SOME ASPECTS OF CLASSICAL KNOT THEORY

by
C., McA. Gordon

Q. Introduction

Man's fascination with knots has a long history, but they do not appear to
have been considered from the mathematicai point of view until the 19th century.
Even then, the unavailability of appropriate methods meant that initial progress
was, iIn a sense, slow, and at the beginning of the present century rigorous proofs
had still not appeared. The arrival of algebraic-topological methods soon changed
this, however, and the subject is now a highly-developed one, drawing on both al-
gebra and geometry, and providing an opportunity for interplay between them.

The aim of the present article is to survey some topies in this theory of
knotted circles in the 3-sphere. Completeness has not been attempted, nor is it
necessarily the case that the topics chosen for discussion and the results men-
tioned are those that the author considers the most important: mnon-mathematical
factors also contributed to the form of the article.

For additional information on knot theory we would recommend the survey ar-
ticle of Fox [43], and the books of Neuwirth [112] and Rolfsen [128]. Reidemeis-
ter's book [125] is also still of interest. As far as problems are concerned, see
[44], [112], [113], [75], as well as the present volume. Again, we have by no
means tried to include a complete bibliography, although we hope that credit for
ideas has been given where it is due. For a more extensive list of early refer-
ences, see [26].

In the absence of evidence to the contrary, we shall be working in the smooth
category (probably), and homology will be with integer coefficients.

I should like to thank Rick Litherland for helpful discussions and suggestions

concerning this article,
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1. Enumeration

It seems that the first mathematician to consider knots was Gauss, whose
interest in them began at an early age [31, p. 222]. Unfortunately, he himself
wrote little on the subject [49, V, p. 605; VIII, pp. 271-286], despite the fact
that he regarded the analysis of knotting and linking as one of the central tasks
of the 'geometria situs' foreseen by Leibniz [49, V, p. 605]. His student Listing,
however, devoted a considerable part of his monograph [88] to knots, and in par-
ticular made some attempt to describe a notation for knot diagrams.

A more successful attack, inspired by Lord Kelvin's theory of vortex atoms,

(1)

was launched in the 1860's by the Scottish physicist Tait. His first papers
on knots were published in 1876-77 (see [145]). Later, with the help of the
'polyhedral diagrams' of the Reverend Kirkman, Tait and Little (the latter had
done some earlier work [90]) made conmsiderable progress on the enumeration
('census') problem, so that by 1900 there were in existence tables of prime knots
up to 10 crossings and alternating prime knots of 11 crossings [91], [92], [93],
[145].

Essentially nothing was done by way of extending these tables until about
1960, when Conway invented a new and more efficient notation which enabled him
to list all (prime) knots up to 11 crossings and all links up to 10 crossings
[19], (revealing, in particular, some omissions in the 19th century tables).

There are two main aspects of this kind of enumeration: completeness and
non-redundancy. (One wants to know (i.e. prove) that one has listed all knots up
to a given crossing number, and also that the knots listed are distinct. The
former belongs to combinatorial mathematics, and although a proof of completeness
throughout the range of the existing tables would no doubt be long and tedious,
it is not hard to envisage how such a proof would go. Indeed, implicit in the
compilation of the tables is the possession of at least the outline of such a

proof. Although some omissions in Conway's tables have recently been brought to

(1)see Maxwell's letter of 1867 quoted in [77, p. 106]



light by Perko (see [117] and references therein), it seems safe to assume that
essentially all knots up to 11 crossings have now been listed. (The author under-
stands that we may soon see a proof of completeness in this range.)

As regards the question of non-redundancy, methods for proving that two knot
diagrams represent different knots became available only with the advent of alge-
braic topology, and as a consequence the compilers of the early tables, as they
themselves were aware, had to rely on purely empirical evidence that their listed
knots were distinct.

Proofs of the existence of non-trivial knots, based on the fundamental group,
were known at least as early as 1906 (see [146]), but not until 1927 was there any
systematic attempt to establish the non-redundancy of the tables. Then, Alexander
and Briggs [3], using the torsion numbers of the first homology of the 2- and 3-
fold branched cyclic covers, distinguished all the tabled knots up to 8 crossings
and all except 3 pairs up to 9 crossings. (Alexander had pointed out in 1920 (see
[3]) that any topological invariant of the k-fold branched cyclic cover of a knot,
in particular the Betti and torsion numbers, will be an invariant of the knot, an
observation which was made independently by Reidemeister [122].) The Alexander
polynomial, introduced in [2], also suffices to distinguish all knots up to 8
crossings, and all except 6 pairs up to 9 crossings. TFor each of the 3 remaining
9-crossing pairs not distinguished by Alexander and Briggs, the two knots in
question have isomorphic ZZ[t,tnl]-module structures in their infinite cyclic
covers, so new methods are necessary to distinguish them, This was done by Reide-
meister, by means of the mutual linking numbers of the branch curves in certain
(irregular) p-fold dihedral covers, and, more recently, Perko has used these link-
ing invariants, in branched covers associated with representations on dihedral
groups anc the symmetric group on 4 letters, to distinguish all tabled knots up
to 10 crossings [115].

It would now appear that the number of prime knots with crossing number < 10

is 249, as tabulated below.



crossing number | 3 4 5 6 7 8 9 10

number of prime knots 1 1 2 3 7 21 49 165

(See [3] for pictures of knots up to 9 crossings, and [115] for those with 10
crossings.) There are 550 ll-crossing knots now known [117], and although there
is a good chance that these might be all, the task of proving them distinct is a
formidable one that has not yet been completed. Indeed, as intimated in [11l7]
{which contains some partial results), invariants more delicate than those which

suffice up to 10 crossings are now required.

2. The Group

The knot problem becomes discretized when looked at from the point of view
of combinatorial topology. It is noted in [30], for example, that it can be
formulated entirely in terms of arithmetic. However, this kind of 'reduction'
seems to be of no practical value, nor does it seem to have any theoretical con-
sequencesg (for decidability, for example). There are also many natural numerical
invariants of a knot which may be defined, such as the minimal number of crossing
points in any projection of the knot, the minimal number of crossing-point changes
required to unknot the knot (the 'gordian number' [160]), the maximal euler
characteristic of a spanning surface (orientable or not), and so on (see [125,
pp. 16-17]1). But these tend to be hard to compute.

The first successful algebraic invariant to be attached to a knot was the
fundamental group of its complement, (the group of the knot), and presentations
of certain knot groups appear fairly early in the literature (see |146]). General
methods for writing down a presentation of the knot group from a knot projection
were given by Wirtinger (unpublished (?) ;see [125, III, §9])and Dehn [27]. Actually
it was soon recognized [28] that a knot contains (at least a priori) more infor-
mation than just its group, as we now explain. TLet K C 83 be our given
(smooth) knot, and let X be its exterior, that is, the closure of the comple-
ment of a tubular neighbourhood N of K. (The exterior and the complement are

equivalent invariants: clearly the exterior determines the complement, and the



converse follows from [33].) Choosing orientations for S3 and K determines a
longitude-meridian pair A, u € nl(X) in the usual way (A and . are represen-
ted by oriented curves £ and m on &X which intersect (transversely) only at
the base-point, where £ 1is homologous to K in N and null-homologous in X,
and m 1is null-homologous in N and inherits its orientation from that of K
and SB). If two (oriented) knots Kl’ K2 CIS3 are equivalent in the strongest
possible sense that there is an orientation-preserving homeomorphism of S3 (or,
equivalently, an isotopy) taking K1 to K2, preserving their orientations, then
there is an isomorphism nl(X) —Ei} nl(Xz) taking (Al,ul) to (Az,uz). If we

ignore the orientations of K and K in our definition of equivalence, then we

1 2
have an isomorphism nl(Xl) _— nl(Xz) taking (Al,ul) to either (Az,uz) or
(A;l,uél). If, in addition, we ignore the orientation of SB, then our isomor-
+ +
phism merely takes %1 to K;l' and My to ug'l. Using this additional per-

ipheral information, Dehn [28] proved for example that the trefoil is not isotopic
to its mirror-image, a fact which had long been 'known' empirically. (Incidentally
the knot tables list only one representative from each class under the weakest
equivalence, leaving the amphicheirality and (much harder) invertibility questioms
to be decided separately [19], [115], [118].)

The natural question arises as to what extent the peripheral structure is de-
termined by the group alone. Thus Dehn asks [28, p. 413] whether every automorphism
of a knot group preserves the peripheral structure, and in [2, p, 275] Alexander
suggests that 'many, if not all, of the topological properties of a knot are re-
flected in its group.' Im 1933, however, Seifert showed [135], using linking in-
variants of their cyclic branched covers, that the granny knot and the reef (or
square) knot, although they have isomorphic groups, are inequivalent, even ignoring
orientations. (Although there seems to be an implicit assumption to the contrary
in [38], where an alternative proof is given, it follows from Seifert's proof that
in fact the two knots have non-homeomorphic complements. Fox's proof does show,
however, that there is no isomorphism between the groups of the two knots pre-

serving the peripheral structure.)



Despite such examples, the group is still a powerful invariant. Tt was shawn
by Dehn [27], for example, {modulo his 'lemma', which was introduced specifically
for this purpose) that the only knot with group Z 1is the unknot. This finally
became a theorem in 1956 when Dehn's lemma was established by Papakyriakopoulos
[114]. At the same time, Papakyriakopoulos also proved the first version of the
sphere theorem, and as a consequence, the asphericity of knots, that is, the fact
that the complement of a knot is a K(m,1). It follows that the group of a knot
determines the homotopy type of its complement.

The role of the peripheral structure was finally completely clarified by
Waldhausen's work [155] on irreducible, sufficiently large, 3-manifolds (this
work in turn being based on earlier ideas of Haken). Specializing to the case
that concerns us here, Waldhausen showed that if Kl and K2 are knots with ex-
teriors X X, then any homotopy equivalence of pairs (Xl,éxl) > (XZ’aXZ) is
homotopic to a homeomorphism. This implies, for example, that knots (under the
strongest form of equivalence, which takes both the ambient orientation and that
of the knot into account), are classified by (isomorphism classes of) their asso-
ciated triples (K, A,u). We may remark that it is a purely algebraic exercise
to pass from such a classifying triple to a classifying group [20]. Other, more
complicated, but more geometric, ways of nailing down the peripheral structure
within a single group are given in [140], [163] and [37]. (The classifying groups
obtained there are, respectively, the free product of the groups of two cables

about K.#KO (where K. 1is, say, the figure eight knot), the group of the double

0
of K, and the group of the (p,q)-cable of X where |p| >3 and |[q] > 2.)

The situation may to some extent be summarized by the following diagram,
where, for simplicity, ~ mnow denotes the weak form of knot equivalence which

disregards orientations, (and Pi denotes the peripheral subgroup nl(BXi)).

K| ~K, =X =X, & ®,K) =~ ),xX,) = X =X,

3 ¢ ¢

~ 1 =1 ~ ~

(ﬂK1,7\ 1 2

1°"1



The two upward implications on the right are consequences of asphericity.

The question of the reversibility of the implications on the left, that is,
whether a knot is determined by its complement, was rasied by Tietze in 1908 [146],
and is still unsettled. It is related to the following question, asked by Bing

and Martin [9]:

Question (P). If a tubular neighbourhood of a non-trivial knot K in S3 is re-
moved and sewn back differently, is the resulting 3-manifold ever simply-connected?

(Here, 'differently' has to be interpreted in the obvious way.)
This may be broken down into the following 2 questions:

(1) Do we ever get a fake 3-sphere?

(2) Do we ever get 83?

