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In [19, 20] we introduced topological invariants IH~ (X) called intersection
homology groups for the study of singular spaces X. These groups depend on
the choice of a perversity p: a perversity is a function from {2, 3, ... } to the
non-negative integers such that both p(c) and c - 2 - p(c) are positive and in­
creasing functions of c (2.1). The group I Hf(X) is defined for spaces X called
pseudomanifolds: a pseudomanifold of dimension n is a space that admits a
stratification

such that X n - X n _ 2 is an oriented dense n manifold and Xi - Xi _ 1 for i ~ n - 2
is an i manifold along which the normal structure of X is locally trivial (§ 1.1).

The groups I H~ (X) are the total homology groups of a subcomplex I C~ (X)
of the ordinary locally finite chains C*(X). We recall the definition ([20], §1.3)
(which uses a fixed stratification of X)

{

i chains c that intersect each X n - k for k > 0 in a set ofI
ICf(X)= ?imension at most i-k+p(k) ~nd whose b?und~ry 8c

1 Intersects each X n -k for k > 0 In a set of dImenSIon at
most i -k-l +p(k).

Since the conditions I C~ (X) are local, the I C~ (U) for U open in X form a
sheaf of chain complexes, denoted IC~(X). The purpose of this paper is to
study this sheaf of chain complexes. Because sheaves of cochain complexes are
more familiar, we renumber by ICii = ICf(X). By studying this complex of
intersection chains, IC;, we obtain results about IH~(X) because the hyper­
cohonlology group yt-i(IC;) is IHi(X).

The change of point of view from the groups IH~(X) to the sheaves IC·
was suggested to us by Deligne and Verdier. It leads to many advantages,
some ()f which we now list.

* Partially supported by National Science and Engineering Research Council of Canada and the
Sloan Foundation
** Partially supported by National Science Foundation
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(1) We consider IC· as an object in the derived category Db(X) of the ca­
tegory of sheaves of 71 modules on X. This allows us to bring the functorial
apparatus of Db(X) to bear. (This apparatus is reviewed in Chap. 1.)

(2) Motivated by the vanishing properties of the stalk homology of IC·,
Deligne gave [14] a second construction of it using the standard operations of
sheaf theory. This construction is the key idea in this paper:

Theorem (§3.5). Let L=:;k: Db(X)~Db(X) be the truncation functor (§ 1.12) which
kills the stalk homology of degree >k. Suppose Uk is X -Xn - k and ik is the
inclusion Uk~Uk + l' Then there is a canonical isomorphism in Db(X)

IC·(X) = L ~p(n)-nR in* ... L ~p(3)-nR i3* L ~p(2)-nR i2*71u2 [n].

This construction works in any context where both sheaf theory and strati­
fications have been developed. So it produces intersection homology groups for
topological pseudomanifolds (the approach of [20] required a piecewise linear
structure) and for algebraic varieties in any characteristic.

(3) There is a stratification free characterization of IC·.

Theorem (§4.1). For any topological pseudomanifold X, there is a constructible
complex (§ 1.11) IC· in Db(X) which is uniquely characterized up to -canonical
isomorphism in Db(X) by the conditions:

(a) IC·IX -l'=7Lx _ I [n] for some subset l'eX of dimension n-2.

(b) The homology of every stalk vanishes in dimension < - n.

(c) dim{xEXIHm(IC:)=FO}~n-min{clp(c)=n+m} for all m~ -n+l.

(d) dim{xEXIH~(IC)=F0}~n-min{clc-2-p(c)= -m} for all m~-1.

Here IC: is the stalk and H~(IC·) (§ 1.7) may be thought of as the compact
support hypercohomology of a small open regular neighbourhood around x.

This yields the following axiomatic characterization of intersection ho­
mology, which does not depend on derived categories:

If S· is a constructible complex of fine sheaves satisfying (a) through (d)
above, then the cohomology of the complex

... ~r(X;Si-l)~r(X;Si)~r(X;si+l)...

is naturally isomorphic to IH~(X).

This characterization implies the topological invariance of the intersection
homology groups. In particular they are independent of the stratification of X.

(4) Sheaf theory allows one to give local (sheaf theoretic) expressions for
global facts on hypercohomology. For example the canonical maps of intersec­
tion homology theory (p(c) ~ ij(c) for all c)

H*(X)~ IH~(X)~ IHt(X)~ H*(x)

can be defined locally by giving maps in Db(X) of the corresponding sheaves of
cochain complexes (§ 5.1, §5.5). Since such a map can be completed to a distin­
guished triangle, the vanishing of the third term of the triangle gives a local
criterion for (x, 1] and OJ to be isomorphisms (§ 5.5, §5.6).
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Similarly, the intersection pairing (where p(c) +q(c) = c - 2 for all c)

I H~ (X)(g)IH~(X)~H *(X)

results from a pairing of the corresponding objects in Db (X) (§ 5.2). Poincare
duality also has a local expression:

Theorem (§5.3). If p(c)+q(c)=c-2 for all c, then if X is oriented

IC~(g)<Q ~ RHom·(IC~,ID~)(g)<Q

where ID~ is the dualizing complex on X.

The Verdier duality theorem (§ 1.7) shows that this implies Poincare duality
on the hypercohomology

I H~ (X)(g)(Q ~Hom(IHi (X), <Q)

provided X is compact.
There is a perversity m for which the intersection homology groups (with

rational coefficients) are particularly important for the study of a complex

analytic variety X. This is the middle perversity m(c) = c -
2

. This makes sense
2

since complex analytic varieties admit stratifications with only (real) even dim­
ensional strata.

This paper contains several results on the middle group I H~(X; <Q). Among
these are:

(1) Self duality: if i +j = n, then

I Hf(X) ~Hom(IH7(X), <Q)

this results from Verdier local duality as explained above.

(2) Kunneth theorem (§ 6.3):

IH~(X x Y)~IH~(X)(g)IH:(Y).

(3) Lefschetz hyperplane theorem:

Theorem (§ 7.1). Suppose X is an n dimensional sllbvariety of complex projective
space and H is a generic hyperplane. Then the map

a*: IH~(X nH)~IH~(X)

(where (X* is the homomorphism induced by the normally nonsingular inclusion
X n H~X (§ 5.4)) is an isomorphism for i < n -1 and is a surjection for i = n-1.

This paper contains three axiomatic characterizations of the complex of
intersection chains IC~. Their ranges of validity are summarized as follows:

1. [AX 1JR(§ 3.3) uses a (fixed) stratification
valid for any perversity p
and any coefficient ring R.

2. [AX 2J (§ 4.1) stratification independent
valid for any perversity p
and any coefficient ring R.
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3. [AX3] (§6.1) stratification independent
valid for middle perversity m
and field coefficients.

We would like to thank J. Cheeger, W. Fulton, O. Gabber, S. Gelfand, C.
McCrory, P. Siegel, J.-L. Verdier, and K. Vilonen for valuable conversations.
We have especially profited from conversations with P. Deligne whose ideas
are fundamental to this paper. A number of people have contributed correc­
tions and improvements to the first draft of this paper. We mention in particu­
lar P. Deligne, A. Borel, and J.-L. Verdier. We are grateful to the IHES for
their hospitality and support.

Table of Contents

§ 1. Sheaf Theory . . . . . . . . . .
1.1. Topological Pseudomanifolds .
1.2. Stratified Maps . . .
1.3. Complexes of Sheaves . . . .
1.4. Constructible Sheaves . . . .
1.5. Quasi-Isomorphisms and Injective Resolutions
1.6. Hypercohomology.
1.7. Sheaf Horn ...
1.8. Derived Category
1.9. Derived Functors
1.10. Triangles. . . .
1.11. Exact Sequence of a Pair .
1.12. Duality . . . . .
1.13. Standard Identities
1.14. Truncation . . . .
1.15. Lifting Morphisms .

§2. 1H* as Hypercohomology for P.L. Pseudomanifolds
2.1. The Complex of Sheaves IC·
2.2. fR. Local Coefficient Systems . . . . . . .
2.3. Indexing Schemes .
2.4. Calculation of the Local Intersection Homology.
2.5. Attaching Property of IC· . .

§3. Sheaf Theoretic Construction of IC· .
3.1. Deligne's Construction. .
3.2. Attaching Maps. . . . . . .
3.3. Axioms [AX 1] . . . . . . .
3.4. Alternate Formulations of [AX1](d) .
3.5. [AX 1] Characterizes Deligne's Construction
3.6. IC· Satisfies [AX1] ..

§4. Topological Invariance of IC·. .
4.1. Axioms [AX 2J . . . . .
4.2. The Canonical j5 Filtration
4.3. Proof of Topological Invariance. .

§ 5. Basic Properties of IH * . . . . . . .
5.1. The Maps from Cohomology and to Homology .
5.2. The Intersection Pairing . . . . . . . . . .
5.3. le· and Verdier Duality . . . . . . . . . . . .
5.4. Functoriality for Normally Nonsingular Maps. .
5.5. The Obstruction Sequence for Compairing two Perversities .
5.6. Normal Varieties, Local Complete Intersections, and Witt Spaces

81
81
82
83
83
85
86
86
86
87
88
89
89
91
93
94

95
96
97
97
98
99

100
100
101
102
102
103
105

105
106
107
109
110
111
112
113
115
117
118



Intersection Homology II

§ 6. The Middle Group . . . . . . .
6.1. Axioms [AX3] .
6.2. Small Maps and Resolutions
6.3. Kunneth Formula. . . . .

§ 7. Lefschetz Theorem on Hyperplane Sections.
7.1. Statement of the Lefschetz Theorem .
7.2. Intersection Homology of Affine Varieties
7.3. Proof of the Lefschetz Theorem
7.4. Consequences in Ordinary Homology .

§9. Generalized Deligne Construction and Duality. .

81

119
119
120
121

122
122
122
124
125

126

Each chapter n =f: 1 begins with a section §n.O which specifies the assumptions on the space, its
stratification (if any), the coefficient ring, and the perversity.

Intersection homology with coefficients in a local system is treated in a series of paragraphs
marked ff, which are distributed throughout the paper.

Chapter 1. Sheaf Theory

This chapter (except for §1.1 and §1.2) consists of a summary (without proofs)
of the theory of derived categories. We have included this material for the
convenience of the reader. It is not necessary to absorb all of Chap. 1 before
beginning to read this paper. The main references for this chapter are [3, 6, 17,
23, 25, 41, 42, 43]. Additional material on sheaf theory may be found in [4, 5,
9, 38, 39J.

We describe a single version of the derived category of the category of
sheaves (on the topological spaces which are defined in §1.1) which is closed
under the standard operations of derived category theory, and which is rich
enough for all the examples and applications we wish to consider.

1.1. Topological Pseudomanifolds

Definition. A O-dimensional topologically stratified Hausdorff space is a count­
able collection of points with the discrete topology.

An n-dimensional topological stratification of a paracompact Hausdorff to­
pological space X is a filtration by closed subsets

such that for each point PEX i -X i _ 1 there exists a distinguished neighborhood
N of p in X, a compact Hausdorff space L with an n - i-I dimensional to­
pological stratification,

L=Ln _ i _ 1 => ... =>L 1 =>Lo=>L_ 1 =c/J

and a homeomorphism
c/J: JRi x coneO(L)-+-N

which takes each JRixconeO(Lj) homeomorphically to NnX i + j + 1 • Here,
coneO(L) denotes the open cone, Lx [0, 1)/(/,0),,-,(1',0) for alII, I'EL. We use the
convention that L_ 1 =c/J and coneO(c/J)=one point.

Thus, if Xi - Xi _ 1 is not empty, it is a manifold of dimension i. It is called
the i-dimensional stratum of X and is denoted Si-
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If X admits a topological stratification then it is locally compact, satisfies
conditions h Ic and cl c of Borel-Moore [6J and is a cs space in the sense of
Siebenmann [36J. Every compact topologically stratified space can be embed­
ded in Euclidean space.

A topologically stratified Hausdorff space X is purely n-dimensional if X n

- Xn _ 1 is dense in X. In this case, all notions of dimension (topological dim­
ension [24], cohomological dimension [5] §1.5 p. 18, Borel-Moore dimension
[6J coincide and equal n. A topologically stratified Hausdorff space X is pu­
rely n-dimensional if and only if every open subset of X is n-dimensional in
any of the above senses.

Definition. A topological pseudomanifold of dimension n is a purely n-dimen­
sional stratified paracompact Hausdorff topological space X which admits a
stratification

such that X n - 1 =Xn- 2 (i.e., Sn=X -Xn- 2 is an n-dimensional manifold which
is dense in X). We use the symbol L to denote the singularity subset X n - 2•

The following types of spaces admit topological stratifications: complex al­
gebraic varieties, complex analytic varieties, real analytic varieties, semi-algeb­
raic and semi-analytic sets, subanalytic sets, Whitney stratified sets [40J, ab­
stract (or Thom-Mather) stratified sets [30J, and piecewise linear spaces.

The following types of spaces are topological pseudomanifolds: irreducible
(or equidimensional) complex algebraic or analytic varieties, the locus of points
p in a normal n-dimensional real algebraic variety such that every neigh­
borhood of p has topological dimension n, n-dimensional triangulated spaces
so that each n - 1 simplex is contained in exactly two n-simplices.

Throughout this paper we assume that all spaces are topological pseudo­
manifolds.

1.2. Stratified Maps

Let X and Y be stratified topological pseudomanifolds.

Definition. A continuous map f: X -+ Y is stratified if it satisfies the following
two conditions:

(Cl) For any connected component S of any stratum ~- ~-1' the set
f-1(S) is a union of connected components of strata of X.

(C2) For each point PE~- ~-1 there exists a neighborhood N of p in ~, a
topologically stratified space

F=Fk-:::.)Fk_1 -:::.)· .. -:::.)F_ 1 =4>

and a stratum preserving homeomorphism

FxN-+f-1(N)

which commutes with the projection to N.

