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Abstract

This thesis describes several aspects of the functor given by bordism of immersions

of closed manifolds, from a geometrical viewpoint. There are two new results.

The first is a generalisation of Herbert’s Theorem [15] relating the homology

classes represented by multiple points of a self-transverse immersion. Whilst admit-

ting a much simpler proof, Herbert’s Theorem in the bordism of immersions also

implies analogues in other generalised cohomology theories.

The second result, again geometrical in nature, shows a relationship between

the self-intersection operations in the bordism of immersions, and the generalised

Steenrod operations of tom Dieck [37]. As a Corollary, we obtain a new construction

of the Steenrod squares on those Z2-cohomology classes of a manifold whose Poincaré

dual homology class contains an immersion.

The main technique employed is that of extending an immersion to an immersion

of its normal disc bundle, to avoid transversality issues. Such ‘spreadings’ were

studied extensively by Vogel [38], whose proof of the classification result (relating

bordism of immersions to the stable homotopy of Thom spaces) is reproduced here.
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Chapter 1

Introduction

Here we give the basic definitions of differential topology which we shall need, and

then briefly summarise the contents of each Chapter. References can be found in the

main text.

In this thesis, the word ‘manifold’ will mean ‘smooth, Hausdorff manifold (dif-

ferentiable of class C∞)’. Superscripts without parentheses will be used to denote

dimension, so for example, Nn may denote a manifold of dimension n. A map

f : Mn−k → Nn between manifolds will be assumed smooth unless otherwise stated.

The integer k is called the codimension of the map f . Recall that such a map f

induces a map df : TM → TN of tangent bundles, called the derivative of f .

Definition 1.1. A map f : Mn−k → Nn of non-negative codimension k is called an

immersion if for every point x ∈ M , the linear map of tangent spaces dfx : TMx →

TNf(x) has rank (n− k). An immersion will be denoted by f : Mn−k
# Nn.

Note that although the derivative dfx of an immersion f : Mn−k
# Nn is injective

at each point x ∈ M , the map f may not itself be injective. We call the points of M

at which injectivity fails the multiple points of f . The image of the multiple points

in N will be called self-intersections of f .

Definition 1.2. An immersion f : Mn−k
# Nn which is homeomorphic onto its

image f(M) ⊆ N is called an embedding, and is written f : Mn−k →֒ Nn.

8



CHAPTER 1. INTRODUCTION 9

Note that an embedding is an immersion without self-intersections, but an in-

jective immersion may not be an embedding. For example, there is an injective

immersion f : R1
# R2 with image a figure eight.

The correct notions of homotopies of immersions and embeddings are as follows.

Let I = [0, 1] be the closed unit interval.

Definition 1.3. Two immersions f0, f1 : Mn−k
# Nn are said to be regularly ho-

motopic if there is a smooth homotopy F : M × I → N from f0 to f1 such that at

each stage t ∈ I the map F (−, t) : M → N is an immersion.

Definition 1.4. Two embeddings f0, f1 : Mn−k →֒ Nn are said to be isotopic if there

is a smooth homotopy F : M × I → N from f0 to f1 such that at each stage t ∈ I the

map F (−, t) : M → N is an embedding.

For an immersion f : Mn−k
# Nn, we may regard TM as a sub-bundle of the

pullback bundle f ∗TN . This is done by identifying TM with the isomorphic bun-

dle df(TM), whose fibre over x ∈ M is the (n − k)-dimensional vector subspace

dfx(TMx) ≤ TNf(x).

Definition 1.5. The quotient bundle ν(f) := f ∗TN/df(TM) is a k-dimensional

bundle over M called the normal bundle of f .

The normal bundle to an immersion f : Mn−k
# Nn may be given the structure

of a smooth vector bundle. This means that we may give the total space ν(f) the

structure of a smooth manifold of dimension n, such that the bundle projection

p : ν(f) → M is a smooth map. It is a well known fact (see [6] Remark 4.12, for

example) that any smooth vector bundle may be given a smooth Riemannian metric.

A vector bundle with a Riemannian metric will be called a Riemannian vector bundle.

Note that a bundle map v : ζ → ξ between Riemannian vector bundles which is

isometric on fibres induces a map of unit disk and unit sphere bundles, and hence a

map Tv : Tζ → Tξ of Thom spaces. We henceforth assume ν(f) to be smooth and

Riemannian.
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Definition 1.6. Let f : Mn−k
# Nn be an immersion, and let ζ be a Riemannian

vector bundle of dimension k. A ζ-structure for f is a bundle map v : ν(f) → ζ

which is isometric on fibres.

We now come to our main objects of study. For a fixed manifold Nn with

empty boundary and a Riemannian vector bundle ζ of dimension k, consider the

set Imm(N ; ζ) of all immersions f : Mn−k
# Nn with ζ-structure, where M is closed

(compact and with empty boundary). This set may be very large; a classification

tool is provided by bordism of immersions.

In Chapter 2 we define the equivalence relation on Imm(N ; ζ) given by bordism

of immersions, and the resulting commutative monoid I(N ; ζ). These monoids are

functorial in both arguments N and ζ , and between them are external and internal

product pairings. Additional structure on the functor I(−;−) is provided by the

self-intersection operations, which are functions ψr : I(N ; ζ)→ I(N ;Srζ) natural in

N , where the bundle Srζ is the r-th extended power of ζ . For a generic immersion

f : Mn−k
# Nn the set of r-fold self-intersections is itself the image of an immersion

ψr(f) : ∆r(f) # N with Srζ-structure, leading to the definition of ψr. We may also

extend the definition of I(−;−) to allow manifolds with boundary.

The main result of Chapter 3 is a new proof of Herbert’s Theorem in the set-

ting of bordism of immersions. Herbert originally gave a recursive formula relat-

ing the homology classes in M represented by the multiple points of an immersion

f : Mn−k
# Nn, but his proof was encumbered by the fact that homology classes are

represented by singular simplices rather than immersions. Our proof seems simpler

as it is in some sense closer to the geometry.

Chapter 4 is a review of cobordism theories. We adopt Quillen’s approach and

think of a cobordism class of Nn in degree k as being represented by a codimension

k proper map to N with some prescribed orientation. This allows us to relate the

cobordism functors to the functor I(−;−), and hence obtain Herbert’s Theorem in

any cohomology theory where the constituent normal bundles are orientable. Fi-

nally we discuss Steenrod operations in generalised cohomology theories, give their
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construction in cobordism theory due to tom Dieck, and describe their geometric

interpretation in terms of proper maps.

A useful tool in studying immersions up to bordism is the functor J (−;−) on

pairs of pointed spaces given by bordism of spreadings, as defined by Pierre Vogel

with the French name ‘étalements’. The close relationship between the two functors

I(−,−) and J (−;−), described in Chapter 5, means that the bordism class of an

immersion f : Mn−k
# Nn with ζ-structure is essentially determined by an extension

of f to an immersion of its normal unit disc bundle, and the behaviour of the map

v : ν(f)→ ζ near the zero section. Since such a ‘spreading’ of f has zero codimension,

many transversality issues may be avoided by taking this approach.

As an example, in Chapter 6 we apply the results of Chapter 5 to obtain a formula

relating the double point operation ψ2 and the Steenrod operations of Z2 type in

unoriented cobordism and Z2-cohomology. This is our main original result, but in

some sense it raises more questions than it answers; some of these are discussed in

Section 6.3.

In Chapter 7 we prove the homotopy classification result which relates bordism

of immersions to the stable homotopy of Thom spaces. The proof we give is due to

Vogel. We also outline the connection between self-intersection operations and the

James-Hopf maps from stable homotopy theory. None of the material in this Chapter

is new, but it is included here for completeness.



Chapter 2

Bordism of Immersions

We wish to study the set of all immersions of compact manifolds into a given man-

ifold, with a given structure on their normal bundles. This can be made precise

as follows. Let Nn be a connected manifold with empty boundary, and let ζ be a

k-dimensional real Riemannian vector bundle over a space X having the homotopy

type of a connected manifold. The data we wish to consider are triples (Mn−k, f, v)

where Mn−k is a closed manifold, f : M # N is an immersion with normal bundle

ν(f), and v : ν(f)→ ζ is a ζ-structure for f . Here the word ‘closed’ means ‘compact

with empty boundary’. We shall denote the set of all such triples Imm(N ; ζ). We

must first partition this set using a suitable equivalence relation. To begin with, we

could consider immersions equivalent if they differ only by a diffeomorphism of the

source manifold.

Definition 2.1. Two triples (M, f, v) and (M ′, f ′, v′) in Imm(N ; ζ) are diffeomorphic

if there is a diffeomorphism g : M → M ′ such that f = f ′ ◦ g, and v = v′ ◦ g as

bundle maps, where the bundle map g : ν(f) → ν(f ′) comes from the isomorphism

ν(f) ∼= g∗ν(f ′).

However the resulting set of equivalence classes is still too large to be tractable

in general. We need a coarser equivalence relation; this is provided by bordism of

immersions.

12



CHAPTER 2. BORDISM OF IMMERSIONS 13

2.1 The Monoid I(N ; ζ)

Definition 2.2. Two triples (M0, f0, v0) and (M1, f1, v1) in Imm(N ; ζ) are bordant,

written (M0, f0, v0) ∼ (M1, f1, v1), if there is a triple (W n−k+1, F, V ) consisting of a

compact manifold W with boundary ∂W , an immersion F : W # N × I transverse

to N ×∂I such that F−1(N ×∂I) = ∂W , and a ζ-structure V : ν(F )→ ζ for F ; and

such that the triple (∂W, F |∂W , V |∂W ) is diffeomorphic to the triple (M0⊔M1, (f0, 0)⊔

(f1, 1), v0 ⊔ v1).

Here the symbol ⊔ denotes disjoint union. One may show that bordism as defined

is an equivalence relation. We denote the resulting set Imm(N ; ζ)/ ∼ of bordism

classes by I(N ; ζ). The bordism class of a triple (M, f, v) will be denoted [M, f, v],

or simply by [f ] when we wish to suppress notation.

Lemma 2.3. Diffeomorphic triples are bordant.

Proof. The triple (M × I, f × 1I , v ◦ π) is readily seen to give a bordism between

diffeomorphic triples (M, f, v) and (M ′, f ′, v′), where π : ν(f×1I) ∼= ν(f)×I → ν(f)

is the projection.

Proposition 2.4. I(N ; ζ) has the structure of a commutative monoid.

Proof. The addition operation is given by disjoint union of representatives, so

[M, f, v] + [M ′, f ′, v′] = [M ⊔M ′, f ⊔ f ′, v ⊔ v′].

This is easily checked as being well-defined. The unit is given by the empty immersion.

Commutativity and associativity follow from the diffeomorphisms M ⊔M ′ ≈M ′⊔M

and (M ⊔M ′) ⊔M ′′ ≈M ⊔ (M ′ ⊔M ′′) and Lemma 2.3.

We also record the following simple fact.

Proposition 2.5. Let f0, f1 : Mn−k
# Nn be regularly homotopic immersions, and

let v0 : ν(f0)→ ζ be a ζ-structure for f0. Then f1 may be given a ζ-structure v1 such

that the triples (M, f0, v0) and (M, f1, v1) are bordant.
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Proof. Let F : M × I → N be a regular homotopy from f0 to f1. Then the map

F : M × I → N × I given by F (m, t) = (F (m, t), t) is an immersion, whose normal

bundle ν(F ) restricts to ν(fi) over M × {i} for i = 0, 1. The Proposition will be

proved if we can find a compatible ζ-structure for F . Note that ν(F ) ∼= π∗ν(f0),

where π : M × I → M × {0} is the projection, and composing this isomorphism

with the bundle map π : π∗ν(f0) → ν(f0) gives a bundle map from ν(F ) to ν(f0).

Composing this with v0 : ν(f0)→ ζ gives the required ζ-structure.

2.2 Functoriality

In fact the pairing I(−;−) is functorial in both variables, N and ζ . We now make

this statement precise. Let D0 be the category whose objects are finite dimensional

manifolds with empty boundary, and whose morphisms are the proper immersions (a

map between topological spaces is called proper if the inverse image of any compact set

is compact). Let Vect denote the category whose objects are real Riemannian vector

bundles over spaces having the homotopy type of connected manifolds, and whose

morphisms are the bundle maps between bundles of the same dimension which are

isometric on fibres (our reasons for using this restricted category of vector bundles will

become clear in Chapter 5, when we introduce the Thomification functor T : Vect→

T• to the category of pointed spaces and maps). Let CMon be the category of

commutative monoids and monoid maps. Finally, for a category C, let Cop denote its

opposite category.

Proposition 2.6. Bordism of immersions is a homotopy bifunctor

I(−;−) : Dop
0 × Vect→ CMon.

Proof. We first show that I(N ;−) is a covariant homotopy functor. It is clear that

a morphism η : ζ → ξ in Vect induces a well-defined map of monoids η∗ : I(N ; ζ)→

I(N ; ξ) sending [M, f, v] to [M, f, η ◦ v], and that this assignment is functorial. To

show that homotopic bundle maps η ≃ η′ : ζ → ξ induce the same map, we must
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show that (M, f, η ◦ v) ∼ (M, f, η′ ◦ v). So let H : ν(f)× I → ζ be a homotopy from

η ◦ v to η′ ◦ v. Then the triple (M × I, f × I,H) gives the desired bordism.

Now we fix ζ and show that I(−; ζ) is a contravariant homotopy functor. Let

g : Qn−l
# Nn be a proper immersion, and let [M, f, v] be in I(N ; ζ); we must

describe g∗[M, f, v] ∈ I(Q; ζ). By Proposition A.5 in the Appendix and Proposition

2.5, we may find a representative f ′ of [f ] which is regularly homotopic to f and

transverse to g as a map to N . We then form the pullback square.

Q×N M
ρ

- M

Q

δ
? g

- N

f ′

?

The manifold

Q×N M = {(q,m) ∈ Q×M | g(q) = f ′(m)}

is compact since M is compact and g is proper. The map δ is an immersion with

normal bundle isomorphic to ρ∗ν(f ′) ∼= ρ∗ν(f), hence admits a bundle map ρ : ν(δ)→

ν(f). Then we may set

g∗[f ] = [Q×N M, δ, v ◦ ρ] ∈ I(Q; ζ).

Note that this construction is well-defined and functorial by Proposition A.6(a) in

the Appendix, and that regularly homotopic immersions of Q in N give the same

map I(N ; ζ)→ I(Q; ζ).

2.3 Products

Given pairs of objects N,N ′ ∈ Ob(D0) and ζ, ζ ′ ∈ Ob(Vect) we may define the

Cartesian product objects N ×N ′ ∈ Ob(D0) and ζ × ζ ′ ∈ Ob(Vect). This allows the

following definitions of products in the bordism of immersions.

Definition 2.7. The external or Cartesian product is the binary operation

I(N ; ζ)× I(N ′; ζ ′)
×
→ I(N ×N ′; ζ × ζ ′)
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given by Cartesian product of representatives, so

[M, f, v]× [M ′, f ′, v′] = [M ×M ′, f × f ′, v × v′].

Definition 2.8. The internal or cup product is the binary operation

I(N ; ζ)× I(N ; ζ ′)
∪
→ I(N ; ζ × ζ ′)

given by

[f0] ∪ [f1] = △∗[f0]× [f1],

where △∗ denotes pullback by the diagonal embedding △ : N →֒ N × N (given by

n 7→ (n, n)) as in Proposition 2.6.

That these operations are well-defined is immediate. Note that both are distribu-

tive over the addition. The diffeomorphism (M ⊔M ′)×M ′′ ≈ (M×M ′′)⊔(M ′×M ′′)

along with Lemma 2.3 yields this fact in the case of the ×-product, and the ∪-product

case follows since △∗ is a monoid homomorphism.

2.4 The Self-intersection Operations ψr

Thus the theory of bordism of immersions has a rich structure. It is enriched fur-

ther by certain natural operations between bordism functors, constructed from the

self-intersections of immersions. The idea is that if an immersion f : Mn−k
# Nn

satisfies a certain generic property, then the set of points in N whose pre-image un-

der f consists of at least r distinct points of M is itself the image of an immersion

ψr(f) : ∆r(f) # N of codimension rk. This r-fold self-intersection immersion has

certain extra structure on its normal bundle.

The study of self-intersections of immersions began long ago with such authors as

H. Whitney [41] and R.K. Lashof and S. Smale [19]. However, it was U. Koschorke and

B. Sanderson, in their pioneering work [18], who first applied the theory to define

operations between bordism monoids. These operations have since been studied

extensively by P. J. Eccles [12], M. A. Asadi-Golmankhaneh and Eccles [1] and others,

and will be the subject of much of this thesis.
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We now describe the ‘generic property’ of immersions mentioned above, and in

order to do so must introduce the following notations. Superscripts in parenthe-

ses will denote iterated products, so that if r ≥ 1 is an integer, N (r) is the r-fold

Cartesian product of N with itself. Let △ : N →֒ N (r) be the diagonal embedding

n 7→ (n, . . . , n). The r-th configuration space of M is the open submanifold

F(M ; r) = {(m1, . . . , mr) ∈M
(r) | i 6= j ⇒ mi 6= mj} ⊆M (r),

consisting of pairwise distinct r-tuples of points in M . Given f : Mn−k
# Nn, the

restriction of the product immersion f (r) : M (r)
# N (r) to F(M ; r) shall also be

denoted f (r).

Definition 2.9. An immersion f : Mn−k
# Nn is self-transverse if for every r ≥ 1

the immersion f (r) : F(M ; r) # N (r) is transverse to △ : N →֒ N (r).

Given an integer r ≥ 1 and a self-transverse immersion f : Mn−k
# Nn of a

closed manifold to a manifold without boundary, we now construct the r-fold self-

intersection immersion ψr(f) of f . By Definition 2.9, on forming the pull-back square,

∆r(f) - F(M ; r)

N

ψr(f)

? △
- N (r)

f (r)

?

the subspace

∆r(f) = {(m1, . . . , mr) ∈ F(M ; r) | f(m1) = . . . = f(mr)} ⊆ F(M ; r)

is a submanifold, whose dimension is computed as follows:

dim∆r(f) = dimF(M ; r)− codim(∆r(f) →֒ F(M ; r))

= r(n− k)− codim△

= r(n− k)− (r − 1)n = n− rk.

