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Preface 

This book is an exposition of elementary algebraic topology from the 
point of view of a homotopy theorist. The only prerequisite is a good foun- 
dation in point set topology. In particular, homology theory is not assumed. 
Both homology and cohomology are developed as examples of (generalized) 
homology and cohomology theories. The idea of developing algebraic 
topology in this fashion is not new, but to my knowledge this is the first 
detailed exposition from this viewpoint. One pedagogical advantage of a 
course developed in this way is that it may be studied before or after a 
course in classical homology theory (e.g. [71] or [28]); alternatively homology 
and cohomology could first be introduced, as they are here, as examples of 
a more general theory. 

The philosophical emphasis here is: to solve a geometrical problem of a 
global nature, one first reduces it to a homotopy theory problem; this is in 
turn reduced to an algebraic problem and is solved as such. This path has 
historically been the most fruitful one in algebraic topology. 

The first few sections are introductory in nature. These are followed by a 
discussion of the fundamental group, covering spaces, and Van Kampen’s 
theorem. The fundamental group serves as a model of a functor that can be 
calculated. 

In Section 8 we introduce the category of compactly generated spaces. 
This seems to be the most appropriate category for algebraic topology. 
Many results which are most often stated in the category of CW complexes 
are valid in this generality. 

The key result we use to make calculations is the Blakers-Massey theorem. 
This is strong enough to imply the suspension theorem and the Serre exact 
sequences. The Blakers-Massey theorem is proved by linear approximation 

vii 
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techniques in Section 13 (after J. M. Boardman) in the case of a pair of 
relative cells. This allows one to calculate IT,(S"). The more general form of 
the Blakers-Massey theorem is proved in Section 16. 

In Section 18 reduced " spectral " homology and cohomology theories are 
defined from arbitrary spectra on compactly generated spaces. They satisfy 
the usual axioms in this generality. It is more complicated to show that 
unreduced theories satisfy the usual axioms; this is done in Section 21. 
Spectral homology theories agree with their " singular approximations." 
Spectral cohomology theories on paracompact spaces have all the properties 
usually associated with cech theory. 

Calculations in the ordinary homology of CW complexes are studied in 
Section 20. We develop axioms for the chain complex of a CW complex. 
These are strong enough to make all the usual calculations based on ad hoc 
decompositions. In particular a proof of the algorithm for the homology of 
a simplicia1 complex is given. (The algorithm for singular homology follows 
from the functorial singular complex construction which is included as an 
appendix to Section 16.) 

The Hurewicz theorem follows quite easily from the Blakers-Massey 
theorem. Duality in  manifolds in its full generality for an arbitrary ring 
spectrum follows from the usual inductive approach using " spectral " 
homology and cohomology. 

I n  Section 27 we introduce Steenrod operations geometrically via the 
quadratic construction. We learned this approach from J. Milgram. The 
Adem relations are proven in Section 29 by a method due to L. Kristensen. 
This necessitates calculating H*(K(Z, ,  n); 2,) for which we state, without 
proof, the Bore1 transgression theorem. 

Spectral sequences have been omitted for several reasons : their introduc- 
tion would increase the length of the book considerably; they are more 
difficult to write about than to explain; there already exist expositions which 
we feel we cannot improve upon ([21, 41, 311). 

In the last two sections we sketch K-theory and cobordism. This serves as 
an introduction to some of the more powerful functors which have been 
utilized in algebraic topology. Applications of K-theory to the Hopf invari- 
ant and the vector field problem are discussed. In the last section x,(MO) is 
calculated. 

We have used throughout the symbol 1 whenever we have finished the 
proof of some theorem, proposition, corollary, or claim made earlier. 
Sometimes these symbols pile up-for example, if one statement is reduced 
to another. 

The exercises are an integral part of the development. No exercise requires 
outside reading, or the utilization of techniques not previously developed 
(usually in the relevant section). A * on an exercise indicates that its under- 
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standing is necessary for further study-not that it is difficult. Often termi- 
nology used later is first introduced in such an exercise. Many exercises are 
used later in  only a few places. In such cases it is indicated in parentheses 
at the end of the exercise where the result is used. 

A one-quarter introductory course could easily be based on Sections 
0-13. Section 8 could be skipped if an independent proof of adjointness is 
given. Section 8 is used essentially in Section 18 unless one restricts the 
homology and cohomology theories to finite complexes. 

Occasionally seminar problems are given at the end of a section. These 
are topics peripheral to the material in the section and not used elsewhere. 
They are intended for students to give a report on, based on the references 
given. In our opinion, these problems provide an excellent way for students 
to get more actively involved in the subject. 

I wish to thank the many mathematicians who offered suggestions and 
encouragement, and the typists who suffered through my handwriting. 
Particular thanks in this regard are due to Ms. Shirley Bachrach. 
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0 

Preliminaries 

An area of study in mathematics consists at least of a collection of problems 
and usually a collection of techniques useful in solving the problems. We 
begin by looking at  some problems typical of those considered in algebraic 
topology. 

Let D be the unit disk in the complex plane, i.e., the set {z l  1.1 I I}. 

Problem 1 Does there exist a continuous (differentiable ? analytic ?) 
functionf: D -+ D with no fixed points (i.e., for no z is f ( z )  = z)? 

One thinks off as a transformation from the disk to itself, and one might 
visualize points moving such as a rotation of the disk or a squashing of it 
onto a smaller subset. Can this be done so that every point is moved? It 
would seem much easier to solve this problem if the answer is affirmative; 
one only needs to write down the equations of such a function or draw it 
pictorially. If the answer is no, it might be very difficult to prove. 

Let S c D be the unit circle: {z I I z I = I}. 

Problem 2 Does there exist a continuous (differentiable?) function 
f :  D + S with f ( z )  = z whenever z E S ?  

Imagine a rubber disk held onto a table by the rim and try to pull the 
disk toward the rim without tearing (a tear would represent a discontinuity 
since its only use would be to move nearby points away from each other). 
Clearly by punching a hole in the rubber, it can be pulled to  the rim, but 
otherwise it seems intuitively clear that no such continuous map could exist. 
How could one prove this? 

Let Sz be the sphere in three-dimensional space, {VI I VI = I}. 
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Problem 3 Suppose that to each point of S2 is associated a vector whose 
tail is at that point and which is tangent to the sphere. (Such a situation can 
be thought of as a hairy ball, with all the hairs matted down.) This can be more 
quantitatively stated by saying that for each vector V with I VI = 1 we 
associate a W with V I W (i.e., V * W = 0). Let us write W as W(V) and 
suppose W is continuous as a function of V (continuity corresponds to having 
the hair on the ball combed). Does there exist a continuous function W ( V )  
with W(V) # 0 for all V? (That is, can the hair be combed on a ball without 
any baldspots ?) 

Problem 4 One can easily see that there is a continuous function y :  S2 
--t S2 with no fixed points, namely, y(x, y ,  z)  = ( - x ,  -y,  -z). This moves 
points very far. Does there exist a function y :  S2 --t S2 without fixed points 
so that IIy(x) - X I /  < E for some fixed number E ?  For which E ?  (Is there an 
" infinitesimal " transformation without fixed points ?) 

We can see from these representative problems that the spaces we deal with 
are simple. They will, to a large extent, be the spaces that arise naturally in 
mathematics. Many of the problems arose in analysis, linear algebra, pro- 
jective geometry, etc. Our first task will be to define some of the spaces and 
then make some general remarks on the type of problem we are considering 
and the type of tools we shall use to solve the problem. 

Exercises 

Exercises 1, 2, and 3 are useful in homotopy theory. They are commonly 
contained in a point set topology course. A good exercise to confirm your 
mastery over this prerequisite material will be to supply proofs for them. As 
references for point set topology we recommend [22; 29; 361. 
l.* Given a topological space X and an equivalence relation - among the 

points of X ,  one topologizes the set of equivalence classes X / -  as follows. 
There is a map II: X + X / - ,  and we say that U c X / -  is open iff I I - ' (U) 
is open in X .  This is a topology. Suppose we are given a continuous map 
f: X --t Y such that for any two points x, x' E X with x - x' we havef(x) = 
f ( x ' ) ;  then there is a unique continuous map X / -  -, Y so that fII =S, 
i.e., so that the diagram 

/ \  
X 7 Y  

commutes. 
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2.* Suppose X = Fl u - * * u Fk where each Fi is closed. Suppose f i :  Fi + Y 
is a continuous map for each i, such that' 

fil Fi nFj =fil Fi nFj 

for all i and j. Then the unique m a p 8  X + Y defined by f I F ,  = f i  is continuous. 
3.* (Lebesgue's Covering Lemma) If X is a compact metric space and 

{U,} is an open cover, there exists an 8-number-i.e., a positive number E 

such that if A is any set with diameter < E ,  there exists an LY such that A c U,. 
4. Let$ X -, Y be a closed continuous map from X onto Y. Suppose X 

is Hausdorff and that either Xis  normal or f - ' (y )  is compact for each y E Y. 
Prove that Y is Hausdorff. (Hint: Find open sets Ui = f - ' ( y i )  with Ul n 
U2 = 0, and consider Wi = Y - f ( X  - Ui).)  (Exercise 8, Section 7; Exercise 
13, Section 13; 16.36;27.9). 

5. Let fl(z) = LYZ for 1011 < 1, f2 ( z )  = t + (1 - t)z for 0 < t < 1, and 
f3(z )  = z2. Find a fixed point forf3f2 fl. 

Given a map f: X+ Y and a subspace A c X. we use the notation f I A for the map 
A + Y given by restricting f to A .  



I 

Some Simple Topological Spaces 

Most of the topological spaces that arise in mathematical problems are 
subsets of n-dimensional Euclidean space, and it is natural to give preferen- 
tial treatment to such spaces. We begin our study by defining some of the 
simpler subspaces of Euclidean space. These spaces will recur in both the 
theory and applications of topology, and we take some time to discuss the 
relationships among them. 

Definition 1.1 

R" = {(xl, . . . , x,,) 1 x i  real}, 

For x E R", write llxll = m. 
B" = {(xl, . . . , x,,) E R" I llxll I l}, 

= {(xl, . . . , x,,) E R" I llxll = l}, sfl- 1 

I" = {(xl, . . . , x,,) E R" 10 I x i  I l}, 

Afl-1 = {(xl, . . . , x,,) E R" 10 I xi I 1, C x i  = l}, 

The last four of these are naturally imbedded in the first, via their descrip- 
tion. They are pictured in Fig. 1.1 for n = 2. 

The first two of these occur naturally in the four problems listed earlier 
( D  = B2, S = S') .  They are all closely related, however, and the rest of this 
section will be a technical exposition of their relation. This may be skipped 

n-dimensional 
Euclidean space. 

the n-dimensional ball. 

the (n - 1)-dimensional 

the n-dimensional cube. 

the n-dimensional 

sphere. 

simplex. 

4 
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Figure 1.1 

by the more impatient students, but is in fact a good introduction to " seeing 
in higher dimensions." 

Write Int X for the interior of X considered as a subset of some larger 
space (given by context). 

Proposition 1.2 Int I" = {(xl, . . . , x,,) J O  < xi < l}. 

Proof If 0 < x i  c 1 for each i, let E = mini(l - x i ,  x i ) .  Then a ball of 
radius E about x is contained in I", so x is in the interior. If, for some i ,  
xi = 1 (or 0), then a ball of radius r about x will contain points with x i  > 1 
(c0) no matter how small r is. Thus these points are not in the interior. I 

We will write aZ" = I" - Int I". 

Proposition 1.3 I" is homeomorphic to B". Under this homeomorphism 

Proof Let i" = {(xl, . . . , x,,) I - 1 5 x i  I l}. Clearly i" and I" are homeo- 

aZ" corresponds to S"-'. 

morphic and dZ" corresponds to 

aT" = {(xl, . . . , x,) I - 1 I xi I 1 and xi  = f. 1 for some i}. 

Define 41 : i" -+ B" and $1 : B" -+ i" by the formulas 

Clearly ~~~l(xl,...,xn)ll =max(Ix i I ) s  1 and m a x ( l $ l , i I ) = J e I  1, 
so these maps are well defined and inverse to each other. The continuity at 
0 follows from the inequalities 

max(IxiI) ~ I I X I I  5 J;;max(lxiI)* I 
What we have done in the proof is to shrink every ray from 0 to ai" down 

linearly to have length 1 (Fig. 1.2). Its original length is Ilxll/max( Ixil). 
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Figure 1.2 

We will write E to mean homeomorphism. Thus we have I" zz I" = B" 
and 81" = dp = S"-' in a compatible way. 

Given a space X and a subspace A ,  we will write ( X ,  A )  for the pair of 
spaces. A map from the pair ( X ,  A )  to ( Y ,  B )  is just a map) A'+ Y with 
f ( A )  c B. A homeomorphism from (A', A )  to ( Y, B) is just a homeomorphism 
from X to Y such that A corresponds to B. Thus we have proven that 
(I", 8Z") is homeomorphic to (I", aI"), and this is homeomorphic to (B", S"-l). 
We write this as 

(Z", d l " )  E ( I R ,  8P) = (B", Sn-1). 

Proposition 1.4 Z" - dZ" = R". 
n 

,---- 
Proof SinceZ" - dZ" = (Z - dZ) x * * a x ( I  - dZ), this follows from the fact 

that Z - 8I = (0,l) = R'. (We use the homeomorphism t + tan(n/2)(2t - I).) 
I 

Proposition 1.5 

Proof Here we use the familiar stereographic projection (Fig. 1.3). 
Placing R" c R"+' by making the first coordinate2 0 and S" intersecting R" in 
the equator, we draw a line from the north pole through a point x E S" and 
record 42(x), its point of intersection with R": 

S" - (1, 0, 0, . . . , 0) = R". 

This imbedding may seem strange, but it is necessary if we want (1, 0, . . . , 0) to be 
the missing point. This is important as it will later be chosen as a "base point " and belongs 
to Sn for all n 2 0. 
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Figure 1.3 

This has an inverse $2 : R" + S" - (1, 0, . . . , 0) given by 

It is easy to check that I,b2d2 = 1 and I,b2 = 1 and these are clearly 
continuous. I 

Let us write X / A  for the quotient space of X with A identified to a point. 
If A = @, we will sometimes write X / A  for X ' ,  the disjoint union of X and a 
point +. We will also write p A :  X +  X / A  for the quotient map. Write X" 
for the one-point compactification of X.  

Lemma 1.6 Let U c X ,  with X Hausdorff and regular, U open, and U 
compact. Then 

U" f x/x- u. 

y I u = p x - u I u :  u c x - + x / x -  u 
Proof Consider the map y :  U" 4 X / X  - U given by 

and y(00) = ( X  - U } .  
To show that this is continuous we need only consider open neighborhoods 

of { X  - U } .  If V is such a neighborhood, let W = (px-v) - ' (V)  c X. Since W 
is open, U - W is compact. Now y-'(V) - cc = W n  U = U - (U - W), 
so y - ' (  V )  is open. y is clearly 1-1 and onto. Since U is open and Xis regular, 
X / X  - U is Hausdorff. Hence y is a homeomorphism. 

Corollary 1.7 If U is open and bounded in R", 

R"/R" - U U". I 

Corollary 1.8 If X is compact HausdorfT and x E X, 

(X-X)"EX. I 
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Corollary 1.9 S" E (R")" E Z"/dZ" E B"/S"-'. 

Proof The first homeomorphism follows from 1.5 and 1.8 with X = S". 
The second follows from 1.4 and 1.6 with X = I" and U = Int I". The last 
follows from 1.3. I 

to 03 E (R")", {dZ"}, and {S"- ' } .  
Note that under these homeomorphisms, * = (1, 0, . . . , 0)  E S" corresponds 

Definition 1.10 An n-cell is a pair ( X ,  A )  homeomorphic to (B", S"-'). 

Exercises 

1. Show that Int B" = B" - S"-' .  (One cannot use 1.3 since the notion of 

2.* Show that (X, A )  is homeomorphic to ( Y ,  B )  iff there are maps 

3. Let B,' ={xES"(x,+l 20}, and B,- ={xES"Ix,,+l S O } .  Show that 

4. Using the equality Z"-' x I = I", define J"-' c I" as (dZ" - ' )  x Zu 

interior depends on the imbedding.) 

f: ( X ,  A )  + ( Y ,  B )  and g :  ( Y ,  B )  -+ (X, A )  withfg = 1 and gf= 1,. 

B,+ = B,- = B". 

x (l), and Z:-' = In-'  x (0). Then 1"- 1 

d l "  = J"-' u I:- ' ,  (dr" - ' )  x (0) = J"-' n I:-' 

Prove (Jn-', J"-' n I : - ' )  is an (n - 1)-cell. (Section 10; 11.6) 
5. Show that Int A"-' = {x E A"-'10 < xi < l}. Prove that (A"-', dA"-') 

is an (n - 1)-cell where dA"-' = A"-' - Int A"-'. (Section 12) 
6. One can easily generalize Problems 1-4 to other dimensions; they 

represent the case n = 2 of a problem for every dimension. State these prob- 
lems. Solve them, if you can, for n = 1. Do the solutions generalize? 



2 

Some Simple Topological Preblems 

This section has two simple aims: to generalize the four problems con- 

As generalizations, we propose the following : 
sidered in Section 0, and to study some of the relationships among them. 

Problem 1 Does there exist a continuous (differentiable?) function 
f: B" -+ B" without fixed points? 

Problem 2 Does there exist a continuous (differentiable?) function 
f: B" -+ S"-' withf(x) = x for x E S"-' ?The condition onfis that the diagram 

B" 

s n - 1  -+ sn-I 
I 

"commutes," where i :  S"-' -+ B" is the inclusion function and 1 the identity 
function. For this to commute means that if you follow a point through the 
two paths, the result is the same. 

For x, y E R", write x . y for the scalar product: 

Problem 3 We transfer our vectors to the origin. Does there exist a 
continuous (differentiable?) function 

f: S"-' -+ R" 

9 



10 2.  Some Simple Topological Problems 

satisfying x . f (x) = 0 and f (x) # 0 for all x?  Such a function is called a non- 
zero vector field on S"-'. 

Problem 4 Given E > 0, does there exist a continuous (differentiable?) 
map y :  S" -+ S" with no fixed points and such that 

I I Y W  - XI1 < E ?  

(If E > 2, the answer is yes: y(x,, . . . , x,+ = ( -xl, . . . , -x,+ 

Proposition 2.1 If S" has a nonzero vector field, a map satisfying the 
conditions of Problem 4 exists for every E > 0. 

Proof Let f: S" + R"" be a nonzero vector field. Then for A # 0 a real 
number, Af is also a nonzero vector field. By choosing A small we may guaran- 
tee that IIAf )I < E since S" is compact. Thus there are "small" vector fields. 
Suppose f satisfies llfll < 42.  

We now get y:  S" -+ S" without fixed points by moving x in the direction 
off (x) (Fig. 2.1) : 

Observe that 

I lx -y(x)112=[x-y(x) ] . [x -y(x) ]=2-2y(x) .x=2 

However IIx + f(x)II I 1 + 4 2 ,  so 
1 

IIX - y(x>112 I 2  1 - - i 1 + &/2)  
i.e., y is close to the identity. 

However, y(x) = x implies 
II f (XI II 0 = x * f(x) = y(x) * f (x) = 

IIX +f(x>II * 
Hencef(x) = 0, a contradiction. I 

Figure 2.1 
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Proposition 2.2 If there exists f: S" + S" without fixed points and such 

Proof Ilf(x) - xIJ < 2 is equivalent tof(x) # -x, for all x E S". 
Let y(x) =f(x) - (f(x) * x)x. Then y(x) * x = 0, so y is a vector field and 

it is nonzero, for otherwisef(x) and x are linearly dependent and, hence, 
f(x) = k x ,  a contradiction. 

Thus Problem 3 is equivalent to Problem 4. Likewise, Problem 1 is equi- 
valent to Problem 2. 

that Ilf(x) - xIJ < 2, there is a nonzero vector field on S". 

I 

Proposition 2.3 There is a continuous (differentiable) map y :  B" + S"-' 
such that y i  = 1 iff there exists a continuous (differentiable) function 
f: B" + B" without fixed points. 

The first half follows immediately from: 

Lemma 2.4 Let f: B" + B" and U = {xlf(x) # x}. Then there is a map 
y :  U -+ S"-' such that y I UnSn-  is the inclusion. Iff is differentiable, so is y. 

Figure 2.2 

Proof Let y(x) be the point of intersection of S"-' with the line joining x 
andf(x) such that y(x), x,f(x) occur in that order (Fig. 2.2). Then 

Y(X) =px  + (1 - p)f(x), P 2 1, IlY(X)II = 1. 

Expanding 1 = I[y(x)II gives a quadratic equation for p: up2 + bp + c = 0; 
one easily checks that a > 0, and a + b + c SO. It follows that b2 - 4ac 2 
(b + 24' and hence the solution 

- b + F z >  -b+Ib+2aI rl. 
- 

2a 2a P =  
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p is differentiable (and hence continuous). Now ylunsn-l is the inclusion, 
for if llxll = 1, we get b + 2a 2 0 and a + b + c = 0; consequently, p = 1. I 

To prove the other half of 2.3, suppose such a y :  B" + S"-' exists. Define 
f ( x )  = -y(x). Since the image of f i s  S"-' c B", any fixed point must lie in 

. But for x E S"-l, y(x) = - x .  I 
These problems are quite difficult, but will be solved in Section 13. The 

problem that seems most intuitively clear is Problem 2 for n = 2 (the original 
Problem 2). It seems that such a function cannot exist. At this point it is 
worth the reader's time to try and solve this. After consideration he will 
probably agree to  the following: 

The difficulty is that there are too many points. If the spaces involved were 
finite, such questions could easily be answered, but since the spaces are so 
big, it is not immediately clear that one can ever decide the answer in a finite 
number of steps. 

sn-1 



Homotopy Theory 

The problems that we have been considering are global problems, in the 
sense that if we remove one point from the spaces involved, the problem is 
altered. If we remove one point from S 2 ,  it is easy to see how one could con- 
struct a nonzero vector field on the remainder (and even easier if we remove 
two points). If we remove a point from B2, it is easy to see that there is a 
map from the remaining space to itself without a fixed point (rotate about 
the hole). 

One of the fundamental achievements of algebraic topology is to turn 
global topological problems into homotopy theory problems. We will proceed 
to do this. 

Definition 3.1 Two maps f o  , fl : X -+ Y are said to be homotopic if there 
is an intermediate family of maps f ,  : X -+ Y continuous jointly in x and t, 
i.e., if there exists 

F : X x Z - + Y  

(called a homotopy betweenf, and fi) which is continuous and such that 
F(x, 0) =fo(x), and JXx, 1) = f i ( x ) .  

We write f o  - fl (or F: f o  -f,) to indicate that f ,  is homotopic tof , .  

Proposition 3.2 

Proof f - f by the homotopy F(x, t )  = f ( x ) .  If F :  f -g, then G: g - f is 

- is an equivalence relation. 

13  
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given by G(x, t )  = F(x,  1 - 2 ) .  If F:  f - g  and G: g - h,  then H :  f - 17 is given 
by 

H is continuous by Exercise 2, Section 0. 

Thus we speak of homotopy classes of maps. Iff is a map, we denote its 
homotopy class by { f } .  We write [X, Y ]  for the set of homotopy classes of 
maps from X to Y. 

I 

Proposition 3.3 There exists f :  B"+ S"-' with f .  i = 1 iff the identity 

Proof If such a map f exists, we define a homotopy 

map 1 : s"-' + S"-' is homotopic to a constant map. 

H :  S"-' x I-+ S"-' 

by 
H(x,  t )  =f(tx). 

Clearly H(x,  1) =f(x)  = x  since XES"- '  and H ( x ,  0) =f(O) which is in- 
dependent of x.  

Conversely, if H exists 

H :  S"-' x I+ S"-' 

with H(x ,  0) = c and H(x,  1) = x, define 

f: B" -+ S"-' 

by 

f ( x )  = H(x/llxll, Ilxll), S(0) = c. 
Since S"-' is compact, H i s  uniformly continuous. Thus for every E > 0, there 
exists 6 > 0 depending on E but not on x such that IIH(x, t )  - c(( c 6 if 
t -= E .  Consequently f is continuous at 0. I 

Proposition 3.4 Let a,: S" --$ S" be the antipodal map a,(x,, . . . , x,+') = 
(-x1, * . ' ,  -x ,+~) .  If there is a vector field on S", a, N 1. 

Proof We will use a vector at x E S" to indicate the direction of a path from 
x to a,(x) on S" and hence produce a homotopy. Given f: S" -+ R n f l  with 
f ( x )  # 0 and f ( x )  . x = 0, we will construct a path from x to a,(x) in the 
plane determined by x and f ( x )  and on the sphere: 

H(x, t )  = a(t)x + b( t ) f (x ) ,  IIH(x, t)1I2 = 1. 
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This yields the equation 

a(t)2 + b(t>2f(x) . f (x)  = 1 ; 

we choose a(t)  = 1 - 2t and hence b(t) = 2 , / D / l l f ( x ) I I .  These are both 
C" for 0 I t 5 1 sincef(x) # 0. Thus 

H(x, t )  = (1 - 2t)x + 2Jt-tzf(x>/llf(x)II 
is a homotopy in S" from 1 to a , .  I 

Remark The converse is also true, but the technical details in proving it 
are harder and we will not need it to solve Problem 3. Essentially, given a 
homotopy from 1 to a , ,  one approximates this with a differentiable homo- 
topy. Then the tangent line to the curve P,(t) = H(x,  t )  at t = 0 contains a 
unit vector pointing in the direction of increasing t ,  which is tangent to the 
sphere, and nonzero. 

Proposition 3.5 If n is odd, there is a nonzero vector field on S". 

Proof We construct a linear nonsingular function f ( x )  with f ( x )  * x = 0 
by 

. f ( x l ,  x2 9 . . . 9 X l n )  = (xz 3 x4 > -x3 9 1 * * 3 x2n 3 - X 2 n - l ) *  

Clearly this satisfies f ( x )  # 0 if x # 0 and f ( x )  * x = 0. I 
We have thus reduced our problems to homotopy theory. We will even- 

tually show how to turn homotopy theory problems into algebraic problems. 
This is where algebraic topology has its strength. It transforms problems 

from the very complicated world of spaces and maps to the simple world of 
finitely generated abelian groups, or other algebraic worlds that one feels are 
simpler. 

Exercises 

1. Let P be a one-point topological space. Show that [P, x] is in 1-1 

2." Letf, , fi : ( X ,  A )  4 ( Y ,  B) be maps. We sayf, is homotopic tofl and 
correspondence with the set of arc components of X.3  

writef, -fi if there exists a map 

F : ( X x I , A  x Z ) + ( Y , B )  

We use the words arc connected and arc component interchangeably with path connected 
and pnrh component to refer to (not necessarily 1-1) maps p :  I +  X, although there is some 
variety in the literature. 
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with F(x, 0) =fo(x) ,  F(x, 1) = f l ( x ) .  Show that this is an equivalence rela- 
tion. We write [(X, A) ,  ( Y ,  B)] for the set of homotopy classes as before. Note 
that [X, Y ]  = [(X, $3, ( Y ,  B)]  for any B c Y. 

3.* Let3 (X, A )  + ( Y ,  B) ,go ,  gl: ( Y ,  B )  --+ (2, C), and h :  (2, C)+ (W, D). 
Suppose go N gl. Show that gof - glfand hg, N hg,. 

4. Letf, g: X+ S" and suppose that for all x E X , f ( x )  # -g(x). Show that 

5. Construct a map y :  S3 + S3 satisfying Problem 4 of Section 2. 
f "9. 



Category Theory 

One criticism of current pedagogical methods in mathematics is that they 
tend to compartmentalize mathematics into subjects without emphasizing 
the interrelationships among subjects. Thus topology grew out of analysis, 
and most of modern algebra grew out of either analysis or number theory. 
The deeper one gets into mathematics, the closer one sees the  connection^.^ 

A strong connection between various fields in algebra or topology is often 
most conveniently expressed through the notion of categories and functors. 
Category theory plays somewhat the same role in algebra and topology that 
set theory plays in analysis. In both cases the elementary theories are a con- 
venient language which is a bit abstract, and not very deep, but from which 
one obtains economy of thought. One simply has to get used to the 
abstraction, and this is made relatively painless by a wealth of examples. 

Definition 4.1 A category consists of 
(a) A class of objects. 
(b) For every ordered pair of objects X and Y, a set hom(X, Y )  of 

“ morphisms ” with “domain” X and “range” Y ;  i f f€  hom(X, Y )  we write 
f: X +  Y or X - Y .  hom(X, Y )  n hom(X’, Y‘) = @ unless X = X’ and 
Y = Y‘. 

(c) For every ordered triple of objects X ,  Y, and Z ,  a function associating 
to a pair of morphismsf: X +  Y and g :  Y +Z their “composite” 

f 

g of: X + Z .  

In the words of the Tao T6 Ching, “enumerate the parts of a carriage and you still 
have not explained what a carriage is ” [72, Chapter 391. 

17 



18 4. Category Theory 

These satisfy the following two axioms: 

Associativity: Iff: X +  Y, g: Y + Z ,  and h:  Z + W, then 
h o ( g o f ) = ( h o g ) o f :  X +  w. 

Identity: 
f: X +  Y,then l , o f = f ,  and i fh :  Y - 2 ,  then h o  1, =h.  

We use the word map interchangeably with morphism. 

For every object Y, there is a morphism 1 ,: Y -+ Y such that if 

Examples 

1. Z: As a class of objects, take all topological spaces. The set hom(X, Y )  
will be the set of continuous functions from X to Y. The composition rule 
will be composition of functions. 

2. S: As objects, take all sets; as morphisms, take all functions. 
3. G :  As objects, take all groups; as morphisms, take all homomorphisms. 
4. 31: As objects, takeall rings; as morphisms, take all ring homomorphisms. 
5. JIG,: As objects, take (right) R-modules; as morphisms, take all R- 

These five examples are the ones one encounters most in algebraic topology : 

6. Meta-Example Consider as objects, sets with a given “ structure.” 

One could consider other categories, however, 

7. As objects take all groups. As morphisms, take all isomorphisms, i.e., 

8. Let there be only two objects XI and X ,  . Let 

module homomorphisms. 

they are all special cases of a 

Consider as morphisms, all functions that “ preserve ” the “ structure.” 

hom(G,, G,) = all isomorphisms x :  GI + G2 . 

hom(Xl, XA = { I x , > ,  hom(X,, X,) = {lX2>, 
hom(Xl, X,) = @, and hom(X,, X , )  = @. 

Just about anything can be considered as a category, if you try hard 
enough, but the important examples are 1-5. 

Definition 4.2 Given two categories C, and C, , a covariant functor from 
(3, to C,, F, consists of an object function which assigns to every object X 
of el an object F(X)  of C, , and a morphism function which assigns to every 
morphism f: X -+ Y of (3, a morphism F(f) : F ( X )  3 F( Y )  of C, such that 

(a) F(1X) = F(X); 

(b) o f )  = F(s) O F(f)* 
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A contravariant functor from C, to C, consists of an object and morphism 
function as before except that iff: X+ Y, F ( f ) :  F( Y ) 4  F(X) and instead of 
(b) we have 

(b') F(S o f )  = F ( f )  O F ( d ;  
i.e., a contravariant functor reverses arrows. In either case one writes 

F: e, + C, 

to mean that F is a functor as above. 

Example 1 Let d& be the category of vector spaces over k and linear 
maps. D: & --+ &k is given by D(V)  = V* and D ( f )  = f * where V* is the 
dual space and f * the adjoint off. D is a contravariant functor. 

Example 2 From the category of R-modules and homomorphisms to 
itself we have, for every module M a functor T M  defined by TM(N) = M 8 N,  
T M ( f )  = 1 Of. Tis a covariant functor. (It can also be thought of as a functor 
of two variables.) 

Example 3 From the category C? to itself we have the functor C defined by 
C(G) = commutator subgroup of G = subgroup generated by all [g,, g,] = 
g1g2g;' g;'. C is a covariant functor. Similarly, A(G) = G/C(G) is a 
functor from 9 to A,. 

Example 4 The forgetful functor. This is a general type of covariant 
functor which applies in many examples. We give three examples: 

(1) J(J,+J(Jz> 
(2) JlGz --+%, 
(3) G+S.  

The functor is the identity on objects and maps, but considers them as dif- 
ferent things. Thus, every R-module may be considered as an abelian group 
by forgetting the R-module structure. Every R-module homomorphism may 
be considered as a group homomorphism. Similarly for (2) and (3). 

Example 5 The identity functor from any category to itself. I t  is the 

As a method of comparing functors, we have: 

identity on objects and maps and is covariant. 

Definition 4.3 A natural transformation cp from T, to T,, where TI and 
T,  are functors from a category C, to a category C, , written 

~ p : T i - t T z ,  
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is a function from the objects of C, to the morphisms of eZ such that for 
every morphism f: X - r  Y in el the (appropriate) following diagram is 
commutative : 

The best known example of this is as follows: 

el = C, = finite-dimensional vector spaces and linear maps; 
T, = identity functor; 

cp( V )  : Y --f Y** is the “ natural ” isomorphism. 
T,(v) = Y**; 

That the isomorphism Y N Y** is natural means precisely that it is a natural 
transformation in this sense. 

We are mainly concerned with “ topological categories.” For example: 

G is the category of topological spaces and continuous maps. 
G* is the category whose objects are topological spaces with a distinguished 

point (called the base point and usually written *) and whose maps are con- 
tinuous functions which preserve the base point (i.e.,f: A‘+ Y andf(*) = *, 
where we use * ambiguously to denote the base point of any space). (The * 
here has nothing to do with duality.) 

75, is the category whose objects are pairs ( X ,  A )  of topological spaces and 
whose morphisms are maps of pairs (see Section 1).  

If (3 is any category of topological spaces and continuous maps, we will use 
the notation C* and C2 with the obvious interpretation. 

We will be considering functors defined on “ topological categories ” and 
taking values in some “algebraic category.” The utility of such functors is 
that they take diagrams to diagrams, and many problems can be stated in 
terms of diagrams. 

Exercises 

1. Find several examples of categories and functors implicitly or explicitly 

2. Prove cp(Y): Y- ,  Y** is a natural transformation. 
3. In Section 1 we defined pairs ( X ,  A )  and maps between pairs. Show that 

given any category C in which there is a well-defined notion of subobject 

in the most recent algebra course you have taken. 
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(certain morphisms are called inclusions), one can describe a category of pairs 
C2 from this. 

4. Two objects A and B in a category C are called isomorphic or equivalent 
if there are maps f: A -+ B and g :  B + A in C with fg = 1, and gf = I , .  
Interpret this in the examples given. 

5.* Each of the categories Z, Z*, and Z2 has an equivalence relation called 
homotopy. We now define, from these, new categories Zh, z h * ,  and Zh2. 

These new categories will have the same objects as the old ones; the morphism 
sets, however, will be the set of homotopy classes of maps in the old category. , 

hom(X, Y )  = [ X ,  Y ] ;  
Thus, in Zh, 

in Zh*, 

and in b,Z , 

Show that Zh,  Zh*, and Zh2 are categories. (See Exercise 2, Section 3.) 
6. Show that, fixing ( X ,  A ) ,  [(X,  A ) ,  ( Y ,  B) ]  is a covariant functor from%' 

or Z: to the category of sets and functions. Similarly, with ( Y ,  B) fixed, 
[ (X ,  A ) ,  ( Y ,  B)] is a contravariant functor. (See Exercise 5 . )  

hom((X *I, ( Y, *N = [ (X,  *I, ( Y, * ) I ;  

hom((X, 4, ( Y,  B))  = [ (X ,  A) ,  ( Y,  B)1. 

If n 2 0, we will write 

.,(X *) = [(I", a n ,  ( X ,  *)I. 
( ( Io ,  dZo) is defined as (*, @).) 
7.* Show that there is a natural 1-1 correspondence 

[ (X,  A ) ,  ( Y ,  * > I -  [ ( X / A ,  {A) ) ,  ( Y? *)I9 
where A # 0. By applying 1.9 conclude that there is a natural 1-1 corres- 
pondence 

."W, *) 4 2  [W, *), ( X ,  *>I, 
where (1,0, . . . , 0)  = * E S". (See Exercise 2, Section 3.) This correspondence 
will be called c. 

8. Show that if ( E ,  S )  is an n-cell, there is a natural 1-1 correspondence 

nn(X, *)- [(E, S ) ,  ( X ,  *)I* 
9. For ( X ,  A ) ,  ( Y ,  B ) e Z 2  define ( X ,  A )  x ( Y ,  B)  = ( X x  Y, X x B u  

A x Y ) ,  Show that this is a covariant functor in two variables. Observe that 
two mappings So, fi : ( X ,  A )  + ( Y,  B)  are homotopic in Z2 iff there is a map 
H :  ( X ,  A )  x ( I ,  0) -+ ( Y ,  B)  such that H(x,  0) = fo(x) and H(x, 1) = h ( x ) .  



The Fundamental Group 

The transition from homotopy theory to algebra is most often accomplished 
by putting an algebraic structure on sets of homotopy classes of maps. The 
simplest and most fundamental example of this is nl(X, *) = [(Z, (0, I}), 
( X ,  *)I. In this section we will put a group structure on nl (X,  *) in a functorial 
way. 

We shall use the word path to refer to any map p :  I +  X.  If in addition 
p(0 )  =p(l) = *, we will call the path a based path or a loop. Thus the ele- 
ments of nl(.Y, *) are homotopy classes of based paths in X .  The only homo- 
topies allowed are those that keep the end points fixed throughout the 
homotopy. 

Definition 5.1 A homotopy H :  X x I+ Y is called a homotopy relative 
to A ,  for A c X, if H(a, t )  does not depend on t for a E A .  If H(x, 0) = f ( x )  
and H(x,  1) = g(x), we write H :  f - g (re1 A ) .  

Thus the homotopies involved in nl (X,  *) are homotopies of Z relative to 
the end points. One can generalize the construction nl(X, *) as follows. 
Choose x ,  y E X and consider all paths p :  Z -+ X with p(0)  = x and p(1) = y 
(Fig. 5.1). Write n ( X ;  x ,  y )  for the set of all homotopy classes of such paths 
relative to the end points. (One abbreviates this to n(x, y )  if the space X is 
fixed.) Thus n ( X ;  x, x )  = nl(X, x ) .  

Our understanding of nl(X, *) is greatly facilitated by an organization of 
its elements into a group, which we now describe. We will define the compo- 
sition of two based paths. This will induce a composition among the path 
classes. More generally, suppose we are given two paths p1 and p z  subject 
only to the requirement thatpz(0) =pl(l). We will form a new path traversing 

22 
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X F 
Path 

xBy LY 

Homotopy 

Figure 5.1 

through p 1  at double speed (from s = 0 to s = +), and then through p 2  at 
double speed (Fig. 5.2). 

Figure 5.2 

This path p 3  is defined as follows: 

We think o f p 3  as the product of p 1  and p 2  : 

P3 = Pz . P1. 
If p,(O) = x, p , ( l )  =p,(O) = y ,  and p 2 ( l )  = z, this product defines a trans- 
formation n(x, y )  x n(y, z) + n(x, z). To check that this composition respects 
the equivalence relation, suppose 

P1:Pl N P l l ,  P2 :P2NPz1 .  

p3 ; P3 P3I. 

We must find 

The formula is easy: 

O I S I +  

3 < s 5 1. P3(s, 0 = (fP:g5, t ) ,  

In particular we have defined a composition operation ., in nl(X,  *). 

Theorem 5.2 nl(X, *) together with * is a group, called the fundamental 
group of X (at *). 
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Proof We will describe a unit 1, E n(x, x ) :  

1, = {uxh 

where u, is the constant path u,(s) = x for all s E I .  
If {p} E n(x, y )  is another element, uy * p andp * u, are given by the formulas 

Thus p - u, # p but we will show { p  u,} = {p}, i.e., p * u, N p .  Now p . u, 
is the path that does not move at all for the first half of the time and hurries 
through p at double speed for the second half. A homotopy between p and 
this path is given by considering, at time t, a path that does not move for 
0 5 s I t /2  and then uniformly covers p for t/2 5 s 5 1. Write P(s, t )  for the 
image of s E Z along the tth path. Then (Fig. 5.3) 

0 5 s l tl2 

Clearly P(s, 0) =p(s ) ,  P(s, 1) = p  * u,(s). We note that P is well defined since 

2 s - t  2 - t  

2 - t  - 2 - t  
OI- <-= 1, if t/2 I s, 

p(2(F;; t )  = x, P(0, t )  = x, and P(1, t )  = y ,  

X P 

Figure 5.3 
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Similarly, one can prove uy . p ~ p ;  however, if we prove associativity and the 
existence of a right inverse, a proof of this is not needed. 

Given {p} E n(x, y) ,  we define {p}-l = {q} E n(y, x) where q(s) =p(l  - S). 
If: Ppo - p l ,  we define Q: qo -q l  by 

Since 

(a) Q(0, 1) = Y ,  Q(1, t )  = x, 

Q(s, t )  = P(l - S, t ) .  

(b) 

We must show thatp p-l - uy . Nowp . p-' goes through the path p twice, 

Q(s, 0) = qo(S),  Qc.3 1) = qi(S), 

this operation is well defined on equivalence classes. 

first backwards and then forwards : 

p(l - 24,  
p(2s - 1), 

0 I S  5 f 
f I S  5 1. (P . p-l)(s) = ( 

There is no reason why the middle of p . p-l must be x. We may take a homo- 
topy from p 'p-' to uy that at time t moves through part of p (from 0 to t )  
and then back again: 

P(1 - w, O < S I +  

3 5 s I 1. ( p((2s - 1)t + 1 - t ) ,  P(s, t )  = 

Clearly : 

(a) P(0, t )  = P(1, t )  = Y ,  
(b) p(1 - st )  =p((2s  - 1)t + 1 - t )  if s = f, 
(c) P(s, 0) = y ,  P(s, 1) =p  .p-'(s). 
It remains to show that is associative, let (pl}, {p2}, and {p3} E nl(X,  *). 

Let us compute (p l  * pz) * p3 and p1  * (p2 * p3) : 

P3(24 O I S I 3  
(pl * p2> * p3(4 = pZ(43 - 2), f 5 s I 3 

P3(4S), O I S I *  

p1 . (p2  p3)(s) = ~ ~ ( 4 s  - I), a- I s 5 f 
p1(2s - l), .f I s 5 1. 

Pl(4.Y - 3), 9 5 S I 1; 

P 3  P2 P1 

I 
It can be seen that the only difference between these paths is the speed. 

(P, * PZ) P3: c 
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We could slide one into the other by choosing intermediate speeds; in Fig. 5.4 

Figure 5.4 

the two slanted lines are given by the equations t = 4s - 1 and t = 4s - 2. 
At level t one then travels the paths 

p 3  from s = O  to s = ( t  + 1)/4, 
p z  from s = ( t  + 1)/4 to s = ( t  + 2)/4, 
p1 from s = ( t  +2)/4 to s = 1. 

This is given by the equation 

P3(4Sl(t + l)), 
P(S, t )  = pz(4S - t - I), 

0 5 s I ( t  + 1)/4. 
( t  + 1)/4 I s I ( t  + 2)/4 I pi((4s - t - 2)/(2 - t ) ) ,  ( t  + 2)/4 I s I 1. 

This is well defined since 4s/(t + l), 4s - t - 1 ,  and (4s - t - 2)/(2 - t )  are 
between 0 and 1 in the appropriate range of s and t ,  and the definition is 
consistent for s = ( t  + 1)/4 and s = ( t  + 2)/4. It is easy to see that 

P(0, t )  =p3(0),  
P(s9 0) = P1 . (P2  * P3)@), 

P(1, t )  =p,(l), 
P(s3 1) = (PI - Pz) * P 3 ( 4 -  

This completes the proof. 

Theorem 5.3 n1 is a functor from the categoryZ* to G. 

Proof Given$ (X, *) + ( Y ,  *) we will define a homomorphism 

n1(f): .Il,(X, *) + .Ill( y, *). 

nl(fNP1) = {fP>* 

Let { p }  E nl(X,  *). Define 

Sincef(*) = *,@: I +  X-+ Yis  a based path. 
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Now { fp} depends only on {p } ,  for suppose P: po  - p l .  Then we define 

Clearly Q : f p o  -fpl, so q ( f )  is well defined. To see that nl(f> is a homomor- 
phism, we check that 

.l(n(m .{P” = n,(f)bI * nl(f>~P’}~ 

This holds since both are represented by the class {q} given by 

q(s)  = (f(P’(2SN9 O I S < +  

f (p(2s  - l)), 4 I s 5 1. 

For reasons of tradition, we always write& for n l ( f ) .  We must show 1, = 1 
and ( f a  g)* =f* g* . These are both obvious from the definitions. 1 

Exercises 

1. Show that nl(X, *) = O  if X is a finite topological space with the dis- 
crete topology. 

2. Why is it not possible to describe nl(X, *), as in this section, without 
reference to the base point ? 

3. Let I E  nl(S1, (1,O)) be the class of the identity map. Show that nlis the 
class of the map f,: S’ -, S’ given by f,(z) = 2”. (Exercise 22, Section 7) 

4. Besides using categories to discuss objects that we study, the theory of 
categories has another use. This is to discuss sets with a multiplication that is 
not always defined. Given a space X the fundamental category of X written 
n(X) is defined as follows. For objects of n(X) we take the points of X. We 
define hom(x, y )  = n(x, y).  According to the proof of 5.2, this is a category. 
Show that the mappingp + p - ’  defines a transformation r :  n(x, y )  -, n(y, x )  
satisfying: 

(1) r2 = I ;  
(2) r(c1) * u = 1 = c1 * r(c1); 

(3) r(a ’ P )  = r(P) * 44. 
Such a category is sometimes called a groupoid. (Sections 6 and 7) 
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5. Let 0 < s < 1 .  Given paths p and q with p(1) = q(O) ,  define h by the 
formula 

Prove that {h} = ( 4 ) .  { p }  E n(p(O), q(1)). State a similar result for arbitrary 
products and prove it by induction. (7.12) 

6. Show that homotopy relative to a fixed subset is an equivalence relation. 



More on the Fundamental Group 

In this section we develop a few elementary facts about nl(X, *). We 
prove that it does not depend in an essential way on *, provided X is arcwise 
connected, and show that it is a homotopy type invariant. 

On the surface it appears that n,(X, *) depends both on the space X and 
the chosen point *. The following theorem dispenses with the dependency 
on *. 

Theorem6.1 Let q, * , E X  and suppose they belong to the same arc 
component. Then nl (X,  *1) E nl (X,  *2). 

However, there is no natural isomorphism. In any case, the isomorphism 
type of nl(X,  *) as an abstract group, does not depend on the choice of *, 
only on the arc component. (A little thought shows that it could not be affect- 
ed by other arc components.) If X is arc connected, one writes this isomor- 
phism type as nl(X). One should be very careful here. There is no category 
of isomorphism types of groups and homomorphisms. Thus there is no way 
to make n l ( X )  a functor. Whenever one deals with induced homomorphisms, 
one must, at least implicitly, deal with base points. 

Proof of Theorem 6.1 Since *, and *2 belong to the same arc component, 
n(*l, *2) # fa. Pick CI E z(*~,  *J. Define (Fig. 6.1) 

V a  : n1(X, *1> -+n1(X, *2) 

by 

cpa(P> = 42 * P * r ( 4  

29 
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* z  Figure 6.1 

(see Exercise 4, Section 5) .  We also define 

and 

Definition 6.3 A mapf: ( X ,  A )  -+ ( Y, B) is called a homotopy equivalence, 
and ( X ,  A )  and ( Y ,  B) are said to be of the same homotopy type if there 
exists a map g :  ( Y ,  B)  -+ ( X ,  A )  such that g 0 f - 1 andfo g - 1 (these homo- 
topies being homotopies of pairs). In this case, we write (X, A )  N ( Y ,  B).  
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Theorem 6.4 Iff: ( X ,  *) -+ ( Y, *) isa homotopy equivalence, f* : nl(X, *) + 
nl( Y, *) is an isomorphism. 

Proof f*g* = dfs)* = 1, if f g  - 1. Similarly g* f *  = 1. Thus nl(X) de- 
pends only on the homotopy type of ( X ,  *). I 

The first problem we will consider is how to calculate nl(X). For example, 
one would like to determine n,(B") or nl(Sn) for n 2 1. 

Definition 6.5 We say that ( X ,  *) is contractible in b* if ( X ,  *) N(*, *). 

This means that there is a homotopy 

H : X x I + X  

satisfying: 

(a) H(x, 0) = * ; 
(b) H(x, 1) = X; 

(c) H(*, t )  = *. 
We say that X is contractible in b if there is a map H satisfying (a) and (b) 
for some point * E X .  Thus to be contractible means that the identity map 
is homotopic to a constant map in the appropriate category (b or%*). 

Proposition 6.6 Let * E B" be any point. Then (B", *) is contractible. 
Hence nl(B", *) = 0. 

Proof A homotopy is given by H(x, t )  = tx + (1 - t)*. H(B" x I )  c B" 
by the Cauchy-Schwarz inequality. H clearly satisfies a, b, and c. Since there 
is only one path I - +  *, nl(*, *) = 0. Thus nl(B", *) = 0 by 6.4. I 

Let us return to Problem 1. Suppose there is a map 

f: B" -+S"-' 

such that the diagram 

B" 

d \ 
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commutes. Since * = (1, 0, . . . , 0) E S"-', we have 

(B", *) 

(s"-',*) 1 ( S " - l , * )  

nl(Bn, *I 
Applying nl we get a commutative diagram 

' *  n,(S"-' ,  *) 

Since nl(Bn, *) = 0, this could only happen . .. 

tually show nl(S1, *) # 0, solving the problem for n = 2. Other functors will 
be needed for n > 2 since we will show that n,(S", *) = 0 iff n # 1. 

nl(S"-', *) 

if nl(Sn-l, *) = 0. We will even- 

Definition 6.7 
and nl(X,  *) = 0. 

X is called simply connected if it is arcwise connected, 

Exercises 

1. Let Q be the rational numbers. Calculate n,(Q, 0). 
2.* Show that homotopy equivalence is an equivalence relation. 
3. Show that (B", (0, . . . , 0)) is contractible. 
4. If * E B" is any point, show directly that (B", *) is contractible 
5. Show that if * E R" is any point, (R", *) is contractible. 
6. Show that f: B" -+ S"-' exists such that 

B" 

s n -  1 1 ~ s n - I  

commutes iff S"-' is contractible. (Hint: There is a natural map y :  S"-' x 
Z -+ B", expressing a point in terms of polar coordinates.) (1 3.16) 
7.* A is called a strong deformation retract of X if A c X and there is a 

homotopy H: X x Z+ X such that H(a, t )  = a, for a E A, H(x,  1) = x and 
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H ( x ,  0) E A for x E X. Show that if A is a strong deformation retract of X 
and B c A ,  ( A ,  B)  N(X,  B).  Show that S"-' is a strong deformation retract 

8. Show that there is a 1-1 correspondence n(x, y )  f+ n(x, x )  iff n(x, y) # a. (7.12) 
9. Show that iff: X - ,  Xandf-  1 (in Z), then f* : nl (X,  *) + n l ( X , f ( * ) )  

is an isomorphism for each point * E X .  (Hint: Consider qpp 0 f* : nl (X,  *) -, 
nl(X, *) where p is the path fromy(*) to * given by the homotopy.) 

