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ON THE G-SIGNATURE THEOREM IN DIMENSION FOUR

by
*
C. McA. Gordon

0. Introduction

The G-signature theorem of Atiyah-Singer [2] has been successfully

applied to several problems in the theory of 4-dimensional manifolds. These
applications include Massey's proof [10] of Whitney's conjecture about embed-
dings of non-orientable surfaces in R4, and the theorems of Rohlin [11] and
Hsiang-Szczarba [8] on the representability of 2-dimensional homology classes
in a 4-manifold by embedded surfaces of given genus. It also provides what
is perhaps the most appropriate setting for the definition and study of sig~
natures of knots and links, especially when these are applied to concordance
questions. Finally, it was used to study knot concordance, from another point
of view, in [3] and ([4].

The purpose of the present paper is to give an elementary proof of the 4-
dimensional G-signature theorem, for finite G, which uses no analysis and only
a little bordism. In particular, we remark that we do not require any knowledge
about the 4-dimensional cobordism group.

Recently, Gilmer [7] has given a purely topological proof of the G-signature
theorem for finite G in all dimensions. Gilmer's proof is in the same spirit
as ours, but of course considerably more difficult. Since we do not have to deal
with the complexities of the general case, we hope that the present paper may still
be of some interest to the low-dimensional topologist.

The plan of the paper is as follows. 1In §1 we give the basic definitions and
state the 2- and 4-dimensional versions of the G-signature theorem (Theorems 1 and

2). In §2, the rudimentary facts from bordism theory which we shall need are

*
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collected in Lemma 2, and in Lemma 3 we show that g-signatures vanish for free actioii
in dimensions 2 and 4. In §3 we prove the 2-dimensional G-signature theorem. Since
in this dimension there can only be isolated fixed-points, the proof reduces fairly
easily to an explicit computation (Lemma 6). This computation is done in §5. 1In §4
we prove the 4-dimensional G-signature theorem. We first show that g-signatures are
zero for fixed-point free actions (Lemma 7). The case of isolated fixed-points then
follows exactly as in the 2-dimensional case. The general case, where there may be
some 2-dimensional components in the fixed-point set, is reduced, by means of a stand
ard action on CPZ, to the case where each 2-dimensional component has zero normal
euler number, and thence to the isolated fixed-point case. §6 contains some commentg
on the semi-free case, and on the multiplicativity of signature with respect to finig§
coverings., .

An earlier version of this work (dealing with the semi-free case) was done whila
the author was visiting the Institute for Advanced Study, Princeton, in 1976-77. 1
should like to thank the Institute for its support during that period.

I should also like to thank G. Hamrick, R. Litherland, A. Marin, and L. Siebene

mann for helpful conversations and comments.
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1. Definitions, etc.

We shall work in the smooth category. Let M be a compact, oriented
2n-nanifold, possibly with non-empty boundary. The (-1)n-symmetric inter=-
section form

_ . :HnO'I)an(M)qz
induces a hermitian form
¢: HXH - €,
where H=1-In(M;m) '—‘-'Hn(M)®c, by setting

aB(x-y), m even
P(xDa,ydB)

iaﬁ(xcy), n odd.

Suppose that G 1is a finite group which acts on M as a group of
orientation-preserving diffeomorphisms. The form ¢ is then invariant under
the induced action of G on H, and we may choose a G~-invariant orthogonal (with

respect to ¢) direct sum decomposition H=H+®H'®Ho, where ¢ is T -definiteon

+ -
H™ and zero on HO. The restrictions of G to H+ and H define representations

p~ of G, and the G-signature of (G,M) 1s defined to be the element

sign(6,M) =p" - p”
of the complex representation ring R(G). This is well-defined, and has the
following properties (which hold in all dimensions if we define sign(G,M)=0
for odd-dimensional M).
(1) sign(G,~M) = - s8ign(G,M)
(2) (QMultiplicativity.) sign(G,MX N) = sign(G,M) sign(G,N)
(3) (Novikov additivity.) If (G,M) = (G’Ml) U (G,M2), (possibly) identified
along some components of the boundaries of M1 and MZ’ then

sign(G,M) = sign(G,Ml) +sign(G,M2)

4) 1f (G,M)=0(G,W) for some W, then sign(G,M)=0.
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In particular, the G-signature defines a ring homomorphism
0,(G) 5 R(G).
where Q*(G) is the ring of G-bordism classes of closed G-manifolds.
For geG, the g-signature is defined by
sign(g,M) = x(sign(G,M)) (g)
= trace(g*|H+) - trace(g*lH-) .
The Ge-signature theorem of Atiyah-Singer [2] expresses the global in~
variant sign(g,M), when M 1is a closed manifold, in terms of local data,

namely the action of g on the normal bundle of the fixed-point set of g.

