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ON GRADIENT DYNAMICAL SYSTEMS
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{Revized Novemher 28, 1960)

We consider in this paper a C~ vector field X on a C~ compact manifold
M= (8M, the boundary of M, may be empty or not) satisfying the follow-
ing conditions:

(1) At each singular point 2 of X, there is a cell neighborhood N and
a C= funetion f on N such that X is the gradient of f on N in some
riemannian structure on N. Iurthermore /£ is a non-degenerate eritical
point of f. Let A, -+, A, denote these singularities.

(2) If x ¢ 8M, X at x is transversal (not tangent) to 8M. Hence X is
not zero on 8M.

(8) 1f x € M let @,(x) denote the orbit of X (solution curve) through =
satisfying ¢(2) = #. Then for each x ¢ M, the limit set of ¢/ (z) as
f — + oo is contained in the union of the A&,.

(4) The stable and unstable manifolds of the A8, have normal intersec-

tion with each other.
This has the following meaning. The stable manifold W* of 8, is the
set of all # e M such that limit,_.@.(2) = B,. The unstable manifold W,
of B, is the set of all x € M such that limit,. .. @.(x) = B;. 1t follows
from conditions (1), (2) and a local theorem in [1, p. 830], that if 2, is a
critical point of index X, then W, is the image of a 1-1, C=map @,: U— M,
where U< R** has the property if x e U, lz e U, 0 =2¢ =1 and o,
has rank n — ) everywhere (see [4] for more details). A similar state-
ment holds for W,;* with the U'c B* Now for & € W, (or W*) let W,
{(or W) be the tangent space of W, (oxr W;*) at z. Then for each 1, 7,
if w € W, WS, condition (4) means that

dim W, + dim Wy — n = dim (W, 1 W}5) .

Here W,, and W are considered as subspaces of the tangent space to M
at x.

For closed manifolds, these vector fields are a special case of those
considered in [4].

THROREM A, Let f be a C™ function on a compact C* manifold M»
with non-degenerate critical points. Suppose M is provided with o
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riemannion metric and that grad f is transversal to M. Then grad f
can be C' approvimated by a vector fleld satisfying conditions (1) to (4).

THEOREM B. Let X be a C~ vector field on a compaet C= manifold M*
satisfying (1)-(4). Denote by V, those points of dM at which X is ori-
ented n, and V, those points of M at which X is oriented out. Then
there is o« C= function f on M which has these properties:

(a) The eritical pointsof f eoincide with the singular points of X and
[f coincides with the function of condition (1) plus o constant in some
neighborhood of each critical point,

(by If X is not zevo at x € M, then it is transversal to the level hyper-
surface of fat x,

(e} If B e M 1isa critical point of f, then f(B) is M), where MA) 18
the 1ndex of £,

(dy fhasvalue — Yon V, and n + fon V,,

REMARK. Tt is easily proved from (a)—(d) that there is a riemannian
metric on M such that grad fF= X,

The next theorem follows easily from Theorems A and B.

TuroreM C, Let M™ be a compact C manifold with 8M equal to the
digjoint union of V, and V., each V, closed in M. Then there exists
C= funetion f on M with non-degenerate critical points, regular on 6M,
F(VY)= =%, f(V) = n+ }and at a eritical point B of f, (&) — index 4.

For some motivation of these thesrems see {4], [5], and [6]. In [4]
Theorem A was announced for the case M = ¢, while Theorem C was
announced in [5] for the case 8M = ¢ . These theorems have implications
in differential equations on one hand and topology on the other, both of
which we will pursue in future papers,

As this paper was finished, an article by A, H, Wallace [7] appeared
and seems to bear some relationship to this paper.

1. Proof of Theorem A.

First it is easily shown that there exist €' approximations /' of f such
that ' is C= and has distinet values at distinet eritical points. Thus in
proving Theorem A we can assume f has these properties.

LEMMA 1.1, Let f be a C function on a compaet riemannian manifold
with non-degenerate critical points and X = grad [ is transversal to 8 M.
Then a sy flictently close C! approximation X' of X with X' = X ina
neighborhood of the singular points, satisfies condition (3) above.

(One does not need such strong hypotheses on X'.)
ProoF. One can assume that X and X' have the property that, except
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at singular points, dfX and dfX’ are positive. Then an orbit #,(x) of X or

X' ig either a singular point or has the property that fo,.(z) increases as

t increases. Property (3) then follows. This fact that f®,(x) increases as

¢ increases is used in the rest of the paper without mentioning it again.

