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On the Signature of a Link

C.McA. Gordon and R.A. Litherland
Department of Mathematics, The University of Texas, Austin, Texas 78712, USA

0. Introduction

In [4], Goeritz described how a quadratic form could be obtained from a
regular projection of a knot, and showed that some of the algebraic invariants of
this form are invariants of the knot. The signature, however, is not. Later, in
[20], Trotter introduced a different notion of quadratic form, defined in terms of
an orientable surface spanning the knot, and showed that the signature of this
form (now known as the signature of the knot) is a knot invariant. Now
Goeritz’s form has a natural interpretation in terms of a spanning surface
obtained from the given knot projection (see [17] and §2), and the non-
invariance of its signature can be regarded as a consequence of the fact that this
surface need not be orientable. In the present paper, we show how to define a
quadratic form using any spanning surface, which simultaneously generalizes the
forms of Goeritz and Trotter, and are able to relate the signature of this form to
the signature of the knot. In particular, we obtain a simple algorithm for
calculating the signature o(k) of a knot k from any regular projection of k, which
expresses o(k) as the signature of the corresponding Goeritz matrix plus a
certain ‘correction term’.! Since the Goeritz matrix is often considerably smaller
than any Seifert matrix, (for instance, any torus knot of type (2,2n+1) has a 1
x 1 Goeritz matrix), this should be of interest to the practical knot theorist, so
for convenience we summarize the algorithm now. First colour the projection of
k in chequerboard fashion. To each double point D assign an incidence number
n(D)= +1 as shown in Figure 1.

Let G be the associated symmetric integral matrix of Goeritz (see [4] or §1
below). Divide the double points into two types as shown in Figure2. (For this
we must orient k, but the result is independent of the choice of orientation. Also,
it does not matter which strand passes over.)

Define p=1 n(D), summed over all double points D of type II. (Note that if
the shaded surface is orientable, then there are no double points of type II). The
result is then

! For another algorithmic approach to the computation of the signature, see Conway’s article [3].

0020-9910/78/0047/0053/$3.40
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7(D) = +1 7(D) = =1 Type I Type L
Fig. 1 Fig. 2

Theorem 6 2. o (k)=sign G — p.

We remark that, having somehow arrived at this function sign G — 4, the fact
that it is an invariant of k can be verified directly by showing that it is
unchanged by any of the Reidemeister moves on a knot projection [1], [15].
Indeed, the hard part of this was done by Goeritz, viz. describing the effect of
- these moves on G; keeping track of u is comparatively simple. It is of some
historical interest that, in this sense, the signature of a knot could have made its
appearance thirty years before it did.

As the title suggests, everything we do works equally well for links as for
knots, but, hoping to clarify the exposition, we treat knots first, in §§1-4, and
indicate later, in §5, the modifications necessary for the general case. §1 contains
a review of the Goeritz matrix. In §2, we defined our quadratic form %,, for any
surface V spanning the knot or link. In §3, we define an ‘Euler number’ e(V) for
the spanning surface V. Then, by interpreting %, as the intersection form of a
certain 2-fold branched covering of the 4-ball (this was done for orientable V' by
Kauffman and Taylor [8]), and using the G-signature theorem, we show that
sign %, +3e(V) is independent of the choice of V. By taking V to be orientable,
we can relate this invariant to the signature of the knot or link. The algorithm
described above is derived in §4. (See §5, Theorems 6’ and 6", for the case of
links.) In §6 we outline an alternative approach, avoiding the use of covering
spaces, which involves a generalization to arbitrary spanning surfaces of the
notion of S-equivalence. As a final illustration of the usefulness of non-orient-
able spanning surfaces, we give, in §7, a quick proof of a result of Shinohara
[18] on the signature of knots contained in knotted solid tori.

Note on Conventions. We have reversed the convention of Goeritz regarding
which regions of a knot projection are white and which black; this means that
the spanning surface relevant to the discussion is now indicated by the black
regions. (This convention agrees with Seifert [17].) Also, we have not assigned
incidence number zero to double points at which a white region is incident with
itself; to compensate for this we have adopted a definition of G which renders
the incidence numbers of such points irrelevant. The advantage of this is that it
eliminates separate consideration of these points when interpreting u.
We work throughout in the smooth category.