Remark. If f: X -+ Y is a subanalytic map between subanalytic sets then there
exist stratifications of X and Y such that f is stratified. It is not possible
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however, to stratify the spaces in an arbitrary diagram of subanalytic (or even
complex analytic) maps in such a way that each map is stratified.

1.3. Complexes of Sheaves

Let X be a topological pseudomanifold. Throughout this paper, R will denote
a regular Noetherian ring with finite Krull dimension. (We shall be mainly
concerned with the cases R = 7l, (Q, or <C.)

Throughout this paper we shall use the word sheaf to mean a topological
sheaf of R-modules. Sheaves on X will be denoted A, B, etc., and bounded
complexes of sheaves on X will be denoted A-, B-, etc. The constant sheaf on X
is denoted Rx . Whenever convenient, we identify a sheaf A with the complex
A- given by AP =0 for p=t= 0 and A0 =A.

Let X be a topological pseudomanifold and let A- be a bounded complex
of sheaves of R-modules on X, i.e., a sequence

with dod=O and AP=O for Ipl sufficiently large. The sheaf of sections as­
sociated with A- assigns to any open set U the chain complex

...~ r(U; AP-l)-+ r(U; AP)-+r(U; AP+ 1)-+ ....

The pth cohomology sheaf HP(A-) associated with Ae is the sheafification of the
presheaf whose sections over an open set U is the pth homology group of this
chain complex. The stalk at a point XEX of the sheaves AP and HP(A-) are
denoted A~ and HP(A-)x respectively. In particular HP(A~)~ HP(Ae)x. The com­
plex A[n] is defined by A[n]P=Ap+n. The restriction of A- to a subspace ¥cX
is denoted A-It:

1.4. Constructible Sheaves

Definition_ A sheaf S on X is called locally constant if every point XEX has a
neighborhood U such that the restriction maps

are isomorphisms for all yE U.
A complex of sheaves is called cohomologically locally constant (CLC) if the

associated local cohomology sheaves are locally constant.
Let X 0 eX 1 c ... eXn = X be a filtration by closed subsets. A complex of

sheaves A- on X is said to be constructible with respect to this filtration if, for
each j, A-\(X j -Xj _ 1) is CLC, and has finitely generated stalk cohomology.

If X has a subanalytic structure, then the complex A
e

is said to be sub­
analytically constructible if it is constructible with respect to some filtration of
X by closed subanalytic subsets. One defines PL-constructible and algebrai­
cally constructible complexes of sheaves similarly. A- is topologically construc­
tible if it is bounded and is constructible with respect to some topological
stratification of X.

Note. All complexes of sheaves considered in this paper will be topologically
constructible.
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If A- is a complex of sheaves on X which is constructible with respect to a
given stratification and if f: X~Y is a stratified map then f* A- is construc­
tible with respect to the given stratification of 1': A similar remark holds for
f*·

Theorem_ Suppose X is a topological pseudomanifold and Ae is a topologically
constructible complex of sheaves on X. Then A- is perfect in the sense of [3]
Exp. 9, cohomologically constructible in the sense of Verdier [42, 45], and
satisfies condition (~Q) of Wilder ([47, 6]). Therefore yti(X; A

e

) is finitely gen­
erated, when X is compact. ([6] Prop. 6.8.)

Proof We claim that for any XEX there is a neighborhood basis
U1~ U2~ U3 ~ ••• such that for each i and m, the restriction map

~i(Um;A-)~~i(Um+1; Ae

)

is an isomorphism. It follows that ~i(Um;Ae)~Hi(Ae)x,but Hi(Ae)x is a finitely
generated R-module.

By [3J Exp. 9 §5.1 this (plus the fact that R is a regular Noetherian ring)
will imply A- is perfect.

By [6J Prop. 6.8 this will imply A
e

satisfies the Wilder condition, which
implies yti(X,A

e
) is finitely generated for compact X.

By [V] Theorem 8, this will imply A
e

satisfies condition CC of Verdier.

Proof of Claim. Fix XEX and let N be a distinguished neighborhood N~IR.i

x coneO(L) as in §1.1. Let Y be the join Si-1 *L, stratified in the obvious way
(i.e., Si - 1 e Si -1 *L is a stratum but Le Si - 1 *L is not a union of strata unless
i = 0). This determines a stratification of the open cone,

coneO(Y)= Yx [0, l)/(y, 0) ""(y', 0) for all y,y'E1':

Choose a stratum preserving homeomorphism t/J: coneO(Y)~ N, with tjJ(vertex)

= x. Let Urn c N be the smaller neighborhood Urn = ljJ (Y x [0, ~)) we will now

verify the claim for m = 1, the other cases being very similar. Define a I-param­
eter family of stratum preserving stretching embeddings,

G: U2x[i,1]~U1

G«y, t), s) =(y, tls).

For any sE[i,l] let is: U2~U2 x [1, 1] be the inclusion at the level s. We
must show that

J'f*(U2 ; iTG* A)~J'f*(U2; iiG* A).

In fact, iT G* A- and i~ G* Ae

are both quasi-isomorphic to R 1t* G* A- where 1t:

U2x [1, 1]~U2 is the projection to the second factor. To see this, consider the
effect on stalk cohomology of the natural map
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For any x' = (y, t)E U2 the stalk cohomology of i: G* A
e

is simply He(Ae)(g,t/S)'
However, by [17] 4.17.1 the stalk cohomology of Rn*G* A

e

is
..if*(n- 1 (x'); G* A

e

). Since n- 1(x') is an interval, the following lemma now im­
plies that this natural map is an isomorphism on stalk cohomology (where Be
=G* A

e

).

Lemmae Let Be be a complex of sheaves on the unit interval I. Suppose the
cohomology sheaves Hq(B

e
) are locally constant. Then for any tEI, the restriction

map

is an isomorphism.

Proof of Lemma. The sheaves Hq(Be

) are constant on I. The spectral sequence
for the hypercohomology of Be collapses, since

E~,q=HP(I; Hq(Be))=HP(I; Hq(Be)t)=0

unless p = 0 and E~' q = Hq(Be)t.

1.5. Quasi-Isomorphisms and Injective Resolutions

A sheaf map cjJ: Ae~Be which commutes with the differentials, is called a
quasi-isomorphism if the induced map HP(cjJ): HP(Ae)~HP(Be) is an isomor­
phism for each p. If cjJ is a quasi-isomorphism and if each BP is injective, then
Be is called an injective resolution of A

e
. Injective resolutions exist for any

complex of sheaves of R-modules and are uniquely determined up to chain
homotopy.

We now recall the "canonical" bounded injective resolution of a bounded
complex of sheaves ([6] §1.3, [4] p. 32, [17] I §1.4, II §7.1). First we describe
the canonical resolution of a sheaf B.

For each XEX let Bx--+I(x) be the canonical embedding of the stalk of B
into an injective R-module, as described in [4] p. 32 and [17] I §1.4. (If R is a
field, Bx will already be injective, so we may simplify the construction by tak­
ing I(x)=Bx ') We obtain a canonical embedding of B into the injective sheaf
1° where

10(U)= nl(x).
XEU

Similarly the cokernel of B--+lo has a canonical embedding into an injective
sheaf 11

. Continuing this way gives a resolution

B~IO~ll~....

By [44] and [3J Exp.2 Theorem 4.3, the sheaf kerdp +n + 1 is injective (where n
= dim(X) and p = dim (R)). Define the canonical resolution of B to be

This construction is functorial in B.
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e
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be the canonical injection resolution of Am. These Jm,r form a double complex
with differentials Jm,r -+Jm + 1,r induced from the differential Am-+Am+ 1e The
canonical injective resolution A

e
-+le is the single complex

IP = ffi Jm,r
m+r=p

which is associated to this double complex [17] I §2.6.

1.6. Hypercohomology

The pth hypercohomology group YfP(X; Ae) of a complex of sheaves A
e

is defined
to be the pth cohomology group of the cochain complex

... -+r(X; IP-l )-+r(X; IP)-+r(X; IP+ 1)-+ ...

where le is the canonical injective resolution of A
e
. This group is naturally

isomorphic to the pth cohomology group of the single complex which is as­
sociated to the double complex CP(X;Aq) [17] 11 §4.6.

The double complex CP(X; Aq) gives rise to a spectral sequence for hyper­
cohomology, with

1.7. Sheaf Horn

If A and B are sheaves on X, let Hom(A, B) denote the abelian group of all
(global) sheaf maps A-+B. Let Hom(A, B) be the sheaf whose sections over an
open set U are r(U;Horn(A,B))=Hom(AIU,BIU). If Ae and Be are complexes
of sheaves, let Horne(A

e
, B) be the single complex of sheaves which is obtained

from the double complex HornP,q(Ae, Be) = Horn (AP, Bq) in the usual way.
A cocycle ~Er(X;Homk(Ae,Be)) is, a chain map from r(X;Ae) to

r(X;Be[k]) which commutes with the differentials of Ae and Be. ~ is a coboun­
dary if it is chain homotopic to O.

If 8 1 and 82 are sheaves, we may consider them to be complexes in degree
o(i.e. Si =0 for p =t=0) with d=0. Then the sheaf Exti (8 1, 82) is equal to the ith

cohomology sheaf associated to Hom
e(8 1, le) where le is an injective resolution

of 8 2•

1.8. The Constructible Derived Category [42, 43, 23]

Let K(X) denote the category whose objects A
e

are topologically constructible
bounded complexes of sheaves on X and whose morphisms c/J: Ae-+Be are ho­
motopy classes of sheaf maps which commute with the differentials. Let
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INJ (X) denote the category of constructible bounded complexes of injective
sheaves and chain homotopy classes of sheaf maps. There is an equivalence of
categories between INJ(X) and the constructible derived category Db(X), in­
duced by the canonical functors

INJ (X)--+- K (X)--+- Db(X).

An object in Db(X) is a doubly bounded complex of topologically con­
structible sheaves. A morphism in Db(X) from A- to B- is an equivalence class
of diagrams of chain maps A- +-C- --+-B- where A- +-C- is a quasi-isomorphism.
Two such diagrams

are considered equivalent if there is a homotopy commutative diagram

where f is a quasi-isomorphism.
Two complexes A- and B- are isomorphic in Db(X) if there is amorphism

A- +-C-~B- where both arrows are quasi-isomorphisms. In this case we say A­
and B- are different incarnations of the same isomorphism class of objects in
Db(X).

If B- is injective, then

Remark. Although a chain map 4>: A-~B- which induces isomorphisms on the
associated cohomology sheaves becomes an isomorphism in Db(X), there exist
sheaf maps which induce the 0 map on cohomology but which are not 0 in
Db(X). (However, see §1.13.)

1.9. Derived Functors

A covariant additive functor T from complexes of sheaves to an abelian ca­
tegory gives rise to its right derived functor RT defined on Db(X) by the for­
mula

where I- is the canonical injective resolution of A- (see § 1.5).
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This procedure applies to the functors Hom(B·, *), r (global sections), I:
(global sections with compact support), f* (direct image), and i; (direct image
with proper supports), where f: X~ Y is a continuous map. For a closed sub­
space Z eX, the functor Fz assigns to any complex of sheaves S· the complex
of global sections of S· which vanish on X - Z. The i th cohomology group of
RTz(S) is denoted Yfi(S).

In certain cases we may substitute a simpler resolution for I· (Hartshorne
[23]). If T=r then RT(A·) = T(J·) where J. is a flabby or a fine resolution of
A·. If T=Hom·(B·, *) we may take r to be any flabby or fine resolution of A·
by sheaves of injective R-modules. Since f* is exact we have Rf*(A)~Lf*(A·)

~f*(A·). If f is an inclusion of a subspace then i; is exact so Ri;(A)~J;(A·).

Define A·@B· to be the single complex which is associated to the double
L

complex AP@Bq. Define the derived functor A·@? by the formula

where J.~B· is a resolution of B· whose stalks are flat R-modules. If R is a
L

field then A·@B·~A·@B·.

To verify that these functors are defined on the constructible derived ca­
tegory, we need the following

Proposition. If A· and B·EDb(X) are constructible with respect to a given
stratification of X, then so are

L

RHom·(A·, B·) and A·@B·.

Furthermore Rf* A· and Ri; A· are constructible with respect to a given
stratification of 1: whenever f: X~ Y is stratified with respect to these
stratifications.

1.10. Triangles ([23] p. 20, 32)

Db(X) is not an abelian category, but it has "distinguished triangles" as a re­
placement for exact sequences. A triangle of morphisms in Db(X),

A·~B·

[1\/
C·

is called distinguished if it is isomorphic (in Db (X)) to a diagram of sheaf maps

A·~fr

[1\/
M·
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where Me is the (algebraic) mapping cone of cP and Be-+Me-+A:[I] are the
canonical maps.

For example, a short exact sequence of complexes of sheaves becomes a
distinguished triangle in Db(X).

Any edge of a distinguished triangle determines the third member up to
(non canonical) isomorphism in Db(X).

A distinguished triangle determines a long exact sequence on the associated
cohomology sheaves,

as well as a long exact sequence on hypercohomology.
If Fe is a complex of sheaves, and

is a distriangle in Db (X), then we have distinguished triangles

1.11. Exact Sequence of a Pair

Let j: Y -+X be the inclusion of a closed subspace. Denote by i: U --+ox the
inclusion of the open complement. If A

e

is a complex of sheaves on X, there
are distinguished triangles in Db(X),

Ri1i*I\/O an:j*fl\iAO
Rj*j*A

e

Ri*i*A
e

The second triangle can be obtained from the first by Verdier duality. (see
§1.12) In the case Ae~zx the hypercohomology exact sequences are simply the
long exact cohomology sequences for H*(X, Y) and H*(X, U) respectively. If Ae

~ID~ we obtain the long exact homology sequences for H *(X, U) and
H *(X, Y) respectively.