10. Using Exercise 9, show that if X N  Y in 3, nl(X, xo) z nl(Y, f ( x o ) )  
where f: X - ,  Y is a homotopy equivalence. (Hint: First show that 
nl(X,  g(f (xo) ) )  z nl( Y , f ( x o ) )  where g is a homotopy inverse to$) 

11. Show that if Xis connected and X N Y, then Y is connected. 
12. Generalize 6.1 as follows. In each groupoid, Hom(X, X )  is a group and 

for each X ,  Y with Hom(X, Y )  # a, Hom(X, X )  N Hom( Y, Y) .  (See Exer- 
cise 4, Section 5 . )  

R" - 0. (13.2, 13.7) 



7 
Calculating the Fundamental Group 

We have done nothing, so far, to calculate nl(X) except in the most trivial 
cases. In this section we shall consider two methods of calculating n, and give 
some applications. The first method (covering spaces) is quite geometric and 
allows one to work from a conjecture based on intuition to the answer. It is 
absolutely useless in proving that a space is simply connected. The second 
method (the Van Kampen theorem) is analytical and somewhat more com- 
plicated, but can be easily used to show that spaces (such as S" for n 2 1) 
are simply connected. 

We begin by defining a covering space and show how the structure of a 
covering spacegives information about nl. The simplest example of a covering 
space is the map e: R' --t S' given by e(t)  = e lni t .  Thus e is periodic of period 
1. We think of this as a spiral projected down onto a circle (Fig. 7.1). 

Figure 7.1 

34 
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Definition 7.1 Given a space X ,  a covering space is a space x and a map 
ll : 8 + X such that: 

(a) ll is onto; 
(b) for all x E X, there is a neighborhood V of x (called a coordinate 

neighborhood) such that l l - ' (V)  is the disjoint union of open sets each of 
which is mapped homeomorphically onto V by TI. 

We now prove that the map e: R' + S' mentioned above is a covering 
space. Clearly e is onto. Choose open sets V = S' - (1, 0) and W = S' - 
(- 1, 0). Then V u  W = S' and e-'(V) has components (n - 3, n + 3) 
while e- ' (W) has components (n, n + 1). These are clearly mapped homeo- 
morphically onto V and W respectively by e since e is open. 

In order to relate the structure of a covering space to the fundamental 
group of X ,  we prove two useful results. 

Figure 7.2 

Proposition 7.2 (Path Lifting Property) Given p : Z + X and a E 3 such 
that l l (a)  = p(O), there is a unique path j: I +8 such that llp = p and p(0) = 
u. (See Fig. 7.2.) 

Proof Let { V,} be the collection of coordinate neighborhoods. {p-'( V,)} 
is an open cover of Z. By Exercise 3, Section 0, choose E > 0 such that if 
diam A c E ,  A cp- ' (V , )  for some u. Now choose n such that l/n < E, and 
let f k  = k/n. Thenp([ti-', t i ] )  c Val for some u i .  

We define unique liftings pi over the intervals [0, t i ]  such that ji(0) = a by 
induction on i. For i = 0, this is trivial. Suppose p k  : [O, f k ]  -+Z is defined 
and unique. We will show that it has a unique extension p k + l :  [o, t k + l ]  -+Z. 
Let W be the component of l l - ' (VUk+,)  containing f k ( f L ) .  Any extension 

must map [ t k ,  ? k + l ]  into W since [ t k ,  f k + l ]  is arc connected. But lllw 
is a homeomorphism; hence there is a unique map 

P :  L t k %  f k + l l  -b 
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with I I p  = p .  We now define 

This completes the induction and hence the theorem. 1 

We give three more examples. That they are covering spaces is left as an 
exercise. 

Example 1 nn : S’ S’ given by nn(z) = zn. Here every point of the base 
(= image space) is covered n times. (Such a covering space is called an n- 
fold covering.) 

n - 
Example 2 II: R” + S’ x * * * x S’ given by 

e2 ff i X ” ) .  n(x,, . . . , xn) = (eZffix1 Y . - -  Y 

Example 3 II: [0, I ]  x R’ + [0, I]  x S’ where II(s, t )  = (s, e’“‘). In 
this example we identify [0, I ]  x S’ with {(x, y)  E R2 1 1 5 xz + y2 -< 4) (Fig. 
7.3) under the obvious homeomorphism. 

Figure 7.3 

Example 3 is a good one to keep in mind for the next theorem. Fix a E 2. 

Theorem 7.3 (Monodromy Theorem) Suppose p and p’ are paths in X 
beginning at a and ending at b. Suppose 

{PI = {p’)  E 4x; a, 6). 

Then p”’(1) = p(1). 
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Proof Let H: p -p' be a homotopy (Fig. 7.4), and using Lebesgue's 
covering lemma as in 7.2, choose 

0 = s o  I s1 5 5 s, = 1 ,  and 0 = to I tl I 5 t ,  = 1 

so that 

H([si, s i + l l  x [ t i ,  t j+l l )  c Vi,j 

where V i j  is a coordinate neighborhood. 

Figure 7.4 

We now find a lifting R of H; that is, we find R :  I x I +x such that 

R(s, 0) = F(s), R(s, 1) = P' (S) ,  R(0, t )  = a. 

The proof that this can be done is similar to the proof in 7.2: Given fi 
on any connected union of the rectangles [ s i ,  si+l] x [ t j ,  it can be 
extended over any adjacent rectangle since each rectangle is mapped into a 
coordinate neighborhood. We can thus proceed from the edges across the 
square inductively. 

Now such an R provides a path from p(1) to $'(I) lying in lI-l(p(1)); 
namely 

y ( t )  = R(1, t ) .  

Let V be a coordinate neighborhood with p ( 1 )  E V. Each point of lI-l(p(1)) 
is in a different component of lI-'( V). Thus lI-'(p(l)) has the discrete topol- 
ogy. Every path in a space with the discrete topology is constant. Thus 
y ( t )  = y(0) = y(l), i.e., p'(1) = p'(1). I 



38 7. Calculating the Fundamental Group 

Now let n: r? + X be a covering space and * E 8. We write n(*) = * E X .  
Write F = n-'(*). We now produce a function 

4: xl(X, *) + F  

given by 4 ( ( p } )  = p(1). By the previous two theorems, this is well defined. 

Theorem 7.4 If 8 is simply connected, 4 is a 1-1 correspondence. 

Proof If 8 is simply connected, we will produce an inverse 

(0: F + q ( X ,  *). 

For f E F choose a path p from a to$ Since 2 is simply connected, any two 
such choices are homotopic keeping the end points fixed. Thus {n o p }  is a 
well-defined element of nl(X,  *). Define cp( f )  = { n o  p } .  

Clearly cp 0 4 = 1, since we may choose the original path to  define cp. On 
the other hand, 4 o cp = 1 since, given f E F and a path p ,  p is a lifting of 

The function cp depends on the choice of an element a E x. We will write 
= O P *  I 

this function as pa. 

Theorem 7.5 cpo : Z + n,(S', *) is an isomorphism. 

Proof The covering space e :  R' + S' has F = Z .  Now cp,(m)(s) = 
e2ni(m-n)s Th . e homomorphic property of cpo now follows from 

Lemma 7.6 p,(b) opPb(c) =cp,(c). 

Proof Apply the uniqueness assertion in 7.2. I I 

Corollary 7.7 There is no map f :  B2 + S' with f ( x )  = x for x E S'. I 

Corollary 7.8 Every map y :  B2 + B2 has a fixed point. I 

Theorem 7.9 (Fundamental Theorem of Algebra) Every nonconstant 

Proof Consider a polynomial p ( z )  = Z" + an-lz"-' + * - + a. with no 

complex polynomial has a root. 

roots. Then H(z ,  t )  = p(trz) defines a homotopy 

H :  S' x I + R 2  -0 

for any r > 0. We now suppose that r > I a , [ .  Then there is a homotopy 

B: s1 x I + R ~  -0 
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given by B(z, t) = tp(rz) + ( I  - t)z"r". H(z, t )  # 0; for otherwise z"r" = 
t(z"r" - ~ ( I z ) ) ,  hence 

I" I Ip(rz) - (rz)"l 
= Ia,-,(rz)"-' + + a , \  
5 ~ u , , - l ~ r " - l  + * * * +  laol I ( C  Iail)r"-'<r". 

Combining these homotopies we see z + r"z" is homotopic to a constant map 
z +a ,  as maps S' -+ R2 - 0. But RZ - 0 N S', and the equivalence takes the 
map z +r"z" to the map cp(n). This contradicts 7.5 (unless n = 0). I 

This theorem is usually proved via Cauchy's theorem in complex analysis. 
There is in fact a relation between nl(S1) and Cauchy's theorem. Given 
p: I -+ RZ - 0, p(0) = p(1) = *, one can consider this as a contour r. Then 

1 dz 
2ni jr z 

can be calculated, and it is known that this is an integer (usually called the 
winding number). One has 

- 

as students of complex analysis will realize. 
Theorem 7.4 gives us a reasonable method for calculating n,(X). First one 

guesses the answer. This is possibly the hardest part. Having guessed the 
answer, it is not usually hard to see what a simply connected covering space 
must look like. One then defines a space 8 and a map n: 8 X, and proves 
that this is a covering space. It remains to show that 8 is simply connected. 
This can be difficult. We now describe another useful tool for calculating n, 
which is often convenient for showing that a space is simply connected. 

Suppose X = X ,  u X ,  with X, n X ,  # fa. Choose * E X, n X ,  . We 
then have homomorphisms i,.: nl(Xl n X ,  , *) --+ nl(Xi, *) and 
i,. : nl(X, n X ,  , *) + n,(X, , *). In this situation one can make a general 
group theoretic construction. Let G, G,, and G, be groups, and suppose we have 
homomorphisms fi: G + G1 and f, : G + G, . We will define the amalga- 
mated product of G1 and G, over G. Essentially it is the smallest group 
generated by G1 and G, withfi(x) =fi(x) for x E G. Specifically, let F be the 
free group generated by the set G, u G ,  . We will write x - y for the product 
in F. Thus every element of F is of the form xle1 * * * * * x p  where t i  = f 1 and 
xi E G, u G, . Consider the words (xy)' * y-' x- l  defined if both x and y 
belong to either GI or G, , andfi(g)' * ( f,(g))-' for g E G. Let R be the normal 
subgroup generated by these words. 
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Definition 7.10 The amalgamated product of G, and G, over G, written 
G1 *G G ,  is the quotient group FIR. 

Observe that there are homomorphisms g i  : Gi -+ F/R obtained as com- 
positions Gi --t F -+ FIR, and g ,  f ,  = 9, f 2  . 

We now suppose that we are given a space X which is the union of two 
subspaces X ,  and X,. The Van Kampen theorem allows one to  calculate 
n,(X) provided we know nl(Xl), n,(X2) ,  and q(X1  n X,). We must make an  
assumption about the relationship of these subspaces. 

Definition 7.11 A pair of subspaces (X,,  X,) of X is said to be excisive 

Let jl : X ,  + X and j ,  : X ,  + X be the inclusions. 
if X = (Int X,) u (Int X,). 

Theorem 7.12 (Van Kumpen Theorem) Suppose (Xi, X,) is excisive, 
X ,  X,, X, ,  and X ,  n X ,  are arcwise connected, and * E XI n X , .  Then 
there is an isomorphism 

zl(X, *) ~1(X1, *I * n l ( X I  n ~ * . * ) n l ( X 2  3 *I 
in which (j,)* and (j2)* correspond to g1 and g2 .5  

To prove this we need some results about the amalgamated product. 

Proposition 7.13 (a) Suppose hi  : Gi - + H a r e  homomorphisms such that 
h,f l  = h,  f 2  . Then there is a unique homomorphism h :  G, * G G 2  -+ H with 
hgi = h i .  

(b) If every element x E H can be written x = x ,  . . a x k  with x ,  = hi(a,) 
for some i, h is onto. 

Proof (a) One defines h’: F -+ H by h‘ 1 G ,  = h, since F is free on G, u G, . 
h’((Xi X j ) ’ X i  5,- 1) = h’((XiX ,)‘)h’(Xj) - lh’(Xi) - 

= gs(xi xj)gs(xj>- ‘gs(Xi>- ; 

h’(Is?) = /?’(Is)-, = g , ( l ) - ’  = 1; 

h’( f l (g) ( f2(g) ) -1)  = hl(fi(g))h,(fZ(g)- ‘1 = 1 ; 
hence h’(R) = 1 and h’ determines a homomorphism h :  G, * G  G, + G. By 
construction, hgi = h’ I Gi = h i .  The uniqueness is clear. 

(b) If x is of the form mentioned, 

h(u1 * * ’ uk) = h(gf , (u l )  ’ ’ ’gi,(ak)) = hi,(ul) ’ * ’ hi,(uk) = x1 * * ‘xk = x. I 

Hopefully there will be no confusion between the various meanings of * such as in 
d X ,  *), GI *c G 3 ,  j * ,  etc. 
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Proof of 7.12 The mappings ( jJ*  : nl(Xi, *) +n,(X, *) combine by 
7.1 I(a) to give a homomorphism 

h :  n,(X,, *)*rr,(xl n XZ.*)n , (X,?  *I -+n,(K *). 
We will show that h is an isomorphism. 

Given { p }  E nl (X,  *), cover Z by p - ' ( X , )  and p- ' (X,)  and choose an E- 

number for this cover by Lebesgue's covering lemma. We can thus find 
0 = to 5 t, I ... I tn = 1 so that t i  - t i- l  < E and hencep([ti-l, t i ] )  c XI or 
X , .  Suppose that these are chosen so that p ( f i )  E XI n X ,  ; see Fig. 7.5. 

Figure 7.5 

(If not, [ t i - l ,  t i ]  and [ti, t i + ' ]  could be combined into one interval.) Choose 
paths qi  : Z+ X ,  n X ,  with qi(0) = *, qi( I )  = p ( t i )  for 0 5 i 5 n with qo = 
qn = *. We now write p i  : 1 --+ X for the path p I [ t , ,  ,, + ,, . By Exercise 5, Sec- 
tion 5, 

- 1  - 1  p = p n - l .  . . . . p o - q n - l  'Pn-1  ' 4 n - 1  ' 4 n - 1  ' P n - 2  ' 4 n - 2  ' 4 n - 2  * . * *  

'P1 ' 4 1  .q;l 'Po ' 4 0 .  

Now each of the paths q;' . p k - ,  * q k P l  belongs to either n1(Xl, *) or 
nl (X, ,  *) and hence h is onto by 7.13(b). 

We speak of paths and homotopies as being small if their image lies in 
either XI or X ,  . Thus the fact that H is onto can be restated by saying that 
every based path is the product of small based paths. To prove that ker h = 1, 
suppose we have small based paths p l ,  . . . , pm such that h ( { p m } .  . . {pl}) = 1. 
Then there is a homotopy H in X from their product pm . pm-,  . . . p 1  to  the 
trivial path *. We would like to show that { p , } . . .  { p l }  = 1 in the amalga- 
mated product. 
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Figure 7.6 

We will subdivide I x I into small rectangles Ci,j such that HI ci, is small 
(Fig. 7.6). Then following the edges of these rectangles, we get a sequence 
of paths in X from p n .  * 'pl to * each of which is written as a product of small 
paths, and such that any two adjacent paths differ by a small homotopy. 
One must exercise a little care since these small paths are not necessarily 
based, but this technical difficulty is not hard to handle. 

Cover I x I by H- ' (Xl)  and H - ' ( X 2 ) ,  and choose an &-number by Lebes- 
gue's covering lemma. Let k > J 2 / m  and n = km. The cubes 

are consequently mapped by H into X ,  or X ,  . Let 

P .  1.J  ' = H I c i / n .  ( i +  I)/.] x j / n  and 4i.j = H I i /n  x [ j / n ,  ( j +  I ) / n ] .  

p i , j  and qi,j are thus small paths but are not in general based paths. For 
each vertex (i /n,  j / n ) ,  choose a path r i , j  from H(i/n,  j / n )  to * which lies in 
XI, X , ,  or both if H(i/n, j /n)  lies in XI, X , ,  or both. This is possible since 
X,, X,, and X ,  n X, are arcwise connected. In case H(i/n, j / n )  = *, choose 

to be the constant path at *. Thus by conjugation 
p .  -1.1 . = r .  L+l , jp i , j r : :  and gi,j = r i , j+lqi , jr<j l  

are small based paths. Consequently any word in {j5i,j} and {gi,j} represents 
an element in the amalgamated product. There is a small homotopy 
q i + ,  , j p i , j  - p i , j +  q i , j  relative to the end points, for both of these paths are 
in the image of 
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and by Exercise 8, Section 6 

has only one element. From the above homotopy it is easy to produce a small 
based homotopy 

- 1  r i+l , j+l  . qi+l , j  *Pi , j  . ri;: N r i+l , j+l  *Pi,j+l * 4i.j . ri,j 
and hence a relation 

{@i+l,j} . {Pi,j) = {Pi,j+ll*{4i,j> 
in the amalgamated product. One can thus conclude that 

{ P n  - 1 ,o> * . * (P0.0) = [{@;;lo'> * . * {@;A- i}I[@n- 1 ,,I * * * {Po,n}I[{4o,n- 11 ' * {40,0)1. 
The right-hand product consists entirely of paths constant at * and hence 
represents *. We will be finished if we show that 

{Pm>. . .{PI> = ( B n - 1  ,o>. * .{Po,o>. 
Choose a with 0 I a 5 m - I .  Since n = km, {Ps ,o}  are all contained in 
either X ,  or X ,  for ak I s  5 (a  + 1)k - 1. Thus the word {P(a+ l )k - l ,~>*- .  
{Bak,O} is equivalent to the single-letter word { P ( u + l ) k - l , o  * * *jjak,O) in the 
amalgamated product. However 

Pa+, NP(u+l)k-l,O * '  'Pak .0  P ( a + l ) k - l , O  * " P a k , O  

so {Pa+l) = {P~a+l)k-l,O)"'{~ak,O). I 

Theorem 7.14 n,(S") = 0 for n > 1 .  

Proof We write S" = X ,  v X ,  where 

={(XI, . . . , x n + 1 ) ~ S " I ~ n + i  < I > ,  
X ,  = { ( ~ 1 , . . . , x n + l ) ~ S " I x n + 1  > -1). 

Since X ,  = X ,  = R", n1(X1) = q ( X , )  = 0; both are open in S", we need 
only show that A', n X ,  is arcwise connected to  apply 7.12. This is left as 
an exercise. (It is true only for n > 1.) I 

Lemma 7.15 Suppose fl :  G -+GI, f, : G + G , ,  and G,  is defined by 
generators xl, . . . , x, and relations rl(xl, . . , x,,) = 1, . . . , rk(xl, . . . , x,) = 1, 
and G2 is defined by generators y, ,  . . . , y m  and relations sl(yl, . . . , y,) = 
1, . . . , s,(y,, . . . , y,) = 1. Suppose finally that G is generated by zl, . . . , zj.  
Then G, *G G, has as generators 

and as relations r , ,  . . . , rk ,  s,, . . . , s l ,  andfi(zi)f2 (zi)-' for 1 I i 5 j .  
XI,  .. ., Xn > Y1,  . . . 3  Y m  7 
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Proof Let G be the group defined by these generators and relations 
above. One can clearly find a map cp: G 4 GI *c G, such that cp(xi) = x i ,  
and cp(yi) = y i  since these relations hold in C,  * G  G, . On the other hand, 
there are maps hi : Gi  -+ G with hlfi = h, f 2  given by h,(x i )  = xi, h,(y,) = yi. 
By 7.13(a) there is a map h :  G, *c G, -+ G with h(xi )  = x i  and h(y i )  = y i .  
Clearly hcp = 1 and cph = 1 since these composites are the identity on a set 
of generators. I 

Corollary 7.16 Let X be the union of two circles in the plane with one 
point in common. Then x , ( X )  is the free group on two generators. 

Proof Let p be the common point and choose points p ,  and p 2  on each 
of the circles and not equal to p .  Then ( X  - p l ,  p )  N (S* ,  *), ( X  -pz  , p )  N 

(S',  *), and ( ( X - p , )  n ( X - p , ) ,  p )  1: (*, *). Thus by 7.12, n l (X ,  p )  -N 

2 * ( , ) Z .  By 7.15, this is the free group on two generators. I 
This will be generalized in Exercise 7. 
As a further example of the above techniques we, will discuss some spaces 

that arise in projective geometry. They will be important later. 
Let F be one of the division rings, R the real numbers, C the complex 

numbers, and H the quaterniom6 FP" will be thought of as the set of all 
lines through the origin in 

p + 1  - - F @ - * * @ F .  - 
n +  1 

RP", CP", and HP" are called n-dimensional real, complex, and quaternionic 
projective spaces. We topologize FP" by considering it as a quotient space 
of Fn+' - (0). Every point of F"" - (0) determines a line through 0. Thus 
consider 

{(to ,..., t n ) l t i ~ F  not all t i = O } .  
Define (to, . . . , 5,) - ( I t , ,  . . . , At,,), A E F, I # 0.  This is an equivalence 
relation. Write [to I 15,] for an equivalence class, and define FP" to be 
the set of equivalence classes with the quotient topology. 

There is a natural map 
F"" - {O}  --f FP" 

which is continuous, and yields, on restriction to the unit sphere of F", 
maps 

: S" + RP", qn : S2"+' -+ CP", v, : S4"+3 + HP". 

Theorem 7.17 I7,: S"-+RP" is a covering space. z,(RP") = Z 2 ,  for 
n > 1. RP' -= S' .  

See the Appendix to this section. 
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Proof The sets Di+ = {(xl, . . . , x,,+~) E Snlxi > 0} and Di- = 
{(x,, . . . , x,,+~) E S"lxi < 0} are open and cover S". n (  Di+ is 1-1, continu- 
ous, and open. Thus if Vi = n(D,") = n ( D i - ) ,  H - ' ( V i )  = Di+ u D i - ;  the 
sets Di+ and Di- are disjoint, open, and homeomorphic to V , .  Thus I3 is a 
covering space. II-'(*) contains two points. Therefore, n l ( X ,  *) has two 
elements and must be Z ,  . I 

The maps y~,, and v, are not covering maps, but they will qualify for a 
generalization of a covering map-a locally trivial bundle; in Section I 1  
we shall make homotopy calculations using this notion in analogy with the 
use of covering spaces in this section. 

The fundamental group has been a key tool in low-dimensional topology. 
Without giving details, we will indicate two applications. 

A surface is a separable metric space such that every point has a neigh- 
borhood homeomorphic to the plane R2.  Given two surfaces S, and S, 
their connected sum S,  # S,  is defined by removing a disk D from each of 
them and connecting them together by a tube S' x D'; see Fig. 7.7. 

In surface theory one can prove (see [45, 1.51) that any surface is either 
(a) a sphere S2, 
(b) a connected sum of tori (S' x S'), 
(c) a connected sum of projective planes (RP2) .  I=( s' x D' 

Figure 7.7 

It remains to discover which of these surfaces are distinct (not homeo- 
morphic). This is accomplished by calculating the fundamental group. The 
facts are (see [45, 4.51): 

(a) n1(S2) = 0; 

(b) q ( T #  

n 
0 

# T )  is generated by elements a,, . . . , a,,, b,, . . . , b, sub- 
ject to the single relation 

1 = (a,b1u;'b;')(a,b, a;'b;'). . ' (a,b,u;%;'); 
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n - A-- 

(c) n,(RP2 # . - * # RP') is generated by elements C I ~ ,  . . . , a, subject to 
the single relation 

1 = C112ct22 . . a,? 
These groups are all distinct as one can see by calculating their abelianiza- 
tions. Thus the fundamental group distinguishes among them and they are 
not homeomorphic. 

The second application is to knot theory. A knot is an imbedding of S' in 
R 3 .  Two knots are called equivalent if there is a homeomorphism h:  R3 -+ R3 
such that 

(a) hk, = k ,  ; 
(b) there is an integer n such that if l[x[l > n,  h(x) = x. 

If k :  S' + R3 is a knot, we define the group of the knot to be n,(R3 - k(S')) .  
It is easy to see that equivalent knots have isomorphic groups. Thus two knots 
with different groups are not equivalent. One can distinguish between the 
trivial knot and the trefoil (Fig. 7.8), for example, since the knot group of 

Tr iv ia l  knot Trefoil 

Figure 7.8 

the former is Z but the knot group of the latter has two generators CI and /? 
subject to the relation a2 = p3.  (See [45, 4.61.) 

Appendix 

The algebra of quaternions H is a four-dimensional real vector space with 
basis 1, i, j ,  k and multiplication given by 

i j = k  jk  = i k i = j  
j i =  - k  k j =  - i  i k =  - j  

i 2 = j 2 = k 2 =  -1. 

(Observe that H i s  not commutative.) 1 is a unit, and multiplication is extended 
by linearity. Let q = a + bi + cj + dk be a general quaternion for a, b, c, d 
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real numbers. Then define 
q 

c2 + d 2  = 1)q112. Hence 4- l  = 4. The quaternions are associative. 

= a - bi - cj - dk (called the conjugate of q). 
ij is linear, and one may check that qlq2 = i j 2  * ijl, ijq = u2 + b2 + 

- 

I14 I1 

Seminar Problems 

A. We have said nothing about the existence of covering spaces. [31, 
Section 171 has a very readable account of this. We need some definitions: 

1. X is semi-locally-simply connected if for all b E X ,  there is a neigh- 
borhood U of b such that any two paths in U with the same end points are 
homotopic in X keeping the end points fixed. (This is the same as saying that 
the homomorphism nl(U, x,) --t nl (X,  xo) is 0.) 

2. X is locally path wise connected if any point has arbitrarily small path- 
wise connected neighborhoods. 

If X is semi-locally-simply connected, locally pathwise connected, and 
connected, simply connected covering spaces exist. (See also 164, 2.51.) 

B. Calculate n,(T # T # * ' * # T )  and nl(RP2 # * * * # RP'). Calculate the 
knot group of the trivial knot and the trefoil. 

Exercises 

1. Suppose 8, ll: 8 4 X and 8, n': X -+ X are covering spaces. Suppose 
r? is simply connected. Choose G E ~  and ;EX such that n(G, =II'(ij). 
Show that there is a unique continuous mapf: 2? X such that JI' 0 f = II 
and -?((a) = 5. (Hint: A point in 8 yields a path in X which can be lifted to 
X.) Conclude that if x is also simply connected, 2? = X. The existence offis 
called a "universal property" and a simply connected covering space is 
often called a universal covering space. 

2. Show that S" is arcwise connected. Show that {(xl, . . . , x,,+~) E S" 1 - 1 < 
xntl < l} is arcwise connected. (Hint: Use the fact that it is homeomorphic 
to R" - {x,} for some point xo .) (7.14) 

3. Show that for any x E CP", q;l(x) E S' ,  and for any x E HP", v;'(x) 3 

4. Prove that S' and s" do not have the same homotopy type for n > 1. 

5. Show that the examples given before 7.3 are covering spaces. Calculate 

s3. 

Conclude that R2 and R" are not homeomorphic for n > 2. 

nl(S1 x S'). 
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6. Show that 4 :  nl(X, *) + F is onto if Xis arc connected. Show that if 4 
is 1-1,g is simply connected. 
7. Let X,, be the union of n circles in the plane that intersect at the origin 

and only at the origin. Prove (by induction) that nl(Xn, 0) is the free group on 
n generators. (17.4) 

8. Prove that RP", CP", and HP" are Hausdorff. (See Exercise 4, Section 0.) 
(Example 3, Section 14) 

9. Show that CP1 = Sz and HP' = S4. (13.14) 
10. Let U, = CP" - CP"-' and U, = CP" - [ O l O . . * O l l ] .  Show that 

(CP"-', *) c (17, , *) is a homotopy equivalence, and that Ul is contractible. 
Show that U, n U, is arcwise connected. (Use the fact that C - (0, 1) is 
arcwise connected.) Conclude by induction that nl(CP") = 0. Does the same 
proof work for HP"? Why does it not work for RP"? 

11. Let X = { (x,  y )  E RP" x RP" I x = * or y = *}. ( X  is two copies of RP" 
with one point * in common.) Calculate q ( X ,  *). Is this group finite? 
12. Show that nl(X, *) acts as a group of homeomorphisms on 8 by using 

7.2 and 7.3. (This means that for all o E nl(X), there is a homeomorphism 
T, : r? +X" such that T, 0 Tp = Tap,  TI = 1.) Prove that n T ,  = n, and that 
the action is without fixed points. (This means that if for some x EX" and 
some o E nl(X, *), T,(x) = x, then o = 1.) (Exercise 14, Section 1 1 )  

+ X is a covering space. 
Show that each component of 2 is mapped homeomorphically by ll onto X .  
(26.10) 

13. Suppose X is simply connected and n: 

14. The Klein bottle is defined as the quotient space: 

K =  s' x Z/(z, 0) - (z-1, 1). 

Calculate nl(K).  What is nl(K)/[nl(K),  nl(K>] ? 
15. Let ll: E + B  be an n-fold covering space (Lee, Il-'(x) consists of 

n points, for all x E X ) .  Show that II,: nl(E, *) -+ n,(B, *) is the inclusion of 
a subgroup of index n. 
16. Find a double covering II: S' x S' + K where X is from Exercise 14. 

Calculate II, . Is the image of ll, normal? 
17. Let X be a " sphere with two handles," pictured in Fig. 7.9. X is the 

quotient of two spaces homeomorphic with S' x S' - D where D is a small 
open disk by identifying the boundary circles. Calculate n, (X) .  
18. Let X be a Hausdorff space and n a finite group of homeomorphisms 

of X such that if o E n, x E X ,  ox = x, then o = 1 .  Define X / n  to be the set 
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Figure 7.9 

of equivalence classes where x - y iff there exists a E n with x = ay. Show 
that the natural map X -, X/n is a covering space. (Exercise 19) 

19. In Exercise 18 let n = Z p  and X = S2"-' = {(z~, . . , , z,)l C I zil = 1)). 
Define o(q, . . . , 2,) = (Aq, . . . , 22") where A = eZni 'p  and cr generates 
2,. Write L2,,-l(n) = X/n. L2n-l(n)  is called a Lens space. Prove that 
t2,-,(Z2) = RP2"-' and n l ( L 2 n - l ( Z p ) ) z  2, if n > 1. (Exercise 22, Section 
26; appendix to Section 27) 

20. The Mobius band is the space 

M can be imbedded in R3 (i.e., A4 is homeomorphic to a subspace of R3).  
Show that M" -= RP2 

21. Let D' = (B2 - S')  u {(I, O)}. Show that D' f B2 - S'.  
22. Prove that 9: 2 + nl(S1, *) is an isomorphism by using Exercise 3, 

Section 5 instead of 7.6. 



A Convenient Category of Topological Spaces 

In this section we shall describe the category of compactly generated 
Hausdorff spaces. This contains almost all important spaces in topology, 
and restricting to  this category and its internal operations provides stronger 
results with usually cleaner statements. It is our purpose to develop some 
of these results. This section contains excerpts from a typically well-written 
and definitive paper by Steenrod [68] .  

Definition 8.1 A compactly generated Hausdorff space is a Hausdorff 
space with the property that each subset which intersects every compact 
set in a closed set is itself closed. We denote by (39 the category of compactly 
generated Hausdorff spaces and their continuous maps. 

Lemma 8.2 If X is a Hausdorff space and if for each subset M and each 
limit point x of M there exists a compact set C in X such that x is a limit 
point of M n C, then X E CG. 

Briefly, if each limit relation in X takes place in some compact subset of 
X ,  then X E (33'. 

Proof Assume M meets each compact set in a closed set, and let x be a 
limit point of M .  By the assumption, there exists a compact C such that x 
is a limit point of M n C. Since M n C is closed, we have the relation x E 
M n C, hence x E M .  So M is closed and X E CG. I 

Proposition 8.3 The category (36 includes all locally compact spaces and 
all spaces satisfying the first axiom of countability (for example, metrizable 
spaces). 

50 
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Proof In both cases we apply 8.2. If Xis  locally compact, we take C to 
be the compact closure of a neighborhood of x, and if Xis first countable, C 
is taken to consist of x and a sequence in M converging to x. I 

Remark The condition in the hypothesis of 8.2 is not equivalent to 
X E CG; there is an example of a space in (3% for which the condition does not 
hold. 

These results show that C% is large enough to contain most of the standard 
spaces. Perhaps the simplest example of a Hausdorff space not in (3% is the 
following : 

Example Let Y denote the ordinal numbers preceding and including the 
first noncountable ordinal R. Give to Y the topology defined by its natural 
order. Let X be the subspace obtained be deleting all limit ordinals except R. 
The only compact subsets of X are the finite sets, because each infinite set 
must contain a sequence converging to a limit ordinal of the second kind. 
Therefore the set X - R meets each compact set in a closed set, but is not 
closed in X because it has R as a limit point. 

The example shows that a subspace X of a compactly generated space Y 
need not be compactly generated. However, the following results show that 
certain subspaces are in (3s. 

Proposition 8.4 If Xis in CG, then every closed subset of X is also in '2%. 
An open set U of X is in (3% if it is a '. regular '' open set, that is, if each point 
x E U has a neighborhood in X whose closure lies in U .  

Proof Suppose A is closed in X and B c A meets each compact subset 
of A in a closed set. Let C be a compact set in X.  Then A n C is a compact 
set of A ;  hence B n ( A  n C )  = B n C is closed in A .  Since A is closed, 
B n C is closed in X. Because X E Cs, it follows that B is closed in X ,  hence 
also in A .  So A E (3%. 

Let U be a regular open set in X ,  suppose B c U meets each compact set 
of U in a closed set, and let x E U be a limit point of B. By assumption, there 
is a neighborhood Vof x in X with closure Vc U. If C is compact in X ,  then 
V n  C is a compact set of X in U. Since it is also compact in the relative 
topology of U, it follows that B n V n  C is closed first in U, then in V n  C ,  
and finally in X .  Because Cis any compact set in X and X E (3S, it follows that 
B n Vis closed in X .  Since x is a limit point of B n 
hence x E B, so B is closed in U. a 

- 

we see that x E B n 

Proposition 8.5 Iff: X + Y is a quotient map, X E CG and Y is a Hausdorff 
space, then Y E  CG. 
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Proof Suppose B c Y meets each compact set of Y in a closed set. Let C 
be a compact set in X .  Then f ( C )  is compact, hence B nf(C) is closed, so 
f - ' ( B  nf(C)) is closed, and therefore f - ' ( B  nf(C)) n C is closed. Since 
this last set coincides with f - ' ( B )  n C, it follows that f - ' ( B )  meets each 
compact set of X in a closed set. Because X E  CG, this means that f - ' (B)  is 
closed. Sincefis a quotient map, B must be closed in Y. This shows that 

The preceding results show that CG is large in the sense that it contains 
many spaces. By definition, it contains all continuous maps between any 
two of its spaces. The following proposition sometimes facilitates the recog- 
nition of the continuity of a function. 

Y E C G .  I 

Proposition 8.6 If X E C8, Y is a Hausdorff space, and a function8 X 
is continuous on each compact subset of X ,  then f is continuous. 

Proof Let A be closed in Y, and let C be compact in X .  Since Y is a 
Hausdorff space andfl is continuous, f(C) is compact, hence closed in Y. 
This implies that A nf(C)  is closed, hence also 

Because X E  CG, it follows thatf-'(A) is closed in X ,  and this shows thatfis 
continuous. I 

Y 

( f l  CP(A nf(C)) = (f-'(AN n c. 

Definition 8.7 If X is a Hausdorff space, the associated compactly gener- 
ated space k ( X )  is the set X with the topology defined as follows: a closed 
set of k ( X )  is a set that meets each compact set of X in a closed set. If 
f : X -t Y is a mapping of Hausdorff spaces, k(f) denotes the same function 
k(X) - tk(Y) .  

Theorem 8.8 
(i) The identity functionk(X) --+ Xis continuous. 
(ii) k(X)  is a Hausdorff space. 

(iii) k ( X )  and X have the same compact sets. 
(iv) ~ ( X ) E  S. 
(v) If X E  (3'3, then I :  k ( X )  + X is a homeomorphism. 

(vi) Iff: X -+ Y is continuous on compact sets, then k(f) is continuous. 
(vii) I* : z,,(k(X), *) --$ z,,(X, *) is a 1-1 correspondence for all n and all *. 
The theorem can be paraphrased by saying that k is a retraction of the 

category X of Hausdorff spaces into CS. 

Proof If A is closed in X ,  and C is compact in X ,  then C is closed in X ,  
hence also A n C. This means that A is also closed in k(X) ,  and this proves (i). 
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Since X is a Hausdorff space, (i) implies (ii). If a set A is compact in k ( X ) ,  
then (i) implies that A is compact in X .  Suppose now that C is compact in X ,  
and C' denotes the set C with its relative topology from k ( X ) .  By (i), the iden- 
tity map C' -+ C is continuous; we must prove the continuity of its inverse. 
Let B denote a closed set of C'. By definition, B meets every compact set of 
X in a closed set; therefore B n C = B is closed in C. Thus C + C' is con- 
tinuous; this shows that C' is compact, and (iii) is proved. If a set A meets 
each compact set of k ( X )  in a closed set, then by (iii), it meets each compact 
set of X in a compact (hence closed) set ; therefore A is closed in k( X ) ,  and 
(iv) is proved. (v) follows directly from (iv). To prove (vi), it suffices by 8.6 
to prove that k(f) is continuous on each compact set of k ( X ) .  Let C' be com- 
pact in k ( X ) ;  by (iii), the same set with its topology in X (call it C )  is compact 
and the identity map C' + C is a homeomorphism. Sincef I is continuous, 
f(C) is compact, and by (iii), so is the same set f(C') with its topology in 
k( Y). Thus the function k( f) I cr : C' -f(C) factors into the composition 
of f l c  and two identity maps C' + C -+ f(C) -+ f(C'). Hence k ( f ) ( , ,  is 
continuous, and (vi) is proved. By (vi), the maps of closed cells into Xcoincide 
with those into k ( X ) ;  this implies (vii) because the sets in question are 
derived from such mappings. I 

Given X, Y E  CS, it may happen that X x Y, the product space with the 
usual Cartesian product topology is not in CG. 

Definition 8.9 If X and Y are in CG, their product X x Y (in CS) is 
Y ) ,  where x denotes the product with the usual Cartesian topology. k ( X  x 

Theorem 8.10 The product defined in 8.9 satisfies the universal property: 
There are continuous projections nl : X x Y -+ X and 7c2 : X x Y -+ Y such 
that iff: W + X and g: W -+ Y are continuous, and W is in (33, there is a 
unique map F :  W + X x Y with f = n,F and g = n2 F. 

Proof Since by 8.8 the identity function X x Y -+ X x Y is continuous, 
and since the projections X x Y into X and Y are continuous, their com- 
positions projecting X x Y into X and Yare continuous and, hence, belong 
to CG. Let W E  CS, and let f and g be maps W -+ X and W -+ Y in CS. As 
usual, f and g are the components of a unique mapping (f, 9): W -+ X x Y. 
Applying k and using the facts k( W )  = W and k(X x Y) = X x Y, we 
obtain a unique mapping k(f, g) : W -+ X x Y which, when composed with 
the projections, givesf and g. I 

It follows from 8.10 that the product X x Y in CS satisfies the usual com- 
mutative and associative laws. We can extend the construction to products 
having any number of factors, by applying k to the usual product. 
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Having modified the concept of product space, we should note what effect 
this has on other concepts that are based on products such as topological 
group G (G x G --+ G), transformation group G of X (G x X - +  X ) ,  and 
homotopy (I x X -+ X ) .  If we restrict ourselves to G and X in CQ, any multi- 
plications G x , G --+ G or actions G x , X -+ X that are continuous in the old 
sense remain continuous when we apply k. Thus the effect of the new definition 
is to allow an increase in the number of groups and actions. The following 
theorem asserts that in many cases there is no change; in particular, the con- 
cept of homotopy is unaltered. 

Theorem 8.11 If X is locally compact and Y E  CQ, then X x , Y is in eG; 
that is X x Y = X x ,  Y. 

Proof Let A be a subset of X x ,  Y that meets each compact set in a 
closed set, and let (xo , yo) be a point of its complement. By local compact- 
ness, xo has a neighborhood whose closure N is compact. Since N xcyo is 
compact, A n ( N  x,yo) must be closed. It follows that xo has a smaller 
neighborhood U such that D x , yo does not meet A .  Let B denote the pro- 
jection in Y of A n (D x , Y). If C is a compact set in Y, then A n ( U  x C )  
is compact, and therefore B n C is closed. Since Y E  CQ, B must be closed 
in Y. Since yo is not in B, i t  follows that U x (Y - B) is a neighborhood of 
(xo , yo) not meeting A .  This proves that A is closed; hence X x Yis in CQ. 

In  the category of compact spaces, it is well known that a product of de- 
composition spaces has the topology of the decomposition space of the pro- 
duct. It is not difficult to find counterexamples involving noncompact spaces. 
However, the following theorem asserts that each such uses either spaces 
not in CS or the wrong product. 

Theorem 8.12 Iff:  X -+ X' and g: Y -+ Y' are quotient mappings in CQ, 

Proof Sincefx g factors into the composition ( f x  1)(1 x g), and since 
a composition of quotient maps is a quotient map, it suffices to prove the 
special case where Y = Y' and g is the identity. Suppose then that A c X' x Y 
and that ( f x  l)-'(A) is closed in X x Y. Let C be a compact set in X' x Y, 
and let D and E denote its projections in X' and Y, respectively. Then D x E 
is compact. If we can show that A n (D x E )  is closed, it will follow that 
A n C is closed, and since X'  x Y is in CQ, this will show that A is closed, 
and the proposition will be proved. Since ( f  x l ) - ' (D x E )  = f -'(D) x E 
is closed in X x Y,  it follows that (f x l)-'(A n (D x E)) is closed in 
f -'(D) x E. Substituting X ,  X', Y for f - ' ( D ) ,  D, E, respectively, we have 
reduced the proof to the case where X' and Y are compact. Then, by 8.11 
X ' x  Y = X ' x , Y a n d X x  Y = X x , Y .  

then f x g: X x Y -+ X' x Y'is also a quotient mapping. 
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Suppose then that W c X' x Y, ( f  x l)-'(W) is open in X x Y, and 
(xo', yo) E W. Choose xo E X so that f(xo) = xo', Since (xo, yo) is in the 
open set ( f  x l)-'( W )  and Y is compact, there exists a neighborhood V of 
yo such that xo x Vlies in ( f  x l)-'(W). Let U denote the set of those x E X 
such that f ( x )  x Vc W. To see that Uis open in X ,  let x1 E U. We can cover 
x1 x Vby products of open sets contained in ( f  x l)-'(W), and we can select 
a finite subcovering; then the intersection of the X factors of these products 
is a neighborhood N of x1 such that N x V lies in ( f  x l)-'( W). Therefore 
Uis open. By its definition, U =  f -I( f(U)); hence f ( U )  is open in X', because 

f is a quotient map. Since (xo', yo) is in f ( U )  x V, and since f ( U )  x V is 
open and contained in W, it follows that W is open. I 

Lemma 8.13 If X and Y are Hausdorff spaces, then the two topologies 
k ( X )  x k( Y) and k ( X  x Y) on the product space coincide. 

Proof Since the identity maps k ( X )  3 X and k( Y) --t Y are continuous, 
so also is the identity map 

g : k ( X )  x c k ( Y ) - + X x c  Y ;  
hence each compact set of k ( X )  x k( Y )  is compact in X x Y. Let A be a 
compact set of X x Y. Since its projections Band C in X and Y, respectively, 
are compact, they are also compact in k ( X )  and k( Y), respectively. Therefore 
B x C is a compact set of k ( X )  x k( Y); hence 91 c c  is bicontinuous. 
Since A c B x C, it follows that A is compact in k ( X )  x .k( Y). Because 
k ( X )  x k( Y) and X x Y have the same compact sets, it follows from Defi- 
nition 8.7 of k that their associated topologies in CS coincide. 

For Hausdorff spaces X ,  Y, let C ( X ,  Y) denote the space of continuous 
mappings X + Y with the compact-open topology. We recall the definition: 
If A is a compact set of X and U is an open set of Y, let W(A, U) denote the 
set off  E C ( X ,  Y )  such that f ( A )  c U ;  then the family of W(A, U) for all 
such pairs (A ,  U )  forms a subbasis for the open sets of C ( X ,  Y ) .  Although 
X and Yare in (39, it may happen that C(X, Y) is not in CS. 

I 

Definition 8.14 For Hausdorff spaces X ,  Y, define Y x  = kC(X, Y) .  

Lemma 8.15 The evaluation mapping e: C(X, Y )  x X + Y, defined by 
e ( f ,  x) =f(x), is continuous on compact sets. If X and Yare in C9, then e is 
continuous as a mapping Y x  x x-, Y. 

Proof Since any compact set of the product is contained in the product 
of its projections, it suffices to show that e is continuous on any set of the 
form F x A,  where F is compact in C ( X ,  Y), and A is compact in X .  Let 
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(fo , xo) E F x A ,  and let U be an open set of Y containing fo(xo). Since f, 
is continuous, there exists a neighborhood N of x, in A whose closure satisfies 
f , ( N )  c U. Therefore (W(m, U) n F )  x N is open in F x A ,  it contains 
(f,, x,), and it is mapped by e into U. This shows that e is continuous on 
compact sets . 

By 8.8(vi), if we apply k to e: C(X,  Y )  x X -+ Y, we obtain a continuous 
mapping. When X E CQ, the left side gives, by 8.13, 

k(C(X, Y )  x X )  = k(C(X, Y))  x k ( X )  = Y X  x X ;  

and when Y E  CQ, the right-hand side becomes k( Y )  = Y. a 
Lemma 8.16 If X is in CQ, and Y is a Hausdorff space, then C(X, k( Y ) )  

and C(X, Y )  are equal as sets, and the two topologies have the same compact 
sets, hence k(C(X, k( Y ) )  = k(C(X,  Y ) )  as spaces in (3%. 

Proof Iff:  X + k (  Y )  is continuous, so is its composition with k( Y )  -+ Y,  
and therefore f E C(X, Y) .  Conversely, if f: X - +  Y is continuous, then 
k(f): k ( X )  -+k( Y )  is continuous from X to k( Y ) .  Thus C(X, k( Y ) )  and 
C(X,  Y )  coincide as sets of functions. Since k( Y )  -+ Y is continuous, it follows 
that the identity map C(X, k( Y ) )  -+ C(X,  Y )  is continuous. This implies that 
each compact set in C(X, k( Y)) is also compact in C(X, Y ) .  

Now let F c C(X,  Y )  be a compact set in its relative topology in C(X,  Y ) .  
Let F' denote the same set with its relative topology in C(X, k( Y ) ) .  We wish 
to prove that F' is compact. I t  suffices to show that each open set W of 
C ( X ,  k( Y ) )  meets F' in an open set of F, because this implies that the inverse 
correspondence F -+ F' is continuous, whence F is compact. It obviously 
suffices to prove this when W is a subbasic open set W(C, U) ,  where C is 
compact in X ,  and U is open in k( Y ) .  Suppose then that fo E W(C, U) n F. 
Since F x C is compact, and since by 8.15 the evaluation mapping e: I; x 
C -+ Y is continuous, it follows from 8.8 that it is also continuous as a map- 
ping F x C -+ k( Y ) .  Hence e- ' (U) is an open set of F x C. Since Cis  compact 
andf, x C c e- ' (U) ,  there exists an open set V of F containingf, such that 
V x C c e-'(U). It follows that fo E V c W(C, U). Hence W(C, U) n F is 
open in F. This shows that F' is compact, and it completes the proof that the 
two topologies have the same compact sets. I t  follows now from Definition 
8.7 of k that their associated topologies in CG are equal. I 

Theorem 8.17 If X ,  Y,  and 2 are in CQ, then 2'" 3 (2')" 

Proof We shall first construct a natural homeomorphism 

(A) p: C( Y x X ,  2) -2 C(X,  C( Y, 2)). 
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Corresponding to an f E  C(Y x X, Z ) ,  define p ( f ) :  X-+ C(Y,  2) by 
((p(f))(x))(y) = f ( y ,  x) .  To see that for each x, ( p ( f ) ) ( x )  is continuous from 
Y to 2, suppose it carries yo into the open set U of 2. Then f ( y o ,  x) E U, 
and the continuity off  gives an open set V of Y containing yo such that 
f( V x x) c U; therefore (p( f ) ) (x )  maps V into U. We must now prove 

(B) If f E C( Y x X, Z ) ,  then p(f): X -+ C( Y, 2) is continuous. 

Let W(B, U) be a subbasic open set of C( Y, Z ) ,  and suppose that ( p ( f ) ) ( x , )  E 

W(B, U). Then f ( B  x x,) c U. Since U is open and B is compact, there is a 
neighborhood N of xo such that f ( B  x N )  c U. This implies ( p ( f ) ) ( N )  c 
W(B, U), and it proves (B). 

To prove the continuity of p, we start with the continuity of the evaluation 
mapping rearranged as 

e :  Y x  X x  C ( Y x  X , Z ) - + Z  
(see 8.15). If we apply B with X replaced by X x C( Y x X, Z ) ,  we find that 

p(e): X x  C ( Y x  X , Z ) - + C ( Y , Z )  
is continuous. Apply (B) again, with X replaced by C( Y x X ,  Z ) ,  Y by X, 
and 2 by C( Y, 2); then 

p(p(e)) : C( Y x X, Z )  -+ C(X,  C( Y, 2)) 

is continuous. It is readily verified that p(p(e))  coincides with p of (A). 
To show that p has a continuous inverse, let 

e: X x C(X,  C( Y, Z ) )  -+ C( Y, Z), e': Y x C( Y, 2) + Z  

be evaluation mappings. By 8.15 the composition 

e'(1 x e) :  Y x X x C(X,  C(Y,  2)) -2 

is continuous. Applying (B) with X replaced by C ( X ,  C( Y,  Z) ) ,  Y by Y x X, 
and Z by 2, we see that 

p(e'( 1 x e)) : C(X,  C( Y, 2)) -+ C( Y x X ,  2) 

i s  defined and continuous. It is readily verified that p(e'(1 x e)) is the inverse 
of p in (A). 

We now apply the functor k to both sides of (A). On the right hand side 
we use 8.16 to obtain 

kC(X, C( Y, 2)) = kC(X, kC( Y, 2)) = (Z')". 