Thus the map ψr(f) : ∆r(f) → N has codimension rk, and is an immersion since

△ ◦ ψr(f) = f (r)|∆r(f).
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In fact, ∆r(f) is a closed manifold. It clearly has empty boundary; we must show

why it is compact. Certainly, since ∆r(f) = (f (r))−1△(N) it is a closed subset of

F(M ; r). Define a subspace △M (r) ⊆M (r), the fat diagonal, by

△M (r) = {(m1, . . . , mr) ∈M
(r) | ∃i 6= j with mi = mj}.

Note that F(M ; r) = M (r) − △M (r). Using the fact that f is an immersion and

therefore locally injective, one can show that

∆r(f) ⊆M (r) − U ⊆ F(M ; r),

where U is an open neighbourhood of △M (r) in M (r). The space M (r)−U is compact

since it is a closed subspace of M (r). Hence ∆r(f) is compact.

Now let Sr denote the symmetric group on r elements. Note that Sr acts freely

on ∆r(f) by permutation of factors, and acts trivially on N . The immersion ψr(f)

is equivariant with respect to these actions. Hence, on factoring out by Sr we obtain

an immersion of a closed (n− rk)-manifold,

ψr(f) : ∆r(f) # N,

[m1, . . . , mr] 7→ f(m1) = . . . = f(mr),

the so-called r-fold self-intersection immersion of f .

In the next chapter we shall reprove a result of R.J. Herbert [15], concerning

homology classes in the source manifold M represented by the multiple points of

a self-transverse immersion f : Mn−k
# Nn. By an r-fold multiple point of f we

mean a point m ∈ M such that f−1(f(m)) ⊆ M consists of at least r distinct

points. Using the constructions of this section, it is easy to describe an immersion

µr(f) : ∆̃r(f)n−rk
# Mn−k whose image is exactly the r-fold multiple points of f .

Note that the symmetric group Sr−1 also acts freely on ∆r(f) by permuting the

last r − 1 factors, keeping the first fixed. The resulting quotient manifold ∆̃r(f) =

∆r(f)/Sr−1 is again a closed (n− rk)-manifold. The map

µr(f) : ∆̃r(f)n−rk → Mn−k,
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(m1, [m2, . . . , mr]) 7→ m1

given by projection to the first factor is an immersion, since all other maps in the

equality f ◦µr(f) = ψr(f)◦ρ are immersions, where ρ : ∆̃r(f)→ ∆r(f) is the obvious

r-fold covering. This codimension (r−1)k immersion µr(f) is the r-fold multiple point

immersion of f .

We are almost ready to define some operations. First we need a lemma concerning

the structure of the normal bundles of the immersions ψr(f) and µr(f), which requires

some preliminary bundle constructions.

Let G be a group. Given a right G-space X and a left G-space Y , the diagonal

action of G on X × Y is the action given by g(x, y) = (xg−1, gy) for g ∈ G, x ∈ X

and y ∈ Y . Define X ×G Y to be the orbit space of X × Y under this action.

Now let G be a subgroup of the symmetric group Sr. If EG is a contractible space

with a free right action of G, then it is the total space of a universal principal G-

bundle. Let ζ be a k-dimensional bundle with projection p : E(ζ)→ X. The product

map p(r) : E(ζ)(r) → X(r) is an equivariant map of left G-spaces, whose G-actions are

given by permutations.

Definition 2.10. The rk-dimensional vector bundle

1×G p
(r) : EG×G E(ζ)(r) → EG×G X

(r)

will be denoted by SGζ, and the bundle SSr
ζ = Srζ will be called the r-th extended

power of ζ.

Note that Srζ is only defined up to homotopy equivalence, and as such S1ζ = ζ .

We define S0ζ to be the point bundle over a point, denoted by ⋆.

Lemma 2.11. Suppose the self-transverse immersion f : Mn−k
# Nn has a ζ-

structure. Then the immersions ψr(f) and µr+1(f) have a Srζ-structure, for r ≥ 1.

Proof. With a little thought, we can identify the relevant normal bundles as quotient

bundles,

ν(ψr(f)) ∼= ν(f)(r)|∆r(f)/Sr,
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ν(µr+1(f)) ∼= ε0 × ν(f)(r)|∆r+1(f)/Sr,

where ε0 is the 0-dimensional bundle over M . Let v : ν(f) → ζ be a ζ-structure for

f .

The standard model for ESr is the configuration space F(R∞; r), where R∞ =
⋃

n Rn is given the direct limit topology and Sr acts by permutations.

By Whitney’s Theorem A.1 in the Appendix, we can find an embedding λ : ν(f) →֒

R∞. An Srζ-structure for ψr(f) is given by the bundle map

Sr(v) : ν(ψr(f))→ Srζ

[x1, . . . , xr] 7→ [(λ(x1), . . . , λ(xr)), v(x1), . . . , v(xr)],

where xi ∈ ν(f)mi
and (λ(x1), . . . , λ(xr)) ∈ F(R∞; r). An Srζ-structure for µr+1(f)

is given by

S̃r+1(v) : ν(µr+1(f))→ Srζ

(∗, [x1, . . . , xr]) 7→ [(λ(x1), . . . , λ(xr)), v(x1), . . . , v(xr)].

These structures are uniquely defined up to bundle homotopy, since λ is unique up

to isotopy by Theorem A.1.

Proposition (Koschorke and Sanderson) 2.12. There exist operations

ψr : I(−; ζ)→ I(−;Srζ),

defined for r ≥ 0, which satisfy the following properties. Let [f ], [g] ∈ I(N ; ζ).

(i) ψ0[f ] = [1N : N # N ] ∈ I(N ; ⋆).

(ii) ψ1[f ] = [f ], and ψr[f ] = 0 for r > 1 if [f ] can be represented by an embedding.

(iii)(Naturality) If h : Q # N is a proper immersion, then

h∗ψr[f ] = ψrh
∗[f ] ∈ I(Q;Srζ).

(iv) (Cartan formula)

ψr([f ] + [g]) =
r∑

i=0

ψr−i[f ] ∪ ψi[g] ∈ I(N ;Srζ).

(v) If f is self-transverse,

ψr[µ2(f)] = [µr+1(f)] ∈ I(M ;Srζ).
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Proof. We may take property (i) as the definition of ψ0. To define ψr[f ] for r ≥

1, note that by Proposition A.5 in the Appendix, we may choose a self-transverse

representative f ′ of [f ]. Then

ψr[M, f, v] := [∆r(f
′), ψr(f

′),Sr(v
′)].

This is well defined by Proposition A.6(b). Properties (ii), (iii) and (v) follow

directly from the definitions (for (iii) use the fact that △N ◦ h = h(r) ◦ △Q : Q →

N (r)). Property (iv) is slightly less obvious, but the moral is that “If f ⊔ g is self-

transverse then an r-fold self-intersection of f ⊔ g is the intersection of an (r− i)-fold

self-intersection of f with an i-fold self-intersection of g”. Notice we have applied

homomorphisms induced by bundle maps Sr−iζ × Siζ → Srζ , so that the formula

ends up in I(N ;Srζ). These exist thanks to the product Sr−i×Si → Sr coming from

concatenation of permutations, which induces a map ESr−i × ESi → ESr.

2.5 The Relative Monoid I(N, ∂N ; ζ)

In this section we will extend the definition of the contravariant functor I(−; ζ) to

manifolds with boundary.

Let Nn be a connected manifold with boundary ∂N , and let ζ be a k-dimensional

real Riemannian bundle over a space X having the homotopy type of a connected

manifold. We wish to classify all ζ-structured immersions of manifolds with boundary

into N which preserve boundaries. So the data set Imm(N, ∂N ; ζ) consists of all

triples ((M, ∂M), f, v), where Mn−k is a compact manifold with ∂M its boundary,

f : Mn−k
# Nn is an immersion transverse to ∂N such that f−1(∂N) = ∂M , and

v : ν(f) → ζ is a ζ-structure for f . We remark that Definition 2.1 extends in an

obvious way to a definition of diffeomorphism of such triples.

Just as a bordism between closed manifolds is given by a manifold with boundary,

defining a bordism between compact manifolds with boundary requires an object with

one added level of complexity to its set of non-interior points. This is provided by the

concept of a manifold with corners, or more specifically a 〈2〉-manifold, as introduced
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by K. Jänich in the paper [17].

Definition 2.13. A topological manifold with boundary, W n, is a manifold with

corners if it has a C∞-structure with corners. That is, W has a maximal atlas of

smoothly compatible charts

φi : Ui → Rn
+ = [0,∞)n

which are homeomorphisms onto open subsets of Rn
+.

For any point x ∈ W , let c(x) be the number of zeroes in φ(x), where (U, φ) is

a chart around x. This number does not depend on the choice of chart. Clearly a

smooth manifold without boundary is a manifold with corners W having c(x) = 0

for all x ∈W , and a manifold with boundary has c(x) = 0 or 1 according to whether

x is an interior or boundary point.

A connected face of a manifold with corners W is the closure of a component of

{x ∈ W | c(x) = 1}; a face is a disjoint union of connected faces. A manifold with

corners W is a manifold with faces if each x ∈ W belongs to exactly c(x) different

connected faces. Note that a face of a manifold with faces is again a manifold with

faces.

Definition 2.14. A 〈2〉-manifold is a manifold with faces W n together with an or-

dered pair of faces (∂0W, ∂1W ) of W , satisfying:

(i) ∂0W ∪ ∂1W = ∂W ,

(ii) ∂0W ∩ ∂1W is a face of both ∂0W and ∂1W .

Example 2.15. Let M be a manifold with boundary ∂M . Then M × I is a 〈2〉-

manifold with faces (M × ∂I, ∂M × I).

We are now ready to define a bordism relation on triples in Imm(N, ∂N ; ζ).

Definition 2.16. Two triples ((Mi, ∂Mi), fi, vi), i = 0, 1, are bordant if there is a

triple (W n−k+1, F, V ) satisfying the following conditions:

(1) W n−k+1 is a 〈2〉-manifold with faces (∂0W, ∂1W );

(2) F : W # N×I is an immersion transverse to ∂(N×I) such that F−1(N×∂I) =
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0W

∂1WW

D2×I

∂

Figure 2.1: A typical bordism between two immersions I # D2.

∂0W and F−1(∂N × I) = ∂1W ;

(3) V : ν(F )→ ζ is a ζ-structure for F ;

(4) The following triples are diffeomorphic: ((∂0W, ∂0W ∩ ∂1W ), F |∂0W , V |∂0W ) and

((M0 ⊔M1, ∂M0 ⊔ ∂M1), (f0, 0) ⊔ (f1, 1), v0 ⊔ v1);

(5) The triple (∂1W,F |∂1W , V |∂1W ) gives a bordism between (∂M0, f0|∂M0
, v0|∂M0

) and

(∂M1, f1|∂M1
, v1|∂M1

) in Imm(∂N ; ζ).

This definition is illustrated in Figure 2.1, which shows the image of a bordism

between two immersions (in fact embeddings) of the interval into a disc. As before

bordism is an equivalence relation, and we denote the resulting set of equivalence

classes by I(N, ∂N ; ζ). This is in fact a commutative monoid (compare Proposition

2.4).

To describe the functoriality, we introduce a new category of manifolds. The

category D has as objects the finite dimensional manifolds with boundary, and as

morphisms those proper immersions which do not take interior points to boundary

points. Thus a proper immersion g : Q # N is in D if and only if g−1(∂N) ⊆ ∂Q.

Note that we do not require g(∂Q) ⊆ ∂N , since we wish an extension of a given im-

mersion to an immersion of its unit disc normal bundle, for instance, to be a morphism

in D. Note also that D0 is a full subcategory of D, and that for a manifold without

boundary N we have I(N ; ζ) = I(N, ∅; ζ). The following Proposition generalises
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Proposition 2.6, and is proved similarly.

Proposition 2.17. Bordism of immersions with boundary is a homotopy bifunctor

I(−;−) : Dop × Vect→ CMon.



Chapter 3

Herbert’s Theorem

Let f : Mn−k
# Nn be an immersion of closed manifolds. The manifold M has a

unique fundamental Z2-homology class [M ]2 ∈ Hn−k(M ; Z2) ∼= Z2, given by the non-

zero element. If M is orientable, an orientation or fundamental homology class of M

is a choice of generator [M ] ∈ Hn−k(M ; Z) ∼= Z.

Definition 3.1. We say that f : Mn−k
# Nn represents both the homology class

f∗[M ]2 ∈ Hn−k(N ; Z2) and the homology class f∗[M ] ∈ Hn−k(N ; Z) (when M is

oriented).

Now suppose that f : Mn−k
# Nn is self-transverse (see Definition 2.9). Then

the r-fold multiple point and self-intersection immersions of f ,

µr(f) : ∆̃r(f)n−rk
# Mn−k

ψr(f) : ∆r(f)n−rk
# Nn

defined in Section 2.4, represent homology classesmr := µr(f)∗[∆̃r(f)] ∈ Hn−rk(M ; Z2)

and nr := ψr(f)∗[∆r(f)] ∈ Hn−rk(N ; Z2), respectively. If the manifolds ∆̃r(f), ∆r(f)

are orientable, these also represent classes in Z-homology. Note that m1 = [M ]2 or

[M ], and n1 = f∗[M ]2 or f∗[M ]. In this chapter we address the following problem.

Problem 3.2. How are the homology classes mr, nr related, for different values of

r ≥ 1?

For instance, trivially we have f∗m1 = n1. The first non-trivial (partial) answer

to this question was proposed by Whitney in his 1941 paper [41].

25
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3.1 Whitney’s Formula

In this Section, homology and cohomology will be taken with coefficients in Z if M

and N are oriented and in Z2 otherwise. Since both M and N are closed manifolds,

there are Poincaré Duality isomorphisms

DM : H l(M)
≃
→ Hn−k−l(M),

DN : H l(N)
≃
→ Hn−l(N),

for all l. In each case the isomorphism is given by cap product with the fundamental

homology class.

Denote by λ(f) the image of the fundamental class of M under the composition

Hn−k(M)
f∗
→ Hn−k(N)

D−1

N→ Hk(N)
f∗

→ Hk(M)
DM→ Hn−2k(M).

Let e ∈ Hk(M) denote the Euler class of the normal bundle ν(f) of f .

Proposition (Whitney) 3.3.

m2 = λ(f)−DM(e) ∈ Hn−2k(M).

As noted by R. J. Herbert in the introduction to [15], the content of this formula

may be interpreted as “the homology class Poincaré dual to the Euler class of the

normal bundle for an immersion f : M # N [is] represented by the intersection of

M with a ‘deformed position’ of M minus the ‘distant intersections’ of f (Whitney’s

terminology for the double points of f)”.

In 1959, Lashof and Smale [19] attempted to generalise Whitney’s formula to the

r-fold multiple points, where r ≥ 2. They asserted that

mr = ±(λ(f)−DM(e))r−1 ∈ Hn−rk(M),

where the sign depends on n, k, and r, and the product in homology is Poincaré

dual to the cup product in cohomology. For coefficients to be taken in Z, we should

additionally assume the codimension k to be even. However, Lashof and Smale’s

formula turned out to be false.
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3.2 Herbert’s Formula

A complete answer to Problem 3.2 did not arrive until 1981, with the thesis of Herbert

[15]. Although Herbert’s formula lives in homology, we give the (seemingly more

natural) statement in cohomology. Let m̃r = D−1
M (mr) be the cohomology class dual

to the homology class represented by µr(f), and let ñr = D−1
N (nr) be dual to the

homology class represented by ψr(f). Again, let e ∈ Hk(M) be the Euler class of

ν(f).

Theorem (Herbert) 3.4.

m̃r+1 = f ∗ñr − m̃r ∪ e ∈ H
rk(M)

for r ≥ 1, where coefficients are taken in Z if M and N are oriented and k is even,

and in Z2 otherwise.

Note that Whitney’s formula is indeed the special case r = 1 of Herbert’s The-

orem. Unfortunately, the proof of this result given in [15] is long and complicated.

An alternative, shorter proof was given by F. Ronga in [27] using the idea of ‘clean

intersections’ as introduced by D. Quillen in [25]. However, one might hope for a

cleaner, more conceptual proof of this geometric result. We will give such a proof

of the analogue of Herbert’s Theorem in the setting of the bordism of immersions.

In Chapter 4 we show how to derive Theorem 3.4, and its generalisations to other

cohomology theories, from our Theorem 3.7.

3.3 Herbert’s Formula in the Bordism of Immer-

sions

Let f : Mn−k
# Nn be a self-transverse immersion of closed manifolds, and suppose

f has a ζ-structure given by v : ν(f)→ ζ , where ζ is a k-dimensional real Riemannian

bundle. Such an f represents a class [f ] = [M, f, v] ∈ I(N ; ζ). Since M is compact,

f is proper, and so may also be regarded as a morphism in the categories D0 and D.

So f induces a morphism f ∗ : I(N ; ζ)→ I(M ; ζ) in the category CMon.
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The unit disc bundle of ν(f), denoted Dν(f), is a compact n-manifold with

boundary the sphere bundle ∂Dν(f) = Sν(f). The zero section i : M →֒ Dν(f)

is an embedding with normal bundle ν(f). Hence i represents an element [M, i, v] ∈

I(Dν(f), Sν(f); ζ). Since i−1(Sν(f)) = ∅, the zero section also represents a mor-

phism in D. Hence we may define an element

eI := i∗[i] ∈ I(M ; ζ),

which we shall call the Euler class of f : Mn−k
# Nn.

The analogue of Whitney’s formula may now be stated as follows.

Theorem 3.5.

f ∗[f ] = [µ2(f)] + eI ∈ I(M ; ζ).

Proof. By Theorem A.7 in the Appendix, we may find an immersion F : Dν(f)n
#

Nn of the normal disc bundle which extends f and is injective on fibres. We may also

choose F such that F |Sν(f) : Sν(f) # N is transverse to f . This F is a morphism

in the category D, since ∂N = ∅. Hence we have a factorisation of f in the category

D as f = F ◦ i. Therefore, a good first step towards analysing f ∗[f ] = i∗F ∗[f ] would

be an analysis of the class F ∗[f ] ∈ I(Dν(f), Sν(f); ζ).