1.12. Duality

Let X be a topological pseudomanifold.
In [6] Borel and Moore defined the dual 3J(A) of any complex of sheaves

Ae and showed (when R is a Dedeking ring) that for any open set U c X the
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cohomology groups Jt;i(U: A) and ~i(V;3)(A
e
)) are dual. This means there is

a natural (split) exact sequence

O-+Ext(~q+1 (V; A), R)-+~-q(U;1)(Ae

))

-+Hom(~q(U;A), R)-+O.

(Here, :Yt::q denotes the hypercohomology with compact supports, i.e., Rq I::.) In
fact, this property characterizes 1)(A

e
) up to quasi-isomorphism. It implies, for

example, that if X is compact and R is a field

In [42J Verdier showed that there is a complex of sheaves ID~ (called the
dualizing complex) such that

3)(Ae)~ RHome(Ae,ID~)

for any bounded complex A
e
. He identified ID~ = 3)(R x). If Be~ 3)(A

e
) then the

corresponding pairing

is said to be a Verdier dual pairing.
If A

e
is a bounded topologically constructible complex of sheaves on X

then there is a natural isomorphism in Db(X),

We now describe two important functors Rft: Db(X)~Db(y) and f!:
Db(Y)~Db(X)which were defined by Verdier for any continuous map f: X -+ Y
between locally compact topological spaces. Rft is the right derived functor of
the direct image functor with proper supports, ft.

r(U,ft Ae)={yEr(f- 1 (V),A
e
)lsupport of y is proper over V}. The stalk

H*(RftAe)y is the hypercohomology with compact supports of the fibre f- 1 (y),
with coefficients in A

e
. If f is proper than Rf* =Rft.

If le is a complex of injective sheaves on l: f!(l
e
) is defined to be the sheaf

associated to the presheafwhose sections over an open set VeX are r(V;f!l)
= Home(ftK~, I) where K~ is the standard injective resolution of the constant
sheaf Ru. The Verdier duality theorem is a canonical isomorphism in Db(y),

Rf*RHome(Ae,f!B)~RHome(RftAe,B)

for any AeEDb(X) and B-EDb(y).

Remarks on f! and ID~

If f: Z ~X is the inclusion of a closed subspace then Jri(Z ;f! A-) is denoted
~;(X;A). This group is also constructed as a derived functor in §1. There is a
natural isomorphism

IDe I"'o.If!Rx= pt
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where f: X ~point. The complex ID~ is quasi-isomorphic to the complex of
sheaves of singular chains on X which is associated to the complex of pre­
sheaves

r(u; c- P)= Cp(X, X - U;R).

The associated cohomology sheaves of ID~ are nonzero in negative degree
only, with stalks H-P(1D~)x=Hp(X,X-x;R). The hypercohomology groups
Yf* (X ;ID~) equal the ordinary homology groups with closed support of X (i.e.,
Borel-Moore homology). The spectral sequence associated with the complex
ID~ is the Grothendreck-Zeeman spectral sequence [48J.

For any homology n-manifold X, ID~[ -nJ is naturally isomorphic to the
orientation sheaf of X. If X is a smooth oriented manifold then ID~[-nJ is
naturally isomorphic to the complex of differential forms on X.

In terms of duality, the functors f! and Ri; may be described by

f! Be~ 'nx(f* 'ny(Be))

Ri; A
e
~ 'ny(Rf* 'nx(A

e
))

where f: X~ Y is a continuous map between topological pseudomanifolds,
AeEDb(X) and BeEDb(y).

If A
e

is a topologically constructible complex of sheaves on X, j: x~X is
the inclusion of a point, and N is a distinguished neighborhood of x, of the
type considered in §1.1 and §1.3 then

HPU* A)~YfP(N;Ae)=HP(Ae)x,

HPU! A e

) ~ .it;;P(N; A e

).

We call these groups the stalk homology and the costalk homology (respec­
tively) of Ae at x.

Proposition (1.12). The dualizing complex ID~ is constructible with respect to any
topological stratification of the topological pseudomanifold X.

The proof follows from the local product structure of a topological
pseudomanifold and the fact that

where 1r 1 and 1r2 are the projections of VX W to the first and second factors
respectively.

§ 1.13. Standard Identities

Suppose X and Y are topological pseudomanifolds with fixed stratifications
and f: X -+ Y is a stratified map. Fix AeEDb(X) and Be, Ce, EeEDb(y) which are
constructible with respect to these stratifications. Then there are natural iso­
morphisms in Db(X) and Db(y),
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(1) 3)(Ae)=RHome(Ae,ID~)

(2) ID~ = !)(Rx) =f!(1D~)

(3) Ae~ !)(3)(Ae))

L
(4) RHome(Be®ce, Ee)~RHome(Be, RHome(C e, Ee))

(5) f!Be~!)xf*!)yBe

(6) R~Ae~3)yRf*3)xAe

L L

(7) f*(Be®ce)~f*Be®f*ce

(8) f! RHome(Be, C)~RHome(f*Ae,f!Be)

(9) Rf*RHome(f*Be, Ae)~RHome(Be, Rf*Ae)

(10) Rf*RHome(Ae,f!Be)~RHome(R~Ae, Be)

(11) If f: Y x Z~Y is the projection to the first factor, then

(12) If X is a subset of Y with inclusion f: X~ Y then

X open in Y=>f!Be~f*Be

X closed in Y=>R~Ae~Rf*Aee

(13) Fibre square:
If

is a fibre square, then

RJ*jf*Ae~n*Rf*Ae for any AeEDb(X).

Further identities for CLC sheaves (§ 1.4):

(14) If Be is CLC on Y then

L L
RHome(Ce, Ee®Be)~RHome(Ce, Ee)®Be

(15) If f: x n -+ ym is an inclusion of one oriented homology manifold in an­
other one, and if Be is CLC on Y, then f! Be is CLC on X and

f!Be~f*Be[m-n].

(16) If Be and Ceare CLC on ~ then
(a) Each yE Y has a neighborhood U such that BelU is quasi-isomorphic

to a complex of constant sheaves
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(b) RHom·(B-, C-) is CLC

(c) (RHom-(B-, C-))x~RHom-(B: C:)
(d) If HP(B-)=O for all but one value of p, then B- is naturally isomor­

phic (in Db(y)) to a local coefficient system.

(17) If B- is CL C on Y x lRn then restriction of sections induces a quasi-iso­
morphism

n*R1t*B-~B-

where re: Y x IRn -+- Y is the projection to the first factor. (This is because the
stalk cohomology of n* R 1t* B- at any point (y, t) is equal to the hypercoho­
mology of the restriction of B- to n- 1 (y). Since B- is CLC its cohomology
sheaves are constant on 1t - 1 (y) and the spectral sequence for this hypercoho­
mology group collapses, i.e., E~q=£P(lRn; Hq(B-))=O unless p=O and E~q

=(Hq(B-))(y,t). See lemma following Theorem 1.4).

1.14. Truncation ([13, 14, 23J)

If A - is a complex of sheaves on X, define new complexes

if n<p

if n=p
if n>p,

if n<p
if n=p
if n>p.

These functors r ~ P and r ~ P determine "truncation" functors on the derived
category Db(X). Notice, however, that r ~pA - is naturally quasi-isomorphic to
the complex

if n~p

if n=p+ 1
if n>p+ 1

while r?;p A - is quasi-isomorphic to the complex

if n<p-1
if n= p-1

if n~p.

Theorem_ Suppose A- and B- are complexes of sheaves on X. Then,

1. ! ~p r ~qA -=r ~min(p,q)A-.

2. (r~pA-)x=r~p(A:) where A: denotes the stalk at XEX.

3. Hk(r< A-) ={Hk(A-)x for k~p
=P x 0 for k>p.

4. If </J: A· -+- B· is a sheaf map which induces isomorphisms on the associated
cohomology sheaves,
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then T:~p</J: T:~pA--+T:~pB- is a quasi-isomorphism.
5. If f: X -+ Y is a continuous map, and C- is a complex of sheaves on Y, then

T: ~pf*(C-)~ f* T: ~p(C-).

6. F'or any A- E Db(X) there is a distinguished triangle

7. If R is a fiield and A- is a CLC complex of sheaves of R-modules on X,
then there are natural quasi-isomorphisms

T:~ -p RHom-(A-, Rx)-+T:~ -p RHom-(T:~pA -, Rx)+-R Hom-(T: ~pA-, Rx).

Deligne has also defined a "truncation over a closed subset" functor:

Definition_ Let Y be a closed subset of X and let S- be a complex of sheaves
on X. Fix an integer p. Then T:~pS- is the sheafification of the presheaf T-,
where

(a) for i<p, Ti(U)= r(U; Si)

i _{r(u; Si) if Un Y =</J
(b) for i=p, T (U)- kerdcr(U; Si) if UnT=t=1J

T i(U) __ {r(u; Si) if Un Y =cjJ(c) for i>p, o if Un Y*cjJ.

The stalk of the associated cohomology sheaf is

if XE Y and i>p

otherwise.

The functor T:~p passes to a functor on the derived category Db(X).

1.15. Lifting Morphisms

Proposition_ Let f: A-~B- be a morphism in Db (X). Suppose Hi(A-)=O for i>p
and Hi(B-)=O for i<p.

Then the canonical map

is a bijection.
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Proof. Up to quasi-isomorphism, A· and B· can be represented by complexes

d P - 1

...~AP-l~AP~ 0 ~ ...

O Ip dP IP+ 1...~ ~~ ~ ...

95

where Id is injective for all d. By injectivity, any morphism in Db(X), f: A·--+-B·
corresponds to an actual map 1 between these complexes, i.e., a map

cokerdp
- 1 =HP(A·)--+-kerdP=HP(B·) 0

Proposition. Suppose A·, B·, and C· are objects in Db(X) and that Hn(A·)=O for
all n~p+ 1. Let t/J: B· --+-C· be be a morphism such that t/J*: Hn(B·)--+-Hn(c·) is
an isomorphism for all n ~p. Then the map induced by t/J,

HomDb(X)(A·, B·)--+-HomDb(X)(A·, C·)

is an isomorphism. In particular, any cjJ: A· --+-C· has a unique lift (in Db(X))
eT>: A· --+- B· such that cjJ = fjJ 0 eT>.

Proof. Let M· denote the algebraic mapping cylinder of fjJ. From the long
exact sequence on cohomology which is associated to the triangle

B·~C·

[l\/
M·

we see that Hn(M·)=O for all n~p-1. Furthermore, for cjJ: A·~C· the com­
position f} 0 cjJ: A·~M· induces the 0 map on HP(A·)~HP (M·). The preceding
lemma implies that the map induced by e

HomDb(X)(A·, C·)~HomDb(X)(A·, M·)~Hom(HP(A·), HP(M·))

is the omap. Similarly HomDb(X)(A·, M·)[ -1]=0. The conclusion now follows
from the exact sequence

~HomDb(X)(A·,M·)[ -1]--+HomDb(X)(A·, B·)

--+HomDb(X)(A·, C·)--+HomDb(X)(A·, M·)

§ 2. IH~ as Hypercohomology, for P.L. Pseudomanifolds

In this chapter we show how the construction of IH~(X) from [20] actually
defines a complex of sheaves on X (the complex of (p, *)-allowable piecewise
linear chains). We calculate the local cohomology groups of this complex and
find that

IHf(X,X-x)=O if i~n-p(k)-1

whenever x lies in a stratum of codimension k.
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This vanishing condition is an essential property in the axiomatic character­
ization of the intersection homology sheaf.

2.0. In this chapter we will assume X is a piecewise-linear pseudomanifold
with a fixed (P.L.) stratification

cP=X_ 1 cXOcX1 c ... cXn_2=~cX

as in [20]. We also fix a commutative ring with unit, R.
A perversity is a sequence of integers P=(PZ,P3, ... ,Pn) with pz=O and

Pc~PC+l ~Pc+ 1. We shall often write p(c) instead of Pc. There are several per­
versities of particular importance:

the zero perversity 0= (0,0, 0, ... , 0)
the lower middle perversity m= (0,0, 1, 1, 2, 2, 3, )
the upper middle perversity n=(O, 1, 1,2,2,3,3, )
the logarithmic perversity 1=(0, 1,2,2,3,3,4,4, )
the sublogarithmic perversity s= (0, 0, 1, 1, 2, 2, 3, )
the top perversity t= (0, 1, 2, 3,4, 5, ... ).
For any perversity p, the complementary perversity is defined to be

f- p=(O, 1-Pl' 2- Pz, 3- P3' ... ).

For example, 0 and t are complementary, as are iii and n.
In this chapter we fix a perversity P, and define a complex of sheaves IC~.

However we shall usually omit the subscript P for notational convenience.

2.1. The Complex of Sheaves, IC;

The treatment in this section is parallel to that of [20] (p. 138) which may be
consulted for further details. Define the complex of sheaves of P.L. chains C·
on X by specifying the sections r(U;c·) over any open subset UeX as fol­
lows: If T is a locally finite triangulation of U let cT(U) denote the group of
locally finite i-dimensional simplicial chains (with R-coefficients), with respect
to this triangulation. The support of a chain ~ECT(U) is denoted I~I. Let Ci(U)
denote the limit of the cT(U) taken over all locally finite triangulations T of
U. If Vc U and T is a locally finite triangulation of U, there exists a locally
finite triangulation S of V such that each simplex of S is contained in a unique
simplex of T. Any chain ~ in cT(U) thus gives rise by restriction to a chain ~'

in Cr(V) such that I~'I = I~I n v: Taking limits over all locally finite compatible
triangulations defines a restriction homomorphism Ci(U)--+ Ci(V) and thus defines
a presheaf.

Definition. f(U; C-k) == Ck(U).

