lemma is false; i.e., for some

braid b f B n and k f Z, k f. 0, both band b· c k close to a trivial

knot. Applying the result with b I '= band b2 -- b· c k, we reach a con

tradiction of Lemma 2, which is that g*(c k) <; 0 + 0, where c k is the

torus link of type (n, nk) n 2' 3. Therefore Lemma 3 must be true.

Now for the proofs of the theorems:

Proof of Theorem 4. Let K' ~ Pn(K) and B oc Pn(A n). Then K is the

inverse image p;;-l (K') of the completely symmetric fibered knot K'

under a 2-fold cyclic branched cover Pn: S3 -, S3 branched along the un

knotted simple closed curve B having K' for generalized axis. The

knot K' "'" Kn_ I also has repeated symmetries of order 2, and its com

plexity is one less than that of K. Suppose K is not characterized by

its complement. Then a 3-sphere S3(K; m -+ H), k f. Z and k I- 0, may

be obtained from S3 by surgery on K. According to Theorem 2, this

.1-sphere is the 2-fold cyclic branched cover of S3(K'; m + 2k E) branched

along Be S3(K'; m+2H). By Waldhausen (l131), S3(K'; m+2H) must be

S3 and Be S3(K; m + 2H) must be unknotted.

We will proceed by induction on the complexity of K. If K has com

plexity 1, then B is some braid b f. Bn closed about the axis K'.

Since K' is unknotted, S3(K'; m+ 2k r) is again S3, and Be S3(K'; m j 2k r)

is the closed braid b· c 2k in S3, for some generator c of cen'ter (Bn)

(recall Section II, §2). This simple closed curve is knotted, by Lemma 3,

which is a contradiction.

Next suppose that every knot of complexity n < N meeting the re

quirements of the lemma is characterized by its complement, and let K
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have complexity N. From the induction hypothesis it follows that K' is

characterized by its complement, and that S3(K'; m+ 2k E) cannot be S3,

which is a contradiction.

Hence K must have been characterized by its complement.

Proof of Theorem 5. Let B = PI (AI) and K' = PI (K). Then PI: S3 -, S3

is an n-fold cyclic branched cover of S3 along the trivial knot B, such

that B is a braid b (Bn closed about the axis K', and K = p-1 (K').

If K is not characterized by its complement in S3, then S3(K; m+ k E)

is the 3-sphere for some k (Z, k -J- O. It follows from Theorem 2 that

S3 is the n-fold cyclic branched cover of S3(K; m t- nk E) branched along

B C S3(K'; m f nH). Now since K' "" Ko is unknotted, the manifold

S3(K'; m+ nk E) is S3 and the simple closed curve B ( S3(K'; m t nk E) is

the closed braid b· c nk , for some generator c of the center of the braid

group Bn. This closed braid is knotted by Lemma 3!

Similarly, if a fake 3-sphere S3(K; m -r- kf) may be obtained from S3

as the result of surgery on K, then this homotopy 3-sphere is the n-fold

cyclic branched cover of the 3-sphere along the knot b. c nk .

Proof of Theorem 6. The knot K is defined by a sequence Ko,K l ,. .. ,Kj =

Let K'i_l = Pi(Ki) and Bi_ l = Pi(A i). Then there are nefold cyclic

branched coverings Pi: S3 --> S3 branched along the unknotted simple

closed curves Bi having K'i for generalized axis, 0 < i:S j, such that

K· = P-I' l(K'. 1)' If K does not have property P, then a homotopy
1 1-

sphere S3(K; m j H), k (Z and k -J- 0, may be obtained from S3 by

surgery on K. This homotopy sphere is the nrfold cyclic branched

cover of S3(K'j_l;mt-n jH) branched along Bj_ l C S3(K'j_l;mtniH).

It is easy to show that the manifold S3(K'j_l; m+ njH) "" S3(Kj_ l ; m+ njk

is simply connected, and so on, down to S3(K l ; m+ nj'" n3n2 kE). Now

S3(K l ;m+nj".n2 H) is the nl-fold cyclic branched cover of the manifold

S3(K'0; m+ nj'" n2 nl H) branched along Bo C S3(K'0; m+ nj'" n2 nl H).

Let Bo be the braid b (Bn closed about the axis K'o' Then the
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homotopy sphere S3(K l ;m+nj ... n3n2 kP) is the nl-fold cyclic branched

3 n
J
.••• n

2
n l k

cover of S' branched along the knot b· c , where, as usual,

c is some generator of center (Bn).
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