Note that the immersion F is automatically transverse to f , by virtue of having

zero codimension, and F |Sν(f) is transverse to f by assumption. When we form the

pullback square,

Θ
ρ

- Mn−k

Dν(f)n

δ

? F
- Nn

f

?

the space

Θ = {(v,m) ∈ Dν(f)×M | F (v) = f(m)}

is a compact (n − k)-manifold with boundary, and δ : Θ # Dν(f) is an immersion.

The triple (Θ, δ, v ◦ρ) represents the bordism class F ∗[f ]. Now, using the fact that F
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is injective on fibres, we can see that Θ splits as a disjoint union Θ = Θ0 ⊔Θ1, where

Θ0 = {(0m, m) ∈ Θ},

Θ1 = {(v,m) ∈ Θ | v ∈ ν(f)m′ , m 6= m′}.

Hence in I(Dν(f), Sν(f); ζ) we may write

F ∗[f ] = [Θ0, δ|Θ0
, v ◦ ρ|Θ0

] + [Θ1, δ|Θ1
, v ◦ ρ|Θ1

].

The restriction ρ|Θ0
: Θ0 → M given by (0m, m) 7→ m is clearly a diffeomorphism

satisfying i ◦ ρ|Θ0
= δ|Θ0

, and in fact the triples (Θ0, δ|Θ0
, v ◦ ρ|Θ0

) and (M, i, v) are

diffeomorphic. Thus

F ∗[f ] = [i] + [Θ1, δ|Θ1
, v ◦ ρ|Θ1

],

and on applying the monoid homomorphism i∗ : I(Dν(f), Sν(f); ζ) → I(M ; ζ) we

obtain

f ∗[f ] = i∗F ∗[f ] = eI + i∗[Θ1, δ|Θ1
, v ◦ ρ|Θ1

].

All that remains is to identify the bordism classes [µ2(f)] and i∗[Θ1, δ|Θ1
, v ◦ ρ|Θ1

] in

I(M ; ζ).

We claim that self-transversality of f implies that i and δ|Θ1
are already transverse

as maps to Dν(f). In fact, suppose that i(m1) = δ(v,m), for some m1 ∈ M and

(v,m) ∈ Θ1. This means that v = 0m1
∈ ν(f)m1

, which implies that m1 6= m and

f(m1) = f(m). Consider the following commutative diagram.

Θ1

ρ|Θ1 - M

M
i

- Dν(f)

δ|Θ1

? F
- N

f

?

Since both ρ|Θ1
and F are local diffeomorphisms, we have

di(TMm1
) + dδ(TΘ(v,m)) = TDν(f)0m1

⇔ df(TMm1
) + df(TMm) = TNf(m),

and the latter is easily seen to be a consequence of self-transversality of f . Hence i

and δ|Θ1
are transverse.
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F(Dν (f))

D ν (f)

F*

f(M)

δ(Θ1)

δ(Θ0)

Figure 3.1: Illustrating Theorem 3.5 for the figure eight immersion.

Recall from section 2.4 that [µ2(f)] is represented by the triple (∆̃2(f), µ2(f), S̃2(v)),

where

∆̃2(f) = ∆2(f) = {(m1, m2) ∈ F(M ; 2) | f(m1) = f(m2)},

µ2(f)(m1, m2) = m1,

and S̃2(v) : ν(µ2(f)) → S1ζ = ζ is the bundle map defined in Lemma 2.11. When

we complete the above diagram by pulling back along i, it is easy to see that the

resulting triple is diffeomorphic with this one.

We will illustrate the preceding proof with an example.

Example 3.6. Consider S1 to be the unit circle in C, and S2 to be the one-point

compactification of R2. Let f : S1
# S2 be the self-transverse immersion given by

f(eiθ) = (cos θ, sin 2θ), whose image is a figure eight. This is shown on the left of

Figure 3.1, together with the image of an immersion F : Dν(f) # S2 of the (trivial)

normal bundle. When we pull back f by F we obtain an immersion δ : Θ # Dν(f)

whose image is shown on the right. This example clearly shows δ(Θ0) as the image

of the zero section i : M →֒ Dν(f), and the intersection of i with δ(Θ1) consists of

the double points of f .

As an immediate corollary of Theorem 3.5 we obtain the following analogue of

Herbert’s Theorem in I(M ;Srζ).

Theorem 3.7. For r ≥ 1,

f ∗[ψr(f)] = [µr+1(f)] + [µr(f)] ∪ eI ∈ I(M ;Srζ).
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Proof. This follows from the double point case above using Proposition 2.12, and the

fact that eI ∈ I(M ; ζ) is represented by an embedding. The argument is as follows:

f ∗[ψr(f)] = ψrf
∗[f ] by (iii) of 2.12

= ψr([µ2(f)] + eI) by Theorem 3.5

=
r∑

i=0

ψr−i[µ2(f)] ∪ ψi(eI) by (iv)

= ψr[µ2(f)] + ψr−1[µ2(f)] ∪ eI by (ii)

= [µr+1(f)] + [µr(f)] ∪ eI by (v).



Chapter 4

Geometric Cobordism and

Steenrod Operations

In this chapter we give a brief survey of the various cobordism theories. These are

generalised cohomology theories represented by Thom spectra, whose definitions and

basic properties are outlined in Section 4.1. In Section 4.2 we give D. Quillen’s geo-

metric interpretation of cobordism as equivalence classes of suitably oriented proper

maps of manifolds [25]. This will enable us to describe the relationship between such

cobordism theories and the functor I(−;−) of Chapter 2. This is done in Section 4.3,

where the analogues of Herbert’s Theorem 3.4 in cobordism and other cohomology

theories are deduced. In the final section we will define and discuss Steenrod oper-

ations in the setting of generalised cohomology theories, and give their construction

(due to T. tom Dieck [37]) in the case of cobordism from both the homotopical and

geometrical viewpoint.

4.1 Thom Spectra

Definition 4.1. Suppose we are given a family XΓ = {Xk, fk, gk}k≥0, where for each

non-negative integer k we have a space Xk, a fibration fk : Xk → BO(k) and a map

32
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gk : Xk → Xk+1 making the following diagram commute.

Xk

fk
- BO(k)

Xk+1

gk

? fk+1
- BO(k + 1)

Bik

?

Here O(k) denotes the k-dimensional orthogonal group, BO(k) is its classifying space,

and ik : O(k) →֒ O(k + 1) is the standard inclusion homomorphism. If γk is the

universal O(k)-bundle over BO(k) with fibres Rk, we have (Bik)
∗γk+1

∼= γk ⊕ ε1,

where εn denotes the trivial bundle with fibres Rn. From these data we get a sequence

of vector bundles Γ = {Γk := f ∗kγk}k≥0, with dim(Γk) = k, and bundle maps gk : Γk⊕

ε1 → Γk+1. Passing to Thom spaces gives a spectrum, denoted MΓ, whose k-th space

MΓ(k) is TΓk and whose structure maps are the maps Tgk : TΓk∧S
1 → TΓk+1. Any

spectrum arising in this way is known as a Thom spectrum.

We will always assume that our Thom spectrum MΓ is a ring spectrum. This

means that there are maps of spectra u : S → MΓ (where S denotes the sphere

spectrum with k-th space Sk) and µ : MΓ∧MΓ→ MΓ, making the following diagrams

commute up to homotopy:

MΓ ∧MΓ ∧MΓ
µ ∧ 1

- MΓ ∧MΓ S ∧MΓ
u ∧ 1

- MΓ ∧MΓ �
1 ∧ u

MΓ ∧ S

MΓ ∧MΓ

1 ∧ µ

? µ
- MΓ

µ

?

MΓ

µ

?�

≃≃
-

The maps u and µ are called the unit and multiplication of the spectrum. They arise

by passage to Thom spaces from a compatible system of bundle maps

uk : Rk → Γk, µk,l : Γk × Γl → Γk+l,

where k, l ∈ N and each uk is inclusion of a fibre. Examples will be given at the end

of this section.

We will need some notion of orientability of a manifold Nn with respect to the

spectrum MΓ.



CHAPTER 4. GEOMETRIC COBORDISM 34

Definition 4.2. A manifold Nn is called Γ-orientable if there exists a pair (e, σ),

where e : N →֒ Rn+l is an embedding with l > 0, and σ : ν(e) → Γl is a bundle map

isomorphic on fibres. Note that for any such pair (e, σ) and any integer j ≥ l we can

define another pair (ej , σj) by setting ej = ιjl ◦e : N →֒ Rn+j, where ιjl : Rn+l →֒ Rn+j

is the standard inclusion, and σj : ν(ej) ∼= ν(e)⊕ εj−l → Γj is the composition

σj = gj−1 ◦ . . . ◦ (gl+1 ⊕ ε
j−l−2) ◦ (gl ⊕ ε

j−l−1) ◦ (σ ⊕ εj−l).

We may put an equivalence relation on such pairs as follows. Two pairs (e0, σ0)

and (e1, σ1) are equivalent if there is an integer j ≥ max{l0, l1}, and a third pair

(E,Σ) giving a level isotopy between the pairs (ej
0, σ

j
0) and (ej

1, σ
j
1). To be precise,

E : N × I →֒ Rn+j × I is an embedding such that E(n, i) = (ej
i (n), i) for all n ∈ N ,

i ∈ {0, 1}, and Σ: ν(E) → Γj is a bundle map which restricts to σj
i over N × {i}.

A Γ-orientation of N is then an equivalence class of such pairs. A Γ-manifold is a

manifold N together with a Γ-orientation of N .

Put succinctly, a Γ-manifold is a manifold with a Γ-structure on its stable normal

bundle.

Our Thom spectra give rise to generalised (co)homology theories, known as the

(co)bordism theories. The k-th unreduced Γ-cobordism group of the (un-pointed)

space X is defined as

MΓk(X) := lim
l→∞

[ΣlX+,MΓ(k + l)],

where [−,−] denotes pointed homotopy classes of maps, Σl denotes the l-th reduced

suspension functor, + denotes a disjoint base point, and the maps in the direct limit

are given by suspension and the structure maps in the spectrum MΓ. Similarly, the

(n− k)-th unreduced Γ-bordism group of X is defined as

MΓn−k(X) := lim
l→∞

[Sl, X+ ∧MΓ(l − (n− k))].

Our assumption that MΓ was a ring spectrum ensures that there are external products

in both bordism and cobordism, and an internal product in cobordism making the

direct sum

MΓ∗(X) :=
⊕

k∈Z

MΓk(X)
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into a graded ring with unit, the Γ-cobordism ring of X.

The following are examples of Thom spectra which are also ring spectra.

Examples 4.3. (0) The sphere spectrum S is the most fundamental example of a

ring spectrum. It can also be regarded as the Thom spectrum of the family X{1}

with Xk = pt, fk : pt→ BO(k) the inclusion of a point, and gk : pt→ pt the identity.

Each Γk is the trivial bundle Rk over pt, and a {1}-orientation of a manifold N is

a trivialisation of the stable normal bundle of N . The resulting cobordism theory

M{1}∗, known as framed cobordism, is isomorphic to stable cohomotopy.

(1) Let XO be the family with Xk = BO(k), fk = 1 : BO(k) → BO(k), and gk =

Bik. Then each Γk is the universal O(k)-bundle γk, and every manifold has a unique

O-orientation. The resulting O-cobordism theory is known as unoriented cobordism.

The ring structure comes from the classifying bundle maps γk × γl → γk+l.

(2) Let XU be the family with X2n = BU(n) = X2n+1 (where BU(n) is the classifying

space of the unitary group U(n)), f2n and f2n+1 are the classifying maps of the bundles

γU
n and γU

n ⊕ε
1 respectively (where γU

n is the universal n-dimensional complex bundle),

and the gk are the obvious inclusions. Then a U -manifold is called a weakly almost

complex manifold, and U -cobordism is called complex cobordism. Similarly, one may

take a family XSp with X4n = X4n+1 = X4n+2 = X4n+3 = BSp(n), the classifying

space of the symplectic group Sp(n), and obtain symplectic cobordism.

(3) Let XSO be the family with Xk = BSO(k) (where SO(k) is the special orthogonal

group) and fk : BSO(k) → BO(k) the classifying map of the universal oriented

bundle γSO
k over BSO(k). The product bundle γSO

k × γ
SO
l has a product orientation,

classified by a bundle map to γSO
k+l, so MSO is a ring spectrum. An SO-orientation of

N is an orientation (in the usual sense) of its stable normal bundle, which is equivalent

to an orientation of N itself, so MSO is the spectrum of oriented cobordism. Similarly

one can define the spectrum MSU.

The standard reference for the concepts found in this section is R. Stong’s book

[32]. For a very readable account of O- and SO-(co)bordism, see [9].
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4.2 Geometric Cobordism

The bordism groups described above were, in the first instance, defined geometri-

cally by M. F. Atiyah as the groups in a “. . .‘Singular homology’ theory based on

differentiable manifolds” [2]. In fact, define a singular Γ-manifold in X to be a pair

(Mm, f), where Mm is a closed Γ-manifold and f : M → X a continuous map. Two

singular Γ-manifolds in X, (M0, f0) and (M1, f1), are said to be bordant, written

(M0, f0) ∼ (M1, f1), if there is a pair (Wm+1, F ) consisting of a Γ-manifold W with

boundary ∂W ≈ M0 ⊔M1, whose Γ-orientation restricts to those of M0, M1 at the

boundary, and a continuous map F : W → X such that F |Mi
= fi : Mi → X for

i = 0, 1. Then it is well known (see [9]) that

MΓn−k(X) ∼= {(n− k)-dimensional singular Γ-manifolds in X}/∼ .

In the same paper [2], Atiyah gave the above homotopy definition of the cobordism

groups. The geometric interpretation of cobordism did not appear until ten years

later, in a paper of Quillen. To quote A. Dold (from the introduction to [11]),

“. . .homology of X is given by finite chains, cohomology by (infinite but) locally finite

chains. In (co)bordism finite chains become maps W → X of compact manifolds W ,

whereas locally finite chains become proper maps W → X of arbitrary manifolds W”.

We shall need to assume that our un-pointed space X is a manifold without

boundary. This does not represent a serious restriction, since any finite complex has

the homotopy type of such a manifold (simply take an open regular neighbourhood

of an embedding into Euclidean space). The following definition of Γ-orientation of

a map f : M → X generalises the notion of Γ-orientation of M , which is the case

when X is a point.

Definition 4.4. A map of manifolds without boundary f : Mn−k → Xn is Γ-orientable

if there exists a factorisation of f as

Mn−k e
→֒ En+l π

→ Xn,

where π : E → X is a smooth l-dimensional vector bundle over X, and e is an em-

bedding with Γ-structure σ : ν(e) → Γk+l on its normal bundle. Such a factorisation
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of f through E is equivalent to a second one through E ′, if there exists a third vector

bundle E ′′ over X containing E and E ′ as sub-bundles, such that the pairs (e, σ) and

(e′, σ′) are level isotopic in E ′′ (compare Definition 4.2). A Γ-orientation of the map

f : M → X is then an equivalence class of factorisations.

We remark here that, assuming Xn is finite dimensional, each Γ-orientation of

f : M → X contains a factorisation of the form

M →֒ X × Rm pr
→ X.

This follows from the fact that for any vector bundle E over a finite dimensional

manifold X, there exists a bundle F over X such that E ⊕ F ∼= εm, for some integer

m (see any introductory text on K-theory, such as [14]). Hence any vector bundle

over X is a sub-bundle of a trivial bundle.

Proposition 4.5. Let f : M → X be a Γ-oriented map, and let g : Q → X be a

map of manifolds which is transverse to f . Then the map δ in the following pullback

diagram

Q×X M
ρ

- M

Q

δ
? g

- X

f
?

has a well-defined induced Γ-orientation.

Proof. Let the Γ-orientation of f be given by a factorisation

M
e
→֒ E

π
→ X,

and a bundle map σ : ν(e)→ Γl. Then the above diagram factorises into two pullback

squares, as below.

Q×X M
ρ

- M

g∗E

e′

? g
- E

e
?

Q
? g

- X

π
?
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Note that since f and π are both transverse to g, the embedding e is transverse to

the bundle map g. The embedding e′ has a Γ-structure given by

ν(e′) ∼= ρ∗ν(e)
ρ
→ ν(e)

σ
→ Γl,

and hence the maps down the left hand side represent a Γ-orientation of δ.

We are now ready to put an equivalence relation on the class of proper Γ-oriented

maps to X of a given codimension.

Definition 4.6. Two proper Γ-oriented maps f0 : Mn−k
0 → Xn and f1 : Mn−k

1 → Xn

of codimension k are cobordant if there exists a proper Γ-oriented map F : W n−k+1 →

Xn × R, again of codimension k, such that the embedding ei : X →֒ X × R given by

ei(x) = (x, i) is transverse to F for i ∈ {0, 1}, and such that the pull-back of F by ei

with induced Γ-orientation is the Γ-oriented map fi.

Cobordism is an equivalence relation, and we have the following Proposition of

Quillen [25].

Proposition 4.7. The set of cobordism classes of proper Γ-oriented maps to X of

codimension k is isomorphic to MΓk(X).

The proof is a generalisation of R. Thom’s original proof for the coefficient groups

[36], and is omitted. One can also check that the structure of the cobordism ring

MΓ∗(X) admits the following geometric interpretation in terms of proper maps.

Addition. Let x1 and x2 be classes in MΓk(X) represented by proper Γ-oriented

maps f1 : Mn−k
1 → X and f2 : Mn−k

2 → X. Then x1 + x2 ∈ MΓk(X) is represented

by the map f1 ⊔ f2 : M1 ⊔M2 → X, whose Γ-orientation is described as follows.

By the remark following Definition 4.4 and standard theorems of isotopy and

embedding, we can find some large integer l such that for i = 1, 2 the Γ-orientation

of fi is given by a factorisation of the form

Mi

ei

→֒ X ×Rl → X.

By judicious use of embeddings

V+, V− : Rl →֒ Rl,
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V±(y1, y2, . . . , yl) = (±ey1 , y2, . . . , yl), yi ∈ R

we can also arrange that e1 (respectively e2) embeds M1 (M2) in the upper (lower)

half-space of X × Rl. Then the Γ-orientation of f1 ⊔ f2 is given by the factorisation

M1 ⊔M2
e1⊔e2

→֒ X × Rl → X.