Remark. If A c U is a (relatively closed) i-dimensional P.L. subset of U, and if
BeA is an i-1 dimensional P.L. subset then there is a one to one correspon­
dence between those chains exEr(U; C- k

) such that lexl cA and lactl cB, and
between (Borel-Moore) homology classes with infinite supports, &EHt)(A, B).
The chain Gct corresponds to the class a*(a:)EHi~l(B,ljJ) under the connecting
homomorphism.
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C· is a complex of fine sheaves on X and is quasi-isomorphic to the dualiz­
ing complex D~.

Define ICik to be the subsheaf of C- k whose sections over an open set
U eX consist of all locally finite P.L. chains ,Er(U; C- k

) such that I~I is (p, i)­
allowable and la ~I is (p, i - 1)-allowable, with respect to the filtration
U n X 0 e U n X 1 e ... e U n ~ e U. This means that for each c,

dim(l~1 nUn X n - c) ~ i - c +p(c),

dim(la~ln U nXn_J~i-l-c+p(c).

Thus, IC~ is a complex of fine sheaves on X whose hypercohomology
Jr*(X; IC~) is canonically isomorphic to I H~(X; R). The associated coho­
mology sheaf H - k(IC~) is called the local intersection homology sheaf and is
denoted IU£. The stalk at XEX of this sheaf is denoted I H£(X, X - x) or
IH£(X, X -x; R).

2.2. 5£. Local Coefficient Systems

Let F be a local coefficient system of R modules on X - L. [37J (In other
words, F is a sheaf of R modules which, viewed as an etale space over X -~, is
a locally trivial fiber bundle. F is determined by the data: a base point in C
and a representation of n 1 (C) for each connected component C of X -L.)

Consider an open subset U e X and a locally finite triangulation T of U.
Since F may not be defined on all of U, it is impossible to define a group
CT(U, F) of i chains with coefficients in F. Nevertheless, for any perversity p,
one can define I Cf· T(U, F) as the group of locally finite i-dimensional sim­
plicial chains , with coefficients in F that satisfy allowability conditions: for
each c~2,

dim(I~1nUn Xn-J ~ i - c+p(c),

dim(la~1 nU nXn _ c) ~ i-l-c+ p(c).

One can also define a boundary map ICrT(U,F)-+ICf.:..~(U,F).This is be­
cause if L1 is any i simplex with nonzero coefficient in ~, both the interior of L1
and the interiors of all the i - 1 dimensional faces of L1 lie entirely in X - L by
the allowability conditions. This is all one needs to define by the usual meth­
ods the simplicial chain complex with local coefficients.

Definition. The complex ICfi(F) of intersection chains with coefficients in X is
given by r(U,IC~(F))=limICf,T(U,F)where the limit is taken over locally finite
compatible triangulations of U. The intersection homology groups with coef­
ficients in F, I H~(X; F), are the hypercohomology, or global section coho­
mology of IC~(F).

2.3. Indexing Schemes

There are four ways in the literature to index the dimension of an intersection
homology group:

(a) Homology subscripts, as in [20J: a subscript k indicates chains of di­
mension k.
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(b) Homology superscripts, as in Chap. 3 of this paper: a superscript - k
indicates chains of dimension k.

(c) Cohomology superscripts, as in [7, 16J a superscript I indicates chains of
codimension I, i.e., dimension n -I.

(d) Beilinson-Bernstein-Deligne-Gabber scheme: a superscript I indicates

chains of codimension ~+ I.

For an n-dimensional compact oriented pseudomanifold these schemes
compare as follows: I Hk(X) in scheme (a) is isomorphic to £-k(X; IC·) In

scheme (b), I Hn-k(X) in scheme (c), and I JIT-k(X) in scheme (d).

2.4. Calculation of the Local Intersection Homology

Recall that a P.L. stratification of X determines a filtered P.L. isomorphism of
a neighborhood U of each point XEXk- X k- 1 with x *Sk-l *Lx, where Sk-l is
the (P.L.) k -1 sphere and Lx is a filtered P.L. space called the link of the
stratum X k- X k_ 1 at the point x. (If x and y are points in the same connected
component of X k - X k - 1 then Lx and L y are P.L. isomorphic.)

Proposition. The stalk at the point x EXk- Xk_ 1 of the local intersection ho­
mology sheaf is

if j~n-p(n-k)

if j~n-p(n-k)-1.

Intuition. If j < n - p(n - k) then any j-dimensional cycle in I C)(X) will intersect
the stratum X k - X k - 1 in a subset of dimension less than k, and can therefore
(by transversality) be moved away from the point {x}. So it represents 0 in the
local homology group. If j ~ n - p(n - k) then any j-dimensional cycle which
contains {x} also contains a neighborhood of {x} in the stratum X k -Xk _ 1 , so
it is locally the product of lRk with the cone over a j - k - 1 dimensional cycle
in the link L of the stratum.

Proof. Sk - 1 *Lx inherits a stratification from that of X . We shall find an iso­
morphism between the stalk at x of the sheaf IC-j and the group
I Cj_ 1(Sk-l *Lx).

Any P.L. chain l1EICj_l(Sk-l*Lx) gives rise to a germ of a chain near x,
by forming the join x *1]. Conversely, if , is a germ of a chain near x then in a
sufficiently small neighborhood U it can be expressed as a sum of simplices
each of which contains x as a vertex. Pseudo-radial retraction along cone lines
then determines a P.L. chain 1]EICj _ 1(Sk-l*Lx) such that (x*l1)nU=I'lnU.
Thus, IC;j~ICj_l(Sk-l*Lx)·

We now compute IC*(Sk-l*Lx). If AECq(Sk-l) and BEIC j _ q _ 1(Lx) then
A*BEICj(Sk-l*Lx) provided either (a) q~j-(n-k)+p(n-k)-l or (b) q~j

-(n-k)+p(n-k) and oB=O. Letting

(

ICj(Lx) if j~n-k-p(n-k)

7:ICj(Lx)= koero if j=n-k-1-p(n-k)

if j < n - k-1- p(n - k)
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we obtain a chain map

C*(Sk-l)@rI C*(Lx)-+I C*(Sk-l *Lx)

99

which is given by the join of chains. In fact, this map induces isomorphisms on
homology because it has a homotopy inverse t/J which is determined by the
following (perversity-preserving) rule: If 1'/ is a j-simplex in Sk-l *Lx, let t/J(1'/)
=A *B where A = 1'/ n Sk- 1 and B is the image of 1'/ - A under pseudo-radial
retraction along join lines, to Lx.

Applying the Kunneth formula,

I Hj(X, X -x)=I Hj_ 1(Sk-1 *Lx)
k-l

= (f) H q(Sk-l)@Hj _ q _ 2(rI C*(Lx)
q= 0

if j~n-p(n-k)
if j<n-p(n-k).

2.5. Attaching Property of IC·

The following proposition will be needed in the next chapter (§ 3.5) where its
significance will become apparent.

Define Uk= X - Xn- k. Let ik: Uk-+ Uk+ 1 and jk: (Uk+ 1 - Uk)-+ Uk+ 1 be the in­
clusions. Set IC~ = IC-' Uk •

Proposition. The natural homomorphism

induces isomorphisms

for all m~j5(k)-n.

Proof Since IC· is fine, we have

Note that sections of IC·I Uk + 1 consist of chains in Uk + 1 which can be tri­
angulated with finitely many simplices near XEXn _ k , and which satisfy a per­
versity restriction there. On the other hand, sections of ik* it(IC·' Uk + 1) consist
of chains in Uk which can be triangulated with locally (in Uk ) finitely many
simplices and which do not necessarily satisfy a perversity restriction near
X n _ k • Thus IC·' Uk + 1 is a complex of subsheaves of ik* it(IC·1 Uk + 1) and we shall
now show that the inclusion induces isomorphisms on the cohomology sheaves
of dimensions m~p(k)-n, thus establishing the above claim. It suffices to
study the cohomology at a point XEXn _ k • The inclusion of stalks

IC~-+[ik* i:(IC·1 Uk+ l)]x

is a chain map. There is a map back which can be defined as follows: For j ~ n
- p(k), let ~E[ik* it(IC-jl Uk+ l)]x. Such a germ has a representation which is a

j-dimensional P.L. chain (not necessarily compact) contained in Uk + 1. Choose
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a local P.L. filtered product neighborhood of x, U =Dn
-

k x c(L) where Dn
-

k is
the (P.L.) n - k disc and c(L) denotes the cone on a filtered space L, the link of
the n-k-dimensional stratum. U may be chosen so that ~ is transverse to Dn

-
k

xL, i.e., so that dim(~nDn-kxL)~j-1(McCrory [29J), and ~nDn-kxL can
be triangulated with finitely many simplices. Let n: U~Dn-k denote the pro­
jection to the first factor and let 11=C(~n(Dn-k x L)) be the P.L. mapping cylin­
der of nl(I~1 nDn-k xL). 11 can be oriented using the product orientation from
\~I x [0, 1J, so it defines a chain. We claim 11EIC;i i.e., that 111\ is (p,j)-allowable,
since dim(11nXn_k)~n-k. Note that when 0~=0 we get 011=0 and in fact 11
represents the same class as ~ in [H-i(ik* it IC·\ Uk + l)Jx since ~ - YJ is the
boundary of the (infinite) chain c(~ nU). Thus the above sheaf inclusion in­
duces a surjective on local cohomology, and a similar (relative) argument
shows it is also injective on local cohomology.

§ 3. Sheaf Theoretic Construction of IC·

In [14] Deligne suggested a new method for constructing the complex IC·. His
procedure constructs (for any perversity p) a complex of sheaves JP. on any
topological pseudomanifold by starting with the constant sheaf on the non­
singular part and using standard sheaf theoretic operations.

In this chapter we show that JP. is naturally isomorphic to IC· (provided
both are constructed with respect to the same stratification - an assumption
which is lifted in the next chapter). This result was suggested by Deligne.

In § 3.1 we give Deligne's construction of the complex JP.. In § 3.3 we list
axioms which uniquely characterize this complex of sheaves (up to quasi-iso­
morphism). In §3.4 we verify that the complex IC· from §2.1 satisfies these
axioms and is therefore quasi-isomorphic to JP•.

3.0. Throughout this chapter, X will be an n-dimensional topological,
pseudomanifold. We fix a topological stratification [§ 1.1]

cjJ=X_ 1 cXoc ... cXn _ 2 =LCX.

In § 3.5 we will also assume that X has a P.L. structure and the topological
stratification is also a P.L. stratification.

In this chapter we fix a perversity p, and a regular Noetherian ring R of
finite Krull dimension. The word sheaf will mean a sheaf of R-modules.

The complex resulting from Deligne's construction [§ 3.1] is denoted JP.
and in § 3.5 the complex of P.L. intersection chains on X is denoted IC~.

Theorem 3.5 asserts that these complexes are canonically isomorphic in Db(X)
whenever they are both defined. In subsequent chapters we will use IC· (or IC~)

to denote this isomorphism class of objects, for any topological pseudo­
manifold.

3.1. Deligne's Construction

Consider the filtration by open sets,
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where Uk=X -Xn- k and ik: Uk-+Uk+ 1 is the inclusion. Define complexes
IP~ E Db

( Uk) inductively as follows

IP;=ID~_I~R[n] on U2 =X-L

IP~+ 1 = l' ~p(k)-nR ik* IP~ for k '?: 2.

Definition_ Deligne's construction is the complex IP- = lP~ + 1 which is defined by
this process. In other words,

lP- = l' ~p(n)-nR in*· .. l' ~p(3)-nR i3* l' ~p(2)-nR i2* Rx_I[n].

2. We could equally well have started with a system of local coefficients F on
X - E in place of the constant sheaf R, so

lP; =F[n] on U2=X-E

IP~ + 1 = L ~ p(k) _n R ik* IP~ for k"?; 1

lP·(F) = IP~+ l'

The resulting complex IP-(F) is called the ,"intersection homology chains with
coefficients in F".

Lemma. lP· is constructible with respect to the given stratification of X.

Proof Clearly lP; is constructible on U2. Suppose we have shown that IP~ is
constructible on Uk' Fix XE Uk+ 1 - Uk and let N be a distinguished neigh­
borhood of x in Uk + l' of the type considered in § 1.1, i.e., there is a stratum
preserving homeomorphism

where V=coneO(L) for some stratified space L. Let N°=N n Uk~Rk x VO
where VO = cone(L) - vertex. Consider the fibre square

RkI~O~RkI:

VO ~ V

By §1.13.17, §1.13.13, and induction,

Ri*(lP~IN°)~Ri*(1t*R1t* IP~IN°)

~ n* Ri* Rn*(lP~'N°)

which shows that R ik* lP~ is CLC on each stratum of Uk + l' It follows that
1';;;p(k)_nRik*IP~ is also CLC on each stratum of Uk+ 1 , which completes the
induction.

3.2. The Attaching Map

If {Xk} denotes the filtration of the space X, let Uk=X -Xn- k denote the com­
plementary filtration by open sets, with inclusions ik: Uk-+ Uk+ l' Let jk: (Uk+ 1

- Uk)-+ Uk + 1 be the inclusion of the stratum of codimension k into Uk + l' Let S­
be a complex of sheaves on X which is constructible with respect to the fil­
tration {Xk } (see § 1.11) and let s~ =S-' Uk •
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Definition. The attaching map of degree m associated with the complex S· over
the stratum X n- k - Xn - k - 1 is the sheaf map

which is obtained by restricting the natural morphism

to this stratum, and taking the induced map on cohomology sheaves.
We shall say the sheaf S· is r-attached across this stratum, if Am is an iso­

morphism for all m~ r.

3.3. Axioms [AX1]

Definition. Let S· be a complex of sheaves on X, which is constructible with
respect to the stratification {Xk } and let S~ =S·\(X - X n _ k ). We shall say S·
satisfies the axioms [AX 1J (with perversity p, and with respect to the stratifi­
cation {Xk }) provided:

(a) Normalization: S·,(X -E)~F[n] where F is a local coefficient system
on X -E.