On the left side we obtain kC( Y x X ,  2) = Z y  '. I 
Theorem 8.18 For X, Y, and Z in eG', the composition of mappings 

x -+ Y -+z is a continuous function Z" x Y" -2". 
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Proof By 8.15, the mappings 
1 x e  zyx  Y X x X - Z Y x  Y 2 Z  

are continuous, hence e’( 1 x e) is also continuous. Applying B with Xreplaced 
by Zy x Yx, Y by X ,  Z by 2, and f by e’(1 x e), we see that 

p(e’(1 x e)): Z y  x Yx + C ( X ,  Z )  

is continuous. Then k(p(e’(1 x e ) ) ) :  Z y  x Y x  + Z x  is also continuous. I 

Definition 8.19 We denote by C((X,  A) ,  ( Y ,  B))  the space of continuous 
mappings of pairs ( X ,  A )  + ( Y ,  B). It is the subspace of C ( X ,  Y )  of maps f 
such that f(A) c B. We abbreviate k(C((X,  A ) ,  ( Y ,  B))) by ( Y ,  B)(X9A).  The 
smash product’ X A Y is obtained from X x Y by collapsing the wedge 
X v Y = ( X  x *)  u (* x Y )  to  a point that is the base point of X A Y. This 
is Hausdorff (see Exercise 6 ) .  Define the function space of mappings of pointed 
spaces by 

( X ,  *)(Y* *) = k(C((X,  *I, ( Y ,  *I)), 
where its base point is the constant map. 

Our objective is to prove the analog of the exponential rule 8.17 in CS*; 
but we need a preliminary result. Let X E  CS, and let A be a closed subspace 
of X such that X / A  is a Hausdorff space. Recall the collapsing map 
pa : ( X ,  A )  - ( X / A ,  *). Let Y E  CS*. By composing a mapf: X / A  + Y with 
pa ,  we obtain f p A  E C((X,  A ) ,  ( Y ,  *)), and this defines a mapping of func- 
tion spaces 

(pa)*: C(X/A,  Y )  C( (X ,  A) ,  ( Y ,  *)I. 

Lemma 8.20 The above mapping (pa)* is continuous and one-to-one 
(bijective), and it sets up a one-to-one correspondence between compact 
subsets. Hence, applying the functor k,  we obtain an induced natural homeo- 
morphism 

( y, * ) ( X / A .  *) ( y, *)(W* 

Proof The continuity and bijective properties are readily proved. The 
crucial point is to  show that if F is a compact subset of C((X, A ) ,  ( Y ,  *)), 
then (p , )* - ’ (F)  is compact. It suffices to show that (pA)* is continuous on 

’ When considering functors like X A Y and X V Y it is necessary to have base points 
in order to define them. Hence it is not necessary to include the base point in the notation 
(unless for some reason, more than one base point is being considered), and it is almost 
always suppressed. 
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F. Suppose go E F and W(C, U) is a subbasic open set of C(X/A ,  Y )  containing 
(pA)*- ' (gO) .  This means that gOpA maps C into U. In case C does not con- 
tain the base point *, then p a l ( C )  is compact in X and W(pA1(C), U) is an 
open set that contains go,  and is mapped into W(C, U) by ( p A ) - ' .  

Suppose therefore that C contains *. Since F is compact, the evaluation 
mapping e: F x X - ,  Y is continuous, by 8.15. Since e(F x A )  = * and 
F x ( X / A )  is the decomposition space of F x X obtained by collapsing 
F x A to F x * (see 8.12), it follows that e induces a continuous mapping 
e': F x ( X / A )  --t Y.  Since e'(go, *) E U, there exist a neighborhood V of go in 
F and a neighborhood N of * in XIA such that e' maps V x N into U. Set 
C' = C - C n N ;  then C' is compact and does not contain *. It follows that 
V n W(pA1(C'), U) is a neighborhood of go in F, and any g in this neighbor- 
hood will map (pA) - ' (N)  into U because g E  V, and it will map (pA)-'(C') 
into U because g E  W(pA1(C'), U). Since C c  C'u N ,  it follows that 
( P A ) * - l ( S ) E  W(C, U) .  I 

Theorem 8.21 If X ,  Y, Z are in CG*, then 
( Z ,  *)( y A x, *) - = [(Z, *)( y, * ) ] ( x ,  *). 

Proof Abbreviate the wedge ( Y x *) u (* x X )  by W. If in 8.20 we replace 
Y by Z and (A', A )  by ( Y  x X, W),  we obtain the natural homeomorphism 

( Z ,  *)( k' A x,*) E (2, *)( y x,w). (C)  

The space on the right of ( C )  is a subspace of Z'" which, by 8.17 is homeo- 
morphic to (2')". It is readily verified that, under the latter homeomorphism, 
(2, *)(" corresponds exactly to [(Z, *)('#*) I ('* *). I 

Theorem 8.22 There are natural homeomorphisms 

(a) X A  ( Y A  Z ) E ( X A  Y ) A  Z, 
(b) X A  Y E  Y A  X ,  
(C) ( X V  Y ) A  Z=(xA z ) V  ( Y A  z). 
Proof Consider the composite 

I X f  
X X  ( Y X z ) -  X X  ( Y A  Z ) A  X A  ( Y A  2); 

since they are both quotient maps (by 8.12), their composite is also. Hence 
both X A ( Y  A 2) and (X A Y )  A 2 are quotient spaces of X x Y x 2 
under the same identifications, and are consequently homeomorphic. Similarly 
X A Y and Y A X are quotient spaces of X x YE Y x X. (c) is proved 
similarly after one establishes 
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Lemma 8.23 X v  Y has the quotient topology on the disjoint union 

Proof Since the inclusions X- X u Y and Y -k X u  Y are contin- 
uous, they determine a continuous map X u Y - X v Y. Let F c X v Y 
and suppose f - ' ( F )  is closed. Then iF1(F) and i; '(F) are closed. Now 
F = c;'(F) x * u * x i;'(F) is closed in X x Y and hence in X x Y. 1 I 

X u  Y .  

f 

Theorem 8.24 The homeomorphism of 8.21 induces a 1-1 correspondence 

6: [(x, *I, (2, *>'r'*)l + [( y A X ,  *), (2, *)I. 
Thus the base point preserving homotopy classes of base point preserving 

maps from Y A X to Z are in 1-1 correspondence with the same from X to 
( Z ,  * ) ( y i * ) .  Sometimes we use the sloppier notation 

[ Y A  X , z ] W [ X , z y ]  

to represent this fact if it is understood that X ,  Y, Z E  CS*. This property 
is called adjointness; it will be utilized in the next two sections. 

Proof Suppose go - g1 : ( Y  A X,  *) -+ (2, *). Let 
G: ( ( Y A  X )  X 1, * X I ) + ( z ,  *) 

be a homotopy. Consider G :  ( Y x X )  x I --t 2 given by 
c Y X x X 1 * ( Y A  X ) X I - z  

where j? is the quotient map. This is continuous, hence 

F:  X x I+2' 

given by 8.17 is also continuous. It is easy to see that F(y, t )  E: (Z ,  * ) (x , * ) ,  
F(y, 0) =fo(y), F(y, 1) = fl(y) where f o  and fl correspond to go and g1 under 
8.21. Finally F(*, t )  = *, hence F :  fo -fl. The converse is similar. 1 

Exercises 

l.* Showthat X x ( Y x Z ) = ( X x  Y ) x Z a n d  X x  Y E  Y x  X, where 

2. Prove that if Y is Hausdorff, C(X, Y) is Hausdorff. 
3. Show that if, X ,  Y, 2 E (39, ( Y  x Z)" = Y" x Z". (Hint: First prove 

4. Show that if fo - fl : (2, *) + ( Y ,  *)('**) then go -gl: (2 A X ,  *) -, 

x is the product in CG'. 

C(X,  Y x 2) E C(X, Y )  x C(X, Z) . )  

( Y ,  *), where gi corresponds toft under 8.21. (8.24) 
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5, Suppose X ,  Y, 2 E% and Y is locally compact. Then p: C( Y x X ,  Z )  --* 
C(X, C( Y, Z ) )  is a 1-1 correspondence (compare to  8.17). Conclude that 8.24 
holds with ( Z ,  *)('**) replaced by C(( Y, *), (Z,  *)) if X ,  Y, and 2 are as above. 
This is the classical version of 8.17 and 8.24. 

6. Prove that if X and Yare Hausdorff, X A Y is Hausdorff. (27.9) 
7. If X ,  E CS for each u, let LIX, be the disjoint union of the A', with a 

topology such that D c L I X ,  is open iff D n X ,  is open in X ,  for each u. 
Show that LIX, E CS. In the case of two spaces this is written X L1 Y. Show 
that LI is commutative and associative up to homeomorphism and 

( X  LI Y )  x ZE ( X  x Z )  L l  ( Y x 2). 



Track Groups and Homotopy Groups 

In this section we will show that n,(X, *) = [(I", aZ">, ( X ,  *)] has a natural 
group structure if n 2 1. The composition can be constructed directly, but is 
most easily constructed via the results of Section 8 if X E eS*. The modifica- 
tions necessary to define the composition in general are indicated in the 
exercises. 

There are two basic ways to construct a natural composition among homo- 
toyy classes. The first is to make some assumptions about the domain space. 

Definition 9.1 

We often replace S' by I/O - 1 in this definition. 

S X  = X A S' is called the reduced suspension of X .  

Proposition 9.2 If X and Y are in  CG*, F(X, Y )  = [ (SX,  *), ( Y ,  *)] is a 

Proof 

functor in two variables from C9* to 9. (See [ll].) 

[(S' A X ,  *), ( Y ,  *)] Z [(s', *), ( Y ,  *)"'*'] Z nl(( Y, * ) ( x ' * ) ,  *). 

Furthermore ( Y, *)('**) is a functor covariant in ( Y,  *) and contravariant in 
(X, *). Hence a map 

induces 
f: ( X ,  *) -+ V', +) 

f ': (Y ,  * ) ( X ' * * )  + ( Y, * ) ( X ,  *), 

and thus (f')*: nl((Y, * ) ( x ' 9 * )  , *) -+ nl((y, *)(',*), *); this map is usually 
written 

f* : [ (SX ' ,  *), ( Y, *)I -+ [ ( S X ,  *I, ( y,  *>I; 
62 
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Proposition 9.3 Let C*X = ( X ,  *) A ( I ,  1). Then X c C*X and C*X/X 3 
S X .  Furthermore, (C*(S"-'), S"-') E (B", 3""). 

C*X is called the reduced cone on X 

Proof Let i :  X +  C*X be given by i ( x )  = (x, 0). This is clearly an inclu- 
sion. It is also obvious that C * X / X =  SX by the definitions. Define 
6: (c*(s"-~), ~ " - l )  -+ (B", F-') via 

6(x, t )  = (1 - t ) ~  + t* E B" 
for x, * E S"-'. To find an inverse, apply 2.4 withf(x) = *. We have y(u) = 
p u  + (1 - p ) *  and 

* -+ *, 

is an inverse to 6. (It is a little difficult to show that this is continuous at  *, 
but unnecessary. It is an inverse in S so 6 is 1-1 and onto. Continuity of S 
and compactness of C*(S"-') finish the job.) I 

Proposition 9.4 S(Z"-'/aI"-') = Z"/al" .  This determines a homeomorphism 
9: S(S"-') -+ S" c R"" 

such that q ( x ,  1 - t )  = (q l (x ,  f), . . ., qPn(x, f), - ( P , , + ~ ( X ,  t ) )  E R"". 

Proof Define 
aj: s ( I ~ - ~ / ~ P - I )  -+ r y a r n  

by aj(x,, . . . , x,- I, t )  = (xl, . . . , x " - ~ ,  t ) .  This is clearly a homeomorphism 
since S(Z"-'/aI"-') is compact. To define 9 we must use the homeomorphism 
of 1.9. The homeomorphismf,: S" I"/aI" is given by 

2 
f;l(x,, . . . , x,+~)  = - 1 + -tan-' - :: :,>,..., I +-tan- '  (?-+:)I - 2 7 1  Y 71 
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CoroIIary 9.5 S" = S' A * ' *  A S'. 

Proof This follows by induction. I 

Recall that n,(X, *) = [(I", W),  ( X ,  *)I. (See the remark before Exercise 7, 
Section 4.) 

corollary 9.6 n, is a functor from CG* to '2 for n 2 I ; n,(X, *) is called 

Proof 

the nth homotopy group of X (at *). 

."(X, *> 4 2  [@", *I, ( X ,  *)I- [(SS"-'> *), ( X ,  *)I 
The result now follows from 9.2 since all of these correspondences are 
natural. I 

Alternatively, we can define a composition among homotopy classes by 
making assumptions about the range space Y. The appropriate structure on Y 
is the following generalization of a topological group : 

Definition 9.7 An H-space ( X ,  p) is a space X with base point e and 
a continuous map p: ( X  x X ,  e x e) -, (X, e) called the multiplication 
such that pI x v x  - V in %*, where V :  X v X - ,  X is the "folding map," 
V(x, e) = V(e, x )  = x. (Clearly V is well defined, continuous, and base point 
preserving.) We make no assumption about associativity or inverses. ( H  
stands for Hopf who first studied such spaces [30].) 

Proposition 9.8 Suppose (X, p) is an H space. Then [( Y, *), ( X ,  e)] has a 
multiplication with two-sided unit, which is natural with respect to Y. 

Proof Given f, g :  ( Y ,  *) --t ( X ,  e),  we define f * g: (Y, *) -+ ( X ,  e)  by 

( f  * g)W = f cv) * d Y ) *  
Clearly ( f  * g)( * )  = *. Let * be the trivial map given by *(y)  = e for all y .  Then 
* g - g - g * *. We must show that f *g depends only on the homotopy 
classes o f f  and g. Suppose F, G :  ( Y  x Z, * x Z) -+ ( X ,  e )  are homotopies 
with F(y, 0 )  = f o ,  F(y, 1) =A,  G(y, 0)  = g o ,  G(y, 1) = gl. Then 

H :  (Y x I ,  * x Z) -+(X ,e )  

given by 

N y ,  t )  = w, 0 ' G(Y, 0 
is a homotopy from f o  *go  toyl *gl. The naturality is immediate. I 
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Proposition 9.9 If (Y ,  e) is an H-space, the two multiplications in 
[ (SX,  *), (Y ,  e)] are the same, and they are commutative. 

Proof Let f, g :  (SX,  *) -+ (Y ,  e).  By Exercise 1, their product f g in 
[ (SX,  *), ( Y ,  e) ]  “induced by the suspension structure” is given by 

O l t I t  
4 I t I 1. ( f  g)(x, t )  = [ 2t)7 

f (x,  2t - I), 

Their product “ induced by the H-space structure ” is given by 

(fa g)(x, t )  = p ( f  (x, 0, g(x, 0). 

These two multiplications are “ independently defined,” and consequently 
“commute” with each other. This is expressed by the formula 

(fo9)’(S’09’) =(f*f‘)o(9‘9f).  

P(f ’(x, 2 0 ,  gYx, 2t ) ) ,  

In fact both sides of this equation are given by the formula 

O I t I *  
t I t I 1. ( p(f(x, 2t - I), g(x, 2t - l)), h(x, t )  = 

The two multiplications are linked together by the fact that they both have 
a common unit, namely the trivial map. Letting g = f ’  = 1, this formula 
reduces to 

f .9 ’  = f o g ’ ,  

g * f ’  = f ’ o g ;  
hence the multiplications are equal. Lettingf= g’ = 1 ,  this reduces to 

hence the multiplication is commutative. I 

Definition 9.10 RX = {o E X’ lo(0)  = w(1) = *}. RX is called the loop 
space on X .  

As in the case of the suspension, we suppress the base point * from the 
notation unless there will be confusion. We write R“X = R(!2”-’X) and 
choose the constant loop at * as the new base point. By 8.20 RX = ( X ,  *)(‘***). 

Theorem 9.11 If II 2 1, R”X is an H space. 

Proof It is sufficient to show that RX is an H space. We take the constant 
path * as a unit and path composition (as in q) for a multiplication 

p: nx x RX-rRX. 
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It is given by 
O I t I +  * I t I 1. p(wl, 02) = y t ) ,  

w1(2t - I) ,  

To show that this is continuous, observe that a mapf: Y + X' is continuous 
iff the corresponding map Y x I - .  X given by 8.17 is continuous. 

A homotopy H :  V N pJnxvnx is given by 

S 
O I t I -  2 

and 

S l - - < t I l .  
2 -  

The proof that this is continuous is as above. I 

Proposition 9.12 The 1-1 correspondence 

[ ( S X  *), ( Y? *)I ++ [ ( X  *), (Q y,  *)I 
is an isomorphism. 

formula 

ry 

Proof Letf, 9: ( S X ,  *) + ( Y ,  *). Then bothf.  g andf .  are given by the 

h(x)  = 

Corollary 9.13 

Proof 

n,,(X, *) is abelian if n > 1. 

n n ( X  *) - [W, *), ( X ,  *)I z [(S',  *), (0"- l ( X ,  *), *)I 
= n1(Q"-'(X, *), *); 

since Q"-'(X,  *) is an H-space, n, is abelian. 

Remurk Since n,(X, *) z q ( Q " - ' ( X ,  *). *), one could calculate n, if 
one could calculate n1 of every space. However, not much is known, in a 
geometrical sense, about Q ( X ,  *) (e.g., what would a simply connected 
covering space of R(S2, *) look like?). 

I 
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Proposition 9.14 [S"X, Y ]  has n multiplications given by the n suspension 
coordinates 

9 . . * ?  Sk-1,  2sk, s k + l ,  * * * s n ) ,  o < s k < *  (s(x, f ( x ,  s1 SI 3 * * . , s k - 1 1  2sk - s k + l ,  . . * 3 Sn), 3 5 s k  5 1. (f'kg)(x, sl, . * * 9 sn) = 

They are all equal. 

Proof We use induction on n. By 9.12 there is an isomorphism 

Y ]  z [Sn-'X, QY]  

Thus the last multiplication in [S"X, Y ]  corresponds to the multiplication 
induced by the H-space structure. The first n - 1 multiplications correspond 
to the n - 1 multiplications of [S"- 'X,  QY]  induced by the suspension 
structure. By induction, these are all equal, and by 9.9 they are equal to the 
last one. I 

Exercises 

1. Define a multiplication in [(SX, *), (Y ,  *)I, for X ,  YE%* by 

Show that this agrees with that of 9.2 if X ,  Y E  C%*. Prove that this makes 
[(SX, *), ( Y, * ) ]  into a group. (Think of a map$ (SX,  *) + ( Y ,  *) as a family 
of maps (S', *) + ( Y ,  *) parametrized over X.) (9.9) 

2. Show using Exercise 1 that in 9.6, 9.9, 9.12, 9.13, and 9.14, C%* can be 
replaced by %*. 

3. ( X ,  p )  is said to be homotopy associative if 
l r X 1  X x  X x  X - X x  x 

commutes up to homotopy. ( X ,  p) has a homotopy inverse if there is a map 
v:  X + X such that v(e) = e and 

A 1 x v  X - - . X x X - X x X P ' X  

is homotopic to the constant one mapping all of X to e. Show that if ( X ,  p)  is 
homotopy associative H-space with homotopy inverse, the set [( Y, *), ( X ,  e)] 
has the structure of a group. Fixing ( X ,  e),  show that [( Y, *), (X. e)1 is a functor 
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from the category of spaces with base point to the category of groups and 
homomorphisms. 

4. Give a reasonable definition of a homotopy commutative H space (X, e )  
and prove that if ( X ,  e )  is homotopy commutative [(Y, *), ( X ,  e ) ]  is com- 
mutative. 

5." Show that n,(X, *) z n,,-l(t2(X, *), *). 
6.* Show that C*, defined in 9.3 is a functor 

c*: e9* -tcs*. 
Show that iff: ( X ,  *) --+ (Y ,  *),f~ * (in C9*) iff there is a map g: C* Y + Y 
with 

c*x 

x- Y 
f 

commutative, where i ( x )  = (x, 0). Compare this with Problems 1 and 2, 
Section 2. 
7. If *1 and *2 E X are two base points in the same arc component, a path 

p from to * 2  defines as isomorphism 

yp: n,(X, *I) n,(X, *2). 

If X is simply connected, this isomorphism does not depend on the choice of 
paths. (Exercise 14, Section 11) 

8. Let Z be the integers with the discrete topology and let p :  Z x Z + Z be 
addition. Show that [ X ,  Z ]  with the multiplication induced by 9.8 is isomor- 
phic to hom(A, 2) where A is a free abelian group with a basis in 1-1 cor- 
respondence to the components of X .  

9.* Let nl: X x Y - t  Xand n2: X x Y - t  Y be the projections. Show that 

F: n,(X x Y, *) + n,(X, *) 0 n,( Y, *) 

given by F({y}) = ( { q y } ,  {n2 y}) is an isomorphism (n 2 1). 
10. Use Exercise 7 to show that if X N Y in%, n,(X, *) N n,(X,f(*)) where 

f: X-P  Y is a homotopy equivalence (compare to Exercises 9 and 10 in 
Section 6) .  

11.* Define CX = X x I / X  x 1. CX is called the unreduced cone on X .  
Prove that C :  CG 4 C9 is a functor. A mapf:X + Y is called nullhomotopic or 
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inessential iff is  homotopic to a constant map. Prove that$ X-+ Y is null- 
homotopic iff there is an extension F: CX + Y where i: X -+ CX is the in- 
clusion given by i(x) = (x, 0). Compare with Exercise 6. Prove that CS"-' = 
B". Define EX = CX/X.  E X  is called the unreduced suspension on X. 
Prove that CS"-' E S". 
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Relative Homotopy Groups 

Given a subspace A c X ,  it is natural to try to relate n,(X, *) to n,(A, *). 
This is most easily accomplished by defining new groups n,(X, A,  *) which 
measure the descrepancy. These groups can be defined in two ways. The first 
is to define them to be the homotopy groups of an appropriately constructed 
space (as we did with n, for n > 1). The second is to define them as homotopy 
classes of maps. By appropriate use of adjointness the definitions agree and 
the algebraic relations between n,(A, *), n,(X, *) and n,(X, A,  *) assume (by 
design) a particularly simple form. 

Definition 10.1 Let A ,  B c X .  Define 

Q(X;  A ,  B)  = (0 E X' I o(0) E A ,  w( 1) E B}  c X' 

with the induced topology; if * E A c X ,  let n,(X, A ,  *) = n,-l(Q(X; A ,  *>, *). 
n,(X, A ,  *) is called the nth (relative) homotopy group of ( X ,  A,  *). 

Proposition 10.2 n, is a covariant functor on the category of pairs with 
base point (A', A ,  *), and maps of pairs preserving base point (we will call this 
Z2*.), for n 2 1. It is a group if n 2 2, and is abelian if n 2 3. 

Proof A mapf: ( X ,  A ,  *) -+ (Y, B, *) in%** (i.e., a mapf: A'+ Y with 
f ( A )  c B andf(*) = *) induces a map Qf: n ( X ;  A ,  *) --f a( Y; B, *). This is 
functorial and hence induces 

f*: n,(X, A,  *> --+ n,( Y, B, *). 

f* is a homomorphism if n 2 2 and n, is thus a functor. 

70 
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Consider now [(I"; 81", .I"-'), ( X ;  A,  *)I, the set of homotopy classes of 
maps f :  Z" + X such that f(8Z") c A and f ( J " - ' )  = *. The homotopies 
H: I" x I+ X satisfy H(8Z" x I )  c A and H(J"-' x I )  = *. 

Proposition 10.3 There is a natural 1-1 correspondence 
e n J X ,  A;  *) - [(I"; azn, F l ) ,  (X; A ,  *)I. 

Proof A mapping 
(In-1, aI"-1)/. (n(x; A ,  *), *) c ( X I ,  *) 

determines by adjointness a mapping 
3 

( Z n - 1  x I, a z n - 1  x I)- ( X ,  *). 

One sees that  f (8I")  c A and f (J"- ' )  = *. Hence Jrepresents an element of 
[(I"; az", J"-'), ( X ;  A ,  *)I. Conversely, a map g :  (I"; dI", J-") -, (X; A,  *) 
determines a map S: In-' + X', and one observes that S(dI"-') = *, and 
s(Z"-l) E Q ( X ;  A ,  *). Thus S represents an element of n,,(X, A ,  *). 

Homotopies are also preserved by these transformations; the proof of this 
is left as an exercise. 

There is a continuous map 
1 

d: Q ( X ;  A ,  *) + A ,  d(*) = * 
given by d(w) = ~ ( 0 ) .  This induces a homomorphism 

n,(X, A ,  *) = n,-'(n(X, A ,  *), * ) A n n - ' ( A ,  *), 
which is usually written as 8. 

Lemma 10.4 Under the correspondence 8 of 10.3, a is given by 

ae({f 1) = {f 11"- 1 x 01 

wheref: (Z", 8Z", .In-') -+ ( X ,  A ,  *). 

Proof' This is easy from 10.3 and the definition of d. 

Note that [(I", dI", .In-'), (X, *, *)] = n,(X, *). 
1 

Lemma 10.5 In the case A = *, the 1-1 correspondence 8 :  nJX,  *) + 
nn(X, *, *) is an isomorphism. 

Proof The composition 
0 

nn-,(Q(X, *I, *) "N nn(X, *)-nn(X, *, *) = nn-l(NX> *)7 *) 

is the identity. fl 
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We now have constructed homomorphisms 

i * :  nn(A, *) 3 nn(X, *) 

j*: n,(X, *) 4 nn(X, *, *) -+ nn(X9 A ,  *) 

8: n J X ,  A ,  *) -P nn-l(A, *), 

9 

where j :  ( A ,  *) 3 ( X ,  *) and j :  (X, *, *) + ( X ,  A ,  *) are the inclusions, 

Lemma 10.6 Suppose n 2 1. The compositions 
a 

n,(X, *)A n,(X, A ,  *)- nn- l (A,  *) 

n,(X, A,  *)- nn-JA,  *)A 7cn-l(X, *) 

nJA, *) -.L n J X ,  *)A n,(X, A ,  *) 

a 

are all 0. 

Proof Letf: (Z", dZ") 3 ( X ,  *). Then dj,({f}) is represented by the constant 
map at *. Let S: (I", W ,  Jn- ' )  4 ( X ,  A ,  *). Then i, 8 ( { f } )  = {f 1 I o } .  f 
is a homotopy from f l I n - l X O  to f l I n - l x l  and f( i3P-l  x I) = *. Hence 
i, a({ f>)  = { f i r . -  1) = 0 as elements of n,(X, *). To prove the last com- 
position is zero, we invoke a lemma. 

Lemma 10.7 Let f: (I", dZ", J"- ' )  3 (X, A ,  *). Then f - * in  n,,(X, A ,  *) 
iff there is a map g: I" -+ A and a homotopy H :  f - g  (re1 8Z"). (See 5.1.) 

Proof Supposef- * in n,(X, A ,  *) and let 

K :  (I" x Z, 8Z" x I, J"-' x I )  3 ( X ,  A ,  *) 

be a homotopy with K(x ,  0) = f ( x ) ,  K(x, 1) = *, x E I". Define H by 

H u ,  s, 2st), O I t I +  

K(u, ~ ( 2  - 2t ) ,  s) ,  + I t I 1 m u ,  s, t )  = 

for u E I"-'. The last two coordinates are those of a point pictured in Fig. 
10.1, where s varies linearly from 0 to 1 as the point varies along the line. 
Thus we have a homotopy as t varies from K(u, s, 0) to K(u, 0, s). Clearly 
H(u, s, 0) = f ( u ,  s) and H(u, s, 1) E A while H(u, s, t )  = f ( u ,  s) if (u, s) E dZ". 

Suppose conversely that such a homotopy H exists. H :  f -9, g(Z") c A ,  
and H(x,  t )  = f ( x )  = g(x) for x E dZ". Then f and g represent the same ele- 
nient of n J X ;  A ,  *). We must show that iff: (Z", .I"-') --* ( A ,  *), {f} = 0 in 
n,(X, A,  *). Define 

H :  (I" x z, dZ" x z, J"-' x I )  + ( A ,  A ,  *) c ( X ,  A ,  *) 
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* 
Figure 10.1 

by 
H(u, s, t )  = f ( u ,  s + t - s t )  

H(u, s, 0)  = f ( u ,  s), H(u, s, 1) = *, and H(J"--' x I )  = *. I I 

Lemma 10.8 Let I? 2 1. Consider the sequence 

ifj ,  /3 = 0, fi = i, a for some c1 E n,,(A, *), 
if dy = 0, y = j * p  for some j3 E n J X ,  *), 
if i, 6 = 0, 6 = dy for some y E n,(X, A ,  *). 

This is a converse to 10.6. 

Proof Letj,(/3) = 0 in n,,(X, A ,  *) and let f :  (Z", 8I") -, (X, *) represent p. 
Since j, /3 = 0, f- g (re1 dZ") where g(I") c A .  Thus f - i,({g}) in n,(X, *) 
and (9)  E %(A, *). 

Let i3y = 0 and represent y by 

f: (Z", dZ", P - 1 )  -b ( X ,  A, *). 

SincefJ,,-, - 0 in X , , - ~ ( A ,  *), there is a homotopy H :  I" - + A  with H ( x ,  1) = 
f ( x ,  0) for x E In- ' ,  H ( x ,  0) = *, and H(dZ"-' x Z) = *. 

Define K :  (I" x I ,  dZ" x 1, J"-' x Z) -+ ( X ,  A ,  *) by (see Fig. 10.2) 

H(x, 1 - t + s(1 + t ) ) ,  
f ( x ,  s(1 + t )  - t ) ,  

0 I s  I t/(l + t )  
t /( l  + t )  2 s  I I .  K(x, S, t )  = 

Now K(x, s, 0) = f ( x ,  s) and K(x,  0, I )  = *, so K ( x ,  s, 1): (I", d P ) +  
( X ,  *). K is thus a homotopy between f and a map whose class is in 
j*n,(X, *>. 
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1 

f 

f 0 

H 

1 0 
c 

Kt 
Figure 10.2 

Finally, suppose i ,  6 = 0 and represent 6 by a map 
f: (In-1, d r ' )  -+ (A, *). 

Let H :  I" -+ X be a homotopy f - *. Then H(x ,  0) = f ( x ) ,  H ( x ,  1) = *, 
and H(zr, t )  = * for u E dZ"- ' .  Thus H :  (Z", dZ", J " - ' )  -+ ( X ,  A ,  *) and clearly 
aH=J 1 

We now have a sequence 

nn(A, *) + nn(X, *) -+ TC,(X, A, *) -+ nn-l(A, *) . * .  
. * * + nt(X,  A ,  *) -+ n,(A, *) -+ n J X ,  *) 

such that at any point, an element maps to zero iff it is in  the image of the 
previous map. In the case n > 1 this says that the kernel of a map going out of 
a group is equal to the image of the previous map coming in. Such a sequence 
is called an exact sequence. It is often very useful. For example: 

Corollary 10.9 d :  n,,(Bm, S"'-l, *) -+ TC,,-~(S~-~, *) is an isomorphism for 

Proof nn(Bm, *) = 0 for all n, since (B", *) is contractible. Thus we have the 

n > 1. 

exact sequence 
a 

Now ker d = Im 0 = 0 and Im d = ker 0 = n,-l(Sm-l, *), hence d is 1-1 and 
onto. 1 

In  the case n = 1, d is onto. Since nO(Sm-', *) = *, if m > 1 we have 
nl(Bm, Sm-', *) = *. In  the case rn = I we conclude that no(So, *) has two 
elements. This alone is not enough to conclude that nl(B1, So, *) has two 
elements. 

0 -+ nn(Bm, Sm-' , *)-nn-1(sm-', *)-+O 
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Exercises 

1. Suppose A and X are arcwise connected, A c X ,  and ni(X, A ,  *) = 0 
for i 5 n. Show that the inclusion i: A + X induces an isomorphism 

i,: ni(A, *) + ni(X, *) 
for i < n and is onto if i = n. 

2. Suppose nZ(A, *) = 2 and n2(X,  A ,  *) = 2,. What are the possibilities 
for n,(X, *)? 

3. Prove that nl(B1, So, *) has two elements, where * = - 1. They are 
represented by the trivial map *: I+ * = - 1  and the homeomorphism 
t :  I-+ B' given by t (s)  = 1 - 2s. Show that f- * if f ( 0 )  = -1 and f - t if 
f (0 )  = 1 for any$ ( I ;  0, 1) + @ I ;  So, - 1). 

4. Suppose n,,(A, *) = n J X ,  A ,  *) = 0. Prove n,(X, *) = 0. 
5." In the following diagram, three of the four sine waves are exact 

sequences. Use the diagram and the fact that the composite n,(B, A ) +  
nJX,  A )  + n J X ,  B) is 0 to prove that the fourth is exact. 

(Here, and in the future, we leave base points out of the notation for homo- 
topy groups when the simplification will not lead to confusion.) 

6.* Show that i f f ,  g :  ( X ,  A ,  *) -+ ( Y ,  B, *) andf -g  in Z2*, 

thus if ( X ,  A ,  *) N (Y ,  B, *), nJX,  A ,  *) = n,(Y, B, *). 
7. Show that the natural map 

z: [(I", an, Jn- i ) ,  (X, A ,  *)] -.+ [(I", an, *), ( X ,  A ,  *)I 
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i s  a 1-1 correspondence for * E J"-' c dZ" c I". (Hint: (Z", al" ,  J"") N 

(In, aZ", *).). (16.7) 
8." Define a :  G2* +6* by a(X ,  A, *) = ( A ,  *)and iff: ( X ,  A ,  *) + ( Y ,  B, *), 

a(f) = f l  A .  Show that a is a functor and 
a :  nn -, a 

is a natural transformation. Consequently a map f :  ( X ,  A ,  *) -+ ( Y ,  B, *) 
induces a commutative " ladder " 

a ... I_) n,(X, *) - n&Y, A ,  *) - nn- l (A,  *) - nn-l(X,  *) - ... 
If* 1.. a If* If* 

... - n n ( Y , * ) - n n ( Y , B , * ) - ~ n - ~ ( B , * ) -  nn- l (Y , * ) -+**  

9. Use the method of Section 6 to show that if X 3 A and *', *2 E A are 
base points connected by a path in X ,  n ( X ;  A ,  *') a: N X ;  A ,  *2) (the homo- 
topy equivalence is i nz ) .  Hence n,,(X, A, *') N n,(X, A ,  *2) is n 2 2. 

10. Write out the details for the claim in the proof of 10.3 that homotopies 
in a,,(X, A ,  *) correspond to homotopies in [(I", aZ", .I"-'); ( X ,  A,  *)I. (10.3) 

11. Prove that there is a natural isomorphism 

nn(X v Y,  *) c n,(X x Y, *) 0 n,,+1(X x Y, x v Y,  *) 
- = nJX ,  *) 0 n,( Y, *) 0 nn+l(X x Y,  X v Y, *). 

12. SupposeLg: ( P ,  aZ",J"-') + ( X ,  A,  *) andf'-'(A) = g- ' (A) .  Show that 

13. Show that there is no way to put a group structure on nl(S1 v S' ,  S' ,  *) 
nl(S' v S', S', *)is a homomorphism. (S' c S' v S' 

i f f -g  (relf-'(A)), then {.f} = {g} E n,(X, A ,  *). 

so that nl(S1 v S', *) 
is the inclusion of either of the circles.) 
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Locally Trivial Bundles 

The calculation of  TI^ was made possible by the covering space construction 
and the Van Kampen theorem. The calculation of T I ,  for n > 1 is a much more 
difficult problem, and it is natural to try to generalize these techniques. 
There is no known generalization of Van Kampen's theorem, but quite an 
extensive generalization of covering space theory. We shall describe here a 
generalization of covering spaces called locally trivial bundles. We allow the 
inverse image of a point to be more complicated than the 0-dimensional 
discrete spaces that occur with covering spaces, but still demand the same 
uniformity of the inverse image of various points. This allows one to obtain 
the same homotopy information. The difficulty lies in the fact that if we 
attempt to construct locally trivial bundles (or more generally, fibrations), we 
must use very complicated spaces. The complications in the spaces are in the 
nature of the problem. There is, however, a wealth of locally trivial bundles 
that " occur in nature," and we exploit these for homotopy information. 

Definition 11.1 A locally trivial bundle with fiber I; is a map z: E -r B 
such that for all xo E B there is a neighborhood Vof xo and a homeomorphism 

'pv: V x F-r n - ' ( v )  

such that n 0 p v ( x , f )  = x .  
The sets V with this property are called the coordinate neighborhoods. 

Examples 

1. A covering space with connected base is a locally trivial bundle with 
discrete fiber. 

77 
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2. E = F x B, n(l; b) = b. This is called the trivial bundle or product 

3. T ( M )  -+ M where M is a differential manifold and z ( M )  is its tangent 

4. The maps 

bundle. 

bundle. (See Section 29 for a definition.) 

. S4flf3 ~ Hp" q": S*"+' -+ CP", v,. 

are locally trivial bundles with fibers S' and S3 respectively, as we will now 
see. The proofs are virtually identical, and we do the case of 4,. Define 

Vi ={[t01*..itnI~CP"lti ZO). 

Then V,  for 0 5 i I n is an open cover of CP". We now define a homeo- 
morphism 

qi: vi x s' - + q ; l ( V i )  
by 

where A E S' .  This is well defined since if c j  = A t j ' ,  we have 

To prove it is a homeomorphism, we describe its inverse 

Clearly G i  'p i  = 1 and qiii = 1. 

We would like to have a path and homotopy lifting property for locally 
trivial bundles. 7.2 can be stated as follows. Let P be a one-point space. Given 
a commutative diagram 

1 

P x 0"X 

I I  
P x Z - x  
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there is a unique map I?: P x Z Z  so that 

P X O  D x’ 

commutes. 

Definition 11.2 A map n:  E + B has the homotopy lifting property (HLP) 
with respect to X if, given a commutative diagram 

I X x O - E  

there is a map 8: X x Z+ E such that 

f X x O  - E 

commutes. 

Definition 11.3 A map n:  E + B is called a Serre fibering if it has the homo- 

Every locally trivial bundle is a Serre fibering. In fact 
topy lifting property with respect to Z” for each n 2 0. 

Theorem 11.4 A locally trivial bundle has the homotopy lifting property 
with respect to any compact Hausdorff space. 

Remark The method of proof will be similar to that in 7.2 and 7.3. 
First we prove a lemma. Recall that A c Xis called a retract of X if there is a 
map r :  X + A  with r J A  = 1. 

Lemma 11.5 Let n:  E + B be a locally trivial bundle. Suppose that given 
any open cover { U,} of X x Z we can find X x Z = X, 3 X,,-l 3 * * * 3 x, = 
X x 0 with each X, closed such that 

(a) 
(b) Xk-l n Xk - 

Xk - Xk-l c U, for some a;  

is a retract of X, - Xk-1. 
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Then 7c has the homotopy lifting property with respect to X (Fig. I 1  .I) .  

I 

Figure 11.1 

Proof Suppose we are given a commutative diagram 
f X x O - E  

Cover X x I with {H- ' (V)l  V is a coordinate neighborhood in B}.  Pick a 
sequence of spaces X i  as above. We will construct by induction 8,: xk -+ E 
with T8k = HI X k  and 8 k l  x x o  =f. This is trivial if k = 0. Suppose we have 
defined %,'-I. To define 8, we first define r: xk - Xk-l  4 E. Choose a coordi- 
nate neighborhood U, so that H(Xk - Xk-1) c U , .  Then define 

r(x) = v d H ( x ) ,  712 Bk- l ( r (x>>> ,  

where Y: xk - xk-I-+ xk- n xk - Xk-1 is the retraction and 7c2: z-'(u,) = 
U, x F 4  F is the projection. This is continuous and well defined since 
d k - l ( r ( x ) )  E xk - Xk-1 c U,. Clearly xT = HI-. Furthermore, 
'1-nXk-t = ' k - 1 .  and 8 k - 1  thus combine to define a continuous 
map 8,: xk = &-I  v xk - xk-l-+ E satisfying 718, = HI x k  and B k J X x O  =f. 
This completes the inductive step. I 

Proof of 11.4 Suppose X is compact Hausdorff and we are given an 
open cover {Ua] of X x I. Choose a finite refinement Vy x (a?, by) and sets 
Wy so that Vy c W, and Et x [a,, by] c U, for some c(. Order the indexing 
set y = 1,. .., n, so that i I j i m p l i e s a j  5 a j .  Now if p I y ,  W, x a, does not 
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intersect V, x (a,, by).  Since { Vy  x (a,  , b,)} forms an open cover, W, x a, c 
Uy<, V, x (a,, by). We now construct t,: X - i Z  for y = 0, . . . , n so that if 
X, = ((x, t )  1 t 5 ty(x)}, X, 2 V, x [aa,  b,] for B _< y. Let to = 0. Suppose we 
have constructed t o ,  t , ,  . . . , t, as above. Then 

Wm+, x aa+l c U v y  x by) c Xa, 
y i a  

hence t,l w a +  I 2 5+l. By Urysohn's lemma choose u,+,  : X -+ [O, b,+,] 
such that u , + ~ (  Vu+,)  = b,+l and U , + ~ ( X -  W,+,) = 0. Define t,+,(x) = 
max(t,(x), U,+l(X)).  Now 

Xa+1 2 {(x, t>I t 5 ua+l(x)} 3 K + l  x LO, ba+,I 2 V a + 1  x [a,+,, ba+1I* 

Since Xa+,  3 X ,  it follows that X,,, 3 V, x [a,, b,] for p 5 a + 1. This 
completes the induction. Now X ,  3 V, x (a,, b,) for all B so X ,  = X x Z. 

X, - Xa-l = {(x, t ) l  L l ( 4  < t t,(x)} 
= {(x, t>l  ta-l(x) < t 5 ~ u ( x ) >  c Wu x [a,, bal  

since u, = 0 off W, and t,-l I w, 2 a,. Hence X ,  - Xu-  c w, X [a,, b,l c U, 
for some y. This verifies (a). To verify (b), define 

r :  X ,  - Xa-l -+ X, - X u - 1  n Xa-1 

by r (x ,  t )  = (x, f,-l(x)). This clearly belongs to A',-.,. I f  r (x ,  t )  # A', - X,-l, 
t,-l(x) < t .  Let 

Then (x, t ,) E X ,  - X a - l  and lim(x, t,) = r(x, t ) .  Consequently r ( x ,  t )  E 

Lemma 11.6 (Z", J n - ' )  E (In, Z"-' x 0). 

Proof We will prove, equivalently, that 

(Bn-' x Z, B"-' x 0 u S"-2 x Z) = (Bn-' x I,  B"-' x 1). 

Let 

A = {(x, t )  E B"-' x ZI 1 - I J x J /  I *t>  

and 

B = ((x, t )  E B"-' x ZI 1 - IJxJ1 2 + t } .  
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Figure 11.2 

Define rp: B"-' x Z-+B"-' x I b y  (Fig. 11.2) 

If  (x, t )  E A ,  
1 2 ~11x11 - 4 2 +(l - 3 t )  - 3 = 1 - t 2 0 

and 

< 1; 3 
if (x, t )  E B 

It  is equally clear that if (x, t )  E A n B, 

2 t + 1  2 + 4 t  3 1 
1 - t = - (IxI( - -. 

3 ( 1 ~ ( (  6 - 4 t  2 2 
and -- -- 

Hence rp is a well-defined and continuous map. Now rp(A) c A and q ( B )  c B, 
as can easily be seen. I t  is now easy to verify that rpz = 1,  so rp is a homeo- 
morphism. Now 

and 

Hence 

rp(B"-' x 0)  = {(x, 111 lI.41 5 33 

rp(s"-z x I )  = ((x, 1114 5 llxll I 1). 

q(B"-' x 0 u s n - 2  x I )  = B"-' x I .  1 
This lemma implies that J"-' is a retract of I" since In-' x 0 is a retract of 

I". 
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Proposition 11.7 n: E -+ B is a Serre fibering iff given a commutative 
diagram 

I" B 

there is a lifting 0: I" -+ E making the triangles commute. 

Proof Suppose n: E 4 B is a Serre fibering. Consider the composite 
diagram 

1"-1 x o L j n - 1 -  s E 

where p is the homeomorphism from 11.6. Let 0 :  I" -+ E be a lifting of this 
diagram, i.e., n0 = H v  and O I I n - l  x o  = f i .  Then 0 0 40-l is a lifting for the 
original diagram. The converse is similar. I 

Having a good lifting property, we would like to  obtain some homotopy 
information. Let n:  E -+ B be a Serre fibering. Choose * B E and * = n(*) E B. 
Let F = .-I(*) be the fiber. Thus n induces a map n: ( E ,  F, *) --* (B,  *). 

Theorem 11.8 
correspondence. 

If  n is a Serre fibering, n*: n,(E, F, *) + nn(B, *) is a 1-1 

Proof We first prove that n* is onto. Let f :  (Z", aZ")+(B, *). Let 
g :  J"-' -+ E be the trivial map g(x) = * for all x .  Then the diagram 

9 J"-' --+ E 

I- , I n  
I" - B 

commutes. Hence there is a map 0: I" + E with O(dZ") _C n-(*)' = F and 
0(J"-')  = *. Thus (0) E n,,(E, F, *) and n*({O}) = {no} = {f}. Now suppose 
rr*({f}) = n*({g}) wheref, g: (Z", dZ", .I-') -+ (E, F, *). Define 

L: J " 4  E 
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L(x, 1) = *, x E I", 
u L(U, 0, t )  = f ( u ,  t ) ,  

L(u, l , t ) = g ( u , t ) ,  U E Z " - l ,  

L(u, s, t )  = *, a r n - 1 .  

Since J" = Z" x 1 u dZ"-' x I x I u In-' x 0 x I u P-' x 1 x I,  this defines 
L. Let H :  I"' -+ B be a homotopy from nf to ng: 

x E I", 
x E I", 
x E a z n .  

H ( x ,  0) = f (x), 

H(x,  1) = g(x), 

H ( x ,  t )  = *, 
Define H': I"" -+ B by H'(u, s, t )  = H(u, t ,  s), u E Z"-'; then 

L 
J" - E 

commutes. Hence there is an extension 0 of L to In+' 

e :  I"+'--* E, 

with O(x, 0) E F, x E I", and of course 

0(x, 1) = *, x E I", 
u E zn-l, 
UEZn-', 

azn-1. 

oyu, s, t )  = e(u, t ,  s), E I"- ; 

O(u, 0 , t j  = f (u, t ) ,  
O(u, 1, t )  =g(u,  t ) ,  
O(u, s, t )  = *, 

Let 8': I"" --f E be given by 

then 0': (In x I ,  Z"-' x 0 x I ,  J"-' x Z) -+ ( E ,  F, *) and 8' is a homotopy 
between f and g. I 

Corollary 11.9 I f  n: E --* B is a Serre fibering with fiber F, there is an 
exact sequence 

d 
+ Z"(F, *) A nn(E, *) A n,@, *) 4 n,-,(F, *) -+ * . 

. * * + n,(B, *) --* n,(F, *) 4 n,(E, *) -+ no(& *). a 
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Let us consider the case of the simply connected covering space n: -+ X. 
Since F is discrete, ni(F, *) = 0 for i > 0. Hence n i ( z )  x n i ( X )  for i > 1 and 

a 
0 -+ n1(X)--* 7T,(F) -+ 0 

is exact, 

Corollary 11.10 xi (S' ,  *) = O for i > 1. 

We can also get homotopy information from the projective space fiberings. 
1 

We need, first, a lemma. 

Lemma 11.11 Suppose 

is exact and there is a homomorphism y : C -+ B withgy = 1. Then B z A 0 C. 

Proof Define I: A 0 C -+ B by I(a, c) = f ( a )  + y(c). Z is clearly a homo- 
morphism since f and g are homomorphisms. Suppose I(a, c)  = 0; then 
gZ(a, c) = g ( f ( a ) )  + g(y(c)) = g(y(c)) = c. Hence c = 0. Thus f ( a )  = 0, but 
this means a = 0 since we have exactness at A .  We now show that Z is onto. 
Let b E B. g(b - y(g(b))) = 0. By exactness, there is a E A with f ( a )  = 
b - y(g(b)); thus b = Z(a, g(b)) so Z is onto. I 

Short exact sequences with B E A 0 C are called split exact sequences and 
are said to split. 

Proposition 11.12 

(a) n,(RP", *) E nm(S"), rn > I ; 
(b) n,(CP", *) E nrn(S2"+', *), m > 2; 

(d) n,(HP", *) E Z,(S~"+~, *) 0 nrn-1(S3, *). 
Proof (a) follows from the remark after 11.9. (b) follows from the exact 

sequence 

(c) n2(CPn, *) E n2(S2"+l, *) 0 2; 

nm(S1) -+ 7crn(S2"+1) -+ n,(CP") --* 7crn-'(S1) -+ n,-1(S2"+l), 

0 -+ 7C2(S*"+') -+ 7c2(CP") --* 2 -+ 0. 

using 11 .lo. To prove (c), consider the exact sequence 

This decomposes into a direct sum by 11.11 since one can define y : 2 --f 

To prove (d) we construct a homomorphism y : n,- ' (S3 )  -+ n,(HP") such 
7c2(CPn) by y(n) = nx where x E n2(CP") is any element with d(x) = 1. 
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that dy = 1 and apply 1 I . I  I again. The existence of y implies that d is onto and 
(v,,)* is 1-1. 

Define F :  (B4,  S 3 )  --+ (S4nf3, S 3 )  by 

F(q) = (4, J1 - @ , O ,  . . . , 0) E H"" ; 
clearly IlF(q)/[ = 1 and Fls3 is a homeomorphism from S3 to vn-'(*) 
(* = [llOl...lO]) . Let y be the composite 

F (b)* 
n, l l - l ( s3)  r n,(B4, s3, *)A T[,(S4"+3, S3)-  n,(HP"). 

Then 8y = 1 by the definition of a. 

of fiberings. 

I 
We conclude this section with some general results about the construction 

Definition 11.13 A Hurewicz fibering is a map n: E - t B  that has the 

This definition and the following constructions can be interpreted in 5 

We now consider a construction that will "turn a map into a Hurewicz 

homotopy lifting property with respect to any space X .  

or in CG as desired. 

fibering." Letf: X Y. Define 

E, = {(x, O) E X x Y'Io(0) = f ( x ) }  C X  x Y' 
with the induced topology. There are maps 

n:E,-+Y,  v : E f - t X ,  i : X + E f ,  
given by 

where e,(x) is the constant path at f ( x ) .  
7T(X, 0) = dl), v(x, w) = x, I ( X )  = (x, e,(,,), 

The diagram 
E ,  

commutes, i.e., nz =fand vz = 1 ; moreover 

Proposition 11.14 
(a) i v 2 :  1 so X E  E f ;  
(b) n is a Hurewicz fibering; 
(c) Ff = {(x, o) E X x Y'J w(0) = f ( x ) ,  o(1) = *} is the fiber. 
The mapj f :  F, -+ X given by j ,  = v 1 Ff is given by j,(x, o) = x .  
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Proof (a) As a homotopy H :  Ef x I - +  Ef we take H ( x ,  to, r )  = (x, of) 

To prove (b) consider a commutative diagram 
where w,(s) = w(st). 

h 
A x O - E ,  

I I n  
A x I - Y  

Let h(a) = (h,(a), h,(a)). Define 8: A x I+ E, c X x Y' by 8(a, t )  = 
($,(a, t ) ,  $,(a, t ) )  where O,(a, t )  = h,(a) and 

/%(a)(s(l + t ) ) ,  0 I S  I 1/(1 + t )  { H(a, (1 + t)s - l), 1/(1 + 2 )  5 s I 1. 82(a, t>(s) = 

O(a, r )  E Ef since f8,(a, t )  = @,(a, t ) ( O )  follows from fh,(a) = h,(a)(O). 8 is 
continuous since 0, is clearly continuous and 8, is continuous, by 8.17. Finally 
O(a, O)(s) = h(s) and nO(a, t )  = H(a,  2 ) .  