Before discussing the 2-and-4-~dimensional versions of this theorem,

we need to establish some notation and conventions.

Since we are assuming that G is finite, it suffices, in disucssing sign(g,M),.

to consider the cyclic group generated by g. We shall therefore from now on take G

to be the finite cyclic group Zm, m> 1.

It is to be understood throughout that our ambient manifold M 1is oriented, an
that g 1s orientation-preserving. Also, although M mneed not be connected, we shall
always assume, without loss of generality, that the action is effective on the orbit of
each component.

Fix(g) will denote the set of fixed-points of g. If we need to emphasize the
manifold M, we shall write Fix(g,M).

If 0=2nr/m, with (r,m)=1, we say that © is of order m. Then (0,1)2)
will denote the 2-disc D2 with Zm—action generated by rotation through 0, and we
shall write (0,S1) for d(0,D%).

If E 1is the total space of the Dz-bundle of some SO0(2)-bundle, we shall dene
simply by © the automorphism of E induced by rotation of each fibre through 0. If
@ is of order m, this defines azm-action (6,E) on E. If m=2, this also works

for 0(2)-bundles.
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We first discuss the 2-dimensional case of the G-signature theorem. Let g
generate aZm-acl:ion on a closed 2-manifold M. Fix(g) will consist of a. finite
number of points P. Using azm-invariant Riemannian metric on M, we can find a
tubular neighborhood of each such P which is equivariantly diffeomorphic to
(O,Dz) for some 8=0(P) (see [6], for example). The G-signature theorem in di-

mension 2 then states

Theorem 1. With the above notation,

sign(g,M) = -1 . cot g
P

Now consider the 4~dimensional case. Here Fix(g) will consist of
a finite set of points P and a finite set of disjoint, closed, connected
2-manifolds F. Again using a Zm— invariant metric, each P has a tubular
neighborhood equivariantly diffeomorphic to (91,D2)x (92,D2), say, and each F
a tubular neighborhood equivariantly diffeomorphic to (V,E), where E is
the total space of a Dz-bundle over F. (Of course 91 s 02 de-
pend on P and ¥ on F). Note that since the ambient manifold M is
oriented, and g preserves its orientation, F must be orientable unless
m=2.

e(f) will denote the euler number of the normal bundle of F in
M (using local coefficients if F 1s non-orientablej see [10]). It is
equal to the sum of the signed intersections of F with a nearby general
position copy.

The G-signature theorem in dimension 4 can now be stated, as follows,

Theorem 2. With the above notation,

! % 2 ¥
sign(g,M) = =%, cot 7 cot 3 + ), e(F) cosec >
P F

We conclude with some more conventions and notation.
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The generator of any Zm-action under discussion will usually be denoted by g3
we hope that this ambiguous use of g will not cause any confusion.

F=FM) denotes the set of all components of the manifolds Fix(gk), 1<k<m

L denotes dis joint union. Also, as usual, if n 1is a positive integer, M
denotes the disjoint union of n copies of M, and (-n)M=n(-M)=-~(oM).

We shall frequently emcounter situations in which we use the faet that, for exe
ample, some G-manifold (G,M) represents the zero element of , (G) ®Q, 1i.e.
r(G,M) =90(G,W) for some G-manifold W and non-zero integer r. Since the integer
r 1is irrelevant to our purposes, and would merely complicate the notation, it will
be convenient te introduce the notion of a G-object, by which we mean a G-manifold
with a non-zero rational coefficient. A statement about G-objects may be interpret:od'
simply as shorthand for the corresponding statement about G-manifolds obtained by mul;,
tiplying by an appropriate integer. Similarly, we can talk about the fixed-point se§.
of a G-object, a G-bordism between G-objects, the G-signature of a G-object (multiply
by the appropriate rational), and so on. It is, of course, not hard to formalize all

this, but we shall not do so.

2. Preliminary lemmas

Lemma 1. If g leaves no component of M invariamt, them sign(g,M) =0.