2 We are informed that an equivalent formula is known to A. Marin




On the Signature of a Link 55

To avoid repetition, we have used the word ‘surface’ (except where it appears
in the phrase ‘closed surface’) to mean ‘compact surface without closed com-
ponents’.

Knots, links, and surfaces are unoriented unless otherwise specified, but the
3-sphere, the 4-ball, and, in general, all manifolds of dimensions 3 and 4, will be
oriented.

1. The Quadratic Form of a Knot (after Goeritz)

For the convenience of the reader we shall give here the definition of Goeritz’s
matrix [4]. Let k=S? be a knot, and K (the image of) a regular projection of k
onto the plane R2cR3*=83%—{w}. Colour the regions of R?—K alternately
black and white. Denote the white regions by X,, X,,...,X,. Assign an
incidence number 7(D)= +1 to each double point D as in §0. For 0<i, j<n
define

_{-Zn(D) summed over double points D incident to X; and X, if i#j
Tl Y g ifi=)
k=0,...,nk*i

Let G'=(g;)), i,j=0,...,n. Then the Goeritz matrix G=G(K) associated to K is
the nxn symmetric integer matrix obtained from G’ by deleting the 0-th row
and column; ie. G(K)=(g;), i,j=1,...,n. (We shall use the notation G(K)
despite the fact that G(K) depends on more than just K, namely, the ordering of
the white regions, and, in particular, the choice of X . As regards the latter, the
convention of Goeritz is to take X, to be the unbounded region; any other
choice then corresponds simply to changing the projection by re-siting the point
at infinity.)

It follows from [4] that matrices G(K,) and G(K,) obtained from any two
projections K, and K, of k are related by a finite sequence of certain moves.
The list of moves was subsequently reduced by Kneser and Puppe [10] to the
following two.

G—RGRT”, R integral and unimodular 1)
G»—»[ I ] )
0| +1 1

In particular, the absolute value of the determinant of G is an invariant of
the knot k. Goeritz also showed that the Minkowski units C, of G at odd primes
p are invariants of k. However, the signature sign G is clearly not invariant under
move (2), and it is this shortcoming that we seek to rectify. (The Minkowski unit
C,, which is determined by the C, for odd p together with the signature and the
determinant, is also not an invariant of k [4].)
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2. Spanning Surfaces

Let V<=S? be a surface (orientable or not, but in any case unoriented) with oV
the knot k. We define a bilinear form %,: H,(V)x H,(V)>Z as follows.
Suppose a, feH, (V) are represented by 1-cycles a, b. Then 2b can be pushed off
V into S —V, obtaining 1 b, say. (If b preserves orientation, we push off one copy
of b to each side of V) Define %,(«, f) to be the linking number of a and tb.
More formally, let N be a closed tubular neighbourhood of V; N is the total
space of an I-bundle over V with projection n: N—V, say. Let V be the
corresponding d1-bundle. Then n|V: V-V is the orientation double cover if V
is non-orientable, or the trivial double cover otherwise. Let : H,(V)—H (V) be
the transfer map. Since V and V are disjoint subsets of $3, linking number
defines a pairing

Lk: H,(V)xH (V)-Z.
We define
@B =Lkxth) (%PeH (V).

Remarks. (1) If V is orientable, this coincides with the quadratic form defined by
Trotter in [20]. For in this case, let i, i_: V-V be the two sections of V>V
then tf=i,, f+i_,pB, so

9y(o, f)=Lk(a, i, f)+Lk(a,i_,p)
=Lk(x,i,,p)+Lk(p,i, o).

(2) It will follow from Theorem 3 below that ¥, is symmetric: a direct proof will
be given in §6.