(c) is trivial. I 

Seminar Problems 

1. Let T I :  E -i B be a Hurewicz fibering and *1, *, two points of B. Show 

2. Let n: E -i B be a locally trivial bundle and B a paracompact Hausdorff 
that n-l(*l) N n-'(*,). 

space (e.g., a metric space). Show that n is a Hurewicz fibehng. (See 164, 
2.7.141.) 

Exercises 

1. Let n: r? +A' be a covering space, and suppose Xis  arcwise connected. 
Then there is a 1-1 correspondence y :  F - i  no(F, *) such that the diagram 

a 
n , (W - X O ( F )  

commutes, where d, is the map defined in Section 7. 

that rc is a Hurewicz fibering. 
2. Let n:  Q ( X ;  A ,  B) + A  x B be given by n(w) = (w(O), ~ ( 1 ) ) .  Show 
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3. Show that the composite of two Hurewicz fiberings is a Hurewicz 
fibering. Is this true for locally trivial bundles ? 

4. Let 1 :  A -+ X be an inclusion. Show F, = R(X, A ,  *). Using this, derive 
the exact sequence of the inclusion (10.6 and 10.8) from the exact sequence for 
a Serre fibering (1 1.9). 

5. Given a locally trivial bundle n: E + B and f: X-+ B, define f * ( E )  = 
((x, e) E X x E J f ( x )  = n(e)}. Define f * ( n ) :  f * ( E )  -+ X by f*(n)(x,  e) = x 
and f E : f * ( E )  -+ E byf,(x, e) = e. Show that these maps are continuous and 
f * ( n )  is a locally trivial bundle with the same fiber as n. .f*(n) is called the 
induced bundle. (Section 29) 

6. Let X = A u B, * = A n B. Let 

1 :  R(B; A n B, *) -+ R(X; A ,  *) 

be the inclusion. Show that F, is homeomorphic with (Fig. 11.3) 

{W E Xrx' l  ~ ( 0 ,  t )  E A ,  W(S, 0) E B, W(S, 1) = ~ ( 1 ,  t )  = *}. 

* 

* A 

B 

Figure 11.3 

Show that this is homeomorphic to R(n(X; A ,  B),  *). Define n,(X; A ,  B)  = 
n,-,(R(X; A,  B) ,  *) and conclude that there is an exact sequence 

... -+ n,,(X, A ,  *) -+ n,,(X; A ,  B) - n,,-,(B, A n B, *) -+ ~ C , , - ~ ( X ,  A ,  *) -+ 

This is called the triad exact sequence, and ( X ;  A ,  B)  is called a triad. 
7. In the notation of 11.11 observe that since g is onto, for every c E C, 

there exists b E B with g(b) = c. Pick such a b and define y(c) = b. Can we 
apply 11.11 and conclude that for any exact sequence 

0-r A - r  B - r  C+O, 
B g A Cj3 C? Explain. 

a 
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8. n: E -+ B is said to be a Hurewicz fibering in Z* if 1 I .2 is satisfied for 
all X EZ* when f and H are in Z* and 6 EZ*. Show that TC: E j  -+ Y is a 
Hurewicz fibering in 6* iff is in  Z*. 

9. Show that if F-+ E .+ B is a Hurewicz fibering in 6* (see Exercise 8), 
the sequence [ X ,  F ]  -+ [ X ,  El -+ [ X ,  B]  of base point preserving homotopy 
classes is exact in  S*. (One sometimes expresses this by saying that the se- 
quence F-+ E -+ B is exact inZ*.) (17.19) 

10. L e t 8  A'-+ Y be a map in G*. Show that there is an exact sequence in 
S* 

(N)* (jfL [ Z ,  Q X ]  - [Z, QY] -+ [Z, F f ]  - [Z, X ]  2 [Z, Y ]  
n 8 

(is)* 
* -+ [Sz, ~ j ]  [Sz, XI [SZ, Y I  

f 11. Let O+A- B 2 C+O be an exact sequence of R-modules. 

(a) There exists y : C -+ B such that gy = 1. 
(b) There exists E :  B -+ A such that E f  = 1. 
(c) There exists an isomorphism 4 :  B - t A  0 C such that nzb = g  and 

+ f = z l  (i.e., the sequence splits). 
12. Show that the maps R"" - (O} -+ RP", Cn+l - (0} 3 CP", and H"" - 

(0) 3 HP" are locally trivial bundles with fibers R ,  C, and H respectively. 
(Section 29) 

13. Let O(n) be the group of orthogonal n x n real matrices and n:  O(n) -+ 

S"-' be given by z ( A )  = A(0, . . . , 0, 1). Show that n is a locally trivial bundle 
with fiber O(n - 1) (Hint: Let U = S"-' - (0, . . . ,0,  1) and V = S"-' - 
(0, . . . , 0, - 1). Define a map a :  V-+  O(n) by letting a(x) be the rotation along 
a great circle which takes (0, . . , , 0, 1) to x. Define coordinate functions @: 
U x O(n - 1) 3 n-'(U) by b(x, A )  = - a( -x ) ( ip )  and $: V x O(n - I ) +  
C'( V )  by $(x, A )  = c((x)(;~)). (30.7) 

14. Show that n,(X, *) can be made into a module over Z(n,(X, *)) for 
n > 1 by defining l" for 5 E n J X ,  *) and (T E nl(X, *) to be n, . y * (T,,)* 
11;' (c)  where T,, is from Exercise 12, Section 7, y is from Exercise 7, Section 9, 
and n: 8 -+ X is a simply connected covering space. (For any group TC, Z(n) 
is the integral group ring. As an abelian group it is the free group gen- 
erated by the elements of TC. Multiplication is linear and determined on the 
generators by the multiplication in n.) Show that n,(X v S') z Z(Z)  0 n,(X) 
as modules if X is simply connected. 

Show that the following are equivalent: 
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Simplicia1 Complexes and Linearity 

Although we have several theorems relating homotopy groups, we have 
as yet made little progress in computing them. In this section we will discuss 
linearity, and in the next section use linear approximations to make some 
computations. 

Recall that in Section I we defined the standard n-dimensional simplex 
An = {(XI, . . . , x,,+,) E R"" 10 I x i  I 1 ,  C x i  = l}. 

More generally, given n + 1 points vo , , . . , v, E R" that are affine independent 
(j.e., the equations t i u i  = 0 and 1 ti = 0 imply t i  = 0 for all i ) ,  one can 
define the n-simplex spanned by them 

The ui  are called the vertices of (vovl  * . . u , , ) ,  and the t i  are called the bary- 
centric coordinates of x .  

Lemma 12.1 

Proof Let 0 : An -+ (uo + * . u,) be given by 

(u0  u1 . * . u,,) = An. 

O(xl, . . . , x,+*) = X j + ] U j .  
i = O  

This is continuous and onto. To show that it is 1-1, suppose O(x,, . . . , x , + ~ )  = 
O(x,', , . . , x;+~). Then we have equations 

n n 

0 = 1 (xi+, - x;+,)ui, and 0 = 1 (xitl - 
i = O  i = O  

Hence xi = xi' for all i. By the compactness of A", 0 is a homeomorphism. 

90 
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The barycentric coordinates of a simplex give it a " linear structure." 
We consider spaces that are the union of simplices in an appropriate sense. 
Observe that if (vo u1 . * . u,) is a simplex, so is (ui0 ui ,  . . uik) where (i,, , . . . , ik) 
is a subset of (0, . . . , n). Such a simplex is called a k-face of (vo - * * 0,). (Note 
that a simplex is a face of itself, and the empty set is a face of every simplex.) 
Write z < CT if z is a face of 0.  

Definition 12.2 A geometric finite simplicial complex (or complex)' K 
is a finite collection of simplices in R" for some fixed m such that the inter- 
section of two simplices is a face of each and each face of a simplex in K 
is a simplex in K .  Write 1KI for the underlying space (i.e., the union of all 
simplices). A space that is homeomorphic to ( K (  for some K is called a 
polyhedron. By a triangulation of a space X we mean a complex K with 
1K1 = X .  

Examples 
1. We give some examples of complexes in the plane pictorially in Fig. 

12.1. 

Figure 12.1 

2. A simplex (uo u1 * * * v,) is a complex. 
3. Define d(uo u1 . * v,) as the union of the simplices: 

(ul v2 * . ' v,), (vo u2 . . v,), (0, v1v3 . ' . on), . . . , (00 v1 * . * 
This is a simplicial complex (homeomorphic to F""). 

A subcollection L of the collection of simplices in a complex K is called a 
subcomplex if each face of a simplex in L is a simplex in L (i.e., L itself is a 
complex). 

If K is complex, we write K" for the subcomplex whose simplices are the 
k-faces of simplices of K for k I n. K" is called the n-skeleton of K. Thus for 
some r ,  K = K', and we have 

{@}= K-' c KO c K' c c K'= K.  
If in addition Kr-'  # K,  we say that K is r-dimensional and write dim K = r .  

* We use the word complex for abbreviation, although we will define more general com- 
plexes in Section 14. \ 
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Definition 12.3 Let K be a complex and f :  I K( -+ R". f is said to  be linear 
if for each simplex (oo u, . us) of K and for each x E (uo u ,  * . us), we have 

Thus a linear map is completely determined by its value on the vertices of 
K.  By induction on the number of simplices, one easily checks that a linear 
map is continuous. 

Recall that a coset of a k-dimensional subspace of a vector space is called 
a k-dimensional affine subspace or an affine k-plane. 

Definition 12.4 A set X c Rm is said to have linear dimension I k if 
there exist affine k-planes A, ,  . . . , A,  with X c A ,  u * * .  u A , ,  lin dim Qr = 
- 1 where $3 is the empty set. 

. u,,), Hence a k-dimensional complex has linear dimension k;  for if x E (uo 
1 = c t,("i - uo) + uo E V(u, - 210, . . . , u, - 00) + uo 

where V(ul - v o ,  . . . , u, - uo) is the subspace spanned by u ,  - u o ,  . . . , u, - uo. 

Proposition 12.5 If X c R" has linear dimension less than m, X is no- 
where dense. 

Proof Suppose X c  A ,  u u A,  where the A i  are affine subspaces of 
dimension less than m. Then X c A ,  u ... u A,. Suppose U is a nonempty 
open set and U c X. Choose i so that Upt A ,  u"' LJ Then $3 # 
U - A ,  - * . . - A i - ,  c A , .  Let x E U - A ,  - . - A ,  - x is a sub- 
space of R" of dimension less than m, so there exists a sequence x i  -+ 0 with 
x i  4 A,  - x. It follows that x + x i  -+ x. Since U - A ,  - * * * -Ai-, is open, 
we must have ~ + X , E U - A ~ - . . . - A ~ _ , ~ A ,  for some n, which is a 
contradiction. Thus w does not contain a nonempty open set. 

A point not in X will be said to be in "general position." 
I 

Proposition 12.6 Suppose K is a complex, f: K-, R" is a linear map, and 
X c K.  Then lin dim X 2 lim dimf(X). 

Proof Suppose X c  A ,  u " * u  A,  with lindim X =  dim A j  for some 
j and K = u oi. f I A i n b i  extends to a linear map f A j  -+ R". Hence 
lin dimf(Aj n oi) I dim A j .  Consequently, lin dimf(Aj n K )  I dim A j  . Now 

S 

lin dim f ( X )  5 lin dimf = lin dim u f ( A j  n K )  
j =  1 

I max lin dimf(Aj n K )  

I max dim A j  = lin dim X .  
j 

j 
I 
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Let A and B be sets in R". Define 

A * B = { x ( x = t a + ( l  - t ) b , a ~ A , b ~ B ) .  

This is called the join of A and B and is thought of as the set of all points on 
line segments from A to B. Define A * /2/ = A where 0 is the empty set. 

Example ( u o . * . u n ) * u n + l  = ( U ~ * . . U ~ + , )  if u o ,  ..., v , , + ~  are affine inde- 
pendent. 

Lemma 12.7 Let X c R" and b E R". Then lin dim X * b I lin dim X + 1. 

ProoJ If X c A ,  u . * - u A s ,  X * b c A l  * b u . * * u A , * b .  Let A , =  
V, + u s .  Then 

A,  * b c {subspace spanned by the elements of V, and b - us} + u s .  I 
Definition 12.8 X c R" is said to be convex if x ,  y E X* tx + (1 - t )y  E X ,  

when 0 st I 1. 

Lemma 12.9 If A is an affine subspace and a is a simplex with A n 0 # 
A n do, we have 

( A  n da) * b = A  n 0 for any 

Proof Since A n IS is convex and contains both b and A n aa, A n a 2 
( A  n 86) * b. Let x E A n IS. Then x and b determine a line that must inter- 
sect do in two points p1 and p 2  (Exercise 1). Suppose the points occur in 
the order p l ,  b, x ,  p 2 .  Then x € p 2  * b c ( A  n do) * b, hence A n IS t 

( A  n do) * b. 

b E A  n a - A n da. 

Note that the lemma is true if A n da = 0. 

Proposition 12.10 Let K be an m-dimensional complex and fi K +  R" 
be linear. Then for all E > 0 there is a point a E R" with IJaJJ < E such that 
lin dimf-'(u) I m - n. I 

In other words, if a is in general position, lin dim f -'(a) I m - n. 

Proof By 12.6, lin dimf(K"-') < n .  Hence by 12.5 we may choose a 
with Ila(( < E  such that a $ f ( K " - ' ) .  We shall prove by induction that 
lin dimf-'(a) n K s  I s - n for s 2 n - 1. By choice of a, this is valid for 
s = n - 1 .  Supposing it to be true for s = k - 1 ,  let a be a k-simplex. Then 
a nf - ' (a )  = a n A for some affine subspace A .  By induction, lin dim da n 
A = lin dim do n f-'(a) _< k - n - 1. By 12.7 and 12.9, lin dim IS n A 5 
k - n, so lin dim Kk n f - ' ( u )  I k - n. I 
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We will eventually approximate maps by linear maps. In order to make 
the approximation accurate, the domain space will have to be triangulated 
with small simplices. We now discuss a method of triangulating any poly- 
hedron with simplices that are arbitrarily small. This will be achieved by 
interating a process called barycentric subdivision. 

Given a simplex o = (uo . . . un) ,  by the barycenter of o we mean the point 
b(a) = (n + I)- '  (uo + * . .  + u,,). This is the center of gravity of the vertices 
in the usual sense. 

Definition 12.11 Let K be a complex. A barycentric subdivision of K is a 
complex K' such that 

(a) the vertices of K' are the barycenters of simplices of K ;  
(b) the simplices of K' are the simplices (b(a0) ... b(o,,,)) where di  < 

Such a complex is clearly unique if it exists, for we have specified the 

The barycentric subdivision of a I-simplex and a 2-simplex are pictured 

o ~ + ~  and ui # oi t l .  

simplices of K' in the definition. 

in Fig. 12.2. 

Figure 52.2 

Lemma 12.12 Suppose K is a subcomplex of L and L has a barycentric 
subdivision L'. Then K has a barycentric subdivision K' and it consists of 
all simplexes of L' which lie in 1 KI . 

Proof Clearly the simplices of L' contained in IKI form a subcomplex 
of L'. Conditions (a) and (b) are immediate since if ui are simplices of K and 
Oo < " ' < O m ,  (b(a,).. .b(a,,))ca,c IKJ.  I 

Lemma 12.13 If a barycentric subdivision K' of K exists, I K (  = ( K ' ( .  

Proof If z = (b(o0) - . *  b(a,)) is a simplex of K' ,  z c o,,, c I K I .  Hence 
) K ' (  c IKI. Let x E o c I K ( .  Order the vertices of o = (uo u,) so that 
if x = t i u i ,  to 2 t ,  2 . . *  2 t , .  Let oi = (vo * . *  u i ) .  Then x = C s i b ( a i )  
where si = ( i f  I)(ti - t i + l ) .  Now si  2 0 and I s i  = 1 t i  = 1. Hence X E  

(b(a,) &urn)) E K' and thus IKI = I K'I .  I 
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Lemma 12.14 Let a be a simplex and suppose do has a barycentric sub- 
division. Then o has a barycentric subdivision. 

ProoJ Let a = (u, ... v,) and b = ( n  + l)-'(u, + + u,) be the 
barycenter of o. Let z = (b,  ... 6,) be a simplex of (do)' and define zb = 
(b,  . . *  b, b).  We must show that this is a simplex. Suppose C t i b i  + tb = 0, c f i  + t = 0, and assume t # 0. z is contained in some face aj of a, so bi = 
c k #  j A i , k V k  with x k #  j A i ,  k = 1 .  Hence 

with x r k  = 0. Since a is a simplex, r k  = 0 for all k, but r j  = (n + I)-' 
so we have a contradiction. Thus t = 0. Hence C ti bi = 0 and C f i  = 0. Since 
z is a simplex, we must have t i  = 0 for each i. Consequently zb is a simplex. 
The vertices of o' are the vertices o f  (do)' and b. The simplices of o' are the 
simplices b and zb for each simplex z in (do)'. To show that o' is a complex 
we need only show that the intersection of two simplices is a face of each. 
But zb n z' = 5 n z' and zb n z'b = (z n z')b so a' is indeed a complex. I 

Let K and L be complexes in R". We will write K n L for the set of sim- 
plices in both K and L and K v L for the set of simplices in either K or L. 
K n L is a subcomplex of K and L, but it is not true in general that K v L is a 
complex. 

Lemma12.15 If I K n L 1  = ) K ]  n lL1 ,KuLisacomplex .  

Proof We must show that if o E K and T EL, cr n T is a face of both cr 
and z. Suppose A and B are subcomplexes of K and L respectively. We 
claim that IA nBI = / A /  n JBI n I K n L I .  Clearly [ A  n BI c IAl n 
IBI n ( K n L I .  Suppose X E O E A ,  X E Z E B ,  and x E p E K n L .  Since z 
and p are simplices in L, z n p < p .  Similarly a n p < a, hence o n z n p = 
(a n p) n ( T  n p)  < a n p < a. By symmetry, a n T n p < z. Hence x E 

o n z n p E A n B and x E I A n BI . Now let A(B)  be the complex consisting 
of O ( T )  and all of its faces. Then 

I A n B I  = o n z n  l K n L l  = o n 7 1 7  IK( n ILI 
= ( a n  I K I ) n ( z n  I t l ) = o n ~ .  
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Since A n B is a subcomplex of A and B, a n z is a subcomplex of a and 
z. Since (r n z is convex, it is a face of o and z. Thus K u L is a 
complex. I 

Theorem 12.16 Every complex has a barycentric subdivision. 

Proof We will use double induction, first on the dimension of the com- 
plex and second on the number of simplices. Suppose the result is true for 
every complex of dimension less than n and every complex of dimension n 
with fewer than s n-simplices for s 2 1. Let K be an n-dimensional complex 
with s n-simplices and let a be an n-simplex. Then there is a subcomplex 
L of K with fewer than s simplices such that K = L u a. By induction L' 
is a complex and (da)' is a complex so by 12.14, (r' is a complex. Clearly 
K ' = L ' u a ' ,  so it is sufficient to show that I K ' n a ' )  = JK ' )  n 1 0 ' 1  by 
12.15. Clearly K' n a' = ( K  n a)' which is a complex by 12.12. By 12.13 
and Exercise 10, 

( K ' n d I  = ( ( K n a ) ' )  = I K n a (  = [ K (  n I(r (  = (K'[  n ( ( ~ ' 1 .  I 

Definition 12.17 If K c Rm is a complex, the mesh of K (written p ( K ) )  
is the maximal diameter of the simplices. 

Proposition 12.18 If dim K = n, 

Proof By Exercise 6 ,  we need only measure the length of the 1-simplices 
of K'. Let (bo, b ' )  be such a 1-simplex with bo < b'. Then b' is the barycenter 
of a k-simplex z = (uo uk) in K. Now given vectors wo, . . . , w,, , w and 
numbers t i  with 1 t i  = 1 we have 

IIw - C tr will = II 2 ti(w - wi)II 5 C tiIIw - WiII. 

lib' - boll = Ilb' - c t i U i l l  5 2 tilib' - O i l \ .  

Since bo E (uo 3 * 1 uk),  

Applying the inequality again we have 

Hence Ilb' - boll 5 [k/(k + l)]p(z). Since k 5 n implies that k/(k + 1) 5 
n/(n + l), we have Ilb' - boll I [n/(n + 1)IAK). I 
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Corollary 12.19 If X is a polyhedron and E > 0, there is a complex K 

Proof Let K =  A'('). If n = dim X ,  p(K) I [n/(n + 1)r p ( X ) ,  and by 

We finish this section with a famous approximation theorem of the type 

with 1 KI = X and p(K) < E .  

choosing r large this can be made less than E .  

we will consider in the next section. 

I 

Definition 12.20 Let Kand L be complexes. A mapf: K -+ L will be called 
simplicial if f ( u )  is a vertex of L for each vertex u of K, and f is linear. If 
g :  K +  L is an arbitrary map, f will be called a simplicial approximation to 
g if for every x E 1 K1 and every simplex a E L ,  g (x )  E 0 implies f(x) E a. 

Let KO c K be a subcomplex and suppose g: K+ L 
is simplicial. Let f be a simplicial approximation to 

Proposition 12.21 
is a map such that g 1 
g. Then f N g (re1 KO).  

Proof Let L c Rm and define f, : K-+ R" by 

f,(x) = m )  + (1 - M x ) .  
Since bothf(x) and g ( x )  belong to some simplex a, the sum lies in a as well. 
Hence f , (K)  c L. Clearlyf, : f N g (re1 KO). I 

Theorem 12.22 (Simplicia1 Approximation Theorem) Let g : K 4 L be 
continuous. Then for some r > 0 there is a simplicial approximation 
f: K") 4 L of g .  

Proof For each vertex u E L ,  let st(u) = u",, Int a; st(u) is open, contains 
u, and the sets {st(u)} for various u forms an open cover of L (see Exercise 11). 
Choose an &-number for the covering g-'(st(u)) of 1 KI and subdivide I K J  
to a complex K") with P(K(~)) < ~ / 2 .  Now for each vertex U E K ( * ) ,  
diam st u < E ,  so st u c g-'(st w) for some vertex w E L .  Choose such a vertex 
w for each vertex u E K") and writef(u) = w. This defines f on vertices, and 
we extend f :  K(') 4 R" linearly. We must show that f ( K ( ' ) )  c L. If a is a 
simplex in K"), b(a) E st u for each vertex u of a. Hence g(b(0)) E stf(zj). 
Thus nu,, st f ( u )  is nonempty and hence the vertices f ( u )  form a simplex, 
andf(K(')) c L. Clearlyfis a simplicial approximation to g. I 

Corollary 12.23 nr(S") = 0 for r < n. 
Proof Let f: ( S ,  *) -+ (S", *) and assume * is a vertex of triangulations 

of S a n d  S". Choose a simplicial approximation g : (Sr)@) -+ S" to f by 12.22. 
Since g1* is simplicial, g N f (re1 *) by 12.21. Now lin dim g(Sr) < r, so 
g(F) # S". Choosing a E S" - g(Sl),  we conclude that g - * (re1 *) since 
7c,(S" - a, *) = 0. I 
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Exercises 

1.  If a is a simplex and 1 is a line containing an interior point of 0,  then 

2. Show that iff: 161 + R" is linear and 1-1, and a is a simplex, f(la1) 

3. Show that a simplex is convex. 
4. The convex hull of a set X c  R" is the intersection of all convex sets 

5. Show that the diameter of X is the same as the diameter of its convex 

6. Show that a simplex is the convex hull of its vertices and that its diameter 

7. Construct complexes homeomorphic to:  
(a) the annulus { ( x ,  y )  E R2 1 1 I x2 + y 2  I 4); 
(b) the torus S' x S' (use (a)); 
(c) the projective plane R P 2  (hard). 
8. Show that lin dim A * B I lim dim A + lim dim B + 1. 
9. Show that the intersection of two subcomplexes is a subcomplex of 

each, and that a subcomplex of a subcomplex is a subcomplex. 
10, Show that if KO and K ,  are subcomplexes of L, I KO n K ,  I = 1 KO 1 n 

IK,I. (12.16) 
11. For a simplex a write Int a = a - da. (This notion of interior is not 

in general the same as the interior of a as a subspace of Rm. The notions 
coincide when m = dim a by 26.30.) Show that for any complex K, K = 
U Int a, where the union is disjoint and runs over all simplices of the 
complex. (12.22) 

1 n a is a closed interval and 1 n do consists of the two end points. (12.9) 

is a simplex. 

that contain X. Show that the convex hull of a set X is convex. 

hull. 

is the length of the longest 1-face. (12.18) 



Calculating Homotopy Groups : The 
Blakers-Massey Theorem 

In the previous section we proved that maps between simplicia1 complexes 
are homotopic, after suitable subdivision, to simplicial maps. The basic 
concept involved here is that of approximating an arbitrary, and possibly 
highly pathological map (e.g., a map from S' onto S2) by a less wild map. 
In certain contexts it is possible to approximate by differentiable maps- 
in others by linear maps. Often one approximates an arbitrary map by a 
differentiable map and then this differentiable map by a linear map (its 
derivative). We shall pursue the techniques of linear approximation in order 
to prove some fairly strong deformation theorems. The first such theorem 
will be a direct generalization of 12.23 to a relative n-cell. 

Definition 13.1 A relative n-cell is a pair ( Y ,  X )  such that Y is the quotient 
space of X L I  B" (see Exercise 7, Section 8) under the identifications given by a 
map a :  S"-' -+ X ,  namely, x - a(x) for x E S"-' c B". This identifies S"-' c 
B" with a subset of X (Fig. 13.1). One often writes X u, en for this space 
and e" = Y - X .  c( is called the attaching map. If X E (3'2, X u, en E (3'2 (see 
Exercise 6) .  

Observe that if X = *, 
( Y ,  X )  = ( X  u, en, X )  = ( B"/S"-', *) 

= (S", *), 
hence a relative n-cell is a generalization of a sphere with base point, 

Lemma 13.2 If p E en, then ( X  u, en - p ,  X ,  *) N ( X ,  X ,  *). Consequently, 
zi(X u, e" - p ,  X ,  *) = 0. 

99 
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en 

Figure 13.1 

Remark In general, ni(X u, e", X ,  *) # 0, e.g., if X = *, n = 1, and 
i =  1. 

Proof Let 1 :  ( X ,  X ,  *)-+(Xu,e"  - p ,  X, *) be the inclusion. We 
define a strong deformation retraction of X u, e" - p onto X .  This is suffi- 
cient by Exercise 7, Section 6 .  

H :  ( X  u e" - p )  x I-+ X u en - p .  

Figure 13.2 

Let x: (B", S"-') -+ ( X  u, en, X )  be the "characteristic map" of the rela- 
tive n-cell. This means x is the restriction to  B" of the quotient map X LI B" 
X u ,  e". Hence xls.-l =a .  Let q = x- ' (p) .  We will produce a homotopy 

K :  ((B" - q )  x z, sn-' x I) -+ (B" - q, P - 1 )  

satisfying K(y, 0) = y ,  K(y, 1) E S"-' and K(y,  t )  = y if y E S"-'. Now if 
f: X-+ Yis a quotient map, and Bis an open subset of Y , f l f - l  ( B ,  : f - '(B) + 
B is a quotient map. Hence X u e" - p has the quotient topology on X LI 
(B" - q )  and thus ( X  u, en - p )  x Z has the quotient topology on X x I 
LT (B" - q )  x I. We define H by using K on (B" - q )  x I and the constant 
homotopy on X. (See Fig. 13.2.) 

To construct K, first apply 2.4 with f ( x )  = q to produce y :  B" - q + 
s n - 1  with y l s n - l  = 1. Now define K(y, t )  = (1 - t )y  -t ty(y). IIK(y, t)(I I 
(1 - t )  + t < 1. If y E Sn- ' ,  y(y) = y hence K(y, t )  = y. Clearly K(y ,  0) = y 
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and K(y, 1) = y(y) E S"-'.  Finally, K(y, t )  # q, for otherwise 

4 = (1 - t)Y + tPY + t(1 - P k  

( 1  - t + tp)q = (1 - t + t p )y ;  

where y(y) = py + (1 - p ) q  (see 2.4); hence 

since y # q, 1 = t ( l  - p). This is impossible since 1 - p 5 0 and t 2 0. I 
Let us write B"(p) = {(xl, . . . , x,) E R"Illxll I p}.  If x: (B", S"-') + 

(Xu, en, X) is the characteristic map, write e"(p) = x(B"(p)) if p < 1. A 
map q :  K +  e" will be called linear if for some p, q ( K )  c e"(p) and x-'q : K +  
B"(p) c R" is linear. 

Lemma 13.3 Let f: Z'+ Xu, e". Then there are complexes N and N' 

(a) f - ' ( e"(b ) )  c N c Int N' c N' cf-'(e"(f)); 
(b) if o. E N', diam x - ' ( f (a ) )  < &. 

in I' satisfying (see Fig. 13.3): 

. 
f - 

\ 1 

@ 
7 

\ / 

Figure 13.3 

Proof By 12.16 we subdivide I' s A' into a simplicia1 complex with mesh 
less than the distance betweenf-'(e"(i)) andf-'(X). (We take the distance 
between two sets to be co if either of them is empty.) Thus any closed simplex 
meeting f - ' (en($))  is mapped into en. We now transfer the usual metric on 
B" - S"-' to e" via the homeomorphism The setsf-'(U) for U c  
en, U open, and diam U < form an open cover of {o. I o. meets f -'(e"(i))}, 
which is compact. Choose an &-number and further subdivide the cube 
I' so that the mesh is less than this &-number. Then if o. meets f - ' ( e " ( f ) ) ,  
diam f ( o )  < &. Let N be the union of all closed simplices of I' meeting 
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. f - ' ( e " ( t ) ) .  Then f ( N )  c en(* +A) = en#). Let N'be the union of all closed 
simplices meeting N .  Similarly, f ( N ' )  c en(+ + A) = en($). We only need 
to show that N c Int N' .  Suppose {xi} -+ x E N .  We must show that eventually 
x i  E N ' .  Each simplex that contains infinitely many x i  must intersect N in a 
set that contains x, so the simplex is contained in N' .  There are only a finite 
number of x i  which do not belong to such a simplex, so for i large enough, 
x i €  N' .  I 

Lemma 13.4 Let f: 1'- X u ,  en. Then there is an open set U c I' and a 
homotopy / I ,  : 57 -+ e" (re1 dU) such that: 

(1) h, = f l o ;  
(2) there is a complex N c Usuch that h, I N  is linear; 
(3) Int N 2 h; ' (en($)) .  

Proof Choose N and N' via 13.3. Define a linear map 9': N ' +  En by 
xg'(u) = f ( u )  for u a vertex N'. If u E N',  

IIg'(u)II = II C rif(ui)II 5 C tiIIf(ui)II I C ti 5 1. 
Hence we may define a linear map g: N ' 4  en by xg = 9'. See Fig. 13.4. 

Figure 13.4 

Let U = Int N'. Then 0 c N'. Since N c Int N', N n aN' = 0. Choose 
cp: N' -+I  such that cp(N) = 1 and cp(dN') = 0. Define h, : ii -+ e" by 

x-'ht(u) = ((1 - t )  + - cp(u))lx-'S(u) + tcp(4x-'g(4. 
This is well defined since (1 - t )  + t(1 - cp(u)) + tcp(u) = 1. Since dU c dN', 
h t (  2u = f 1 Conditions (1) and (2) are clear. To prove (3), suppose cr = 
( u o ,  . . , , lis) is a simplex of N .  Then h,(vi) = f ( u i ) .  Thus diam ,$,(a) = 
diam (hl(u,,), . . . , hl(vs)) = diam (f(u,), . . . , f ( v s ) )  I diam f (a)  < &. For 



13. Calculating Homotopy Groups: The Blakers-Massey Theorem 103 

x E 6, we have I f (x )  - f ( v ) I  < & and Jh , (x )  - h,(u)l <A. Thus I f ( x )  - 
h,(x)l < i. Consequently if h,(x) E en($), f ( x )  E e"(3) c Int en($). Thus 
x E Int f - l ( e " ( 4 ) )  c Int N .  I 

Corollary 13.5 n,(X u, en, X, *) = 0 for r < n.  
Proof Letf: (Z', dZr ,Jr - ' )  -+ ( X u ,  en, X, *) represent a homotopy element, 

and apply 13.4. i7 n dZ' = @ since f(U) c en and f(dZ') c X .  Hence h, can 
be extended to a homotopy Ht : I' -+ X u, e" (re1 dZr) by 

Now H ,  =f, so {f} = { H I } .  Choose p E en($) such that p $ H , ( N )  by 12.5 
and 12.6. H ; ' ( p )  c H;'(e"(+)) c N ,  so H;'(p)  = @. Thus H ,  is in the image 
of the homomorphism 

n,(X u, en - p ,  X, *) -+ x, (X u, en, X ,  *). 
By 13.2, { H I }  = 0. 

Our second linearization theorem is more complicated. We set up our 
notation as follows. Let X, = A u, en and X, = A up em. Let X = X ,  u X ,  
so that A = X ,  n X, . Let 1 :  (XI, A )  -+ (X, X,) be the inclusion. Note that 
XI - A X - X, R". See Fig. 13.5. 

I 

Theorem 13.6 (Blakers-Massey Theorem-First Form) i*: nr(Xl, A ,  *) -+ 
nr(X7 X,, *) is an isomorphism if r < m + n - 2 and is onto if r = m + 
n - 2. [13]. 

We will use several lemmas in the proof.9 

' The proof we give is due to J. M. Boardman. 
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Lemma 13.7 Let p E en and q E em. Then we have a commutative diagram 
in which the vertical maps are isomorphisms and all maps are induced by 
inclusions 

t* 

nr(x1, A ,  *) nr(X, Xz 3 *) 

1 1 
nr(X - P, X - P - 9, *I - nr(X, X - 4, *) 

Proof By 13.2, n,(X- q, X, ,  *) = 0. By Exercise 5,  Section 10 applied 
to the triple X =) X - q 2 X ,  , we have an exact sequence 

a 
. p ( X  - 4, xz 9 *) -+ nr(X, Xz 3 *) -+ nr(X, X - 9, *) nr- I (X - 4, x, 3 *I. 

Since the end groups are zero, the middle map is an isomorphism. Similarly, 
nr(Xl ,  A ,  *) -+ n,(X - p ,  A ,  *) is an isomorphism since n,(X - p ,  X,,  *) = 0 
for all r,  and n,(X - p ,  A ,  *) -+ n,(X - p ,  X - p - q, *) is an isomorphism 
since one can easily argue (as in 13.2) that n,(X - p - q, A ,  *) = 0 for all r.  
Since all maps involved are inclusions, the diagram commutes. 

The idea behind the proof of 13.6 is this: We must push maps and homo- 
topies off some point p e e R ,  and throughout the motion the image of d I r  
must miss some fixed point q E em, and J'-' must stay at *. Let o: I' = Z'-' x 
Z - + Z ' - '  be the projection. Let K =  o(h- ' (q))  and L = w(h-'(p)) .  We wish 
to choose p and q so that L n ( K  u dI'-') = @. We can then deform I' into 
I'-' x 1 on L x I keeping it fixed on ( K  u dZ'-') x I . I fp  is chosen in general 
position, h - ' ( p )  will have dimension 5 r - n and thus L x I will have dimen- 
sion 5 r - n + 1 < m. We may thus find q so that h-'(q) is separated from 
L x I .  See Fig. 13.6. 

( e m )  

( q )  

Figure 13.6 

Lemma 13.8 Suppose h:  I' -+ X and there are complexes M and N in 
I'with h l M :  M + e m  and h l , :  N + e "  linear. Suppose r s r n ~ n - 2  and 

(a) Int N 3 h-'(e"(f)) 
(b) Int M I )  h-'(e"(+)) 
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Then there exist points p E e" and q E em such that if o: I' = Ire' x I-+ I,-' 
is the projection, K =  w(h-'(g)) and L = w(h-'(p)) are disjoint. 

Proof Apply 12.10 to hl : N - r  e". Choose p E en(+) such that lin dim 
(hIN)-'(p) I r - n.  By (a), h-'(p) = (hIN)-'(p).  By 12.6 lin dim L I r - n.  
Thus lin dim L x I I r - n + 1 -= m. By 12.6 again lin dim h ( M  n ( L  x I ) )  < 
m so we may choose q E em($) such that q 4 h(M n ( L  x I ) )  by 12.5. By (b), 
h - ' ( q ) c M ,  so h - ' ( q ) n L x Z = @ .  Now if u E K n L , ( u , t ) E h - ' ( q ) n  
(L  x I) = @ for some t. Consequently K n L = @. I 

Lemma 13.9 Suppose h : I' -+ X ,  p E e" and q E em are chosen in accordance 
with 13.8. Suppose further that 

(a) h(dl'-' x I) c X ,  ; 
(b) h(Z'-' x 0) c X ,  ; 
(c) h(Ir-1 x 1) = *. 

Then there is a homotopy H ,  : I" -+ X such that 

(1) H, = h ;  
(2) P 4 HIv'); 
(3) q 4 Ht(I'-' x 0); 
(4) H,lJ'-I = h l J r - 1 .  

Proof Suppose U E L  n d Z r - ' .  Then h - ' ( p )  meets d r - '  x I.  Thus P E  
h(dZ*-' x I )  c X I  by (a). This is impossible since p E en = X - XI. Hence 
L n (K u dZr-') = a. Let cp: f r - '  -+ Zsatisfy cp(L) = 1 and cp(K u dZr - ' )  = 0. 
Define H ,  : I' + X by 

H,(x,,  . . . , x,) = h(x , ,  . . . , x,-,, 1 - ( 1  - &)(I - tcp(x,, . . . , x,-,))). 

p = H1(x , ,  . . . , x,) = h(x,,  . . . , x r - , ,  1) c h(Ir-1 x 1) = * 

q = h(x,,  . . . , x r - , ,  0 ) h  c ( Z r - 1  x 0) c X ,  

Clearly Ho = h.  If p = H1(x , ,  . . . , x,), (xl, . . . , x r - ' )  E L.*Thus 

by (c). This proves (2). If q = Ht(x , ,  . . . , x , - ~ ,  O), (x,, . . . , x r - ' )  E K .  Hence 

by (b). This proves (3). Finally, sinceJ'- ' = dZr-' x I u Z r - '  x 1 ,  H ,  1 J r -  I = 
h l J , - l ,  for either cp = 0 or (1 - x,) = 0 on this set. I 

Proof of 13.6 We first show that if r I m + n - 2, i* is onto. Let 
f :  (Zr ,  dZr,  J'-') -+ ( X ,  X ,  , *). Choose open sets U and V c I' and deforma- 
tions 

h,:  U - + e m ,  k,: V+e" 
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according to 13.4. We construct f t  : (Z', a' ,  J * - ' )  -+ ( X ,  X , ,  *) by 

h,(u), u E D 

f ( u ) ,  u E x - u - v. 
This is well defined since h,  and k, are homotopies relative to aU and av. 
f,(dZr) c X ,  and f ,  1 J p -  = * since the deformations h,  and k,  remain within 
the cells em and e". Thus { f }  ={yo} = { f l } .  We apply 13.8 and 13.9 to f,. 
Conditions (a), (b), and (c) of 13.9 hold since 

a y - 1  x z u z r - l  x 1 = J * - l  and Ir- '  x 0 c azr. 
Ht : (Z', dZ', J r - l )  -+ ( X ,  X - q, *) since h(J'-') = *. Thusfi = H, N H, in 
n r ( X ,  X - q, *) but H,(Z') c X - p .  Thus {f,) is in the image of the homo- 
morphism 

nr(X - P, X - P - 4, *) -+ zr(X9 x - q, *> 
and I *  is onto by 13.7. 

Suppose now that r + 1 i m + n - 2, and f, : (Zr ,  dZ', J ' - ' )  -+ ( X ,  X, ,  *) 
is a homotopy with fo(Zr)  ufl(Zr) c X , .  Thus {fo>, {A}  E n r ( X l ,  A ,  *). We 
will prove that { f o )  = {fi}. Let F :  I x I' 4 X be defined by F(s, u) =fs(u). 
Apply 13.4 to F, once for each cell, to produce (I, V c Z" ' and homotopies 
a, : B -+ em and p, : V+ en, As before, define 

- 

cI,(u), U E  iJ 
FLU) = P A 4 9  v i F(u), U E Z ' + '  - u-  v 

Now if F(u)  E em, F,(u) E em, and if F(u) E en, F,(u) E en. Furthermore, if 
F(u) E A,  F,(u) = F(u). In particular Ft(O x I' u 1 x 1') c XI. Let y, = 

F, 1 x , r  and v, = Ft 1 , x,,. . Then p ,  and v, are homotopies (Z', dl', .Ir-') + 
(A',, A ,  *). Since p ,  = F I O x P  =yo and vo = PI , =f,, {fo} = {pl} and 
(fi} = { v l }  in IT,( XI, A ,  *). Fl is a " linearized " homotopy from p1 to v1 (see 
Fig. 13.7). We will deform this homotopy so that it misses some point p E en. 
We apply 13.8 to  Fl and choose points p and q accordingly. Now 

F(dl'-' x Z) c F(0 x r - 1 )  u F(1 x , ' -I)  u F(Z x r - 1 )  c X,. 

Hence F,(dZr-' x I )  c X,.Similarly,Fl(Z'-l x 0) c X ,  and F1(Zr-' x 1) = *. 
Hence we may apply 13.9. Consider the homotopy HI constructed by 13.9. 
Now 

HI: ( I  x Z', z x dZ', z x J r - l )  -+ ( X  - p ,  x - p  - q, *), 

since F(Z x Y-') = * implies that Hl(Z x . I r - ' )  = F,(Z x J r - l )  = *. But 

HI I o x p  = Fl I O X P  = P1 and H ,  I I x P  = Fl I1 X,' = v1, 
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Linear hornotopy 

Figure 13.7 

hence HI: p1 - v1 in nr(X - p ,  X - p - q, *). It follows from 13.7 that 
{fo} = {fi}. I 

We are nearly ready to reap the benefits of this deep theorem. 

Proposition 13.10 The suspension functor S defines a transformation 
E :  [ ( X ,  *), ( Y, *)I + [ ( S X ,  *>, ( S Y ,  *)I. 

In particular, we have E:  nr( Y, *) + n,+,(SY, *). 

Proof I f  H(X x Z, * x I) --t ( Y ,  *) is a homotopy, we easily define 
K: (SXx  l,* x Z)+(Y,*)byK((x,s),t) =(H(x,t),s).IfH:f-g,K:Sf~Sg. 
The second part follows since S(Sr,  *) E (F-', *). 

Proposition 13.11 The diagram 

commutes. In particular, E is a homomorphism. 

Proof Let f: (Zr, d Z r ) - + ( X ,  *). We will find F: (Zr+', d T " ,  J')+ 
(C*X, X,*) such that a{F} = {f} and { p x  0 F }  = {Sf} = E{f}. Define F by 

F(sl, * .  ., sr+l) = (f(S1, . * * > sr),  sr+l)* 
S(f )  By 10.4, d{F}  =f. Now S ( f ) :  Zr+'/dZr+'  3 S(Zr/dZr) - S X  is also given 

by this formula, according to 9.4 



108 13. Calculating Homotopy Groups: The Blakers-Massey Theorem 

and 

c, X = X x [i, 1ll(x, 1 )  - (*, 0. 
Then C, X and C2 X are subspaces of S X ,  C,  X u C2 X = S X  and C1 X n 
C, X = X x (4) = X .  We have an inclusion 

1 :  (C,  X ,  X ,  *) c ( S X ,  C,X,  *). 

Observe that C,X E C, X E C*X, where C* is the functor from 9.3. 

Proposition 13.12 The diagram 

n,(C, X ,  x, *) n,(C, X / X ,  *) 

commutes where c( is the natural homeomorphism C,  X / X  = S X  given by 

Proof uppx - i :  (C,  X ,  X ,  *) -+ ( S X ,  C ,X,  *) where the homotopy is 

a(x, t )  = (x, 2t - 1 ) .  

given by 

H(x, t ,  S) = ( ~ , ( 2 t  - 1 ) ( 1  - is) + +s). I 

Corollary 13.13 (Freudenthal Suspension Theorem-First Form) 
E:n,(S")-,n,+l(S"+l) is an isomorphism if r < 2n - 1 and onto if 
r = 2 n -  1. 

Proof Combine 13.11, 13.12, and 13.6, observing that, in the notation 
of 13.7, X = C,(S"), B = C,(S"). Hence i* is an isomorphism if r + 1 < 
(n + 1) + (n + 1 )  - 2,  and onto if r + 1 I (n + 1 )  + (n f 1 )  - 2. I 

Corollary 13.14 nn(S") z Z generated by the identity map. 

Proof By 11.12c, 12.23, and Exercise 9,  Section 7, n2(Sz) z Z .  It now 
follows from 13.13 that E :  nn(Sn)-+n,,+,(S"+') is an isomorphism for 
n 2 l .  I 

Corollary 13.15 I f f :  B" + B", there exists x such that f ( x )  = x (Prob- 
lem 1). 
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Corollary 13.16 There does not exist y :  B" + S"-' with y I s" - '  = 1 .  

Proof This follows by applying the functor 71, to  the diagram 

B" 

y-I I\ -, 1 S"-I 

(see the end of Section 6). I 

Corollary 13.17 If n # m, R" f R". 

Proof If so, we would have R" - (0) = R" - {a} 3 R" - (0). But by 
Exercise 7, Section 6, R" - (0) N Sm-' and R" - (0) N Sn-l, hence S"-' N 

. If n < m, ~ C ~ - ~ ( S ' " - ' )  = 0 and n,,-l(S"-l) E 2 so we have a contra- 
diction. I 
As an immediate corollary to  13.14 we have: 

S m - 1  

Proposition 13.18 7r3(S2) Z .  

Proof Apply 13.14 and 11.12b. I 
n3(S2) is generated by the map q :  S ,  + S2 .  q is the first example of an essen- 

tial map between spheres of different dimensions and as such deserves a little 
attention. We will illuminate this map in two ways. We give an explicit 
formula for 9 (it is a polynomial), and we give a geometric description of 
9. If we identify S2  with (C)", and S 3  as the sphere in C2, q is given by 
~ ( z , ,  z l )  = zl/zo. The stereographic projection map (see 1.5) $2 : C" + S2  is 
given by 

If zo = xo + yo  i and z1 = x1 + yli, the composite is given by 

?(Xo , Y o ,  X1,Yl) = (X12 + Y12 - xo2 - Yo2 ,  2(XOXl + Y O Y A  2(XOY' - X'YO)). 
It is more illuminating to  think of S 3  as the union of two solid tori S' x D2  
and D2 x S' along their common boundary S' x S' .  In fact 

S 3  = aB4 5 a(D2 x 0') = aD2 x D2 u D2 x dD2 = S' x D 2  u D2 x S'. 

To see this, picture S 3  as (R3)" and a solid torus D 2  x S' c R3.  The exterior 
of Dz x S' in S 3  is then a solid torus; see Fig. 13.8. S' x S' is mapped onto 
S' c S2  by the quotient map (zo , zl) -, zl/zo . This map is extended radially 
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Figure 13.8 

into each of the solid tori by moving through the upper and lower hemi- 
spheres toward the north and south poles respectively. 

Theorem 13.13 (and hence 13.7) is best possible, for 

E :  n,(S') -+ n3(S2)  

is not an isomorphism since n 2 ( S ' )  = 0, rr,(Sz) = 2. 

ni(S") for all i and n is an interesting and difficult unsolved problem. 
In fact, E :  n 3 ( S 2 ) - + n , ( S 3 )  is onto but not 1-1 (see 27.19). To calculate 

Theorem 13.19 There is a continuous nonzero vector field on S" iff n is 
odd (Problems 3-4). 

Proof Half of this is 3.5. We will prove that if n is even, a,, N 1 and apply 

For X ES consider EX as defined in Exercise 1 I ,  Section 9, with base point 
3.4 to conclude the other half of 13.19. 

(x, 0). Define n,,(X) = Z,,+~(ZA', *). 

Lemma 13.20 TI, : S + A, is a functor for n 2 1 .  ll,(S") E 2. 

Proof Z : S  +75* is clearly a functor so the first part is trivial. The second 
part follows since CS" is homeomorphic with S"", by Exercise I I ,  Section 

We will finish 13.19 by showing that ( -  I)"" = n,(u,,): n,,(S") -+ n,(S"). 
9. I 

Let fi : S" -+ S" be given by 

f i (x l ,  . * * > X n +  1) = (XI, . . ., xi- 1 9  - X i ,  X i +  1, * * * 9 Xn+l)*  
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Now a, =f, 0 fi 0 . . *  It is thus sufficient to show that lI,,(fi) = - 1. 
There is a homeomorphism : S" -+ S" interchanging the ith andj th  coor- 
dinates, andfihij  = I t i j & .  Hence, it is sufficient to show that II,,(h+') = - 1. 
There is a natural map C: nn(X ,  *) -+ I I , (X) ,  given by 

Zf {f] -+ { S O + '  E -2,s" - C X } ,  

where a base point of S"" is chosen corresponding to * E CS" under the 
homeomorphism. This is clearly an isomorphism if X = S" so it is sufficient 
to show that 

- 1 = (.&+I)* : nn(S", *I -+ nn(S", *). 

s" = S(Sn-l), 
But under the homeomorphisms of 9.4 

f,+l corresponds to the inverse map. I 

Seminar Problem 

13.6 can be proven by differentiable approximation, instead of linear 
approximation. One first proves that one can find disjoint closed subsets 
A4 and N of I' and a homotopy h, : I' -+ X with h, =f and such that h, is 
C" on both M and N [see (13.8)]. This follows from the fact that any map 
from a compact subset of R' to R" is close to a differentiable map. One 
then uses Sards theorem to pick the points p E en and q E em as in 13.9. (See 
[49; 531.) 

Exercises 

1. Let A be a closed subset of X and suppose there is a homotopy 

(a) H(x ,  0) = x; 
(b) H ( A  x I )  c A ;  
(c) H(A x 1) = *. 

H :  X x I-+ Xsuch that 

Prove that the collapsing map p A  : X - +  X / A  is a homotopy equivalence. 
(16.33) 

2. Find X u  en with n,(X u e", X ,  *) $?4 2. (Hint: Let X u  e" = S' v S". 
Consider a covering space of this.) (By 16.30, it is necessary that nl(X) # 0 
in this example.) 
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3. Consider the map z: X - +  RSX given by z(x)(t) = ( x ,  t). Prove that this 
is continuous. Show that the diagram 

n J X ,  *) - n n + l ( S X ,  *) 

n,(RSX, *) 

commutes, where the equivalence is that of Exercise 5 ,  Section 9. 
4. Show that the suspension 

E :  [ (SX,  *), ( S Y ,  *>I -+ [ ( S 2 X ,  *),(st y,  *)I 
is a homomorphism where S"X = S(S"- 'X)  is the iterated suspension. 