One may further ask
(3) If 'ves' in (2), do we get the same knot?

Knots are determined by their complement if and only if an affirmative answer
to (2) is always accompanied by an affirmative answer to (3). There is much evi-
dence that the answer to Question (P) is negative. 1In particular, it is known
that this is the case for torus knots [134], composite knots [9], [53], doubled
knots [9], [53], most cable knmots [53], [139], knots in knotted solid tori with
winding number > 3 [89], and many others; (see [75] for additional references).
(One says that these knots 'have Property P'.) Also, Thurston has recently shown
(unpublished) that if K has a hyperbolic structure (more precisely, the comple-
ment of K has a complete Riemannian metric with constant negative sectional
curvature and finite volume), then all except possibly finitely many resewings
of the tubular neighbourhood of K vyield non-simply-connected manifolds. (The
existence of a hyperbolic structure is equivalent to the group-theoretic conditionm
that every free abelian subgroup of nK of rank 2 be conjugate to the peripheral
subgroup P, and this in turn is satisfied if and only if K has no companions

and is not a torus knot.) A proof that all knots have Property P, however, {or



even a proof of a negative answer to either (1) or (2)), seems beyond the scope of
existing techniques. Question (3) may be easier. (Indeed it follows from the
finiteness theorem of Thurston mentioned above that if K 1is a hyperbolic knot,
and some non-trivial resewing of a tubular neighbourhood of X gives 83, then
the new knot is at least mot isotopic to K. For, if the resewing in question is
the one which 'kills' ;ikn, say, n#0, then the new knot's being isotopic to
K  would imply the existence of a self-homeomorphism h of the exterior X of K
taking N> Ke, B> ueken, where € = £ 1. Since h' would then take
rn F1 rn 3

p= (W) , the resewing corresponding to pA would yield S, for all
r, contradicting the finiteness statement.)

Returning to our diagram of implications, the example of the reef and granny
shows that the horizontal implications on the right are not reversible. On the

other hand, Johannson [66], [67] and Feustel [36] have shown that if nK = nKz,

1
and X contains no essential annuli, then X =

1 X,. Now the only knots whose

1 2

exteriors contain essential annuli are composite knots and cable knots. The
cable knots with unknotted core are just the torus knots, and they are known to
be determined by their group [1l4]. So let K be a non-trivial knot, and let
Kp,q denote the (p,q)-cable about K, that is, a curve on the boundary ON of
a tubular neighbourhood N of K, homologous in SN to p[m]+q[£]. (Here, p
and q are coprime integers with |q| > 2, and (#,m) 1is a longitude-meridian
pair on ON.) Feustel-Whitten [37] have shown that if |p| > 3, then L

determines Kp,q' So prime knot complements are known to be determined by their
group except possibly for cable knots Kp,q with |p| < 2.

The problem concerning these remaining cable knots turns out to be related
to the general question of whether knots are determined by their complement. More
precisely, suppose there exist inequivalent knots Kl’ K2 with homeomorphic ex-

teriors Xl’ Xz. The homeomorphism X, > X, must take my to a curve homologous

1 2
in 8X2 to T [m2] + n[£2], for some mn#0. Then Hempel (unpublished) and
Simon [141] show that if there is such a counterexample, with ‘n|¥ 1,2, or A4,

then there exist cable knmots of type (X 1, X n/2) (n even), or (£ 2, X n)

(n odd), with isomorphic groups, whose complements are not homeomorphic.
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In the other direction, it can be shown (see [37]) that if all knots have Property
P, (or even if the answer to Question (2) above is negative), then prime knots are
determined by their group.

As regards composite knots, Feustel-Whitten havealso shown [37] that if K1

is composite, and K = ﬁKz, then the prime factors of K are precisely those

1 2

of Kl’ up to orientationms.

To summarize, the question of whether a knot is determined by its group
factors mnaturally into two questions: (A) does the group determine the comple-
ment? and (B) does the complement determine the knot? (B) is unsettled, al-
though the expected answer is 'yes'. The amswer to (A) is 'no', but may be 'yes'
for prime knots; the unsettled cases of this are related to (B). Thus it may be
that the failure of knots to be determined by their group is solely due to the
phenomenon which arises by changing the (ambient and intrinsic) orientations of

the prime factors of a composite knot.

3. Abelian Invariants

The exterior of a knot K has the homology of a circle (as can be seen, for
example, by Alexander duality), and as'a consequence, once we have chosen orien-
tations for 83 and K, there is a canonical epimorphism from nl(X) to the
cyclic group Ck of order k, for each k, 1<k <» This defines a canonical
normal subgroup of index k in nl(X), or, the geometric equivalent, a regular
covering space Xk of X with group of covering translations isomorphic to Ck'
Although the homology of X 1is itself uninteresting, this is not always true of
these covering spaces, and the derivation of tractable, 'abelian', knot invariants
from this point of view has occupied a central place in the development of the
sub ject.

The homology of the X can be viewed on at least the following levels

k

(throughout, we shall take coefficients in some commutative Noetherian ring R,

with R =2Z, Z/p, or € being uppermost in our minds).
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(1) the R-module structure of Hl(xk;R)

(2) the module structure of Hl(Xk;R) over the group ring R[Ck]'

If R 1is an integral domain, and Q{ ) denotes field of fractions, we also have
(3) for k < «, the product structure given by the linking pairing
Tl(Xk;R)x’rl(Xk;R) > QR)/R on the R-torsion subgroup of Hl(Xk;R). R=2Z is

really the only case of interest here.)

(4) the product structure given by the Blanchfield pairing (see §7)

H) (% 3R) x H) (X_3R) > QRIC,1)/RIC,].

We may remark here that, for k < », it is traditional to work with the
corresponding branched cyclic covering Mk’ rather than with the unbranched

covering X Since Mk is a closed 3-manifold, and for other reasons too (see

i

§5), this is perhaps more natural. However, the two are essentially equivalent

from the present point of view, as it is not hard to show that

Hl(Xk;R) = Hlﬂﬂk;R) @R, as R[Ck]—modules, the module structure on R being

induced by the trivial action of Ck'
Apart from the obvious relationships between the above considerations (1)-(4),

we have that the R[Cm]-module Hl(Xm;R) determines the R[Ck]-module Hl(Xk;R),

1< k<o, (see §5), and the Blanchfield pairing on Hl(&m;R) determines the

linking pairing on Tl(Xk;R), 1<k <w,

4. The Infinite Cyclic Cover

Let us first consider the R[Qw]-module Hl(Xw;R). If t denotes the canoni-
cal multiplicative generator of C.> (determined by the orientations of S3 and
K), we may identify R[Cw] with the Laurent polynomial ring H=:R[t,t-1]. Since
R 1is Noetherian, 1T 1is also, by the Hilbert basis theorem. Furthermore, since
X 1is a finite complex, the chain modules Cq(Xw;R) are finitely-generated {free)
I[-modules, and hence Hl(Xw;R) is a finitely-generated Il-module.

The following argument of Milmor [96] establishes the crucial property that
t-1: Hl(Xm;R) > H1(Xw3R) is surjective. (Since Hl(Xm;R) is finitely-generated

and 1 is Noetherian, it follows that t-1 is also injective.) The short exact
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sequence of chain complexes

0 > C, (X_;R) L N C,(X_sR) > C (X;R) » 0

gives rise to a homology exact sequence which ends up with

H) (X_3R) il H (€ 3R) > H (R) > Ho (X 3R) _t-1, Hy (X 1R)

] Ui Il

R R > R

This proves the assertionm.
A consequence of this (see [85]) is that Hl(Xw;R) is a Tl-torsion-module.
Now suppose R 1is a field. Then Il is a principal ideal domain, and hence

H1(Xm;R) decomposes as a direct sum of c¢yclic Il-modules

M/ (n) ® 1/ (x,) @ ..@ II/(rrn) >

where the ideals (ni) satisfy (ni) < {m,, ,)s 1< 1i<mn, (and are then

i+l
uniquely determined). The Il-module Hl(Xm;R) is thus completely described by
this sequence of ideals (ﬂi) c (ﬂz) c...C (nn). Furthermore, since Hl(xw;R)
is a IJl-torsion module, no (ﬁi) is zero. (In the present case, i.e. R a
field, the fact that Hl(Xm;R) is TI-torsion actually follows immediately from
the direct sum decomposition of Hl(xw;R) and the divisibility by t-1.)
To determine the R-vector space structure of Hl(Xm5R)’ let
Qﬁ)=:(n1n2 -..Kn) be the order ideal of Hl(X§3R)- We may suppose for conven-

ience that A is normalized so that it contains no negative powers of t and

has non-zero constant coefficient. Then

dim Hl(Xw;R) = deg A ,

and A 1is just the characteristic polynomial of the automorphism t. We shall

see later (§7) that deg A is always even,
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Taking R=Q in particular, we have a complete description of the
I‘=Q[t,t-1]-modu1e Hl(Xm;Q) by a sequence of non-zero ideals
(\/1) c (\/2) C...C (\/n). The picture over A=Z[t,t-1] is not quite so clear, as
A is not a principal ideal domain, but one can define some invariants. Thus there

are the elementary ideals E1 c E2 C..., where Ei is defined to be the ideal

in A generated by the determinants of all the (n-i+1)x (n-i+1) submatrices
of any mxn presentation matrix for the module [164, pp. 117-121]. (We may
suppose m > n without loss of generality, and we put Ei=A if i >n.) Even
these are fairly intractable, but since A 1s a unique factorization domain, each
Ei is contained in a unique minimal principal ideal (Ai). One thus obtains a
sequence of elements Al s A2 PRPIPINN An of A, each determined up to multiplication
by a unit (the only units of A are L t°, r ¢ Z), such that A ,Ai’

1l < i< n. Suitably normalized, Ai is called the ith Alexander polynomial of

the knot, A1=A being called simply the Alexander polynomial. Equivalently, one

can consider the elements A, defimed by A,=A_ /A, H
i i i"7i+l

A, 1is the ith  Alexander
invariant. These definitions are essentially contained in Alexander's paper [2].
The surjectivity of t-1: Hl(Xw) > H1 (Xoo) can be expressed by saying that,
regarding Z as a A-module via the augmentation homomorphism e: A >Z,
Hl(XOO) ®A Z = 0. It follows that c(Ei) =Z, and hence e(Ai) =Ai(1) =*f1. 1t
seems most natural (see §8) to normalize [_\i so that it is a polynomial in t such
that Ai(O) #0 and Ai(l) =1. From this it is not too hard to show that if the
elements Y; of ' which describe the direct sum decomposition of Hl(Xw;Q) are
normalized so as to be polynomials with integer coefficients with g.c.d. 1, such
that Yi(O) #0 and yi(l) > 0, then 7\i=yi , 1 <i<mn. It thus transpires that

in the presence of the integral information Hl(X) :Z, the Alexander polynomials

are esgsentially rational invariants.

In view of the last remark, it is no surprise that the Alexander polynomials

do not in general determine the elementary ideals. For example, the knot 946 in

the Alexander-Briggs table and the stevedore's kmot (6 have modules H1 (Xw)

P
which are, respectively, A/(2-t) & A/{2t-1) and A/(2-5t+2t2). In both cases,

Hl(X ;@) is the cyclic I-module P/(2-5t+2t2). However, for the stevedore's
o0
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knot, E2=A, whereas for E2=(2-t,2t—1) #A (map A onto Z by

%46°
t +—» -1; the image of (2-t,2t-1) is 3 Z).

