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Abstract. Using that finite topological spaces are just finite orders, we develop a duality theory for 
sheaves of Abelian groups over finite spaces following closely Grothendieck’s duality theory for coherent 
sheaves over proper schemes. Since the geometric realization of a finite space is a polyhedron, we relate 
this duality with the duality theory for AbeIian sheaves over polyhedra. 
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0. Introduction 

Finite topological spaces have increasing importance in mathematics. Since they are 
just finite posets, they correspond with finite distributive lattices; hence their 
combinatorial importance is clear, as well as in lattice theory. Moreover, each finite 
space X has a geometric realization 1x1 which is a triangulated polyhedron and so 
we get any polyhedron [ 1, 121. There is a canonical map 1x1 +X and it is a 
homotopical equivalence [ 111, so that finite spaces include the homotopical study of 
triangulated polyhedra and show why classical algebraic topology is essentially of 
combinatorial nature. Finite spaces have been used in studies on foundations of 
Homotopy Theory [ 71. On the other hand, coherent spaces (spectrums of distributive 
lattices) are just projective limits of finite spaces and therefore finite spaces provide 
a cornerstone for the development of a dimension theory for arbitrary topological 
spaces and locales [9, 131. Finally, the topological space underlying any Noetherian 
n-dimensional scheme is a projective limit of n-dimensional finite spaces. 

Finite spaces provide a unifying tool in mathematics, relating in a systematic way 
different areas where combinatorial ideas play a role. 

In this paper we develop a duality theory for sheaves of Abelian groups on finite 
spaces, following closely Grothendieck’s duality theory for coherent sheaves on 
proper schemes ([4]). Since the geometric realization 1x1 of any finite space X is a 
polyhedron, we have Verdier’s duality theory for sheaves of Abelian groups on 1x1. 
We prove that the canonical map Ix~+ X induces a quasi-isomorphism between their 
respective dualizing complexes. 

In this paper any topological space is assumed to be T,-,. 
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1. Finite Topological Spaces 

JUAN ANTONIO NAVARRO GONZALEZ 

DEFINITION 1.1. A finite space is a T&opological space with a finite number of 
points, i.e. with a finite number of closed subsets. 

It is well-known [lo] that a finite space is the same as a finite poset (short for 
partially ordered set). If X is a finite poset, then we consider a topology on X by 
letting all hereditary subsets (subsets Z of X such that any point preceding a point 
of Z belongs to Z) be the closed sets. This topology determines the order, since we 
have .x <y just when x lies in the closure of y. Conversely, any T,,-topology on a 
finite set defines an order on it: x 6 y if and only if x is in the closure of JJ. This 
order determines the given topology because, the set being finite, it is determined 
once we know the closure of each point. We shall always identify finite spaces with 
finite posets, using each time the most convenient term for a clear understanding. It 
is obvious that continuous maps correspond with order-preserving maps (x <y 
implies f(x) <f(y)). 

1.1. HOMOLOGY 

Now, to fix ideas and notation, we shall briefly recall some well-known facts about 
the homology of finite posets [3]. 

If X is a finite poset, we denote by C,,(X, Z) the Abelian free group generated by 
sequences x0 < x1 < * * * < X~ of points of X. We define morphisms d: C,,(X, Z) + 
Cn - r (X, Z) for n 2 1 by defining them on the generators: 

It is not difficult to show that d* = 0, hence we have defined a chain complex 
C.(X, Z) which is called the chain complex of X. Given an Abelian group G, the 
chain complex of X with coefficients G is defined to be C.(X, G) = C.(X, Z) @G. 

The n-th /zonzo/ogy group of X with coefficients G is the n-th homology group of 
the chain complex C.(X, G) and it is denoted by H,,(X, G). It is clear that C.(X, G) 
and Hn(X, G) are both natural in the variables X and G. 

Let X, Y be two finite posets. Then the set Hom(X, Y) of all order-preserving 
maps X+ Y has a canonical order: 

f < g if and only if f(x) < g(x) for any point x of X 

so that Hom(X, Y) is also a finite space. We say that two continuous maps are 
homotopic when they are in the same connected component of Hom(X, Y). It is 
clear that any finite poset with a unique minimal point (or maximal point) is a 
contractible space: it has the homotopy type of a point. 