(b) Lower bound: Hi(S·) =0 for all i< -no

(c) Vanishing condition: Hm(S~+l)=O for all m>p(k)-n.

(d) Attaching: S· is p(k) - n attached across each stratum of codimension k,
i.e., the attaching maps

are isomorphisms for all k~2 and all m~p(k)-n.

Definition. We shall say S· satisfies [AX1]R it if satisfies [AX1] with F =RX - 17

= the constant sheaf, in part (a).

3.4. Alternate Formulations ofAX1[d]

We may replace axiom (d) with

(d') HmU1S~+1)=O for all k~2 and all m~p(k)-n+1.

It is easy to see that (d') => (d) using the long exact cohomology sequence
associated with the distinguished triangle

The same sequence also give (c) and (d)=>(d').
Furthermore AX1 [d'] is equivalent to

(d") for all k~2, for all XEXn_k-Xn_k_l and for all m~p(k)-k+l, we
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where j x: {x} ~X is the inclusion of a point.
To see this, factor jx into a composition

Then j~Se~u~iSe~u:j!Se[n-k] by § 1.13.15. Thus the cohomology of this
complex vanishes in dimensions m ~p(k) - k + 1 iff the stalk cohomology of f se
vanishes in dimensions ~ p(k) - n + 1.

This reformulation ofAX1 [d] is useful because it is equivalent to AX2[d]
which will appear in the next chapter.

3.5. [AX 1] Characterizes Deligne's Construction

Theoreme The functor IPe which assigns to any locally trivial sheaf F on X - L,
the complex

JPe(F) = T ~p(n)-n R in* ... r ~p(2)-n R i2* F[n]

defines an equivalence of categories between

(a) the category of locally constant sheaves on X - Land

(b) the full subcategory of Db(X) whose objects are all complexes of sheaves
which satisfy the axioms [AX1].

The inverse functor L assigns to any constructible complex of sheaves se
which satisfy [AX 1] the locally constant sheaf L(se) = H-n(se!(x - L)).

Proof In fact we will show that for each k ~ 2 the functor

lP~ = T~p(k)-n R ik*

defines an equivalence of categories between

(a) the full subcategory Ck of Db(Uk) whose objects are complexes of sheaves
which satisfy the axioms [AX1] on Uk , and

(b) the full subcategory Ck + 1 of Db(Uk + 1) whose objects are complexes of
sheaves which satisfy the axioms [AX1] on Uk + 1.

The inverse functor L k is it.
This will suffice because IPe

= JP~ 0 ••• 0 JP; 0 lP; and L = L 2 0 L 3 0 ••• 0 Ln • Using
§ 1.13.16(d), L 2(S;) = H-n(s; l(X - 1:)) where S; = S; IU3 •

Clearly L k is a functor from Ck + 1 to Ck. IP~ is a functor from Ck to Ck+ 1

for the following reasons: For any AeECk , lP~(Ae)=T~p(k)_nRik*Ae satisfies
[AX1](a)(b)(c) by construction. [AX1](d) is also satisfied because the attach­
ing map is the composition

r ~p(k)-njt Rik*Ae~jt lP~(Ae)~jt Rik* it JP~(Ae)~jtRik*A
e

which induces isomorphisms on stalk cohomology in the dimensions m ~p(k) - n.
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Clearly LklP~(S~)=S~. For each object A· in Ck + 1 we must construct a
quasi-isomorphism ~+ 1(A·): A·~lP~Lk(A·) which is natural as a transformation
from the identity to lP~ 0 L k , i.e., for any morphism f: A·~B· in the category
Ck + l' the following diagram commutes:

A· B·

Tk+ !lA')1 1Tu ,(B')

IP~ Lk(A·) lPkLk(!) IP~ Lk(B)

Consider the natural map A·~R ik* it A·. Define ~+ 1(A·) to be the com­
position

A· ~ r ~p(k)-n A·~r ~p(k)-n Rik* it A· = lP~ Lk(A·)

This is a quasi isomorphism over Uk' We must check that it is also a quasi
isomorphism over Uk+ 1 - Uk' By [AXIJ(d) the morphism

induces isomorphisms on cohomology sheaves in all dimensions m~ p(k) - n.
Thus

which completes the check.
For any morphismf: A·-+-B· in Ck + 1 we have a diagram

By induction the right and left triangles and top and bottom trapezoids com­
mute. We must show that the outside square commutes. It is clear that

e0 IP~ L(f) 0 ~+ 1(A) = e0 ~+ 1(B) 0 f

However, according to §1.15 composition with e induces an isomorphism

HomDb(Uk+ d(A·, IP~ L B·)~HomDb(Uk+ t>(A·, Rik* L(B·)

so we can cancel the e from the above equation. This completes the proof.

Corollary. If a constructible complex S· satisfies [AXIJR' then S· is naturally
quasi-isomorphic to Deligne's complex IP· = IP·(Rx -1;) which was defined in §3.1.
If in addition all the Si are fine, the cohomology groups of the complex

-+-r(X; Si-l)-+-r(X; Si)~r(X; Si+ 1)-+- ...

are naturally isomorphic to the intersection homology groups I H~(X).
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Example. J. Cheeger has shown [10J that if X is a Riemannian pseudomanifold
with conical singularities then the complex of locally L2 differential forms on X
- ~ is a complex of fine sheaves on X which satisfies [AX1J. This complex is
defined by

r(U; QP)=those differential p-forms OJ on U n(X -~) such that for every point
x E U there is a neighborhood Vx such that

J OJ /\ *OJ < 00 and
vxn (X -l')

J dw/\ *(dw)< 00.
vxl1 (X -l')

The following example explains the use of the word "attaching": the com­
plex

(f)Hi(IC·) [ - iJ
i

satisfies [AX1J R except for the attaching axiom. It clearly has the same ho­
mology sheaves as IC· but is in general not isomorphic to IC· since IC· is
indecomposable (see Corollary 2 in §4.1).

3.6. IC· Satisfies the Axioms [AX 1J
Theorem. If X is a P.L. pseudomanifold with a fixed P.L. stratification, then the
sheaf of intersection chains IC· satisfies the axioms [AX 1JR with respect to that
stratification.

Proof Axioms AX1(a)(b) are obviously satisfied. Axiom [AX1J(c) and con­
structibility were verified in §2.4. [AX 1J (d) was verified in § 2.5.

Corollary. If X is a P.L. pseudomanifold with a fixed P.L. stratification then the
sheaf of piecewise linear intersection chains as constructed in [19J (and §2.1) is
naturally quasi isomorphic to JP. as constructed by Deligne's procedure in § 3.1.

§ 4. Topological Invariance of IC·

In this chapter we shall show that the intersection homology groups I H~(X)
are topological invariants and they do not depend on the choice of stratifi­
cation of X. In fact, we shall show for any homeomorphism f: X ~ r: that the
complexes IP~ and f* IP~ are quasi-isomorphic.

A key ingredient of the proof is the construction of the canonical p fil­
tration xg c Xr c ... c X!_ 2 eX! = X of X. This depends on the choice of a
perversity p but not on a previous choice of a stratification of X - it is a
purely topological invariant of X. The filtration {xt} is a sort of "homological
stratification". For example, Xf - Xf_ 1 is a R-homology manifold of dimension
i. It may be thought of as the "coarsest stratification" with respect to which
Deligne's construction gives IC· - any topological stratification is a refinement
of it. The role of the canonical p filtration in the proof is to compare objects of
Db(X} satisfying axioms AX 1 with respect to two different topological stratifi­
cations (which may not have a common refinement).
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This chapter contains a set of axioms [AX2] which uniquely characterize
the complex JP. up to quasi-isomorphism but which do not refer to a choice of
stratification of X. These axioms involve the concepts of local support and co­
support of a complex of sheaves, which we now describe.

If S· is a complex of sheaves on X, and jx: {x}~X is the inclusion of a
point, there is a homomorphism

If a class ~Eypm(x; S·) does not vanish under this homomorphism then any
cycle representative of ~ must contain the point x. Thus, Hmu~S·) represents
local classes which "cannot be pulled away from the point x", and we say

is the local support set of the complex S· (in dimension m).
Similarly, there is a homomorphism

A class 11Eypm(X; S·) is in the image of this homomorphism if some cycle
representative of 11 is completely contained in a neighborhood of x. Thus
Hmu~S·) represents local classes which are "supported near x" and we say

is the local co-support set of the complex S· (in dimension m). The axioms
[AX 2] place restrictions on the size of the local support and co-support sets.

4.0. Throughout this chapter we shall assume X is an n-dimensional topologi­
cal pseudomanifold (but we do not fix any particular stratification of X). We
shall also fix a perversity p and let q denote the complementary perversity, q(k)
=k-2-p(k) for all k~2. By a sheaf on X, we shall mean a sheaf of R-mo­
dules, where R is a fixed finite dimensional regular Noetherian ring.

4.1. Axioms [AX2]

For the perversity p, let p-1 denote the sub-inverse of p, i.e.,

p - 1(I) = min {c Ip(c) = I} .

We use the convention that min(</»= 00. Recall that p is a function from
the set {2, 3,4, ... } to the nonnegative integers. It satisfies inequalities which
imply that if it takes two integer values then it also takes each value between
them.

Let q denote the complementary perversity, q(k) = k - 2 - p(k) and let q-l
denote the sub-inverse of q.

Suppose X is an n-dimensional topological pseudomanifold. For each XEX,

let j x: {x} ~X denote the inclusion.
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Definition. A topologically constructible complex of sheaves S· on X satisfies
axioms [AX2] provided:

(a) Normalization - There is a closed subset 2 c X such that S·I(X
-2)~Rx_z[n] and dim(2)~n-2.

(b) Lower bound
Hrn(s·) =0 for all m< - n.

(c) Support condition
For all m~ -n+1, dim{xEXIHrnU:S·)=FO}~n-p-l(m+n).

(d) Cosupport condition
For all m~ -1, dim{xEXIHrnU~S·) =FO} ~ 11 _q-l( -m).

Where "dim" denotes the topological dimension of Hurewicz and Wallman
[24]. We use the convention that a set of negative dimension (including - (0)
must be empty.

Uniqueness Theorem. Up to canonical isomorphism there exists a unique com­
plex in Db(X) which satisfies axioms' [AX2]. It is given by IC·, constructed (as in
§2.1 and § 3.1) with respect to any stratification of X.

The proof is in §4.3

Corollary 1. For any topological pseudomanifold X, the groups I H~(X) are top­
ological invariants and exist independently of the choice of a stratification of X.

!e. Let 2 be Xn _ Z for some topological stratification X = X n ~ ••• ~ X 0 of X
and let F be a local system on X -2. Then if we replace axiom [AX2](a) by

(a') S·!(X -2)~F[n]

the uniqueness theorem still holds with IC· replaced by IC·(F).

Definition. A topological pseudomanifold X is irreducible if X - L is connected
for some (and hence for any) stratification of X.

Corollary 2. If X is irreducible and F is a local coefficient system on X - L
which is indecomposable as a local system, then IC·(F) is indecomposable, i.e., if
IC·~A(f)B· in Db(X), then either A·~zero· or B·~zero·.

Proof Both A· and B· satisfy the axioms [AX2] except for axiom (a).

Remark. Assume S· is a complex of sheaves which is constructible with respect
to a topological stratification X 0 eX1 c ... C X n = X, and satisfies [AX2]. Then
it also satisfies the axioms [AX2]' where the sets in statements (c) and (d) are
assumed to be unions of strata and where "X -2" is replaced by "X -Xn - Z".

This is because S·!(X -Xn - 2) is a local coefficient system and 1t 1(X -Xn - Z

-Z)~1tl(X -Xn _ 2) is surjective since 2 has topological codimension 2

4.2. Construction of the Canonical p-Filtration

Let UP be the largest open set on which ID:r is CLC (§ 1.4). Let EP = X - UP,
and let n-m be the topological dimension of EP. Then m~2 because for any
topological stratification of X as a topological pseudomanifold, EP will be a
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union of connected components of interiors of strata (by Prop. 1.12), and the
stratum of dimension n is contained in Up.

Define X~_ 2 = ~P = X - Up.
Suppose by induction that X~_k' X~_k+ l' ... ,X~_ 2 C X has been defined.

Let U!=X -X~_k and let IP~EDb(U!) be the complex obtained from Deligne's
construction using the filtration by {Xf}. Let hk : ut~x be the inclusion. Let
V' be the largest open subset of X!_k on which IDX~-k and (Rhk*IP~)IX!_k are
both CLC. Let V be the union of the connected components of V' which have
topological dimension n - k.

Define X~_k_l =X~_k - v:
This completes the inductive step in the definition.

Proposition. 1. This procedure terminates after finitely many steps. In fact,
dim(X!_k_l) ~n- k -1.

2. For any topological stratification of X, each X!-k-l is a closed union of
connected components of strata.

3. Each Zn-k = X~_k - X!_k_ 1 is either empty or else it is an n - k dimen­
sional R-homology manifold.

4. Let Q- be the complex of sheaves obtained by applying Deligne's con­
struction to the filtration {Xf}. Then for any k, Q-IZn_k is CLC.

Proof. We prove all these propositions simultaneously by induction. Suppose
they are true for all integers < k. Fix a topological stratification
XOcX1 c ... cXn=X of X.

Lemma_ Rhk*QkIX~_k is constructible with respect to this stratification.

Proof of Lemma. We must show this complex is CLC on each stratum of X~_k'
Choose any point XEX~_k and let Sr be the stratum which contains x. Choose
a conical filtered space V = ~~ ~_ 1 ::) ••. ::J v:. = a point, and a continuous ho­
meomorphism of Vx lRr to a neighborhood N of,x in X (see the definition of a
stratification in § 1.1). Let re: N~V denote the resulting projection to the first
factor. V inherits a filtration

Vo= v:.PC V!_k c V!_k+ 1 c ... c Y,.P

such that X!_j= V!_j x JR.r.
We now use a tilda to denote the intersection of a subset with N, and we

use a bar to denote the projection of such a subset to v: as follows:

Let OP= UPnN, 0/= U/nN.