Again, the elementary ideals do not in general determine the A-module Hl(xoo)
(see [47]). TFurther invariants which have been studied include ideals in certain
Dedekind domains, ideal classes, and Hermitian forms over certain rings of alge-
braic integers [47], [84]. A complete classification has not yet been found.

An important property of the A-module H1 (Xoo) is that it has deficiency O.
(Since E, # 0, any presentation of H (X)) must have at least as many relations
as generators, so deficiency O just means that there is a presentation with the
same number of generators and relations.) This may be seen by interpreting
H1 (Xoo) as the abelianized commutator subgroup of the group =« of K, and noting
that w has a presentation of deficiency 1, for example, either the Wirtinger
or Dehn presentation. (Since H () =Z, it follows that the deficiency of w
is 1.) It is also a consequence of duality (see §7), or, again, follows from the
description of Hl(Xoo) in terms of aSeifert matrix (see §8; this is also related

to duality). Deficiency O implies that the first elementary ideal E is prin-

1
cipal, i.e. E1=(A).

Returning briefly to rational coefficients, mnote that, up to multiplication
by a rational unit, Y, is the minimal polynomial of the automorphism t of
Hl(Xw;Q), in other words, the annihilator of H1(Xw;Q) is (y1)= 0\1). Over A,
it follows from general consideratioms, (see [164, p. 123], for example), that E1
annihilates Hl(Xoo). Crowell [25] has shown that in fact the anmnihilator of
Hl(Xoo) is precisely the principal ideal O\l) of A.

Turning to the abelian group structure of Hl (Xoo), this seems hard to des-
cribe in general, but we do have the result of Crowell [24] that H1 (Xw) is al-
ways Z-torsion-free. The crucial facts are, firstly, that Hl(Xm) has deficiency
0 as a A-module, and, secondly, that the Alexander polynomial is primitive (i.e.
g.c.d. of coefficients is 1; this follows from e(A)=1). Here is the proof.
Let A be a square presentation matrix for H1 (Xw) over A. It must be shown
that for any integer q, Ax=0 (mod q) implies x=0 (mod q). But (adj A)(sx)=

(det A)x=Ax, and since A is primitive, this implies the result.
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If X5, X generate Hl(xn) as a A-module, then {tjxi: l<i<m,
-® < j < »)] generate H1 (Xw) over Z. Since Axi=0, 1<1i<mn, we see that
if the constant coefficient of A (and hence, by the symmetry of A (see §7), the
leading coefficient also) is f 1, then Hl(&w) is finitely-generated over Z,
and is therefore free abelian of rank deg A. The converse is also true. For

these and other results on the abelian group structure of Hl(Xw), see [24], (also

[121]).

5. The Finite Cyclic Covers

To relate Hl(Xk;R) to Hl(Xw;R), consider the short exact sequence of chain
complexes

k
t -1
0> C*(XOO;R) —> C*(Xoo;R) > C*(Xk;R) >0,

As before, this gives rise to an exact sequence

k
£ -1
Hl(Xm,R) _— Hl(&”,R) > Hl(xk’R) >R >0 .
If we give R the trivial Il-action, and Hl(Xk;R) the Il-module structure induced
by the canonical covering translation, this is an exact sequence of Tl-modules.
From this and the fact that Hl(Xk;R) = Hl(Mk;R) @ R (with the trivial Il-action
on R), it follows that, as Il- or R[Ck]~modules,

5 . @
Hl(Mk;R) = coker(t -1) .

This relation between Hl(Mk;R) and Hl(xw;R) can be conveniently expressed
in matrix terms. Let B(t) be any presentation matrix for Hl(xw;R) over I,

k .
with respect to gemerators Xpseees X, 83V, Then coker{(t -1) 1is generated

(Z)Throughout this section, it is understood that this refers to the action on
Hl(&w;R).
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over R by the images of [thi: l1<i<mn 0< j<k], and with respect to these
generators, is presented by the matrix B(T) obtained from B(t) by replacing a

typical entry Zartr by ZarTr, where T 1is the kxk matrix

01 0. 0
0 0 1 0
1 0 0. 0

(see [52], [41], [112]).

Over certain coefficient rings, information can be extracted in other ways.
T T
For example, over Z/p {(p prime), (tp _1)==(t,1)P is an automorphism of

Hl(Xm; Z/p); hence Hl(M £ Z/p)=0. 1In particular, M r is a Q-homology sphere.

P P
Again, if R 1is any field, from the direct sum decomposition

n
@ 1/ (x.)
i=1 t

e

H) X ;R)

we obtain a similar decomposition

|
D

Hy 0 3R) = 1/ (x5 -1

i=1

Taking R=C€, we have the following further simplification pointed out by

n
Sumners [l44]. Applying -®C to the decomposition @ P/(hi) of Hl(xm;Q)’ and

n i=1

writing ¥=€[C ], we get Hl(xw;m) = Y/(Ai). Over ¥, however, each T/(%i)
i=1

decomposes as a direct sum © Y/((t—a)e(a)) over all distinct roots o of %i-

e(a)

Since ((t-a) ,tk-1)= (t-a) or ¥ according as « 1is or is not a kth root

of 1, we see that

n
dim, Hy Q1 ;C) = iglzi
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where ﬂi is the number of distinct roots of %i which are kth roots of 1.
This result was first obtained by Goeritz [52], by explicitly diagonalizing B(T)
over C,

Note that (as was pointed out in [52]), Hlﬁﬁk;m), or equivalently, the first
Betti number of Mk’ does not just depend on the Alexander polynomial
A==K1 ,...,Kn .  The order of Hlﬁﬂk), however, does. Indeed, using Goeritz's
diagonalization it may be shown that

Kk Zni
order H Q1) = |det B(T)| = !if A(mi)l, vhere w=e © .

1
(This was first observed by Fox [41]; the proof given there, however, needs some
modification.)
The behaviour of Hl(Mk) as a function of k is sometimes quite interesting.
For example, if k is odd, then Hlﬁﬂk) is always of the form G @& G [119], [54],
Other results, in particular, necessary and sufficient conditions for Hl(Mk) to
be periodic in k, are given in [55].

We shall mention Seifert's work on branched cyclic covers [136], [137] in §8.

6. The Group Again

Let w be the group of a knot K. Since covering spaces of the exterior X
of K correspond to subgroups of =, much of the material discussed in §§3-5 can
be expressed in purely group-theoretic terms. Thus wl(xm) is just the commutator
subgroup n' of w, so Hl(&w) is isomorphic to «'/n". The A-module structure
of Hl(Xw) can also be described group-theoretically: let 2z e w be any element
which maps to the chosen genmerator t of C_; then the action of t on Hl(Xw)
corresponds to conjugation by z on xn'/x". Hence, given some presentation of =,
it will be possible to derive a A-module presentationm for «'/x', If the presen-
tation of x 1is in turn obtained in some way from a projection of K, we will then
have a recipe for computing the A-module =x'/x" from a knot diagram. The algorithms
described by Alexander [2] and Reidemeister [125, II, §14] are of this kind, based

respectively on the Dehn and Wirtinger presentations of the knot group.
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Similarly, for 1 < k < o, nl(Xk) is isomorphic to the kernel of the

"k
canonical epimorphism w > Ck’ s0 Hl(Xk) can be identified with nk/né . Given
a presentation of w, a presentation of T may be written down {(using the Reide-
meister-Schreier algorithm, for example), and hence a presentation (over Z) of
Hl(Xk). (If one prefers to work with Hlﬂﬂk), then the branching relation must
also be added, but as mentioned in §3, the difference between Hl(Xk) and Hl(Mk)
is easy to take account of.) Thus again one can give a recipe for writing down a
presentation matrix for (say) Hlomk) in terms of a projection of the knot. This
is done in [3] and [8]. (See also [125].)

Yet another algorithm for writing down a presentation of the A-module ='/x"
from a presentation of w is given by the free differential calculus of Fox [39],

[40], [41] (see also [23], [26]), which we now briefly describe.

Let P==(x1,..., xn: rl,..., rm) be a presentation of some group G. Corres-

e

ponding to P, there is an obvious space X with nl(X) G, namely the finite
2-complex consisting of a single O-cell p, n 1l-cells, which we shall call

Xysoees Xy and m 2-cells, D Dm {(with base-points on their boundaries),

12>
the attaching map of Di being ri, 1< i<m., Now let H be some quotient of
G, and X > X the regular covering with group of covering translations isomorphic
to H. The cell structure of X 1lifts to a cell structure for i; choose a 0-
cell ; lying over p, let ;j be the unique lift of xj which starts at S,
and ﬁi the unique 1lift of Di such that 651 is the lift of T, which starts
at p. Then Co(i), Cl(i), Cz(i) are the free Z[H]-modules on {p},

{;j: 1< j<n}, and [51: 1 < i< m} respectively.

The free differential calculus is a convenient tool for describing the bound-

ary homomorphism J,: Cz(i) > Cl(i), and consequently the Z[H]-module Hl(i).

2
(Since the latter can be described solely in terms of the group, we could use any
space with nl(X) = G; in particular, the result will be independent of the pre-
sentation P.)

Let F be the free group on X)seees X and ¢: Z[F] >Z[G] the homomor-

phism induced by the epimorphism F > G corresponding to the presentation P. Let

a: Z[G] >»Z[H] be the quotient homomorphism. For each j, 1 < j < n, there is a



unique Z-linear function

a—i—: Z[F] > Z[F]
h|
such that
axi
B_Xj_= E)1j
duv) _ du , . dv
and ij axj tu ij

If w 1is any word in the x_.'s, regarded as a loop in X based at p, w 1lifts

j
to a unique path w starting at f; It may then be readily verified (for example,

~

by induction on the length of w) that, as a l-chain in X

»

W = E cup(a—w X,
—1 5 A

j j

In particular, with respect to the Z[H]-bases [ﬁi: 1< 1i<mj, [xj: 1< j<mn},

62: Cz(i) > Cl(z) is given by the mxn matrix
Bri
(w0 (D) -
|
One also sees that 61: Cl(i) > Co(i) is given by
Bl(xj) = (Oup(xj)-l)P ,
The short exact sequence

0->ker61->C1(X) +imal>0

gives, after factoring out by im 8? , the short exact sequence (of Z[H]-modules)
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0 +>H1(§) > coker 62 > im 51 >0 .

Since coker 82 is presented by the 'Jacobian' matrix described above, and since
we know im 61, we can extract information about Hl(z).
In fact, specializing to the knot situation, with G=gx and H=c_, it is

not hard to prove that im 61 = A. The above sequence therefore splits, showing

or
that the matrix (am(g;i)) is a presentation matrix for the A-module (x'/n") @ A.

7. Duality

The modules Hl(&w;R) have additional properties derived from duality. These
are somewhat deeper, and the history reflects this. For example, the fact that
Ai(l)z 1 was proved by Alexander in [2], whereas the symmetry property A(t)=
tdeg AA(t_l) was first proved by Seifert [136], (the explanation given by Reide-
meister in [125, p. 40], in terms of the group, seems to be insufficient), and not
fully explained as a duality property until Blanchfield [12]. We now briefly dis-
cuss this duality, following Levine [85].

The chain module Cq==Cq(&w,8&w;R) is a free I[-module on the q-simplices in
X - 93X of some triangulation of X. Let Cé==Cé(Xm;R) be the chains on the lifts

of the g-simplices of the dual triangulation of X. There is then a non-singular

pairing (see [95])

, ). C_xC > 1
{52 0% %3-q

defined by

«© . .