Moreover, the morphism f*: Hn(X, G) + H,,( Y, G) only depends on the homo- 
topy class of the continuous map f: X -+ Y. 
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1.2. COHOMOLOGY 

Any finite space is, by definition, a topological space. Hence, we have at our disposal 
the cohomology theory of Abelian sheaves on arbitrary topological spaces due to 
Grothendieck [6]. Now we recall the most basic facts about it [ $61: 

A sheuf F of Abelian groups on a topological space X assigns to every open subset 
U z X an Abelian group F(U) and to every inclusion map U s V a morphism 
rUV: F(V) -+ F(U) so that 

(11 F(4) = a 
G9 rUw = ruVrVW whenever U s V G W. 
(3) Given an open cover {U,.} of an open subset U and a family of elements 

si E F(Ui) such that for each pair (i,j) we haver r&) = r(.+) in F(Ui n Uj), 
there exists a unique s E F(U) with si = r(s) for a11 index i. 

As U varies over all open neighbourhoods of a fixed point x of X, the collection 
F(U) is a direct system of Abelian groups and the sfulk of X at x is defined to be 

Fx = lim F(U). 
XZIJ 

A sequence of sheaves of Abelian groups is exact if and only if it is exact on stalks. 
Given a topological space X, the cohomology functors ZP(X, -) are defined to 

be the right derived functors of the additive functor F ,SV F(X). This makes sense 
because F P.V F(X) is left exact and the category of sheaves of Abelian groups on X 
has enough injectives [6]. These cohomology groups have the genera1 properties of 
derived functors (long exact cohomology sequence, spectra1 sequences, etc.). For any 
sheaf of Abelian groups F on X, the group EP’(X, F) is said to be the p-th cohomoZogy 
group of X with coefficients F. 

Let f: X-S Y be a continuous map of topological spaces. For any sheaf F of 
Abelian groups on X, the direct imuge f * F is defined by (f a F)( V) = F( f - ‘( V)) for 
any open set V s Y. If G is a sheaf of Abelian groups on Y, we may define the inverse 
image FG since the functor f* has a left adjoint f’? 

Hom#+G, F) = HomrJG,f*F). 

It is well-known that we have (pG)X = G,(x) for any point x E X. 
The higher direct image functors RPf* are defined to be the right derived functors 

of the direct image functor f*. 
When f is the projection of X onto a point, we have F(X) = f * F, and f+G is said 

to be the corzsrurzf sheuf G on X. Hence, in this case Rpf*(F) = IP(X, F). 
These results hold for arbitrary topological spaces, but we are interested in a very 

particular case: when X is a finite space. If X is finite, each point x has a minima1 
neighbourhood Ux, so that Fx = F(UJ. Hence, a sheaf F of Abelian groups on a 
finite. poset X is just a family of Abelian groups {Fx}, x E X, and morphisms 
ryx . . Fx + F,,, x < y, such that rz,,r,,x = rzX whenever x < y < z (cf. the linear repre- 
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sentations of X, [ 151). For example, the constant sheaf G is just Fx = G for any 
point x and rl,, = idG for any pair x < JJ. 

When X is a finite space, the cohomology groups P’(X, F) have the following 
combinatorial interpretation: 

Let F be a sheaf of Abelian groups on a finite poset X. Then we denote by 
C”(X, F) the Abelian group 

WK Fl = xo<-j<x En 
. .” 

and we define morphisms d: C’(X, F) + C” + ‘(X, F) by the following formula: 

=~<~<~(-l)~~(x~~...~,...~x~+,)+(-l)~+’~(x~~...~x~) 
. . 

where Z(x,,<***<xJ is the image of u(xO < * * + < XJ under the morphism, 
t. : En + Fxn + , - It is easy to check that 0 = d*, so that we have a cochain complex 
C-(X, F) (see [3]). Now, we have: 

THEOREM 1.2 [8]. ZP(X, F) = Hp[C-(X, F)]. 

COROLLARY 1.3. If G is an Abelian group, the groups Hp(X, G) are isomorphic to 
the cohomology groups of the complex Homz(C.(X, Z), G). 

COROLLARY 1.4. Constant sheaves over contractible jinite spaces are acyclic. 