Let ~: O! --+ O!+ 1 and hj : 0/;~N denote the inclusions.
Let UP=n(OP), U!=n(O!).
Let lj: V! --+ U!+ 1 and hj: U!~V denote the inclusions.

It follows from the inductive hypothesis (2) that Of = re- 1(U/).
Therefore,

(Rhk*Q~)IN~Rhk*(Q~IN)

~ Rhk*"C ~P(k-l)-nR[k-l *..• l' ~p(2)_nRi2*Rup[n]

~Rhk*"C~P(k-l)-nR~-l*"'1'~p(2)_nRi2*1t*Rvp[n].
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Now the n* moves to the left changing tildas to bars, giving

~RJik*n*!~p(k-l)-n Rlk_ 1*· .. ! ~p(2)_nR12*Rop[nJ

~ n* Rhk*! ~p(k)-nRlk-l*... ! ~p(2)_nRi2*Rop[nJ
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which is CLC when restricted to n- 1(Vo)'

This lemma implies that the set V' above is a union of connected com­
ponents of strata and it contains the n - k dimensional strata in X. Thus V is
also a union of connected components of strata which contains all the n - k
dimensional strata in V'. This proves (1) and (2). Property (3) is guaranteed by
the condition that ID~~_k be CLC on V'::JV==Zn_k. Finally, Rhk*Q~IZn_k is
CLC so !~p(k)_nRhk*Q~IZn_k=Q·IZn_k is also CLC, which proves (4).

4.3. Proof of Topological Invariance (Theorem 4.1)

For any topological stratification {Xj} of X, define S {Xj} to be the full sub­
category of Db(X) consisting of complexes which are construtible with respect
to {Xj}. Define Q. to be the object (in Db(X)) obtained by Deligne's construc­
tion with respect to the canonical p filtration.

The proof of Theorem 4.1 will follow from three statements:
1. An object A· in S {Xj} satisfies [AX2] if and only if it satisfies [AX1]R

with respect to the stratification {Xj } (see Lemma 1 below).
2. Q. satisfies [AX2] (Lemma 2 below).
3. Q. is an object in S {Xj } for any stratification {Xj } of X (Proposi­

tion 4.2).
Statement (2) clearly guarantees the existence part of Theorem 4.1.

Uniqueness. Let S· be a complex of sheaves which satisfies [AX 2]. By assump­
tion S· is constructible with respect to some topological stratification {Xj } of
X. By statement (3), Q. is also an object in S {Xj}. By statement (1), both S·
and Q. satisfy [AX1]R with respect to this stratification, so by Theorem 3.5
and its corollary, S· and Q. are canonically isomorphic in Db(X).

Now let A· be the object obtained from Deligne's construction with respect
to any other topological stratification of X. By Theorem 3.5, it satisfies
[AX1]R with respect to that stratification and by statement (1) it also satisfies
axioms [AX2]. Thus it is canonically isomorphic to Q.. Q.E.D.

Lemma 1. Let {Xj} be a topological stratification of X and suppose S· is an
object in S {Xj}' Then S· satisfies [AX1]R if and only if it satisfies [AX2].

Proof [AX1]R(a)(b) is equivalent to [AX2](a)(b) using the remark in §4.1.
[AX1](c)~[AX2](c) as follows:

By constructibility the set {xEXIHmU~S·)=f:O} is a union of strata. AX1(c)
states that these strata may not include X - X n - k if p(k) - n< m. Thus, the only
allowable strata are contained in X -Xn- k for p(k)-n~m, or
k~p-lp(k)~p-l(m+n).This set has dimension less than or equal to n-k~n

-p-l(m+n) which verifies AX2(c). The same calculation gives AX2(c)
=>AX1(c).
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By § 3.4, [AX1](c)(d)<=>[AX1](d") which is equivalent to [AX2](d) by a
counting argument analogous to the one in the preceding paragraph.

Lemma 2. Let Q. be the object obtained by applying Deligne's construction (§2.1)
to the canonical v1iltration {Xf} of x. Then Q. satisfies [AX2].

Proof. Q. satisfies [AX2](a)(b)(c) by construction. It remains to verify axiom
[AX2] (d).

We will verify that

xEXf-Xf_l=>HmU~Q·)=O for all m~ -q(n-I)-l.

This will suffice because if

(Xf - Xf-l) n {xIHmU~Q·) =t= O} =t= 1J
then

m> -q(n -1)-1
so

or
I~n-q-l(-m).

Verification. Let j: Xf-Xf_l~U and i: U -Xf-l~U be the inclusions, where
U=X -Xf_l.

Consider the long exact sequence on the stalk cohomology at x, which is
associated to the distinguished triangle

j*j!QeIU~QeIU

(ll\ /
Ri*i*QeIU

since Q·I U~!~p(n_I)_nRi*i*Q·1 U we have

HmU*j!Qe)x=O for m~ -n+p(n-I)+1.

Now factor jx into a composition

x~Xf-Xf_l~ U=X -Xf-l.
Ux )

Then j~Qe=uV!Qe=u~j!Qe[l] since Xf-Xf_l is a homology manifold. Thus
the cohomology of this complex vanishes in dimensions m ~1- n +pen -I) +1=
- q(n -1) + 1, as desired.

§ 5. Basic Properties of IHP(X)

In this chapter we prove the basic results of intersection homology without
assuming X has a P.L. structure, using the methods of sheaf theory.

5.0. Throughout this chapter, X will denote an n-dimensional topological
pseudomanifold, but we do not necessarily fix a stratification of X. Since we
will be considering several perversities at once, we will denote the complex of
intersection chains with perversity V by le;,.
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Fix a regular Noetherian ring R of finite dimension. By sheaf we shall
mean a sheaf of R-modules.

In some parts of this chapter we will assume that X has an R-orientation.

Definition. An R-orientation for X is a chosen quasi-isomorphism

ID~_!~RX_![n].

If char(R) =F 2 then an R-orientation of X is equivalent to an orientation of
X - L in the usual topological sense.

5.1. The Maps from Cohomology and to Homology

Choose an orientation on X.
Let j: L~X be the inclusion of the singularity set of X (for some topologi­

cal stratification of X) and let i: X - L == U~X be the inclusion of the non­
singular part.

Definition. The "cap product with the orientation class" is the morphism
cjJ: Rx[n]~ID~ which is obtained as the canonical lift (in Db X) of the orien­
tation:

Rx[n]~Ri*Rx_![n] -~ Ri*ID~_I.

The lift exists and is unique in Db(X) because in the distinguished triangle,

Rx[n] -+ Ri* Rx~!~Ri*Ru[n]

the cohomology sheaves associated to Rj*ID~[l] vanish in dimensions t~-n
(see § 1.15).

Proposition. Suppose X is oriented. Let IC· denote the complex of intersection
chains on X with respect to the perversity p. Let i: X - L~X denote the in­
clusion. There are unique morphism in Db(X),

Rx[n]~IC·-+ID~

such that the induced morphism

i*Rx[n]-+i*IC·

is the evident one and the induced morphism

i* IC·~ i* ID~

is given by the orientation. These morphism factor the cap product with the orien­
tation.
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Proof Choose a stratification {Xk } of X. With notation as in §3.1, suppose by
induction that IP~~ID~k has been constructed. We obtain amorphism

which has a unique lift to ID~k+ 1 by § 1.15 since the local cohomology sheaves
associated to Rjk*ID~n-k-Xn-k-l vanish in dimensions t ~ k - n -1. Similarly a
morphism R Uk~IP~ (defined by induction) gives rise to amorphism

which has a unique lift to 1'~p(k)_nRik*IP~by § 1.15.

2. For all stratified pseudomanifolds X, oriented or not, there is an orien­
tation local system (!) on the nonsingular part X -;; of X

(If X is oriented then (!) ~R(x -r).) In general there are canonical morphisms

5.2. Construction of the Intersection Pairings

Suppose 1+m~p are perversities. We shall define a product morphism

IC-i@IC~~IC~[n].

The product is defined using a stratification, but turns out to be independent
of the stratification. (In fact, one will obtain the same product morphism by
following this construction, using the common refinement of the canonical 1, rn,
j5 filtrations, in place of the stratification.)

For a stratification {X k } of X, let Le, Me, and IPe denote the complex from
§ 3.1 associated to the perversities 1, rn, and p respectively. Using notation as in

L
§3.1, we shall define morphisms L~ ®M~-+ IP~ inductively over Uk = X - Xn -k as
follows:

On U2 = X - L the morphism is multiplication,
L

Rx _I[n] ®Rx _r[n] -+Rx _I[n] En].

Now suppose J.lk: L~®M~-+lP~[n] has been constructed. We must define a
morphism

L
(1' ~1(k)_nRik*L~)0(1' ~m(k)-nR ik*M~)-+! ~p(k)-nR ik*lP~ [n].

The pairing Ilk induces morphisms

L L
(1' ~1(k)_nRik*L~)®(1' ~m(k)_nRik*M~)-+ Rik*L~®Rik*M~

-+R ik*(L~@M~)

-+R ik*(lP~ [n]).
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By § 1.15, this composItIon has a canonical lift (in Db(Uk + l )) to
'7: ~p(k)_nRik*lP~[n] since the cohomology sheaves associated to

L
('7: ~l(k)_nRik*L~)@(T ~m(k)_nRik*M~)

vanish in dimensionsj~l(k)+m(k)-2n+1.

Remark. The compatibility between the intersection paIrIngs defined for dif­
ferent choices of 1, rn, and p is easily checked. In particular these products

L

are compatible with the cup product (Rx @ Rx---.Rx) and the cap product
L

(Rx @ ID~---.ID~).

Corollary_ Let X be a topological pseudomanifold. Ifl+ rn ~ p there exist canoni­
cal "intersection" pairings

L
1 - -

IHi(X)@IHj(X) ---.lHf+j_n(X).

These pairings are compatible with the cup and cap products.

2. Remark. It was not necessary to have an orientation of X in the preceding
construction.

2. We could also have started with local coefficient systems Fl , F2 , F3 on
X -]; and a product F 1 @ F 2 ---. F 3. This gives rise to "intersection pairings"

L

IH1(X; F1)<8) IH7(X; F 2) ---. IHf+j_n(X; F 3)·

5.3. IC- and Verdier Duality

In this paragraph we shall assume the coefficient ring R is a field, which we
now denote by k. In this section (except for the last paragraph) we shall
assume X is k-orientable and that a k orientation has been chosen.

One of the m~st important properties of IC- is the duality between IC~ and
IC~ when p+ if = t. In particular if X has even codimension strata, IC:n is self
dual (for example, if X is a complex analytic variety). For the reader who is
only interested in the statement that the sheaf lP- as constructed by Deligne
satisfies this duality, the following rather simple proof can be extracted from
Chap. 3: JP- is characterized by [AX1] (with F=kx) as shown in § 3.5. We may
replace axiom [AX1](d) with [AX1](d") as shown in § 3.4. This set of axioms
is "self dual": [AX1](c) for a complex A- and a perversity p is equivalent to
[AX1](d") for the dual complex 1)(A) and perversity if=t-p, and vice versa.

In the following detailed argument we will use the axioms [AX2] (which
we believe are more natural) instead of [AX1].

L

Definition_ A pairing A- @ B- ---.ID~ En] of objects in Db(X) (where n= dim (X)) is
called a Verdier dual pairing if it induces an isomorphism in Db X,

(§ 1.12) A-~ RHom-(B-, ID~)[n]
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for m=O

for m *0

Theorem. Suppose fi + ij =t are perversities. Then the intersection pairing of § 5.2,
followed by the map to homology

L

IC~@IC~ ~ IC~[n] ~ ID~[n]

is a Verdier dual pairing.

Corollary. If X is compact, the pairings

induce isomorphisms

IHf(X; k)~Hom(IH~_i(X;k), k) ([6]).

Remark. Field coefficients are used in an essential way during the following
proof of Theorem 5.3. The dualizing complex of a point {x} with coefficients in
k is

and this complex is injective as a complex of k-modules.

Proof of Theorem 5.3. Let S· =RHom·(IC~, ID~)[n]. The intersection pairing
induces an isomorphism

where U =X -1: is the nonsingular set. We must check that this isomorphism
extends to a quasi-isomorphism over the rest of X. It suffices to check that S·
satisfies the axioms AX2(c) and (d).

Let jx: {x} ~ X denote the inclusion of a point. Then

j:S· =j~ ~(IC~)[n]

=j~(~C!)IC~)[n]

~HomU~IC~,k)[n].

Therefore HmU~S·)=Hom(H-m-nU~(IC~),k).
Since IC~ satisfies AX2(d), the set of points XEX for which this group is

nonzero, has dimension ~n-p-l(m+n),which verifies AX2(c).
Similarly, HmU~S)~Hom(H-m-nj~IC~,k). The set of points XEX for which

this group is nonzero has dimension ~n-q-1(m)which verifies AX2(d).

:E. We now drop the assumption that X is oriented and we let (!) be the
orientation local system of k modules on X - L considered in § 5.12. A pairing
F1Q9F2 ~(9 of local systems on X -L is called perfect if the induced mapping
Ft ~Hom(F2, (9) is an isomorphism. The above proof gives the

Theorem. Suppose fi+ij=t are perversities and the pairing F1@F2~(D is perfect.
Then the intersection pairing followed by the map to homology

L

IC~(Fl)®ICq(F2) ~ IC~(lD)[u] ~ ID~[u]

is a Verdier dual pairing.
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5.4. Functoriality for Normally N onsingular Maps

5.4.1. Normally Nonsingular Inclusions [15, 18J.
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Definition. An inclusion of oriented topological pseudomanifolds r:t: Y ~X is
said to be normally nonsingular with codimension c, if Y has a c-dimensional
tubular neighborhood in X, i.e., an open neighborhood N c X and a retraction
n: N ~ Y such that (n, N, Y) is homeomorphic to an lRc-vectorbundle over Y
(where Y is identified with the O-section).