5. Prove that n7(S4) has an element v of infinite order. 
6. Show that if X i s  Hausdorff and a :  S"- ' -+X,  Xu,e"  is Hausdorff. 

(13.1, 14.6) 
7. Let f :  S" -+ X and kin : S" 4 S" be a map of degree k .  Show that 

{fo kin} = k { f ) .  If X= S", it is not in general true that {ki, o f }  = k{f}. 
Using (1 A kz,) 0 (f A 1) =f A kz, = (f A 1) 0 (1 A kz,) and Exercise 4, 
show that E{kz, o f }  = E{fo kin} = k E { f } .  (Exercise 21, Section 26) 



The Topology of CW Complexes 

We now discuss a generalization of the notion of a simplicial complex 
which for many purposes is easier to handle. 

Definition 14.1 A cell complex X is a Hausdorff space which is the union 

(a) To each cell we associate an integer n 2 0 called its dimension. If eu 
. has dimension n we often use the notation e: for this cell. We write X" for 
the union of all cells e t  with k 5 n. X" is called the n-skeleton. 

(b) If e/ is an n-cell, there is a "characteristic map" x a  : (B", Sn- ' )  + 
( X ,  X" - l )  such that xa( Bw-s"- l  is a homeomorphism from B" - S"-' onto e,". 

of disjoint subspaces em (c( E A) called cells satisfying: 

Examples 
1. Any finite geometric simplicial complex, as described in Section 12, 

is a cell complex. Each open n-simplex is an n-cell, and, in this case, the maps 
xu are all homeomorphisms. 

2. The n-sphere is a cell complex with two cells eo, e" where eo = 
{(I, 0, . . . , 0)} and en = S" - eo. Note that if we wish to write s" as a simplicial 
complex, we need (i::) simplicies of dimension k ;  hence cell complexes 
are more efficient than simplicial complexes. 

3. RP", CP", and HP" are cell complexes with one cell of dimension k ,  2k ,  
and 4k, respectively for each k s 11. 

Proof: By Exercise 8, Section 7, these spaces are all Hausdorff. We will 
write the details out in the case of CP". The others are similar. CP" has 
(n  + 1) cells eZk for 0 5 k 5 n, given by 

eZk = {[zol . . *  ) Z " ] l Z k  # 0, Z k + l  = . * .  = z, = 0). 

113 
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Since gZk = { z  = ( z l ,  . , , , zk) E ckl llzll 5 I}, we define X k  : B Z k  -+ CP" by 
- 

X k ( Z 1 ,  * . . >  z k )  = LZ1(  * " l Z k I J 1  - 1 1 z 1 1 2  l o )  ' * * l o ] .  
We write this symbolically as CP" = eo u e4 u * .  u eZ". Similarly RP" = 
e0 v e1 v * . .  u e" and HP" = e0 u e4 u . . *  u e4". 

4. Every compact differentiable manifold can be proven to be a finite 

We usually use a 0-cell for a base point in a cell complex (see Exercise 11). 
Observe that a finite cell complex is compact since it may be covered by a 

finite number of compact sets {xJB")} .  
If Xis a cell complex and A c X ,  we say A is a subcomplex if A is a union 

of cells e ,  and 2, c A if ear c A .  Since 2," = xU(B"),  we see that X"  is a sub- 
complex for every n 2 0. 

Suppose X and Y are cell complexes. Then X x Y can be made a cell 
complex by choosing as cells e," x epm where {e,"} are the cells of X and 
{epm} are the cells of Y. We assign the dimension n + m to e," x epm. A charac- 
teristic map 

B n f m  = - I"'m = I" x I"'= B" x Bm- X x Y .  

cell complex via Morse Theory [52]. 

: B"'" -+ X x Y is given by 
xa x x g  

This clearly satisfies 14.1. 

Lemma 14.2 If X is a finite cell complex, X = X, 3 Xm-l  3 . * * 3 .Yo, 
where X o  is one point and ( X k ,  Xk-1) is a relative nk-cell for 0 I ti1 5 n2 5 
. * * I n, . Symbolically, 

x = e0 u en, u e"2 u * * * u en". 

Proof We will show that for each n-cell e,", X" = ( X "  - e,") uf en. Since 
X" - e l  is a cell complex with one less cell, the result follows by induction. 
L e t 5  S"-' -+ X" - e," be x ~ I ~ , , - ~ .  One may construct a map I t :  (X" - e,") uf 
e" -+ X" by hl x n - e a n  = inclusion, and h 1 B,, = x. h is clearly well defined and 
continuous. Moreover, it is 1-1 and onto, so it is a homeomorphism by 
compactness. I 

The structure of finite cell complexes is determined by 14.2. Infinite cell 
complexes do not behave as well. Any Hausdorff space is an infinite cell 
complex with each point as a 0-cell. We must make some restrictions on the 
relationship of the cellular structure to the topology if we wish to have a 
structure theorem like 14.2 for infinite cell complexes. We consider such 
restrictions now. 

If A c Xis a subset of X ,  we define K ( A )  to be the intersection of all sub- 
complexes containing A .  I f A  c B, K(A) c K(B).  Hence ifp E e, K ( p )  = K(P)  = 
K(2). Thus K ( A )  is a subcomplex. 
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Definition 14.3 (C) X is said to be closure finite if for each cell e,", 
K(e,") is a finite subcomplex. (W) X is said to have the weak topology if 
for each subset F c X ,  F is closed iff F n 2," is compact for each cell e,". A 
cell complex satisfying (C) and (W) is called a CW complex. Clearly every 
CW complex belongs to (33. 

Consider S2 as a cell complex with every point a 0-cell. This does not 
have the weak topology although it is closure finite. On the other hand, B3 
with cells e3 = B3 - S 2  and one 0-cell for every point of S2  has the weak 
topology, but is not closure finite. 

A more illuminating example of the weak topology is as follows. Let 
X =  v2=l S,', an infinite 1-point union of circles. This is a closure finite 
cell complex. This space with the weak topology is a CW complex. One 
can also give X the induced topology as a subset of nzZl S,' with the product 
topology. This space which we will call X' is compact. Both X and X' can 
be imbedded in R2 as follows (see Fig. 14.1): 

m 

x = u {(x, y )  I (x - n)? + y 2  = n2},  
n =  1 

X X '  

Figure 14.1 

Definition 14.4 A map f: X +  Y between two cell complexes is called 
cellular iff(X") c Y". 

Let X be the category of CW complexes and cellular maps, Jc* the corre- 
sponding pointed category where * E X is a 0-cell, and Xh*, X, the corre- 
sponding homotopy categories. 

A useful example is given as follows. RP" c RP"" as a subcomplex. We 
may define RP" = u;=l RP", and this is clearly a closure finite cell complex. 
We give it the weak topology so that it is a CW complex. Similarly, we define 
CP" and HP" (see Exercise 13). 
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Let X be a cell complex and for each cell e," choose a copy B," of B". 
Let B = IJ B," (see Exercise 7, Section 8) and let 1: B -+ X be the charac- 
teristic map of ean on B,". 

Lemma 14.5 X has the weak topology iff x: B-+ X is a quotient map. 

Proof xis continuous since if F c Xis closed x - ' ( F )  = u x;'(F). Suppose 
x - ' ( F )  is closed. Then x - ' ( F )  n B," is compact; by Exercise 1, x ; ' (Fn  5,") = 
x-'(F) n B,". Hence F n 2," is compact. It follows that F is closed and thus 
x is a quotient map. Suppose x is a quotient map and F n 2," is closed. 
Then x - ' ( F )  n B," is closed. Hence x - ' ( F )  is closed, and thus F is closed so 
X has the weak topology. I 

Proposition 14.6 If X is a CW complex and f :  S" -+ X" c X, then Y = 
x uf en+' is a CW complex. 

Proof By Exercise 6 ,  Section 13, Y is Hausdorff. We choose as cells all 
cells earn of X together with e"" = Y -  X. We use the same characteristic 
map as before for earn and x: (B"", S") -+ ( Y ,  X )  as a characteristic map for 
e"+'. Now By = B,IJ B"", hence if X has the weak topology, so does Y.  
To see that Y is closure finite, we use the following lemma. 

Lemma 14.7 Let X be a CW complex and A c X a compact set. Then 
K(A) is a finite complex. 

Proof Suppose K(A)  is infinite. There must be infinitely many cells of 
K ( A )  that intersect A ,  since X is closure finite. For each such cell e,  choose a 
point x, E e n A .  Then any subset S of {x,} is closed since S n 5. is finite for 
each cell e c X. Thus {x,} has the discrete topology. But {x,} being closed is 
compact, a contradiction. I I 

Proposition 14.8 Let X be a CW complex and e0r)l an n-cell. Then A = 
X" - e," is a subcomplex and X" 3 A uf e" for some f :  S"-' -+ X"- ' .  

Proof Clearly A is a subcomplex. As in 14.2, let xa : (B", 9 - l )  -+ 
(X, X"-') be the characteristic map for e0r)l and f = x I s"- I . We can then define 
4: A uf e"+ X" by 41A = the inclusion map, and 41 Bn = x a .  This is 1-1, 
continuous, and onto. We will show that it is closed. In fact A U B" + A uf 
e" -+ X" is closed since B" is compact and A is a closed subset of X". I 

Corollary 14.9 Let A c X and f: A -+ Y. Suppose A is closed or open 
and X has the weak topology. Then f is continuous ifffl  Ane is continuous for 
each cell e. 
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Proof To show thatfis  continuous, it is sufficient to show thatfo x: B n 
x - ' ( A )  + Yis continuous, by 14.5. I 

Corollary 14.10 Let A c X be a subcomplex and suppose X has the weak 
topology. Then A is closed, and the induced topology is the weak topology. 

Proof Let 2 :  B -+ X .  x- ' (A)  is clearly closed since for each a, x- ' (A)  n 
B," = pJ or x- ' (A)  =I B,". Thus A is closed. It follows that x I X - , i A )  is a 
quotient map, so A has the weak topology. I 

Proposition 14.11 Let X and Y be CW complexes. Then X x Y (with 
the compactly generated topology) is a CW complex, and X v Y is a sub- 
complex. 

Remark The cellular structure is given above. 

Proof Clearly X x Yis closure finite, since K(e," x esm) = K(e,") x K(e,"). 
We will show that x x x y  : B X x Y  -+ X x Y is a quotient map. But B x x y  = 
B, x By and xx can be factored: 

X X X X Y  B x x y  E B, x B y -  X x  Y. 

8.12 implies that xxxy is a quotient map. I 
We now consider an important property on a pair of spaces which is dual 

to  the notion of the homotopy lifting property (1 I .2). 

Definition 14.12 A pair ( X ,  A )  of spaces has the absolute homotopy 
extension property (AHEP) if given any space Y,  any map f: X + Y ,  and 
any homotopy H :  A x I+ Y with H(a, 0) =f(a), there is an extension 
R :  X x I +  Y of H with A(x, 0) =f(x). 

The duality mentioned can be seen by comparing the diagram in 11.2 to 
the diagram 

where H* is adjoint to H a n d  ~ ( o )  = o(0). 

the extension problem in%, (see Exercise 15). 
This property guarantees that the extension problem i n b  is equivalent to 
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Proposition 14.13 If X is a CW complex and A is a subcomplex, ( X ,  A )  
has the absolute homotopy extension property. 

Proof Suppose we are given a map 

0 - , :  X x O u A  X I +  Y 

which we wish to extend to X x Z. Let x" = X "  u A .  We will inductively 
define maps 

0, : X x 0 u x" x I-+ Y 

which are extensions of the previous ones. To construct 0, , observe that the 
O-skeleton of a CW complex has the discrete topology since each subset of it 
intersects every cell in  a finite set and hence is closed. Consequently, one can 
extend 0 - ,  to 0, : X x 0 u xo x I +  Y by O,(eo, t )  = 8- , ( e0 ,  0). This is 
clearly continuous. Suppose we have defined an extension 0, and n 2 0; 
see Fig. 14.2. 

X 

Figure 14.2 

For each ( n  + 1)-cell en,", consider the composite 

s," X Z U B , " + '  X 0 X . P  x z u  X x  O L Y .  

This has an extension ra : B:" x I -+  Y by 10.6. Define O n + l :  X"+l x Zu 
X x O + Y b y  

0 n + l l X n x ~ v , ~ x O = ~ n  and 0 n + l l B , n + l x r  =ra. 
These maps are compatible, and is continuous since Xn+' x lu X x 0 
has the weak topology (by 14.10). Thus we have constructed O n + , ,  and the 
induction is complete. Now define 0: X x I+ Y by = 8,. This is well 
defined, and since X x I is a CW complex, it is continuous. I 

Definition 14.14 Let$ X-+ Y. The mapping cone off, written Y uf CX 
or C,, is the quotient space 

Y v CX/(X,  0) - f ( x ) .  

(See Exercise 11, Section 9.) 
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This construction is a generalization of the construction X u ,  en of Sec- 
tion 13 and is useful because of the following property: 

Proposition 14.15 Suppose we are given maps f: X -+ Y and g: Y -+ Z in 
Z. Then g ofis nullhomotopic iff there exists h :  Y uf CX -, Z with h 1 = g. 

f x - Y - YU/CX 

Proof By Exercise 11, Section 9, if g of is nullhomotopic, there is an 
extension H :  C X + Z  of g o f .  g L l H :  YLI C X + Z  clearly factors over 
Y uf CX and defines h. On the other hand, an extension h determines a 
map C X  -+ Y uf CX -+ 2 which extends g 0 f. Hence g 0 f is nullhomo- 
topic. I 

to the extension problem : " Does g extend over Y vf CX? " 

B" and S:-' of S"-'. Let B, = LIB," and 
x,, : (B,, , S,,-,) -+ (X",  Y-') by xn I B,n = xu. Clearly B, = CS,,_,. 

h 

Thus the homotopy problem: "Is g 0 f nullhomotopic?" is equivalent 

Let X be a CW complex. Fix n and choose for each n-cell, a copy B," of 
= LILT:-' c B , .  Define 

Proposition 14.16 X" E X"-' uf CS,- ,  E X"-' v/ Bn 9 where f = X n  I s n -  

Proof Define 0: X"-' uf B,, + X" by letting 01 x n -  be the inclusion and 
81 = x n .  This is well defined, continuous, 1-1, and onto. To prove that it is 
a homeomorphism we prove that the composite X"-' LIB,, 5 2"'-' uf 
B, 2 X" is closed. Let A c X"-'Ll B, be closed. Then @(A)  n 2," = 
Oq(A n X"-' u A n B,"). Since X"-' is closed in X", 8q(A n Y"") is closed 
and @ ( A  n B,") is compact. Thus @ ( A )  n 2," is closed. Q ( A )  n 2,'" = 
eq(A n ."-I) form < n, and consequently is closed. Thus @(A) is closed. I 

The following corollary is particularly useful when Z = * or 2 = I .  

Corollary 14.17 Suppose Z E (3s. Let f: X"-' x Z - ,  Y and f, : B," x 
2 .+ Y be maps such that f,(u, z) = f ( ~ @ ( u ) ,  z )  for u E SE-'. Then there is 
a unique mapf: X" x Z - ,  Ysuch tha t f lxn - lxz  =fandfo  xu = f,. 

Proof Apply 14.16 and 8.12. I 
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Exercises 

1. Let e: be a cell in a cell complex and x, its characteristic map. Show 

2.* Show that RP" and HPn are CW complexes. 

3. Show that every CW complex is the union of its finite subcomplexes. 
4. Show that if X and X" for all n 2 0 have the weak topology, then X is 

a CW complex. (Use 14.7.) 
5. Show that C P n u q n  e2n+2 3 CP"" where q,, : S2n+1 -, CP" is from 

Section 7. Prove similar results for RP" and HP". (Exercise 21, Section 26; 
27.19; 28.19; Exercise 12, Section 16). 

6. A pair ( X ,  A )  is called a relative cell complex if X is Hausdorff and 
X - A is a union of disjoint subspaces e ,  (a E U) called cells satisfying (a) 
and (b) of 14.1 except that we now define x" = A u u {e,klk c: n). A sub- 
complex B of ( X ,  A )  is a subset B 3 A such that B - A is a union of cells e,  
and e, c B implies E ,  c B. A subcomplex is called finite if B - A is a union of 
a finite number of cells. ( X ,  A )  is called closure finite if K(e,") is a finite sub- 
complex. ( X ,  A )  is said to have the weak topology if for each subset F c X, F 
is closed iff F n C," is compact for each cell e," and F n A is closed. A relative 
CW complex is a relative cell complex which is closure finite and has the weak 
topology. Show that if X is a CW complex and A a subcomplex, ( X ,  A )  is a 
relative CW complex. 
7. Show that if ( X ,  A )  is a relative CW complex, X / A  is a CW complex. 

Hence if X and Yare CW complexes, so is X A Y .  
8. Generalize 14.13 to relative CW complexes. 
9. Show that any cell complex with two cells eo and en is homeomorphic 

that x,(B") = Z,". (14.5) 

to S". 

10. Prove that each arc component of a CW complex is a CW complex. 
11.* Show that each cell complex contains a 0-cell. 
12. Show that a CW complex is arcwise connected iff it is connected. 

13.* Suppose (X,} are CW complexes and is a subcomplex of Xn . 
Let X = u X ,  with the weak topology. Show that X is a CW complex and 
each X,, is a subcomplex (use Exercise 5, Section 0). In particular RP", 
CP", and HP" are CW complexes. 

14. Let f: X - ,  Y be a base point preserving cellular map. Show that 
Y uf CX has the structure of a CW complex. 
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15. Given a pair (X, A )  and a map f :  A -+ Y, the extension problem is 
that of deciding if there is a mapf: X-+ Y such thatfl A = J  Such a problem 
can be formed in any category. Show that if ( X ,  A )  has the AHEP, the exten- 
sion problem for ( X ,  A )  in% is equivalent to the extension problem for ( X ,  A )  
in%,, . 

16. Define the lifting problem analogous to the extension problem in 
Exercise 15, and show that if T I :  E -+ B has the HLP (1 1,2) the lifting problem 
for T I :  E -+ B in % is equivalent to the lifting problem for n: E-+ B in Z,, . 

17. Show that if X ,  are CW complexes, LI X ,  is a CW complex. 
18. Suppose that ( X ,  A )  and ( Y ,  B )  have the AHEP. Show that (X x Y,  

X x  B u A  x Y )  and ( X / A ,  *) have the AHEP. (16.33; Exercise 28, Sec- 
tion 16; 21.18) 

19. Suppose X is Hausdorff and (X, A )  has the AHEP. Prove that A is 
closed. (19.5) 

20. Show that if ( X ,  A )  has the AHEP, there is a neighborhood U of A in 
Xand a retraction Y :  U + A .  (21.16) 

21. Given f :  ( X ,  *)+(Y,  *), define Y u, C*X as the quotient space of 
YLI C*X given by identifying (x, 0) E C*X with f (x )  E Y. Prove an analogue 
to 14.15. (18.4) 

22. Let A c Xand f :  X +  Y. Show that the natural map Z: Y ufI, CA -, 
Y u, CX is an inclusion. If A is a strong deformation retract of X, show 
that Y u f lA CA is a strong deformation retract of Y uf CX. Conclude that 
iff,g: X-+ Y a n d H : f - g ,  Y u , C X c  Y u , c ( x x I ) -  Yu,cx . (27 .19;  
28.18) 



Limits 

In this section we shall discuss some algebraic and categorical notions that 
will be recurrent in the next few sections. 

Definition 15.1 A directed set A is a partially ordered set A, such that 
for any two elements a, b E A there is an element y E A with y 2 a and y 2 j?. 
A directed system of sets (spaces, groups), directed over A is a collection of 
sets (spaces, groups) {X,( a E A} together with functions (maps, homomor- 
phisms)f,,: X ,  --t X ,  defined when a I /? such thatf,,f,, = f,, and f a ,  = 1. 

The most common directed set that occurs in mathematics is the positive 
integers, ordered in the usual way. The skeletons of a CW complex form a 
directed system of spaces over this set. Here A,, : X" + Xm is the inclusion 
map. Another example is given by letting A be the collection of finite sub- 
complexes of a given CW complex X ,  directed by inclusion, and X, = a 
considered as a space. Similarly, one could let Je be the set of finitely generated 
subgroups of a group G,  directed by inclusion, and X ,  = a considered as a 
group. 

One can replace this definition with a more conceptual (although possibly 
more incomprehensible) one using the notions of category theory. Given a 
directed set A one can associate a category 9~ as follows. For objects in 
3 - 4 ,  we take the elements of A. We define hom(a, /I) = {d,,}-a one-object 
set-if a 5 p and hom(a, p) = 0 otherwise. We define a,, 6,, = a,, . Then a 
directed system of sets (spaces, groups) is simply a covariant functor 
F :  '3.4 + S(Z, 9). Dually one can define an inverse system by considering con- 
travariant functors. The whole notion can be generalized by replacing 3..t 
by a directed category, i.e., one in  which hom(X, Y )  contains at most one 

122 
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element. We then have sets, spaces, groups, etc. directed over a category. 
We will not consider this level of generality here for simplicity. 

Given a directed system of objects in a category, one can sometimes asso- 
ciate with it an object called the direct limit. Intuitively one thinks of this as 
being the union (when f U a  are inclusions), and it is in the three examples 
given earlier. 

Definition 15.2 Given a directed system { X u ,  Yap}, an object X is called 
the direct limit (or right limit) and is written LITJ X u ,  if there are maps 
f ,  : X, + X such that fa ofas = f ,  , and these maps satisfy the following universal 
property: given any space X' and system of maps f,': X,-+ X' satisfying 

fp' 0 faa =fa', there is a unique map f :  X +  X'  so that f,' = f 0 f a  : 

+ x '  x - - - - - - - - - 
Observe that since,f is unique, any two direct limits are isomorphic. 

Proposition 15.3 

Proof (1) In S. Let X be the disjoint union of the X u .  Define x N y 
if x E X u ,  y E Xa , ci 5 y,  p 5 y ,  and f , , (x)  = f p y ( y ) .  This is an equivalence 
relation. Let  in^ X u  be the set of equivalence classes and f ,  : Xu 4 Iin~ Xu 
be the composite of the inclusion X u  c X and the projection n: X-, lim X u .  
Then f a  0 f up  = f a .  Suppose f a ' :  X u  --* X' satisfies&' o f a s  = f a ' ;  {fa'} defines a 
function F :  X +  X' by FIX. = fa ' .  Since,&' 0 fap =fa' ,  F preserves the equi- 
valence relation, and F defines a map f :  lim X u +  X' .  Any two maps 
fi, .f2 : I&I Xu + X' satisfyingf, fa = f2 f a  = f a '  must satisfy fin = fi 71; since n 
is onto, f ,  = f 2 .  

(2) In Z. We perform the same construction as in S but topologize it. 
Let X= LI X u  and give l& X u  the quotient topology. Then the maps f ,  and 
F a r e  continuous. Uniqueness follows as before. 

(3) In A,. Given a directed system of R-modules {X,} let X = OaeA Xu ; 
i.e., the elements of X are functions f :  A -+ u Xu with f ( a )  E X u  and f ( a )  = 0 
for all but a finite number of elements ci of A .  Define (f+ g)(a) = f ( a )  + 
g(cc) E X u ,  (-f)(ci)  = - f(ci), (rf)(cc) = $(a) and O(N)  = 0. This makes X 
into an R-module. Define fa : X u  -+ X by 

Direct limits always exist in S, Z, and A,. 
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This is a homomorphism, and X is generated by the elements of the form 
f , (x) .  Let M be the submodule generated by all Jk(x) -J;(faa(x)).  Define 
Iim Xu to be the quotient of X by M ,  and let n: X+ lim X ,  be the quotient 
map. We then have nJa = f a  : X ,  + lim X ,  . Now givenf,’: X ,  -t X’ satisfying 
f,lf,, = f a ’ ,  one can define F :  X - i  X by F( f )  = 1, fa ’ ( f (a ) ) ;  

so F defines a homomorphism f :  & X ,  .+ X ’  with frt = F. As before it is 
clear that f is unique. 

We think of the objects X ,  as approximations to & X ,  in much the same 
way that the elements of a sequence of numbers are approximations to their 
limit. The condition that for all a, E jlt: there exists y E A with c1 5 y and 
p I y plays a similar role to the Cauchy condition on sequences, in assuring 
that limits are unique. 

Proposition 15.4 Let {X,} be a directed system and assume that there is 
such that if p 2 a 2 a o ,  f a ,  is an equivalence (Le., has a two-sided a. E 

inverse). Then & X ,  G X,, . 
Proof Define f a  : X ,  -t X,, by 

f-’ if a > a o  

f a  =(y ,,, if a,, 2 a. 

Then if a 5 p, f p f a a  = f a ,  so (X,,, f a }  is a candidate for the direct limit. 
Suppose f a ’ :  X u  + X ‘  is defined and satisfies fp‘faa =fa ’ .  If there existsf: X,, 3 

X’ with f f ,  = fa ’ ,  we must have f =KO since fa, = 1. On the other hand, 
fk, f a  = f,’ so this also defines a map f :  X,, + X’. 

Proposition 15.5 Suppose X is a space and X = u a e h  X,, where Xu 
are subspaces and suppose X has the weak topology on the Xa(i.e., F is closed 
iff F n X ,  is closed in X u  for all a). Then X = lim X , ,  where the inclusion 
maps are used to  form the directed system. 

Remark To be consistent, it is necessary to assume that for all a, p there 
is a y such that X ,  =I X, u X,. This can always be arranged by replacing 
{ X , }  by the set of all finite unions Xu,  LJ * .  u Xu,, . 

Proof The inclusions provide maps i, : Xu .+ X compatible with the 
inclusions i,, : Xu c X,. To show that the universal property is satisfied, 
suppose we are given f a  : X ,  -+ Y satisfying f a  I x D  = f a  when p I a. We are 
then forced to definefi X - t  Y by f 1 x, = f a .  These definitions are compatible, 
and f is continuous since if F is closed in Y, f - ’ (F )  n X ,  = f [ ’ ( F ) ,  which is a 
closed subset of X u  for all a. 
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Corollary 15.6 Let X be a CW complex. Then X E 
the n-skeleton. I 

X" where X" is 

Corollary 15.7 Let X be a CW complex and let {X,} be the set of finite 
subcomplexes. Then X E Lq X ,  . I 

Proposition 15.8 Let {X,} be a directed system in AR, and X = lim X ,  . 
Then : 

(a) for each x E X ,  there is an a and x,  E X ,  with fa(xa) = x ;  
(b) if x ,  E X ,  and fa(xa) = 0, there is a p L a with fa , (xa)  = 0 E X , .  

Proof To prove (a), let x = 7c{Jb,(x,) + * * * + fa,(xn)}. Pick ri 2 ai for each 
i, 1 I i 5 n. Thenf,,(xJ =fa(faia(xi)), SO 

x = n f a ( f a , a ( x , )  + +fa,,a(xn))* 

To prove (b), define F, = Oa5,  X , ,  and define 0,: F, 4 X ,  by 0 , ( f )  = 
x:S,,( f (u)). If a 5 P, f a ( X , )  c Fp and O,fa  =ha. Suppose now that fa(x,) = 
0. ThenI,(x,) E M ,  so 

Choose p 2 pi 2 ai . Then all terms of this equation belong to F, . By applying 
0, to this equation, we get f p a ( x a )  = 0, sincefaia(xi) =fsia(faipi(xi)>. fl 

Proposition 15.9 Let X = u X ,  be Hausdorff and have the weak topology 
as above and assume: 

(a) For all u, f i  E A there exists 6 E A with X ,  n X ,  = X,.  
(b) For all a E A ,  { p  E A l p  _< a} is finite ( p  I a iff X,  c Xa).  

Then ni(l& X,) = lim ni(Xa).  

The proof will rely on: 

Lemma 15.10 Under the hypothesis of 15.9, given a compact set K c X, 
there are ui  E A with K c X,, u . . * u X,, 

Proof of 15.10 Let e, = X ,  - U { X ,  1 p < a}. Suppose K sf X,, v * .  . v Xan 
for any choice of u l ,  . . . , u, ; choose inductively distinct points xai E eai as 
follows: Having chosen x e l ,  . . . , x a n ,  note that K q! e,, u . u ean since 
e,, u * u X,,, . Hence there exists x E K n X ,  for some a u ean c X,, u 
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and x 4 { x a l ,  . . . , x,,}. By (b), there is a,,, I a with x E e,", ,. Let xan+ ,  = x. 
Now let V c {x,,}. We prove that V is closed. Suppose x, E V n X,.  Now 
xp E X ,  n X u  = X, by (a). Since x, E e/, , 6 2 p and hence f l <  a. Thus (b) 
implies that V n  X, is finite and hence closed (since X is Hausdorff). It 
follows that {x,,] is an infinite set with the discrete topology. On the other 
hand, {x, , }  is a closed subset of K and hence is compact, a contradiction. I 

Proof of 15.9 The maps i, : A', -+ X induce maps (i,)*: n,(X,) -+ ni(X).  
Since these are consistent with the inclusions (i,,)*: ni(X,) -+ ni(X,), they 
define a map I :  litr~ ni(X,) -+ ni(X) .  Suppose {f} E 7ci(X). Sincef(S') is com- 
pact, f(S') c X, c X ;  hence r f , ( { f } )  = {f} where f, : n,(X,) -+ U ni(X,). 
Suppose Z(x) = 0. Let x =f,({f}) where f :  S ' 4  X,.  Then I (x)  = {i , f}  = 0. 
Choose a homotopy H :  B"' -+ X. Since H(B'+') is compact, there exists 
with H(Bi+  ') c X o .  Now clearly H :  i,, f N 0 in ni(X,) so x = 0. I 

Corollary 15.11 Let X be a CW complex. Then 

(a) n i ( X )  r lim ni(Xn)  
(b) 

plexes. 

Proof This follows immediately from 15.6, 15.7, and 15.9. I 

n i ( X )  E lin~ 7ci(X,), where the limit is taken over all finite subcom- 

Lemma 15.12 Let { A , ,  f,,} and {B ,  ,fib) be two systems of abelian groups 
directed over the same index set A ,  and suppose that for each a E A there is 
given a homomorphism g, : A ,  -+ B, such that if c( < p ,  the diagram 

commutes. Then there is a unique homomorphism g: I~IJ A ,  -+b B, such 
that the diagram 

f. A , - b A ,  

commutes. 

Proof fa's, : A ,  -+ ih~ B, is defined for each a E A .  By the universal pro- 
perty (15.2) g exists uniquely. I 
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Lemma 15.13 Let { A , ,  f a s } ,  { B , ,  flp}, and {C,, f;} be three systems 
directed over A and suppose we have maps g ,  : A ,  -+ B, and ha : B, -+ C,  
as in 15.12 such that 

A , -  B,- C ,  

~ A , ~ ~  B , - h  C, 

9. h ,  

is exact at B, . Then 

is exact at  I& B ,  . 

h 

Proof Let x E lim A , .  By 15.8, choose c( and x ,  E A ,  with f , (x , )  = x. 
Then 

M x )  = h(g(fa(xa))) = h(fa’(ga(xa))) =fa”(ha(ga(xa))) = f a ” ( O )  = 0. 

Let x E B, and suppose h(x) = 0. Let x ,  E B, be such that f,’(x,) = x. 
Then f,”(h,(x,)) = h(f,‘(x,)) = h(x)  = 0. Hence by 15.8, there exists /? with 
f$(h,(x,)) = 0. Consequently hpfks(x,) =fh;r(h,(x,)) = 0 and thus &(xJ = 

gp(xp). Now 
gfp(xg) =fp’Sp(xp) =fpXp(xa)  = f a ’ ( x a )  = X, 

so ker h = Im g. I 

Proposition 15.14 (b X,) A Y = lim (X, A Y ) ,  if X,, Y E  @3*. 

Proof We produce continuous maps going both ways that are inverse to 
one another. The inclusion i, : X, -+ lim X ,  induces a map. 

j ,A 1: X a A  Y - + ( b X , ) A Y ;  

since these maps are compatible, they induce a map 

1: h ( X ,  A Y )  -+ (h X,) A Y. 

Let k, : X ,  -+ [lim (X, A Y ) ]  be the adjoint of the inclusion 

X ,  A Y - + b  (X, A Y) .  

The maps k ,  are compatible and hence induce a map 

the adjoint of this is the inverse to  I. I 

Exercises 

1. Show that limits directed over the positive integers exist in b,*. (Hint: 
Given X,, for each n > 0 and f,, : (Xn , *) -+ *), we define 

X m  = (xn x Z>/(xn > 1) N (f, (xn), 0); (*, 2 )  N * * 
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See Fig. 15.1. This construction is sometimes called the telescope construction.) 
(Exercise 2; 29.14) 

I- 

... 

Figure 15.1 

2. Show that limits directed over the positive integers exist in JG, (see Exer- 

3. Show that limits exist i n6*  and%’. What aboutb, ? 
4. Direct limits do not exist in (39. (Hint: Define X,, = I for each n 2 0 and 

S, : X,, + X, , ,  byS,(x) = min (2x, I).) 
5. Suppose X ,  c X,, ,  and X =  u X,, with X a CW complex and X i  a 

subcomplex. Show that X ,  N X (see Exercise 1). (Hint: Define f: X ,  + u X ,  and show that it induces isomorphisms in homotopy. See 16.22.) 
6. Consider the directed sequence of abelian groups X,, = 2 for n 2 0 and 

J , n + l ( ~ )  = nx. Show that hJ X,, z Q (the rational numbers). (Exercise 1, 
Section 24) 
7. Generalizing the ingredients of Exercise 6, show that every abelian group 

is isomorphic to the direct limit of its finitely generated subgroups, directed 
by inclusion. 

8. Let {Xu}  be a directed system of spaces and inclusion maps where the 
indexing set A satisfies (a) and (b) of 15.9. Suppose {B,} is another such system 
with B, c X u .  Show that hJ ni(X,, B,, *) = ni(X,  B, *) where X =  u X,, 

9. Given an inverse system { X u ,  fa,.} in S where faat : Xu, + X ,  for a’ 2 a, 
define @ { X u  ,.fa,.} as the subset of I7 X u  of those functions (xu}  with f,,.(x,,) 
= x u .  Show that this is an inverse limit in S. If for each a, X ,  is a topological 

space and fa,. is continuous, show that this is an inverse limit i n 6  if we use 
the subspace topology on @{Xu, fa,.} and the product topology on I’IX, . 

cise 1). 

B = u B, ,  and * E nos.., B, .  (16.4) 
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If for each M, X ,  is an R-module, show that X ,  with coordinatewise addi- 
tion is an inverse limit in A,. (Exercise 2, Section 17; 21.20; 27.4) 

10. The conditions of 15.9 are necessary, for let {A,}  be the collection of 
countable compact subsets of S' .  Then S' has the weak topology on {Aa) ,  
but every map S' + A ,  is constant. Hence nl(S1) = Z and lim nl(Aa)  = 0. 

11. Show that if all spaces belong to CS (or Cg*), 

(@ X,) x Y E &  ( X ,  x Y )  and (Q X,) v Y =h ( X ,  v Y) .  (16.6) 

12. Prove (vaEk X,) A Y = v a E ~  ( X ,  A Y )  (Hint: Use 15.14.) (24.1) 
13. Let R be a commutative ring. Let {A',} be a direct system in JLR and 

Y E  A,,. Prove that (@ X,) 0, Y E  lim (A', O R  Y ) .  (24.1, Section 26). 
14. Given a collection of R-modules (A',}, define naE A', as the set of all 

functionsf: A -+ uaE X ,  withf(cc) E X ,  . This is an R-module, as in the proof 
of 15.3, and @ , € A  Xis  a submodule. Show that 

horn,( @ A',, Y )  E n hom, (X , ,  Y) .  (24.1 1) 
a E J t  a s k  

15. Let X ,  be the construction from Exercise 1. Prove that if K is compact, 

[(K *I, ( X ,  9 *>I E lim[(K, *>, (A',, *)I, 
16. Let A, , ,  be a system of abelian groups with homomorphisms 

f,,, : A",,, + A,+1, ,  and gn,, : A, , ,  + An,,+' such that the diagrams 
f n , m  

An,, - An+, ,m 

commute. Let A ,  = lim {An,,,  g,,,} and B, = u { A , , , ,  f,,,}. Prove that 
A ,  z h B , .  (Exercise 5, Section 28) 



16 
The Homotopy Theory of CW Complexes 

This section deals with the homotopy theory of CW complexes. Most of 
the results are fairly technical-relating homotopy groups and cellular 
structures to various extension and deformation problems. We discuss the 
approximation of spaces by C W  complexes, construct an (ad hoc) singular 
complex for a space and prove Whitehead's theorem. Using these techniques 
we prove the general version of the Blakers-Massey theorem and make 
applications. In  an appendix we give the functorial singular complex con- 
struction. This will be used in Section 21. 

Throughout this section we shall discuss CW complexes X and relative 
CW complexes ( X ,  A) (as defined in Exercise 6, Section 14). If desired, one 
may replace the phrase "relative CW complex ( X ,  A)" by (the more restricted 
notion of a) " pair ( X ,  A )  where Xis  a CW complex and A is a subcomplex." 
Such a change will not restrict most of the applications of our results. 

Definition 16.1 A space X is said to be n-connected if zi(X, *) = 0 for 
i 5 n. 

Remark This is independent of the choice of *. 0-connected is the same 
as arcwise connected, and 1-connected is the same as simply connected. S" is 
(n  - 1)-connected by 12.23. 

Lemma 16.2 Let g :  S"-' -+ X ,  f: X - t  Y,  and suppose Y is arcwise con- 
nected and T C " - ~ (  Y,  *) = 0. Then there is an extension off to X ug e": 

X u, en 1 ''\\\{ \ 

\ 
\ 

X b * Y  

130 
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Proof This follows from Exercise 11, Section 9 and 14.15. I 

Corollary 16.3 Suppose S is a set of integers and ( Y ,  X )  is a relative CW 
complex such that if eu c Y - X is a cell, dim e, E S. Suppose that if n E S, 
n,-,(Z, *) = 0. Then any map) X + Z  admits an extension3 Y + Z :  

Y 

Proof Given any finite subcomplex of ( Y ,  X ) ,  it is clear that f extends 
over this subcomplex, for the extension can be done a cell at a time using 16.2. 
In the general case we apply Zorn’s lemma. Consider the set C of all pairs 
(Xu,fu) where X c X ,  c Y is a subcomplex and f, : X ,  + Y is a extension of 
f. Partially order C by inclusion and restriction: (Xu ,A) < (Xs  ,f,) if X, c Xs 
and fa I x, = A ,  Increasing chains in C have an upper bound since if {Xu}  is 
such a chain, (u Xu,f) belongs to C, where fix= =fa cf is continuous by 
14.9). Thus C has a maximal element ( X ’ ,  f’). Now X’  = Y, for if X’ # Y 
choose a cell e c Y - X ’  of minimal dimension. Then 2 - e c X’. Apply 
16.2 to  this cell to obtain an extension 3: X’ u e + Z  off’, contradicting 
maximality. I 

Proposition 16.4 Suppose ( Y ,  X )  is a relative CW complex with cells (in 
Y - X )  only in dimensions 2 n, then xi(  Y, X ,  *) = 0 for i < n. 
Proof By Exercise 8, Section 15, it is enough to  show that if ( X u ,  X) is a 

finite subcomplex of ( Y ,  X ) ,  x i ( X u ,  X ,  *) = 0 for all i < n. We do this by 
induction making key use of 13.5. Suppose ( X ’ ,  X )  is a finite subcomplex of 
(Y ,  X) and X = X’ u ek c Y. The exact sequence 

Zi(X’, X ,  *) + Z i ( X ,  X ,  *) + 7ri(X, X’ ,  *) 

has first and last terms equal to 0 for i < n by induction and 13.5 since k 2 n. 
Hence ni (X ,  X, *) = 0 for i < n. I 

Corollary 16.5 If X is a CW complex with one 0-cell and all other cells 

We now prove a general deformation theorem. 

in dimensions 2 n, ni(X,  *) = 0 for i < n. 

Theorem 16.6 Let S be a set of integers. Letf: ( X ,  A )  -+ ( Y ,  B)  and suppose 
( X ,  A )  is a relative CW complex with cells (in X - A )  whose dimensions 
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belong to S. Suppose that for any choice of *, nk( Y, B, *> = 0 if k E S. Then 
there is a map g :  X +  B with g -f(rel A). 

The inductive step will be based on: 

Lemma 16.7 Let ( X ,  A )  be a relative CW complex and X" = X" u A. 
Let H :  F"" x I u x" x 0 + Y. Suppose" nn( Y, B, *) = 0 for any choice of * 
and H(x,  1) E B. Then Hextends to a mapR : 1" x I + Y such that A(x, 1) E B. 

Proof of 16.7 By 14.17 it is sufficient to construct maps 

H,: B," x I +  Y 

such that 

H~(X, t )  = H ( X ~ ( X ) ,  t )  for x E S:-' 
Ha(x, 0) = H(Xa(x), 0)s ffu(x, 1) E B* 

By 11.6 there is a homeomorphism 

cp: (B" x I, B" x 0 u S"-' x I)-+(B" x I,  B" x 1). 

One can easily check from the definition that qP(sn-lxl = 1. Define 
h,: (B", S") + (Y,  B)  by 

h , = H o ( x ,  x l)Ocp-'lsnxl. 

By Exercise 7, Section 10 there is a homotopy K,: B," x I +  Y with 
Ka(x, 1) = ha(x), Ka(x, 0) = * and Ka(S:-' x I )  c B. Let Ha = K, 0 cp. 
Then q(5'Z-l x I )  c B," x 1, so Ka)rp ( smn- lx l ) )  = h n ) q ( s , n - l x l ) .  Consequently 
HJx,  t )  = H(x,(x), t )  for x E Sl- ' .  Similarly, Ha(x, 0) = H(xa(x), 0). Since 
cp2 = I ,  c p ( ~ ,  1) E B," x 0 u S:-' x I.  Thus H,(x, 1) E B. 

Proof of 16.6 Using 16.7 we construct homotopies H": xn x I +  Y by 

I 

induction on n such that 
(a) H"IXn-l,I = Hfl-1.  

a 

(b) W x ,  0) = f ( x ) ;  
(c) H"(x, 1) E B;  
( 4  H"(a, t )  =f(4. 

Define H :  X x I +  Y by H I X n x l  = H". This is well defined by (a) and is 
continuous by 15.6 and Exercise 11, Section 15. Define g(x) = H(x, 1). By 
(c), g(x) E B and by (b) and (d), H :  f - g (re1 A) .  I 

' 0  We interpret the statement ro( Y, B, *) = 0 to mean that no(B, *> + ro( Y, *> is onto; 
i.e., every point of Y may be joined by a path to a point in B. 
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Definition 16.8 Let (X, A) and (Y, B) be relative CW complexes and 
f: (X, A) + (Y, B). f is called cellular if f(X") c Y". 

Theorem 16.9 Let (X, A) and (Y, B) be relative CW complexes f: (X, A) + 
(Y, B). Then f - g (re1 A) where g is a cellular map. 

Proof We construct homotopies Hn: X" x I-, Y inductively such that: 

(a) H"(xn- lx l  = Hn-I.  y 

(b) H"(x, 0) = f (x) ; 
(c) Hn(x, 1) E P; 
( 4  Hn(a, t )  =f (a). 

by 16.7, using the fact that for any choice of *, n,(Y, Y", *) = 0 by 16.4. 
Define H: X x I+ Yby HIxnxI = H". As in 16.6, thiscompletes the proof. I 

Corollary 16.10 Let f, g:  (X, A) + (Y, B) be cellular and homotopic 
(re1 A). Then there is a cellular homotopy (re1 A) between them (H: (X, A) x 
I -, (Y, B) is cellular if H(X" x I )  c Y""). 

Proof (X x I, X x 0 u A x I u X x 1) is a relative CW complex with 
n-skeleton X x 0 u X"-' x I u X x 1. Apply 16.9 to the given homotopy 
to obtain a new one. I 

As an important special case, we have: 

Corollary 16.11 Every map between CW complexes is homotopic to a 
cellular map and every two homotopic cellular maps are cellularly homotopic. 

Proof Apply 16.9 and 16.10 with A = B = (a. I 
Thus it is only necessary, from the homotopy theory point of view, to 

consider cellular maps and cellular homotopies. One should be careful, 
however, because one extra dimension is needed for a homotopy. 

Example Let X = S" and Y = Bn+' and consider the inclusion X +  Y. 
We make X into a complex with one 0-cell and one n-cell. We make Y into 
a complex with a 0-, n-, and (n + 1)-cell. Thus X = Yn and the inclusion is 
cellular. The inclusion is homotopic to another cellular map, namely, the 
map sending all of X to the 0-cell of Y. However, there is no homotopy 
H: X" x I + Y" between these maps. 

Definition 16.12 A map f: X + Y is called a weak homotopy equivalence 
iff*: n,(X, X) + n,(Y, f (x)) is 1-1 and onto for all n 2 0 and all x E X. 
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Note that this is not an equivalence relation. If X is arcwise connected, it 
is sufficient to considerf, for one choice of x E X .  

Definition 16.13 Given a space Y, a cellular approximation to Y or re- 
solution of Y is a pair ( K , f )  where Kis  a CW complex$ K +  Y is a weak 
homotopy equivalence. 

We will show that resolutions always exist and any two of them are equiva- 
lent (in a sense we will define later). However, there is considerable choice in 
finding a resolution (as the proof will indicate), and neither the dimensions of 
the cells nor the number of cells are invariants. As an example, consider the 
two resolutions of a one-point space: Kl = one-point space with the point as 
a 0-cell; K2 = B3 with cells e0 = (1, 0, 0), ez = S2 - eO, and e3 = B3 - S2.  

If ( K , f )  is a resolution of Y ,  K is sometimes called a singular complex for 
Y.  

Proposition 16.14 Given an (n  - 1)-connected space Y there is a resolu- 
tion (K,  f ) .  If n 2 1,  we can furthermore assume that K has no cells of di- 
mension < n except for a single 0-cell *. 

Before proving 16.14 we introduce a lemma. 

Lemma 16.15 Given f: X +  Y such that f I A  is an inclusion, there is a 
commutative diagram 

where i is an inclusion, nj = 1 and j n  N 1 (re1 i (A)) .  The space Z is called the 
mapping cylinder of the m a p 5  

Remark To visualize this consider first the case A = 0. Thus we replace 
Y with Z where Z N Y andfthen corresponds to the inclusion i. Iff1 A is an 
inclusion, one can achieve the same result, but without altering Y onf(A) -= A .  

Proof Define 2 = Y u X x Z/(x, 0) - f (x ) ,  (a, t )  - f (a) .  See Fig. 16.1. 
Define i ( x )  = (x, l), n(y) = y ,  n(x, t )  = f ( x ) ,  and j ( y )  = y .  All the claims 
are obvious. The homotopy H :  j n  N 1 (re1 i (A))  is given by H(y, t )  = y ,  
H(x,  s, t )  = (x, st). (Compare this construction with 11.14.) 
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Figure 16.1 

Definition 16.16 Let fi:  Gi --f H i  be a homomorphism for each i E 2'. 
{fi> is called a k-isomorphism if fi is an isomorphism for i < k and fk is onto. 
If X and Y are spaces and f: X +  Y, f is called a k-equivalence" if 
f*: ni(X,  x) --t xi( Y, f ( x ) )  is a k-isomorphism for all x E X .  

Proof of 16.14 Assume first that n 2 1. By induction we will construct 
an rn-dimension complex K" such that 

K" 3 K"-' =) KO = *, 
and rn-equivalences f,: (K", *) -+ (Y, *) such that f m I K m - l  = f,-l. We begin 
the induction with * =KO = K"-', and Lv1(*) = *. Suppose now that we 
have constructed (K", f,). Let 2 be the mapping cylinder off, ( A  = *). 
Then we have a commutative diagram 

Hence n,(Z, K", *) = 0 for i I m. Let {A) generate 1r,,,+~(2, K", *>, 
f,: (B,"+l,  So,", *) --t (2, K", *). We construct Km+' as follows: 

Km+l = K" u U B,"+'/x -fa(x) for x E Sum c B:". 

K"+' is a closure finite cell complex, and we give it the weak topology. 
Hence KmS' is a CW complex and K m  is a subcomplex. 

Define F:  (K"", K")+(Z, K") extending the identity by F J B , , , , + ~  = 
f,: (B,"", Sam, *) -+ (2, K", *). Define fm+l = nF where n: Z+ Y. Then 

I 1  The literature is not consistent on the use of the term k-equivalence. For example, 
Whitehead does not assume that fk is onto [73]. 
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fm+l  I K m  = n I K m  = f , .  Consider now the mapping cylinder 2' of F with A = 
K"', and the diagram 

zi(Z', K", *) - xi(Z', K'"', *) 

ni(Z, K", *) = 0 for i I rn and F,: nm+l(Km+l, K", *) + n,+,(Z, K", *) is 
onto by construction. Hence ni(Z', Km+', *) = 0 for i I rn + 1, and i, is an 
m + 1 isomorphism. Now consider n': Z ' + Z  and n: Z +  Y. These are 
homotopy equivalences and ~ n ' i  = zF = f m + l .  Hence has the desired 
properties, and the induction is complete. 

We now define K = u K" and f: K + Y by f I K m  = f ,  . I f  we give K the 
weak topology, we have ni(K, K", *) = 0 for i I m. Hence in the diagram 

ni(K, *) 

--m 

4 Ri(  y7 *) 
'*I 

ni(Km, *> 
all maps are isomorphisms. 

K = LI K,. befine f by settingfl K m  to be a resolution of Y, . 
If n = 0, choose a resolution K, for each arc component Y, of Y and let 

I 

Lemma 16.17 Suppose f: X - +  Y is a base point preserving map. f is a 
weak homotopy equivalence iff given any CW pair (L, Lo) and maps 
a: Lo + X ,  B :  L + Y with f a  = j? J Lo there is a map g : L + X with g I Lo = a 
and f g  N fl (re1 Lo) 

Proof I f  this property is satisfied, consideration of the diagrams 
r r x - Y  X - Y  
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leads to the conclusion thatf, is onto and 1-1 in n,, for any choice of x E X. 
Suppose conversely that f induces isomorphisms in homotopy. Let Z be 

the mapping cylinder off: 

Lo - L 

Define F: L x 0 u Lo x I + Z  by F(1, 0 )  =jp(l)  and F(1, t )  = (cr(l), t )  for 
I E L ~ .  Extend F to F: L x I - Z  by 14.13. Let y :  L + Z  be given by y(1) = 
F(1, 1). Then )!(Lo) c X x 1. Apply 16.6 to produce g: L -+ X x 1 with g - 
y (re1 Lo),  Now g( Lo = a, and f g  = ng - ny - p (re1 Lo) where the last 
homotopy is given by (I, 1 )  -+ nF(1, t ) .  I 

Definition 16.18 A map f: ( X ,  A )  + (Y ,  B )  is called a weak homotopy 
equivalence if the associated mapsf: X -+ Y andfl A : A -+ B are weak homo- 
topy equivalences. A resolution of a pair ( X ,  A )  is a CW pair (K,  L) and a map 
f: (K,  L) -+ ( X ,  A )  which is a weak homotopy equivalence. 