Proof. Let MO be a component of M, and let k be the least positive integer

such that ngo=Mo . By hypothesis, k > 1. We may clearly assume, without loss
k-1
of generality, that M= i gi'MO . Suppose dim M=2n, and let

i=0

4 -0
B (M,5€) = Hy © H) & Hy ,

+
where the hermitianized intersection form ¢ on I-In(MO;G) 1s ¥ -definiteon Ha

and zero on Hg, and the decomposition is orthogonal with respect to ¢. Setting
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k-1
+ i+
H = ? g*Hos
i=0

and similarly for H, HO, we get a corresponding decomposition

H M;6) = H & H o 1,

which is g -invariant. But clearly trace(g*|H+) = trace(g, |H ) =0, showing that

sign(g,M)=0. [J

Let Q*(X) and N*(X) respectively denote the oriented and unoriented bordism
of the space X. There are natural maps Q,(X) » H, X), N (X) > H*(X; Zz).
The only bordism facts we shall need are contained in the following lemma, for

which we give the outline of a well-known geometric proof.

Lemma 2. (1) Qn(X) > Hn(X) is an isomorphism for =n < 3;

(2) the sequence 04 > Qa(X) > H4(x) > 0 1s exact;

(3) the sequence Nz > NZ(X) > H2(X; Zz) > 0 1is exact.

Proof. Consider a class in Hn(X), represented by amap f: K > X for some
oriented n-cycle K, and assume, by induction, that K is a manifold away from its
(n~k)=-skeleton. Then the link L of an (n-k)-simplex o of K, although it may
not be a sphere, will at least be an oriented (k~1)-manifold. Suppose L=0M for
some oriented k-manifold M. Since the joins o*L and o*M are contractible,

flo*L extends to amap F: c*M > X, and (£fxid) UF then defines a map from

the oriented (n+1l)-chain KX1I U g*M into X. This provides a homology
(c*L)x {1}
between £ and f': K' > X, where K'= (K-0*L) U Jdo*M, and f'=f|(K-0*L) U
o0 * L

F|do *M. Doing this, if possible, for all (n-k)-simplexes o, one obtains a repre-
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sentative of the original class in Hn(x) by an n-cycle which is a manifold away
from its (m-k-1l)-skeleton.

Since §,=0,=Q

1 =8y =05= 0, this shows tha; nn(X) > Hn(X) is surjective for

n < 4.

The same resolution procedure applied to singular (n+ 1)-chains, again using
01=92=93=0, shows that Qn(x) > Hn(X) is injective for =n < 3.

We can also resolve 5-chains to be manifolds away from vertices, the link of

a vertex being some oriented 4-manifold. This gives the remaining part of (2).

(3) follows by analogous considerations applied to unoriented cycles, using

The following lemma is true in all dimensions (see Remark (2) below), but is

rather more elementary in the dimensions that concern us here.

Lemma 3. Let g generate a free Zm-action on a closed manifold M of dimension

2 or 4. Then sign(g,M)=0.

Proof. By Lemma 2(1), QZ(B Zm) =0. In other words, every free Zm-action on a
closed 2-manifold is freely Zm-null-bordant. The result in dimension 2 then follows
by the G-bordism invariance of the G-signature.

In dimension 4, Lemma 2(2) implies that Q, > 94(B Zm) is onto. In other words,

4
every free Zm-action on a closed 4-manifold M 1is freely Zm-bordant to the multiplie-
cation action on me ™/ Zm) . But sign(g, me M/ Zm)) =0 by Lemma 1, hence again

sign(g,M) =0 by bordism invariance. D

Remarks. (1) As a generalization of the proof of Lemma 3, recall that for any
finite group G, H,(BG) is annihilated by multiplication by |G]. It follows from

Lemma 2 that Qn(BG) ®Q=0, n=1,2,3, 94 ®Q —>Q4(BG) ®+9 1is onto, and NZ(BG) Q=
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(2) It can be shown more generally, using the bordism spectral sequence (see
[6], for example), that for amy finite group G, 2, ® Q+ Q, (BG) ® Q is onto. The
vanishing of the g-signature for a free action in any dimension then follows much

as in the proof of Lemma 3.

(3) If @ has order m, then, as a special case of (1) above, there exists

some free Zm-object Q(8) such that
~ 1
NQ(O) = (8,87)
Define

(@) = -sign(g,Q(®)) .

(We shall explicitly calculate «(8) in Lemma 6.)