. i i
(C,C') = Z (c-t C‘)t »

i= -

where - denotes ordinary intersection number. This pairing is sesquilinear with
-1 .

respect to the conjugation - of 1 induced by t - t ~. It induces a duality

isomorphism
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~

T ST Ry Z 34 '
Hq(xw,axoo,R) = 1 “(Hom (C,, M) ,

where — denotes the conjugate module in which the action of = e 1T is defined by
a —> na. We are mainly interested in the case q=1. ZLet us then note that since
H1 (BXOO;R) is generated by the boundary of the lift of a Seifert surface, H1 (BXOO;R)
> H1 (X00 ;R)  is zero, and hence Hy (X_sR) = Hl(Xm,BXQO;R),

Now suppose R 1is a field, so that 1 is a principal ideal domain. Then, by
the universal coefficient theorem and the fact that H2 (XOO;R) is Tl-torsion, (the
surjectivity of t-1 on Hz(Xoo;R) follows in the same way as for H1 (XOO;R)), we

get
H R = Exep (1) (X, 5R), 1D

Since Hl (XOO;R) is also Il-torsion, we finally obtain the fundamental duality iso-

morphism

e

H1 (Xo0 :R) H1 (X00 sR)

In particular, taking R=Q, this implies the familiar duality property of the
Alexander polynomials

- deg Ai
(Ai) = (Ai) , 1i.e. Ai(t) =t Ai(t ) .

(Note that this, and the fact that Ai(l) =1, implies that deg Ai is even.)

Now consider the case R =7Z. Levine [85] shows that, since A has global
dimension 2, the universal coefficient spectral sequence still gives us an isomor-
phism

H (X)) = Ext, (B X ),A) .

It follows from this, incidentally, that H1 (Xoo) is Z-torsion-free. (Here is the
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argument; see [85, p. 9]. For any positive integer m, the short exact sequence
0— A —2% A — A/mA —> 0
gives rise to an exact sequence
Hom, (H) (X ),A/mA) —> Ext, (H (X),A) LN Ext, (i) (X ),A)

But Hl(Xm) is annihilated by A, which is primitive since €{(A)=1, and multi-
plication by a primitive on A/mA 1is injective, by the Gauss lemma. Hence
Ho“h(H1(Xm)’A/“”\)= 0 and multiplication by m on EXFA(Hl(Xw),A) is injective.)

It is interesting to note that over A, however, we no longer necessarily
have the strong duality statement ﬁ;?g;f = Hl(&m). Failure of this may sometimes
be detected, for example, by the ideal class invariant described in [47].

Returning to arbitrary (Noetherian) coefficients R, here is a slightly
different interpretation of duality. Since Hl(xw;R) is T-torsion, ¢, ) 1in-
duces a form

Bt Hy (X 3R) X By &_3R) —> Q(D/T,

R
where Q(II) denotes the field of fractions of 1. The definition of BR is as
follows. (Note the analogy with the @/ Z-valued linking form on the torsion sub-

group of the first homology of an oriented 3-manifold.) Let c € Cl’ d e C{ be

representative cycles for elements x,y € Hl(xw;R) = Hl(Xw,axw;R). Since

Hl(&n;R) is Il-torsion, there exists c¢' ¢ Cé such that Oc¢'=wxd for some non-

zero 1w € JI. Define

BR(XSY) = ig;l.c_'z .

This form BR is sesquilinear and Hermitian, and is called the Blanchfield pairing

{(over R) of the knot. (See [12].)
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Consider the case when R is a field. Since the adjoint to is the

Pr

composition
H) G5R) S Ext (H) (X ;R),T) = Hom (H) (X ;R),Q(D/I) ,

BR is non-singular. Here, the first isomorphism comes from duality and universal

coefficients, and the second from the short exact sequence
0— I — Q) — QI)/I — 0,

using the fact that Hl(Xw;R) is Tl-torsion.
It turns out that this is also true whem R =Z (see [12], [85]), that is,

B=8B 7z induces an isomorphism

~

H (X)) = Hom, (H; (X ),QQA) /1)

As regards the classification of Blanchfield pairings, the case R=Q has
been done, as follows. In [152], Trotter defines a function X: Q(T)/T" — Q

such that

Xy + Hy (X 3@ x H X 5Q) —> Q

0 :
is non-singular, skew-symmetric, has t: Hl(xw;Q)———> Hl(xn;Q) as an isometry, and
has the property that the isomorphism class of the pair (XBQ,t) determines the
isometry class of BQ' But pairs consisting of a non-singular e-symmetric

(=1L 1) bilinear form on a finite dimensional R-vector space, together with an
isometry, have been classified (see [98]). The rational Blanchfield pairings are
thereby also classified.

When R =7Z, a complete classification has not yet been achieved. (See [84],

[152], for partial results; also §9.)
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8. The Seifert Form

So far, we have tried to keep the discussion as 'co-ordinate-free' as possible
All the cyclic covers of a knot K, however, can be constructed with the aid of
any orientable surface spanning K, and it is illuminating to examine the proper-
ties discussed above from this point of view. Indeed, this is the way in which
many of them were first discovered.

It was an early observation that colouring alternately black and white the
regions created by a general position projection of a knot K onto the plane de-
fines two surfaces in S3 bounded by K. However, it may happen that neither of
these is orientable. (It is not hard to show that only the trivial projection of
the trivial knot has both surfaces orientable.) The first proof that every knot
does bound an orientable surface is given in [48]. Later, Seifert [136] gave

another proof, and used such a spanning surface, now called a Seifert surface for

K, to derive many important invariants and their properties.

One might proceed as follows. Let the knot K have tubular neighbourhood N

and exterior X. Them N = SlxD2 and OX=0oN ;lsl><Sl. The composition

excision 3
H, (N, 3N) = H, (87,X)

[FTeY]

Hl(X) shows that Hl(X) Sz is generated by the
image of the meridian element u= Pfxsl] € Hl(BX). Let A be a generator for
ker(Hl(aX) — Hl(X)). We may choose a trivialization of the normal bundle N so
that %==[S]'x*] € Hl(BX). Projection JX —» S1 onto the second factor now ex-
tends to p: X —> Sl. Making p transverse regular, rel(p|dX), to a point in
S1 then gives a bicollared surface F © X such that OF(=FNodX) and K to-
gether bound an annulus in N. We may assume that F 1is connected. Cutting X
along this Seifert surface F gives a manifold Y whose boundary contains two
copies Fi of F. Taking a countable infinity [Yi} of copies of Y and identi-
fying F;+l with F: in the obvious way, for all i, we obtain the infinite
cyclic cover X of X, on which the group C  of covering translations acts by

taking each Yi to Yi+1

It turns out that all the algebraic information about Hl(Xm) discussed

above is contained in the Seifert form of F, that is, the bilinear form
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ol Hl(F) x Hl(F) — Z
defined by

a([w],[2]) = kG, 2)

3’

where w,z are l-cycles in F, w' is the cycle obtained by translating w off

F in the positive normal direction, and 1k denotes linking number in SB. This

T

form has the property that o -« (T denotes transpose) is just the intersection

form on Hl(F)' In particular, det@x-&T)= 1. Choosing some basis for Hl(F)’

we get a 2hx2h Seifert matrix A representing o, where h=genus F.

0o

A Mayer-Vietoris argument on X = U Yi shows [80] that Hl(Xm) is pre-

j_:-oo

sented as a A-module by the matrix tA —AT. In particular, up to a unit of A,
the Alexander polynomial A==det(tA-AT). Since putting t=1 gives the unimodular
matrix A —AI (3), the properties e(Ei) =Z, c(Ai)==1, of the elementary ideals
and Alexander polynomials are immediate.

The consequences of duality are also easily seen in this setting. For example
the conjugate module ﬁ;?i;? is presented by the matrix t_lA -AT, which is
equivalent to (tA-AT)T. In particular, Ei==Ei and Qii)= Qﬁi) for all 1i.

Since det(tA-AT)# 0, the presentation of Hl(&n) corresponding to tA -AT is

actually a short free resolution

0—>F —>>F B (X)—>0,

where FO, Fl are free A-modules of rank 2h. Hence EXFA(Hl(Xm),A) =
coker (Hom(p,id)), and the latter is clearly presented by (tA—AT)T. So we derive

our previous duality statement

(3)

This is why it is mnatural, at least for 1i=1, to mnormalize so that Ai(l) =1.
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H1 (XOO) - ExtA(H1 (Xw),/\) .

The Blanchfield pairing §: Hl(Xm)><H1(Xg) —» Q\)/A is also determined by
A; it is given by the matrix (l—t)(t:A—AT)-1 [70], [85], [152].

Finally, we mention that the matrix M defined by Murasugi [107] in terms of
a knot projection can be shown to be a Seifert matrix for a Seifert surface con-
structed from the knot projection [138].

Turning to the finite cyclic covers, if we write B(t)=tA -AI, then (see §5)
B(T) will be a presentation matrix for Hl(Mk). Now B(T) 1is 2hkx2hk, but
Seifert [136] showed how to reduce it, using the permissible matrix operations, to
the 2hx2h matrix Ck-(C—I)k, where C==A(A—AT)_1. He also showed [137] that
(and in what sense) the linking form Tl(Mk)><T1(Mk) —> Q/ Z 1is determined by

the matrix (C-I)k(A-AT). (See [150] for a more general formulation.) This can

often be used to detect non-amphicheirality.

9. S -Equivalence

The Seifert form « is clearly an invariant of the pair (SB,F). Hence,
allowing for a change of basis of Hl(F), the equivalence class of A under in-

T R 3
tegral congruence A +—> P AP, P invertible over Z, 1is an invariant of (S87,F).

(If we choose a symplectic basis for Hl(F)’ A will satisfy A-A?==J==@ (_? é).
In [150], such an A 1is called a standard Seifert matrix. Then every Seifert
matrix is congruent to a standard ome, and two standard Seifert matrices A,B are
congruent if and only if they are symplectically congruent, that is, B==PTAP
where P satisfies PTJP==J.)

Since we may always increase the genus of any Seifert surface F for K by

adding a 'hollow handle' to it, it is clear that to get an invariant of the knot

we must also allow matrix enlargements of the form
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B % 0] N 0 0]

A Co A .

A —> .. or .
x 0 0 0

0...0 01 ... % 0 0

...0 00 0...0 10

{The *'s record the way the handle links F.) The equivalence relation on Seifert

matrices generated by congruence and these enlargements is known as S-equivalence.

It will also be convenient to call two knots S-equivalent if they have S-equivalent
Seifert matrices.

S-equivalence was first introduced, in an algebraic setting, by Trotter [150].
It also appears in [107]. The following remarks show that it is likely to be an
important concept. Firstly, any two Seifert matrices for a given knot K are S-

@

equivalent. (Here is an outline of a proof. ZLet the matrices be associated

with Seifert surfaces FO’ F1 for K, and let these in turn correspond, via trans-
versality, to maps Py Pyt X —> Sl, such that pOIBX==p1|6X, where X 1is the
exterior of K. Then Po: Py extend to p: XxI — Sl, with pt|8X==p0|5X for
all t e I. Transverse regularity gives a connected, orientable 3-manifold

M < XxI such that 5M==F0LJ6Fix IUF Now choose a handle decomposition of M

1"
on FO with only 1- and 2-handles, such that the former precede the latter, and
such that, regarding M as FOLJcollarthandlelJcollar.., , each handle is em-

bedded in a level X x{t}, and the collars are compatible with the I factor
(see [72]). Then in a level between the 1- and 2-handles, M intersects X 1in a
Seifert surface for K which is obtained from each of FO’ F1 by adding hollow
handles.) Secondly, given a Seifert matrix A for K, it is easy to see that

any matrix obtained from A by a sequence of enlargements (and congruences) is

also a Seifert matrix for K. (But this is not necessarily true for reductions.)