[t implies, for example, that there are no recurrent orbits of X and X",
By 1.1 it is sufficient for the proof of Theorem A to show:

LeMma 1.2, If fis ¢ C= function on a compact C= riemannian mani-
fold M, with non-degenerate critical points, distimet critical points
having distinet values and X = grad f tronsversal to 8M, then there
exist C' approvimations Y of X satisfying condition (4) and X = Y on
some netghborhood of the eritical points.

Index the critical points 3, of fof 1.2s0 that £(3,) >B),i=1,00 0.
Thus 2, is the minimum of 7. Denote hy W, and W3 respectively the

*

unstable and stable manifolds associated to 8,. Let 5, = f(8,), each 1.

LEMMA 1.8. Given sufficiently small ¢, > 0, §, there isa C* approzima-
tion X' of X such that X' = X outside of f~ (B, + ¢, B, + 8¢) and in
the X' system W, and Wi have normal intersection, each 1.

{(**W, in the X’ system” has the obvious meaning.)

ProOF. Assume f(8,) + 3¢, < B,,,. Let dim W, = n — & and Q be the
submanifold f (8, + 2¢) N W,of M. Let P= {z = (2!, + -+, 2% | [z || < 1}
be the k-disk and I, = {z| —m < z < m}, m > 0. Then for small enough
m there is a diffeomorphism % of I,, x P x Q onto a neighborhood I of
€ sending identically 0 x 0 x Q onto @ and such that X = djaz’ on U
where 2' = h{z x 0 x 0)and UcC f(B, + ¢, B, + 3¢). We will identify
points under k so that points of U will be represented by {(z,2,4), |2l =
m, ||z]| =1and ¥y e Q.

The proofs of the following two lemmas will be left to the reader.

LEMMA 1.4, Let I, = [—m, m] and ¢ > 0. Then there is a & > 0 such
that if ¥ < 8, there is a C~ function B(z) on I,, zero in a neighborhood
0f 81, 0 = B(2) Z ¢, | B'(2)| = ¢, and

S:m,@(z)dz -+ 7.

LEMMA 1.5, Let P be the k-disk as above. There is a C~ function v on
P which is zero in a neighborhood of 8P, 0 = v = 1, |(av/6x)) | < 2 and
v(x) =1 for || z|| £ 1/3.

With ¢ arbitrary, let 6, be the minimum of the § in 1.4 and 1/100, and
let ¢ be the restriction of 7, I, x PxQ—-0xPx0=P to
UL, (0 x Px@Q)n Wr. Now by Sard’s theorem [3] choose v € P such
that || v[| = ¥ < 8, and +2v is a regular value of g. We can assume,
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using an orthogonal change of coordinates in P, that v = (&', +++, ¥*) =
(7,0, +.+,0).

Let X' be the vector field on M which equals X outside U and on U'is

given by

X'= 6— + :8(2)7(3?)6 -
where 8 and v are chosen by 1.4 and 1.5. We claim that X' satisfies 1.3
if the ¢ of 1.4 has been chosen small encugh.

To see that X' is well defined it is sufficient to note that the second
term vanishes in a neighborhood of 8. It is easy to check that X' can
be made arbitrarily close in the C! sense to X by choosing the ¢ of 1.4
small enough.

It remains to prove that W, and W have normal intersection in the
X' system for each ¢. So fix ¢+ in what follows,

Let 4r, be the orbit in the X’ system through x with v (x) = x and
denote hy W* and W/ respectively W, and W, in the X' system. It is
sufficient to prove W' and W! have normal intersection in U since any
point ¢ e W/ n W7 is of the form +{p), » € U and 1, preserves the
property of normal intersection.

Let V= {{z, z, %) e U|||x] =1/8}. On V,

3 9
x =2 b
5 T PP

and integrating the corresponding system of differential equations, we
get 2(t) = ¢ + K,, x'(t) = S 8(t)dt + K,, with the other coordinates con-
stant. Then as long as we are in V,

o0, %, ¥) = (t, x + S:,@(t)dt, at, .., k) y) .

Using the main property of 2(z) in 1.4, (0, , ¥} stays in VV for |¢]| =
m, ||z £ 1/6, and ¥,.(0, 2, y) = (xm, 2 + v, ¥) for ||z {| = 1/6.

Let V,and V, denote respectively W' n V'and W/ N V' where V' =
{0, z, 4y e Ul||x|] = 1/6}. Then it is sufficient to show that V, and V,
have normal intersection in 0 x P x Q.

Since W,N0x Px Q=1{0,0,y)e Ulyeq}, and W,= W, when
restricted to {(—m, x, ¥) € U} and also +r2n(—m, &, ) = (0, 2 + v, y) for
||| £ 1/6, we obtain V, = {(0, +v, ) € U}. Hence if z,: U— P is the
previously defined projection, 7p,(V,) = +w. If g is the restriction of 7z,
to V,, then g {(+v) = V,n V.