We also need the following 4-dimensional analogue of Q(8). Let 6(9) be the

closed Zm-object Q(e) UB- (O,DZ) . If Oi has order m, ,

is aZm—-object, where m=£cm(m1,m2), and Fix(g) has a tubular neighborhood N

i=1,2, then Q(OI)XQ(OZ)

such that (g,N) = (91,D2) x (02,D2). Define

Q(8,,8,) = -(Q(8;) xQ(8,)-N) .
Then
3Q(8,,6,) = 3((9,,0%) x (8,,0%))
1’ 2 1’ 2’ »
and

Sign(ng(le 02)) = '0'(91)0'(92) ’

by multiplicativity (and additivity).

(4) Although we shall not use this, an explicit choice for Q(@) is given by

taking Q(8) to be :—IF(m), where F(m) is the m-fold cyclic cover of 32 branched
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over m points (and the generator g of Zm is chosen so that Fix(g,F(m)) has
a tubular neighborhood equivariantly diffeomorphic to -m(O,Dz) . This surface

Q(®) can be described as m discs D "Dm’ with Di joined to D

1°°° i+1 %Y
m twisted bands, 1 < i <m, (compare §5), and a calculation similar to the one
done in §5 could be used to determine «(®) from this description. However, we
shall use a model which, although less natural, is geometrically simpler and seems

to make the calculation a little easier.

3. The 2-dimensional case

We first establish

Lemma 4. Let g generate a fixed-point freeZ -action on a closed 2-manifold M.

Then sign(g,M) =0.

Proof. The elements of #(M) are O-dimensional. Let P be suchj so P e Fix(gk),
say, where 1 < k < m. We may assume without loss of gemerality that k is minimal
(for P). Choose a small 2-disc neighborhood N(P) of P which is invariant under

Then

gk, so that (gk,N(P)) = (9,D2) for some © of order %. :

k-1

U glone) kst ,

i=0
where the action takes the :I.-i:h copy of S]' to the (1 +1)~st. (modulo k), by the
identity for 0 < i < k-1, and by rotation through @ for i=k-1. Consider the
corresponding action on kQ(0), and let M' be the closed Zm-object

k-1

- U
i=0

g'NE)) U k(o) ,

equivariantly glued along their boundaries. By Lemma 1, sign(g,kQ(®))=0, and r
k-1
clearly sign(g, U giN(P)) = (0. Hence, by Novikov additivity,
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sign(g,M') = sign(g,M) .

Since the Zm-action on kQ(O) 1s free, the result of carrying out the above
process for each orbit in FM) is a closed free Zm-object M", with sign(g,M")=

sign(g,M). The result now follows from Lemma 1. D

Remark. An entirely amnalogous argument shows that, in any dimension, sign(g,M)=0

for any fixed-point free action in which the elements of #M) are O-dimensional.

Now consider the general case. Let g generate aZm-action on a closed 2-
manifold M. Then Fix(g) consists of a finite number of points P. Choose dis-

0,0%) for

ne

joint tubular neighborhoods N(P) of these points, with (g,N(P))

some ©=0(P) of order m. Recall the definition of (@) (§2, Remark (3)).

Lemma 5. With the above notation, sign(g,M) =2 «(@).
P

Proof. Let

W = M-UNEY) ullae) ,
P P

glued equivariantly along U ON(P) = 115Q(e). Clearly Fix(g,M')=¢. Hence, by
P P
Lemma 4,

(o]
0

sign(g,M")

sign(g,M) + 2 sign(g,Q(0))
P

sign(g,M) - L a(8). []
P

Theorem 1 follows immediately from Lemma 5 and

Lemma 6. a(8) = =i cot -g- .
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Lemma 6 is proved by explicit computation with a specific 2-dimensional model;

we postpone the proof until §5.

Remark. The above proof applies without essential change to actions in any (even)
dimension with the property that the elements of & are all O-dimensional, giving

a special case of the so~-called Atiyah-Bott fixed-point formula [1].

4. The 4-dimensional case

We shall need the following standard action. Let ¥ be of order m, and

define aZm-action on CPZ by

(zO: z,3 z2) L 4 (ei\yzo: ei\l’z : z

1 2)'

This action is semi-free, with fixed-point set the union of CPl and the point

P=(0: 0: z,). In a neighborhood of P the action is equivalent to (‘I’,Dz) X (\lt,l)z)

and on the normal bundle E of CPI, to (-V,E). We shall denote this action by

w, 2%y,

Lemma 7. Let g generate a fixed-point free Em-action on a closed 4-manifold M.