Given a cobordism class x represented by f : M → X, whose Γ-orientation is given

as

M
e
→֒ X × Rl → X, σ : ν(e)→ Γk+l,

its negative −x is represented by the same map with the negative Γ-orientation,

described as follows. Composing e with the reflection map

r : X ×Rl → X × Rl, r(x, y1, y2, . . . yl) = (x,−y1, y2, . . . , yl)

gives an embedding r ◦ e which is isotopic to e, hence has isomorphic normal bundle.

The negative Γ-orientation is represented by

M
r◦e
→֒ X × Rl → X, σ ◦ r : ν(r ◦ e) ∼= ν(e)→ Γk+l.

One checks that the addition so defined is associative and commutative. The class

of the empty manifold and map acts as a zero element, and for any class x we have

x− x = 0, making MΓk(X) an Abelian group.

Functoriality. For each integer k, we have a contravariant functor MΓk(−) from

the category of manifolds without boundary to the category of Abelian groups. This

contravariance is described by a pull-back construction, as in Proposition 2.6. Let

x ∈ MΓk(X) be represented by a proper Γ-oriented map f : Mn−k → Xn, and let

g : Qn−l → Xn be a map of manifolds. By the transversality theorems we may

find a representative f ′ : M → X of x which is transverse to g as maps to X.

Then, as in Proposition 4.5, we pull back f ′ by g to obtain a proper Γ-oriented map

δ : Q×X M → X, which represents the class g∗x ∈ MΓk(Q).

Products. The external product

× : MΓk1(X1)⊗MΓk2(X2)→ MΓk1+k2(X1 ×X2)
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is given by Cartesian product of representing maps. So if xi ∈ MΓki(Xi) is represented

by fi : Mi → Xi for i = 1, 2, then the class x1×x2 ∈ MΓk1+k2(X1×X2) is represented

by f1×f2 : M1×M2 → X1×X2, with the product orientation (this is described using

the compatible system of bundle maps µk,l : Γk × Γl → Γk+l which define the ring

spectrum structure on MΓ.)

The internal product

∪ : MΓk(X)⊗MΓl(X)→ MΓk+l(X)

is given by x1∪x2 = △∗(x1×x2), where △ : X →֒ X×X is the diagonal embedding.

One may verify that with these definitions of sums and products, the graded group

MΓ∗(X) =
⊕

k∈Z

MΓk(X)

has the structure of a graded ring, with the class of the identity map 1 : X → X

(with trivial Γ-orientation) acting as the unit 1 ∈ MΓ0(X). The map g∗ : MΓ∗(X)→

MΓ∗(Q) induced by g : Q→ X is a ring homomorphism.

Now suppose that Xn is a closed Γ-manifold, and let f : Mn−k → Xn be a proper

Γ-oriented map. Then clearly M = f−1X is also closed, and it is not hard to verify

that the Γ-orientations of X and f furnish M with a canonical Γ-orientation. Hence

a proper Γ-oriented map to X is nothing but a singular Γ-manifold in X. This sheds

considerable light on the following duality theorem of Atiyah [2].

Theorem (Poincaré-Atiyah Duality) 4.8. Let Xn be a closed Γ-manifold. Then

for each k ∈ Z there is an additive isomorphism

MΓk(X) ∼= MΓn−k(X),

given by the identity on representing maps.

4.3 From Bordism of Immersions to Cobordism

We now recall some notation from Chapter 2. Let D0 be the category of finite

dimensional manifolds with empty boundary, and proper immersions. Let CMon be
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the category of commutative monoids. Note that by restriction of both the domain

and the range categories, the k-th Γ-cobordism (for a given k ≥ 0) may be regarded

as a contravariant functor

MΓk : D0 → CMon.

This is closely related to the functor given by bordism of immersions with Γk-

structure,

I(−; Γk) : D0 → CMon,

where Γk is the k-dimensional real bundle which appeared in the Definition 4.1 of the

Thom spectrum MΓ. We now give the details of this relationship.

Proposition 4.9. Let MΓ be a Thom spectrum. For each k ≥ 0, there is a natural

transformation of functors

Tk : I(−; Γk)→ MΓk(−),

where MΓk is regarded as a functor from D0 to CMon.

Proof. Let Nn be a manifold, and suppose the class [f ] ∈ I(N ; Γk) is represented by

a triple (M, f, v). Since Mn−k is compact, the immersion f : Mn−k
# Nn is a proper

map; we shall show that it has a canonical Γ-orientation.

First, choose an embedding f̃ : M →֒ Rl, where l ≥ 2(n − k) + 2. Such an

embedding always exists and is unique up to isotopy, by Theorem A.1. Then we have

the following factorisation of f through a trivial bundle,

M
(f,f̃)
→֒ N × Rl pr

→ N.

Note that ν(f, f̃) ∼= ν(f)⊕ ν(f̃)⊕ TM ∼= ν(f)⊕ εl, and so we obtain a Γ-orientation

of f via the composition of bundle maps

σ : ν(f)⊕ εl v ⊕ ε
l

- Γk ⊕ ε
l
gk+l−1 ◦ . . . ◦ (gk+1 ⊕ ε

l−2) ◦ (gk ⊕ ε
l−1)

- Γk+l

This is indeed a canonical Γ-orientation of f , since isotopic embeddings f̃ lead to the

same orientation class.
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If the two triples (M0, f0, v0) and (M1, f1, v1) are bordant, a simple check of the

definitions shows that the proper Γ-oriented maps f0 and f1 are cobordant. Hence

there is a well-defined function

Tk : I(N ; Γk)→ MΓk(N),

for each N , which takes the bordism class of an immersion with Γk-structure to its

cobordism class as a Γ-oriented map. It is also an easy exercise to check that each

Tk is a monoid map, and is natural in N .

We now wish to describe the behaviour of the maps Tk with respect to products.

The products in MΓ∗ arise from a compatible system of bundle maps

µk,l : Γk × Γl → Γk+l,

where there is one such µ for each pair k, l ∈ N. Using these maps we obtain product

maps

I(N1; Γk)× I(N2; Γl)
×
→ I(N1 ×N2; Γk+l),

I(N ; Γk)× I(N ; Γl)
∪
→ I(N ; Γk+l),

by composing the products from Section 2.3 with the induced maps (µk,l)∗.

Proposition 4.10. The natural transformations Tk preserve products, that is to say,

the following diagrams commute for all k, l ∈ N:

I(N1; Γk)× I(N2; Γl)
Tk × Tl

- MΓk(N1)×MΓl(N2)

I(N1 ×N2; Γk+l)

×

? Tk+l
- MΓk+l(N1 ×N2),

×

?

I(N ; Γk)× I(N ; Γl)
Tk × Tl

- MΓk(N)×MΓl(N)

I(N ; Γk+l)

∪

? Tk+l
- MΓk+l(N).

∪

?
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Proof. Again, this is a straightforward check of the definitions. Note that the second

diagram follows from the first, by naturality and the diagonal △ : N →֒ N ×N .

We now wish to deduce the analogue of Herbert’s Theorem 3.4 in MΓ∗, when

f : Mn−k
# Nn is an immersion with Γk-structure. By Theorem 3.7, we have

f ∗[ψr(f)] = [µr+1(f)] + eI ∪ [µr(f)] ∈ I(M ;SrΓk).

We shall need two preliminary definitions and an observation.

Definition 4.11. Let XΓ be a family as in Definition 4.1, resulting in a sequence of

vector bundles Γ = {Γk}k≥0. Fix k ≥ 0. Suppose there is a bundle map

ρr : SrΓk → Γrk

for each r ≥ 0, where SrΓk is the r-th extended power of the bundle Γk, and that the

diagram

SpΓk × SqΓk
- Sp+qΓk

Γpk × Γqk

ρp × ρq

? µpk,qk
- Γ(p+q)k

ρp+q

?

commutes up to bundle homotopy for all p, q ≥ 0 (the top map was defined in the

proof of Proposition 2.12). Then we shall say that the resulting Thom spectrum MΓ

has self-intersections in codimension k.

Definition 4.12. Let ζk be a vector bundle of dimension k over a manifold M , and

suppose that ζ admits a bundle map v : ζ → Γk. Then the zero section i : M →֒ E(ζ)

is a proper Γ-oriented map, and the element eΓ(ζ) = i∗[i] ∈ MΓk(M) is called the

Γ-cobordism Euler class of the bundle ζ.

Observe that if f : Mn−k
# Nn is an immersion with Γk-structure, and eI ∈

I(M ; Γk) is its Euler class defined as at the beginning of Section 3.3, then Tk(eI) =

eΓ(ν(f)). From this point forward we shall abuse notation and write [f ] ∈ MΓk(N)

for the image of [f ] ∈ I(N ; Γk) under the natural map Tk.
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Proposition 4.13. Let MΓ be a Thom spectrum with self-intersections in codimen-

sion k. Let f : Mn−k
# Nn be an immersion with Γk-structure, where M is closed.

Then

f ∗[ψr(f)] = [µr+1(f)] + eΓ(ν(f)) ∪ [µr(f)] ∈ MΓrk(M).

Proof. This follows directly from Theorem 3.7 and the results of this Section.

Examples 4.14. (1) When Γ = O, there are bundle maps ρr : Srγk → γrk which

classify the r-th extended power of each universal O(k)-bundle γk. Hence MO has

self-intersections in every codimension, and we obtain Herbert’s Theorem in MO∗.

(2) When Γ = U , there are bundle maps ρr : Srγ
U
k → γU

rk for each k ∈ N, since the

extended power of the universal U(k)-bundle γU
k has a canonical complex structure.

Since γU
k has real dimension 2k, we can say that MU has self-intersections in all even

codimensions. Similarly, MSp has self-intersections in all codimensions divisible by 4.

Hence we deduce Herbert’s Theorem in MU∗ (MSp∗) when f is of even codimension

(codimension divisible by 4) and has a complex (symplectic) structure on its normal

bundle.

(3) When Γ = SO, the situation is slightly different. The extended power Srγ̃k of the

universal SO(k)-bundle γ̃k is orientable if k is even, since then a permutation of the

factors of γ̃
(r)
k preserves the product orientation. Hence MSO has self-intersections in

even codimensions, so if f has even codimension and ν(f) is oriented, Herbert’s The-

orem holds in MSO∗. Similarly, MSU has self-intersections in codimensions divisible

by 4.

We can also deduce analogues of Herbert’s Theorem in other multiplicative coho-

mology theories, using the following definition.

Definition 4.15. Let E be a ring spectrum. A Thom class is a ring map t : MΓ→ E

of ring spectra, where MΓ is a Thom spectrum.

A Thom class t : MΓ → E induces a multiplicative natural transformation of

cohomology theories t : MΓ∗ → E∗. If eΓ(ζ) ∈ MΓk(M) is the Γ-cobordism Euler

class of ζ , then t(eΓ(ζ)) = eE(ζ) is an Euler class for ζ in E∗. Since a cobordism class



CHAPTER 4. GEOMETRIC COBORDISM 45

α ∈ MΓk(N) is represented by a proper Γ-oriented map f : Mn−k → Nn, we may

also regard the class t(α) ∈ Ek(N) as being represented by the map f , and for this

reason we will often write [f ] ∈ Ek(N) instead of t(α).

Proposition 4.16. Let MΓ and f be as in Corollary 4.13, and let t : MΓ → E be a

Thom class. Then the analogue of Herbert’s Theorem holds in E∗, that is,

f ∗[ψr(f)] = [µr+1(f)] + eE(ν(f)) ∪ [µr(f)] ∈ Erk(M).

Examples 4.17. (1) The universal Thom class t : MO→ HZ2.

(2) The Conner-Floyd Thom classes t : MU → K, t : MSp → KO, where K, KO are

the spectra of complex and real K-theory respectively [10].

(3) The oriented Thom class t : MSO→ HZ to integral cohomology, and the Conner-

Floyd map t : MSU→ KO to real K-theory [10].

Finally in this section, we would like to deduce Herbert’s Theorem in the dual

homology theories. To do so we assume that Nn is a Γ-manifold. We observe that an

immersion f : Mn−k
# Nn with Γk-structure is also a singular Γ-manifold in N , since

M receives a canonical Γ-orientation from those of N and the map f . The bordism

class of this singular manifold depends only on the class [f ] ∈ I(N ; Γk). Thus for

any Γ-manifold Nn there is well-defined map I(N ; Γk)→ MΓn−k(N).

Recall (Theorem 4.8) that since Mn−k is a closed Γ-manifold, there is a Poincaré-

Atiyah duality isomorphism

MΓl(M) ∼= MΓn−k−l(M)

for all l. This is given by cap product with a fundamental class [M ]MΓ ∈ MΓn−k(M),

which is represented by the singular Γ-manifold 1 : M → M . Now a Thom class

t : MΓ→ E also induces a natural transformation of homology theories t : MΓ∗ → E∗,

which maps [M ]MΓ to a fundamental class [M ]E ∈ En−k(M). Hence the manifold

M is oriented with respect to the spectrum E, and so there is a Poincaré duality

isomorphism

El(M) ∼= En−k−l(M)
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for all l. Note that if g : Qq → M is a singular Γ-manifold in M representing [g] ∈

MΓq(M), then t[g] = g∗[Q]E ∈ Eq(M). The natural transformations t, t satisfy the

identity

t(x) ∩ t(y) = t(x ∩ y) ∈ E∗(M),

for all x ∈ MΓ∗(M), y ∈ MΓ∗(M).

The above information is summarised in the following commutative diagram.

I(M ; Γrk)
Trk

- MΓrk(M)
t

- Erk(M)

MΓn−(r+1)k(M)

∼=

?

t
-

-

En−(r+1)k(M)

∼=

?

Proposition 4.18. Let MΓ, f and t be as in Corollary 4.16, and suppose that N is

a Γ-manifold. Then the analogues of Herbert’s Theorem hold in MΓ∗ and E∗, that is

DMf
∗[ψr(f)] = DM [µr+1(f)] +DM(e(ν(f)) ∪ [µr(f)]),

where DM denotes Poincaré duality in M .

4.4 Steenrod Operations

Steenrod operations are cohomology operations arising from higher homotopy com-

mutativity properties of the product in a multiplicative generalised cohomology the-

ory. They were discovered in the case of Zp-cohomology by N.E. Steenrod [30];

analogous operations were found to exist in the cobordism cohomology theories by

T. tom Dieck [37], and in K-theory by Atiyah [3]. We are mainly interested in the

cobordism theories, where Quillen’s interpretation of cobordism classes as classes of

proper maps allows for a particularly nice geometric construction of the so-called

Steenrod-tom Dieck operations.

We begin with some generalities. Let r be a positive integer and let G be a

subgroup of the symmetric group Sr. Let EG be a contractible space with a free

right G-action, and let Y be a pointed space with base point ∗. The group G acts on

the left of the r-fold smash product Y ∧r of Y , by permutation of the factors.
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Definition 4.19. The quotient space

EG⋉G Y
∧r :=

EG×G Y
∧r

EG×G {∗}

is denoted by DGY . The r-th extended power of Y is the space DSr
Y = DrY .

Compare the Definition 2.10 of the r-th extended power of a bundle. In fact we

have the following well-known result (see [37], Lemma 3.5) relating the two.

Proposition 4.20. For any bundle ζ there is a homeomorphism

TSGζ ≈ DGTζ,

where Tζ denotes the Thom space of ζ.

Corollary 4.21. For any space X (pointed or un-pointed) there is a homeomorphism

(EG×G X
(r))+ ≈ DG(X+),

where + denotes a disjoint base point.

Proof. Apply Proposition 4.20 to the 0-dimensional bundle 1 : X → X.

Note that given any point e ∈ EG we may define a map ie : Y ∧r → DGY by

setting ie([y1, . . . , yr]) = [e, y1, . . . , yr]. We shall denote any map obtained in this way

by i, since it is independent of e up to homotopy.

Let E be a commutative ring spectrum, and let Ẽn(Y ) denote the n-th reduced

cohomology group of the pointed space Y in the cohomology theory represented by

E. Recall that G is a subgroup of the symmetric group Sr.

Definition 4.22. For any positive integer d, an external Steenrod operation of type

(G, d) in Ẽ∗ is a family P = (P kd | k ∈ Z) of natural transformations

P kd : Ẽkd(Y )→ Ẽrkd(DGY )

with the additional property that the composition

i∗ ◦ P kd : Ẽkd(Y )→ Ẽrkd(Y ∧r)

is the r-fold exterior product y 7→ y∧r.
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Thus there is a sense in which these operations ‘extend the operation of raising

x to the r-th power’. One may also define internal operations, using the extended

diagonal map

△G : BG ∧ Y = EG⋉G Y → DGY

which maps [e, y] to [e, y, . . . , y] (here BG := EG/G).

Definition 4.23. An external Steenrod operation P of type (G, d) in Ẽ∗ gives an

internal Steenrod operation (Pkd | k ∈ Z) by setting

Pkd = △∗G ◦ P
kd : Ẽkd(Y )→ Ẽrkd(BG ∧ Y ).

The above definitions are due to T. tom Dieck, based on the work of Steenrod.

One may give additional axioms for the operations, from which a myriad of properties

may be derived (see for example [37], [31]). An example of such is the following.

Proposition 4.24. Let P = (P kd | k ∈ Z) be a Steenrod operation of type (G, d)

in Ẽ∗, and let t ∈ Ẽkd(Tζ) be a Thom class for the kd-dimensional bundle ζ. Then

P kd(t) ∈ Ẽrkd(DGTζ) is a Thom class for SGζ.

Proof. Let i : Tζ∧r → DGTζ be the map induced by the inclusion of a point in EG.

By Definition 4.22,

i∗ ◦ P kd(t) = t∧r ∈ Erkd(Tζ∧r),

which is a Thom class for ζ (r). The inclusion of a compactified fibre of SGζ factors as

Srkd = (Skd)∧r → Tζ∧r i
→ DGTζ.

The Proposition follows by the definition of a Thom class.

To illustrate how such operations are constructed, we consider the Eilenberg-Mac

Lane spectrum HZp, the spectrum of ordinary Zp-cohomology. This is an example

of an Ω-spectrum, which is a spectrum E whose structure maps σk : ΣEk → Ek+1 are

adjoint to homeomorphisms σ̃k : Ek → ΩEk+1.