For example, suppose X is a Whitney stratified subset of some manifold M,
and Y= H n X where H is a smooth submanifold of M which is transverse to
each stratum of X. Then the inclusion Y~X is normally nonsingular with
codimension c = dim(M) - dim(H).

Theorem. Suppose a: Y~ X is a normally nonsingular inclusion with codimension
c. Fix a perversity p and let IC~ and IC~ denote the intersection homology com­
plex on X and Y respectively. Then there are canonical isomorphisms
r:t*IC~~IC~[cJ and a!IC~~IC~.

Proof Let n: N ~ Y denote the tubular neighborhood of Y in X and suppose
dim(X) = n. From the topological invariance of IC~ we have a quasi-isomor­
phism IC~IN~n*r:t*IC~.

We shall now check the axioms [AX2J for the complex r:t*IC~[ -cJ on 1':
To verify AX2(c) we must find

p=dim{yE YIHmU:r:t*IC~[-cJ)=4=O}

=dim{YE YIHm-cu: r:t*IC~) =4=O}

where jy: {y} ~ Y is the inclusion of a point. Suppose XEN and n(x) = y. Then

j~ IC~ ~j~n*(r:t* IC~) ~ (njx)*( r:t* IC~) ~j: r:t* IC~.

Consequently,

n - p-l (m - c+n)~ dim{xEXIHm-cj~IC~ =4= O}

~ dim {YE YIHm-cj: r:t*IC~ =4=O} +c

which shows p~n-c-p-l(m-c+n) as desired.
To verify AX2(d) we must calculate

'}'=dim{YEYIHmU~r:t*IC~[-cJ)=t=O}

=dim{YE YIHm-cU~r:t*IC~[ - cJ) =t= O}.
If n(x) = Y, then

j~IC~~j~n* r:t*IC~ ~j~n!r:t*IC~[ - cJ ~j~r:t*IC~[ - cJ.

Th'erefore HmU! IC· )~Hm-cu! a*IC·) andx x - y x

n - q-l( -m)~ dim{xEXIHmU~IC~)=t= O}

~ dim {YE YIHm-cu~ r:t*IC~) =t= O} +c

which shows '}' ~ n - c - q - 1 ( - m) as desired.
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The remaining axioms in [AX2] may be easily verified.
Part (2) of the proposition follows because

a!IC~ ~ :Dy(a* :nx(IC~))

~ :Dy(a* :nN(IC~IN))

~ :Dy(a* RHom·(n* (X*IC~, n* a* ID~))

~ :Dy(a*n* RHom·«(X*IC~, (X*ID~))

~ :Dy(RHom·(a*IC~, a!ID~)[c])

~ :Dy(:Dy«(X*IC~)) [ - c]

~(X*IC~[ -c] =IC~

5.4.2. Normally Nonsingular Projections

Definition. An oriented topological fibre bundle n: Y~X is normally non­
singular with codimension (- c) if the fibre n- 1 (x) is a topological manifold of
dimension c.

Theorem. Let n: Y~ X be a normally nonsingular fibration with codimension
- c. Fix a perversity j5 and let IC~ and IC~ denote the intersection homology
complexes on X and 1: Then n*IC~~IC~[-c] and n!IC~=IC~.

The proofs are similar to those in § 5.4.1.

5.4.3. Normally Nonsingular Maps

Definition. A normally nonsingular map f: Y~X between oriented topological
pseudomanifolds, is one which can be factored as a composition of a normally
nonsingular inclusion, followed by a normally nonsingular fibration. The re­
lative dimension of f is defined to be the sum of the codimensions of the two
factors. Topological pseudomanifolds and normally nonsingular maps form a
category (see [15]).

Definition. Let f: Y --. X be a proper normally nonsingular map of relative
dimension c. Then the induced homomorphisms

and
f*: I Hf(Y) --. I Hf(X)

f*: I Hf(X) --. IHf-c(Y)

are constructed as follows.
Consider the canonical "adjunction morphisms"

RJ;f!IC~--. IC~ and IC~ --. Rf*f*IC~.

By Theorems 5.4.1 and 5.4.2 these become morphisms

RJ;IC;~IC~ and IC~--.Rf*IC~[c]
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Since f is proper, Ri; = Rf*. Taking hypercohomology gives homomorphisms

IHf(Y)=yt-k(X; Rf*IC~)~:Yf-k(X;IC~)=IHf(X)

and
IHf(X) = :Yf-k(X; IC~) ~ :Yf-k(X; Rf*IC~[c])= IHf-c(Y)

Proposition. IHf is both a covariant functor (via f*) and a contravariant functor
(via f*) on the category of topological pseudomanifolds and normally non­
singular maps.

2. If f: Y~X is a normally nonsingular map of topological pseudo­
manifolds, then X and Y can be stratified so that the inverse image of the largest
stratum X - L of X is the largest stratum of Y. If c is the relative dimension of
f, then for any local system F on X - L,

n* IC~(F) ~ IC~(n* F) [ - c]
and

5.5. The Obstruction Sequence for Comparing two Perversities

It is clear from Deligne's construction that whenever p~ if are perversities,
there is a canonical morphism IC;~IC~. Thus we obtain a distinguished tri­
angle

and a long exact sequence on hypercohomology,

~IHf(X)-+IH?(X)~:Yf-i(X;S·)-+IHf_1 (X)~ ...

which is called the obstruction sequence because yt-i(X; S·) is the obstruction
to lifting a class from IH?(X) to IHf(X).

Now fix a stratification {Xk} of X.

Proposition. Suppose p(c) = q(c) for all c =f= k, and q(k) = p(k) + 1. Then:

(1) spt H* (S·) = closure (spt H* (S·) n (Xn-k - Xn-k _1)) where spt denotes the
support of a sheaf.

(2) If XEXn-k-Xn_k_1 then

Hi(S·)x=O

Hi(S·)x~Hi(IC~)x

for all i =f= q(k) - n,

if i=q(k)-n.

(3) If Hq(k)-n(IC~)x=O for all XEXn-k-Xn-k-1 then IC;~IC~ is a quasi
isomorphism.
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The proof follows directly from Deligne's construction.

fE. The results of this section hold equally well when IC~ is replaced by
IC;(F) and IC~ is replaced by IC~(F).

5.6. Normal Varieties, Local Complete Intersection, and Witt Spaces

5.6.1. Witt Spaces. Let k be a field and let X be a n-dimensional stratified
piecewise linear pseudomanifold [20].

Definition. X is a k-Witt space if IHf(Lx ; k)=O for all XEXn- 21 _ 1-Xn - 21 - 2.
Here, Lx is the link of the stratum containing x, and m= (0, 0, 1, 1, 2, 2, ... ).

Proposition (P. Siegel [35J). X is a k- Witt space if and only if the canonical
morphism IC~~IC~ is a quasi isomorphism. Thus, if X is a Witt space IH:(X; k)
is self dual.

The proof follows from the identification (§ 2.2) of the stalk
H ii(2Z+1)-n(I C~)x with IHz(Lx) for any XEXn_2Z _1 -Xn- 2l - 2. Then apply
Proposition 5.5 (2).

5.6.2. We also have obstruction groups relating perversities 0 and t to coho­
mology and homology (if X is oriented),

The cohomology sheaf Hi(S~) vanishes except for i=O and H i (S2) vanishes
except for i= -no For a point PEX the stalks of HO(S~) and H-n(s;) at pare
both free R modules of rank r -1 where r is the local Betti number, rank
Hn(X, X - p; R), at p. The number r has two other interpretations: If X =
Xn~ X n -1 ~ . .. is any stratification of X and N is a distinguished neighbor­
hood of p (see § 1.1), then r is the number of connected components of
(X -Xn _ 2)nN. If X is a complex analytic variety, then r is the number of
analytic branches at p.

Definition. A normal topological pseudomanifold X of dimension n is one such
that rank Hn(X, X - p; R) = 1 for all pE X.

By Zariski's main theorem, a normal complex algebraic variety is normal
as a topological pseudomanifold. By the above remarks, we have the

Proposition. For a normal oriented n-dimensional topological pseudomanifold X,
we have

Rx~ICo and IC;~ID~

so
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5.6.3. Local Complete Intersections
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Proposition. Let Y be a compact complex algebraic variety which is normal and
k

is a local complete intersection. Let p be a perversity such that p(k)~2 for each

k~4. Then for all i we have IHf(Y)~Hi(Y)'

Proof. Let us say that an n-dimensional triangulable space X is a space of type
Q if it is a normal pseudomanifold, has a stratification by even codimension
and orientable strata, and if for each XEXn_c-Xn_c_l the local homology

groups Hi(X, X -x) vanish for all i~n-l-~. Hamm [22] shows that a nor­

mal local complete intersection is a space of type Q, and we shall now show
that the conclusion of the proposition holds for any n-dimensional space X of
type Q.

For each XEXn_c-Xn_c_l the link Lx is an n-1 dimensional space of
type Q so by induction, the proposition applies to Lx. Thus,

IHf(X, X -x)~IHf_l(Lx)~Hi_l(Lx)~Hi(X, X -x)=O

provided i ~ n - 1-~ and p(k) ~~ for all k.

Applying Proposition 5.5 to any string of perversities between p and t
(where t(c) =(c - 2)) we conclude that for all i,

IHf(X) ~ IH~ (X) ~H;(X)

since X is normal.

§ 6. The Middle Group

6.0. In this chapter, X will denote an oriented topological pseudomanifold, ex­
cept in the paragraph marked f£ but we do not fix any particular stratification
of X. Except in §6.2 we will assume the ring R is a field, which we now denote
by k. We shall consider the middle perversities m= (0, 0, 1, 1, 2, 2, ... ) and n
=(0,1, 1,2,2,3, ... ) with their corresponding complexes IC~ and IC~ in the de­
rived category of the category of sheaves of k-vectorspaces.

In § 6.2 and §6.3, X will be a k-Witt space, so IC~ = IC~ which will be
denoted simply IC· or IC~.

6.1. Axioms [AX3]

Definition. Let S· be a topologically constructible complex of sheaves (of k­
modules) on X. We shall say S· satisfies axioms [AX3] provided:

(a) Normalization
There is a closed subspace ZcX such that S·I(X -Z)~kx_z[nJ and
dim(Z)~n-2.
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(b) Lower bound

Hm(s·)=o for all m< -no

(c) Support condition

dim {xEXIHi(S·)x=FO};;£ -2i-n-2 for i~ -n+ 1.

(d) Duality

There is an isomorphism S·~ ~(S·)[n].

Theorem. If the complex S· satisfies axioms [AX3] then there is a natural iso­
morphism in Db(X), S·~IC~. It follows that IC~~IC~ so X is a k-Witt space.

Proof. We shall show S·~IC~ by verifying the axioms [AX2]. Note that
m- 1 (c)=2c+2.

Axioms AX2(a)(b)(c) are obviously satisfied. For any XEX we have

j~S·~RHom·U~RHom·(S·, ID;), IDix})

~HomU~S·[ -n], k)

~HomU~S·, k)[n]

so HiU~S·)~Hom(H-n-iU~S·),k).
The set of points for which this does not vanish has (by AX3(c)) dimension

;;£ n+2 i - 2;£ n+2 i -1 = n - p -1 ( - i) where p is the perversity complementary
to m. This verifies axiom AX2(d), so S·=IC~. By duality we also obtain S·
=IC~~IC~.

2. Definition. A complex of sheaves S· is a middle intersection homology sheaf
if for some stratification of X and for some local coefficient system F on X - L,

S· = IC~(F)=IC~(F).

Theorem. A complex of sheaves S· is a middle intersection homology sheaf if
and only if both S· and 1)(S·) satisfy [AX3](b) (lower bound) and [AX3](c)
(support condition).

In this case, !)(S·)=IC~(Hom(F, (9)).

6.2. Small Maps and Resolutions

In contrast to the rest of this chapter, the results in this section are valid over
an arbitrary finite dimensional regular N oetherian ring R of coefficients.

Definition. A proper surjective algebraic map f: Y~X between irreducible
complex n-dimensional algebraic varieties is homologically small if for all
q> -2n.

coder {x EX IHq(Rf* IC~)x =t=0} > q+2n.

It follows that there is a Zariski open set U c X such that Ilf- 1(U) is a finite
covering projection. The above criterion is satisfied, for example, if Y is the
normalization of X or if f is a small map, i.e., if Y is nonsingular and for all
r>O,
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cod£ {x EXldim£f- 1 (x) ~r} > 2r.

Examples of Small Maps. If X is one or two dimensional than a small map
f: Y~X must be a finite map. If X is a threefold then the fibres of a small
map f must be zero dimensional except possibly over a set of isolated points
in X where the fibres may be at most curves.

Theorem. Let f: Y~X be a homologically small map of degree 1. Then
Rf*IC~~IC~ and in particular IH:(Y)~IH:(X).

Proof. The complex Rf* IC~ satisfies the criteria (AX2) of Theorem 4.1.

Definition. A small resolution f: Y~X is a resolution of singularities which is a
small map.

Corollary. If f: Y~X is a small resolution then the intersection homology
groups of X equal the (ordinary) homology groups of I: and Rf*Ry~IC~.

Remark. Small resolutions do not always exist, and are not necessarily unique
when they do exist. However, if X has several small resolutions, their cohomo­
logies are isomorphic as groups, but not as rings. Two small resolutions must
have the same signature and Euler characteristic.

fIl. Theorem. If f: Y~X is homologically small, then

Rf* IC~ =IC~(RO(flU)* R j -l(U»)'

where U is the Zariski open set over which f is a covering projection.

6.3. Kunneth Formula

For k = lR the following proposition was first proved by Cheeger using L2 co­
homology [10J.