Then sign(g,M) =0.

Proof. Step 1. We replace M by aZm-object such that the elements of % are

all 2-dimensional, as follows.
Let P be a O~dimensional component of Fix(gk) for some 1 <k < m. We may

agsume that k 1is minimal (for P). Choose a small 4-ball neighborhood N(P) of

e

P such that (g5,N(®)) 5 (8,,0°)x (8,,07), say. Let

k-1 10
i=

M'
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ecquivariantly glued along their boundaries in the obvious way. By Lemma 1,
uign(g,kQ(Ql,Oz)) =0, and additivity then shows that sign(g,M')=sign(g,M). Also,
*Q (91, 02)) has no O-dimensional components. Hence in this way we may obtain a

'//.m-ob ject M", say, such that F@M") has no O-dimensional components and
nign(g,M") = sign(g,M).

step 2. By Step 1, we may assume that all the components in M) are 2-dimensional
this implies that distinct elements of #(M) are disjoint.

Let F e F#M); so FcC Fix(gk), say, vhere 1 <k <m. Let p be the least
Integer > 1 such that gpF=F. Let N(F) be a tubular neighborhood of F which
Is equivariant with respect to gp, and such that N(F),gN(E),.. .,gp-]‘N(F) are dis-
joint.

Suppose for the moment that p > 1. gp generates a free Zmlp-action on ON(F),
nnd by Remark (1) in §2, (gP,BN(F)) = OW for some free Zm/p-object W. Let

p-1 g0

M'= M- UgNF)) UpW,
i=0

cvquivariantly glued along their boundaries in the obvious way. By Lemma 1,
p-1 .

nign(g,pW) =0, and similarly, sign(g, U glN(F))“—' 0. Hence, by additivity,
i=0

nign(g,M') = sign(g,M). Note also that the Zm-action on pW 1is free.

itep_ 3. By repeating the process described in Step 2, we may assume that for each

Ve $FM), gF=F.

If F C:Fix(gk), and k 1is minimal for F, then g generates a freezk-
2xky
m

nction on F, and (gk,N(F)) = (W,N(F)), where V=

e ”

for some r coprime to

We claim that e(F)=0 (mod k). For, consider the free Ek-action on N@F)

penerated by h= (- %;-)g. The quotient map N(F) > N(F)/h is then a k-fold cover
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of Dz-bundles induced by the k-fold cover F > F/g, and hence e(F)=ke(F/g).
Now consider equivariantly attaching to (M,F), by connected sums of pairs,
k copies of (CPZ,CPI), where the action takes the i-th copy to the (i+1)-st
(modulo k), by the identity for 0 < i < k-1, and by V¥ (see the begimning of
§4) for i=%k-1. This gives (M',F'), say, where e(F')=e(F)+k, and, for the
usual reasons, sign(g,M') =sign(g,M). This process introduces points
P,gP,...,gk-]‘P into Fix(gk,M'), "where P has a neighborhood N(P) with
(gk,N(P)) = (‘II,DZ) X (\lr,Dz). However, these may then be eliminated by defining
k-1

M = M - U gINE)) U KQW,¥) .
i=0 3

Since sign(g,M")=sign(g,M'), and kQ,¥) is a free Zm-object, this shows that

we are essentially able to alter e(F) by multiples of k, without introducing-

any new components into %. Since e(F)=0 (mod k), we may therefore assume

e(F) = 0.

Step 4. We have now shown that we may assume that all the elements of #(@M) are

2-dimensional, have e(F)=0, and satisfy gF=F. On such an F, the restriction .

of g generates a free Zk-action, say.

B

Case (a). Suppose F is orientable. Then (g,N(F)) = (g,F) % (‘II,DZ), for some
V. Since 0,(BZ) ® Q=0, (see §2, proof of Lema 3 or Remark (1)), (gF) S av |
for some free Zk-object V. Regard VxD2 as aZm-bordism (rel J) between F><D2

and VX Sl. Then

Mx I U VxD> . iy

where N(F)x {1) is equivariantly identified with FxDZ, is aZm-bordism from

A

e
W
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M=Mx {0} to

M' = M-N(F)) U vxsl .