We have remarked above that 4, generalizes Trotter’s quadratic form; we
now show that it also generalizes Goeritz’s. Let K be a regular projection of the
knot k, and adopt the notation of §1. Associated to K is a spanning surface V
=V(K) of k, namely that indicated by the black regions. A little more precisely,
we may assume that k coincides with K except in a neighbourhood of each
double point. Then V(K) is built up out of discs and bands. Each disc lies in S2
=R?U{o} and is a closed black region less a small neighbourhood of each
adjacent double point. Each double point gives a small, half-twisted band (see
Fig. 3).

We can embed a graph I' in ¥nS? as a deformation retract of V; I' has one
node in each disc of ¥, and one edge running across each band (see Fig.4). Let
the complementary regibns of I''in §? be Y,, ..., Y,; we number these so that
X;c Y. Each Y, inherits an orientation from S2; the homology classes a;=[0Y;]

generate H (I~ H, (V) subject to the single relation ) «;=0.
i=0

i

Theorem 1. With the above notation,

gvm(“n “j)=gij-

Consequently, 4 , has matrix G(K) with respect to the basis {a;|1 Li<n} of
H, (V).
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Proof. Because Y ;=0 and ) g;=0, it suffices to prove the asserted equality
for i=+j. i=0 j=0

We have

Yyl a)=Lk(, to) =Y, - ta;.
Now, over the discs of ¥, V is contained in two parallel copies of $2, so T« ; only
intersects S? close to double points; in particular it only intersects Y; close to
double points incident to both X; and X;. Each such double point contributes
one point of Y- ta;, with sign +n(D). (See Fig.5.)

Hence, Y;-ta;=g;;, as required. []

ij fwj
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Fig. 5

3. Branched Covering Spaces

Suppose F is a (possibly non-orientable) surface properly embedded in D* with
OF a knot k. Then, by a standard duality argument, H,(D*—F;Z,)=Z,,
generated by a meridian of F. Hence we can form the 2-fold branched cover of
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D* with branch set F; we will denote this by M. Since F has a 1-dimensional
spine, its normal 1-sphere bundle in D* has a section F'. (Note: we shall not
distinguish between a section and its image.) Let k'=0F’, and e(F)= — Lk(k,k').
(k' is to be oriented similarly to k; e(F) is then independent of the choice of
orientation of k.) We might call e(F) the Euler number of F; it is the normal
Euler number of a closed surface obtained by capping off k with an orientable
surface in $* and pushing into int D* Using ¢ to denote the signature of a 4-
manifold, we have

Theorem 2. Suppose F, and F, are properly embedded surfaces in D* with OF,
=0F, a knot. Then

G(MF1)+%e(Fl) = G(MFZ) +%e(F2).

Proof. Consider the pair (S*, E)=(D*, F,) u,(— D* F,). This has a 2-fold branched
cover Mp=M_p U,(—Mp,). By Novikov additivity,

U(ME)‘:U(MF,)_ U(MFZ),

while by the G-signature theorem ([2]; for an elementary proof in the case of an
involution see [6])

o(Mg)=20(8%)—}e(E)= —3e(E)

where e(E) denotes the normal Euler number of the closed surface Ec=S* (see
[21]).

Now, e(E) may be interpreted as follows. Take a section E’ of the normal
bundle of E which is transverse to E. At each point of ENE’ choose a local
orientation of E. This determines a local orientation of E’, and so an incidence
number +1 for the intersection point; this is independent of the orientation
choice. Then e(E) is the sum of these incidence numbers over all points of ENE'.

It follows easily that e(E)=e(F,)—e(F,), which completes the proof. [J

Now suppose V is a spanning surface in § for the knot k. Push int V' into
int D* in the obvious way to obtain a properly embedded surface ¥ = D* with
0V =k. The following result is already well-known in the case that V is
orientable. (See, for example, [5], [8].)

Theorem 3. With the above notation,
(H,(Myp),)=(H(V), %)),
where + denotes the intersection form on H,(Mpy).