Finally, we shall need the following result: 

DEFINITION 1.5. We define the dimension of a finite poset to be the supremum 
of all integers n such that there exists a properly ascending chain x0 < x, < * . . < X~ 
of points of X. 

THEOREM 1.6 [6]. The cohomology groups HP(X, F) vunish when p is greuter thun 
the dimension of the jinite space X. 

2. Duality 

Now we develop a duality theory for sheaves of Abelian groups on finite spaces, 
following closely Grothendieck’s work [4] for proper maps between schemes and 
Verdier’s work [ 141 for classical topological spaces. 

If F is a sheaf of Abelian groups over a finite space X of dimension n, we denote 
by C*(F) the n-th truncation of the canonical flasque resolution of F [5]: 

C’(F) = Co(F) A C’(F) . . . Cn - *(F) ?!+ C?-‘(F) +Coker dnPl. 

If x’ is a complex of sheaves over X, we denote by C*(S.) the singly graded 
complex associated to the double complex { CJ’(xq)}. 
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The duality theory for a continuous map f: X + S between finite spaces is very 
simple because of the following facts: 

(a) The stalk of Pf*(F) at any point p of S is W( f- ‘(Up), F), where UP is the 
minimal neighborhood of p in S. Hence, it vanishes when i is greater than the 
dimension of X (1.5). 

(b) The functor f* commutes with filtered inductive limits, since finite spaces are 
obviously Noetherian ([ 51, 113,lO. 1). 

(c) The functorial resolution C’(F) is bounded, f*-acyclic and commutes with 
direct sums and filtered inductive limits, because any direct product which 
appear in the definition of the canonical flasque resolution is finite when X is 
finite. 

DUALITY THEOREM 2.1. Let f: X + S be a continuous map betweenfinite spaces 
and let I’ be an injective resolution of the constant sheaf Z on S. There is a complex 
D> of injective sheaves over X such that, for every complex x’ of sheaves of Abelian 
groups over X we have a functorial isomorphism 

Hom’(f*(C’(&-‘)) r) = Hom’(.%‘, D;) 

where Horn* &notes the complex of morphisms. Moreover, D> is bounded below. 
Proof Fix two integer numbers p, q and let us consider the contravariant functor 

which assigns to each sheaf F of Albelian groups over X the Abelian group 
Hom( f*(Cj’(F), Zq)). This functor is exact (because G’(F) is f*-acyclic and Zq is an 
injective sheaf) and it takes inductive limits into projective limits; hence it is 
representable [4]. So there is an injective sheaf D -KW on X and a natural isomorphism 

Hom( f*(C?‘(F), Zq)) = Hom(F, D -J’vq). 

Now let Dy = @ i + j = d DiJ. For each integer number n we have 

Homn(f*(C*(.%‘)), Z’) = n Horn @ fe(Cp(Xq)), Zi+” 
1 +q=i 

= fl n Hom(f*(CJ’($-q)), Zi+“) 
i p+q=i 

= n n Horn(xq, D-Psi+“) 
q P+q=l 

Z 

rIH c 

om 
q 

xq,p+T=i D-Pvi+” 
J 

= Homn(s’, D; ) 

and this is a functorial isomorphism. Hence there is a differential d: Dj-+ D; of 
degree 1 such that 

Hom’(f*(C’(x’)), r) = Hom*(%‘, D;) 

is an isomorphism of complexes. 
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Remarks. If the dimension of X is n, then Df = 0 for p < -n. 
Let P be the one point space and let f: X + P. We define the dualizing complex 

D> of X to be D;. 
The complex D> depends on the given resolution Z. If we choose different 

injective resolutions of the constant sheaf 2!, then we get quasi-isomorphic com- 
plexes. Hence the complex D; is well-defined up to quasi-isomorphisms. 

Note. The above argument may be applied to any bounded below complex Z* of 
injective sheaves on S, so that we get a bounded below complex f’(Z’) of injective 
sheaves on X such that Hom’(.?K’, f'(r)) = Horn-( f*(C’(&-*)), r). Hence we have 
a functor f ‘: D +(S) + D +(X), between the respective derived categories of bounded 
below complexes of sheaves of Abelian groups, which is a right-adjoint of the 
functor RF*: D(X) + D(S): 

R Horn-($-‘, f!(L’)) = R Hom’(Rf*($-‘), Z’). 