(A)In [107]), it is noted that by examining the effects of the Reidemeister moves on
a knot diagram, the S-equivalence class of the Murasugi matrix can be shown to
to be an invariant of K.



28

Thirdly, in higher (odd) dimensions, S-equivalence completely clagsifies the so-
called simple knots [83].

Probably the most important result concerning S-equivalence relates it to the
Blanchfield pairing:

Two knots are S-equivalent if and only if their (integral) Blanchfield pairings
are isometric.

A purely algebraic proof of this has been given by Trotter [152]. It is also
a consequence of some results of Kearton [70] and Levine [83] on higher-dimensional

knots. (In [83] it is shown that, for mn > 2, two simple knots of SZn—l in

S2n+1 are isotopic if and only if they are S-equivalent, and, in [70], that they
are isotopic if and only if their Blanchfield pairings are isometric. Since the
algebra only depends on n (mod 2), this implies the stated result.)

In [150] it is shown that every Seifert matrix is S-equivalent to a non-singu-
lar ome, that is, one with det A# 0. Since A==det(tA-AT), we see that
det A=A(0) 1is then an invariant of the knot. Also, the I’-module Hl(Xm;Q) is
presented by tI —A-lAT, which shows that dim Hl(Xw;Q)::Zh (if A is 2hx2Zh),
and that the automorphism t 1is given by the matrix A-lAT.

It is known that S-equivalence of non-singular Seifert matrices is definitely
weaker than integral congruence [83], but there are the following partial results
in the other direction. Non-singular Seifert matrices determine isometric rational
Blanchfield pairings (recall (§7) that these are classified) if and omnly if they
are congruent over @ [152]. If A and B are S-equivalent non-singular Seifert
matrices, so det A=det B=d, say, thenm A and B are congruent over Z[d_l]
[150], [83], [152]. (The converse is false [83].) If |d| is prime, then in fact

A and B are congruent over Z [152]. If d is square-free, them A and 3B

are congruent over the p-adic integers Zp for all primes p [152].

10. Characterization

The first realization result concerning the invariants we have been discussing
is Seifert's proof [136] that a polynomial A is the Alexander polynomial of a

knot if and only if it satisfies
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(i) a@)=1, and

(11) a@) =388 & 5l

To do this, Seifert actually shows that any integral matrix A such that
A -AT==J can be realized as a Seifert matrix. This is done by taking an orient-
able surface of the appropriate genus, regarded as a disc with bands, and embedding
it in 83 by twisting and linking the bands so as to realize A as the matrix
(with respect to the basis of Hl(F) represented by the cores of the bands) of
the Seifert form. It follows (by changing basis) that any matrix A with
det(A-AT)= 1 is a Seifert matrix.

It turns out that in Seifert's realization of the polynomial, the module
which arises, i.e. the module presented by tA —AT, is actually the cyclic A-mod-
ule A/(A). By taking connected sums, it follows that any sequence of polynomials

A

1 ,...,Kn satisfying the (necessary) conditions

(i) 7\1(1) =1, 1<i<n

deg A, 1
i) A ()=t 17\i(t ), 1<i<mn, and

(iii) 7\i+1|7\i, l<i<n

can occur as the Alexander invariants of a knot. (This can be equivalently ex-
pressed in terms of the Alexander polynomials.) A different proof is given in
[79].

In particular, the I"'-modules which can occur as Hl(Xm;Q) for some knot are
completely and simply characterized.

Over the integers, we have the following realization result of Levine [85],
which brings in the Blanchfield pairing:

Let H be a finitely-generated A-module such that t-1: H—> H is surjec-
tive, and let B: HxH~»> Q(A)/A be a non-singular, sesquilinear, Hermitian
pairing. Then [ 1is the Blanchfield pairing of some knot.

To prove this, it is sufficient to show that every such p 1is given by
(1-t) (tA-2T) "1 for some integral matrix A with det(A-A )=1. (Is there a

direct algebraic proof of this?) This Levine does by showing that S may be
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4k+1 4k+3
in S

realized as the Blanchfield pairing of some knot of § , for (any)

k > 0; a Seifert matrix for this knot is then the desired A.

11. The Quadratic and Other Forms

Because of its historical significance, we shall now make a few remarks about
the quadratic form of a knot, although from many points of view this is best dis-
cussed in a 4-dimensional setting (see §12).

There are actually two distinct, but related, concepts here. The first is
due to Goeritz [51], who associated with a knot diagram an integral quadratic form
as follows. CGColour the regions of the diagram alternately black and white, the

(5

unbounded region being coloured white, and number the other white regions

W , Wn' At a crossing point ¢ as shown in Figure 1

127

NN
Z T Th
NN

Figure 1 Figure 2
assign 1, -1 respectively if the adjacent white regions are distinct, and O
otherwise. Call this index n(c¢). Then define the nxn matrix G= (gij) by
gii = 7. n(c) over crossings adjacent to Wi,
gij= -7.n(c) over crossings adjacent to Wi and Wj’ i+47.
Tt may be verified [51], [76] that the class of G wunder the equivalence re-

lation generated by (integral) congruence and

G +—

)

Goeritz chose black, but it turns out that this is psychologically confusing.
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is invariant under any of the 3 so-called Reidemeister moves [3], [123] on a knot
diagram, and is therefore an invariant of the knot K. 1In particular, the absolute
value of the determinant, and the Minkowski units Cp for odd primes p, are in-

variants of K, (but C and the signature are not) [51].

2

In [137], Seifert relates G to the 2-fold branched cover M, of K, by ob-

2
serving that the latter can be obtained by cutting 83 along the spanning surface
for K corresponding to the shaded regions of the knot projection and gluing together
two copies of the resulting manifold in an appropriate fashion. In particular, he
shows that G 1is a presentation matrix for Hl(MZ), and that the linking form
H1 (Mz) le (MZ) -—> Q/Z 1is given by + G-l, the sign depending on the orientation
of M,. (See also §12.) Note that |det G|=order H10ﬂ2)==]A(—1)| is always odd.
Such linking forms are classified by certain ranks and quadratic characters
corresponding to each p-primary component (p an odd prime). See [135], [62]. In
[120] {(see also [78]) it is shown that these invariants determine the Minkowski
units Cp’ and, more generally, Kneser-Puppe in [76] show that in fact the link-
ing form completely determines the equivalence class (in the above sense) of the
quadratic form.
More recently, Trotter [150] considered the quadratic form given by A<+AI,
where A 1is a Seifert matrix for K. (See also [107], which studies M<+MT,
where M 1is the Murasugi matrix.) S-equivalence on A induces the equivalence
relation on A«%AT generated by congruence and addition of a hyperbolic plane
0 1

This is a stronger equivalence than the one discussed previously.. Also,
1 0

it may be shown that if the shaded surface F obtained from a knot projection
happens to be orientable, then the corresponding Goeritz matrix coincides with
A«+AT for some Seifert matrix A associated with F. TFinally, for any Seifert
matrix A of K, A<+AT is in the equivalence class of Goeritz matrices of K.
This may be seen by isotoping the given Seifert surface, regarded as a disc with
bands, so that the bands cross over as shown in Figure 2, where + denotes omne
side of the surface and - the other. The modification shown in Figure 2 produces

an orientable surface obtainable from the indicated knot projection by shading; the
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corresponding Goeritz matrix will then be B<+BT for some Seifert matrix B,
which must be S-equivalent to A. (Here, it is easy to see the S-equivalence di-
rectly: join the two bands by a l-handle at each band-crossing.)

From Trotter's form additional invariants may be extracted, notably the sig-
nature (therefore referred to as the signature of the knot, o(K)), and hence also

the Minkowski unit C Also, recall that any non-singular Seifert matrix for K

9°
is 2hx2h, where 2h=deg A. Hence it follows from Witt's cancellation theorem
that over any local ring in which 2 is invertible, the forms A-+AT coming from
non-singular Seifert matrices A are all congruent. In particular, this holds
for the p-adic integers Zp ,p odd, and R, and hence (since A-+AT is even,
see [62]) the genus of A<+AT is an invariant of K [150].

The forms of both Goeritz and Trotter are generalized in [58], where it is
shown how a quadratic form may be defined for any spanning surface. The signature
of such a form is related to the signature o¢(K) of the knot. In particular, the
correction term needed to obtain o(K) from the signature of a Goeritz matrix can
be simply described in terms of the given knot projection.

By symmetrizing A to A«+AT, we obtained the signature. Other signatures
may be obtained, by Hermitianizing A in other ways. Precisely, let £ be a
complex number, and consider the Hermitian matrix A(§)=:(1—55A-+(1—§)AT, {(We may
suppose without loss of generality that ¢ e Sl, that is, |§|==1.) Then S-
equivalence on A induces the equivalence relation on A(t) generated by con-

0 1-¢

gruence (by integral matrices) and addition of . In particular, the
1-& 0

signature of A(t) depends only on K, and therefore defines a functionm

g, : Sl——> Z. Since A(t)= @—1)(@A—AT), a is continuous away from the roots of

K K
the Alexander polynomial A==det(tA—AT). These signatures GK(g) are (essen-
tially) those considered by Levine in [8l]. For certain roots of unity £, they
were introduced earlier by Tristram [148]. We shall see later (§12) that for ¢
a root of unity, UK(g) actually has a natural geometric interpretation.

Another approach to these signatures is the following. Milnor [96] and Erle

[34] show that, over any field R, the (skew-symmetric) cup product pairing
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~

q ) 2-q ; 2 .
HY(X_,0K sR) xH (X _,3K ;R) » H (X_,3X ;R) = R

is non-singular. Taking q=1 and setting

(x,y) = x U (ty) + y U (tx)

then defines a mnon-singular, R-valued, symmetric bilinear form {, ) on
Hl(Xw,SXm;R). With respect to an appropriate basis, ¢{, ) is given by A«+AI,
where A 1is a non-singular Seifert matrix, and thus coincides with Trotter's
quadratic form (temsored with R). (See [34] for details.)

We remark that the non-singularity of the above cup product pairing can be
interpreted as a Poincaré duality in XOO of formal dimension 2. However, this
non-singularity definitely fails over 7Z; for example, Hl(Xw,BXw) (;:Hl(Xw))
is often zero.

Taking R =R, let A be a symmetric, irreducible factor of-the Alexander
polynomial, so A = (t-£) (t-£) where ==ei9, say, Milnor [96] then defines
cg(K) to be the signature of the restrictiom of (, ) to the A-primary component.
The signature of the knot o) is the sum of all the GQ(K).

These signatures UG(K) turn out to be equivalent to the signature function
eie.

Og 3 Matumoto has shown [94] that GG(K) is just the jump in O at

12. Some 4-Dimensional Aspects

It is enlightening to consider the branched cyclic covers from a 4-dimensional
point of view. The basic conmstruction is the following, Pushing the interior of
a Seifert surface T for K 1in 83 into the interior of the 4-ball BA gives
a properly embedded surface F e B4 with B€==K. For 1 < k < », we then have
Mk==6Vk, where Mk ’Vk is the k-fold branched cyclic cover of (SB,K), (Ba,g)
respectively.

Let us first consider the case k=2. 1In S3, choose a thickening Fx[-1,1]
of Fx0. Then V2 may be comstructed by taking two copies of BA, and identi-

fying (x,t) 1in one copy with (x,-t) in the other, for all x e F, te [-1,1],



34

(and then smoothing). The canonical covering translation just interchanges the
copies of BA, A Mayer-Vietoris argument shows that H2(V2) = Hl(F), and that if
A 1is the Seifert matrix associated with some basis of Hl(F)’ then the inter-
section form on HZ(VQ)’ with respect to the corresponding basis, is given by the
matrix A«%AT (see, for example, [69]).