Proof. We can construct M, by gluing together two copies of the manifold
obtained by cutting open D* along the trace of the isotopy which pushed int V
into int D*. But this manifold is homeomorphic to D*; the part exposed by the
cut corresponds to a tubular neighbourhood N of ¥ in S Thus M, may be
described as follows. Let i: N— N be the involution given by reflection of the
fibre. Take two copies D} and D} of D*, and let

My=D}uUD}/xeN cD}~1(x)eN =D%.
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Now consider the Mayer-Vietoris sequence for My:
0=H,(D}) @ H,(D3)~H,(Mp) —"— H,(N)~H,(D}) ® H,(D3)=0.
The inverse S of the isomorphism ¢ may be described as follows. If a is a 1-cycle
in N, let
S a=(cone on a in D%)—(cone on 1(a) in D}).
Then S([a])=[S a]. Hence if a, b are disjoint 1-cycles in N,
S([a])- S([b])=Lk(a, b)+ Lk(1(a), 1(b)).

Finally, let i,: H,(V)—H(N) be the isomorphism induced by inclusion, and let
o, feH (V). Represent a, f by 1-cycles a and b in V. Then a and tb are disjoint
1-cycles in N, and tb is homologous to 2b in N. Moreover, 1(a)=a, 1(tb)=1b.
Hence

Si,o-Si, f=35(a])-S([b])
=4(Lk(a, tb)+ Lk(1(a), 1(z b))
=Lk(a,1b)
=9y (a, B).
Thus Si, is the required isomorphism
(H (V),9y)—=—(H,(Mp),*). O

Now let k¥ be a parallel copy of k missing V, and define e(V)= —Lk(k, k").
One easily proves

Lemmad. e(V)=e(V). [
Corollary 5. If V is a spanning surface for the knot k, then
o(k)=sign¥, +1e(V).

Proof. By Theorems 2 and 3 and Lemma4, the right hand side of the asserted
equation is independent of the spanning surface V. But if V is orientable, sign %,
is by definition o(k), while e(V)=0. []

We digress to note the following consequence of Theorem 3. Let M be a
compact 4-manifold with H,(M)=0, and suppose the intersection form on
H,(M) is given, with respect to some basis, by the integral matrix 4. By
Lefschetz duality,

H,(M,dM)= H*(M)=Hom(H ,(M),Z)=H ,(M)*,
say, and the exact sequence of the pair (M, d M) gives an exact sequence

H,(M)—*— H,(M)* - H,(0M) -0,
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where the left-hand map is represented by the matrix 4 with respect to our basis
for H,(M) and the corresponding dual basis for H,(M)*. It follows that A4 is a
relation matrix for H, (0 M).

Now suppose H,(0M;Q)=0, and consider the linking form A: H,(0M)
x H,(0M)—>Q/Z. Suppose a, fecH,(0M) are represented by 1-cycles a, b. Let
AeZ — {0} be an annihilator of H, (0 M); for example, we could take 4=det A.
Then 4da=0u, Ab=0v, for some 2-chains u, v in M, and by definition

A, ﬂ)=“Aib (mod 1),

where N denotes intersection number. We also have a=0x, b=0y for some 2-
chains x, y in M. Then 4x —u and 4y—v represent classes X, Y, say, eH,(M). It
is easy to see geometrically that

X-Y=AxnAdy—unAdb,
- and hence

4

Mo, )= — (mod 1).

Note that the map H,(M)—H,(M,0M) takes X+—[4x], Yi—[4y]. Let [x], [¥]
correspond, under the isomorphism H,(M,0M)=~H,(M)*, to X, YeH 2(M)*.
Then (regarding X, ¥, X, ¥ as column vectors with respect to our bases of
H,(M) and H,(M)*), we have AX =AX, AY = AY. Therefore, recalling that 4 is
invertible over @,

X-Y X'AY A*X'A7'AA7'Y

T == v =X'A"'Y.

Thus A(x, f)= — X' A~ ! ¥ (mod 1). Also, the map H,(M)*—H (0 M) takes X—«,
¥+ B. In other words, 4 is represented by the matrix —4~! with respect to the
images in H, (0 M) of our basis for H,(M)*.

Hence we recover the results of Seifert [17], that if k is a knot with 2-fold
branched cover N, and G is any Goeritz matrix for k, then G is a relation matrix
for H,(N), and the linking form on H,(N) is given by +G~! (the sign
depending on the choice of orientation of N).