Proposition. Suppose X and Y are Witt spaces. Then

IH~(X x Y)= EB IH~(X)®IH:(Y).
a+b=l

In particular, the signature of X x Y is the product of the signatures of X
and Y.

Proof. Let n 1 : Xx Y~X and n 2 : Xx Y~Y be the projections. It suffices to
L

prove that IC~ x y ~ni IC~ ® ni IC~, which is done by verifying the axioms.

The support condition is easy to verify, and duality holds because
L

R Hom·(ni IC~ ® ni IC~, lD~ x y)
L L

~R Hom·(niIC~ ® niIC~, niID~ ® ni ID~)
L

~RHom·(niIC~, niID~)®RHom·(niIC~, niID~)

L

~niIC~®niIC~[ -n-m]

where n=dim(X) and m=dim(Y).
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.P. Similarly, the characterization of middle intersection homology sheaves
in § 6.1 ff can be used to show

L

IC~ x y(ni F1(8) n! F2) ~ni IC~(F1) (8) n! IC~(F2)
so

IH~(XxY;niF1<8)niF2)~ (±) IH:(X;F1)<8)IH:(Y;F2)·
a+b=l

§ 7. The Lefschetz Theorem on Hyperplane Sections

The purpose of this chapter is to show that the classical theorem of Lefschetz
(on the homology of a hyperplane section of a nonsingular projective variety)
continues to hold in the singular case provided we replace homology by in­
tersection homology. This holds for a range of perversities which include the
middle perversity m and the logarithmic perversity 1. In § 7.4 we deduce as
corollaries of this theorem some results about ordinary homology and
cohomology.

Our original proof of this theorem proceeded by replacing Thorn's Morse­
theoretic argument in the nonsingular case ([2, 31]) with a stratified Morse
theoretic argument in the singular case (using the techniques of [21]). The
proof we present here was pointed out to us by Deligne (who had also ob­
served that the theorem is true). It is essentially the same as the proof in the
theorem of Artin [1]. We have also made use of some ideas of K. Vilonen
[46].

7.0 Throughout this chapter, X will denote a complex projective n dimensional
variety with its canonical orientation, and all homology groups will be under­
stood to take coefficients in a finite dimensional regular Noetherian ring R.

7.1. Theorem. Suppose X is a complex n-dimensional algebraic variety embedded
in complex projective space. Fix a perversity p such that p(c) ~ c/2. Let Y
=H (l X where H is a hyperplane which is transverse to each stratum of a
Whitney stratification of X. Then the normally nonsingular inclusion Lt: Y~X
induces isomorphisms Lt*: IHf(Y) ~) IHf(X) for all k < n - 1 and a surjection
Lt*: IH~_l(Y)~IH~_l(X).

7.2. Intersection Homology of Affine Varieties

This section contains the technical tools needed in the proof of the Lefschetz
theorem.

Lemma. Suppose A is an algebraically constructible sheaf on C. Then H2 «(£, A) = o.
Proof. A is locally trivial except on a finite set of points ([8J Exp. 7, 8). Let K
be the union of the line segments joining the origin to each of these points.
Then H*(K, AIK)~H*(<C,A). But K is one dimensional.
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Proposition. Let S· be a complex of algebraically constructible sheaves on <en,
which satisfies a support condition

where f: 7L~7L is a nonincreasing integer valued function. Then Jfi(<en;S·)=O
for all j>max {m+ f(m)lf(m)~O}. The same holds if we replace <en by an arbi­
trary affine algebraic variety.

Proof. If n = 1 the proposition follows from studying the spectral sequence as­
sociated to S· with E2 term

E;s=Hr(<e; HS(S·)) ~ ytr+s(<e; S·).

For r~2 we have E;s=O by the previous lemma. Furthermore,

E~s=HO(<e;H5(S·))=0

Eis=H 1(<e; HS(S·))=O
if s> f- 1 (0),

if s > f -1 (1)

where f-1(r)=max{mlf(m)~r} is the "super-inverse" of f. Consequently

(±) E;s=O if j> max [r+ f-l(r)J =max{f(m)+mIO~f(m)~1}.
r+s=i r=O,1

which implies yti (<e; S·) = 0 in this range also.

Remark. The super-inverse, f -1, may be interpreted as follows: Suppose S· is
constructible with respect to a stratification X °eX 1 c ... eXn =<en by complex
k dimensional algebraic varieties X k. The support condition means that for
any point XEX r -Xr _ 1 the stalk cohomology Hk(S·)x vanishes for all
k >f- 1 (r).

We now proceed by induction on n. Suppose S· is a complex of sheaves on
<en which satisfies the hypotheses of the proposition. Choose a stratification of
<en,

by complex i-dimensional algebraic varieties Xi such that S· is constructible
with respect to this stratification (§ 1.4).

We can find a linear projection n: <en ~<en -1 with the property that the
stalk homology of the complex of sheaves B·=Rn*S· at any point YE<cn

-
1

may be identified with the hypercohomology of the fibre n- 1 (Y), i.e.,

Such an: <en ~<cn -1 may be constructed as follows: Embed <en in <CIPn by
adding a <rIPn - 1 at infinity. Complete the stratification X °eX 1 c ... eXn of <en
to a stratification of <LIPn by stratifying the <CIPn -1 at infinity (Le. without refin­
ing the stratification of (Cn). Let p be a point in the largest stratum of the
<eIPn - 1 at infinity, and define n by projection along the parallel lines which
pass through p. This fibration of <cn by lines contains a subbundle D of com­
pact discs such that X n - 1 is contained in the interior of D, Now, Rn*S·
=Rn*S·ID and nlD is proper. By [17J §4.17.1 we have,

Hi(R n*(S·))y = yti(n -1 (y) n D; S·) = yti(n- 1(y); S·).
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We will now apply the case n = 1 to the computation of these stalk coho­
mology groups.

It is possible to find a stratification Yo c ... c Y;, _1 = <en - 1 by complex i­
dimensional algebraic varieties ~, and a refinement X6 c X~ c ... c X~ = <en of
the stratification {X;} of <en such that re: <en~ en -1 takes strata to strata. (In
other words, stratify the map re).

Suppose YEJr,.- ¥;.-1. We claim that Hk(Rre*S·)y=O for all
k > max [f -1 (r), 1+ f -1 (r + 1)]. To see this, consider the stratification of re - 1 (y)
obtained from intersecting with the {X~}. Clearly S·lre (y) is constructible with
respect to this stratification. A point xEre- 1 (y) which lies in a zero dimensional
stratum of re - 1 (y) may be an element of any stratum of X except those strata
in X r - 1 . Therefore Hk(S·)x=O for all

k > max [f - 1(r),f - 1 (r + 1), ... ,f - 1(n)] = f - 1(r).

A point x' Ere -1 (y) which lies in the one-dimensional stratum of re -1 (y) may be
an element of any stratum in X - Xr. Therefore, Hk(S·)x' = 0 for all

k >max [f -1 (r + 1),f -1 (r+ 2), ... ,f- 1(n)] = f -1 (r + 1).

Applying the case n = 1 to the fibre re- 1 (y) we obtain ytk(re- 1 (y); S·) =0 for all
k>max[1 + f- 1 (r+ 1),f- 1 (r)].

We will now apply the induction hypothesis to the complex of sheaves
R re* S· on <en -1. This complex satisfies a support condition

where, for every r~ 0

g-1(r)~max[1 + f-1(1 +r),f- 1 (r)].

Therefore Hk(<e n
; S·) = Hk(<e n

-1 ; R re* S·) = 0 whenever

k>max {m+ g(m)IO~g(m)~ n -1} =max {r+ g-1 (r)IO~r~n -1}.

This condition will be satisfied if

k>max{r+ f- 1(r)IO~r~n} =max{m +f(m)IO~f(m) ~ n}

as claimed.

7.3. Proof of the Lefsehetz Theorem

Fix a perversity p with p(e) ~ e/2 and let IC~ denote the associated intersection
homology complex on X. By §5.4.1 the triangle
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where i: (X - Y)~X is the inclusion of the complement of the hyperplane sec­
tion. The long exact sequence on hypercohomology associated with this tri­
angle is

~IHf(Y)~IHf(X)~Jf-i(R i* i*IC~)~IHf_l (Y)~

so we must show ~-i(i*IC~)=~-i(Ri*i*IC~)=O for all i~n-1.
Since X can be stratified by algebraic subvarieties, the complex IC~ is al­

gebraically constructible. Therefore the complex i* IC~ on the affine variety
X - X n H satisfies the hypotheses of Prop. 7.2 with the support condition given
by axioms (AX 2) :

dim<c{xIH-2n(i*IC~)x*O} ~n

p-l(m+2n)
dim<c{xIHm(i*IC~)x*O}~n 2 for m~ -2n+1.

. c p-l(m+2n)
SInce p(c)s- we have >m+2n so-2 2-

The conclusion of Prop. 7.2 now reads

~j(X - Y; i*IC~)=O for all j> -n as desired.

Remark. Decreasing the perversity does not give better bounds on j because
the dimension of the support of H-2n(i*IC~) is always n. However, if we in­
crease the perversity past p(c) = c/2 the Lefschetz theorem continues to hold,
although only for a smaller range of dimensions j. For a general perversity
p~ c/2 we have the following theorem:

IHi(Y)~IHi(X) is an isomorphism for i<j*

and is a surjection for i = j*, where

[
p-l(m+2n)]

j* =m:x m+n 2 -1.

7.4. Consequences in Ordinary Homology

7.4.1. Corollary. Let X be a normal n-dimensional projective variety and let Y
=X nH be a generic hyperplane section of X. Then the Gysin homomorphism
(in ordinary cohomology)

is an isomorphism for k > n - 1 and is a surjection for k =n -1.

Proof Take p=O in Theorem 7.1. (This corollary can also be proved using the
result of [27] and [32] on the vanishing of cohomology of Stein spaces.)

The following corollary was proved by Kato [26], Oka [34] and Ogus
[33], and Kaup [27], [28].
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Hi(Y)~Hi(X)

7.4.2. Corollary. Let X be a local complete intersection which is normal and let
Y=H nX be a generic hyperplane section of X. Then the homomorphism induced
by inclusion

is an isomorphism for i < n-1 and a surjection for i= n -1.

Proof Let p(c)=c/2. Then by Prop. 2.3.3 we have IHf(X)~Hi(X) for all i. The
same holds for 1': Therefore the Lefschetz theorem (7.1) for intersection ho­
mology implies the same result in ordinary homology. The following corollary
was pointed out to us by Horrocks [11].

7.4.3. Corollary. Let X be a normal projective algebraic variety and let f31
= rank (H 1(X)). Then f3 1 is even.

Proof. For a normal variety, IH~(X)~Hl(X) for any perversity. Apply the Lef­
schetz theorem to successive hyperplane sections of X until we arrive at a
two-dimensional variety Z with isolated singularities. Then f31 (X) = f31 (Z)
which is even (one verifies this directly).

7.4.4. Remark. The Lefschetz theorem for the middle perversity m is discussed
in [llJ as evidence that IH:(X) has a pure Hodge structure.

§ 9. Generalized Deligne's Construction and Duality

We have already proved that if p(c)+q(c)=c-2 for all c, then the sheaves IP·
and Q. resulting from Deligne's construction with perversities p and q respec­
tively have a canonical Verdier dual pairing. The proof was dispersed through­
out §3, §4, and §5. Here we use the techniques of those chapters to study
directly the relation between a single step in Deligne's construction and Ver­
dier duality.

9.0. In this chapter R is a finite dimensional regular Noetherian ring (however
in Sect. 9.2 we will assume R is a field). The space X is a stratified n-dimensional
topological pseudomanifold and U c X is an open union of connected com­
ponents of strata. The closed subspace Y=X - U is also a union of connected
components of strata. Let i: U~X and j: Y~X denote the inclusions. Let
D~(X) denote the derived category of sheaves of R-modules which are con­
structible with respect to this stratification

9.1. Fix an integer p. Let ~(p) be the full subcategory of D~(X) whose objects
B· satisfy the following conditions:

(a) HiU*B·)=O for all i~p,

(b) HiU'B·)=O for all i~p.

Theorem. The functor r~p_IRi*: D~(U)~D~(X) (see §1.4 and §1.14) takes its
values in CC (p). This functor determines an equivalence of categories D~ (U) ~ CC (p)
whose inverse is i*.

Proof. 't'~p_IRi*A· is constructible by an argument similar to that in Lem­
ma 3.1. The equivalence of categories argument is similar to that in the proof
of Theorem 3.5.
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9.2. Now suppose R is a field and Y is a k-dimensional R-homology manifold
(for some k < n). Define ~~ to be the full subcategory of D~(U) whose objects A­
satisfy

(c) j* Ri*A- is CLC (§1.4),

(d) iRi*A- is CLC.

Let ~~(p) be the full subcategory of D~(X) whose objects B- satisfy con­
ditions (a) and (b) of §9.1 and satisfy B-1 U is in ~~.

Theorem_ The functor r~p_IRi*: ~~~~~(p) is an equivalence of categories.

(The proof is similar to the proof of Theorem 9.1.)

Corollary_ If p+q = - k then there is a one to one correspondence between pair­
ings on U

and pairings on X,

, YR' A- fO\ YR' B- ID-a: r~p_l 1* ~r~q_l 1* ~ X

which is given by the rule:

a corresponds to a' ~f a'l U = a.

Furthermore, a is a Verdier dual pairing on U if and only if a' is a Verdier dual
pairing on X.

Proof of Corollary. Since r~q_1Ri*B- is an object in ~~(q),

RHom-(r~q_1Ri*B-,ID~) is an object in ~~(p). This is a calculation as in §5.3.
Therefore amorphism

A-~RHom-(B-,ID~)

corresponds to amorphism

r~p_lR i*A-~RHom-(r~q_l R i*B-, ID~).

Furthermore, isomorphisms correspond to isomorphisms.
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