Example 4.25. Take E = HZp with p prime, and G = Zp ≤ Sp. Since HZp

is an Ω-spectrum, a cohomology class α ∈ H̃k(Y ; Zp) is represented by a pointed



CHAPTER 4. GEOMETRIC COBORDISM 49

map h : Y → K(Zp, k). The construction of DGY given above extends to a func-

tor from the category of pointed spaces and maps to itself. Hence we have a map

DZp
h : DZp

Y → DZp
K(Zp, k). For each k we can construct a map ξk : DZp

K(Zp, k)→

K(Zp, pk) using commutativity properties of the cohomology ×-product. Composing

we get a map

ξk ◦DZp
h : DZp

Y → K(Zp, pk)

which represents the class P (α) ∈ H̃pk(DZp
Y ; Zp). This gives a Steenrod operation

of type (Zp, 1) in HZ∗p.

In the case p = 2, the familiar Steenrod squares

Sqi : H̃k(Y ; Z2)→ H̃k+i(Y ; Z2)

are obtained as follows. The corresponding internal operation applied to an element

α ∈ H̃k(Y ; Z2) yields an element Pk(α) ∈ H̃2k(RP∞ ∧ Y ; Z2). By the Künneth

Theorem,

H̃∗(RP∞ ∧ Y ; Z2) ∼= Z2[w]⊗ H̃∗(Y ; Z2),

where w ∈ H̃1(RP∞; Z2) is the Euler class of the canonical line bundle. The action

of the Sqi on α are determined by the formula

Pk(α) =
∑

i≥0

wk−i ⊗ Sqi(α).

We now sketch tom Dieck’s proof [37] of the existence of Steenrod operations in

M̃Γ
∗
, where MΓ is one of the Thom spectra of Examples 4.3.

Proposition (tom Dieck) 4.26. Suppose MΓ has self-intersections in all codimen-

sions divisible by d. Then for every r ≥ 1 there exists an external Steenrod operation

P = (P kd | k ∈ Z) of type (Sr, d) in M̃Γ
∗
.

Proof. Let α be an element of

M̃Γ
kd

(Y ) ∼= lim
l→∞

[ΣlY,MΓ(l + kd)];

we must construct an element P (α) ∈ M̃Γ
rkd

(DrY ). Assuming that Y is a finite

complex, α is represented by a map

h : ΣjdY → MΓ((j + k)d) = TΓ(j+k)d.
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Applying the functor Dr, we obtain a map

Drh : DrΣ
jdY → DrTΓ(j+k)d.

Now we observe that there is a bundle map ρr : SrΓ(j+k)d → Γr(j+k)d for every natural

number (j + k), by our assumption on MΓ. Passing to Thom spaces gives a map

Tρr : DrTΓ(j+k)d → TΓr(j+k)d

which represents the canonical Thom class tj+k of SrΓ(j+k)d. Composing we get a

map

Tρr ◦Drh : DrΣ
j+dY → TΓr(j+k)d

which represents the class (Drh)
∗tj+k ∈ M̃Γ

r(j+k)d
(DrΣ

jdY ).

For any vector bundle ζ over a pair (Y,A), with Thom class v ∈ M̃Γ
k
(Tζ), there

is a relative Thom isomorphism

Φv : M̃Γ
n
(Y/A) ∼= M̃Γ

n+k
(Tζ/T (ζ |A)).

Let εjd be the trivial jd-dimensional bundle over Y (Note that Tεjd/T (εjd|∗) ≈ ΣjdY ).

We shall apply the Thom Isomorphism in the case of the bundle Srε
jd over the pair

(ESr ×Sr
Y (r), A), where A is the subspace of ESr ×Sr

Y (r) consisting of points with

at least one of their Y coordinates equal to the base point. This bundle is classified

by the composition of bundle maps

Srε
jd
Srujd

- SrΓjd

ρr
- Γrjd,

where ujd : εjd → Γjd is determined by the maps giving the unit of the spectrum

MΓ (see Section 4.1). On passage to Thom spaces this represents a Thom class

v ∈ MΓrjd(DrΣ
jdY+). Clearly there is a homeomorphism

ESr ×Sr
Y (r)

A
≈ DrY,

and an adaptation of Proposition 4.20 gives

T (Srε
jd)

T (Srεjd|A)
≈ DrΣ

jdY.
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Hence there is a Thom Isomorphism

Φv : M̃Γ
rkd

(DrY ) ∼= M̃Γ
r(j+k)d

(DrΣ
jdY ),

and we may set P (α) = Φ−1
v ((Drh)

∗tj+k). Using properties of Thom isomorphisms

and the fact that Dr is a functor, it is not difficult to check that P kd : M̃Γ
kd

(−) →

M̃Γ
rkd

(Dr(−)) is a well-defined natural transformation for each k ∈ Z. The property

i∗ ◦ P (α) = α∧r can be deduced from naturality of P and the fact that i∗tk = t∧r,

where t ∈ M̃Γ
kd

(TΓkd) is the canonical Thom class represented by the identity map

and tk ∈ M̃Γ
rkd

(DrTkd) is the Thom class of SrΓkd.

Remarks 4.27. (i) Note that each operation in M̃Γ
∗

is uniquely defined, thanks

to the structure we imposed on the spectrum MΓ. A different choice of unit map

u : S→ MΓ may lead to a different operation.

(ii) Let G be a subgroup of the alternating group Ar (the subgroup of Sr consisting

of even permutations). Then there are bundle maps SGγ̃k → γ̃rk for each k, since

an even permutation of the factors of γ̃
(r)
k preserves the product orientation. Hence

there is a Steenrod operation of type (G, 1) in M̃SO
∗

(and similarly of type (G, 2) in

M̃SU
∗
).

(iii) We have deliberately chosen our language to suggest a relationship between the

self-intersection operations ψr and Steenrod operations (see also the ‘Cartan formula’

of Proposition 2.12). This will be the subject of Chapter 6. In fact, the statement

that “MΓ has self-intersections in codimensions divisible by d” can be interpreted as

“MΓ has (part of) the structure of an Hd
∞ ring spectrum”. See [7] for a survey of H∞

ring spectra and their connection with Steenrod operations.

Finally in this chapter we give the geometric interpretation of the Steenrod op-

erations. We restrict attention to the case r = 2 and S2 = Z2, giving an external

Steenrod operation P = (P kd | k ∈ Z) of type (Z2, d) in M̃Γ
∗
. As EZ2 we take the

infinite sphere S∞ =
⋃

l S
l with the direct limit topology, and Z2 action given by the

antipodal map.

Given a manifold Xn we wish to describe the maps

P kd : M̃Γ
kd

(X+) ∼= MΓkd(X)→ MΓ2kd(S∞ ×Z2
X(2)) ∼= M̃Γ

2kd
(D2X+)
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in terms of proper maps of manifolds.

Note that for each l ∈ N, the usual inclusion l : S
l →֒ S∞ extends to a Z2-

equivariant map l × 1 : Sl ×X(2) →֒ S∞ ×X(2), which factors to give an inclusion

ıl := l ×Z2
1 : Sl ×Z2

X(2) →֒ S∞ ×Z2
X(2).

Let α ∈ MΓkd(X) be represented by a proper map f : Mn−kd → Xn with Γ-

orientation given by

M
e
→֒ E

π
→ X, σ : ν(e)→ Γ(j+k)d.

The following fact is well known to workers in the field (see for example [37], Satz

14.1).

Proposition 4.28. For each l ∈ N, the class ı∗l P
kd(α) ∈ MΓ2kd(Sl ×Z2

X(2)) is

represented by the proper map

λl(f) := 1×Z2
f (2) : Sl ×Z2

M (2) → Sl ×Z2
X(2),

with the following Γ-orientation. A factorisation of λl(f) is given by

Sl ×Z2
M (2) 1×Z2

e(2)
- Sl ×Z2

E(2) 1×Z2
π(2)

- Sl ×Z2
X(2).

Note that 1 ×Z2
e(2) has normal bundle Sl ×Z2

ν(e)(2), so an orientation is given by

the composition of bundle maps

Sl ×Z2
ν(e)(2) ıl

- S2ν(e)
S2σ

- S2Γ(j+k)d

ρ(j+k)d
- Γ2(j+k)d.

The corresponding internal operation

Pkd : M̃Γ
kd

(X+) ∼= MΓkd(X)→ MΓ2kd(RP∞ ×X) ∼= M̃Γ
2kd

(RP∞ ∧X+)

is defined as △∗2 ◦P
kd, where △2 : RP∞×X →֒ S∞×Z2

X(2) is the extended diagonal

map. This map can be viewed as the direct limit of maps△l
2 : RP l×X →֒ Sl×Z2

X(2).

Note that there is an inclusion

ℓl : RP l ×X →֒ RP∞ ×X

for each l ∈ N, and we have

ıl ◦ △
l
2 = △2 ◦ ℓl : RP l ×X → S∞ ×Z2

X(2).
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Corollary 4.29. For each l ∈ N, the class ℓ∗lP
kd(α) ∈ MΓ2kd(RP l×X) is represented

by the map ξl(f) in the following pull back diagram.

Σ(f) - Sl ×Z2
M (2)

RP l ×X

ξl(f)

? △l
2- Sl ×Z2

X(2),

λl(f)′

?

Here λl(f)′ is a representative of [λl(f)] which is transverse to △l
2, and ξl(f) is given

the Γ-orientation induced from λl(f)′.



Chapter 5

Bordism of Spreadings

In this Chapter we introduce the notion of a spreading of type Y in X, where X

and Y are pointed topological spaces. Spreadings were first considered by P. Vogel

in his 1974 paper [38] (with the French name ‘étalements’) as a tool for studying

the bordism of immersions, and the results here are from that paper. The bordism

of spreadings gives a bifunctor J (−;−), closely related to the bifunctor I(−;−) of

Chapter 2. In fact, one of Vogel’s key insights was that the bordism class in I(N ; ζ) of

a triple (M, f, v) depends only on the bordism class of a particular spreading of type

Tζ in the one-point compactification Nc of N , whose data consists of a ‘spreading’ of

f (an extension of f to an immersion of its normal disc bundle) and the homotopy

data of the structure map v near the zero section i(M) ⊆ ν(f).

5.1 Definitions

We first give the definition of a spreading. Let (X,A) be a pair of topological spaces,

and let Y be a pointed space with base point y.

Definition 5.1. A spreading of type Y in (X,A) consists of a triple (K,α, β),

where K is a topological space, α : K → X is a proper, closed continuous map,

and β : (K,α−1(A)) → (Y, y) is a continuous map such that the restriction of α to

K − β−1(y) is a local homeomorphism.

54
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By a local homeomorphism h : W → Z we mean a map h such that every w ∈W

has an open neighbourhood U such that h|U : U → h(U) is a homeomorphism.

We may put a bordism relation on the class of all such triples as follows.

Definition 5.2. Two spreadings (K0, α0, β0) and (K1, α1, β1) of type Y in (X,A) are

bordant if there is a spreading (L,Ψ,Φ) of type Y in (X × I, A × I) such that the

squares in the following diagram are pullback squares,

K0
- L � K1

X × {0}

α0

?

- X × I

Ψ

?

� X × {1}

α1

?

and Φ|Ki
= βi for i = 0, 1.

Note that bordism is an equivalence relation on the class of all spreadings of type

Y in (X,A). We denote the bordism class of a triple (K,α, β) by [K,α, β]. If (X, x)

and (Y, y) are both pointed topological spaces, we denote the set of bordism classes

of spreadings of type Y in X by J (X;Y ), omitting reference to the base points. This

set has the structure of a commutative monoid, with the addition defined by disjoint

union of representing spreadings, so

[K,α, β] + [K ′, α′, β ′] = [K ⊔K ′, α ⊔ α′, β ⊔ β ′] ∈ J (X;Y ).

The empty spreading acts as the zero element.

To illustrate these concepts, and for future reference, we record the following

Proposition which says that the bordism class of a spreading (K,α, β) of type Y in

X is not affected by ‘throwing away’ almost all of β−1(y).

Proposition 5.3. Let (K,α, β) be a spreading of type Y in X. Let C ⊆ K be the

closure of K − β−1(y). Then

[C, α|C, β|C] = [K,α, β] ∈ J (X;Y )

Proof. Let i : C →֒ K be the inclusion. The mapping cylinder

Mi =
C × I ⊔K

(c, 1) ∼ i(c)
,
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along with the obvious maps Mi → X × I and Mi → Y , gives the required bordism

of spreadings.

5.2 Functoriality

The bordism monoid J (X;Y ) is functorial in both variables, X and Y . Let T•

denote the category of pointed topological spaces and pointed continuous maps. Let

T • be the category with the same objects, but morphisms the proper pointed maps.

Obviously, homotopies in these categories are required to preserve base points.

Proposition 5.4. Bordism of spreadings is a homotopy bifunctor

J (−;−) : T
op
• × T• → CMon.

Proof. We begin with covariance. Let t : Y1 → Y2 be a pointed map, and let (K,α, β)

be a spreading of type Y1 in X. Then the triple (K,α, t ◦ β) is a spreading of type

Y2 in X, whose bordism class depends only on the bordism class of (K,α, β). Hence

we get a well-defined induced map

t∗ : J (X;Y1)→ J (X;Y2),

which is clearly a monoid map and makes J (X;−) a functor. If T : Y1 × I → Y2 is

a pointed homotopy from t to another pointed map t1 : Y1 → Y2, then the spreading

(K × I, α× 1, T ◦ (β× 1)) of type Y2 in (X × I, x× I) is a bordism from (K,α, t ◦ β)

to (K,α, t1 ◦ β). Hence J (X;−) is a homotopy functor.

Now suppose we have a proper pointed map φ : X1 → X2. We define the induced

map

φ∗ : J (X2;Y )→ J (X1;Y ),

as follows. Given a spreading (K,α, β) of type Y in X2, form the pullback of α by

φ. This gives a diagram

X1 ×X2
K

ρ
- K

β
- Y

X1

δ

? φ
- X2

α

?
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and the triple (X1 ×X2
K, δ, β ◦ ρ) is a spreading of type Y in X1. Setting

φ∗[K,α, β] = [X1 ×X2
K, δ, β ◦ ρ]

gives a well-defined monoid map depending only on the homotopy class of φ, and the

Proposition is proved.

Note that one-point compactification describes a covariant functor

(−)c : D0 → T •,

and passage to Thom spaces describes a covariant Thomification functor

T : Vect→ T•.

With these functors we describe the relationship between J (−;−) and I(−;−).

Proposition 5.5. The following diagram of functors commutes up to natural iso-

morphism.

Dop
0 × Vect

(−)c × T
- T

op
• ×T•

CMon
�
J
(−

;−
)I(−

;−
) -

Proof. We must find a natural transformation of functors

Θ: I(−;−)→ J ((−)c;T (−)),

each component of which is invertible. Hence we must describe, for any pair of objects

(N, ζ) in D0 × Vect, a monoid isomorphism

Θ: I(N ; ζ)→ J (Nc;Tζ)

such that if g : Q → N is a proper immersion and η : ζ → ξ is a bundle map, then

the following diagrams commute.

I(N ; ζ)
Θ
- J (Nc;Tζ) I(N ; ζ)

Θ
- J (Nc;Tζ)

I(Q; ζ)

g∗

? Θ
- J (Qc;Tζ)

(gc)
∗

?

I(N ; ξ)

η∗
? Θ

- J (Nc;Tξ)

(Tη)∗
?
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Given [M, f, v] ∈ I(N ; ζ), the bundle map v : ν(f)→ ζ is isometric on fibres, so that

it induces a map of unit disc bundles. Composing with the collapse map Dζ → Tζ

gives a continuous map

ṽ : Dν(f)→ Tζ,

and if ∗ ∈ Tζ is the base point we have ṽ−1(∗) = Sν(f).

As in the proof of Theorem 3.5, let F : Dν(f)n
# Nn be an immersion of the

normal disc bundle which extends f and is injective on each fibre. We may regard

F as a map to the one-point compactification Nc. Then the triple (Dν(f), F, ṽ) is

easily seen to be a spreading of type Tζ in Nc. We set

Θ([M, f, v]) = [Dν(f), F, ṽ].

To check that Θ is well-defined, we must show that different choices of F lead to

bordant spreadings. But any two such F are regularly homotopic, by Proposition A.7

in the Appendix, and a regular homotopy from F to F ′ gives a bordism of triples,

(Dν(f), F, ṽ) ∼ (Dν(f), F ′, ṽ). We must also check that bordant triples (Mi, fi, vi),

i = 0, 1, lead to bordant spreadings. Again, this is clear.

The map Θ is evidently a monoid homomorphism. To exhibit an inverse

Θ−1 : J (Nc;Tζ)→ I(N ; ζ),

we use a modification of the Pontrjagin-Thom construction [36].

Consider a spreading (K,α, β) of type (Tζ, ∗) in Nc. By the definition of a spread-

ing,

α|K−β−1(∗) : K − β
−1(∗)→ N

is a local homeomorphism, hence K − β−1(∗) has the structure of an n-manifold

without boundary. The construction of Θ−1 will proceed by finding a closed subman-

ifold, corresponding to the inverse image of the base space X in Tζ under β. Note

that we may assume that ζ is a smooth k-vector bundle over a manifold X, whose

total space E(ζ) is therefore a manifold. This is because I(N ;−) and J (Nc;−) are

homotopy functors and X has the homotopy type of a manifold. For the same reason
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we may also assume (as observed by Thom in [36], Chapter IV) that the map β has

the following properties:

(i) β|K−β−1(∗) : K − β
−1(∗)→ E(ζ) is smooth and transverse to the zero section

X →֒ E(ζ);

(ii) M := β−1(X) is a codimension k closed submanifold of K − β−1(∗), whose

normal bundle ν admits a bundle map v : ν → ζ .

(iii) β is in standard form, meaning that β agrees with v on an open tubular

neighbourhood U ≈ ν of M , and maps K − U to the base point ∗ ∈ Tζ .

The restriction of α to the submanifold M ⊆ K − β−1(∗) is an immersion

f : Mn−k
# Nn which again has normal bundle ν. Hence we may set

Θ−1([K,α, β]) = [M, f, v],

which is easily seen to be well-defined.

The composition Θ−1 ◦Θ is the identity on I(N ; ζ) by construction. To see that

Θ ◦Θ−1[K,α, β] = [K,α, β] ∈ J (Nc;Tζ),

we apply Proposition 5.3 to the spreading (K,α, β). With the aid of this inverse to

Θ, the naturality statements can be verified; we omit the details.