4. The Algorithm

Let K be a regular projection of the knot k, and recall from §0 the definition of u
= u(K): a crossing point is of type I or II according as the string orientations are
or are not consistent with respect to the black regions. (See Fig.2.) Then u(K) is
the sum of the incidence numbers of double points of type II.
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Type 1 Type I

Y/ X

Fig. 6

Theorem 6. For any regular projection K of the knot k, with associated Goeritz
matrix G,

o (k)=sign G — u(K).
The theorem is immediate from Corollary 5, Theorem 1, and
Lemma7. u(K)= —1e(V(K)).

Proof. Let V=V(K). We can take the push-off k¥ of k which misses V to lie in
the plane R? except in a neighbourhood of the double points. Figure 6 shows k*
close to a double point D in each of the four possible cases for D. If we calculate
Lk(k,k") by counting the number of times k¥ passes under k from right to left,
we see that D contributes 2#(D) if it is of type I, 0 if of type I. Hence Lk/k, k")
=2u(K); ie.

—e(V)=2u(K). O
5. Links
We now describe how the theory has to be modified to take care of links.

Everything in §1 remains valid, except that the following additional move on
the Goeritz matrix must be permitted. (See [11]; also §6.)

Gios [—g— %] . 3)
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§2 carries over exactly as stated.

Regarding §3, the following comments are in order. Let F be a surface
properly embedded in D* with OF the link I=k,u---Uk,, say. Then H,
(D*—F; Z,)=7Z5""), generated by meridians of F, and we can form the 2-fold
branched cover M. of D* with branch set (the whole of) F. Since F has no closed
components, its normal 1-sphere bundle has a section F', with 0F' =I'=k{ U .-
vk, say. We then define

e(P)= ~ ¥ Lk(k, k),

where each pair k;, k; is oriented compatibly but otherwise arbitrarily. Again,
this can be interpreted as a normal Euler number, as follows. Attach 2-handles
to D* along tubular neighbourhoods of the components of [, using the 0-framing
for each component, giving a 4-manifold W, say. The union of F with the cores
of the 2-handles is a closed surface E, and the normal Euler number of E in W is
just e(F). In particular, we see that e(F) is independent of the choice of section
" F'. The definition of e(V) for a surface V in S* extends analogously to the case
where V has several boundary components:

e(V)=— .iLk(ki, kY).

Theorems 2 and 3 and Lemma 4 carry over exactly as stated, and as a
consequence we have

Corollary 8. If V is a spanning surface for the link I, then
sign¥, +%e(V)
depends only on l. []

From our present point of view, in which non-orientable spanning surfaces
are just as good as orientable ones, and (hence) links are unoriented, the
invariant of Corollary 8 is the natural generalization to links of the signature of
a knot. To relate this invariant to the classical signature of a link, we must now
orient our links. More precisely, we consider a link together with an orientation
of each of its components, modulo simultaneous reversal of these orientations.
Let [ be such a semi-oriented link, with underlying (unoriented) link /. One then
defines the signature o(l) of I to be sign %, for any orientable spanning surface V
of | which has a semi-orientation inducing the specified semi-orientation on .
(Actually the original definition, due to Murasugi [13], was described in terms
of a regular projection, in a purely combinatorial fashion, but this can be
interpreted in terms of a certain orientable spanning surface associated with the
projection (see [7, 19]).)

_Now let ¥ be any surface in S* whose boundary is the semi-oriented link
=k, U---Uk,. (V need not be orientable, and even if it is, we do not assume that
it is compatible with the semi-orientation of 1) Define

éV)=— i Lk(k;, k}).

hj=1
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Then

e(V)=— Y Lk(k,k)=2 Y Lk(k,k)=e(V)—2A())

i=1 15i<jsm
where A(]) is the total linking number of I (see [13]).