Since the action of Zm on szl is free, passing from M to M' has the effect

of removing F from &#. Also, sign(g,M') =sign(g,M), by bordism invariance.

Case (b). Suppose F 1is non-orientable (in which case m=2). Then

N(F) = F x D2, say. Since N2(B Zk) ® Q=0 (see §2, Remark (1)), (g,F) = oV for
some unoriented free Zk-ob Ject V. Also, our D2-bund1e over F extends to onme over
V (for example, F X D2 is just (F X I) x I, where FXI 4is the I-bundle over F

corresponding to the l-st Stiefel-Whitney class L (F); mnow consider V;D2 =

(V;I)XI, where VXI corresponds to vy (V)). Then, as in Case (a), V;D2 is
aZZm-bordism between F;D2 and Vgsl, and MxI U V;D2 is azm-bordism from

M=Mx {0} to

M' = M-N(F)) U VXSl .

Applying (a) and (b), as appropriate, to all components of FM), we ultimately
obtain a free Zm-object M" with sign(g,M")=sign(g,M). The fact that sign(g,M) =0

now follows from Lemma 1. D

Proof of Theorem 2. Case L. Suppose Fix(g) has no 2-dimensional components.

Choose P € Fix(g), and a tubular neighborhood N() such that (g,N(P)) =

(ol,nz) x (92,1)2), say. Let
M= (I-NE)) U Q(9;,0,) -
Then

sign(g,M) = 0—(91)6(02) + sign(g,M') .
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Doing this for all P ¢ Fix(g), and using Lemma 7, we obtain
Sign(gsM) = Z @(ol)a‘(92> s
P

as required.

Case 2. Suppose each 2-dimemnsional component F of Fix(g) has e(F)=0. “

For such an F, (g,N(F)) 1is equivariantly diffeomorphic to (id,F) x (\II,DZ)

or (id,F) X (\P,DZ), for some V¥, according as F 1is orientable or non-orientabl@,
The procedure described in Step 4 of the proof of Lemma 7 above, only now with k= h
produces aZm-bordism from M to azm-object M' such that TFix(g,M') has no 2= '
dimensional components and the same O-dimensional components as Fix(g,M). The rc-

sult now follows from Case 1.

General Case. Consider a 2-dimensional component F of Fix(g), with equivariant

neighborhood (V,N(F)), say. Define ¢ = ill byl e(F)=-cle(®)], and equivarianﬂ’f
e(F) ;
attach to (M,F), by comnected sum of pairs, I e(¥, (CPZ,CPI)). This gives
i=1
(Ml,F‘), say, where e(F')=0. Let M' be the result of doing this for all componefii§
F. Since sign(\lf,CPz)=1, additivity implies
Sign(g9M') = Sigrl<89M) = Z e(F) .
F
The O-dimensional components of Fix(g,M') consist of those of Fix(g,M) together
some with equivariant neighborhood -}, e(F) (\I',Dz) X (\II,D2). Since each 2-dimensional -

F
component F' of Fix(g,M') has e(F')=0, Case 2 yields

sign(g,M') = X a.(Ol)oc(Oz) =7 OL(OI)&(OZ) + 7, e(F) cot? ‘;‘zi .
P! P F

Hence
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sign(g,M) = T a(0))a(8) + T e(® (cot’ ¥ + 1) ,
P F

giving the stated result. D

5. The 2-dimensional computation

Proof of Lemma 6. Suppose @ is of order m. Let MO be the bounded 2-manifold

shown in Figure 1, consisting of two discs joined by m twisted bands. Mo has

1 or 2 boundary components according as m is odd or even; let M be the closed

2-manifold obtained by capping off these boundary components with discs.
Let h be the automorphism of M induced by the rotation through 2?;5 indi-
cated in Figure 1. If (s,m)=1, h® generates azm-action on M, whose fixed-

point set has a tubular neighborhood equivariantly diffeomorphic to

2(.2%5.,D2)-(ﬂm—141;—lﬁ,n2), m odd; or Z(ng,nz), m even.