Since the intersection of W and W' with {(+m, z, ) € U} are the
same and r_(+m, 2, ¥) = (0, 2 — v, ¥) we have
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Vi={0, o —wu, ) |(0,x, ) e Wrn V, ilz— 2] =1/6).

This implies that since g has a regular value at +2v, § has a regular
value at +v. Hence dim V, = dim P+ dim (V, N V,)and sincedim P= 1k,
V. and V, have normal intersection in ¢ x P x Q. This proves 1.3,

We show that 1.2 follows from 1.3 by induction on the following hy-
pothesis:

H(g): There ig a C" approximation X, of X (of 1.2) such that X, = X
in a neighkborhood of the 8, W,_, and W, have normal intersection in
the X, system for all p < ¢ and all <.

Then 4£(0) is trivial and (v} implies 1.2. We will now show that
H(g — 1) implies H(g). Given X, , by H (¢ — 1) we will construct X,.
We can suppose that df (X,_,) = 0 only on the 8;. Let &, = 1/4(8psr — B,)
and apply 1.3 to obtain an approximation X, of X, , with df(X,) =0
only on the 2, X, = X, , on a neighborhood of the 2,, and in the X,
system, W and W,._, having normal intersection for all 7. But also W,
and Wy* will still have normal intersection in the X, system forj > r — ¢
and all ¢ since this is true in the X,  system, X, = X, on £+, 8D
and W, 0 Wz C f([B,+:, B.]). This finishes the proof of 1.2.

2. Proof of Theorem B.

LeMMA 2.1, Let X be a C™ vector field on a compact C= manifold M™
satisfying (1)-(4) with V. and V, the subsets of 0M described in Theorem
B. Then there exists a set of disjoint closed (n — 1)-dimensional sub-
manifolds B, of M, 1 = —=1,0,1, «++, n with the following properties:

(i) B,=V, B,=V.

(ii) FEach B, is transversol everywhere to X.

(i) Fach B, k =+ —1, n, divides M into two regions whose closures we
denote by G, and Hy, with G, DG, H, = H,,, and G, containing exactly
those singular points of index = k. For completeness welet G_ = B_,
H,.=MG,=Mand H, = B,. Hence, for k= —1,0,--«, 2, G, N H, =
B,and G, U H, = M.

(iv) Ow B,, X is oriented into H,.

The proof goes by induction on 2. Roughly having constructed B,_,,
we augment G,_, by tubular neighborhoods of the stable manifolds cor-
responding to singular points of index % to obtain G, (and hence B,).

Proor. Take B_, = V, and assume we have constructed B,_, with M =
G UH, G, . NH,, = B, ., G, containing those singular points of
index £k — 1, and on B,_,, X is oriented into H._,. We will now con-
struct B,.

Let B._, x {—1, 1] be a product neighborhood of B, , (in case &£ =0,
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take B,_, x [0, 1) with B,_, = B, x 0, B,_, x [0,1]c H,,and B,_, x t
transversal to X for each ¢,

Denote by v,,i=1, +++, #, the singularities of X of index %, and
changing notation let W = W2 * and W, = W»* denote the stable and
unstable manifolds respectively of v, 2 =1, ---, . Then if z € W}, the
orbit of # passes through V = B,_, ¥ 1 by Lemma 3.1 of [4] at least once
and hence exactly once (the proof of 3.1 in [5] is for closed manifolds but
applies equally well to our case; this easy lemma is the only use we make
of [4]).

Let ¥ be one of the v,, W= W, W* = W*. One chooses from condi-
tion (1) an open neighborhood N of v, f on N and & > 0 such that the
(n — k)-disk bounded by F(8) N W= Wisin N. Let E. be the normal
bundle of Win M restricted to W of vectors with magnitude = &. Denote
by S, the image of E, under the exponential map. Assume ¢ > 01is so
small that S, is transversal to X.

If £ > 0 is sufficiently small one can define an imbedding T: S, — W— V,
by sending z € S. — W into the point of the orbit through z meeting V..
Asgsume ¢ is this small and denote the image of T with v = v, by K., for
each 1+ =1, «++, . We assume that ¢ is small enough so that these K,
are mutually disjoint.

Now define a €~ imbedding F: 88, x [—1, 1] — M by sending (p, —1)
into o, (p, 1) into T{(p) and (p, {) into the orbit joining » and T(p), the
distance from p proportional to {. Then extend ¥ to €= imbedding of
88, % [—2, 2], which sends p x [—2, 2] into a gingle orbit, each p.