We then have the following analogue of Corollary 5, which identifies the
invariant of Corollary 8 with the invariant é(l)=o(l)+A(l) of Murasugi [13].
(Note that this gives another proof of Theorem 1 of [13], that a()+A(]) is
independent of the orientation; this proof is closely related to that of Kauffman
and Taylor [8].)

Corollary 5. If V is any spanning surface for the link 1, then E()=sign %, +1e(V).

Proof. The right hand side is independent of V' by Corollary8. So choose V
orientable; then a semi-orientation of V will detrmine a semi-oriented link /, say.
Since V is orientable, &(V')=0, hence 3e(V)=A(l), while, by definition, sign ¥,
=s(). O

Corollary §' can be equivalently stated in terms of the signature:

Corollary5". If V is any spanning surface for the link I, then
o()=sign¥%, +1e(V)
for any semi-oriented link | with underlying link . []

We can now obtain two different (but of course closely related) generali-
zations of Theorem 6, to give algorithms for computing (/) and o(J) respectively
from a link projection. (Since A(l) is easy to compute, any one of £(I), a(l) can be
readily obtained from the other. We discuss them both, however, since each has
some claim to being the more natural generalization of the signature of a knot.
Thus, on the one hand, £(I) requires no mention of orientations, while on the
other, the algorithm for ¢(J) involves the most natural generalization of the knot
projection function u.)

First consider £(I). We need to be able to calculate e(V (L)) for the shaded
surface V(L) corresponding to a projection L of I. To this end, attach a number
{(D) to each double point D of L as follows: if a single component of | crosses
itself at D, let {(D)=0 or 1 according as D is of typel or II; if two distinct
components cross at D, let {(D)=3. Define v(L)=) {(D)#n(D) summed over all
double points D of L. Note that v(L) is an invariant of the unoriented diagram
L, and coincides with u(L) when [ is a knot.

One proves easily

Lemma7. v(L)=—%e(V(L)). O
And hence,

Theorem 6'. For any regular projection L of the link I, with associated Goeritz
matrix G,

E()=signG—v(L). O
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Now let I be a semi-oriented link, and let L be some (correspondingly semi-
oriented) regular projection of I. Define y(Z)=Zn(D), summed over all double
points D of typell of L. (Note that a semi-orientation is necessary to make the
distinction between points of type I and points of type Il meaningful.)

Then

Lemma7”. u(L)=—1&(V(L). O
And hence

Theorem 6”. For any ('semi-oriented) regular projection L of the semi-oriented
link 1, with associated Goeritz matrix G,

o()=signG—pu(L). O

6. A Down-to-Earth Approach

- We have developed the properties of our quadratic form by paralleling the
approach of Kauffman and Taylor [8] in the case of an orientable surface. A
development along more traditional lines, avoiding the use of covering spaces,
can also be given; we now outline this.

The following result is, as previously remarked, a consequence of Theorem 3;
we give here a direct proof.

Proposition 9. Let V be a surface in S>. Then
%,: H,(V)xH,(V)>Z
is symmetric.

Proof. We adopt the notation of §2.

Orient V so that a positive normal points out of N, and leti,,i_: V—83—V
be given by translation in the positive and negative normal direction, re-
spectively. Let a, feH, (V). Then

gl’(‘x’ ﬂ)=Lk(a9 Tﬁ)
=Lk(a,i,,7P)
=3Lk(to, i, tp)

so 4,(0,f)—%,(B,0)=3Lk(to i, tf—i_,tf)=37ta-tf. But each point of
anp gives rise to two oppositely signed points of tantp, so ta-tf=0. O

Suppose V;, V, are two surfaces in S* with 0V, =0V,. Suppose further there
is a 3-ball B3=B! x B> S§%— 0V such that

V,nB*=0B' x B2
V,nB3*=B! x 0 B>
and

cl(V, — B =cl(V, - B?).




On the Signature of a Link 65

\

/

Fig. 7

In this situation we say that V, comes from V| by a 1-handle move.

(Here, and in the proof of Theorem 11 below, we leave corner-smoothing to
the reader.)