COROLLARY 2.2. Zf F is a sheaf of Abelian groups on X, then there is a split exact 
sequence 

0 + Ext$(ZP+ ‘(X, F), 2?) + Extei(F, D>) + Hom(ZZ’(X, F), J!) + 0. 

ProoJ If Z denotes an injective resolution of the group 2!, then there is a split 
exact sequence 

0 + Exti(Hi+ ‘(X, F), 2?) + ZP[Hom*(r(C’(F)), Z)] + Hom(ZP(X, F), i?) + 0. 

Now, by the Duality Theorem we have Hom’(I(C’(F), Z) = Hom’(F, D>) and 
ZPi[Hom*(F, D>)] is just Ext-‘(F, D>) because Di is a complex of injective 
sheaves. 

THEOREM 2.3. The homology groups of a$nite space are just the hypercohomology 
groups of its dualizing complex: 

Hi(X, Z) = Wi(X, Di). 

ProojI Let Z be an injective resolution of the group z. Then 

l-(X, D>) = Hom’(& D>) = Hom’(I(X, C’(z)), Z) 

and, by ( 1.8) we have that the natural morphisms 

are quasi-isomorphisms (recall that C*(X, G) denotes the cochain complex with 
coefficients G). Therefore, the complex I(X, Di ) is quasi-isomorphic to 
Hom’(C*(X, Q, Z’) and this complex is quasi-isomorphic to Hom’(C*(X, Q, 2!) 
since C-(X, i2) is a complex of free Abelian groups. 

Now, it is clear that Hom.(C*(X, 2!)) = C.(X, 2!) and we conclude that 
W’(X, D>) = H-‘[Hom’(C’(X, 22) 2!)] is ZZi(X, Q. 
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3. Geometric Realization 
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Given a finite poset X, we may define a simphcial complex C(X) on the vertex set 
X by letting all finite chains be the faces. The geometric realization of C(X) will be 
denoted by 1x1 and it is said to be the geometric reulizution of X (see [ 11, [ 111 and 
[ 121). There is a functorial continuous map 

which sends each point of 1x1 to the greatest element in its carrier chain. This map 
is a homotopy equivalence [ 111, 

THEOREM 3.1. Zf F is a sheaf of Abelian groups on a jinite space X, the inverse 
image 

g*: HP(X, F) -+ HP(lXl, g*F) 

is an isomorphism for all p > 0. 
ProoJ It is a well-known result for constant sheaves. So it is also true when 

F = ZA, for any closed subset A s X, because g-‘(A) is just [A]. The exact 
cohomology sequences associated to the following short exact sequences 

prove that it is also true when F = ZX- A (see [ 51 for a definition of these sheaves). 
Finally, remark that the theorem is valid for a direct sum whenever it holds for each 
summand. 

Now, let F be an arbitrary sheaf of Abelian groups on X. By ([5], II 2.9.2), F is 
a quotient of a direct sum of sheaves ZU, so that F is quasi-isomorphic to a 
bounded above complex X’ such that the theorem holds for each sheaf Xp. Since 
we have the following convergent spectral sequences 

ET9 = Hp(X, X9) =c. HP+ 9(X, F) 

,??qq = HJ’([X[, g*(.U)) * HJ’+q(lX[, g*F) 

and g* : Eyq + i@q is an isomorphism for any p and q, we get that 
g*: Hn(X, F) + Hn(lX[, g*F) is an isomorphism. 

(3.2) The Duality Theorem 2.2 holds for any continuous map between finite 
polyhedra (in fact it holds under much more general hypotheses, see [ 141). Hence, 
if P is a finite polyhedron, we have its dualizing complex D;. Now we compare Di 
and DiA when X is a finite space: 

THEOREM 3.3. D> und g*(Diq) ure quusi-isomorphic. 
ProojI Let r be an injective resolution of the gorup Z. For any sheaf F of 

Abelian groups on X we have 
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Hom*(F, g*(Diq)) = Hom*(g*F, Diq) 

= Horn-( l-( 1x1, C’(g*F)), r) 

and, by (3.1), this complex is quasi-isomorphic to 

Hom’( l-(X, C’(F)), 1;) = Hom*(F, D> ). 

Since it holds for an arbitrary sheaf F, we may conclude that D; is quasi-isomor- 
phic to g*Diq. 
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