5.3 Products

Let (X, x), (Y, y), (X ′, x′) and (Y ′, y′) be objects in T•. The smash products (X ∧

X ′, x ∧ x′) and (Y ∧ Y ′, y ∧ y′) are also objects in T•. There are obvious quotient

maps p : X × X ′ → X ∧ X ′ and q : Y × Y ′ → Y ∧ Y ′ (so that x ∧ x′ = p(X ∨ X ′)

and y ∧ y′ = q(Y ∨ Y ′)).

Definition 5.6. Given spreadings (K,α, β) of type Y in X and (K ′, α′, β ′) of type

Y ′ in X ′, their external or smash product is the triple

(K ×K ′, p ◦ (α× α′), q ◦ (β × β ′)),

which is a spreading of type Y ∧ Y ′ in X ∧X ′.



CHAPTER 5. BORDISM OF SPREADINGS 60

One may check that this gives a well-defined smash product pairing on bordism

classes

J (X;Y )×J (X ′;Y ′)
∧
→ J (X ∧X ′;Y ∧ Y ′).

The following Proposition says that the natural isomorphism

Θ: I(−;−)→ J ((−)c;T (−))

maps Cartesian products to smash products. It is a well known fact that for vector

bundles ζ and ζ ′ over base spaces X and X ′, there is a homeomorphism

Tζ ∧ Tζ ′ ≈ T (ζ × ζ ′).

Also note that for manifolds N,N ′ there is a homeomorphism Nc ∧N
′
c ≈ (N ×N ′)c.

Proposition 5.7. The following diagram commutes.

I(N ; ζ)× I(N ′; ζ ′)
Θ×Θ

- J (Nc;Tζ)× J (N ′c;Tζ
′)

I(N ×N ′; ζ × ζ ′)

×

? Θ
- J ((N ×N ′)c;Tζ ∧ Tζ

′)

∧

?

Proof. If we trace an arbitrary element

([M, f, v], [M ′, f ′, v′]) ∈ I(N ; ζ)× I(N ′; ζ ′)

around the diagram, first right, then down, we obtain the class

[Dν(f)×Dν(f ′), p ◦ (F × F ′), q ◦ (ṽ × ṽ′)] ∈ J ((N ×N ′)c;T (ζ × ζ ′)),

where

p : Nc ×N
′
c → Nc ∧N

′
c ≈ (N ×N ′)c,

q : Tζ × Tζ ′ → Tζ ∧ Tζ ′ ≈ T (ζ × ζ ′).

Since the map ṽ× ṽ′ is induced by the product of bundle maps v×v′ : ν(f)×ν(f ′)→

ζ × ζ ′, it is transverse to the zero section X × X ′ →֒ T (ζ × ζ ′), with inverse image

M ×M ′. It is therefore easy to see that Θ−1 applied to the above class yields the

class

[M ×M ′, f × f ′, v × v′] ∈ I(N ×N ′; ζ × ζ ′),

as required.
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5.4 The Self-intersection Operations Ψr

Let ζ be an object in Vect. In Proposition 2.12 we defined, after Koschorke and

Sanderson [18], operations

ψr : I(−; ζ)→ I(−;Srζ)

for r ≥ 0 which were natural transformations of set-valued co-functors. As an imme-

diate corollary of Proposition 5.5, we may define similar operations in the bordism

of spreadings. Recall from Proposition 4.20 the homeomorphism TSrζ ≈ DrTζ . We

define D0Tζ = S0.

Proposition 5.8. For each r ≥ 0 there is a natural transformations of set-valued

co-functors

Ψr : J ((−)c;Tζ)→ J ((−)c;DrTζ)

defined by commutativity of the following diagram.

I(−; ζ)
Θ

- J ((−)c;Tζ)

I(−;Srζ)

ψr

? Θ
- J ((−)c;DrTζ)

Ψr

?

We now describe the action of Ψr on an arbitrary element [K,α, β] ∈ J (Nc;Tζ).

Since Θ is an isomorphism, we may find [M, f, v] ∈ I(N ; ζ) such that [K,α, β] =

Θ[M, f, v] = [Dν(f), F, ṽ]. Here F : Dν(f) # N is an immersion which extends f .

In what follows, the reader is invited to keep in mind the spreading of the figure-eight

immersion, depicted in Figure 3.1.

As in Section 2.4, let F(Dν(f); r) denote the configuration space of ordered r-

tuples of distinct points in Dν(f). We can form the pull-back square

∆r(F ) - F(Dν(f); r)

N

Ψr(F )

? △
- N (r)

F (r)|

?
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Note that the space

∆r(F ) = {(k1, . . . , kr) ∈ F(Dν(f); r) | F (k1) = . . . = F (kr)}

is compact since F is an immersion. The group Sr acts on ∆r(F ) freely with quotient

space ∆r(F ), and acts trivially on N . The closed, proper map Ψr(F ) is equivariant

with respect to these actions, so induces a closed, proper map Ψr(F ) : ∆r(F ) → N

(in the case of Figure 3.1, the image of this map for r = 2 is the central square).

Now recall from Lemma 2.11 that to define the Srζ-structure on ν(ψr(f)) we fixed

an embedding λ : ν(f) →֒ R∞. This restricts to give an embedding of the unit normal

disc bundle, which we also denote by λ. We may define a map Sr(ṽ) : ∆r(F )→ DrTζ

by setting

Sr(ṽ)([k1, . . . , kr]) = [λ(k1), . . . , λ(kr), ṽ(k1), . . . , ṽ(kr)].

Proposition 5.9. The triple

(∆r(F ),Ψr(F ),Sr(ṽ))

is a spreading of type DrTζ in Nc, which represents Ψr[K,α, β] ∈ J (Nc, DrTζ).

Proof. To verify that the above triple is a spreading, we only need check that Ψr(F ) is

a local homeomorphism away from Sr(ṽ)
−1(∗). This is true since F is a local home-

omorphism away from the boundary Sν(f). To see that [∆r(F ),Ψr(F ),Sr(ṽ)] =

Ψr[K,α, β], we must apply Θ−1 to this class and obtain the class ψr[M, f, v] =

[∆r(f), ψr(f),Sr(v)].

The map Sr(ṽ) : ∆r(F )→ DrTζ is already transverse to the zero section

F(R∞; r)×Sr
X(r) →֒ F(R∞; r)×Sr

E(ζ)(r)

by virtue of being constructed from a product of bundle maps v : ν(f)→ E(ζ). We

then see that

Sr(ṽ)
−1(F(R∞; r)×Sr

X(r)) = ∆r(f) →֒ ∆r(F ).

Since the immersion ψr(f) factorises as

∆r(f) →֒ ∆r(F )
Ψr(F )
−→ N,
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its normal bundle is isomorphic to the normal bundle of ∆r(f) in ∆r(F ). Thus

Θ−1[∆r(F ),Ψr(F ),Sr(ṽ)] = [∆r(f), ψr(f),Sr(v)]

as claimed.



Chapter 6

Relations Between Operations

For any l ∈ N, the standard double cover of RP l is the map cl : S
l → RP l which sends

a unit vector in Rl+1 to the line it spans. This covering map is a local diffeomorphism,

and hence is a codimension zero immersion of closed manifolds. The normal bundle

of cl is the zero dimensional bundle 1 : Sl → Sl. Thus cl represents a bordism class

[cl] ∈ I(RP
l; ⋆), where ⋆ denotes the point bundle over a point. Let f : Mn−k

#

Nn be a self-transverse immersion of closed manifolds. Assume that f has a ζ-

structure, so represents a class [f ] ∈ I(N ; ζ). The Cartesian product immersion

cl × f : Sl ×M → RP l ×N therefore represents a class

[cl × f ] ∈ I(RP l ×N ; ⋆× ζ) ∼= I(RP l ×N ; ζ).

The main result of this Chapter is an analysis of the class

ψ2[cl × f ] ∈ I(RP l ×N ;S2ζ).

Since cl × f is not self-transverse, we cannot immediately describe the double-point

immersion ψ2(cl × f) : ∆2(cl × f) # RP l × N . However, Proposition 5.8 tells us

that we can study its bordism class by applying the double-point operation Ψ2 to a

spreading of cl × f , and Proposition 5.9 tells us how to do this. We find that the

resulting class in J ((RP l×N)c;D2Tζ) splits as a disjoint union of spreadings, which

under the isomorphism of Proposition 5.5 correspond to a disjoint union of familiar

immersions built from f .

64
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6.1 The Main Theorem

We first recall some notation from Section 4.4. Let f : M → N be a map of manifolds.

For each l ∈ N we defined in Proposition 4.28 a map

λl(f) := 1×Z2
f (2) : Sl ×Z2

M (2) → Sl ×Z2
N (2),

which may be thought of as an extended power of f . Here Z2 acts on Sl antipodally

and on the product f × f by switching the factors. We also defined in Corollary 4.29

a map ξl(f) of the same codimension, by pulling back along the extended diagonal

△l
2 : RP l×N → Sl×Z2

N (2) a transverse representative λl(f)′ of the homotopy class

of λl(f):

Σ(f) - Sl ×Z2
M (2)

RP l ×N

ξl(f)

? △l
2- Sl ×Z2

N (2).

λl(f)′

?

If f is a Γ-oriented map of codimension k, the codimension 2k maps λl(f) and ξl(f)

inherit canonical Γ-orientations from that of f , at least when the Thom spectrum

MΓ has self-intersections in codimension k. If f : M # N is an immersion of closed

manifolds, the maps λl(f) and ξl(f) are also immersions of closed manifolds.

Lemma 6.1. Let f : M # N be an immersion with ζ-structure v : ν(f)→ ζ. Then

the immersions λl(f) and ξl(f) have S2ζ-structures.

Proof. Since ξl(f) is defined as a pullback of λl(f), it suffices by Proposition 2.6 to

show that λl(f) has an S2ζ-structure. If p : ν(f) → M is the bundle projection of

ν(f), then the normal bundle ν(λl(f)) has projection

1×Z2
p(2) : Sl ×Z2

ν(f)(2) → Sl ×Z2
M (2).

We fix, for the remainder of this Chapter, an embedding ρ′ : Dl × ν(f) →֒ R∞

which restricts to an embedding ρ : Sl × ν(f) →֒ R∞. Then define a bundle map

ρ(v) : ν(λl(f))→ S2ζ by setting

ρ(v)[w, x1, x1] = [ρ(w, x1), ρ(−w, x2), v(x1), v(x2)],
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where w ∈ Sl and x1, x2 ∈ ν(f).

We write [ξl(f)] for the class

(△l
2)
∗[Sl ×Z2

M (2), λl(f), ρ(v)] ∈ I(RP l ×N ;S2ζ).

Theorem 6.2.

ψ2[cl × f ] = [ξl(f)] + [cl]× ψ2[f ] ∈ I(RP l ×N ;S2ζ).

Proof. We apply the natural isomorphism

Θ: I(RP l ×N ;S2ζ)
≃
→ J ((RP l ×N)c;D2Tζ)

and Propositions 5.7 and 5.8 to reduce the statement of the Theorem to the equivalent

statement

Ψ2Θ[cl × f ] = (△l
2)
∗
cΘ[λl(f)] + Θ[cl] ∧Ψ2Θ[f ] ∈ J ((RP l ×N)c;D2Tζ).

We first describe the class Θ[cl × f ]. The normal bundle of cl × f is Sl × ν(f) with

ζ-structure v0 : Sl× ν(f)→ ζ given by v0(w, x) = v(x). Hence an extension of cl× f

to the unit normal disc bundle is given by

cl × F : Sl ×Dν(f) # RP l ×N,

where F : Dν(f) # N is an immersion extending f . Thus we have

Θ[cl × f ] = [Sl ×Dν(f), cl × F, ṽ0] ∈ J ((RP l ×N)c;Tζ).

We now apply the operation Ψ2 : J ((RP l × N)c;Tζ) → J ((RP l × N)c;D2Tζ). By

Proposition 5.9 we have

Ψ2Θ[cl × f ] = [∆2(cl × F ),Ψ2(cl × F ),S2(ṽ0)],

where the map S2(ṽ0) is given by

S2(ṽ0)[(w, x1), (w, x2)] = [ρ(w, x1), ρ(w, x2), ṽ(x1), ṽ(x2)],

with ρ as in Lemma 6.1. Now ∆2(cl × F ) is the space

{[(w1, x1), (w2, x2)] ∈ F(Sl ×Dν(f); 2)/Z2 | (cl × F )(w1, x1) = (cl × F )(w2, x2)}.
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This space splits as a disjoint union ∆2(cl × F ) = Σ1 ⊔ Σ2, where

Σ1 = {[(w, x1), (−w, x2)] ∈ ∆2(cl × F )},

Σ2 = {[(w, x1), (w, x2)] ∈ ∆2(cl × F ) | x1 6= x2}.

Hence Ψ2Θ[cl × f ] splits as a sum of bordism classes

Ψ2Θ[cl × f ] = [Σ1,Ψ2(cl × F )|Σ1
,S2(ṽ0)|Σ1

] + [Σ2,Ψ2(cl × F )|Σ2
,S2(ṽ0)|Σ2

].

We claim that the triple (Σ1,Ψ2(cl×F )|Σ1
,S2(ṽ0)|Σ1

) represents (△l
2)
∗
cΘ[λl(f)] ∈

J (RP l ×N ;D2Tζ). From Lemma 6.1 we may write

Θ[λl(f)] = [Sl ×Z2
Dν(f)(2), 1×Z2

F (2), ρ̃(v)] ∈ J ((Sl ×Z2
N (2))c;D2Tζ),

since 1 ×Z2
F (2) : Sl ×Z2

Dν(f)(2)
# Sl ×Z2

N (2) is a spreading of λl(f). To obtain

(△l
2)
∗
cΘ[λl(f)] we must form the pullback

Σ(F )
i
- Sl ×Z2

Dν(f)(2)

RP l ×N

ξl(F )

? △l
2- Sl ×Z2

N (2).

1×Z2
F (2)

?

Here i is the inclusion

Σ(F ) = {[w, x1, x2] ∈ S
l ×Z2

Dν(f)(2) | F (x1) = F (x2)}
i
→֒ Sl ×Z2

Dν(f)(2)

and ξl(F )[w, x1, x2] = ([w], F (x1)). Hence

(△l
2)
∗
cΘ[λl(f)] = [Σ(F ), ξl(F ), ρ̃(v) ◦ i] ∈ J ((RP l ×N)c;D2Tζ).

Note that there is a homeomorphism h1 : Σ1 → Σ(F ) given by h1[(w, x1), (−w, x2)] =

[w, x1, x2], and that ξl(F ) ◦ h1 = Ψ2(cl × F )|Σ1
and ρ̃(v) ◦ i ◦ h1 = S2(ṽ0)|Σ1

. This

proves the claim.

It remains only to show that the triple (Σ2,Ψ2(cl × F )|Σ2
,S2(ṽ0)|Σ2

) represents

the product spreading Θ[cl] ∧Ψ2Θ[f ]. We know that

Θ[cl] = [Sl, cl, π] ∈ J ((RP l)c;S
0) and
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Ψ2Θ[f ] = [∆2(F ),Ψ2(F ),S2(ṽ)] ∈ J (Nc;D2Tζ),

where π : Sl → S0 is projection onto the non-base point. By Definition 5.6 of the

smash product,

Θ[cl] ∧Ψ2Θ[f ] = [Sl ×∆2(F ), p ◦ (cl ×Ψ2(F )), q ◦ (π × S2(ṽ))]

= [Sl ×∆2(F ), p ◦ (cl ×Ψ2(F )), η]

where p : RP l
c × Nc → (RP l × N)c and q : S0 × D2Tζ → S0 ∧ D2Tζ = D2Tζ are

the obvious maps. Here η : Sl ×∆2(F )→ D2Tζ is the map given by η(w, [x1, x2]) =

[ρ(1, x1), ρ(1, x2), ṽ(x1), ṽ(x2)], where 1 = (1, 0, . . . , 0) ∈ Sl. This equality comes from

choosing the embedding ρ(1,−) : Dν(f) →֒ R∞ in the definition of S2(ṽ).

Finally note that there is a homeomorphism h2 : Σ2 → Sl × ∆2(F ) given by

h2[(w, x1), (w, x2)] = (w, [x1, x2]), and that p◦ (cl×Ψ2(F ))◦h2 = Ψ2(cl×F )|Σ2
. Also

the composition η ◦ h2 is given by

η ◦ h2[(w, x1), (w, x2)] = [ρ(1, x1), ρ(1, x2), ṽ(x1), ṽ(x2)],

which is homotopic to S2(ṽ0)|Σ2
since ρ extends to the embedding ρ′ : Dl×Dν(f) →֒

R∞. This proves the claim, and the Theorem.

6.2 Corollaries of Theorem 6.2

Here we derive some corollaries of Theorem 6.2 in the unoriented case, which relate

the self-intersection operations to the internal Steenrod operations of Section 4.4. The

word ‘unoriented’ here means that the only structure we impose on our immersion

f : Mn−k
# Nn is the classifying bundle map v : ν(f) → γk to the universal O(k)-

bundle. On applying the monoid homomorphism induced by the classifying map

S2γk → γ2k of Examples 4.14 (1), we find that

ψ2[cl × f ] = [ξl(f)] + [cl]× ψ2[f ] ∈ I(RP l ×N ; γ2k).

We then apply the natural transformation T2k : I(−; γ2k)→ MO2k(−) of Proposition

4.9, which regards an immersion of a closed manifold as a proper map. We will
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abuse notation slightly and continue to write [f ] for the cobordism class in MOk(N)

represented by an immersion f : Mn−k
# Nn. Since every proper map of manifolds

has a unique O-orientation, we find that [ξl(f)] = ℓ∗lP
k[f ] by Corollary 4.29, where

Pk : MOk(N)→ MO2k(RP∞ × N) is the internal Steenrod operation of type (Z2, 1)

in MO∗, and ℓl : RP l ×N →֒ RP∞ ×N is the standard inclusion.

Corollary 6.3. For any l ∈ N,

ψ2[cl × f ] = ℓ∗lP
k[f ] + [cl]× ψ2[f ] ∈ MO2k(RP l ×N).