We say that two surfaces in S are S*-equivalent if they are related by a finite
sequence of the following moves and their inverses
(A) Ambient isotopy
(B) A 1-handle move
(C) Addition of a small, {-twisted handle (see Fig. 7).

The boundaries of two S*-equivalent surfaces are necessarily of the same link
type.

(The terminology arises as follows. The relation of S-equivalence of Seifert
matrices ([20, 14]) has a natural geometric analogue, namely the equivalence
relation on orientable surfaces generated by the moves (A), (B) and (B)~!
(through orientable surfaces only). It seems reasonable to call this S-equivalence
also, whence S*-equivalence.)

Proposition 10. If V,, V, are S*-equivalent surfaces in S>, then
sign%, +3e(Vo)=sign¥, +3e(V)).

Proof. That sign %, is invariant under (B) is proved just as in the orientable case
([14, 20]); clearly e(V) is also invariant.

The effect of (C) on ¥, is to take orthogonal sum with the form [¢], where ¢
= +1 depending on the sense of the twist in the band; since 2¢ is subtracted
from e(V), the result follows. [

(In this way we see that (the matrices of) the quadratic forms of S*-
equivalent surfaces are related by the moves (1) and (2) of §1, provided the
boundary is a knot. For a link, we must include the move

G [-g— -g-] &)
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corresponding to a 1-handle move connecting two components of a discon-
nected surface. This is also necessary for the Goeritz matrix of a link, as was
observed by Kyle [11].)

Proposition 10 and the following theorem now imply that for any spanning
surface V of a link I, sign %, +e(V) depends only on .

Theorem 11. If V,, V, are surfaces in S* with 6Vy=0V,, then V, and V, are S*-
equivalent.

We outline two proofs of this, one 3-dimensional, the other 4-dimensional.
Let I=0V,=0V,.

Proof I. First we can use move (C) (and (A)) to ensure that VNV, consists of [
together with simple closed curves in int Vynint V. Using (B), we may also
assume that ¥, and V, are connected. Let M be the closure of a component of
the complement in S of a regular neighbourhood of V,UV,. Note that M is a
manifold, but that if M’ is the closure of the corresponding component of S3
—(VouV,), then M’ may fail to be a manifold along some curves of
" intVynint V;; we call such a curve bad. Regard M as a cobordism between the
parts of M coming from V,, V, respectively, and take a handle decomposition
of M on one end. We may assume there are only 1- and 2-handles, and that the
former precede the latter. Let W be the surface between the 1- and 2-handles. If
V; is obtained from V¥, by deleting the part of V; corresponding to M and
attaching W in the obvious way, then V' is obtainable from V; by a sequence of
moves (B) (and (A)), i=0, 1. If M accounts for all of V,uV,, we are done. If
not, there must be some curve ¢ cint V;nint ¥; which is good for M. (Otherwise,
any arc on V;, i=0, 1, starting at a point coming from 0 M must finish at another
such point. Since V; is connected, all points of V, UV, would then come from
0M.) Pushing one copy of W off the other we get a surface V", ambient isotopic
to ¥}, such that each curve of intV,nintV, gives rise to at most one curve of
int Vynint V". Moreover, by suitably choosing the direction in which to push W,
we can arrange that c is eliminated. (We could not necessarily do this if ¢ were
bad.) Thus intVgnint V]’ has fewer components than intV,nintV;, and the
proof is completed by induction. . []

Remark. For the case of orientable surfaces, an outline of the above approach is
given by Rice in [16]. However, this does not seem to take into account the
possibility of the existence of bad curves (which may occur even in the
orientable case).

Proof I1. For i=0,1, let I be a push-off of | missing V;; by use of move (C)
(and (A)) we may assume Lk(k;, k{”)=Lk(k;, k") for each component k; of I.
Hence we can take I‘¥=1" =/, say. Let V; be a section of the normal bundle of
¥, in S3, with 0¥/ =1 Consider §* as

p* | §*x[0,1] |) —D*

53 x{0} S$3x{1}

and let EcS* be the closed surface

Vox {0} J Ix[0,1] | ¥, x{1}.
1x{0} Ix{1}
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The sections Vg, V| define a section E’ of the normal 1-sphere bundle of E,
showing that e(E)=0.
The following steps will complete the proof.