Next in the construction of G, and B, we modify F slightly to a new C=
imbedding. Fixing some riemannian metric on M, let v(p, {) be the unit
normal vector field on the image of F' whose orientation is determined by
the vectors on S, oriented away from W. For %, a small positive con-
stant, let F.(p, ) be the point at distance nf from F{(p,t) along the
geodesic determined by v(p, £).

Choose 7 s0 small that image F, = im F, is digjoint from the K,,, im F,
is transversal to X everywhere, and im F, N S., im F, N V, are diffeo-
morphic respectively to im Fn S, im Fn V.

Repeating this construction for each singular point v, we obtain a
hypersurface (singular) B;, in M made up of the following pieces:

(a) The part of S, bounded by im F, (1 S,, one corresponding to each v;;

(b) V, minus pieces hounded by im F, N V, and containing W* n V,,
one such piece corresponding to each «,;; and

(c) the part of im F, bounded by im F, N S; and im F,n V,, one for
each v,.
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Then B; has the property that, on each piece, it is transversal to
X, M — B = G, U H}, with G} containing G,_, and all the singular points
of index k. In fact G} only fails to satisfy G, of 2.1 in that 8G%, = B} is
not a differentiable submanifold, but has corners along im F, n V, and
im F, 1S, for each singular point. This is easily modified however to
obtain the desired G, and B, by the device of ‘‘straightening the angle
{see [2] for some discussion), the details of which we leave to the reader.
This finishes the proof of 2.1.

LEmMMA 2.2. Let X be a C* vector field on & manifold M* satisfying
condtrons (1), (2) and (3) with only singular points of index k. Let V,
and V, be as in Theorem B. Then there is a C~ function on M which
satisfies eonditions (a), (b), and (c) of Theorem B and hes value kb — }
on V, value b + Lon V..

Proor. Let v, +++, v, denote the singular points of X, W, and Wy,
their respective unstable and stable manifolds. We will firgt define the
desired function in a neighborhood of U._, (W, U W). Let N, and £, be
neighborhoods and functions of condition (1) but suppose also N, is as in
the proof of 2.1. Furthermore assume f{v,) = k by adding appropriate
constants.

Take v =, some ¢, f = f,, W= W,, W* = W2, and N= N,. Then
let f7k+8NN=R,[fk— 8 =R, with § chosen ag in previous
lemma, B. = {(z, y) ¢ B|[|y|| £ ¢}, and By = {(z, y) € R |||z || = &}.

Fix a riemannian metric on M and take ¢ = 1/10. For # ¢ R,, re-define
Son @x),t =0, so that f(px)) =k + &, f(y) = k + 1 where y is the
point of ¢,(x) meeting V,, and on the points between ¢,(x) and ¥ on @),
[ is defined proportionally to arc length. Thus we have obtained an f on
a neighhorhood of W satisfying the right boundary conditions, but is not
differentiable on f~'(8). By a smoothing process similar to the one dis-
cussed by Milnor 8.1, 8.2 of [2], / can be made C= on £-'(§).

In the same way using R:, one gets f defined on a neighborhood Q of
W * as well as a neighborhood of W which satisfies the condition £(@Q N V)=
k — t. This, by iteration, yields a function f defined on disjoint open
neighborhoods P; of W, U W* which agrees with the f; on some neigh-
borhoods of the v, of /(PN V)=k — 3, f(P.NV)=k+ 4 and f
has only critical points at the v,. Furthermore f satisfies condition (b) of
Theorem B. We can assume without loss of generality that the closures
of the P, are disjoint and if 2 e P,, all of p,(x) lies in P,. We will now
extend f to all of M,

Choase U, C ¥V, N P, to be a compact neighborhood of Wi V, 7=
1, +++, r. Then let X be 2 real C~ function on ¥, satisfying 0 < < 1,
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r=1oneach U, =0on V,— U, PNV,.ForzeM— U, (W.u W)
let I(z) be the length of the orbit through =, v(z) be the distance from
(@)} N V, to 2 along ¢,(z) and g(z) = k& — § + (#(z)){(L(z)). One can now
show that the function %7 + (1 — %)g on M has the desired properties of
the function of 2.2, where Xx) = M, () N V)) or 1 if ,(x) does not meet
V..

Finzlly we prove Theorem B. Take f on the closure of G, — G,_,0of 2.1
to be the function of 2.2,k = 0,1, --+,n. One obtains a well defined
funetion and by smoothing this in a neighborhood of By, -+, B, as in
the proof of 2.2, the desired function of Theorem B is obtained.
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