Actually this works even if F is non-orientable. A thickening of F will
now be a twisted [-1,1]-bundle over ¥, but we may still carry out the above
construction using the local product structure. The intersection form on H2(V2)
can again be described in terms of F; in particular, if F arises from the
shaded regions of a knot diagram, then the intersection form is given by the
Goeritz matrix G [58].

By duality we have the exact sequence
¢
H, (V,) —> Hom(H, (V,), Z) —> H, (M) —> 0

where ¢ 1is adjoint to the intersection form. Thus, if the latter is given by a
matrix B, say, them ¢ will be represented by B with respect to dual bases.
It is then clear that B is a presentation matrix for Hl(MZ). It also follows,
using det B#0, that the linking form on H10M2) is given by -B-l. This re-
covers the results of Seifert [137] on the 2-fold branched cover.

Now let us consider the higher order branched covers; here, F must be
orientable, As before, the intersection form on H2(Vk) may be described in
terms of the Seifert form of F, 1In particular, one may write down a presentation
matrix B for Hl(Mk) in terms of a Seifert matrix, and again, if Hl(Mk) is
finite (as will always be the case if k is a prime-power, for example), the
linking form on H10Mk) will be given by —B_1

Using the cyclic group action, one may derive finer information. The inter-
section form on HZ(Vk) extends maturally to a Hermitian form on Hz(Vk;G), with

respect to which the automorphism 7+ of Hz(Vk;m), induced by the canonical

2mi

k
covering tranmslation, is an isometry, Let w=e =~ . Then H,(V,;C) decomposes
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as an orthogonal direct sum E0 @ E1 D...0 Ek—l’ where Er is the wr-eigenspace
of 7., Let cr(Vk) be the signature of the restriction of our Hermitian form to

Er' It then turms out that

o (V) = sign((1-0 A + AwDHAT), O0<r<k

r k)

where A 1is a Seifert matrix for F. (See [32], [154], [18]). These signatures
Gr(vk)=(ﬁ(ebr)’ 0 <r <k, are the k-signatures of the knot K. In particular,

01(V2) is just the signature of V2.

We saw earlier that cK(g) depends only on K. Here, rather more is true.

We could construct Vk with BVk::Mk using any (orientable) surface F C B4

with 5(B4,F)==(SB,K). Then Gr(Vk) is independent of F. To see this, we shall
use the G-signature theorem [6]; (for an elementary proof for semi-free actions in

dimension 4, which is all that is needed here, see [57]). Recall that the TS—Sig-

+ -
are defined as follows. We have Hz(Vk;m)==H ®H ® HO,

+ 0
where the Hermitian 'intersection' form is + ~-definite on H  and zero on H .

natures sign(TS,Vk)
Then

sign(TS,Vk) = trace(TS|H+) - trace(TSIH_)

By similarly decomposing each eigenspace Er==E: @ E; @ ES , we may take

+ + + + . ) ~
H = EO 2] E1 D...0 Ek-l’ ete., which (recalling that oo(Vk)——O) shows that
k-1 r
sign(+°,v,) = ¥ o 0_V,) , 0<s< k.
k r k
r=1
Inverting, we obtain
1 k2l s s
cr(Vk) = E-Sgl @ T -l)sign(r ,Vk) R D<r<k.
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Now suppose V arise from surfaces F, F' C:B4 with OF=0F'=K. Let

1
K’ Vk
W=V U -Vi, identified along M, . Since the fixed-point set F U -F' of the

Ck-action on W has trivial normal bundle, the G-signature theorem gives

sign(r°,W)=0, 0< s <k, and therefore, by Novikov additivity,
. s s S
sign(r ,Vk) = sign(r ’Vk) s 0<s <k .
Hence
- ]
cr(Vk) or(Vk) , 0O0<r<k,
as required.

A variation of the above proof in the case k=2 allows one to compute the
signature of a knot K from an arbitrary (not necessarily orientable) surface F
in 34 with OF=K [58]. 1In particular, this leads to the relation between the
signature of K and the signature of any Goeritz matrix for K which was alluded

to in §l1.

13. Concordance

Two knots K., K in S3 {everything oriented) are said to be concordant if

0’1
there is a smooth, oriented, submanifold T of S3x I, homeomorphic to Slx I,
such that TN S3x 0=K0 , TN S3x 1= —Kl. This concept was introduced by Fox and

Milnor [46]. Concordance is an equivalence relation, and the equivalence classes

form an abelian group C, under connected sum, the zero element O being repre-

1
sented by the unknot, and the inverse of [K] being represented by the inverted
mirror-image of K. A knot represents O in C1 if and only if it is slice,
that is, bounds a smooth 2-disc in BA. This knot concerdance group C1 has not
yvet been computed; indeed our comparative lack of knowledge about its structure is
a central example of our present ignorance concerning 4-manifolds in general.

Historically, the first necessary condition to be established for a knot to

be slice (see [46]) was that the Alexander polynomial must satisfy A~J\X, for
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some A ¢ A. This is enough to show that C1 is not finitely-generated. Later,

the concordance invariance of the signature was proved [107]. (Murasugi works
entirely with his matrix M, but as we remarked earlier, this is a particular

Seifert matrix.) This implies the existence of elements of infinite order in Cl'

The Miwkowski units are also concordance invariants [106], as are the p-signatures
[148] and the signatures GGG{) [96].
This informationm is all subsumed under the invariance of the 'Witt class' of

the Seifert form, which we shall discuss soon, but we pause briefly to consider the

signature function Oy ? Sl-——> Z of §1l1, as a direct approach to this is possible

via branched covering spaces. .
2rri

k

Recall (§12) that for t=e a k™ root of 1, GK(§)==cr(Vk), the

signature of the restriction to the ft-eigenspace of the intersection form on the

k-fold branched cyclic cover Vk. Now suppose (S3x I,T) 1is a concordance, be-

tween knots KO and K1 , say, and let Wk be its k-fold branched cyclic cover.

If k 1is a prime-power, then (as in §5), H*(Wk;Q) = H*(S3><I;Q); in particular,
Hz(Wk;Q)==O, Hence, by Novikov additivity of the eigenspace signatures, Oy ¢) =
0

OK (¢). {(In particular, the p-signatures of Tristram are concordance invariants.)
1

. . . 1 .
Since the roots of 1 of prime-power order are certainly dense in S°, and since

OK is continuous except at finitely many points in Sl, it follows that Ty ==ok
0 1
almost everywhere. Hence if we define %' Sl—ﬂ; Z by taking the average of the

one-sided limits of o at each point, we see that T® is a concordance invariant.
This is equivalent to the concordance invariance of the GG(K)'S, proved in [96]
{(see §11). Compare also [81, p. 242]. (Note that L takes values in 7%, since
if & 1is not a root of the Alexander polynomial of K, A(t) (see §l1) is non-
singular; hence GK(E)EErank A(t) (mod 2) is even. Also, Matumoto has shown [94]
that if the 1st Alexander invariant (or minimal polynomial) %1 has no repeated
roots, then TK==OK.)

We mow turn to the Seifert form. (The treatment which follows is that of
Levine [81], [82].) Let K be a slice knot, so (S3,K)==6(B4,D) for some smooth
2-disc D. A tubular neighbourhood of D in B4 may be identified with D)<D2;

let V=BA-Dxint D2 be the exterior of D. Then aV=XUD><Sl, where X is
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exterior of K, and projection D)<Sl———> S1 extends to a map p: V — Sl.
Transverse regularity gives a bicollared 3-manifold M < B4 with M=FUD where
F 1is a Seifert surface for K in S3. By duality and universal coefficients, the

homology exact sequence of (M,dM) gives an exact sequence

*

Hl(M,aM)*—l—> Hl(M)*——) Hy (@) i H, (1) 3. H 0L

where * denotes Hom( , Z). Thus coker j"r < ker i, and ker j=1im i. But
ker j and coker j* have the same rank; hence rank(ker i)=:% rank Hl(BM). More-
over the Seifert form o on Hl(F) = Hl(aM) vanishes on ker i. (If w,z are
l-cycles in F representing elements in ker i, there are 2-chains wu,v in M
with Ju=w, ov=z. Then u+, obtained by pushing u off M in the positive
normal direction, has 5u+==w+ and is disjoint from v. Hence 1k(w+,z)= 0.)

Recall that Seifert forms can be characterized algebraically as just those bi-
linear forms «: HxH — Z, H a finitely-generated, free abelian group, such
that det@x-@T)==l. (This implies that H has even rank.,) Write ao~p if the
orthogonal sum o @ (-B) wvanishes on a subgroup (and hence on a direct summand)
of half the total rank. This is an equivalence relation on Seifert forms, and the
equivalence classes form a 'Witt group' WS(E) under @. Since comnected sum of
knots induces orthogonal sum of Seifert forms, the discussion in the previous para-
graph shows that there is an epimorphism

V; ¢, —> WS(Z)

1
The first step in the computation of WS(Z) is to pass to the rationals.
Thus one defines WS(Q) to be the analogous Witt group of finite-dimensional bi-
linear forms « over Q@ with det((@-aT)Gm4—aI)) # 0. The natural map
WS(Z) —_ WS(Q) is injective.
The problem of computing WS(Q) can be translated into a more standard ome
by symmetrizing, as follows. Consider pairs ({, ),t) consisting of a finite-

dimensional non-singular symmetric bilinear form {, Y over @ together with an
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isometry t, such that £1 is not an eigenvalue of t. The classes of such iso-

metric structures, under the equivalence relation obtained by factoring out forms

with a t-invariant subspace of half the total dimension on which (, ) vanishes,

form a Witt group WO(Q”,Q) under @®. An isomorphism

is induced by sending a non-singular matrix A representing a class in WS(Q) to
the class in W(Cw,Q) with matrix representatives (A-+AT,A_1AT). (Every class in
WS(Q) has a non-singular representative.) Note that if A 1is a non-singular
Seifert matrix for a knot K, then A<+AT represents the quadratic form of K,
and A—lAT represents the automorphism t: Hl(Xm;Q) — Hl(xm;Q).

A complete set of invariants for WO(CW’Q) has been given by Levine [82],
using results of Milnor [98]. These are defined for each A-primary component Vk’
where A 1is a symmetric, irreducible factor of the characteristic polynomial of ¢,
and are: the exponent mod 2 of A in the characteristic polynomial, the signa-
ture of the restriction of (, ) to V. (this is the ¢

A

class invariant version (analogous to a Minkowski unit) of the Hasse invariant of

0 of §11), and a Witt

~ 0 o0 o0
the restriction of (, ) to V%. In particular, WO(CW,Q) =% ® (Z/4) @ (Z/2) .

The image of the injection WS(Z) — WO(Cw’Q) is also isomorphic to
zZ o @4 o @/2)".
A different but related approach to the computation of WS(Z) is described

by Kervaire in [73]. For further results on the structure of WS(Z), see [143].