Recall that intersections define a hermitian pairing ¢: HxH > €, where

2ni/m

H=H1(M;c). Let w=e Then H decomposes as an orthogonal (with respect

to ¢) direct sum E0 @ El ®...0 Em-l ,

Let €, be the signature of the restriction of ¢ to Er . Then

where Er is the a)r-eigenspace of h,.

sign(h:,M) = w &€

Let x € H be the class indicated in Figure 1. Then {hix: 0< s <m-l}
generates H, and
-1, s=t+1

o(h2x,hix) =4 1, s=t-1
0, otherwise .
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m-1
-rs, s
Clearly e = Yo hxe E. . Also
8=0
m~-1 m-1
- - t
oepe) =1 T L o onix,nlx)
8=0 t=0
m-1 roer
=i 2 (-0 )
s=0

i.m(a)r-w-r) = ~2m sin%::l .

We now discuss separately the two cases: m odd, and m even.

m odd. Here, dim H=m-~1. Hence, since era‘O, 0<r<m (look at cp(er,er)),

Er is 1~dimensional with basis {er], 0<r<m and E,=0. Hence

0
-1, 1grgm—;l
e =
r 1, Blergmat.

Assume (s,m)=1. Since m is odd, we may write s=2t. Let 9-—==

2zt Then, by Lemma 5,
m-1
m-1 2
20.(20) ~a(0) = sign®,M) = T o ¥ To27C,
m+l r=1

which one easily calculates to be

t 2t t

©=t_ @ty | @ty | i cot9 + LeotS .
t 2t t 2

w +1 o =1 w -1

Mo

Setting PB(@) =a(@) + icotyx, it follows that 23(20) =8(0), for all @ of
order m. Since m is odd, this clearly implies pB(0)=0. Hence a(9)=-icot§-

as stated.
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m even. Here, dim H=m-2. Hence, since era‘O unless r=0 or %n’ Er is 1~

dimensional with basis (er], for r#0, %, and E.=E =0. Hence

0 m
2
-1, 1<r<y -1
e -
x 1, §-+ l<r<m-l
. 278
Therefore, assuming (s,m)=1 and writing 9=—m-,
m
s m-l g by s
2a(8) = sign(h M) = Y o owo o= Y oo
r=‘£+1 r=1
71
L+w® 0
= =2 ) wrs = 22(——) = ~2icot 7+ . D
s 2 i
r=1 1-w a

6., The semi-free case and multiplicativity of signature

A

The above proof of the G-signature theorem in dimension 4 simplifies considerab‘i
1f the action is semi-free. For in this case the process described in the proof of
Theorem 2 reduces the problem to proving that sign(g,M) vanishes for a free action,"%li
(as opposed to one that is merely fixed-point free), and one can use Lemma 3 d'.!.r:eci:l.h:E

instead of Lemma 7.

The semi-free case is sufficient for all the applications mentioned in §0, (ex-.z
cept the calculations in [3]), and in fact for these applications one can specializ‘xé
further to the case where the fixed-point set is 2-dimensional. A slightly differenﬁé
elementary proof of the 4-dimensional G-signature theorem in the latter case has beolé
given by Litherland [9], in terms of signatures of links. g
Finally, we make a few comments about the multiplicativity of signature with

respect to coverings.
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If the finite group G acts freely on N, then a standard transfer argument

shows that

|G|sign(N/G) -sign N= ¥  sigan(g,N) .
geG-{1}
(Actually, this holds even if the action 1s not free.)
In particular, if N is closed, the vanishing of sign(g,N) for g e G- {1}

implies that

sign N = |G|sign(N/G)

However, this multiplicativity can be established directly. Also, it is not
necessary to restrict to regular coverings. Thus we have the following well-known
theorem, which is often stated as a consequence of the Hirzebruch index theorem (see

[5], for example).

Theorem 3. Let M »M be a (finite) n-sheeted covering of closed, oriented mani-

folds. Then sign ﬁ=nsignM.

Proof. First consider a regular covering M > M, with group of covering transform-

ations G, so that we have a free action of G on #. since 0,00 >0,38G6 ®Q

is onto (see §2, Remark (2), and recall that this is elementary in dimension 4), there

exigts a positive integer r such that r(G,ﬁ’) is freely G~bordant to r(G,GXM),

where G acts on GXM by left multiplication. Hence sign ﬁr—sign(GxM) = |G|sign M.
In general, let M >M be an n-sheeted covering, corresponding to the subgroup

H, say, of index n in n:=1t1(M). Then H_ = ﬁx-lﬂx is a normal subgroup of =

0
Xen
~

(and H) of finite index; let MO + M be the corresponding covering. The fact that
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-

signfi=txsignM now follows from the regular case applied to the regular coverings

My > M, Hj >H. ]
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