(1) E bounds a 3-manifold in S%.

(2) E bounds a 3-manifold M in S3 x [0, 1], with M S3 x {i} =V, for i=0, 1.
(3) Take a handle decomposition of M on V,, with each handle in a level
$3x{t;}, t;€(0,1), and with MnS*x(t;,¢t;,,) a vertical collar on d(MnS>
x [0,t])nS> x {t;}. (See [9].)

(4) Eliminate 0- and 3-handles from the decomposition of (3), and order the
remaining 1- and 2-handles so that the former precede the latter. Then the
intersection of M with a level between the 1- and 2-handles is a spanning surface
obtained from V; by 1-handle moves, for i=0, 1.

Of these, only (1) needs further explanation.

Actually it is true that if E is any closed surface in S* with e(E)=0, then E
bounds a 3-manifold in S*. To see this, let T be a tubular neighbourhood of E,
and X =8*—intT. Starting with any section E’ of 4T, it may be modified to
produce a section E” such that Lkz,(a, E”")=0 for all aeH,(E). By duality and
excision this implies that E” bounds homologically mod 2 in X. Next, we find
a map f: 0T — RP> transverse regular along E” to a codimension one copy of
RP>. The fact that E” bounds mod 2 in X is sufficient to allow the extension of
fto X — RP*, which gives a 3-manifold in X with boundary E”. [J

Remark. In our situation, if [ is a knot, we may take E” to be the E’ defined by
Vs, and V/, but if | has more than one component, this E' may have to be
modified.

7. An Application

Let k be a knot, and ! a link contained in an unknotted solid torus T <=S3. Let
f: T—-S® be an embedding such that f(T) is a tubular neighbourhood of k.
Suppose also that f is faithful, that is, the image of a longitude of T (a simple
closed curve on dT homologous in T to the core of T and null-homologous in
§3—int T) is a longitude of f(T). Let I* denote the link f(J), and let neZ, be the
mod 2 homology class [[1e H,(T; Z,).

¢, if n=0
e +a(k), if n=1.

Remarks. (1) Taking ! to be a knot, we recover the result of Shinohara [18,
Theorem 9].

(2) Our method can also handle more general situations, in which we start
with a link and replace some of its components by links lying in tubular
neighbourhoods of these components. But since it does not seem possible to give
a concise general statement, we omit the details.

Theorem 12. é(l*)={
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(3) The second author has proved results analogous to those alluded to in (2)
above for the Tristram-Levine signatures, using the interpretation of these as
eigenspace signatures of higher-order branched covers. For the case of a knot,
see [12].

Proof of Theorem 12. First consider the case n=0. Then [ bounds a surface W,
say, in T, and as spanning surface for [* we may take f(W). Since f is faithful,
Lk(C,, C,)=Lk(f(C,), f(C,)) for any two disjoint 1-cycles C,, C, in T. Hence
e(f(W))=e(W), and %y, =%y, which implies &(I*)=¢()).

Now suppose n=1. In this case, there is a surface W, in T whose boundary is
the union of | and a longitude J of T. Let W be the spanning surface for |
obtained from W, by capping off J with the obvious 2-disc in §*—int T. From
an orientable spanning surface for k, one obtains an orientable surface V
properly embedded in S®—int f(T) whose boundary is the longitude f(J) of
f(T). Then V*=Vu,,, f(W,) is a spanning surface for I*. Since f is faithful,
e(V*)=e(W). From a Mayer-Vietoris exact sequence, we obtain

H,(V*)=H,(V)@H(f(W)/Lf (N)])=H,(V)® H,(W).

Moreover, since no 1-cycle in f(T) links any 1-cycle in V, and since f is faithful,
%, is isomorphic to the orthogonal direct sum ¥, @ %,,. Hence

E(I*)=sign ¥, +1e(V*)=sign¥, +sign ¥, + 1 e(W).
But e(V)=0 since V is orientable. Hence (I*)=£&(l)+a(k). [
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