Rather than have one result for each l ∈ N, we should now collect them together

by passing to the limit. RP∞×N is an infinite dimensional manifold which is filtered

by finite dimensional sub-manifolds RP l×N , forming a direct system of embeddings

. . . →֒ RP l ×N
jl×1

→֒ RP l+1 ×N →֒ . . . →֒ RP∞ ×N,

where jl : RP l →֒ RP l+1 is the usual inclusion. Hence we get an inverse system of

Abelian groups and homomorphisms

. . .← MO2k(RP l ×N)
(jl×1)∗

← MO2k(RP l+1 ×N)← . . .

The following two results imply that MO2k(RP∞ ×N) ∼= liml MO2k(RP l ×N).

Proposition 6.4. Let Y be a CW-complex filtered by finite sub-complexes Yn, n ∈ N.

If E is a spectrum such that πi(E) is a finite Abelian group for all i, then the map

Ek(Y )→ lim
←

Ek(Yn)

is an isomorphism for all k.

Proof. See Y.B. Rudyak [28], Corollary III.4.17.

Theorem 6.5. The coefficient groups of unoriented bordism form a polynomial ring

over Z2,

π∗(MO) ∼= Z2[x2, x4, x5, x6, x8, . . .]

on generators xi of dimension i, one for each i ≥ 1 not of the form 2s − 1.
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Proof. See Thom [36], Theorem IV.12.

Since j∗l [cl+1] = [cl] ∈ MO0(RP l), we may easily check that

(jl × 1)∗ψ2[cl+1 × f ] = ψ2[cl × f ] ∈ MO2k(RP l ×N),

(jl × 1)∗([cl+1]× ψ2[f ]) = [cl]× ψ2[f ] ∈ MO2k(RP l ×N),

and (jl × 1)∗ℓ∗l+1P
k[f ] = ℓ∗lP

k[f ] ∈ MO2k(RP l ×N).

Therefore we may define elements

ψ2[c× f ] = lim
←
ψ2[cl × f ] ∈ MO2k(RP∞ ×N),

[c]× ψ2[f ] = lim
←

[cl]× ψ2[f ] ∈ MO2k(RP∞ ×N),

and Pk[f ] = lim
←
ℓ∗lP

k[f ] ∈ MO2k(RP∞ ×N).

Corollary 6.6.

ψ2[c× f ] = Pk[f ] + [c]× ψ2[f ] ∈ MO2k(RP∞ ×N).

We may obtain a similar result in Z2-cohomology, where the internal Steenrod

operation of type (Z2, 1) will also be denoted

Pk : Hk(N ; Z2)→ H2k(RP∞ ×N ; Z2).

The next result says that the universal Thom class t : MO→ HZ2 induces a natural

transformation of cohomology theories which preserves the corresponding external

Steenrod operations.

Proposition 6.7. The following diagram commutes for all pointed spaces X and all

k ∈ Z.

M̃O
k
(X)

t
- H̃k(X; Z2)

M̃O
2k

(D2X)

P k

?

t
- H̃2k(D2X; Z2)

P k

?
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Proof. By naturality it suffices to prove that

t ◦ P k(u) = P k ◦ t(u) ∈ H̃2k(D2MO(k); Z2),

where u ∈ M̃O
k
(MO(k)) is the cobordism Thom class of γk, represented by the

identity map 1 : MO(k)→MO(k).

If ζn is an n-dimensional vector bundle with cobordism Thom class v ∈ M̃O
n
(Tζ),

then t(v) ∈ H̃n(Tζ ; Z2) is a cohomology Thom class. Hence by Proposition 4.24, both

sides of the above equality are the unique Thom class in H̃2k(D2MO(k); Z2) of the

extended power bundle S2γk.

Since each internal operation is defined by setting Pk = △∗2 ◦P
k, we immediately

deduce that the following diagram commutes.

MOk(N)
t

- Hk(N ; Z2)

MO2k(RP∞ ×N)

Pk

?
t
- H2k(RP∞ ×N ; Z2).

Pk

?

We continue to write [f ] for the cohomology class t[f ] ∈ Hk(N ; Z2) represented by

an immersion f : Mn−k
# Nn.

Corollary 6.8.

ψ2[c× f ] = Pk[f ] + [c]× ψ2[f ] ∈ H2k(RP∞ ×N ; Z2).

Note that for l ∈ N the map of closed manifolds cl : S
l → RP l has degree ±2

when l is odd and 0 when l is even. Thus (cl)∗[S
l] = 0 ∈ Hl(RP

l; Z2) for all l, so the

class [c] ∈ H0(RP∞; Z2), which is defined as the limit over l of the Poincaré duals of

these elements, must be zero.

Corollary 6.9. Let α ∈ Hk(N ; Z2) be represented by an immersion f : Mn−k
# Nn

(meaning DN(α) = f∗[M ] ∈ Hn−k(N ; Z2)). Then Pk(α) is represented by the double

point immersion ψ2(c×f), where c : S∞ → RP∞ is the universal principal Z2-bundle.
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6.3 Possible Extensions

In this section we discuss several possible avenues of future research based on Theorem

6.2.

The Complex and Symplectic Cases. The Thom spectra MU and MSp of complex

and symplectic cobordism have self-intersections in codimensions divisible by 2 and 4

respectively. Hence each of the theories MU∗ and MSp∗ carries an internal Steenrod

operation of type Z2, and the reader may wonder why we did not obtain the analogue

of Corollary 6.6 in these theories.

To illustrate the difficulty in the complex case, let f : Mn−2k
# Nn be an immer-

sion with complex structure v : ν(f) → γU
k . As in Proposition 4.9 we may regard f

as a proper complex oriented map, by factorising it as

M
(f,f̃)
→֒ N × Rl pr

→ N

where f̃ : M →֒ Rl is some embedding. This complex orientation of f induces

a complex orientation of the map ξl(f) in a canonical way (see Proposition 4.28

and Corollary 4.29) and with this orientation ξl(f) represents the class ℓ∗lP
2k[f ] ∈

MU4k(RP l ×N).

The map ξl(f) may also be regarded as an immersion with S2γ
U
k -structure, as in

Lemma 6.1. With this structure it is of course true that

ψ2[cl × f ] = [ξl(f)] + [cl]× ψ2[f ] ∈ I(RP l ×N ; γU
2k).

However when we apply the natural transformation T4k : I(−; γU
2k) → MU4k(−) it is

not immediately obvious that T4k[ξl(f)] = ℓ∗lP
2k[f ]. Although both cobordism classes

are represented by the same map ξl(f), we have given this map two different complex

orientations. It may be the case that these two orientations are cobordant; this is

work in progress.

Zp Operations. Having obtained a relationship between the double-point operation

ψ2 and the Steenrod operation in HZ2, one may ask if a similar approach will yield

relations between ψp and the Zp operations in HZp, where p is an odd prime.
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We may regard Zp as the set {1, ω, . . . , ωp−1} ⊆ C under multiplication, where ω

is a p-th root of unity. The universal Zp-bundle is a map d : S∞ → Lp, where Lp is an

infinite lens space. This may be viewed as a limit of immersions of closed manifolds

dl : S
2l−1 → L2l−1

p , which map a point w ∈ S2l−1 ⊆ Cl to its orbit under the Zp action

on S2l−1 given by left multiplication.

Given an immersion f : M # N with ζ-structure there are immersions λp
l (f)

and ξp
l (f), defined entirely analogously to the Z2 case, and these can be shown to

have Spζ-structures. When we carry out the analysis of the element ψp[dl × f ] ∈

I(L2l−1
p ×N ;Spζ) in the same way as was done in Section 6.1 for the Z2 case, we find

that

ψp[dl × f ] = [ξp
l (f)] + [dl]× ψp[f ] + other more complicated terms,

with the number of terms on the right hand side being equal to the number of

partitions of p. It is probably unlikely that this will yield any sensible result, because

of the discrepancy between Zp and Sp when p > 2.

Self-intersections of Singular Maps. Corollary 6.9 gives an alternative geometric

construction of Pk(α) ∈ H2k(RP∞ × N ; Z2) when α ∈ Hk(N ; Z2) is represented

by an immersion. However, it is not known that every Z2-cohomology class can be

represented in this way. René Thom, in answer to a problem posed by Steenrod,

proved that the map

t : MOn−k(N)→ Hn−k(N ; Z2)

is surjective, thus showing that every class α ∈ Hk(N ; Z2) can be represented by a

map of manifolds f : Mn−k → Nn with M closed [36]. The question of which bordism

classes in MOn−k(N) contain immersions remains only partially resolved (see [21] for

a recent example), and so the map f representing α may have singularities in general.

Thus the following question arises: can we define the r-fold self-intersection map

ψr(f) : ∆r(f)→ N of a map f : M → N with singularities? We may give the same

definition of self-transversality as we did in the immersion case in Definition 2.9, and

self-transverse maps are generic in the sense that they form a dense subspace of the

space of all smooth maps ([13], Proposition III.3.2). If we try to define ψr(f) in the
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same way as we did for f an immersion, though, we quickly run into trouble as the

manifold ∆r(f) is not closed.

We are led to consider the following problem. Given a self-transverse singular

map f : Mn−k → Nn, can we define a closed manifold ∆r(f) and a singular map

ψr(f) : ∆r(f) → N with image {n ∈ N | |f−1(n)| ≥ r}, such that we recover the

classical definition when f is an immersion?

R. Rimányi and A. Szűcs have recently constructed a classifying space for bordism

of maps with prescribed singularities [26]. Self-intersection operations in this bordism

theory (if they exist) should be induced by combinatorially defined maps between such

classifying spaces (compare Section 7.3).



Chapter 7

Homotopy Classification

The beauty and utility of any bordism theory stems from the fact that it may be

translated into homotopy theory by means of a Pontrjagin-Thom construction [36],

and hence studied (and often computed) using methods of Algebraic Topology. The

bordism of immersions is no exception. In 1966 R. Wells proved that for k > 0,

I(Rn+k; γk) ∼= lim
l→∞

πn+k+l(Σ
lMO(k))

=: πS
n+k(MO(k)),

thus exhibiting bordism of immersions as the stable homotopy of Thom spaces [39].

His result was generalised in the 1970’s, both by Koschorke and Sanderson [18], and

independently by Vogel [38]. They showed that for every Nn ∈ D0 and ζ ∈ Vect,

I(N ; ζ) ∼= [Nc, C(R∞, T ζ)],

where C(R∞, T ζ) is a combinatorially defined model of the weak homotopy type of

QTζ = liml→∞ΩlΣlTζ , built from configuration spaces, and Nc is the one-point com-

pactification of N . We will give Vogel’s proof, which essentially elucidates Koschorke

and Sanderson’s proof using the language of spreadings, in Section 7.2. In Section 7.3

we remark that, under this isomorphism, the self-intersection operations are induced

by certain James-Hopf maps

hr : C(R∞, T ζ)→ C(R∞, DrTζ).

75
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7.1 Configuration space models

In this section we give a brief introduction to configuration space models. These are

functors on pointed spaces, originally devised to give usable combinatorial models of

iterated loop-suspension functors.

We begin by defining, following F.R. Cohen, J.P. May and L.R. Taylor [8], a

functor

C(Z,−) : T• → T•

for any topological space Z. Given an integer r ≥ 1 let F(Z; r) denote the configu-

ration space

{(z1, . . . , zr) ∈ Z
(r) | i 6= j ⇒ zi 6= zj},

with the subspace topology from Z(r). For any (X, ∗) ∈ T•, the symmetric group Sr

acts on the right of F(Z; r) and on the left of X(r), in each case by permutation of

factors. Hence for every r ≥ 1 we have a space

F(Z; r)×Sr
X(r),

whose points may be thought of as sets of r points in Z, each with a label from X.

We will write points of this space in the form

[(z1, x1), (z2, x2), . . . , (zr, xr)],

where each zi ∈ Z and each xi ∈ X.

Definition 7.1. Let Z be any topological space. There is a functor

C(Z,−) : T• → T•,

whose value on an object (X, ∗) ∈ T• is the pointed space

C(Z,X) =

(
⊔

r≥1

F(Z; r)×Sr
X(r)

)
/ ∼,

where ∼ is the equivalence relation generated by

[(z1, x1), . . . , (zr, xr)] ∼ [(z1, x1), . . . , (zr, xr), (zr+1, ∗)]
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and [z, ∗] ∼ [z′, ∗],

and the base point is the class [z, ∗]. This space is filtered by finite subspaces

Cn(Z,X) =

(
⊔

1≤r≤n

F(Z; r)×Sr
X(r)

)
/ ∼,

for n ≥ 1, and is given the weak or direct limit topology with respect to this direct

system.

The value of the functor on a pointed map f : X → X ′ is the map

C(Z, f) : C(Z,X)→ C(Z,X ′)

given by C(Z, f)([(z1, x1), . . . , (zr, xr)]) = [(z1, f(x1)), . . . , (zr, f(xr))].

To form C(Z,X) we take all configurations of points in Z with labels from X, and

identify those configurations which differ only by points labelled by the base point

∗ ∈ X. The class of any configuration all of whose labels are ∗ then acts as the base

point.

Note also that an injective map g : Z → Z ′ induces a natural transformation

C(g,−) : C(Z,−)→ C(Z ′,−)

in an obvious manner, since g sends a configuration of points in Z to a configuration

in Z ′. Hence C may be regarded as a functor from the category U of topological

spaces and injective continuous maps, to the functor category Fun(T•).

Proposition 7.2. Let Z be a topological space with a fixed injective map g : Z⊔Z →

Z. Then C(Z,X) has the structure of a commutative topological monoid.

Proof. Given any pair of spaces W and W ′, there is a symmetric, associative pairing

µ : C(W,X)× C(W ′, X)→ C(W ⊔W ′, X),

which simply takes a disjoint union of configurations of labelled points. The pairing

on C(Z,X) is then given by the composition

C(Z,X)× C(Z,X)
µ
- C(Z ⊔ Z,X)

C(g,X)
- C(Z,X),

with the base point [z, ∗] ∈ C(Z,X) acting as a two-sided identity.
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For example, the spaces C(Rl, X) and C(R∞, X), where R∞ is the infinite union
⋃

l Rl with the weak topology, are commutative topological monoids. An embedding

V+ ⊔ V− : Rl ⊔Rl →֒ Rl for 1 ≤ l ≤ ∞ is provided by the maps V+ and V− of Section

4.2 (see the discussion following Proposition 4.7), which embed Rl into the upper and

lower half space of Rl.

Let Ω and Σ denote the loop space and reduced suspension functors on pointed

spaces. These are adjoint functors, meaning that for pointed spaces X and Y there

is a bijection Maps(ΣX, Y ) ∼= Maps(X,ΩY ). By composition and iteration of these

functors, we obtain a functor

ΩlΣl : T• → T•

for each l ∈ N. In fact the space ΩlΣlX is a topological monoid, since we may add

maps f, g : Sl → ΣlX using the pinch map Sl → Sl ∨ Sl (see for example R. Switzer

[33], Chapter 2). A point of ΩlΣlX is a map f from Sl to ΣlX, the suspension of

which is therefore a map Σf from Sl+1 to Σl+1X, which is a point in Ωl+1Σl+1X.

In this way suspension describes an inclusion of functors ΩlΣl →֒ Ωl+1Σl+1 for each

l ∈ N. The direct limit of these inclusions

Q = Ω∞Σ∞ := lim
l→∞

ΩlΣl

is a functor of prime importance in stable homotopy theory. It allows one to think of

stable maps as unstable ones, since by adjointness there is an isomorphism

[X, Y ]S := lim
l→∞

[ΣlX,ΣlY ] ∼= [X,QY ]

for any pointed spaces X and Y , where the maps [ΣlX,ΣlY ] → [Σl+1X,Σl+1Y ] in

the direct limit are given by suspension.

The usefulness of configuration space models stems from the following result,

which was proved in [22].

Theorem 7.3. There is a natural map of topological monoids

αl : C(Rl, X)→ ΩlΣlX

for every 1 ≤ l ≤ ∞, which is a weak homotopy equivalence when X is connected.
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7.2 Homotopy Classification of I(−;−)

Recall from Chapter 5 the functors (−)c : D0 → T• and T (−) : Vect→ T•, given by

one-point compactification and Thomification. In this section we give a homotopy

interpretation of J ((−)c;T (−)) (and hence of I(−;−)) by exhibiting, for each pair

of objects (N, ζ) ∈ D0 × Vect, an isomorphism

Υ: J (Nc;Tζ)→ [Nc, C(R∞, T ζ)] .

The inverse Υ−1 takes the homotopy class of a map f : Nc → C(R∞, T ζ) to the class

f ∗[u], where [u] ∈ J (C(R∞, T ζ);Tζ) is the class of some universal spreading.

We begin by defining a space ˜C(Z,X) which is closely related to C(Z,X). Note

that for any given r ≥ 1 the symmetric group Sr−1 also acts on F(Z; r) and X(r), by

permuting the last (r − 1) factors and leaving the first fixed. A point in the space

F(Z; r)×Sr−1
X(r) will be written in the form

(z1, x1), [(z2, x2), . . . , (zr, xr)],

and may be thought of as a pointed configuration of r points in Z with labels from

X, meaning that one of the points of the configuration is distinguished from the rest.

Now define an un-pointed space

˜C(Z,X) =

(
⊔

r≥1

F(Z; r)×Sr−1
X(r)

)
/ ≈,

where ≈ is the equivalence relation generated by

(z1, x1), [(z2, x2), . . . , (zr, xr)] ≈ (z1, x1), [(z2, x2), . . . , (zr, xr), (zr+1, ∗)].

This space is topologised as the direct limit of finite subspaces

˜Cn(Z,X) =

(
⊔

1≤r≤n

F(Z; r)×Sr−1
X(r)

)
/ ≈,

and comes equipped with maps γ : ˜C(Z,X) → C(Z,X) and β : ˜C(Z,X) → X de-

fined by

γ((z1, x1), [(z2, x2), . . .]) = [(z1, x1), (z2, x2), . . .],
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β((z1, x1), [(z2, x2), . . .]) = x1.

These maps may be thought of respectively as ‘forgetting’ and ‘taking the label of’

the base point of the configuration.

We are going to show that the triple ( ˜C(Z,X), γ, β) is a spreading when Z and

X are Hausdorff, for which we shall need the following well known Lemma about the

direct limit topology (see [14]).

Lemma 7.4. Let X be topologised as the direct limit of an increasing sequence of

subspaces

. . . ⊂ Xi ⊂ Xi+1 ⊂ . . . ⊂ X,

and suppose each Xi is Hausdorff. Then a compact subset C ⊆ X is contained in Xn

for some n ∈ N.