Proposition 16.19 Any pair (A', A )  has a resolution. 

Proof Let f o :  L -+ A be a resolution. By adding cells to L we may form a 
complex K =J L and an extension offo to a resolutionfof X by Exercise 7. 

Proposition 16.20 Let f: ( K ,  L) -+ ( X ,  A )  and g: (K', L') -+ ( Y, B)  be 
resolutions and h :  ( X ,  A )  -+ (Y ,  B). Then there is a map cp: ( K ,  L)  -+ (K',  L') 
unique up to homotopy of pairs such that 

(K',  L') ( Y, B )  

commutes up to homotopy (of pairs) 
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Proof Apply 16.17 to the commutative diagram 

to produce $': L + L' with gJ/' - hf. By 14.13 y :  K x 0 u L x Z +  Y given 
by hf on K and the above homotopy on L x Z extends to r: K x I-+ Y. 
Now apply 16.17 again to the diagram 

9' L - K  

to produce an e:-tension $: (K,  L) .+ (K', L'). Then g$ - r ( , 1) - hfand 
the homotopy maps L into B. 

both satisfy the conclusion. 
Choose a homotopy H :  g$o - gt+bl. This is possible since both are homotopic 
to  hf. We can thus apply 16.17 to the diagram 

To prove uniqueness suppose $o and 

J l O U @ l  L x O U L  x 1-L' 

Let J :  L x Z +  L' be a homotopy between $o I and 
(re1 L x 0 u L x 1). Call this homotopy P. Then 

P :  L x Z x I - +  B 

I such that gJ - H 

satisfies 
P(I, s, 1) = gJ(I, s) P(L 0, 2 )  = g$oU) 
P(1, s, Oj = H(/,  s) P( / ,  1, t )  =gt,bl(/). 

We will extend P to K x Z x I .  First we extend P to a map from 

Z = ( K x  I x O ) u ( K x O  x I ) u ( L x Z x Z ) u ( K x  1 X I )  

to Y. This is accomplished by defining 

P(k,  S, 0)  = H(k, S) 

P(k, 0, t )  = g$o(k) 
P(k, 1, t )  = g h ( k ) .  
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Now 2 = ( K  x I )  x 0 u ( K  x 0 u L x I u K x 1) x I and hence by 14.13 
there is an extension to K x I x Z which we call P .  Define B to be the com- 
position 

P 
K x  I I K  x I x 1 c K x  I x  I -  Y .  

Now 
R(k, 0)  = P(k, 0, 1) = gl),(k) 
r r < r ,  s) = P(1, 3, 1) = gJ(I, s) 

R(k, 1) = P(k, I ,  1) = g*,(k). 

Again we have a commutative diagram 
$OUJU$I K x 0 v L x I v K x I- K’ 

and we apply 16.17 to construct 5: K x I +  K’, a homotopy from $, to 
which extends J ;  thus I), - I)’ as maps of pairs ( K ,  L) + (K’ ,  L’). I 

Proposition 16.21 There is a functor S :  %’ + X,’ and a natural trans- 
formation fx: 10 S ( X ,  A )  -+ ( X ,  A )  where I :  X; -+%: is the inclusion. 
Finally ( fx)* is a weak homotopy equivalence. 

Proof We use the axiom of choice for classes. For each pair ( X ,  A )  €6’ 
we choose a CW pair (K ,  L) and a map$ ( K ,  L) + ( X ,  A )  which is a resolu- 
tion. Define S(X,  A )  = (K, L). If$ ( X ,  A )  + ( Y ,  B), there is a unique homo- 
topy class S ( f ) :  S(X,  A )  -+ S(Y,  B )  by 16.20. By uniqueness, S(1) = 1 and 
Scfo g) = Scf) o S(g). The natural transformation follows from the construc- 
tion. I 

There seems to be a lot of choice involved in the construction of this functor. 
This is more apparent than real, however. Given two resolutions ( K , f )  and 
(K’ , f ’ )  of X ,  16.20 provides a map h:  K - t K ‘  with f ’ h  -J Thus h induces 
isomorphisms in all homotopy groups. h is in fact a homotopy equivalence, 
as one sees from the following famous 

Theorem 16.22’’ (Whitehead Theorem) Let X and Y be CW complexes 
and assume that g : X + Y is a weak homotopy equivalence. Then g is a homo- 
topy equivalence. 

l 1  This theorem is usually attributed to Whitehead and appears in his classical paper 
[73], where CW complexes were first defined. An earlier theorem which is actually more 
general can be found in [33]. 



140 16. The Hornotopy Theory of C W Complexes 

Proof Since 9: X-r Y is a resolution, 16.17 implies that there exists 
h :  Y -r X with gh N I in G*. Since h is a resolution, we can similarly find 
j :  X-+ Ywithkj-Iin%*.Nowg -ghj-j,hencehg N 1 andhisahomotopy 
inverse for g. 

Corollary 16.23 Suppose X is a connected CW complex and ni(X, *) = 0 
for i < n. Then Xis the pointed homotopy type of a CW complex X' with no 
cells in dimensions < n  except for one 0-cell. 

Remark In particular, every connected CW complex is the pointed homo- 
topy type of a CW complex with only one 0-cell. 

Proof Combine 16.22 and 16.14. I 

Lemma 16.2413 Suppose (XI, X 2 )  is ecxisive in X and ( Y,, Y,) is ecxisive 
in Y-Letrp: Y-,Xwithrp(Y,)cX, andrp(Y,)cX, .  Ifcpl,,: Y l - + X , ,  
rp I y z :  Y, -r X2 , and cp I YlnYz: Y, n Y, + X, n X2 are weak homotopy 
equivalences, so is cp. 

Proof Given f: A" + X, 9: aA" -+ Y with cpg = f I d * , ,  we will find 
F :  A" -+ Y with FI = g and cp 0 F - f (re1 aA"). This is clearly enough to 
prove that cp* is an isomorphism: 

aA" - A" 
Let A i  = g - ' (  Y - Int Yi) u f - ' ( X -  Int X i )  for i = 1, 2. Then Al and 

A2 are disjoint closed sets. Subdivide A" so that no simplex meets both A ,  
and A , .  Define 

K i  =(olg(cr n aA") c Int Yi,f(a) c Int Xi}. 

Then K, and K, are subcomplexes and An = Kl u K2, for if B is a simplex 
that misses A i ,  o c K i .  Furthermoref(Ki) c Int X i  andg(Ki n ad") c Int Yi . 
By restriction we have a commutative diagram 

t. t 

I g  
ad" n K, n K2-  K, n K, 

l 3  This result is not in the standard expositions on homotopy theory. An equivalent 
result is stated without proof in [4, Section 101. 
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There exists F: Kl n K2 Yl n Y, with F I K L n K r n a A n  = g and cpF -f 
(re1 8A" n Kl A K,). Now define Gl : K1 n (8A" U K2) -+ YI by GI 1 K I  ndAn = 

9 I K 1  naA* and G1 1 K I  n K 2  = F* Then 
VGl N f l K l n ( d A n ~ K ~ )  (rel Kl 

By 14.13 this homotopy may be extended to a homotopy H :  Kl x I 4  XI off 
to a mapfl: K1 -+ X1 withf, I K l n ( a A " u K 2 )  - - qG,. Thus the diagram 

Y l L  Xl 
t t 
I I f1 

K, n (ad" u'K2)- Kl 

commutes and we may find E ; :  K, -+ Y, with 

Fl I K , n ( d A " u K z )  = G1 and qFl -fi (aA" K 2 ) ) ) .  

This implies that qFl -f(rel(K, n 8A")). Similarly we construct F, : K2 -+ Y,  
with F 2 1 K l n ( a A n u K , )  = G,  and cpF, - f (rel(K, n 8A")). Now Fl and F, 
agree on Kl n K2 , so they define a map P :  I" -+ Y with PI K ,  = Fl, PI K 2  = F2 . 
Then aAn = g.The homotopies cpF, - f, - f and cpF, - f2 - f agree on 
(Kl n K,) x 1. Since cpFl - fl and cpF, - f, are homotopies re1 Kl n K , ,  
and the homotopies fi - f and f, - f when restricted to (Kl n K,) x I 
both yield the homotopy rpF -$ Hence cpP -f, and this is a homotopy 
rel(K, n dA") u ( K ,  n dA") = dA". I 

This result will be applied to a forthcoming chain of generalizations of 
13.6. 

Theorem 16.25 Let X be a CW complex, X ,  and X ,  subcomplexes, and 
A = Xl n X, .  Suppose ( X , ,  A )  has cells in dimensions 2 n and ( X , ,  A )  
has cells in dimensions 2 rn. Then if i :  (Xl, A )  + ( X ,  X,), i,: nr(Xl ,  A ,  *) -+ 

q ( X ,  X ,  , *) is an (rn + n - 2)-isomorphism. 
Proof Case I Xl = A  u, e". X ,  - A  consists of a finite number of 

cells. 
Let k be the number of cells in X ,  - A .  The result is true by 13.6 if k = 1. 

By induction suppose X ,  - A has k cells and X ,  = X,' u e' where X,' 3 A,  
X,' - A has k - 1 cells, and t 2 m. Then we have a commutative diagram 
of inclusion maps 

i 
( X , , A )  1 ( X ,  X,) 
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Both i, and i3 qualify for the inductive step hence i,, and i,, are (m + n - 2)- 
isomorphisms. Consequently (il)* is an (m + n - 2)-isomorphism. 

Case 2 X, - A and X ,  - A consist of a finite number of cells. 
We now do induction on the number of cells in  X ,  - A .  Call this number k 

and note that k = 1 is the above case. Suppose now that X, = X,’u e‘, 
A’,‘ 1 A ,  and t 2 n. Consider the ladder diagram 

(where base points are suppressed from the notation for brevity). The horizon- 
tal sequences are exact. i,, and i2* qualify for the inductive hypothesis and 
hence are (m + n - 2)-isomorphisms (since t 2 n) .  The conclusion for i* 
follows from the famous 

Lemma 16.26 (5-Lemma) Consider a commutative diagram of abelian 
groups and homomorphisms 

A ,  + A ,  + A3 -+ A4 + A5 

in which the horizontal sequences are exact. Then 
(a) if a, and a4 are onto and a5 is 1-1, a, is onto: 
(b) if a2 and u4 are 1-1 and a, is onto, a3 is 1-1. 
Remark No proof is given for this lemma because an essential element 

to any understandable proof is a certain amount of manual motion, and 
written proofs already abound in standard texts. 

We return to the proof of 16.25. 

Case 3 General case Let {a} E n,(X, X, , *). Since a(Z‘) is compact, it is 
contained in a finite subcomplex K of X. Consider the diagram 

i t  
n,(X,, A ,  *)- nC,(X, X ,  Y *) 

4 

I ( i l d t  I 
n,(K n XI, K n A ,  *) - n,(K, K n X ,  , *) 

If r < m + n - 2, ( i  I K)* is onto and {a} is in the image ofj, . Hence i* is onto. 
Let {a} E n,(X,, A ,  *) and i*({a}) = 0. Let H :  1,’’ + X be a homotopy. As 
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before H(Z'+') is contained in a finite subcomplex K of X and hence the 
same diagram shows that (il K ) * ( { ~ } )  = 0 and hence {a} = 0 if r < rn + n - 2. I 

Corollary 16.27 (Blakers-Massey Theorem-General Version) Suppose 
( X , ,  X , )  is excisive in X.  Suppose ( X , ,  X ,  n X,) is (n - 1)-connected 
and ( X ,  , X ,  n X , )  is (m - 1)-connected. Then i,: nr(Xl, X ,  n X ,  , *) -+ 

n,(X, u X ,  , X ,  , *) is an (rn + n - 2)-isomorphism. 
Proof Let f l z :  K,, + X ,  n X 2  be a resolution. The composite K,,+ 

X ,  n X ,  + X ,  is an (n  - 1)-equivalence. By Exercise 7 there is a resolution 
f , :  Kl --* X ,  with K,, c K,,f, I K I 2  = f12 and all cells of Kl - K,, have di- 
mension 2 n. Similarly there is a resolution f,: K, -P X ,  with K12 c K,, 
f ,  I K 1 2  =hz, and all cells of K2 - K 1 2  have dimension 2 m. 

L e t K = K , u K , a n d d e f i n e f :  K + X b y f l K , = f ,  andfl,,=f,. Let 
n: K x I + K b e  the projection and defineR c K x I b y R  = K, x 0 u Kl n 
K , x I u K , x I .  Let U , = _ R - K , x l  and U , = ~ - K , x O .  Then U, 
and U ,  are open in K and K = U, u U, . Define f = f n  I K. Then f(Ul) c XI 
andf(U,) c X , .  Since n: U ,  N K,, n: U 2  N K,, and n: U ,  n U ,  N K, n K , ,  
we may apply 16.24 and conclude thatf induces isomorphisms in homotopy. 
To see that f induces isomorphisms, it is sufficient to prove that the inclusion 
R c K x I induces isomorphisms. We utilize: 

Lemma 16.28 Suppose ( X ,  A )  has the AHEP. Then the inclusion X x 0 u 
A x I is a strong deformation retract of X x I. 

Proof Let h :  X x I - r  X x 0 u A x I be a retraction. Define H :  X x I 
x I+ X x I by 

H(x, i, S) = (hl(x, t(l - s)) ,  st + (1 - S ) ~ , ( X ,  t)) 
where h(x, t) = (h,(x, t), h,(x, t)) E X x I. This clearly satisfies the condi- 
tions. I 

Returning to 16.27, we see that Kl x 0 u K, n K2 x I is  a strong deforma- 
tion retract of Kl x I, and K, n K, x l u  Kz x 1 is a strong deformation 
retract of K2 x I.  Hence R is a strong deformation retract of K x I. It now 
follows that f*: n,(K, K,, *)+n,(X, X , ,  *) and f * :  n,(K,, K,,, *)+ 
n, ( X , ,  A ,  *) induce isomorphisms in homotopy by applying the 5-lemma to 
the exact sequences for the pairs involved. The conclusion follows by applying 
16.25 to the diagram 
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since Kl - K, n Kz has cells in dimensions 2 n and K, - K,, has cells in 
dimensions 2 m .  I 

Theorem 16.29 Let X = XI u X , ,  A = X ,  n X ,  and assume (Xl, A )  
and ( X , ,  A )  have the AHEP. Suppose (XI, A )  is (n - ])-connected and 
( X , ,  A )  is (rn - 1)-connected. Then i,: n,(Xl, A ,  *) + n,(X, X ,  , *) is an 
(m + n - 2)-isomorphism. 

Proof Replace X by X as in the proof of 16.27. w = U, u U2 and one 
may apply 16.27 to deduce the conclusion since (Ul, U ,  n U , )  = (Xl, A )  and 
(X, U,) = ( X ,  A) .  I 

Proposition 16.30 Suppose ( X ,  A )  has the AHEP and is (n - 1)-connected. 
Suppose A is (s - 1)-connected. Then (pA)*:  n,(X, A,  *) -+ n,(X/A, *) is an 
(n  + s - 1)-isomorphism. (Note x o ( X ,  A ,  *) is not defined so this applies for 
r > 0 only.) 

Proof Consider the inclusion i: ( X ,  A )  c ( X u  CA, CA). Since (CA, A )  
has the AHEP (Exercise 4), and X u  CA - CA = X = A ,  i,: nr(X, A ,  *) -+ 
n,(X u CA, CA, *) is an (n + (s + 1) - 2)-isomorphism. Now n,(X u CA, 
CA, *) N n,(X u CA, *). The conclusion follows from: 

Lemma 16.31 Suppose ( X ,  A )  has the AHEP. Then p c A :  X u CA + X / A  
is a homotopy equivalence. 

Proof By 16.28, X u  A x I is a strong deformation retract of X x Z. 
It follows easily that X u CA is a strong deformation retract of X x I / A  x 1 .  
We now show that X / A  x 1 is a strong deformation retract of X x I /A  x 1. 
A deformation is given by H(x, t ,  s) = (x, t + (1 - s)(l - t ) ) .  I I 

Definition 16.32 A space will be called well pointed or will be said to have 
a nondegenerate base point * if (X ,  *) has the AHEP. 

Lemma 16.33 

Proof By Exercise 18, Section 14, ( X  x I, X x 0 u * x lu X x 1) has 

If X is well pointed, C X  N S X .  

the AHEP. Define a homotopy H :  ( X  x 0 u * x Z u X x 1) x I +  ZXby 
H(x,  0,  t )  = (*, t/2), H(x, 1 ,  t )  = (*, 1 - t/2), H(*, s, t )  = (*, s(l - t )  + t/2). 

Define$ X x I x 0 + C X  by f ( x ,  s, 0) = (x, s). Since H and f agree on the 
intersection of their domains, there is an extension K :  X x I x I +  ZX of 
bothfand  H by the AHEP. K(x,  0, t )  and K(x, 1 ,  t )  do not depend on 
x ,  so K defines a map K: ZX x I+ ZX by 8.12. Clearly K(x,  s, 0) = (x, s), 
K(C* x 1) = (*, 5) and K(C* x I )  c C*. By Exercise 1, Section 13, C X =  
C X / Z * =  S X .  I 
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nr+l(C*X, X )  

Appendix 

We shall describe the classical construction of the singular complex of a 
space and show that it is a resolution. As a corollary (which we will use in 
Section 21) we prove the every CW complex is the homotopy type of a sim- 
plicial CW complex (defined below). 

The classical construction will be called the functorial singular complex, 
and the construction in 16.21 will be called the ad hoc singular complex 
when we wish to make a distinction. The main advantage of the functorial 
singular complex is that it is a functor from 6 to X, whereas the ad hoc 
construction is only functorial in the homotopy category X,. One pays for 
this advantage with size. The functorial construction on any finite geometric 
simplicia1 complex of positive dimension has 2' cells in each positive dimen- 
sion, where c is the cardinality of the continuum. On the other hand, the 
ad hoc construction of a simply connected space can be made very efficiently 
by Exercise 9, Section 22. We will also use the notation S ( X )  for the functorial 
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construction if i t  will not lead to confusion; we now define the functorial 
construction. 

Let S,, be the set of continuous maps F:  A" + X with the discrete topology. 
Let B J X )  = S, x A". B J X )  is a disjoint union with one copy of A" for each 
map f E S,, . Let I , :  An-1 + A,, be defined for 0 I s I n by t s ( r o ,  . . . , tn-J  = 
(r,,, . . . , t s - l ,  0,  r s ,  . . . , r,,-,). Let B ( X )  =u7=o B,(X) and let - be the 
equivalence relation in B ( X )  generated by 

(fi, 1 u)  - (Ah (4) 
for all 0 5 s  I n, U E  A " - l , f ~  S , ,  and all n 2 0. 

Definition 16.35 S(X)  = B ( X ) / -  with the quotient topology. 

Proposition 16.36 

(a) S ( X )  is a CW complex; 
(b) S :  Z + X is a functor; 
(c) if A c X, S(A) c S ( X ) ;  
(d) There is a natural transformation IC: S ( X )  -+ X .  

Proof We use Exercise 5 ,  Section 0 to show that S ( X )  is Hausdorff. 
B ( X )  is normal. Let q :  B ( X )  + S(X)  be the quotient map. Then 4 is closed 
since if A c B ( X )  is closed, {b  I b - a, a E A }  is closed. Thus S ( X )  is Hausdorff. 
Let S"(X) = q(B,(X) u * * u Bo(X)) .  Then 

,!?"(A') - S " - ' ( X )  = q(S, x Int A") 5 S, x Int A" 

since ~ I s n x r n t A , ,  is 1-1 and S,, x Int A" is open in B(X) .  For eachfE S,,, define 
xf: A" -+ S ( X )  by xs(u) = q(A u). This is continuous and xf Irn, An, is a homeo- 
morphism. Furthermore xs(A", dA") c (S"(X) ,  S" - ' (X ) ) .  Thus choosing 
ef" = xs(lnt A") as n-cells, we have a cellular structure on S(X) .  Clearly S ( X )  
is closure finite and has the weak topology by 14.5. This proves (a). 

Let 17: X+ Y and define B(/7): B ( X )  +B( Y )  by B(h)(A u )  = (/& u). This is 
continuous and preserves the identifications. Hence it  defines S( /I ) :  S ( X )  + 

S( Y ) .  This is clearly functorial, so we have proven (6). 
Suppose A c X .  Then B(A) is a closed subset of B(X) .  Hence the subset 

q(B(A))  c S ( X )  has the quotient topology and is thus equal to S(A). Thus 
S(A) c S ( X ) .  This proves (c). 

Define 11: S ( X )  4 X by nq(J u)  =f(u), I t  is easy to verify that this is well 
defined, continuous, and a natural transformation. I 

Definition 16.37 By a semisimplicia1 CW complex we will mean a pair 
(K,  {x,}), where K is a CW complex and {x} is a collection of characteristic 
maps xa: A" -+ K with one for each cell e l  such that for each cell e t  and each s 



16. The Homotopy Theory of CW Complexes 147 

with 0 I s I n there is a cell e&,',) such that xP(, ,  s) = X, 0 1 , .  A CW complex 
is called regular if there is a characteristic map for each cell that is a homeo- 
morphism. By a simplicial CW complex we will mean a regular semisimplicial 
CW complex such that each cell e/ is determined by the set {x,(u,)} where 
A" = ( u o ,  . . . , v,). We will write 1 K ]  for the underlying topological space of a 
semisimplicial CW complex K. 

To understand the meaning of these definitions it is helpful to notice that 
S' can be made into a semisimplicial CW complex with only one 0-cell. TO 
make S' into a regular CW complex, one needs two 0-cells and to make S' 
into a simplicial CW complex one needs three 0-cells. However one cannot 
make S2 into a semisimplicial CW complex without any 1-cells. 

Proposition 16.38 ( S ( X ) ,  {xf}) is a semisimplicial CW complex. 

Proof Xf 1,  = Xf,.' I 
The function ~(oc,  s) defined in a semisimplicial CW complex K is often 

written 3, c(. Thus an operator a, is defined from the set of n-cells to the set of 
(n - ])-cells for 0 < s 5 n. (See Exercise 25.) 

Clearly a subcomplex of a semisimplicial regular or simplicial CW complex 
is a CW complex of the same sort. 

One can easily give a finite geometric simplicial complex K the structure of 
a simplicial CW complex. By ordering the vertices of K, one defines for each 
n-simplex a characteristic map x,: A" + K which is order preserving on the 
vertices. As a converse, we have: 

Proposition 16.39 Every finite simplicial CW complex is homeomorphic 
to a finite geometric simplicial complex. 

Proof Let ( K ,  {x,}) be a finite simplicial CW complex. Let V = {a,, . . . , a,} 
be the set of 0-cells. Define F: V --f Am by F(a,) = ui . We will extend this over 
K. Define F,:P," +Am by F,(Xa(Ctiui)) = C t i  F(xU(oi)). Since K is regular this 
is well defined. Since x U i s  = FulC;~tT, = FP(,,,,. Thus if e,,m c &", 
F,I,.,,, = F,. and the maps F, therefore define a continuous map f: K+ Am. 
Since K is simplicial, F i s  1-1 and hence is a homeomorphism from K to F(K). 

Now F(K)  is the union of the simplicies (F(x,(u,)), . . . , F(X,(V,))) and hence 
is a subcomplex of Am c R". 

The process of barycentric subdivision (12.16) can be applied to semi- 
simplicial CW complexes and we consider this construction next. 

A sequence of subcomplexs T, < z1 < * .  . < zk < A"' with z i  # zi+ '  deter- 
mines a k-simplex (b(z,), . . . , b(zk) )  in A". We take as a characteristic map 
for this cell the map 

I 

1 7 0 ,  ....Tk. . Ak + An 
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given by 
IT", .... rk(fo 3 . * 

9 t k )  = ti b(Ti). 

Let (K,  {x,}) be a semisimplicial CW complex. Define maps x:"~ " " ' k :  Ak -+ 
K as the composition xa 0 Z r o 9  ...* I k .  Define the redundancy of x:*"'*'" by 
r(XF* . . . 9 7 k )  = n - dim t k  2 0. 

Lemma 16.40 Each map x:"'"k is equal to a map $ 7 , . . 9 u k  with 

Proof We will use induction. Suppose r ( x 2 v . . . 9 ' k )  > 0. Then zk c iA(A"-')  

for some s. Define di c A"-' by g i  = i i l ( t i ) .  Then go < (rl < .< g k 4  A"-' 
and g i  # gi+l .  Furthermore zs(b(ai)) = b(t i ) .  Hence Ira* =is Iuo '  '..'uk 

We call ~ 2 ,  . . . . T k  nonredundant in case r(X2' . . . s ' k )  = 0; i.e., zk = A". We 
will write K' for the underlying space Ktogether with the nonredundant maps 
x',"' . . . * r k  as characteristic maps. 

~ ( ~ $ 9  "'auk) = 0. 

and consequently ~ 2 ,  . . . , Ik  = ~$:;,;j~~*. But r(x$:;;;j "") = r(x',"' ... J") - 1. I 

Theorem 16.41 If Kis  a semisimplicial CW complex, K' is a regular semi- 
simplicia1 CW complex. If K is also regular, K' is a simplicia1 CW complex. 

Proof We first observe that if 0 I s 5 k,  
TO 9 ... I 1s - 1, 1s t 1 3 ... 9 Tk - - xF 9 ... I U k -  I x: * 1 s  = Xa 

for some nonredundant map x ~ ' ' ~ . , u k - l  by 16.40. We show now that each 
x',"' . . . s r k  is a homeomorphism by induction on k.  This is trivial if k = 0. 
Choose a map xF3 . . . , I k .  By 16.40 we can assume that it is nonredundant. 
Suppose x',"' . . , 9 T k ( x o )  = ~ 2 '  . . . sTk(x l ) .  Let ui = I,'", ".,'*(xi). Then ui E ad". 

so ~ $ 0 '  . . , . T k - l ( y O )  = xzs ""'"-'(yl). By induction yo = y ,  so xo = x1 and 
~ 2 ,  . . . s T k  is a homeomorphism. 

Now define cells in K' by 

But (ITo* . . . , ' k ) - ' ( d A " )  c ik(Ak-') ,  so x i  = ik(yi ) .  Now ~ 2 9  . . . s T k  i k  = ~29 . . . * ' k - l  

e:' ...irk - - xa(lnt(b(to), . . . , b(zk) ) )  = 12' . . . , I k (  Int Ak) 

in x,s . . . . T k  is nonredundant. Then 

Int A" = u Int(b(t,), . . . , b(zk)) ,  

where the union is disjoint and is taken over all sequences z0 < . * < zk = 
A" with ti # ti+l. Hence the cells e:p"'"k are disjoint and cover K' = K. 

..."*--I, x',", . . . '7k(dAk) t (K ' )k - l .  Thus K' with these cells is a cell complex. 
K' is clearly closure finite and has the weak topology on the cells 22' . . . ' I k .  

is a characteristic map for e:' . . . ' I k  and since xp* . . . g T k  1.5 = 
Now x:, . . . * T k  
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We have already proved that i t  is semisimplicial and regular so the first part is 
done. 

Suppose now that K is regular. Let Ak = ( u o , .  . ., v,), and suppose 
x~*"'"" (vi) = $ 9  ...'""( v i )  for each i. Since 12, "'"k(u,) = x,(b(t),) = 

x,(b(Ak)) E e, and similarly ~ 7 ,  ...' ""(u,) E ep we must have CI = 8. Since K is 
regular, we must have Iro9 "'sTk(vi)  = I"", "k(vi)  for each i. Hence b(ri) = 
b(oi) and this implies T~ = o i .  Thus the cell ep. . . . v T k  is determined by the 
points ~ 2 ,  ".""(vi) for 0 5 i k.  I 

Corollary 16.42 (Burrutt) If K is a semisimplicial CW complex, K" is a 

We now state the main result and prove a corollary. 
simplicial CW complex. 1 

Theorem 16.43 (Ciever-Whitehead [25, 741) ( S ( X ) ,  TC) is a resolution of 
x. 

Corollary 16.44 Every CW complex is the homotopy type of a simplicial 
CW complex. 

Proof of 16.42 By 16.22, 16.36, and 16.43, S ( X )  1 X.  By 16.38 and 16.41, 
I S ( X )  I = 1 ,S"(X) I is a simplicial CW complex. Thus X E S"(X).  

The proof of 16.43 is complicated and requires some lemmas. 
Let S, be the set of characteristic maps of n-cells in a semisimplicial CW 

S, x A". Let - be the 

I 

complex K, with the discrete topology. Let B = 
equivalence relation in B generated by 

(xa 9 l s (u ) )  N ( x p c a ,  s) 9 u )  
for x, E A,, and u E A"-'. 

Lemma 16.45 B/ -  = K. 

Proof Define F:  B/ - --f K by F({(x,, u)} )  = x,(u). This is well defined, 
continuous, and onto. To see that it is 1-1 note that every point x E B/ - has 
a representative (x,, u) with u E Int A". Thus if F(x) = F(x'), x,(u) = xat(u'). 
But e, and e,. are equal or disjoint, so CI = a' and u = u'. To see that F is 
open, note that both B/ - and K are quotient spaces of the disjoint union of 
the closed cells. Hence the topologies agree. I 

Definition 16.46 Let (K, {x,}) and (L ,  {xp} )  be semisimplicial CW complexes. 
We will call a map f: K +  L simplicial if for every CI there is a /3 such that 
XP = h a .  

Clearly simplicial maps are continuous. 
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Lemma 16.47 Let K be a semisimplicial CW complex andf: K +  X be a 
continuous map. Then there is a unique simplicial map S ( f ) :  K - ,  S ( X )  such 
that n S ( f )  = f .  

Proof We use 16.45 to construct S u ) .  Define 

B ( f ) : B + S ( X )  

by B( f ) ( {x , ,  u}) = { ( f x , ,  u)}.  This is clearly well defined and continuous, 
and preserves the equivalence relation. Thus B ( f )  determines a map 
S ( f ) :  K-+ S ( X )  and n S ( f )  = f .  

Suppose g: K +  S ( X )  is a simplicial map with Ttg =f. Then g({(x , ,  uj) = 
{ ( O , ,  u)) for some map 0,: A" -+ X. If ng = f we must have O,(u) =fx,(u) 
so 9 = S(f>. I 

I f f :  K - +  S ( X )  is a simplicial map, there is a unique simplicial map 
f': K' -+ S ( X )  such that the diagram 

S' K' - S(X)  
I I 

commutes. 
c 

Lemma 16.48 f-f' (re1 KO). 

This is the key to 16.43; we defer its proof temporarily. 

Proof of 16.43 It is clearly sufficient to consider the case that X i s  arcwise 
connected. Choose * E X and let e E S ( X )  be the O-cell with n(e) = *. Then 
it is sufficient to show that 

~ t * :  ni(S(X),  e) -+ n j ( X ,  *) 

is an isomorphism for all i. We first show that n* is onto. Let a: (S", *) + ( X ,  *). 
Choose a semisimplicial complex K with I KI = S" such that * corresponds to 
a O-cell u E K .  By 16.47 there is a simplicial map S(a): S" - + S ( X ) ,  with 
nS(a) = u. Since S(a)(u) E So(X),  S(a)(u) = e. Hence S(a): (S", *) -+ (S (X) ,  e) 
and n,{S(a)) = {a}. 

Now let a :  (S", *) -+ (S(X) ,  e). We will show that there is a semisimplicial 
complex K with I KI = S", a O-cell u E K corresponding to t ,  and a simplicial 
map$ K-+  S ( X )  withf- a (re1 u) .  Now there is a simplicial map y :  S ' ( X )  + 
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S ( X )  with ny = n and a simplicial map y ' :  5"'(X) + S ( X )  with ny' = n. By 
16.48 with K = S ( X )  we see that y - 1 (re1 So(X) ) .  By 16.48 with K = S ' ( X )  
and f = y we see that y' N y (re1 S'(X)O). Hence y' - 1 (re1 So(X) ) .  Thus there 
is a map b: (S", *) -+ (S"(X) ,  e)  with y'P - a (re1 *). Now p(S") is contained in 
a finite subcomplex of S"(X) .  By 16.39 and the simplicial approximation 
theorem, there is a simplicial complex K with IKI = S" and 0-cell u corre- 
sponding to * so that is homotopic to a simplicial map 6: K+ F ( X )  relative 
to *. Thus a - y '6  (re1 *) and f = 7'6 is simplicial for some choice of charac- 
teristic maps in K. Consequently {a) = { f } .  Suppose n*( f}  = 0. Then there is a 
map H :  B"" --f X with HIs" = nJ Now there is a semisimplicial complex 
L with 1L1 = B"" and K a subcomplex of L (if K = (i?An)cr), let L = (An)@)). 
Then S ( H ) :  3"" + S ( X )  is simplicial and since K is a subcomplex of L, 
S(H)  1 = f by uniqueness. Hence { f } = 0. I 

It remains to prove 16.48. 

Proof of 16.48 We will call a map I :  Ak + A" inclusive is I if induced by a 
1-1 order preserving map of the vertices. Since every inclusive map is a com- 
posite of maps of the form I , ,  we have ( x m t ,  u) - (x, , ~(u)) in the equivalence 
relation of 16.45, for 1 inclusive, u E Ah, and xa:  An + K. 

Now let I ,  be a 1-1 correspondence from the nonempty faces of An to the 
integers 0, . . . , 2"" -2 such that if T i T I ,  &(T)  I A,(T') and An({vi}) = i. 
Define linear maps 

AII -+ A'"'I-2 , b,: (A")' -+ A'"+'-' , 

by il(ui) = v i ,  b,(b(T)) = uln(r)  where b(z) is the vertex of (A")' which is the 
barycenter of T ,  and 7ti(vi) = b(&'(i)). 

If 0 I s In, I,: A"-' + A "  induces an inclusion of the faces of An-' into 
the faces of A"; by the condition on A,, this inclusion corresponds to an 
inclusive map I,:  -+ . We then have I, i1 = I, I,, I, b, = b, I , ,  and 
n1 I, = I, n, . Now define 0, :A" --t A'"+'-' by 

7tA : A'"-' + A", 

6, = tb, + (1 - t ) l A .  

We are now prepared to define a homotopyS,: K' + S(X) .  We represent a 
point in K' via 16.45 by a pair bz*...pTk, u) for u E Ah and x ~ 9 . . ' o ' k  non- 
redundant. Recall that f: K -+ S ( X )  is a simplicial map. Define 

f,(xJ$P' . . . , T k  , u) = (nfx, 7T, , 0 , P  ...' "(u)). 
Note that 0,1r09 ".""(u) E A'"+'-' and nfx,n,: A'"+'-' + X .  Thus this 

We show that the formula for f, is valid even if x',", . . .p 'k  is redundant by 
pair represents a point in S(X) .  
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induction on the redundancy. Suppose it holds for pairs (xp"""k , u )  of 
redundancy less than p ,  and dim zk + p = n. Let flj = i,-'(z,,). Then 

fto12' . . . * I k  9 U) =L($?i,ij3"ky U) 
= (nfxal, n, , e, z u o ?  ~ k ( u ) )  

= (nfx, n, I,, 8* Z"", ".'"*(U))  - (nfx, 71, , z, 0, I""' ...' " k ( u ) )  

= (nfx, n1 , e, 1,z"o. ...' y u ) )  

= (nj,xan,, 8,I'"' .-"(u)). 

Hence the formula holds in this case as well. 
We must show thatf, preserves the equivalence relation in K (16.45). But 

j-,(xpp -.' ~ k ,  Is(u)) = (nfx, 71, , e, z r o ?  ...' ~k [,(U)) 

' k ,  U) 
- - f,(x2 9 . . ., Is- I . rs + I I , , . I  

'"(u)) - - (nj,x,nA, 0, p o p  ..., G- I .  r.+ I ..., 

I , ,  4. = f,(x,s . . . I  fk  

Note that in the case s = k, ~ 2 '  ' . . i r k - 1  is redundant and we have used our 

Now Bo = I ,  which is inclusive. Hence 
earlier result. 

fo(x$l I . . . > rk , u)  = (nj,, C79 zro, .-,'"(u)). 

The homeomorphism K = K is given by ( ~ 2 '  . . . v r k ,  u)t,(x,, Po* '"4>, 

= b, , and b, I'"9 . . . q T k  is the inclusive map that sends 
so f o  =J 

On the other hand, 
u i  to u l n ( r i ) .  Hence 

fl(xp, . . . , r k  , U) = (nfx,n,, b,l*o'...7'k(~)) 
= (nf~,n,blIr"' ' . . c r k ,  U) 

9 u).  - - (nfx;' ..., ' k  

Since fl is simplicial,fl =f' .  

= (nfx, nA , 0, v i )  = (nfx, n1 , v , ) ,  since 6,(ui)  = v i  . 
Finally, ifCxz* '"' r k ,  u )  is a vertex of K, Po.  "(u) = v i  . HenceS,(Xzv '*, u)  

Exercises 

1. Show that if U c lnt A ,  i,: n,(X - U ,  A - U )  -+ nr(X, A )  is an isomor- 
p h i s m i f r < r n + n - 2 a n d i s o n t o i f r = r n + n - 2 i f ( X - U ,  A - U ) i s  
(n - 1)-connected and ( A ,  A - U )  is (rn - 1)-connected. 
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2. Write down a homotopy that makes K a strong deformation retract of 

3. Prove that iff: ( X ,  *) -+ (Y, *) and ( X ,  *) is well pointed, Y uf C * X E  

4. Show that (CX, X )  has the AHEP. (16.30) 
5. Suppose X and Yare arcwise connected and the homotopy type of CW 

complexes. Let f :  X - t  Y induce f*: n,(X, *) -+ 7c*( Y, *). Prove that iff* 
is an isomorphism, f i s  a homotopy equivalence. 

6. Suppose f :  X - t  Y is a weak homotopy equivalence and K is a CW 
complex. Show thatf,: [K, X ]  -+ [K, Y] is a 1-1 correspondence. (Section 17) 

7. Using the proof of 16.14, prove the following generalization: Given 
fo : A -+ Y such that (fJ* : ni(A, *) -+ xi( Y, *) is an (n - I)-isomorphism, there 
is a space X I  A such that ( X ,  A )  is a relative CW complex with cells in 
dimension 2n and an extension f :  X - +  Y offo which is a weak homotopy 
equivalence. (Exercise 10; 16.19; 16.27; Exercise 6, Section 21; 22.5) 

8. By considering the pair ( X  x Y, X v  Y) prove that if X is (n  - 1)- 
connected and Y is (nr - ])-connected, and both X and Y are CW com- 
plexes, 

K x Z (notation from Theorem 16.27). 

Y us CX. (23.8) 

n,(X v Y, *) = n,(X) 0 n,( Y) 

for k < m + n, the isomorphism being given by CI ((pl)*(cc), (&(a)). Use 
this, induction, and a limit argument to prove that if X ,  is (n - ])-connected 
for all CI, 

for k < 2n. (23.8) 
9. Give an alternative proof of 16.4 without using Zorn’s lemma based on 

proving that if X c x c Y and x = X u eel u . . . u eun, ni(x ,  X ,  *) = 0. 

10. Let K - ,  X be a resolution and suppose X is (n - I)-connected and 
well pointed. By applying 16.34, Exercise 3, Section 13, and Exercise 7 above 
conclude that there is a resolution K‘ of RSX such that K’ 3 K and K’ - K 
consists of cells of dimension 22n:  

K - X  

I- li 
K’- RSX 
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By applying (16.10) conclude that if M is a CW complex E :  [ M ,  XI-+ 
[SM, S X ]  is a 1-1 if dim M < 2n - 1 and is onto if dim M < 2n. 

11. Show that if A c Xand A is contractible inZ, Xis a strong deformation 
retract of X u  CA. Prove a similar result in  Z*. 
12. Prove that n,( RP", RP"- ', *) 2 2 0 2 if n > 1. (Hint: Use Exercise 5 ,  

Section 14 to evaluate the homomorphism n,(RP"-') -+ n,(RP").) Note that 
n,(RP"/RP"-', *) 2 2. Compare this to 16.30. 

13. Let S" = u:= ,S" with the weak topology. Prove that S" is contractible. 
14. Show that i,: n,(X, A,  *) --+ n,(X u CA, CA. *) is an (n + s - 1)- 

isomorphism if (A', A )  is (n - I)-connected and A is (s - 1)-connected. (Hint: 
Use 16.27 with X u  CA = ( X u  A x [0, t ) )  u (Xu CA - X ) . )  

15. Suppose ( X ,  A )  is (n  - 1)-connected and A is (s - 1)-connected. Prove 
that there is an exact sequence 

~ , + , - 2 ( ~ ) ' ~ , + , - 2 ( ~ ) - - + ~ , + , - 2 ( ~ ~  C A ) - + ~ , + , - 3 ( 4 - - + . . .  

truncated on the left at Z , + , - ~ ( A ) .  (Exercise 23; 23.8) 
16. Let A be the graph of sin(l/x), with x > 0 in  R 2  and B = ((x, y ) l j )  5 0, 

x 2 0, xz + y 2  = 16). Let X = A u B u 0 x [-4, 01. Let * = (0, -4). Show 
that n,(X, *) = 0 for all r 2 0 but X is not contractible. 

17. Using the formula for E ( { f } )  in 13.11 construct a homomorphism 

E :  n,(X, A ,  *) --+ n,+,(SX, S A ,  *) 

such that there is a commutative diagram 
P 

nfl(X, *>- nf l (X,  A, *)- 7Cfl-1(A, *) 

IE IE a lE 
%+t(SXt *I- %+I(SX ,  SA, *) - n,(SA, *) 

Prove that if A is (rn - 1)-connected, X is (k  - 1)-connected, * is a non- 
degenerate base point in  both A and X ,  and r = min(2k - 1, 2m), then 
E :  n,(X, A,  *) --+ nn+,(SX, S A ,  *) is an u-isomorphism. 

18. Let X be a connected one-dimensional CW complex. Show that X has 
the homotopy type of a wedge of circles. (A one-dimensional CW complex is 
topologically the same as a graph.) 

19. Show thatf: X - 1  Yis a k-equivalence i f f  given any CW pair ( L ,  Lo) of 
dimension s k  and maps CI: Lo -+ X ,  p :  L --+ Y with,foc N /?I L o ,  there is a map 
g: L -+ X with g I Lo = CI andfg - /? (re1 Lo). 
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20. Suppose ( X ,  A )  has the AHEP. Show that pCaA:  X u C*A -+ X / A  is a 
homotopy equivalence in6*.  (18.10, 18.11) 

21. Use 16.24 to show that if A c X has a neighborhood U such that A is 
a strong deformation retract of U ,  X u  CA -+ X / A  is a weak homotopy 
equivalence. 

22. Let X = { ~ E R '  I x  = 0 or l/x E Z } .  Show that X is not the homotopy 
type of a CW complex. (Hint: Calculate n*(X)  and find a resolution 
J K +  X.  Show. that f has no homotopy inverse.) 

23. Let F-+ E -+ B be a Serre fibration. Construct a map y :  E u CF+ B 
extending 71 and show that y * :  n, (Eu CF, *)+n,(B, *) is an (n + m)- 
isomorphism if F is (n - ])-connected and B is (m - 1)-connected. (Hint: 
Consider the maps (E, F )  + ( E  u CF, CF) + (B,  *).) (Exercise 6, Section 21) 

24. Use 16.20 to show that if K is a CW complex and there are maps 
J K -+ X and g: X + K such that fg - 1, X is the homotopy type of a CW 
complex. 

25. An abstract semisimplicial complex is a sequence of sets X ,  for n 2 0 
and transformations di: X ,  + Xn-l for 0 5 i 5 n such that d i d j  = dj- ldi  if 
0 I i < j I n. Show that there is a 1-1 correspondence between semisimplicial 
CW complexes and abstract semisimplicial complexes. 

26. An abstract simplicial complex is a pair (V, S )  where V is a set and S 
is a collection of nonempty finite subsets of V (called simplices) such that: 

(a) if v E V, {v} E S 
(b) if cr E S and T c cr, T E S.  

Show that every simplicial CW complex determines an abstract simplicial 
complex, and if two simplicial CW complexes determine the same abstract 
simplicial complex they are homeomorphic. (21.14, 21 . I  5 )  

27. Let X be a regular CW complex (16.37). Show that there is a simplicial 
CW complex Y with I XI = I YI.  (Hint: Suppose K is a simplicial CW com- 
plex with I KI = S" find a simplicial CW complex L with ILI z B"" and K 
a subcomplex.) 

28. Let F :  [ ( X ,  *), ( Y ,  *)] -+ [ X ,  r] be the transformation which ignores 
the basepoint. Suppose that * E X is nondegenerate and Y is arcwise con- 
nected. 

(a) Prove that F is onto. 
(b) Define an action of nl (Y ,  *) on [ ( X ,  *), ( Y ,  *)] as follows. Let 

f :  ( X ,  *) + ( Y ,  *) and GI: ( I ,  (0, 1)) -+ ( Y ,  *) and choose K :  X x I +  Y such 
that K(x,  0) =f(x)  and K(*,  t )  = a(r). Letf" = K(x,  1). Show that the homo- 
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topy class off ”  depends only on that off and c( (use Exercise 18, Section 14). 
(c) Show that F({f”}) = F ( { f } )  
(d) Show that if F ( { f } )  = F((g}), f = g“ 
(e) Show that if ( Y ,  *) is an H-space with unit, K may be chosen so that 

s” =f. 
(Compare with Exercise 14, Section 11 .) 

29. Supposef: (A’, A )  --+ ( Y ,  B )  is a weak homotopy equivalence. Prove that 
the induced map f :  X u  CA --+ Y u CB is a weak homotopy equivalence. 
(21.8). 



K(n, 11)’s and Postnikov systems 

At the time of writing there is no finite simply connected CW complex all 
of whose homotopy groups are known-with the exception of contractible 
complexes. In the absence of such information it is reasonable to try to turn 
the problem around. Given a sequence of homotopy groups can one find a 
space X realizing this sequence? Do any conditions have to be put on the 
sequence ? The question then is one of constructing spaces with preassigned 
homotopy properties. We cannot expect our constructions to be finite cell 
complexes in general. In fact they will be objects somewhat beyond ordinary 
geometric imagination. We will think of them in terms of their categorical 
properties rather than their geometry and treat them with secondary con- 
cern-as tools and guideposts. Their properties will make them useful, as we 
will see in the sequel. 

We begin by looking at a few examples. 

Proposition 17.1 (a) 

i = l  
i #  1 .  

Proof This follows from 11.10, 11.12, 13.14, 13.5, and 15.9. 

157 
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The simplest constructional question is to ask if there are other spaces with 
one nontrivial homotopy group. The existence of such spaces could be useful. 
16.6 shows, for example, that we can expect to have good control over the 
mappings of a CW complex into such a space. 

Definition 17.2 A CW complex with a single nonvanishing homotopy 
group n occurring in dimension n is called an Eilenberg-MacLane space 
K(n, n). 

Thus RP" is a K(Z,, l) ,  CP" is a K(2, 2), and S' is a K ( Z ,  1). 
There are three questions which naturally arise : 
1. For which n and n do K(n, n) spaces exist? More generally, which 

sequences of groups nl, n2, . . . with n1 abelian for i 2 2 can be realized as 
the homotopy groups of some space. 

2. Can spaces with many nonzero homotopy groups be decomposed into 
spaces with fewer nonzero homotopy groups. 

3. Does 16.6 give enough information to calculate [ ( X ,  *), (K(n, n), *)] 
(assuming K(n, n) exists)? 

We will show: 

Theorem 17.3 I f  n is a group that is abelian and if n > 1, there exists a 
CW complex K(n, n). 

The construction will depend on several lemmas. 
Let v S: be a one-point union of n-spheres S: (where CI runs over an 

indexing set A) with the weak topology. 

Lemma 17.4 I f  n > 1 ,  n , ( v  S,") = free abelian group generated by {i,} 
where i,: S" = S: c Va S /  is the inclusion. n,(VS,') is free and generated by 

Proof Consider first the case that the indexing set is finite. If n = 1 ,  the result 
is Exercise 7, Section 7. Suppose n > 1. Then S:, v * * * v SEk c S:, x * * * x SEk 
and is a subcomplex. The cells of S':, x v S;k) are in 
dimensions 2 2n so 

{ ia } *  

x S:, - (SEl v 

Xi(S,., x ... x Sik, s:, v ... v s:k, *) = 0 
for i < 2n and hence 

n"(s;, v ' . *  v s,.,, *) z n,(S& x ... x qk) 
z n,(S,",) 0 . * 0 7 T " ( g k )  N z 0 . * . 0 z. 

For the case of arbitrary indexing sets, apply 15.11. 

set A. 17.4 implies that FA" 1 nn(vaE&S,"). 

I 
Let FA" be the free (abelian if n > 1) group generated by the elements of the 
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Lemma 17.5 Let FA" and Fa" be as above and cp: FA" --* Fa" be a homo- 
morphism. Then there is a unique (up to homotopy) map f :  VaE& s," --* 
V p  E a S: such that CP =f* : nn(Va E A S,") + nn<Vfi E Sp"). 

Proof Let E E FA" be the generator corresponding to ct E A. Then cp(E) E 
Fa" = nn(VpE~S;) .  Choose fa: S" --* Vs.aS," with f, E cp(E). Define f by f l s a n  =f, . This is well defined since& is base point preserving and continuous 
since VaEA S," has the weak topology. Clearly f*(ti) = cp(6) for all CI E JE so 
f* = cp. To prove uniqueness, suppose g : voI S," --* vB a S," has the re- 
quired property. Since i,: S" = S," c V , , A S ~  represents ti, gi, represents 
cp(E). Hence glS,. -f, (re1 *). It follows that g N f (re1 *). 4 

Proposition 17.6 Let n be an integer and n be an (abelian if n > 1) group. 
Then there is a CW complex with one 0-cell and all other cells in dimensions 
n and n + 1, M(n, n), such that nn(M(n, n)) s n. 

Proof By 17.5 such a space exists if n is free (free abelian if n > 1).  
Let 0 --* R A F+ 71 + 0 be a resolution of n, i.e., a short exact sequence 

with R and F free. Let f: M(R,  n)  --* M(F, n) be a cellular map such that 
f* = cp. 

Let 2 be the mapping cylinder off (16.15) with A = fa and define 

M(n, n) = M(F, n) uf CM(R,  n) sz Z / M ( R ,  n) 

If n > 1 ,  we have an exact sequence : 

R \  
\ 

The last isomorphism follows from 16.30 since n > 1. Consequently n E 
nn(M(n, n)). Suppose now that n = 1 .  Applying 7.12 with X = M(n, l) ,  
XI = M(n, 1) - M ( R ,  n )  x 1, and X ,  = M(n, 1)  - M(F, n), we conclude that 
nl(M(n, 1)) = F*,{l} F/R n. 4 

M(n, n) is called a Moore space for the group n. 

Proposition 17.7 Let cp: n h p .  Then there is a mapf: M(n, n) + M(p, n) 
with f* = cp. 
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Proof Construct a commutative diagram of groups 
8 1  0- R1 - Fl - n -0 

By 17.5, there are maps 

i. I 

:f . 
M ( R , ,  n)  f2 ' MF, ,  n)  - M ( p , n )  

The diagram commutes up to homotopy by the uniqueness assertion in 17.5. 
We thus may construct f by 14.15. Applying n, to the diagram, one easily 
concludes that f *  = cp. 