4n+l 4n+3
in S

Similar definitions and results hold for knots of § for

n > 0; 1in particular, there is a knot concordance group C and a homomorphism

4+l

v — W (Z)

4017 Coann

Levine has shown that, if n> 0, ¥ is an isomorphism [8l]. According to

4n+l

Casson-Gordon [17], [18], however, this is not the case for n=0. We shall brief-

ly summarize their argument.
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Let K be a knot in SB, and N the closed 3-manifold obtained from 83 by
O0-framed surgery along K. Write Nk for the k-fold cyclic cover of N, 1 < k < .
Recall that Mk denotes the k-fold branched cyclic cover of K, 1 < k < =, Suppose
that, for some k, X;: H1 (M'k) —_ (IZ* is a character of order m (that is, the image

th  roots of 1). Composing X with the canonical

of X is Cm, the group of m
epimorphism Hl(Nk) -— Hlmk) gives a character X' of order m on H (N ),
inducing an m-fold cyclic covering ~Nk —> Nk' Similarly X induces an m-fold
cyclic covering ﬁm — N . Then ﬁm is a regular cover of Nk with group of
covering translations me C,. Since {13(K(mecm,1)) is finite, there is a regu-

~

lar me C -covering V -—> Vk of compact, oriented 4-manifolds such that

N>R
> NI N
Mo N

for some integer r #0.
Let ¢{(t) be the field of rational functions in t with coefficients in ¢;
c(t) 1is a Z[me Coo] = zz[cm][t, t-l]-module. Write H:(Vk;a:(t)) for the twisted

homology H, (C*(Voo) ® €(t)). The intersection pairing on the chains of

ZZ[me Coo]

Vw (compare §7) induces a form
Hy (V, 36(8)) X Hy (V56 (1)) —> €(t)
2 Vk? 2V -

which is Hermitian with respect to the involution J on €(t) given by

t — t~1 and complex conjugation. This form therefore defines an element

W(Vk) e W(C(t),J), the Witt group of finite-dimensional Hermitian forms over
€(t). The ordinary intersection form on H2 (Vk;Q) represents an element of W(Q);

let WO(Vk) be the image of this element in W(C{(t),J). Then define

T®,X) = % (w(Vk)-wo(Vk)) e W(e(t),T) ®Z Q .
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It can be shown that T(K,X) 1is independent of r and Vk'

Now suppose that K 1is a slice knot, so (S3,K)=6(BA,D), say. Let W be
the k-fold branched cyclic cover of (B4,D), and take k to be a prime-power.
Then rﬁ*(Wk;Q)=0 (see §5), so, by duality, Hl(Mk) has order i,z, where
G=ker(H1 (Mk) —_> H1 (wk)) has order 4Z. Note that G has the property, intrin-
sic to M‘k , that the linking form Hl(Mk)XHl(Mk) —> Q/Z vanishes on G. Let
V be the closure of the complement of a tubular neighbourhood of D in BA, and
write V, for the k-fold cyclic cover of V, 1 <k < «. Then oV, =K.
Let X be a character of prime-power order m on H1 (Mk), such that

X(G) =1. There is then a character X on H1 (Wk) such that

0 ———> B 6

™4

commutes. Suppose (but only te simplify the exposition) that X also has order
m. Composing with the canonical epimorphism H1 (Vk) —> H1 (Wk)’ we get a

character X' on H1 1\ such that

k)

H1 (Nk) — H1 (Vk)

C
m

commutes. We can therefore use Vk to compute T(,X). But it can be shown that
since V 1is a homology circle and m is a prime-power, H*(‘TI'OO;Q) is finite-di-
mensional. In particular, Hz({fw) is Z[Cw]-torsion, Since €(t) 1is flat over

. t _ o - -
Z[mecoo], it follows that Hz(Vk,{II(t)) = HZ(VOO) ®Z C€(t) =0, and there

[C_xC ]

m [o<]
fore w(Vk)=0. Again, since V 1is a homology circle and k is a prime-power,
Hz(Vk;Q)=O (see §5). Hence wO(Vk)=0 also, giving t{&,X)=0.

The vanishing of 71(&,X) for certain characters X 1is therefore a necessary

condition for K to be slice. To utilize this condition, we first define a
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signature homomorphism
o WE(D), 1) @, ¢ — Q.

It suffices to comsider ¢ ¢ W(C(t),J); suppose ¢ has a representative which is

given with respect to some basis by the matrix B{(t). Then set

0, (0) = 3 (1in sign 3e™® + 1lim sign B('®)) .
80>0 0+0"

It turns out that 9y (r®,%X)) 1is sometimes related to another invariant,
analogous to, but simpler than, 1. The general definition of this goes as follows,
Let M be a clesed, oriented 3-manifold and X a character of order m on H1 M)
inducing an m-fold cyclic covering M —> M, Since 93(K(Cm,1)) is finite, there
exists an m-fold cyclic covering W —> W of compact, oriented 4-manifolds with
AW — W) =r(ﬁ —>» M) for some integer r#0. Writing H_:(W;(E) for the twisted

homology H*(C*(VNJ) ®Z[C ] €), we have a Hermitian intersection form

H;(W;ﬂ:) x H;(W;GZ) —sC .

Let s(W) be the signature of this form, SO(W) the ordinary signature of W,

and define
1
g% = = (s®) -s (M) e Q.
This is independent of r and W.
Returning to the knot situation, recall our original character X on

H1 (Mk)’ inducing ﬁk—> M‘k It can be shown that if Hl(ﬁk;Q) =0, then

loy G ®, %) -0, 0| <1
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If, in addition, K 1is slice, and X satisfies the conditions described earlier

which then imply that +(®,X)=10, we obtain

Io(‘M_k,X)I <1.

Since the invariant c(Mk,X) can often be calculated, this is a workable con-
dition. For example, if K 1is a 2-bridge (or rational) knot, and k=2, then
Mk is a lens space, and G(Mk,X) can be calculated fairly easily using the G-sig-
nature theorem. Also, in this case, ﬁk will always be a rational homology sphere,
so K can be slice only if (for suitable X) ]o(Mk,X)] < 1. From this it can be
shown that a large number of 2-bridge kmots K have V([K])=0 1in WS(Z), but

are not slice knots.

14. 3-Manifolds and Knots

In this section and the next we shall discuss some of the functions

{knots} — {3-manifolds])

which may be defined. Such a function relates knot theory to the general theory
of 3-manifolds, and hence by means of i1t any development in one theory will have
consequences for the other. Here, among other things, we shall look at some of the
ways in which genmeral results about 3-manifolds have had implications for knot
theory. Possible influences in the other direction will be considered in §15.
Probably the most obvious function of the above type is the one which simply
associates to a knot its exterior. (This is not known to be injective, but the
odds seem good that it is.) Here, as we have already mentioned, Dehn's lemma im-
plied that xK =% only if K 1is trivial, the sphere theorem implies the aspher-
icity of knots, and Waldhausen's work implies that knots are classified by the
triples (wK,A,u).
We might also mention the fibration theorem of Stallings [142], (see also [111])

which, when applied to knot exteriors, implies that many knots XK (in fact, pre-
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cisely those such that the commutator subgroup of nK is finitely-generated, see

[142], [110], [112]), correspond to a 'singular' fibring of S3 over Sl, in the

2

following sense: S™ = U Fe , where each F is homeomorphic to some compact
6=0 1 3 2n

surface F, 5F9==K for all 8 e S°, and S™-K= U int Fa is a fibre bundle

8=0
over Sl, the fibres being the int Fe. In other words, K is the binding of an

open book structure on S3. The fibred knots with finite bundle group are pre-
cisely the torus knots; see [165] for a nice description of the fibration in this
case.

Thurston's recent (unpublished) work on 3-manifolds implies that a knot K
which has no companions and is not a torus knot has an exterior which supports a
'hyperbolic structure'. Also, the decomposition theorem of Johannson [66], [67]
and Jaco-Shalen [64] applies to knot exteriors., In particular, using this together
with his own work, Thurston has shown that knot groups are residually finite. One
hopes and expects that in the near future knot theory will be further enriched by
these ideas from hyperbolic geometry.

Another advance in the theory of 3-manifolds which has striking consequences
for knot theory is discussed in [158]. There it is indicated how Haken's results
on hierarchies of incompressible surfaces in irreducible 3-manifolds, and Hemion's
recent solution of the conjugacy problem for the group of isotopy classes of homeo-
morphisms of a compact, bounded, surface, together imply that the knot problem is
algorithmically solvable, or, equivalently, that knots can be classified (i.e.
listed, without repetition). Again, the connection is via the exterior of the
knot.

Branched covering spaces provide examples of functions {knots) —3> {closed
3-manifolds), and, as mentioned in §1, invariants of these covers have been used
to distinguish knots. Also, by means of such a function, bridge decompositions
of the knot are related to Heegaard splittings of the 3-manifold (see [13]), as
follows. Let K be a b-bridge knot. Then (S3,K)=:(B3,A+) UES(B?’A-)’ where

3 3 ~

A is a set of b arcs properly embedded in B+, and (B+, A+) (BZ,P)XIL

3

+

where P 1is a set of b points in int B2. Now let M be some cover of S

branched over K. From the bridge decomposition of (S3,K) one obtains
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~

M==H+ U, H , say, with 8H+ connected, and H+ ExI, where B is the

a ’
corresponding branched cover of (BZ,P). If the projection M — 83 is k-sheeted

away from the branch set, and m-sheeted over K, then
L@ =k x(@) - GmAE@) = mb - (b-1)k .

It follows that H+ is a solid handlebody of genus (b-1)k-mb+1, giving a
Heegaard splitting_;f M of that genus. For the k-fold branched cyclic cover,
the genus is (k-1)(b-1). 1In particular, for the 2-fold branched cover, we just
get b-1. In this way, knots of increasing complexity are mapped to 3-manifold
decompositions of increasing complexity.

Now it is known that the 2-fold branched covering function is not injective;
many examples of pairs of prime knots with the same 2-fold branched cover are des-
cribed in [11]. It is injective, however, on the set of 2-bridge knots. There,

the 2-fold branched cover has genus 1 and is therefore a lens space, and Schu-

bert has proved [132] that this lens space determines the knot. This injectivity
already fails for 3-bridge knots [11]. It has been shown by Birman-Hilden [10],
however, as a consequence of a rather gpecial feature of the group of isotopy

classes of homeomorphisms of a closed surface of genus 2 that if we regard the

b
2-fold branched covering function as a function (knots] —» {equivalence classes
of Heegaard splittings of 3-manifolds}, then it is injective on the set of 3-
bridge knots.

Finally, in this context we might mention the result of Waldhausen [157],

which says that only the unknot has 53 ag its 2-fold branched cover.

15. Knots and 3- and 4-Manifolds

Continuing in the general framework of §l4, let us now consider the possibil-
ity of using knowledge about knots to give information about 3-manifolds. In par-
ticular, functions {knots}] —> {3-manifolds] which are surjective, or at least

have a sizeable image, will be of interest.
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Returning to branched covers, Alexander showed [1l] that every closed, orient-
able 3-manifold is a cover of 83 branched over some link. This has recently
been refined (independently) by Hilden [60], Hirsch, and Montesinos [100], who
show that every closed, orientable 3-manifold is actually a 3-fold (irregular di-
hedral) cover of 83 branched over a knot. This result is best possible in the
sense that there are 3-manifolds which are not 2-fold branched covers of 83. To
utilize this function to get invariants of 3-manifolds, it would be helpful to have
a purely knot-theoretic description of the equivalence relation on knots which
corresponds to homeomorphism of the associated branched covers. Some moves on the
knot which leave the branched cover unchanged are known (see [99], [100]), but it
has not yet been established whether or not these suffice. (In the same vein,
even though the 2-fold branched covering function is not surjective, it would still
be interesting to have an intrinsic description of the appropriate equivalence re-
lation on knots.)

Cappell-Shaneson [15] have obtained a formula for the Rohlin p-invariant of a
Z/2-homology sphere M, given as a 3-fold dihedral branched cover of a kmot K,
which involves {(among other things) the classical invariants of K given by the
linking numbers of the lifts of K in M [124], [116].