Proposition 7.5. Let Z and X be Hausdorff spaces. Then the triple ( ˜C(Z,X), γ, β)

defines a spreading of type X in C(Z,X).

Proof. Recall the Definition 5.1 of a spreading. We must first check that the map

γ : ˜C(Z,X) → C(Z,X) is closed and proper. For each n ∈ N the restriction

γn : ˜Cn(Z,X) → Cn(Z,X) is a finite union of finite covering maps, and as such

is open, closed and proper. These maps form a map of direct systems, and we may

regard γ as the direct limit of these maps. We now use the general fact that a direct

limit of closed maps is closed to deduce that γ is closed. To see that γ is proper, we

apply Lemma 7.4. Since Z and X are Hausdorff, it follows that each of the Cn(Z,X)

are Hausdorff, and so a compact subset K ⊆ C(Z,X) is contained in some CN(Z,X).

Hence

γ−1(K) = gN(γ−1
N (K))

is compact, where gN : ˜CN(Z,X)→ ˜C(Z,X) is the map to the direct limit.

The next thing to check is that β maps γ−1[z, ∗] to the base point ∗ ∈ X. This

is immediate. So it only remains to prove that γ restricted to ˜C(Z,X)− β−1(∗) is a

local homeomorphism.
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Let y ∈ ˜C(Z,X)− β−1(∗) be an arbitrary point. By Lemma 7.4, y is contained

in some finite subspace ˜Cn(Z,X), hence is of the form

y = (z1, x1), [(z2, x2), . . . , (zn, xn)],

where x1 6= ∗. Since Z is Hausdorff, we may find disjoint open subsets U and Ũ of

Z with z1 ∈ U and z2, . . . , zn ∈ Ũ . Similarly we may find disjoint open subsets V

and Ṽ of X with x1 ∈ V and ∗ ∈ Ṽ . Now define an open neighbourhood Wy of y in

˜C(Z,X)− β−1(∗) by

(z′1, x
′
1), [(z

′
2, x
′
2), . . .] ∈Wy ⊆ ˜C(Z,X)− β−1(∗) ⇔ z′1 ∈ U, z′2, . . . z

′
n ∈ Ũ ,

x′1 ∈ V, x′i ∈ Ṽ for i > n.

This Wy is clearly open, and since γ as a direct limit of open maps is open, so is the

image set γ(Wy). A simple check shows that γ is a homeomorphism on Wy, and the

Proposition is proved.

If ζ is a vector bundle over a Hausdorff space X then the Thom space Tζ is also

Hausdorff, so we obtain a spreading u = ( ˜C(R∞, T ζ), γ, β) of type Tζ in C(R∞, T ζ).

By Proposition 7.2 and the remarks following, the map V+ ⊔ V− : R∞ ⊔ R∞ →֒ R∞

furnishes C(R∞, T ζ) with the structure of a commutative topological monoid. We

are now ready to prove the classification result.

Theorem 7.6. The following diagram of functors commutes up to natural isomor-

phism.

Dop
0 × Vect

(−)c × T
- T

op
• ×T•

T
op
• × T•

(−)c × T

? [−, C(R∞,−)]
- CMon

J (−;−)

?

Proof. Given Nn ∈ D0 and ζ ∈ Vect, we must define a monoid isomorphism

Υ: J (Nc;Tζ)→ [Nc, C(R∞, T ζ)]

which is natural in N and ζ . If [K,α, β] ∈ J (Nc;Tζ), then by Proposition 5.5 we

can find a unique class [M, f, v] ∈ I(N ; ζ) such that [K,α, β] = [Dν(f), F, ṽ], where
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F : Dν(f) # N is an immersion of the unit normal disc bundle extending f . Since

Dν(f)n is a compact manifold with boundary, by Theorem A.1 in the Appendix we

can find an embedding λ : Dν(f) →֒ R∞, and any two such λ are isotopic. Now define

a map g : Nc → C(R∞, T ζ) as follows. For each n ∈ Nc, the set F−1(n) = {k1, . . . , kr}

is finite, since it is compact. We set

g(n) =





[(λ(k1), ṽ(k1)), . . . , (λ(kr), ṽ(kr))] if F−1(n) = {k1, . . . , kr}

[0, ∗] if F−1(n) = ∅

One verifies that g : Nc → C(R∞, T ζ) is a pointed, continuous map. We then set

Υ([K,α, β]) = [g].

To check that Υ is well defined, we first note that it does not depend on the choice

of λ, since if we use another such map λ′ to give a map g′ : Nc → C(R∞, T ζ), there is

an isotopy λ ≃ λ′ which induces a homotopy g ≃ g′. Now suppose [Dν(f0), F0, ṽ0] =

[Dν(f1), F1, ṽ1] ∈ J (Nc;Tζ). Then [M0, f0, v0] = [M1, f1, v1] and we can find a bor-

dism (W,K, V ) from f0 to f1. From this triple we may build a spreading (Dν(K),Ψ,Φ)

of type Tζ in Nc × I such that

Dν(f0) - Dν(K) � Dν(f1)

Nc × {0}

F0

?

- Nc × I

Ψ

?

� Nc × {1}

F1

?

is a pull-back diagram, and Φ|Dν(fi) = ṽ1 for i = 0, 1. Since Dν(K) is a manifold

with corners it admits an embedding Λ: Dν(K) → R∞ such that Λ|Dν(fi) = λi (see

[20]). It is then clear that we can construct a map G : Nc× I → C(R∞, T ζ) using Ψ,

Φ and Λ, which is a homotopy from g0 to g1. Hence Υ is well defined.

To see that Υ is a monoid map, note that a sum of classes in J (Nc;Tζ) is

represented by a spreading (Dν(f0) ⊔ Dν(f1), F0 ⊔ F1, ṽ0 ⊔ ṽ1). Suppose that, for

i = 0, 1, we have Υ([Dν(fi), Fi, ṽi]) = [gi], where gi is defined using an embed-

ding λi : Dν(fi) →֒ R∞. Define λ : Dν(f0) ⊔ Dν(f1) →֒ R∞ by composing λ0 ⊔

λ1 : Dν(f0) ⊔Dν(f1)→ R∞ ⊔R∞ with V+ ⊔ V− : R∞ ⊔R∞ → R∞. Then check that

the class Υ([Dν(f0)⊔Dν(f1), F0⊔F1, ṽ0⊔ ṽ1]) obtained using λ is represented by the
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composition

Nc

△
- Nc ×Nc

g0 × g1
- C(R∞, T ζ)× C(R∞, T ζ) - C(R∞, T ζ).

To show that Υ is an isomorphism, we have a map Υ−1 : [Nc, C(R∞, T ζ)] →

J (Nc;Tζ) which sends [f ] to f ∗[u], where u = ( ˜C(R∞, T ζ), γ, β) is the spreading of

type Tζ in C(R∞, T ζ) defined by Proposition 7.5. Suppose we start with a spreading

(Dν(f), F, ṽ), from which we define a map g : Nc → C(R∞, T ζ) as above. Note

that for every k ∈ Dν(f), the non-empty set F−1(F (k)) = {k, k2, . . . , kr} has k as a

distinguished element. Thus we may define a map g̃ : Dν(f)→ ˜C(R∞, T ζ) by setting

g̃(k) = (λ(k), ṽ(k)), [(λ(k2), ṽ(k2)), . . . , (λ(kr), ṽ(kr))].

Then the following diagram commutes, and the square is a pull-back.

Tζ

Dν(f)
g̃

-

ṽ

-

˜C(R∞, T ζ)

�

β

Nc

F

? g
- C(R∞, T ζ)

γ

?

This shows that Υ and Υ−1 are mutual inverses. The statement about naturality is

easily verified.

Corollary 7.7. There are natural isomorphisms

I(−;−) ∼= J ((−)c;T (−)) ∼= [(−)c;C(R∞, T (−))].

Hence for any Nn ∈ D0 and ζ ∈ Vect with dimζ > 0,

I(N ; ζ) ∼= [Nc, QTζ ] ∼= [Nc, T ζ ]S.

Proof. The first statement is a combination of Proposition 5.5 and Theorem 7.6.

The second follows immediately on applying Theorem 7.3, since Tζ is connected

when dimζ > 0.
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7.3 Homotopy Interpretation of the

Self-intersection Operations

An immediate consequence of the above Corollary is that for any ζ ∈ Vect and r ≥ 1

there is a natural isomorphism

I(−;Srζ) ∼= [(−)c, C(R∞, DrTζ)]

of functors from D0 to CMon. One may ask, therefore, if the self-intersection opera-

tions ψr : I(−; ζ)→ I(−;Srζ) are induced by maps hr : C(R∞, T ζ)→ C(R∞, DrTζ).

This is indeed true if we invert weak equivalences in T•, which is possible thanks to

the model category structure on T• [24].

Definition 7.8. Let HT• be the homotopy category associated to a suitable model

structure on T•, in which the weak equivalences are formally inverted. Then for each

r ≥ 1 and connected space X ∈ T•, the James-Hopf map

hr : C(R∞, X)→ C(R∞, DrX)

is a morphism in HT•.

M. G. Barratt and P. J. Eccles constructed in [4] a topological monoid Γ+X which

is naturally homotopy equivalent to QX when X is connected. They also construct

maps ~r : Γ+X → Γ+DrX for all r ≥ 1 [5]. Let k : Γ+X → QX be a homotopy

eqivalence. Recalling the weak equivalence α∞ : C(R∞, X) → QX of Theorem 7.3,

the hr may be defined by commutativity of the following diagram.

C(R∞, X)
α∞

- QX
k−1

- Γ+X

C(R∞, DrX)

hr

?

�
α−1
∞ QDrX �

k
Γ+DrX

~r

?

Such maps appear in various guises in the literature, where they are used to prove

stable splittings of the spaces ΩnΣnX and QX; see for example [5] and [29]. The fol-

lowing Theorem, which is essentially folklore, says that the James-Hopf maps induce
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the self-intersection operations. Statements and partial proofs may be found in the

papers [34], [35], [18] and [38].

Theorem 7.9. For any vector bundle ζ ∈ Vect with dimζ ≥ 1, the following diagram

of set-valued functors commutes.

I(−; ζ)
≃

Θ
- J ((−)c;Tζ)

≃

Υ
- [(−)c, C(R∞, T ζ)]

I(−;Srζ)

ψr

? ≃

Θ
- J ((−)c;DrTζ)

Ψr

? ≃

Υ
- [(−)c, C(R∞, DrTζ)]

(hr)∗

?

Remark 7.10. This result, together with Remark 4.27(iii) and Theorem 6.2 and

its Corollaries, provides formal evidence that the James-Hopf map h2 and the H∞

ring structures on the MO and HZ2 spectra are somehow related. Therefore there

should be concrete relations to be discovered, linking these two important constructs

of stable homotopy theory.



Appendix A

Results from Differential Topology

In this appendix we collect some results from differential topology which are referred

to in the rest of the work. Many of these results, although well-known to workers in

the field, are hard to find in the literature. We do not attempt to give full proofs of

such results, rather try to indicate how they might be proved.

The first Theorem, proved by Whitney in [40], concerns embeddings of manifolds

in Euclidean spaces. Recall that an embedding is an immersion which is homeomor-

phic onto its image, and an isotopy is a homotopy through embeddings.

Theorem (Whitney) A.1. Let Nn be a manifold of dimension n. If l ≥ 2n + 1

then N embeds in Rl. Furthermore, if l ≥ 2n+ 2 then any two embeddings of N into

Rl are isotopic.

We will also need several results concerning when a given immersion is regularly

homotopic to an immersion with some given property P .

Let M and N be smooth manifolds without boundary, with M compact. Let

C∞(M,N) denote the set of all smooth maps from M to N , given the weak topology

(see Hirsch [16]; note that this coincides with the strong topology since M is compact).

The following fundamental and deep fact about this mapping space does not seem to

have a clear proof in the literature.

Theorem A.2. The space C∞(M,N) is locally path connected.

86
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Proof. This says that for every smooth map f : M → N and every neighbourhood

U ⊆ C∞(M,N) of f , there is a path connected neighbourhood V with f ∈ V ⊆ U .

But by Theorem 10.4 of [23], C∞(M,N) is covered by open sets, each of which is

homeomorphic to an open subset of some complete, locally convex vector space.

Let P be some property of smooth maps from M to N . We define the following

subspaces of C∞(M,N):

C∞P (M,N) = {f ∈ C∞(M,N) | f has property P},

Im(M,N) = {f ∈ C∞(M,N) | f is an immersion},

ImP (M,N) = Im(M,N) ∩ C∞P (M,N).

Lemma A.3. Im(M,N) ⊆ C∞(M,N) is open.

Proof. See Hirsch [16], Theorem 2.1.1.

Now fix a proper map g : Q→ N , and let P be one of the following properties:

“f is transverse to g”

“f is self-transverse”.

Lemma A.4. C∞P (M,N) ⊆ C∞(M,N) is dense.

Proof. This is Proposition III.3.2 of [13] and exercise 14 (b) on page 84 of [16].

We now come to our first approximation result.

Proposition A.5. Let f : M # N be an immersion. Then f is regularly homotopic

to an immersion f ′ with property P .

Proof. Since C∞(M,N) is locally path connected and Im(M,N) ⊆ C∞(M,N) is

open, it is a standard result of general topology that each path component of Im(M,N)

is open in C∞(M,N). In particular the path component of f , which is the set

Uf = {f ′ ∈ Im(M,N) | f ′ is regularly homotopic to f}

is open in C∞(M,N). Since C∞P (M,N) is dense in C∞(M,N), there is some f ′ ∈ Uf

with property P .
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This result, along with Proposition 2.5, says that within every bordism class

[M, f, v] ∈ I(N, ζ) we can find a representative (M, f ′, v′) where f ′ is regularly ho-

motopic to f and has property P .

Proposition A.6. Let F : W # N × I be a bordism between two immersions

f0 : M0 # N and f1 : M1 # N .

(a) If f0 and f1 are transverse to the proper map g : Q → N , there is a bordism

F ′ : W # N × I from f0 to f1 which is transverse to g × 1 : Q× I → N × I.

(b) If f0 and f1 are self-transverse, there is a bordism F ′ : W # N × I from f0 to

f1 which is self-transverse.

Proof. To prove this, one would need to prove relative versions of the results A2

through to A5.

The next Theorem concerns the existence and uniqueness of immersed tubular

neighbourhoods of immersions of closed manifolds, and was used in the proofs of

Theorem 3.5 and Proposition 5.5.

Theorem A.7. Let f : Mn−k
# Nn be an immersion with M closed. There is an

immersion F : Dν(f) # N of the unit normal disc bundle of f which extends f (so

F ◦ i = f where i : M →֒ Dν(f) is the zero section), and is injective on the fibres.

Furthermore, two such immersions F0 and F1 are regularly homotopic by a homotopy

which is stationary on i(M).

Proof. Furnish N with a Riemannian metric, and let Eν(f) be the total space of the

normal bundle of f . We will define F : Dν(f) # N with the aid of the exponential

map

Exp : Eν(f)→ N,

which is defined as follows. Write a point of Eν(f) as (x, v), where x ∈ M and

v ∈ ν(f)x. If we view ν(f) as the orthogonal complement of the vector sub-bundle

TM in f ∗TN , then v may be viewed as a vector in TNf(x). Let γ : I → N be the

parameterised geodesic arc in N of length |v|, with initial point γ(0) = f(x) and

initial velocity vector dγ/dt|t=0 = v. We then set Exp(x, v) = γ(1).
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The usual considerations show that Exp is defined and a local diffeomorphism on

an open neighbourhood of the zero section i(M) in Eν(f). Hence we can choose a

small disc bundle

Dǫν(f) = {(x, v) ∈ Eν(f) | |v| ≤ ǫ}

such that Exp restricted toDǫν(f) is an immersion. Let h : Dν(f)→ Dǫν(f) be fibre-

wise multiplication by ǫ. Then F = Exp|Dǫν(f) ◦h : Dν(f) # N is an immersion with

the required properties.

For the statement that two such immersions F0 and F1 are regularly homotopic,

the reader is asked to look at any proof of the fact that any two closed tubular

neighbourhoods G0, G1 : Dν(g) →֒ N of an embedding g : M →֒ N are isotopic

rel M (for example Hirsch [16], Theorem 4.5.3). He or she will see that the isotopy

H : Dν(g)×I → N fromG0 to G1 is constructed locally. Hence the same construction

slightly modified gives a regular homotopy rel M from F0 to F1. We omit the details.
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[13] M.Golubitsky and V.Guillemin Stable Mappings and Their Singularities,

Graduate Texts In Mathematics, (Springer-Verlag, 1973.)

[14] A.Hatcher Vector Bundles and K-Theory, (preprint, available on-line at

http://www.math.cornell.edu/ hatcher/VBKT/VBpage.html, v.2.0, 2003)

[15] R.J.Herbert “Multiple points of immersed manifolds”, Mem. Amer. Math.

Soc. 250 (1981).

[16] M.W.Hirsch Differential Topology, Graduate Texts In Mathematics,

(Springer-Verlag, 1976.)

[17] K.Jänich “On the classification of O(n)-manifolds”, Math. Annalen 176

(1968), 53-76.

[18] U.Koschorke and B.Sanderson “Self-intersections and Higher Hopf In-

variants”, Topology 17 (1978), 283-290.

[19] R.K.Lashof and S.Smale “Self-intersections of immersed manifolds”, Jour-

nal of Math. and Mech. 8 (1959), 143-157.

[20] G.Laures “On cobordism of manifolds with corners”, Trans. Amer. Math.

Soc. 352 (2000), 5667-5688.

[21] G.S.Li “On Immersions in Bordism Classes”, Math. Ann. 291 (1991), 373-382.



BIBLIOGRAPHY 92

[22] J.P.May The Geometry of Iterated Loop Spaces, Lecture Notes in Mathematics,

271 (Springer-Verlag, 1972.)

[23] P.W.Michor Manifolds of Differentiable Mappings, Shiva Mathematics Se-

ries, 3 (Shiva, 1980.)

[24] D.Quillen Homotopical algebra, Lecture Notes in Mathematics, 43 (Springer-

Verlag, 1967.)

[25] D.Quillen “Elementary Proofs Of Some Results Of Cobordism Theory Using

Steenrod Operations”, Adv. in Math. 7 (1971), 29-56.
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