We now consider a construction for " killing" homotopy groups. We will 
apply this to M(n, n),  killing all homotopy groups above the nth to construct 
K(n, n). 

I 

Proposition 17.8 Given X and n there is a space XCnl and inclusion 

(a) (X"'], X )  is a relative CW complex with cells in dimensions 2 n + 2. 
(b) n,(X["') = 0 if i > n. 
(c) (in)*: n,(X)  -+ n,(XLn1) is an isomorphism if i 
The proof will depend on a lemma. 

in: X +  XC"] such that: 

n. 

Lemma 17.9 Let X be a space. Then there is a relative CW complex 
( X ' ,  X )  with cells in dimension n + 1 only such that n,(X') = 0 and n i ( X )  z 
ni(X')  for i < n. 

Proof of 17.9 Let {e,} be a set of generators andf,:  S" + X represent e,. 
Define 

x' = X u  B;+'/x E s,. - fd( .x) .  

Let i :  X - +  X' be the inclusion; then i*(e,) = 0 so i*(n,(X)) = 0. But 
ni(X', X )  = 0 for i 5 n by 16.9; consequently n,,(X') = 0 and n i ( X )  N n,(X')  
for i < n. I 

Proof of 17.8 Apply 17.9 to  produce X' with ~ C , , + ~ ( X ' )  = 0. Apply it 
again to X' to produce X with z , ,+~(X")  = 0, etc. Let XCnl = UX'"  with the 
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weak topology. (a) is clear. (b) follows since ni(X@)) = 0 for n < i _< r ,  and 
ni(XC"]) z lh~ n i ( P )  by 15.9. (c) follows from (a). 

Proof of 17.3 Let K(TI,  n) = M(TI ,  n)["'. ni(K(n, n)) = 0 for i > n by 17.8(b), 
n,(K(n,n)) = TI by 17.8(c), and ni(K(n, n)) = 0 for i < n by 17.8(c) and 17.6. I 

I 

Lemma 17.10 Let cp: n -+p, M(T,  n) be as constructed in 17.6 and suppose 
K(p, n) satisfies 17.3. Then there is a unique (up to homotopy) map 
S: M(n, n) -+ K(p, n) such that cp = f * :  n,(M(n, n)) -+ z,,(K(p, n)). 

Proof We show existence by constructing a mapj :  M(p, n) -+ K(p, n) and 
combining this with 17.7. Since M ( p ,  n)" has cells only in dimension n 
excepting for a 0-cell, M(p, n)' = V a E ~ S / .  Let i,: S/  c v,..kS/ and 
i :  V a E . 4 S /  -+ M ( p ,  n) be the inclusions. Let x, = {ii,} E z , (M(p,  n)) N p .  
Let f , :  S," -+ K(p, n) be a representative of x, E p = n,(K(p, n)). Define 
F :  Va. .kS/  -+ K(p, n) by Flsa,, =f,. Now ker F* = ker i, c n,(VaE.4S,") 
since F*({i#)) = x, = i*({i,)). Hence for any ( n  + 1)-cell of M(p,  n )  with 
attaching mapfs, we have {Ffa} = F,({,fb}) = *. We thus construct an exten- 
sion F, of F over e;" and hence an extension j :  (Mp, n) -+ K(p, n) of F. 
Since the diagram 

\ 

commutes and i, is onto,j, is an isomorphism. 
Given two maps f o  and fi with ( fo)* = cfi), , we have 

since 
{ f o  ia} = ( f o ) * { i i a }  = ( .A) * { i ia }  = { f i i a } .  

To construct an extension of this homotopy to M(n,  n) x I,  consider the 
diagram 

* 
M ( n , n )  x 0 u v S; x lu M ( l r , n )  x 1 - K ( p , n )  

a EA 
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Since the cells of M(n, n) x I - ( M ( n ,  n) x 0 u vol,.k S," x I u M(n,  n) x 1) 
are of dimension n + 2, the extension exists by 16.3. I 

Proposition 17.11 Let cp:  n - + p .  Let K(n, n)  = M(n,  n)["] and let K(p, n) 
satisfy 17.2. Then there is a map f :  K(n, n )  -+ K(p, n) unique up to homotopy 
with f *  = cp. 

Proof By 17.10 we can construct f ' :  M(n, n )  -+ K(p,  n) . f '  can be extended 
t o 8  K(n, n) -+ K(p,  n) by 16.3. To prove uniqueness, let fi, fi: K(n, n) + 

We consider the extension problem 
n) and suppose CfJ* = (fJ*; then fi I M h n )  " f 2 I M ( n , n )  by 17.10. 

K(n, n) x I .  -_ -.. 
-. -- - -. -. - I - *  

K(n, n) x 0 u M(n ,  n) x I u K(n, n) x 1 K(p,  n) 
and apply 16.3 again. I 

Corollary 17.12 Any two CW complexes K(n, n) satisfying 17.2 are of the 
same homotopy type. 

Proof They are both the same homotopy type as [M(n,  n)]"'l by 17.11 
applied to cp = 1. I 

Corollary 17.13 For each n 2 I ,  there is a functor from AZ to Xh (from 
Q to Xh if n = 1) taking n to a K(n, n) space. 

Proof This follows immediately from 17.11 and 17.12. I 
Proposition 17.14 Let f :  X - ,  Y and in:  X +  Yml, in': Y-+ Yrml satisfy the 

conclusion of 17.8 with m 5 n. Then there is a unique (up to homotopy) map 
f n, m : Xrnl -+ Yrml such that the diagram 

f X - Y  

commutes. In particular, x 4 x["] is a functor j t h  -+ J T h ,  where Zi is the 
category of CW complexes and continuous maps. 
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Proof We apply 16.3 to the diagram 

to conclude the existence ofS,, , . To prove uniqueness, supposef,, ,,, andS,: , 
are extensions. Consider the diagram 

X["] x I . 

where G(x, 0) = f , ,  ,(x), C(x, 1 )  =fn: ,(x) for x E XC"] and C(x, t )  = i,,,'(f(x)) 
for x E X ,  and apply 16.3 again. The map A,": A?" + Yml will be written 
f [ " ] .  Clearly fCn1 o gCn3 = (fo g)["l by the uniqueness assertion. A functor is 
thus defined by choosing for each X, a space X["] satisfying the conclusion 
of 17.8. I 

The space J?" is called the nth Postnikov section of X .  These sections fit 
together to form a tower called the Postnikov system or Postnikov tower of X .  

The maps pn: A?" -+ are constructed by applying 17.14 to the identity 
map with m = n - 1 .  We think of the sequence XCn1 as being approximations 
to X (see Exercise 2). 
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The next result shows that if Xis  a CW complex, the homotopy type of Xrn l  
does not depend on the choice of A""]. 

Proposition 17.15 Let X be connected and X"'], Wrnl  be two spaces satis- 
fying the conclusion of 17.8. Then there is a weak homotopy equivalence 
e:  X [ " ]  -+XCnl which is the identity on X .  

Proof By 17.14 there is a map e :  Xrnl  -+ XCnl which is the identity on X .  
It is easy to see that e induces isomorphisms in homotopy groups by the 
commutativity of the diagram 

X i (  P I )  C* + n , ( X [ " ] )  

Xi(X) I 
Definition 17.16 Let X(") be a resolution of the fiber F of the map 

in: X - +  X["] ,  i.e., we convert i,, to  a fibering 
F - E X [ " ]  

according to 11.14. X ( n )  is called the nth connective covering space of X .  
If n = 1, this is equivalent to the ordinary covering space construction (see 
Exercise 1). A mapj,,: X'") -+ X such that the square commutes up to homo- 
topy is induced by the construction. 

Proposition 17.17 (j,,)*: n,(X'")) -+ n i ( X )  is an isomorphism if i > n, 

Proof This follows from the long exact sequence of the fibering. 
and ni(X(")) = 0 if i I n. 

I 

Proposition 17.18 L e t 8  X - ,  Y and supposej,,: X(") -+ X .  Then if m S n, 
there are maps .Pm: X(")+ Y("') such that f"~" o g k , "  -(f ~ g ) ~ , ~ ,  and 
l"," = 1. Furthermore, the diagram 

fn, m X(") , y ( m )  

commutes up to homotopy. 
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Proof In  17.16, F = R(X[", X, *). We define 

"p m :  R( X["],  x, *) - n( Y"], Y,  *) 

by j"', "(w)(t)  = f,, ,,,(w(t)). Clearly f'', 0 dk' N (s)k' is 
constructed by applying 16.20. The diagram commutes up to  homotopy 
since 

3". m 

and i", N 1. .f", 

R(X["', x, *) - n( YL"], Y, *) 

commutes. I 
We describe now a technique for analyzing various homotopy theory 

problems, called obstruction theory. We will consider only one problem : 
Givenf: X +  Y ,  is f nullhomotopic? We assume X is the homotopy type of 
a CW complex, and we take a Postnikov system for Y. We will say f is n- 
trivial if i,,fis nullhomotopic: 

f x- y L  y[n'. 

This does not depend on the choice of Yml, for if we choose Y 2 yCnl, 
there is a map e :  Yrnl + F["] inducing isomorphisms in homotopy and such 
that ei, - in .  Since X is the homotopy type of a CW complex, there is 
a 1-1 correspondence [A', YCnl]++ [ X ,  yml] so i,f- * iff i , f -  *. (See Exercise 
6, Section 16.) 

Lemma 17.19 I f  X is a k-dimensional CW complex, f is k-trivial iff f 

X +  Y(k )  such that f - j , f  by 
is trivial. 

Proof I f f  is k-trivial, there is a map 
Exercise 9, Section 11. Now apply 16.3 to the extension problem 

cx 

Since CX - X has all cells in  dimensions 
an extension exists. Thusfland hencefis trivial. The converse is easy. 

If X is an infinite CW complex, there may exist maps that are k-trivial for 
all k but which are essential. Such maps are called phantom maps. (See [26].) 

k + 1 and xi (  Yck)) = 0 for i k, 
I 
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For finite CW complexes one may take an inductive approach to the prob- 
lem. Let R " ( X :  n )  = [ ( X ,  *), (K(rr, n), *)I. As we shall see in the next section, 
this set is an abelian group called the n-dimensional (ordinary) cohomology 
of X with coefficients in  n, if 71 is abelian. 

Proposition 17.20 

Proof Consider the exact sequence in S* (by Exercise 10, Section 11) 

Letf: X + Y.  I f f  is (n  - 1)-trivial, there is defined a 
set 0, ( f )  c Rfl(x; n,,( Y ) ) .  o E ~ , ( f )  ifff  is n-trivial. 

[x, K(z,,( Y) ,  n>l-.% [x, Y[~]I 4 [x, Y[" - 11 ; 

let 0, , ( f )  = cr;'(i,, *f). This is nonempty ifffis (n  - 1)-trivial and 0 ~0,(f)  iff 
f i s  n-trivial. 

O,(f) is called the n-dimensional obstruction set to f being essential. 17.20 
is most useful if we know that p ( X ,  n,,( Y ) )  = 0 for all n. 

Corollary 17.21 I f  0 = R " ( X ;  n,,( Y ) )  for all n and X is an arcwise con- 
nected finite CW complex, [ X ,  Y ]  = *. I 

Exercises 

1. Show that if X is the homotopy type of a CW complex, X ( l )  is the 
homotopy type of the simply connected covering space of X .  

2. Show that if the maps p ,  are converted inductively into fibrations, 
there is a map i :  X +  lim X"'] such that 71, i = i n ,  where the i, are chosen so 
that pn in = Show that i induces isomorphisms in homotopy. (Show first 
that xi(@ XI"') r 

3. Let8  E + B be a fibering with Bconnected. Show that there are fiberings 
n,: Ern] + E r n - ' ]  for all n 2 0 and factorizationsf,: E + E'"] with nnfn =f,-l 
such that 

ni(Xrnl).) See Exercise 9, Section 15. 

(a) = B, fo  = f; 
(b) the fiber of n,, is K(n,(F), n) where I: is the fiber off; 
(c) (fn)*: ni(E) + ni(E"']) is an isomorphism for i I n ;  
(d) Iff" = n1 0 * .  * 0 n,: Ern] -+ B, ( f " )* :  ni(Ernl) -+ ni(B) is an isomorphism 

This generalizes the constructions X"'] and X'"). 
4. Generalize 17.21 to show that if X is an arcwise connected finite CW 

complex and R k ( X ;  zk( y)) = 0 for all k # n, there is a transformation from 
P ( X ;  n,(Y)) onto [ X ,  Yl. Furthermore, if H k ( X ;  Z ~ + ~ ( Y ) )  = 0 for all 
k < n - 1, this transformation is also 1-1. 

for i > n. 
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5. Deduce from Exercise 4 the famous Hopf fheorem: If X is an arcwise 
connected finite CW complex of dimension n, there is a 1-1 correspondence 
between i l"(X; Z )  and [ X ,  S"]. 

6. Show that any sequence of groups zl, n 2 ,  . . . with ni abelian for i 2 2 
can be realized as the homotopy groups of some space. (Hint: Do it first for 
a finite sequence.) 

7. Calculate [RP", CPm]. That is how many homotopy classes are there? 
(Hint: Compare with [RP', C P ] . )  

8. Let K be the Klein bottle (see Exercise 14, Section 7). Show that K = 
K(n, 1) where n is a group on two generators x, y with the single relation 
xyx = y .  

9. Let p :  RP2 + RP2/RP1 E S2,  ll,: S2 --t RP2. Let f = l 1 2 p .  Prove that: 

(1) f i s  essential; 
(2) 0 = f,: n,(RP2, *) -+ nr,(RP2, *); 
(3) RP2 = M(Z2,  1). 

(Compare to 17.7 and 17.10.) 
J, 10. Let O + n A  p - a-tO be a short exact sequence of abelien 

groups. Construct maps 

K(n, n) K(p, n) 4, K(o, n) 
as in  17.11. Prove that this sequence is homotopy equivalent to a fiber se- 
quence; i.e., if g is converted into a fibering there is a homotopy commutative 
diagram 

11. Show that K(n, n) is an H-space iff n is abelian. 



18 
Spectral Reduced Homology and Cohomology 

Theories 

This section is concerned with the definition of spectral homology and 
cohomology functors. The ordinary homology group H J X )  can be thought 
of as an approximation to z,(X). 

We think of q ( X )  as a classification of n-dimensional “elements” in X .  
In this case, by an n-dimensional element we mean a continuous image of S“. 
The groups z , ( X )  are easy to define, and, as we have seen, hard to calculate. 
A different notion of element is given if we consider elements as represented 
by imbedded cells. Then S’ x S’ has a 2-dimensional element even though 
nz(S1 x S’) = 0. The number of cells in a given dimension is not, however, a 
topological invariant. The ordinary homology in dimemion n is designed to 
be the classification of certain invariant combinations of the n-dimensional 
cells (called cycles). The difficulty with homology theory is exactly the oppo- 
site to homotopy theory. Homology groups are easy to calculate, but hard to 
define (in an invariant way). In  Section 20 we shall give a more detailed 
explanation of what we mean by a cycle and when two cycles are homo- 
logous. Our present task is to define certain general functors called homology 
and cohomology theories on any space in CS*. They will be topological (in 
fact homotopy) invariants. In  Section 20 we shall show that they correspond 
to the homology classification of cycles in the case of ordinary homology 
theory. Our general theoriesI4 will include stable homotopy theory and 

l 4  Sometimes the theories described here are called extraordinary homology and 
cohomology to distinguish them from the ordinary theory described above. However, as 
times goes on, they become less extraordinary. 

168 
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other functors which have recently become important in algebraic topology- 
K-theories and cobordism theories. A brief description of these is found in 
Sections 29 and 30. 

We begin by defining the notion of a spectrum E = {E,, en} and show that 
each spectrum gives rise to two sequences of functors I?,,, and I?"'' from CS*. 
to JLz the first covariant and the second contravariant. These are the spectral 
homology and cohomology functors. 

Definition 18.1 A spectrum E = {E,,,  e,,} is a sequence of spaces E, and 
maps e,: SE,,-+E,,+, for n 2 0 (or equivalently 2,: E,,+RE,,+,)  in CS". 
E is called a suspension spectrum if e,, is a weak homotopy equivalence, for 
all n sufficiently large and an Q-spectrum if 2, is a weak homotopy equivalence 
for all n sufficiently large. 

Examples 

1. Let X E  CS and define _X by _X, = S'X, and g,,: S(SnX)  -+ S"+'X to be 
the natural homeomorphism. Any suspension spectrum is obviously of this 
form "up  to weak homotopy" where X = &.  This spectrum will be written 
X and So will be abbreviated 8. 

2. HTC is given by (Hn) ,  = K(n, n), and (z),,: K(n, n )  -+ QK(n, n + 1) a 
chosen resolution. 

Given a spectrum E (we often suppress the spaces E,, and maps e,, from the 
notation, when it will not lead to confusion), and a space X we will define 
groups &(X)  and I?'"(X) for each integer m. 

Definition 18.2 A graded abelian group is a sequence {G,,} of abelian 
groups, defined for each integer n. A homomorphism f: {G,,} + {G,,'} of 
graded groups is a sequence {f,} of homomorphisms f,: G,, --+ G,'. One often 
writes G, for {G,,}. Similar definitions may be made for graded R-modules, or 
graded sets. 

Such objects and homomorphisms form a category written Az., AR*, 
or S, in  the cases of graded abelian groups, graded R-modules, and graded 
sets respectively. 

Example The sequence G,, = .,,(A', *) for n 2 1 and G,, = 0 if n _< 0 is a 
graded abelian group if n1 is abelian (otherwise i t  will be called just a graded 
group), and the sequence of homotopy groups yields a functor n* : E* + Az*. 
This sequence is called positively graded since G, = 0 if n < 0. 

Let C* be a category of spaces with base point and base point preserving 
mappings. 
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Definition 18.3 A reduced homology (cohomology) theory on C* is a 

(A) I f f :  X - +  Y ,  write f * :  f?,CX) --+ $,( Y )  ( f * :  Em(Y) -+ Em(X))  for the 

(B) There is a natural transformation: 

covariant (contravariant) functor {Em} ({Em}) from e* to Az* satisfying: 

induced homomorphism. Then i f f -  g in e*, f *  = g* andf" = g*. 

IT: Em(X) --+ Em+l(SX) (IT: E y X )  + .P+l(SX))  

which is an isomorphism. 
(C) I f f :  X+ Y and i: Y -+ Y us C* X ,  the sequence: 

f r  Em(X)  - Em(Y) -L Em( Y Uf  C * X )  

(Ern( X )  4 L  E m (  Y )  L E m (  Y us c *x>) 
is exact in the middle. 

We now construct, for each spectrum E, functors {Ern} and {Em} which are 
reduced homology and cohomology theories on (39". These will be called 
spectral homology and cohomology theories (to distinguish them from 
theories constructed in other ways). If E = Hrr, these groups will be called 
the ordinary spectral reduced homology and cohomology theories with 
coefficients in n. These are classically written f i , (X;  n )  and fi"'(X; n). As we 
shall see, ordinary cohomology agrees with the functor introduced in Section 
17 with the same name. If n = Z ,  this is abbreviated f i m ( X )  and f i m ( X ) .  

Given X E C9*, consider the directed systems 
Y n  * . 

+ ntt +m(X A E n )  ---+ nn + m  + I(X A En + 1) + * * * 

1 
. . . A  [S"-"X,E,]& [Sn+' -mX,  E,+,]+. .*  (n 2 4, 

where the homomorphisms yn and A,, are the composites 
E ( 1  A en)* 

n n + m ( X ~  En)- - -*nn+m+I(XA En A s l ) - n n + m + l ( X A  E n + , )  

[S"-"X, E , ] 2  [Sn+I -mX,  SE,]% [P+l-mX, E,+J 
Define 

E m ( X )  = b { n f l + n l ( X  A E,,), y,} and gm(X)  = ~ ( [ S f ' - " X , E , ] ,  A,}. 

Theorem 18.4 {Ern} is a reduced cohomology theory on CS*. 

Proof f: X - t  Y induces homomorphisms 

[ S n - m y ,  E , ] L [ S + " Y ,  sEn]%[S"+'-" y ,  En+ 11 
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This induces a homomorphism from the direct sequence for Ern(Y) to  the 
direct sequence for l?"'(X), and hence a homomorphism f *: Ern( Y )  + Ern(X)  
by 15.12. By the uniqueness assertions, I *  = I ,  and (fg)* =g*f *, 

Proof of ( A )  Suppose f - g in CG*. Then Sn-"'f N SnFrng in CG* so 

( Y r n f ) *  = (S-g)*: [Sn-rnY, En] -+ [ r r n X ,  En]. 

Hence f *  =g* .  1 

Proof' of ( B )  Replace S X  by X A S' and note that the natural homeo- 
morphisms X A Sk = ( X  A S' )  A Sk-' induce (unlabeled) natural isomor- 
phisms 

E 
[X A s"-", En] [X A s-" A sl, En A s']- [X A so-"+' 9 &+,I 

1 %  I_ I= 
[ ( X A  S ' ) A  s " - m - ' , ~ m ] ~ [ ( X A  S ' ) A  s - " - l  A s',E,A S']'C")'"(XA S ' ) A  s"-m,E,+l] 

Now the diagram commutes, and both horizontal composites are I , ,  as 
occurring in the direct limit for Ern(X) and Ern+'(X A S'),  it follows that the 
limits are naturally isomorphic. I 

Proof of ( C )  By Exercise 21, Section 14, the sequence 
i* f' [&Yrn( Y u C*X) ,  En] - [rrn Y, En] - [Sn-"'X, En] 

[ Y u f C*X, an-rnEn] - [ Y, an-rnEn] - [ X ,  t2n-rnEn] 
?I1 211 

i* f* 
ZII 

is exact at  the middle. By 15.13 we are done. 

Theorem 18.5 {Em) is a reduced homology theory on CG*. 

Proof To define,f,, consider the commutative diagram 

15.12 provides a map f * :  &,(A') -+ Em( Y )  and the uniqueness assertions imply 
that 1, = 1 and (fg)* = f * g * .  

Proofof(A)  This follows as before since iff - g, f A 1 N g A 1 and hence 

( f A  1 ) + = ( g ~  I ) + : r n + r n ( X ~ E , ) - , ~ ~ n + m ( Y h  E ) *  I 
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Proof of (B)  We define (r as follows. For any space X ,  define 
C: 7tn(X)+ 71,,+1(s1 A X) 

by X{@ = 11 A O}. The diagram 
z 

nn+rn(XA En)-nn+m+l(S' A X A  En> 

commutes, hence C induces a natural transformation Q:  Em(X)-+ 
Ern+,(S1 A X) z g ,+ l (SX) ,  where the isomorphism is given by the natural 
transposition homeomorphism T,: S' A X -+ X A S' = SX.  

The proof that 0 is an isomorphism will depend on a lemma. 

Lemma 18.6 The diagram 
b ?T,,(S'h x) r 

nn(W 

n , , ( X h  s') ' ' n,+l(S' A X A  s') 
commutes up to sign. 

identification of the spaces involved with spheres, is homotopic to 
the upper triangle commutes up to sign since forf: S" + X ,  

Proof Ts,,: S' A S" + s" A S' is a homeomorphism and hence, after 
1.  Thus 

U f )  s' A S"-S' A x 

commutes. Let f :  S" + S' A X. Then 

commutes. 
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Now T,, = E(a) for some a: S' + S' with {a}  = f l .  Thus (T,, A 1) 0 

(1 A f) N a A f .  Consequently 

We now complete the proof of B. By 18.6 the diagram 
x n,,+,,,(X A En) - n,,+,,,+1(S1 A X A  E n )  

E 
n,,+,,,+,(X A En A S')  - nn+,+z(S1 A X A En A S ' )  

I: 
x n + m + l ( X A  En+,) - nn+,+2(S1 A X A  En+,) 

commutes up to sign. If .(a) = 0, there is an x E n,+,(X A E,) such that x 
represents a and Cx = 0. Consequently Ex = 0 so CI = 0. If a E ,!?m+l(S1 A X )  
there is an X E  TC,,+,+~(S~ A X A E,,) which represents a. But y,(x) = 

X((1 A e,) * TxAE,)*(x) ,  so a E Image (r. I 
To prove ( C ) ,  we need some lemmas. 

Lemma 18.7 Letf: X -+ Y. Then in the diagram 

( P Y ) *  

nn + Y C*X)  - nn+ 1 ( S X )  

E(kerf*) = Im(P,)*. 

Proof Let a:  s" + Xrepresent an element of n,(X) and H :  C*S" + Y be 
an extension of fa. Define /I: s"+l = SS" + Y us C * X  by 

(a(@, 2t - l), 
H(e,  1 - zt), 

+ I t I 1 
o I t I 4 P(e,t> = ( 

for 0 E S". A homotopy R:  Sa "pr 0 /I is given by 

(a(O), (2t - s)/(2 - 8 ) )  R(e, t ,  s) = 
s/2 I t I 1 
0 I t I s/2. I (*, 
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Lemma 18.8 The diagram 

Pr J C * X  

C*YU/C*X - ,yy 

sx 
commutes up to homotopy. 

off of C*X (see Fig. 18.1): 
Proof At time t we will pinch a piece of size t off of C* Y and size 1 - - t  

f 1 - f  

Figure 18.1 

This is a well-defined homotopy H :  (C*Y uf C * X )  x Z - t  S Y  between 

Let c( E Ern( Y )  with i*(cc) = 0. There exists x E nm+,,( Y A En) 
with i*(x) = 0 E n,+,,(( Y uf C * X )  A En) such that x represents c(. Applying 
18.7 to the diagram 

Pc*x and (-Sf> O P C * Y  9 I 
Proofo f (C)  

n,+,( Y A En) - r m + n ( (  Y U/ C * X )  A En) 
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(which commutes by 18.8), one finds an element y E 7cn+,+,(S(X A En)) such 
that (Sf)&) = E(x).  Consequently, (I A en)&) E 7cn+m+1(X A En+,)  is a 
representative for an element p E ,!?JX) such thatf*(B) = a. This proves C and 
completes the proof of 18.5. I 

Theorem 18.9 Letf: X +  Y. Let {Em} and {Em} be reduced homology and 
cohomology theories. Then there are exact sequences 

it ... + Em( X )  2 Em( Y )  - Em( Y u f c* X )  

... + E m (  X )  L E m (  Y )  : E m (  Y Vf C * X )  - Ern- ' ( X )  4- * * * 

Em - 1 ( X )  -+ * - . 
Am- 1 

where i: Y + Y uf C*X is the inclusion, A, = 0 - l  0 ( p y ) * ,  and Am-' = 
( p y ) *  0 0, where CT is the suspension isomorphism. 

Corollary 18.10 Let (X ,  A )  have the AHEP. Then there are exact se- 
quences 

. ' * + EJA)  L E,(X>% Em(X/A)  --% I?m-l(A) -+ * - . 
- * *  t E m ( A ) c E m ( X ) ~ ~ r n ( X / A ) - ~ m - ' ( A ) t . . .  

i* v m - 1  

where i: A -+ X is the inclusion, p A :  X +  X / A  is the quotient map, V, = 
Am 0 ( p C . A ) L 1 ,  and V" = ( p p A ) *  0 Am. 

The corollary follows from the theorem since pCeA:  X u  C*A -+ X / A  is a 
homotopy equivalence by Exercise 20, Section 16. 

The theorem follows from: 
I 

Proposition 18.11 The following diagram commutes up to homotopy, 
where the last two horizontal arrows are the inclusion into the mapping cone 
of the previous map, and the vertical arrows are homotopy equivalences: 

x --& Y - Yu,C*X 2 C*YU,C*X - c,* \ \ jpcb'.-.cb*~ 
+ S Y  - Sf sx 

Proof The statements about the right-hand triangle follow from those 
about the left-hand one by replacing f: X - t  Y by i: Y + Y u , C*X. p C d y  is a 
homotopy equivalence by Exercise 20, Section 16. The middle triangle com- 
mutes by 18.8. I 

18.11 implies that the sequence 
i. (-Sf)* E, (X) - f i ,  Em( Y)- Em( Y u/ c*X)= Em(SX)- E,(SX) 
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is exact. (-Sf)* may be replaced by (Sf)* since - 1 : S X  -+ S X  is a homotopy 
equivalence and 

(Sf)* 
Em(Sx) - Em(S Y) 

(Sf) 
&CSx> 4 &,(sY) 

commutes. Similarly in cohomology we have an exact sequence 
(PY)* Pyx) z E m (  Y )  z- E m (  Y u f C*X) - Ern(SX) = EJyS Y )  

Piecing these together and using the natural isomorphism 0, one proves 
18.9 I 

Proposition 18.12 The sequences of 18.9 are natural, i.e., a commutative 
square 

f X-Y 

induces commutative ladders 
f* i* AIM **'-Em(x)---Em(Y)-Em(Y Uf  c*x)-Em-l(x)-*** 

i* A m - I  f* ... E y X )  - E m (  Y )  - E m (  Y us C * X )  - E m -  ' ( X )  - a * 

E m (  y') c-- E m (  Y US' C*X')  + E m -  (xl) - * . . ( U l ) '  l ( = l ) *  f, l (azl* ~ j , ) *  l ( u ) *  

A m - 1  I ... c-- E m (  X ' )  

where a :  Y uf C*X-+ Y u f, C*X' is constructed from q and a2 in the 
obvious way. 

Proof This follows immediately from the various naturality results about 
I?*, E*, and c, I 

The sequences of 18.9 are called the long exact sequences of the homology 
and cohomology theories. They are infinite in both directions. 
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Proposition 18.13 Suppose E is an &spectrum and Xis  a CW c0mp1ex.l~ 
There is a natural isomorphism Rm(X)  Z [ X ,  Em]. 

Proof Consider the diagram 
An [S"-"X,  En] - 
\ (b). E 

where Z,,: E n - t Q E , + ,  is the adjoint to en: SE,+E,,+, and 3 is the 1-1 
correspondence of 8.24. It is easy to verify that the diagram commutes, and 
since (en)* and $ are 1-1 correspondences 1, is a 1-1 correspondence. Hence 

,!?"(A') z [Sn-mX, En] z [ X ,  CY"'mEn] [ X ,  Em]. I 

Proposition 18.14 For any spectrum E,  gm(Sk) z &Sm). 

Proof By property (B), it is sufficient to show that ,!?,,,(So) E &"(So). 
These are both the direct limit of the sequence - n n + m ( E n )  - n n + m + l ( E n + l )  - * * .  

... 

\ /A 

nn + m + l(SEn) I 
This group is called the mth homotopy group of the spectrum E and is 

sometimes written n,(E). It is also called the group of coefficients for the 
theories .& and g*. 

Theorem 18.15 Suppose X = u Xu = lim Xu has the weak topology and 
assume16 : 

(a) 
(b) F o r a l l a ~ A , { p ~ A ] p r c c } i s f i n i t e ( p I a i f f  X , c X u } .  

For all a, p, E A ,  there exists 6 E A such that X ,  n X ,  = X,. 

Then E m ( h  Xu) z l?!,,,(X,). 

l 5  The hypothesis that X i s  a CW complex is used in our proof, but may be dropped if 
each En is a CW complex since it is known [SO] that in this case RE, is the homotopy type 
of a CW complex (see the proof). 

l6 Compare to 15.9. 
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Proof The inclusions i,: X ,  + X induce homomorphisms (in)*: Em(X,) + 
Em(X).  These are compatible with the homomorphisms (i,,)* : Em(X,) + 
Em(Xp) and hence induce a homomorphism Z: l& gm(Xu) + Em(X) .  Suppose 
I (x)  = 0. x must have a representative v E nm+,(Xu A En) such that (iu)*(u) = 
O E ~ , + , ( X A  En). Let f :  Sm+"-+ X ,  A En represent v and H :  i,f N * be a 
homotopy. Since X A En = (h X,) A En 3 u ( X ,  A En), we may apply 
15.10 and conclude that there exists 1 E A with H(S"+" x I )  c X,  A En.  
Thus (iaP)*(u) = 0 so x = 0. Hence I is 1-1. Let x E Em(X) .  Choose v E 
~ , + , ( X A  En) to represent x and f: Sm+,-+ X A  En to represent v. As 
before f ( S m + , )  c X ,  A En for some a. So u E (i,)*(n,+,(X, A E,)). Hence 
Zis onto. I 

Theorem 18.16 

Em(Xl v * * * v X,)  E Em(X1) 0 . . * 0 Em(X,), 
Eyxl v * * ' v X,) z Em(Xl) 0 * * .0 E,(X,). 

The decomposition is given by the induced homomorphisms from the maps 
i k : X k + X l v . * . v  X k a n d p k : X l v . . . v  X , + X k f o r l I k < n .  

Proof We first do the case n = 2. Observe that since C* Y is contractible 
in CQ*. pc*y: X v C* Y-+ X is a homotopy equivalence. Consequently, 
the sequence 

( i d *  Em( Y)- Em(X v Y )  5 Em(X)  

Em( Y) - E J X  v Y )  - Em(W 

is exact in the middle. Since the diagram 

O Z L  (P I ) .  

commutes, (iz)* is a monomorphism, (p,)* is an epimorphism, and we may 
apply 11.1 1 to prove the splitting. If n > 2, we apply induction, observing that 
XI v . . .  v A',, = ( X ,  v ... v v X , .  The case of cohomology is 
similar. I 

Given R-modules M u ,  the direct sum M, was introduced in 15.3. One 
similarly defines the direct product naEA M a  to be the set of all sequences 
{x,} with x, E M a .  Addition and scalar multiplication are coordinatewise. 
Note that @ , , A  M a  c nuE A Mu and if A is finite, they are equal. 
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Let (X,,  *J E CG* be indexed by a set A .  By VaeA X ,  we will mean the 
quotient space U a E A  A'=/*, - *p If A is finite, this is the one-point union 
X,, v * - .  v Xan.  

Theorem 18.17 Em(VaEA X,) E 0 Em(Xa). If ( X u ,  *,) are CW complexes" 
and {E,,,  e,,} is an a-spectrum, J!?~(V,~~X,) iz naEAEm(Xa) .  

X,, v 

' 

- Proof Let X =  V d l E A X O L  and consider all subspaces X,, ,..., ,. - 
v Xan of X.  This satisfies the hypothesis of 18.15 so 
Em(X)  z lim Em(X,, v * .  . v Xan) 

z l i l l l J ! ? m ( X a , ) ~ . . . ~ ~ m ( ~ a . >  E o , E A & ( x ~ ) .  

In the cohomology case, the hypothesis implies that X = VasA Xu is a CW 
complex so we may apply 18.13. Let i,: Xu -+ Y be the inclusion, and consider 
the homomorphisms ( ia)*:  gm(X) -+ gm(Xa). These induce a homomorphism 
I: Em(X) + n a E A E m ( X e ) .  Consider now the diagram 

I ~mm--- n. Em(Xa) 
t t 

In the bottom row I is a 1-1 correspondence, for given {h} where f,: X ,  --t 
Em one easily constructs 8 X -+ Em with f I x, =h. Iff  [ x. - * for each a;  
the homotopies Ha: X ,  x I+ Em define a homotopy H :  X x I - r  Em by 
HI x, I = Ha since they are base point preserving homotopies. Hence I is an 
isomorphism. I 

The conclusion of 18.17 is sometimes called the wedge axiom. 
Consider now the sphere spectrum 5. In this case the homology group 

-m s" ( X )  is given by the direct limit 
E 

?Tm+,(XA s") -+?T,+,,+~(XA S n + ' ) - + * ' ' .  

This is also written nmS(X),  and is the functor defined at the end of Section 16. 
18.15 implies that nms((X) = 0 if m < 0 and Xis  a CW complex. 

Similarly one defines the stable cohomotopy groups zSm(X) as the cohomo- 
logy theory associated with this spectrum, i.e., the direct limit of the sequence 

[ p - m x ,  91: [ S n - m + l X ,  F+'] -+ . * '. 
These groups can be nonzero for negative values of rn when applied to CW 
complexes. For example, ns'(SO) z 7c4(S3) E Z ,  (see 27.19). 

l 7  See footnote 15. 
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Exercises 

1. Give a detailed proof that the diagrams in the conclusion of 18.12 

2. Give a detailed proof of the isomorphism 
commute. 

lim o * o 4 n < X a , >  o ErnCXa) 
a E A  

in the proof of 18.17. 
3. Define h:  z i (X)  -t n:(X) to be the injection homomorphism from the 

first group of the direct system for n:(X) into the limit. Show that if X is 
simply connected, the following are equivalent: 

(a) zi(X) = 0 for i < n ;  
(b) n F ( X )  = 0 for i < n; 

they imply that h :  ni(X)  + n:(X) is an isomorphism if 1 I i < 2n - 1 and 
o n t o i f i = 2 n - 1 .  

4. Let q,: En +En' be defined for each n 2 No such that the diagrams 

commute. Such a sequence {q,} will be called a map of spectra of degree k. 
Show that spectra form a category with this definition of morphism. Show 
that if q = {q,}: E -t E' is a map of spectra of degree k,  it induces natural 
homomorphisms of homology and cohomology theories 

q :  R,(X) --f 4!?;-k(X), q :  Ern(X)  p r n + k ( X )  
for all m commuting with the suspension isomorphism; i.e., q(a(x)) = a(q(x)). 
Such a transformation is called a stable homology or cohomology operation. 
(Exercise 11 ; Exercise 1, Section 22; Section 27) 

5. A spectrum E and the corresponding theories are called connective if 
En is (n - 1)-connected. Show by taking connected covering spaces that 
given any spectrum En there is a connective spectrum En and a mapping 
v,: En -t En of spectra such that (qrn)+ is an isomorphism in ni for i > 0. 

6. Let P be a one-point topological space. Show that ,!!,,,(P) = 0 = gm(P) 
for any functors Ern and i?"' satisfying axioms (A)-(D). 

7. Let f: X - t  Y be a map in CQ* and suppose f N * in CQ*. Show that 
f* = 0 = f*. 
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8. Let E be a spectrum and define W,, to be the telescope construction 
(Exercise 1, Section 15) on the system 

Show that b ( X )  = [ (X,  *), ( W,, , *)] for X a compact Hausdorff space. Show 
that { W,, , w,,} is an R-spectrum where G,,: W,, 4 R W,,,, is given on the kth 
term of the telescope by 

9. Show that Ern(-%') r h E r n ( K )  where the limit is taken over all compact 
subsets K of X containing *. 

10. Let cp: &*(X)+&*'(X) be a natural transformation such that cp: 
&*(So) + E,'(So) is an isomorphism. Show that cp: &'(X) 3 l?"'(X) is an 
isomorphism for each CW complex X .  Prove an analogue for cohomology if 
Xis a finite complex. (30.25) 

11. Using Exercise 4, construct for each homomorphism cp: x + p co- 
efficient transformations 

c,: R,,(X; n) 3 f l , , (X;  p ) ,  ce: Pyx; .) + P ( X ;  p )  

and show, using these, that homology and cohomology are covariant func- 
tions of the coefficient groups. (Exercise 18, Section 23) 

12. Given a spectrum E and an abelian group G define EG = (EG,, , eG,,} by 

EG,, = M(G, 1) A En-, 

and 

(eG),, = 1 A en- , :  M(G, 1) A A S ' + M ( G ,  1) A En.  

We write &"(A'; G )  for z * ( X )  and E*(X;  G) for %*(X). Show that if 
E = H ,  these definitions agree with the ordinary definitions if X is a CW 
complex.'* (Hint: Use Exercise lo.) (Exercise 13; Exercise 11, Section 22) 

13. Let 0 + G -% H - J +  0 be a short exact sequence of abelian II. 

groups. Construct natural long exact sequences 

It is actually only necessary to assume that X i s  well pointed by 21.7. 
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This is called the Bockstein sequence and p is called the Bockstein homomor- 
phism. Show that if E = H ,  c = c,, and d = c$. (Exercise 8, Section 21 ; 
27.15) 

14. A spectrum E is called properly convergent if en: SE, -, En+,  is a 
(2n + 1)-isomorphism for each n 2 0. Show that if E,, is well pointed for each 
n and E is properly convergent, E,, is (n - 1)-connected. Show that if E is an 
R-spectrum and E, is connected for each n, E is properly convergent. 
(Exercise 12, Section 22; 27.5) 



Spectral Unreduced Homology and Cohomology 
Theories 

By a simple transformation we can transfer the domain of our theories 
from CS* to (38'. Homology and cohomology theories defined on pairs 
( X ,  A )  are called unreduced homology and cohomology theories (sometimes 
the adjective unreduced is dropped). We define unreduced theories here and 
develop their properties on the category E of pairs in CG with the AHEP. In 
the next section we will consider unreduced theories on more general pairs. 

Definition 19.1 For (A', A )  E CQ2 we set 

Em(X, A )  = &(X u CA), E"(X, A )  = Eyx u CA), 

where the vertex of the cone is chosen as base point. If A = @ we interpret 
X u  CA to mean X with a disjoint point added and used as base point. 
Em and Em are called the unreduced homology and cohomology theories 
associated with the spectrum {En}. 

Definition 19.2 Let C be a category of pairs of topological spaces. An 
unreduced homology (cohomology) theory defined on C is a sequence of 
covariant (contravariant) functors Em (Em) for m E Z satisfying the axioms: 

(A) (Hornotopy) Letf, g :  ( X ,  A )  -+ ( Y ,  B).  Supposef- g in C (i.e., there 
is a map H :  ( X  x I ,  A x I )  -P ( Y ,  B)  in C with H(x, 0) = f ( x ) ,  H(x, 1) = g(x)). 
Then 

and f,, = g* : Em(X, A )  + Em( Y,  B)  f* = g* : Em( Y, B) + E"(X, A) .  

183 
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(B) (Excision) If U is open and D c Int A ,  the inclusion 
e :  ( X  - U, A - U) -+ ( X ,  A )  induces isomorphisms in homology and 
cohomology . 

Abbreviate Em(X, 0) and Em(X, 0) as Em(X)  and E"(X). 
(C)  (Exactness) There are natural transformations 8: Em(X, A )  + 

Em-,(A) and 6 :  Em(A) -+ Emt'(X, A )  which fit into exact sequences 
d 

d 
* * .  3 Em(A) -+ Em(X) -+ Em(X, A)+ Em-,(A) + ' . *  

... t E " ( A ) t E " ( X ) t E " ( X , A )  4 - E m - 1 ( A ) t * * * .  

For the homology and cohomology theories we construct, we will prove 
stronger excision properties than axiom (B). There are two types of 
strengthenings of axiom (B) : 

Type I excision If D c Int A ,  e induces isomorphisms ( U  is not assumed 
to be open). 

Type 2 excision If U is open and D c A,  e induces isomorphisms. 

As we will see in section 21, type 1 excision is natural for homology and 
type 2 excision is natural for cohomology. 

Lemma 19.3 Type 1 excision is equivalent to the condition that if ( X , ,  X , )  
is excisive in X ,  

Em(X, u X ,  9 XI) Em(X2 9 XI n X2> 

and 
Em(Xl u X , ,  X I )  E"(X,, X ,  n X,) .  

Proof To prove B, let X ,  = A  and X ,  = X -  U. Then Int X ,  u 
Int X ,  = Int A u X - B = X .  Conversely, if B holds, making the same 
substitutions we see that D = X - Int X ,  c Int X ,  = Tnt A .  

Definition 19.4 Let E be the atcegory of pairs ( X ,  A )  E CS2 with the AHEP. 
Let N = E n CS* be the category of well-pointed spaces. 

Theorem 19.5 On G, Em and Em are unreduced homology and cohomology 
theories. 

Proof I f f :  ( X ,  A )  -+ ( Y ,  B )  define X u CA -+ Y u CB by f ( x )  = f ( x )  
and f(a, t )  = ( f ( a ) ,  t ) .  y i s  base point preserving. Furthermore, iff - g in G ,  
f- in CS*. Since X u CA N X / A ,  Em(X, u X,  , X , )  g Em(X,,  X,  n A',) and 
Em(Xl u X , ,  X , )  r E m ( X 2 ,  X, n X,) with no hypothesis, for X ,  u X 2 / X 1  
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= X,/X, n X,.  (By Exercise 19, Section 14, XI is closed.) Exactness 
follows immediately from the homeomorphism 

x+ u C*A+ = X U  CA 

and 18.9. I 

Corollary 19.6 

Em(X) Z Em(X, *) 0 Em(*), E m ( X )  g Em(X,  *) @ Em(*). 
Proof The exact sequences 

-+ Em(*) + E,,,(X) -+ Em(X, *) + . * * 

- .  * + Ern(*) + E"(X) t E"(X, *)t 

split since there is a map px: X 4  * with px i = 1 * by Exercise 11, Section 11 
and 11.11. I 

Proposition 19.7 If X E  A', Em(X, *) g Em(X) and Em(X, *) z Em(X).  
Hence 

Em(X) E Em(X) 0 Em(*) and E m ( X )  E Em(X)  @Em(*).  

Proof Let X *  = X u  C*. Then Em(X,  *) =Em(X*) and Em(X,  *) = 
Em(X*) .  It is sufficient to show that if X E  N', ( X ,  *) N (X*, 1 ) .  There is an 
obvious map a :  X* + X in eG*, and since X E  N there is a retraction 
P:Xx/ -+X* .Lety (x )=P(x , l ) .  Theny:X+K*is inCG*.  Nowap:  1 -  
ay. Consider H :  X* x I+ X x Z defined by H(x,  s) = ( x ,  s), H(t ,  s) = 
(*, s + t(1 - s)). Then P H :  1 - ya and hence ( X * ,  1) N ( X ,  *). The second 
statement follows by applying 19.6. I 

Corollary 19.8 Em(*) g Em(So) z E-"(*). I 

Corollary 19.9 If X E  N, 

Proposition 19.10 I f  X is a CW complex, Am(X;  n) LZ f i , , (X;  n) = 0 for 

Proof X A  K ( q  n) is a CW complex with all cells in dimensions n and 
larger, except for 0-cells. Hence n m + , , ( X ~  K(T, n) )  = 0 for m < 0 and n > 1. 

m < 0 .  
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Thus R J X ;  n)  = 0 for m < 0. Since Sm-"X has all cells in  dimensions n - m 
and larger, except for 0-cells, [Sn-mX, K(n, n)] = 0 if m < 0 by 16.3 applied to 
the diagram 

The Eilenberg-Steenrod axioms on a positively graded functor are the laws: 
(A), (B), and (Cj of 19.2 together with the dimension axiom: 

(D) 

A functor satisfying these properties is called an ordinary homology or 
cohomology theory. They are characteristic properties and are often used as a 
starting point for making calculations with ordinary homology and cohomo- 
logy. By 19.5, 19.9, and 19.10 ordinary spectral homology and cohomology 
satisfy the Eilenberg-Steenrod axioms on the category of CW pairs. 

Exercises 

1." Prove that if X 3 A 3 B, there are long exact sequences 

* * * 4 &(A, B)  -+ Em(X, B)  -+ Em(X, A )  A Em-, (A,  B)  -+ * * .  
d 

* * .  +- Ern(A, B) t E"(X, B )  t E y X ,  A )  t E m - l ( A ,  B)  4- f . . .  

(Compare with Exercise 5, Section 10.) 
2. Let En (En)  be an unreduced homology (cohomology) theory. Define 

En(X)  = En(X, *) (i?"(X) = E"(X,  *)). Show that ,!?,,(I?") is a reduced homology 
(cohomology) theory with the modification that S X  is replaced by C X  in 
Axiom (B) and X u C*A is replaced by X u CA in  Axiom (C). 

3. Show that E n ( u X a )  2 0 En(X,), and if X ,  are CW complexes and E is 
an 0-spectrum, E"(UX,)  rnE"(X,) .  The assumption that the X,  are CW 
complexes may be dropped if we assume that En is a CW complex for each 
n (see footnote 15). 

4. Let { U,} be an open cover of X such that for all LY, LY' there exists LY" with 
U,  u U,. c U a - .  Show that En(X)  E lim En(U,). (26.22, 26.28) 
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Ordinary Homology of CW Complexes 

We begin this section with a description of chains, cycles, and homologies, 
and show how the ordinary homology groups of a complex provide us with 
a classification of cycles up to homology. 

Suppose X is a CW complex. A chain is simply a collection of oriented 
cells with multiplicities. A chain is called a cycle if there is cancellation at the 
boundary of each cell. Thus consider the cells in the plane shown in Fig. 20.1. 

Y 

X 

C 

Figure 20.1 

The chain consisting of a and b with multiplicity I and c with multiplicity 2 
is a cycle since its boundary at y gets a contribution of + 1 for a and b and a 
contribution of -2 for c. Similarly, we have cancellation at x. 

To make this more precise, we define the n-dimensional chain group of 
X ,  Cn(X) to be the free abelian group with one generator for each n-cell. 
For each oriented n-cell e n ,  let ae, be the n - 1 chain that is its boundary. 
Then a extends to a homomorphism 8: C,(X) + C,- , (X)  and the kernel of d 
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is the set of cycles. In the above example aa = y - x db = y - x and ac = 
x - y .  Thus d(a + b + 2c) = 0. 

Two cycles will be called homologous if there is a chain whose boundary is 
their difference. Thus in Fig. 20.2 a and b are homologous since dd = a - b. 

d b 

Figure 20.2 

A homology is the obvious analogy of a homotopy among cycles. We write 
a - b  to indicate that a and b are homologous. If Z,(X) is the set 
of cycles, the n-dimensional homology group of X is just Z,(X)/- = 

Our first task will be to prove that this quotient group is in fact H,(X).  We 
proceed with a sequence of lemmas. That this description of homology is 
correct will follow from the calculations we do  in the last part of this section. 

z,(x)/Im(a : cn+ dx) --+ G(x)). 

Lemma 20.1 Let X be a CW complex. Then 

mono if m # n +  I 
onto if m # n.  i*: Rm(xn+'; n) -+ Rm(xn; n) is 

Proof Apply 18.17 to the exact sequences 

Am+'(x"+'/X"; x )  -+ Rm(xn; .) -+ R,"(X"+'; 71) + Rm(x"+'/xn; .) 

ffm+l(v S:+' ;  .) n m ( V  S,"+';n) 
Am+l (X"+' /X";  n) t R y r ;  .) t Ryx"+'; .) t R m ( r + ' / X * ;  .) 

R m + l ( v  s:+'; n) i i y v  s , + l ; x ) .  1 

I l l  ) I1  

$11 111 

Lemma 20.2 Rm(xn; x )  = o if m > n .  

isomorphic if m < n 
{onto if m = n .  i,: R,(x"; n) -+ R,(x; .> is 
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i lm(xn; n) = o if m > n. 
isomorphic if m < n 

if m = n. mono j *  : Rm(x; n> -+ Rm(xn; n) is 

Proof Consider the sequences (where we abbreviate by not writing r) - ~ ~ ( X m - 2 ) -  Rrn(Xrn-l) mono,  Rrn(,ym)= Rrn(xm+l)> 

f i m ( x m + 2 ) 2 +  . . . 
. . . , ; . ~ m ( x m - 2 ) . z ~ m ( X m - l ) ~ ~ m ( X m ) ,  mono f i m ( x m + l )  

- - 
L R m ( x m + 2 ) & .  . .. 