As a concrete example of an application to 3-manifolds of the branched cover-
ing space point of view we cite [61], which proves a sharpening of the Hilden-
Hirsch-Montesinos theorem, and obtains as a consequence the (known) result that
closed, orientable 3-manifolds are parallellizable.

Other interesting ways of constructing 3-manifolds from knots are provided by
what is now referred to as Dehn surgery. More precisely, given a knot K and a
pair of coprime integers «,f, one can consider the closed, orientable 3-manifold
MK ;B/a) (we use the 'rational surgery coefficient' notation of [128]), obtained
by removing from 83 a tubular neighbourhood of K and sewing it back so as to
identify a meridian on the boundary of the solid torus with a curve on the boundary
of the exterior of K homologous to «f[f] +B[m], where (£,m) 1is a longitude-
meridian pair for K. Note that HlCM(K;B/m)) =z/|p|. with |p]=1, this con-

struction first appeared in [27], where Dehn showed that many non-simply-connected
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homology spheres, in particular, the dodecahedral space discovered earlier by
Poincaré, could be obtained in this way from torus knots. Indeed, the Property P
conjecture (see §2) is that if K 1is non-trivial and «#0, then ME;l/x) is
never simply-connected,

It seems likely that the function M(_;B/a) 1is never injective, although this
has only been verified for certain (/o [53], [87]. However, it may not be un-
reasonable to conjecture that, denoting the unknot by O, and excluding the trivial
case =0, M(K;B/a) = M(0;8/0) only if K=0. The case |B|=1 1is just a weak-
ened form of the Property P conjecture, and the case B =0 has also received some
attention (under the name 'Property R').

Turning to the question of surjectivity, clearly the most one could hope to
obtain in this way is the set of all closed, orientable 3-manifolds M with HlﬂM)
cyclic. This seems highly unlikely. In particular, it is surely not true that all
homology spheres can be obtained by Dehn's original method, although this is
apparently rather difficult to prove.

The a priori restriction on the homology disappears if ome allows, instead of
knots, links with arbitrarily many components, and it is indeed the case that one
can now obtain all closed, orientable 3-manifolds. Actually a stronger statement
is possible. If 1 is a framed link in 83, then (ordinary) framed surgery on
83 along 1 gives a 3-manifold M(L), say. Wallace [159] and Lickorish [86]
have shown that this function {framed links) —> {closed, orientable 3-manifolds)
is surjective. Wallace's proof is essentially 4-dimensional; it uses the theorem
of Rohlin [126] that 3-dimensional oriented cobordism i13= 0,

handlebody techniques. (The argument is: given M, there exists W such that

together with

M=0W; W has a handle decomposition with one O-handle and no 4-handles. Replace
the 1- and 3-handles by 2-handles ('handle trading'), giving W'. The attaching maps

M{L).) Lickorish's

i)

of the 2-handles in W' now define a framed link L with M
proof, on the other hand, is 2-dimensional, in the sense that it is based on the
fact that the group of isotopy classes of orientation-preserving homeomorphisms of

a closed surface is generated by 'twists'. (This was first proved by Dehn [29].)



48

Since the trace of the surgery is a 4-manifold bounded by the given 3-manifold,
this approach gives another proof that ﬂ3==0.

The equivalence relation on framed links (in the oriented 3-sphere) which
corresponds to ﬂorientation—preserving) homeomorphism of the associated 3-mani-
folds M(L) has been identified by Kirby [74], in the sense that it is shown to
be generated by certain moves on the link. (Craggs (unpublished) has also obtained
results along these lines.) Kirby uses two moves; Fenn-Rourke [35] show that
these can be incorporated into a single move. Also, Rolfsen (private communica-
tion) has provided the modification necessary to describe the equivalence relation
appropriate to the more general process of Dehn surgery on a link.

Armed with these results, it is clear, in theory, how one might go about
getting new invariants of 3-manifolds. For instance, with respect to any kind of
complexity of a framed link, every 3-manifold will be obtained by surgery on some
class of links of minimal complexity, so invariants of this class will be invari-
ants of the 3-manifold. However, this point of view has not yet had much effect
on the theory of 3-manifolds, mainly because, although the above-mentioned equiva-
lence relation on links is easy to describe, it seems hard to decide in practice
vhether two given links are equivalent, or to find link-theoretic invariants of
the equivalence relation. It is clear that more remains to be done in this di-
rection.

The work described above also relates knot and link theory to 4-manifolds,
and offers the prospect of obtaining, perhaps first, known results (Rohlin's
04 SZ theorem [127] is an obvious example), but ultimately, new results, about
4-manifolds via link theory. 1In this spirit, Kaplan has shown [68] that, given a
framed link, it may be modified by Kirby's moves so as to make all the framings
even. This, together with the Wallace-Lickorish theorem, implies the (known) re-
sult that every closed, orientable 3-manifold bounds a parallellizable 4-manifold.

We might also mentionm here the Rohlin Theorem, that the signature of a smooth

closed, oriented, almost parallellizable 4-manifold is divisible by 16. Elementary
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proofs of this (assuming QA.: Z) have been given by Casson and (independently)
Matsumoto (both unpublished), and link-theoretic ideas are involved in these proofs.

Many questions concerning the existence of certain surfaces in 4-manifolds are
equivalent, or closely related, to questions about knot and link concordance. Thus
Tristram [148] used his p-signatures to show that a class ax+by in H2(Sz><sz) =
Z ®Z can be represented by a smoothly embedded 2-sphere only if a and b are
coprime. (It is still unknown whether this condition is sufficient, except for
the cases |a] <1 or |b| < 1.) As we have seen in §12, signatures of knots (and
links) are probably best studied from a 4-dimensional point of view anyway, so
this kind of conmnection is not surprising.

Perhaps more surprising is the result of Casson (unpublished) that simply-
connected surgery is possible in dimension 4 if each of a certain explicit set of
infinite sequences of links contains a slice link. On the other hand, failure of
the latter condition implies the existence of some kind of pathology in dimension
4. TFor example, if the sequence of (untwisted) doubles of the Whitehead link con-
tains no slice link, then there is a 4-manifold proper homotopy equivalent to
Sz)<82-point whose end is not diffeomorphic to SB)<R, and a 4-dimensional eounter-
example to the McMillan cellularity criterion. (These results are also due to

Casson.)

16. Knots and the 3-Sphere

All the abelian algebra discussed so far is wvalid for knots in homology 3-
spheres. Similarly, all known knot concordance invariants are actually homology-
cobordism invariants. The group of a knot in SB, of course, has weight 1 (being
generated by the conjugates of any meridian element), but again this is true of a
knot in any homotopy 3-sphere. Still, it is clear that the theory of knots in the
3-sphere, having the concreteness and immediacy of the physical world, is of prime
importance. Moreover, even properties which hold in more general settings might
be more easily observed in the 3-sphere. This has certainly been the case his-
torically. For example, the property A(l)=1 of the Alexander polynomial was

first proved by means of knot projections [2]. (In fact the purely combinatorial
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view of knot theory, in which invariants are defined in terms of knot diagrams and
then shown to be unchanged under the Reidemeister moves, dominated the subject for
a long time [2], [3], [123], [125], [51].) Also, the symmetry property of link
polynomials has been obtained [147] as a comsequence of the existence of 'dual'
Wirtinger presentations of the group. (See [95] for a 'co-ordinate-free' proof

in the more general setting of a homology sphere.) Again, in trying to relate
knot and link theory to 3- and 4-manifolds, presumably the hope is that one might

1

be able to 'see' new information about the manifolds precisely because one is

working with visualizable objects in ordinary space.

In dealing with the 3-sphere, however, there is more involved than just con-
venience, for it is known that different 3-manifolds have different knot theories.
More precisely, it is known that if #® () denotes the set of isomorphism classes
of groups of knots in the closed 3-manifold M, then M = N if and only if #AM) =
#(N). The result in this generality is due to Jaco-Myers [63] (for orientable man-
ifolds) and, independently, Row (unpublished). The fact that the 3-sphere is de-
termined by its knot groups was apparently proved earlier by Comnor (unpublished).
The idea of trying to classify 3-manifolds by their knot theories goes back to Fox,
who used it to recover the (known) classification of lens spaces.

This suggests the problem of trying to characterize the groups of knots in
the 3-sphere. A characterization was given, several years ago, by Artin [5], but
this is in terms of the existence of a particular kind of presentation, and whether
this can be expressed more intrinsically is still unknown.

A good example of a problem which specifically concerns knots in the 3-sphere
is the Smith conjecture that no non-trivial knot is the fixed-point set of a Z/p-
action on S3 (clearly it is enough to comsider p prime). This is false for
knots in homology spheres. On the other hand, most of the partial results on the
conjecture are essentially homological in nature. A notable exception is Wald-
hausen's proof [157] for the case p=2, which uses (as it must) the geometry of
the 3-sphere (in particular, the uniqueness of Heegaard splittings [156]) in an

essential way.
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17. Other Topics

Here we briefly mention ome or two topics which we shall not be able to discuss
in detail.

First, there is the whole question of symmetries of knots, TFor Sl-actions,
the answer is known: only the unknot can be the fixed-point set of an Sl-action
on 83, and the only knots which are invariant under (effective) Sl-actions are
the torus knots. (This follows from the theory of Seifert fibre spaces [134]; see
[65].) For the case of #Z/p-actions on 83 fixing a knot K, we of course have
the Smith conjecture that K must be trivial. This is surely one of the major un-
solved problems in knot theory. It is known to be true for p=2 [157], and there
exist various other partial results, including [16], [42], [45], [50], [56], [109].
Necessary conditions are given in [149] and [108], for a knot X to have a symme-
try of order m in the sense that there is a homeomorphism h of 83 of period
n, with fixed-point set a circle disjoint from K, such that h() =K.

Given an unoriented knot K in oriented S3, one can ask whether or not there
exists an orientation-reversing homeomorphism of 83 taking K to itself, (or
equivalently, an orientation-preserving homeomorphism of S3 taking K to its
mirror-image). If there is, K 1is amphicheiral. If K 1is now oriented, one can
ask whether there is an orientation-preserving homeomorphism of S3 taking XK on-
to K but reversing its orientation. If so, K 1is invertible. If K is amphi-
cheiral, then, for example, all its branched covers will support orientation-re-
versing homeomorphisms. Because of this, amphicheirality is often relatively easy
to detect [135]. Since many knot invariants are independent of the orientation of
the knot, however, it is harder to establish non-invertibility. This was first
done in [151], by analysing automorphisms of the group. See [71], [161] for further
results. Two interesting conjectures relating these concepts to symmetries (see
[75]) are: K 1is amphicheiral if and only if K 1is invariant under reflection
through the origin (van Buskirk); and: K is invertible if and only if there is an
orientation-preserving involution of S3 taking K to itself, reversing its
orientation (Montesinos). Apparently these are true for knots with small crossing

number.
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Alternating knots have always occupied a special place in the subject; for in-
stance, their asphericity was proved [7] before the sphere theorem. Othere inter-
esting results on alternating knots are contained in [21], [22], [101], [102],
[103], [104], [105].

The important work of Schubert on unique factorization [129] and companion-
ship [130], [131] should be mentioned.

For results on the genus of a knot see [136], [110], [59], [133], [22], [101].

The question of the uniqueness of Seifert surfaces of minimal genus has re-
ceived considerable attentionm [4], [153]., [162].

Finally, there is an extensive literature on the knots which arise as links of
complex algebraic plane curve singularities. (These are certain iterated cables of

the unknot.) See [97] and references therein.
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