The result for homology now follows from 15.6 and 18.15 since i f m ( X o )  = 0 
for m > 0. The result for cohomology follows similarly except here we argue 
that i * :  Rm(X) -+Rm(Xm+' )  is an isomorphism from 18.13 and 16.3 applied 
to the diagrams 

x x  I ... 

I 

Define C,(X, A ;  n) = H,(X", x"-'; n) where x" = A u X". Define 
a,: C,(X, A ;  n) -+ C,- , (x ,  A ;  n) as follows: 

a 
C, (X ,A;n)  = H,(x",x"-l; n)+H,-,(X"-', A ;  *)i.H"-1(P-1,w"-2;n) 

II 
Cfl-l(-K A ;  4. 

Observe that since 
a 

H,(x", A ;  n) -+H,(x", x " - 1 ;  n) - H,-l(x"-l, A ;  n) 

is exact, a, a,+ = 0. 

cients in T and its elements are called n-dimensional chains. 
C,(X, A ; n) is called the n-dimensional chain group of (A', A )  with coeffi- 

Theorem 20.3 H,(X, A ; n) z ker d,/Im 8, + '. 
Proof By Exercise 1, Section 19, 

H"-1(x"-2, A ;  n) -+ t?n-l(Xn-l, A ;  n ) A  H"-l(x"-l, x " - 2 ;  n) 
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is exact. H,_,(X"-~, A ;  n) z H , - , ( ~ - ~ + / A + ;  n) = O so i, is a mono- 
morphism. Hence ker a,, = ker a = Im j ,  in the diagram 

a 
H " ( X " - ' , A ; n ) - + H , ( X " , A ; n ) ~ H , , ( X " , , - ~ ; n ) - H , , ~ , ( X ~ - ' , A ;  n) 

tII 

I1 
0 

Rn(P-1+/A+;  n ) .  

Reapplying 20.2 we see that j ,  is a monomorphism so ker a,, E H,(x", A ; n). 
Define 4 :  ker a,, -+ H,,(X, A ;  n) by 4 = k , j i l  where k :  (p, A )  -+ ( X ,  A )  is 
the inclusion. 4 is onto by 20.2 and the diagram 

H,(X", A ; .) -+ H"(X, A ; n) 

i f , (X"+/A  + ; n) -+ A " ( X + / A  + ; n). 
I l l  >I1 

ker 4 = Imj, d, where a :  H,+,(X, X"; n) + H,,(x", A ;  n). Now consider the 
diagram 

H , + , ( X ,  P+'; n) = o  

H,+ , (X ,  X"; n) a Hn(X", A ;  n) 

where it is proved that H,,(X, X"+' ; n) = 0 by applying the long exact se- 
quence and 20.2. It follows that ker 4 = Imj ,  a = Im a,,,. 

Define C"(X, A ;  n) = IT"(,, ,-I; n) and S,,: Cn(X, A ;  n) -+ C""(X, A ;  n) 
as the composition 

I 

6 
C y X ,  A ;  n) = H y p ,  x"-1; n) -+ H"(X", A ;  n)+ H n + l ( F + 1 ,  x"; n) 

C + ' ( X ,  A ;  n). 
II 

C"(X,  A ;  n) is called the n-dimensional cochain group of (X, A )  with coeffi- 
cients in n and its elements elements are called n-dimensional cochains. 

Theorem 20.4 S,S,,-l = 0, H"(X, A ; n) = ker 6,,/Im 6,,-,. 
The proof of 20.4 follows from 20.2 just as the case for homology. 

Definition 20.5 A collection of abelian groups {C,,) ({C")) and homomor- 
phisms d,,: C,, -+ Co-l (6,: C" -, Cfl+') such that and,,+, = 0 (6,,6,,-, = 0) is 

4 
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called a chain complex (cochain complex). The groups H,(C) = ker a,/ 
Im an+, (H"(C) = ker 6,/Im S,-,) are called the homology (cohomology) 
groups of the chain (cochain) complex. A chain map (cochain map) 
f: {C,} +{D,,} ( f :  {C"} +{I)"}) between two chain (cochain) complexes is a 
sequence of homomorphisms f , :  C,, + D, (f": C" + 0") such that a,,& = 
f , - la,  (f"" 6, = 6,f"). 2, = ker a, is called the group of cycles and B, = 
Im a,,, is called the group of boundaries. Two cycles (cocycles) are called 
homologous if their difference is a boundary (coboundary). Similarly, 2" = 
ker 6, and B" = Im a,,-, are called the groups of cocycles and coboundaries. 
A chain complex is called acyclic if H,(C) = 0 for i # 0 and H,(C) = Z .  

Let us write C, for the category of chain complexes and chain maps. 

Proposition 20.6 Taking homology defines a functor H :  C, -+ (A,), . 
Proof Iff# : C ,  -+ D, is a chain map, f#(Z,(C))  c &(I)) and f#(B,(C)) c 

B,(D). Hence f #  induces a map f * :  H,(C) -+H;(D) and this is clearly 
functorial. I 

Let us write Jc, for the category of relative CW complexes and cellular 
maps. 

Theorem 20.7 H*: X, -+ (A,), factors into H . C, where C, : XR -+ C, 
is a functor satisfying the axioms: 

(a) If Xis  contractible, C , ( X )  is acyclic. 
(b) Let i: ( X ,  A )  -+ ( X ,  ."-I). Then i, : C,(X, A )  + C,(X, F"") is an 

isomorphism. In particular each characteristic map xb: (B", Sn-') -+ 
( X ,  P-') defines a homomorphism 

(X, )# : C,(B,) 1 C,(B", ,"-I)% C,(X, P-1) 2 C,(X, A) .  

(c) C,(X, A )  is a free abelian group with one generator for each n-cell of 
( X ,  A) .  Write B" as a CW complex with only one n-cell and choose a generator 
e" E C,(B") 2 Z .  Then {(xG)#(en)} is a free basis for C,(X, A )  as CJ varies over 
the n-cells of ( X ,  A) .  

Proof Iff: ( X ,  A )  + ( Y ,  B )  is cellular, f ( X " )  c P"; hence f induces a map 
f * :  H,(X", F-') +H,( Y", Yn- ' )  which we take to be f ,  . This is clearly a 
chain map and induces f * :  Z,(X, A )  +Zn( Y, B )  since Z,(X, A )  z H,(X", A) .  
Since the diagram 

- 

Hn(w",  A )  Hn(X, A )  

I j* I S* 
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commutes,f, inducesf, in homology. (a) and (b) are immediate. (c) follows 
from 

Lemma20.8 Let A ,  be the set of n-cells of X -  A .  The maps 
( x u ) * :  H,(B", S"-' ; .) -+ Hn(X", X"-'; n) for (T E A ,  determine an isomor- 
phism 

x :  0 H,(B,", S:-I; . ) L H , ( X " ,  X " - ' ;  .). 
aeA, 

Proof By the definition of unreduced homology, we have 

x :  0 R,(S,"; n)+A,(X"/X"-'; .) 
UEA, 

which is an isomorphism by 18.17. I I 

If ( X ,  A )  has a finite number of cells in each dimension, H,(X, A )  will be a 
finitely generated abelian group, and hence a direct sum of cyclic groups. 
The rank of the free part of H,(X, A )  is called the nth Betti number. The 
orders of the finite cyclic summands are called the torsion coefficients. These 
invariants occurred historically before the notion of homology groups was 
formalized. 

Observe that we used the existence of homology to define C,(X, A) .  One 
might try to define C,(X, A )  by 20.7. The groups are well defined but the 
existence of 3 and chain maps requires a lot of attention. In the end, it would 
be difficult to prove that homology is a topological invariant (i.e., it does 
not depend on the choice and number of cells). C , ,  for example, is not a 
topological invariant. C ,  counts cells, and H* makes C, into a topological 
invariant. It is common philosophy to think of generators of ordinary homol- 
ogy as representatives of "natural cells." 

We now study the chain complexes and homology of various cell com- 
plexes, based on treating 20.7 as axioms for C, . 

1. CP" has one cell in dimension 2k for k I n and hence 

i = 2k I 2n 
ci(cpn) = (2 otherwise 

Since all odd groups are 0, we must have 8 = 0. Thus 

by 20.2. 
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2. HP" is similar: 
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i = 4k 5 4n i = 4k 
Hi(Hp") = (2 otherwise ; H,(HP") = {: otherwise 

The case of RP" is much harder since d # 0 in general. We will save this 

3 .  
case until we deal a little more with complexes in which 3 # 0. 

Let P be a one-point space. Then 

i = O  [? otherwise. C,(P) = 

Choose a generator eo E Co(P). Clearly 

i = O  [ 2 otherwise. Hi(P)  = 

4. Consider I as a complex with two 0-cells ooo = 0 and ol0 = 1, and 
one 1-cell 0'. Let i,: P --f I be the cellular map onto o: for E = 0 or 1. Define 
eeo = (i,)#(eo). These are generators of Co(I) by (c). Let p I :  I - p .  Then 
(pI)#(eE0) = (p , iE)#(eo)  = eo. Since (p,),(de') = 0, de' = k(e lo  - coo). It 
follows that k = & 1 since C,(I) is acyclic. A choice of k corresponds to  
choosing the generator e l .  We think of this as "orienting" the simplex and 
express this by associating a direction to the I-cell. Thus the choice de' = 
el0 - eoo corresponds to the picture 

GOO - 0 1 °  
D l  

Similarly 3e' = eoo - el0 corresponds to the picture 

coo - o10 
0 1  

5 .  Consider I' as a CW complex with 0-cells oio for 1 5 i 5 4 ,  I-cells 
oil for 1 5 i I 4, and a 2-cell 0' 

Choose cellular maps gi: 1 +I' such that g i  is a linear characteristic map for 
oil, and the sense of increasing is indicated by the arrow in the diagram. 
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Define e: = (g , )#(e ' )  and eiO = (hi)#(eo) where h i :  P -+ aio. Then { e i l }  and 
{eio} are generators for C,(Z2) and Co(Z2) respectively. One calculates 

dell = a((gl>#(e'>) = (9l)#(W = (&)#(elo - eoO) = e2 0 0  - el 9 

and similarly 
0 0 de,' = e ,  - e30, ae,' = e3 - e40, de,' = el0 - e40. 

Now Z,(Z2) is infinite cyclic generated by el1 - e2 - e3 + e4I. Hence we 
may find e2 E Cz with de2 = el' - e21 - e3I + e41. e2 is clearly a generator. 
e2 corresponds to  the clockwise orientation indicated by the curved arrow. 
This direction is consistent with all and 0,' and opposite to that of a2' and 
a3'. The other choice corresponds to the counterclockwise orientation. 

6. We now calculate H,(T) where T = S' x S' is the torus. We make use 
of a cellular mapf: I' -+ T. Tin fact is a quotient space of Z2 under the identi- 
fication (x, y )  - (x  + I ,  y )  - (x, y + 1). T has a 0-cell ao =f(a io ) ,  two I-cells, 
all =f(all) = f ( a 3 ' )  and 0 2 1  =f(o,') =f(a4'), and a 2-cell a2 =f(a2). As 
characteristic maps for these cells we may choosefgi, f .  hi; this determines 
generators eo =f#(e io) ,  el' =f#(el l )  =f#(e, ' ) ,  e2' =f# (e2 ' )  =f#(e, ' ) ,  and 
e2 = f # ( e 2 ) .  Hence we calculate 

1 1 

de2 = df#(e2) = f # ( d e 2 )  =f#(ell  - e2 1 - e3' + e4') 

de,' =f#(de, ' )  =f#(e,O - elo) = o 
1 - el + eZ1 = O = el1 - e2 1 

dezl = 0. 

Hence : 

Proposition 20.9 

i = 2  H,(T) = 

otherwise. I 
7. We choose a particular cellular decomposition of S" in order to cal- 

culate H,(RP") as in (6). Letf:,f!: Bk -+ Ek+' be given by 

f :(xl ,  . . . 9 xk) = (x1, . . 9 xk 9 J1-C.i') 
fk(X1, 3.. > xk) = (-xi, . . . 9 - x k ,  -J1 - xxi2).  

Let B: =.f:(Bk) and Bk_ =f!(Bk). Then S" = B; u B! and S"-' = 
B'; n BL. This makes S" into a CW complex with cells B:, Bk_ for 
0 I k I I ? .  The antipodal map is a cellular homeomorphism a :  S" -+ S" and 
hence induces a chain automorphism a , .  
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Lemma 20.10 There are generators e:, ek_ for Ck(Sn) for k I n such 
that 

ae$k = &2_" = ey-1 + e5k-l 
= -ae2_k++' = e2k - e2_. 

Proof e t  must be homologous to e! by axiom (a) applied to the sub- 
complex B:. Hence ey - e'! E dC,(Bi). Choose a generator e i  so that &: 
= e: - e!.. Choose a generator e1 of C,(B') so that (f;),(e') = e:. Define 
e t  = (f2),(e1). Then a, e: = ek. Consequently 

de' = aa,(ei) = a,(de:) = a,(ey - e!) = e! - e+. 0 

Suppose by induction the generators e: and e! are picked for k 5 2m < n 
satisfying the formulas in the conclusion and a,(&) = e!. Now - etm) 
= 0. Since H,,(B:"+') = 0, there is a generator e:"+l of C2m+l(B:m+1) with 
ae:m+l = e2,m - el". Choose a generator e2'"+l of C2m+l(B2m+1) such that 
(f:m+1),(e2m+1) = e:m+l. Let e:m+l = (f2m+1),(e2m+1). Then e:m+l = 
a,(e:m+ '). Hence 

de2_m+1 = du,(e2;n+') = a,(ae:m+') = a,(e:m - etm) = etm - e:m 

(by induction). Now d(e:m+l + e2_"") = 0. Since H2m+1(B:m'2) = 0, we 
may choose a generator e:m+2 with de:m'2 = e?" + eTm". As above, we 
choose e?m+2 and find 

This completes the proof of 20.10. 
Let n,,: S" -+ RP". Then l ln is cellular. In fact (see Section 14) n,f: = 

n,f! = the characteristic for the k cell of RP". Let Zk = (Il,),(e:) = 
(n,),(ek_), which is consequently a generator of Ck(RP"). 

We have 

We have proven: 

Proposition 20.11 

Z 2 ,  iodd,  i < n  Hi(RP")= 
otherwise. 

Z ,  i = O  

Z ,  iodd, i = n  
otherwise 

Hi( RP") = 
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8.  Let X = A" be the standard n-simplex. Define 

qk: An-' - + A n  by vk(x0, . . , Xn- l )  = (Xo , . . . , xk- l ,O,  x k ,  . . . , Xn- l )  

for 0 I k 5 n. X is a simplicia1 complex and hence a CW complex with 

( X n - ' ,  Xn-2).  Let en-l E Cn-l(An-l) be a generator. Then Hn-l(X"-l, Xn-2 )  
is freely generated by (qk)#(en-l) for 0 I k I n. 

(!it) k-cells for 0 I k I n. qk(dAn-l) C Xn-2 ,  SO qk: ( A n - ' ,  dAn-') + 

Theorem 20.12 There are generators en E Cn(An) such that 
n 

aen = c ( - l I k ( q A # ( e n - l )  
k = O  

for n 2 1 .  

Proof The case n = 1 is Example 4 above. Suppose by induction that the 
formula is valid for 1, . . . , n. Observe that qkqj  = qj+l l ]k  i f j  2 k and conse- 
quently qk q j  = q qk- if j < k. We now prove 

Since qk is a cellular map, a(qk)#(en) = (qk)#(aen) .  Hence 

Since A"+1 is acyclic, one may find en+l E Cn+l(A""l)  with 

en+,  is a generator, since 2:2:( - l )k(qk)#(en)  may be chosen to be a generator 
ofcn. 
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Let K be a simplicial complex. Order the vertices of K, u o ,  . . . , u , .  If CT is 
an n-simplex, there is a unique order preserving linear homeomorphism 
xu: A" + CT given by xu(a0, . . . , a,) = ak uik where CT = (uio u i ,  * . . u,") 
and io < il < . . < in. x,((A">"-') c K"-' so xu determines a generator 
en = (x,)*(e,) E C,(K). Since xu is cellular, we have 

ae, = C ( - ~ ) ~ e , ,  
k = O  

Thus given a simplicial complex K, the chain complex is completely deter- 
mined, and we have proven 

Theorem 20.13 Let K be a simplicial complex with vertices ordered 
u o ,  . . . , u , .  For each n-simplex CT = ( u i o ,  u,,) with i, < i, < . * .  < i n ,  let 
C T ~  = (uio uil  * * . u i k - ,  uik+ . . . vim)  be the kth face for 0 I k < n. Then C,(K) 
has free generators {e,}, one for each n-simplex CT, and 8 is determined by the 
formula 

Note that by 20.13, one can define H,(K) for any simplicial complex, 
but it is very hard to prove directly that what is defined is a topological 
invariant. 

As an example we will calculate H*(S2) by this method. Write S 2  E aA3. 
We have vertices uo = ( I ,  0, 0, 0), o1 = (0, I ,  0, 0), u2 = (0, 0, 1, 0) and 
u3 = (0, 0, 0, 1). Write eUio ... - - eio .  .. Then 

Co is freely generated by eo , el, e ,  , e3 . 
C, is freely generated by e,,, e,, , e o 3 ,  e l , ,  e 1 3 ,  e 2 3 .  

C2 is freely generated by e O l 2 ,  e o 1 3 ,  e o 2 3 ,  e 1 2 3 .  

C, = 0 if n > 2. 

We have 
ae012 = - '02 + '01 ae023 = e23 - '03 + e02 

ae013 = - e03 + e O l  ae123 = e23 - -t 
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Z2(dA3) is freely generated by 

eOIZ - e013 + e023 - e123 
Hence H 2  z 2. 

de,, = e, - e, 
de,, = e2 - e, 

de,, = e3 - e, 

deI2 = e2 - e, 

de,, = e3 - e2 

a a 
It is easy to see that C, -+ C, -+ Co is exact at C,. B, is generated by 

el - r ,  , e2 - e, , and e3 - e, . Hence H, 2 is generated by e,  . 

Exercises 

1. Give details for a proof of 20.4. 
2. Prove H,,(X, X"'; n) = 0 = H"(X, X"'; n) if n I nz. 

3. Show that 

where [n, n] is the commutator subgroup (= 1 if n 2 2). (Exercise 6, Sec- 
tion 22)  

4. Let ( X ,  {xu}) be a semisimplicial CW complex (16.37). Show that one 
may choose generators e, E C,(X), one for each cell such that 

(Exercise 9, Section 21) 
5. The Klein bottle K is defined to be a quotient space of S' x I under the 

identification (z ,  0) - (z - ' ,  1). Calculate H,(K) .  (Hint: K is a cellular quo- 
tient space of I , . )  (See Exercise 14, Section 7.) 

6. Calculate (lln)*: H,,(S") + H,,(RP") if n is odd. 
7. Show that if ( X ,  A )  is a CW pair, there is a short exact sequence of chain 

complexes : 
0 -+ C#(A)  4 C # ( X )  3 C # ( X ,  A )  -+ 0 

(i.e., the maps are chain maps, and it is exact in each dimension). 

8 0-cells, 12 1-cells, 6 2-cells, and 1 3-cell. 
8. Calculate C,(Z3) where Z3 has the standard cellular decomposition with 



20. Ordinary Homology of C W CompIexes 199 

P 9. Let 0 -+ C A D - E -+ 0 be an exact sequence of chain complexes and 
chain maps as in Exercise 7 above. Prove that there is a long exact sequence 

a H(P) a . '+ H(c)=+ H(D) - H(E)- H(C) -+ . . * 
where d{e} is defined as follows. Let p(d) = e .  Then p(dd) = 0 so there exists 
c E C with ~ ( c )  = dd. Define d{e} = {c}. Show that c is a cycle and (c} depends 
only on {e}. (Section 25; Exercise 4, Section 30) 

10." Calculate Hi(S" x Sm). 

11. Given a graded vector space { V,,} with V,, # 0 for only finitely many 
values of 17,  define the Euler characteristic of (V,,} by 

Show that if { V , ,  a,,} is a chain complex with {V,,} as above, x({V,,}) = 

Define the Euler characteristic of a finite CW complex X as x(H,(X; k))  
x(HG Vfl> d n N .  

where k is any field. Thus 

C ( -  1)" rank C,,(X) = (- 1)" dim C,(X; k )  = x ( X )  

is a homotopy type invariant and does not depend on k .  Note that x(S2)  = 2, 
hence for any CW decomposition of S 2 ,  dim Cz - dim C, + dim Co = 2. 
(26.25) 

12. Let r~ = ( u o ,  . . . , u,,) be a simplex with ordered vertices and let cT = 
( u T ( o ) ,  . . . , uT(,,J where T is a permutation of n letters. Show that {e,} = 
sgn T . { e ,  T }  in H,,(o, do). (Section 26) 

13. Let Xbe a CW complex. Show that Ho(X)  is a free abelian group whose 
rank is the number of arc components. (26.29) 

14. Consider the simplicia1 complex K with vertices vo , u l ,  u 2 ,  u 3 ,  u4. As 
simplices, take all proper subsets of (uo u1u2) and all proper subsets of (uo u3 u4). 
Calculate the homology of K with integer coefficients. Check your answer by 
verifying that K = S' v S'. 



Homology and Cohomology Groups of More 
General Spaces 

. 

In this section we discuss the existence and properties of homology and 
cohomology theories when applied to more general spaces than CW com- 
plexes. The easiest method to obtain such theories is the singular extension. 
This is described in general. Its historical predecessor, the ordinary singular 
homology and cohomology functors are described in Exercise 9. 

Assuming that for n sufficiently large ( E n ,  *) E N, we then prove that 
singular homology agrees with spectral homology under mild assumptions. 
Finally, assuming that for n sufficiently large ( E n ,  *) is the homotopy type of 
a CW complex with 0-cell as base point, we derive the properties of spectral 
cohomology theories when applied to paracompact compactly generated 
spaces. 

Definition 21.1 If ( X ,  A)€%' define SE,(X, A )  = E,(S(X, A)) and 
SE"(X, A )  = E"(S(X. A) )  where S(X.  A )  is the singular complex (16.21). 
Similarly SR,,(X) =&,,(S(X)) and Sk?(X) = ,!?(S(X)). These are called the 
singular homology and cohomology theories associated with the spectrum E. 

Ordinary singular homology and cohomology E = HIT are classically 
defined in a different way. (See Exercise 11 .) 

Proposition 21.2 SE, and SE" are unreduced homology and cohomology 
theories on Z2 with type 1 excision. That is, SH,,(X, A ;  n) and SH"(X,  A ;  n) 
satisfy the Eilenberg-Steenrod axioms (A), (B), and (C)  of 19.2 on %'. 

200 
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Proof Axioms (A) and (C)  are clear. To prove (B) we prove that if ( X , ,  X,)  
is excisive, SE"(X, u X ,  , X,) z SE"(Xz, X ,  n X,)  and SE,,(X, u X ,  , X, )  
SE,,(X,, X ,  n X,).  We construct a resolutionf,,: K,, -+ X ,  n X ,  and extend 
this to resolution fi : Kl 3 X ,  and fz : K, -+ X ,  where K, n K, = K12 . As in 
the proof of 16.27, we define f: K, u K2 -+ XI u X ,  and by 16.24, f is a 
resolution. The isomorphisms follow. 1 

Singular homology and cohomology theories have the following charac- 
teristic property. 

Proposition 21.3 L e t 8  ( X ,  A )  -+ ( Y ,  B )  be a weak homotopy equivalence. 
Then f*: SE,,(X, A )  -+ SE,( Y, B) and f *: SE"( Y, B)  --* SE"(X, A )  are iso- 
morphisms. 

Proof Since f is a weak homotopy equivalence, S( f) is a homotopy equi- 
valence. Hence f* andf* are isomorphisms. I 

Proposition 21.4 Let SEm and SEm be the reduced singular homology and 
cohomology theories associated with E (21.1). Then 

SEm(X) 2 SEm(X) 0 Em(*). SErn(X) Y SErn(X) 0 Ern(*). 

Proof By 19.6 it is sufficient to show that Em(S(X) ,  *) g,,,(S(X)) and 

An important and useful property of singular theory is given by the Mayer- 
E"(S(X),  *) z Em(S(X)).  This follows from 19.7. 

Vietoris sequences. 

I 
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Proof Since as the proofs are similar, we will do the homology case only: 
SE,(X, u X ,  , XI) z SE,(X,, Xl n X , ) .  Consider the diagram 

* ' *  - SE,( X,) - SE,( X ,  u X , )  - SE,( XI u X ,  , XI) - * * . 

-..-SE,,(X, n x,)%sE,,(x,)- SE,(X,, X ,  nx,)-*.. 
The proof follows from: 

JI*  

T i , *  

Lemma 21.6 (Bavrutt-W/?irehead) Given a commutative diagram 

in which y, is an isomorphism, and the rows are exact, there is an exact 
sequence 

* a ' - +  A,+ A,' @ B,,+ B,'T A,,-l -+. * *  
s. B" 

where,fn(x) = (u,(x), in(x-)), gn(x ,  Y )  = i,,'(x) - P, (Y) ,  and 11, = k n y n - ' j n ' .  

Proof This is an elementary diagram chase and is omitted. 

We now assume that f o r  n sufficiently large ( E n ,  *) E N. We will first dis- 

[ [ 

cuss the consequences for the spectral homology theories. 

Theorem21.7 For any ( X ,  * )E A', S,!?,,,(X) z &,(X). For any pair 
( X ,  A )  E CS2, SE,,,(X, A) z Em(X, A) .  In particular, Em is a homology theory 
on C@. I f  X is Hausdorff, SE,,,(X, A )  = E,,(k(X), k(A)) where k ( X )  is the 
associated compactly generated space (8.7). 

The proof will depend on: 

Proposition 21.8 Let ( X ,  *), ( Y, *), and (E ,  *) E N. Suppose f: ( X ,  *) + 

( Y ,  *) is a weak homotopy equivalence. Then f A 1 : X A E -+ Y A E is a 
weak homotopy equivalence. 

Proof of 21.7 Suppose (X, *), ( Y ,  *) E N and f: ( X ,  *) -+ (Y, *) is a weak 
homotopy equivalence. Then 

(f A I)*: nn+m(X A 4) -+ n n + m (  Y A En) 
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is an isomorphism for n sufficiently large. Considering the ladder that defines 
f*: f lm(X)+f l , , , (Y)  (18.5), it follows that f* is an isomorphism. Hence 
SEm(X) = ,l?m(S(x>) Z Em(X) .  I f  f :  ( X ,  A)  + (Y ,  B) is a weak homotopy 
equivalence, f X u  CA -r Y u CB is a weak homotopy equivalence by 
Exercise 29, Section 16. Since X u  CA and Y u CB belong to A', 
f*: Em(X,  A )  +Ern( Y,  B) is an isomorphism. Thus SEm(X, A )  = Em(X, A).  
Finally by 8.8, ( k ( X ) ,  k (A))  + ( X ,  A )  is a weak homotopy equivalence. Hence 

SEm(x, A )  SEm(k(X), k(A))  Em(k(X), NA) ) .  I 
Proof of 21.8 By Exercise 18, Section 14, ( X  x E,  X v E )  and 

( Y  x E, Y v E )  have the AHEP. Hence by 16.31, 

X A E =  ( X  x E ) u  C ( X v  E )  

Consequently it is sufficient to show that 

and Y A E -  ( Y  x E )  u C ( Y  v E) .  

( X x  E ) u  C(XV E)-+(Y  x E)u C(YV E )  

is a weak homotopy equivalence. By Exercise 29, Section 16 it is sufficient to 
showthatfx 1 :  X x  E - t  Y x  Eandf v 1:  X v E-r  Y v  Eareweakhomo- 
topy equivalences. It is obvious that f x 1 is a weak homotopy equivalence. 
21.8 thus follows from: 

Lemma 21.9 Suppose (X, *), ( Y ,  *), and (E ,  *) E N a n d 8  (X, *) -r ( Y ,  *) 
is a weak homotopy equivalence. Then (f v 1): X v E -+ ( Y v E )  is a weak 
homotopy equivalence. 

Proof For any two spaces A and B with nondegenerate base points a 
and b, 

A v B - A u I u B  1; ;? 

where the homotopy equivalence is obtained by pinching Z to a point. This 
follows from 16.31 since 

A v I u B / i  1; E ( A  LIB) u C({a, 6)).  

Thus it is sufficient to show that the map X u Z u El- + Y u I v El- is a 
weak homotopy equivalence, This follows directly from 16.24 with 

X u I u E/ - = (X u I/-) u (Z v E/ -) 

and 

Y u Z u E / -  = ( Y  u I/-) u ( I  u E / - ) .  I I 
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Spectral cohomology behaves somewhat differently than spectral homo- 
logy. There is an arcwise connected compact subset X of RZ, with q(X, *) = 0 
for all i 2 0 but HI(@ z Z (see 21.21). Since S H ' ( X )  = 0, we do not have 
SE"(X) r E"(X) in general. In order to proceed we assume that for  n suf- 
ficiently large (En ,  *) is a C W complex with a 0-cell as base point. We prove 
only that En is a cohomology theory on paracompact compactly generated 
spaces. We must exploit a special property of ( E n ,  *) in order to achieve 
this. This property is contained in the following. 

Definition 21.10 (Y ,  *) is called a weak absolute neighborhood extensor 
(WANE) if for each paracompact space X ,  each closed subspace A c X ,  and 
each continuous mapfi A + Y, there is a neighborhood U of A in X and a map 
g: U - ,  Ysuchthatg1,-f(re1f-I(*)). 

To utilize this concept we make some observations about paracompact 
spaces. 

Lemma 21.11 Let X be paracompact, A c X be a closed subset, and K be 
a compact Hausdorff space. Then A ,  X/A,  and X x K are paracompact. 

Proof ( 1 )  Given an open cover {'U,} of A choose open sets 'V, with 
W, n A = U,. Then {W,, X - A}  is an open cover of X .  A locally finite 
refinement of this, when restricted to A ,  is a locally finite refinement of 

(2) Let {U,} be an open cover of X / A .  Suppose {A}  E U,, . Let W, = 
p,'('U,).Since Xisparacompact it is normal. Choosef: X +  Iwith f ( A )  = 1, 

f ( X -  W,,) = 0. Let W = f - ' ( [ O ,  +)) and D = f - ' ( [ O ,  $1). Then X - We, c 
FV c D c X - A .  Since D is closed, it a paracompact. Choose a locally finite 
refinement {T,} of {D n W,}. pA1pA(Ty n W )  = T,  n W. Since W is open, 
p,(T, n W )  is open. Suppose T ,  c W,. Then pA(T,  n W )  c pA(Wa) = 'U, . 
Hence {p,(T, n W), ?Lao} is a refinement of {U,} by open sets. It covers 
X / A ,  since if x # 'U,, , x E pA( W )  and hence x E pA( W n T,) for some y. 
Finally, we claim that {p,(T, n w>, 'U,,} is locally finite. If x $ p , ( D ) ,  
p A ( X -  D)  is a neighborhood of x which intersects only Xu,. Suppose 
x epA(D) .  Let y = p i l ( x )  E D. There exists a neighborhood 'U, of y in D such 
that U, intersects only finitely many of the T,  . Let W, be an open set in X 
such that W, n D = 'U,. Then pA(W, - A )  is a neighborhood of x and 
pA(W, - A )  n pA(T, n W )  = pA('U, n W n T,) and this is only nonempty 
for finitely many y. 

3. Clearly X x K is Hausdorff. Let {U,} be an open cover of X x K.  
Choose a refinement (AD x 53,J with AD open in X and 53, open in K. For 
each x E X there exist &(x), . . . , Pncx,(x) such that 

{ U U I .  
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Let V(x)  = 
{V(x ) }  of X .  For each y ,  choose x, E X such that C ,  c V(x, ) .  Then 

for some c1, so {C, x 33,t(x,)} refines {'U,). Given ( x ,  t )  E X x I .  Choose y with 
x E C, . Now t E 33,i(x,) for some i since x, x Zis covered by the sets x 
33bi (xv) .  Thus (x, t )  E C, x 33bi(x,) and {C, x 33RBi(x,)} is an open cover. To 
show that it is locally finite, let (x, t )  E X x I .  Let U, be a neighborhood of x 
in X which meets only finitely many C, . Then U, x I can meet only finitely 

In particular if X is paracompact and A is closed, X u  CA, X u  C*A, 

J 4 b i ( x ) .  Choose a locally finite refinement {C,} of the open cover 

c, %xv)  = JE,i(X,) % X v )  

many c, x %Ji(*,). I 

EX, and SX are all paracompact. 

Proposition 21.12 (a) If (Y ,  *) N ( Z ,  *) and ( Y ,  *) is a WANE, ( Z ,  *) is 
a WANE. 

(b) If ( Y ,  *) is a WANE, (Q( Y, *), *) with the compact open topology is a 
WANE. 

Proof (a) Let f: A --+ Z and let 4: Z + Y and 4': Y Z be homotopy 
inverses in%*. Then there is a neighborhood U of A and a map g: U - ,  Y 

(relf-'(*)). But $4' - 1 (re1 *), so 4'gIA -f(relf-I(*)). 
such that glA - 4f (reK4f)-'(*)). (4 f>- ' ( * )  =f-'(*) so 4 ' g I A  - 4'4f 

(b) Letf: A --* Q( Y, *). Then 
f * : ( A x I , f - ' ( * ) x I u A x O u A x  l ) -+(Y,*)  

is continuous. f* extends to a map 
f: ( X  x 0 u A x I u X x 1 p(*) x I u X x 0 u X x 1) + ( Y, *) 

Since X x 0 u A x Z u X x 1 is closed in X x I and X x I is paracompact, 
there is a neighborhood U of X x 0 u A x I u  X x 1 in X x I and a map 
g: U - . ( Y ,  *) such that g l X x O u A x r v X x l  -f(rel.f-'(*) x I u  X x  0 u 
X x 1). SinceIis compact, there is a neighborhood VofA in Xwith V x I c U. 
Let h = ( g l v x r ) * :  V + Q ( Y ,  *). Then hlA-f(relf-'(*)). 

The reason for introducing WANE'S is: 

Theorem 21.13 Every CW complex is a WANE. 

This result will allow us to derive many properties of E"(X, A )  when the 
spaces {En} are CW complexes for n sufficiently large. We will prove 21.13 
by showing that every simplicia1 complex is a WANE. 21.13 then follows from 
16.44 and 21.12. 

Recall (Exercise 26, Section 16) the definition of an abstract simplicia1 
complex. 
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Proposition 21.14 Every abstract simplicial complex K = (V ,  S )  deter- 
mines a simplicial CW complex. 

Proof Let V be partially ordered in such a way that each cr E S is linearly 
ordered. Givenf: V +  I write sup f = { u  E VJf(u)  # O}. We define the realiza- 
tion of K by 

I KI = {f: V -+ I1 sup f E S and f ( u )  = l}. 
V € V  

The sum is finite since every set in S is finite. For each cr E S write I (TI = 
{fs J K J  Isup f c cr}. Suppose cr = (uo , . . , , u,J. Then cr is called an n-simplex. 
There is a 1-1 correspondence x a :  An --f I cr I given by x U ( x I ,  . . . , X , + ~ ) ( ~ J  = x i .  
We topologize I cr I by making xu a homeomorphism. This does not depend on 
the ordering of the vertices. IK( = UaES(cr( .  Topologize (KI with the quo- 
tient topology: 

x:UJ4 -+IKI* 
U € S  

The inclusion I KI c I" is continuous, where Iv has the product topology, 
although I KI does not have the induced topology in general. In  any case 1 K (  
is Hausdorff. As n-cells we take x,(A" - aP) for all n-simplexes 6. For each 
o, xb is a homeomorphism, hence 1 KJ is a cell complex. I Kl is obviously 
closure finite and by 14.5 it has the weak topology. By construction it is a 
simplicial CW complex. I 

Corollary 21.15 Every simplicial CW complex is homeomorphic to I KJ 

Proof This follows immediately from Exercise 26, Section 16. 1 
for some abstract simplicial complex K. 

Theorem 21.16 Let uo be a vertex of K. Then ( I  K J ,  I uo I )  is a WANE. 

Proof Let X be a paracompact, A c X closed, and f: A + ( K J  . Given 
v E V define the star of u by 

st u = {f. IKI I f ( u >  # 01. 
Clearly, {st u I u E V }  is an open cover of I KI . { f -' (st u)} is thus an open cover 
of A .  Choose, for each u, an open subset U, c X such that 'U, n A = 
f -'(st 0). {U,, X - A }  is an open cover of X .  Choose a subordinate parti- 
tion of unity 

p :  x+ I, p " :  x+z, 
with {x lp(x)  = 0) c X - A ,  {xlp, (x)  # 0} c U,. Let U' = { x J p ( x )  # l}. 
Define functions 

4": %'+ z 
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by q,(x) = pu(x ) / ( l  - p(x) ) .  Then (9,) is a partition of unity of ‘U’ subordinate 
to U, n ‘U’. Define a simplicial complex K’ with vertex set V and simplex 
set 

S‘ ={cr c V I C E S  or q,(x) f O  for some X E %  and all u ~ c r } .  

Then K‘ = (V ,  S’) is a simplicia1 complex. JKI c (K‘( as a subcomplex. 
We define 9’: ‘U’ -+ IK’J by g’(x)(u) = qu(x). This is well defined for 
{u(g’(x)(u) # 0} E S‘. To see that g’ is continuous at x E U’ choose a neigh- 
borhood %, of x such that only finitely many qu # 0 on %, . Then g’(%,) is 
compact. Thus the topology on g’(%,) is the induced topology as a subset of 
Z‘. Since g‘ is clearly continuous with this topology, g ’ [  qX is continuous. 
Thus g‘ is continuous. 

Now g‘(A) c I KI , for if g(u)(v) # 0, a E ‘U, and thus f(u)(u) # 0. Define 
g :  A -+ [ K (  by g(a)  = g’(a). We show that g -f(relf-  ‘(lo]). Define H by 

W X ,  t>(4 = t f (x)  + (1 - t m ) .  

H(x,  t )  E 1 KI for if H(x,  t ) (u)  # O,f(x)(u) # 0. A proof of continuity for H is 
similar to that ofg’. H i s  a homotopy rely-’( I u I), for iff(x) = 1 u 1 ,  p, (x)  = 1 
and hence g,(x) = 1, so g(x )  = I u I. It is only necessary to show that g extends 
to a map 9: ‘U -, I KI . By Exercise 20, Section 14 there is a neighborhood Y 
of IK( in  IK’[ andaretractionr:  V-r  (KI .LetU=U’ng’ - ’ (V) .Def ine  

= rg’. I I 

Proposition 21.17 Suppose X is paracompact and A c X is closed. If 
( Y ,  *) is a WANE and 

f: X x 0 u A x z-* Y 
f- g (rely-’(*)) and g extends to a map G :  X x I -+  Y. 

Proof By 21.10 and 21.11 we can find g, a homotopyf- g (relf-’(*)) 
and an extension of g over a neighborhood % of X x 0 u A x I in X x I .  
Choose a neighborhood V of A in X such that V x I c ‘U. Let a: X - t  Z 
satisfy a ( X  - V )  = 0 and a(A) = 1. See Fig. 21.1. This is possible since every 
paracompact space is normal. Then define G: X x I-+ Y by 

Proposition 21.18 Let ( Y, *) be a WANE, X paracompact, and C a closed 
subset of X that is contractible in T*, Then 

is a 1-1  correspondence. 
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V 

A 

Figure 21.1 

Proof Let K :  C x Z+ C be a contraction of C in Z*. K(x, 0)  = x, 
K(x, 1) = *, and K(*, t )  = *. 

To prove that (pc)* is onto, let f :  ( X ,  *) + (Y ,  *). Define F: X x 0 u 
C x I-+ Y by F(x, 0)  = f ( x )  and F(c, t )  = f ( K ( c ,  t ) ) .  By 21.17 there exists 
G: X x I +  Y and a homotopy 

F -  G I X x O u C x l  (re1 * x Zu C x 1) 

Let g ( x )  = G(x, 0 ) ;  then f- g (re1 *). If g'(x) = C(x, I), g'(C) = *, so {g ' ]  E 

Im(pc)*. However G :  g - 9' (re1 *), so (pc)* is onto. 
Suppose now that H :  f p c  - gpc (re1 *). Define 

17: x x I x 0 u c x I x I+ Y 

by 
W ( x ,  s, 0) = H(x ,  s), 17(c, s, t )  = H(K(c, t ) ,  s). 

Then 17(C x 0 x l u  C x 1 x Zu * x I x I u  C x I x 1) = *. Thus there 
exists 

G : X x I x I + Y  

and a homotopy 
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Let f ', g': X/C+ Y be given by f ' (x)  = L(x, 0,  0, 1) and g'(x) = L(x, 1, 0, 1). 
Then {f} = {f'} and {g} = {g'}. Now define M :  X x I +  Y by 

G(x, 0 , 3 0 ,  O I t I 3  
M(x, t )  = C(x, 3t - 1, l), 3 I t 5 %  I G(x, 1 ,  3 - 3t),  3 I t I 1. 

M(C x I )  c G(C x 0 x 1 u C x I x 1 u C x 1 x I )  = *. Hence M defines a 
homotopy 

R: ( X / C )  x I+ Y(rel {C}) 

and a: f ' - g' (re1 {C}). Thus {f> = {f'} = {g'} = {g}. I 
Let 9 be the category of paracompact Hausdorff spaces. 

Corollary 21.19 Let X E 9' n (2'3. Suppose * E C c X and C is contract- 
ible in CG* and closed. Then 

( pc) * : E m (  X/C) --f E m (  X )  

is an isomorphism 

E S"-"'(X/C>. Hence 
Proof S"-"C is a closed contractible subset of S"-"X, and Sn-mX/S"-mC 

[Sn-m(X/C), E , ] X  [Sn-'"X, En] 

is an isomorphism by 21.18. I 

Theorem 21.20 The functors E": 9' n eSZ 4 A, satisfy the following 
properties: 

1. Relative Homeomorphism Let f: ( X ,  A )  -+ ( Y ,  B) and assume that f is 
a closed map, A and B are closed subsets, and f l  X - A :  X - A 3 Y - B is a 
1-1 correspondence. Then f * :  Em( Y, B) -+ Em(X,  A )  is an isomorphism. 

Let 5 E Em(X,  A) and suppose A is 
closed. Then there is a neighborhood (It of A in X and a class 5' E Em( X ,  Dt) 
such that i*(<') = 5 where i :  ( X ,  A) -+ ( X ,  U r )  is the indusion. 

3. Excision Suppose U is an open subset of X and c A .  Then the 
inclusion i: ( X -  U ,  A - (I) 4 ( X ,  A )  induces isomorphisms. In  particular, 
{E"} is a cohomology theory. (This is type 2 excision.) 

4. Continuity Let {X,} be an inverse system ofcompact Hausdorff spaces. 
Then there is a natural isomorphism 

2. Neighborhood Extension Property 

l h ~  E m ( X a ) A  E m ( b  X,). 
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5. If C is closed and contractible, (pc )* :  E"(X/C)  --t E m ( X )  is an isomor- 
phism. 

Proof 1. By 21.11 and 21.19, E m ( X ,  A )  = f?"'(X u CA) z g"(X/A) .  The 
hypothesis implies that f induces a homeomorphism 

f X / A +  Y/B.  

2. Let 5 E E"(X, A )  be represented by a map 

f :  ( X u  CA) A S-"' + En 

Define a :  X x 0 u A x I u  X x 1 +Q"'"'En by 

a(x, 0) =f*(x ) ,  cc(a, t )  = f * ( a ,  t ) ,  a(x,  1) = *, 
wheref*: X u CA -+ R"-"'E,,is the adjoint ofJThis is continuous in the com- 
pact open topology. Hence there is a neighborhood '11 of X x 0 u A x Z u 
X x 1 in X x I ,  a map g N a (re1 X x I ) ,  and an extension 9" of g over 
U. There is a neighborhood oc of A in X such that 0, x Z c  9 L .  Hence 
9" I tf, x I u X x 0 defines a map 9': X u CU, -+ ,"-"En such that 9'1 C A  - 
f *  (re1 *). Since X u  Cu, is compactly generated, g' is continuous in the com- 
pactly generated topology on ,,-"En. Hence the adjoint of g' represents a 
cohomology class in E"(X, DTt;) which restricts to (. 

Suppose B c C c D are inclusions of spaces. Then the map C/B -+ D/B 
induced by the inclusion of C into D is 1-1 and continuous. We show that 
C/B has the induced topology. Let p ,  : C -+ C/B and p 2 :  D + D/B be the 
projections, and suppose U is open in  C/B. Then p ; ' ( U )  is open in C and we 
can thus find an open set V in D with V n C = p ; ' ( U ) .  Nowp;'p,( V )  = V 
so p z (  V )  is open in D/B. Since p z (  V )  n C/B = 'U, we have accomplished this 
task. 

It follows that A/U c X/U and A - U / o  - U c X - U/ t f  - U. All of 
these spaces belong to 9 n (39 by 21 . I  1, so we consider the diagram 

3. 

E'"(X,  A )  f Em( X / 0 ,  A I D )  

Now we claim that ( X  - U / u  - U ,  A - U / D  - U )  E (X/tf, A/tf) .  There is 
clearly a 1-1 continuous map from (X - U/i7 - U ,  A -  if - U )  onto 
( X / u ,  AID) induced by the inclusion of X - U into X. To see that this map 
is closed, observe that the composite X - U -+ X+ X I 0  is closed. Thus the 
right-hand vertical map is an isomorphism. It is thus sufficient to show that 
the horizontal maps are isomorphisms. The lower one is a special case of the 
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upper one by replacing 0 c A c X by U - U c A - U c X - U .  Consider 
the diagram 

The horizontal sequences are exact by the techniques of 19.5, and the result 

As in 19.5 the other properties of a cohomology theory are easily proven. 
4. 

follows from the 5-lemma and part 1. 

By Exercise 9, Section 15 

lim Xu = {{x,} X,IL,.(x,.) = xu for a' 2 a}.  

There is a continuous map pa: X,-+ X ,  given by po({xu}) = x u .  Since 
f,..p,. = p ,  , p,* = p,*. .f:. . Hence {pa*:  En( Xu) -+ E " ( h  Xu)} defines a homo- 
morphism 

p :  lh~ E"(X,) + E " ( b  A',). 

Define B,  = ({x,} ~fl,,, A',( faU.(xa.) = x, for a' 2 a}.  Clearly B ,  = X ,  . 
Let C ,  = B ,  x nu, , CX, .  Then g,: C, -+ X ,  given by projection is a homo- 
topy equivalence. Furthermore if f i  > f i ' ,  C ,  c C,, , and n C, = A',. 

Now it is sufficient to show that 

8 :  lim E"(C,) 4 E " ( 0  C,) 

is an isomorphism where 8 is defined similarly to p, for we have a commuta- 
tive diagram 

- lim E"(c,)- E"( n C,) 
0 

1. 
/ lim E"(X,) - E " ( h  X,) 

Let C = n C, and note that C is compact and Hausdorff. Let ( E E"(C). 
By part 2 there is a neighborhood u, of C in C, and a class 5' E E"(C,,  U , )  
with i*((') = S(. By contemplating the diagram 

- 

d 
E"' '( C, , C )  - E"( C) - En( C,) 1 i* 

E"+'(C,,  8) d En( U )  - E"(C,) 
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one sees that there exists t" E E"((D) with i*(t'') = 5 .  The open sets U and 
X - C ,  for all f l  with C, + C, an open cover of C. Since C is compact, there 
is a finite subcover and hence for some f l ,  C, c U. Thus 5 = 0,*(5") for some 
5" E E"(C,) and hence 6 is onto. 

Suppose B(5) = 0, and 5 is represented by e E E"(C,). Then i*(e) = 0 where 
i :  C +  C, is the inclusion. Choose d E E"(C,, C )  such thatj*(d) = e. By part 2 
we can choose D, 3 C and a class d' E E"(C,, 0,) such that i * (d ' )  = d. Again 
by compactness, one sees that there exists p with C c C,  c U,. Thus we can 
find d" c E"(C,, C,) with i*(d") = d. Hence a*(e) = 0 where a:  C, + C, is the 
inclusion. Thus 5 = 0. 

5.  The map pc:  ( X ,  C) --$ ( X / C ,  ( C } )  is a relative homeomorphism. Since 
E"(C) g E"({C}), the result follows by the 5-lemma and part 1. I 

The properties expressed in 21.20 are characteristic for what is often called 
a continuous cohomology theory. Two continuous versions of ordinary co- 
homology are common in the literature. They are the Cech cohomology 
groups-written p ( X ,  A ; x)-and the Alexander cohomology groups- 
written R"(X, A ;  n) (see [64]). These agree with each other and with ordinary 
spectral cohomology on paracompact compactly generated spaces. (All three 
are initial objects in the category of ordinary cohomology theories with 
coefficients in n.) [32] 

Figure 21.2 

Example 21.21 Let Xbe the union of the closure of the graph ofy = sin n/x 
for O < x l  1 and the sets [-1, 01 x 0, [ - I ,  11 x 2, 1 x [0, 21, and - I  x 
[0, 21; see Fig. 21.2. There is a continuous map from X to the rectangle 
determined by the lines y = 0, y = 2, x = & 1. This is defined by pinching the 
closure of the curve sin n / x  down to the line y = 0. Let Y = 0 x [ - 1,  11. 
Then Y c X and the above rectangle is homeomorphic to X / Y ,  since X is 
compact. Since Y is contractible, E"(X)  E " ( X / Y )  z E"(S'); in particular 
H ' ( X )  r Z .  S H ' ( X )  = 0 since every homotopy group of X is 0. 

Corollary 21.22 ~f XE B, P(x)  z E"((x, *). 
Proof By 21.20 b ( X  u C(*)) g I?"(X). 1 
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Exercises 
1. If {E,} is an R-spectrum, show that SEn(UXa)  z f l S E " ( X , ) .  
2. Prove that if X E ~  and A ,  B are closed subsets, there is a Mayer- 

Vietoris sequence 

c E " ( X n  B ) c E " ( A )  0 E"(B) t E"(A u B) + E"-'(A n B) c . . -  
3. Let X = S' x [0, a~) c R3 and A,  be a plane in R3 through the line 

(1, y ,  0) and making an angle c( with the x, y plane. Choose an increasing 
sequence of numbers ui  2 0 with lim ai = 4 2 .  Define X i  as the points of X 
above the plane A, , .  Show that lim X i  = n X i  is the line (1, 0, z) and hence 
H ' ( b  X i )  = 0. Show that H 1 ( X i )  z 2 and lim H ' ( X i )  r Z .  

4. Let A c B c X be closed subsets and suppose {(U,, V,)} is the inverse 
system of all neighborhoods of (B, A )  directed by inclusion. Show that the 
natural map 

lim E"(U,, V,) -+ E"(B, A )  

is an isomorphism. (Hint: Consider first the case B = X.) 

diagram containing three exact sequences 
5. Suppose ( U ,  V )  is excisive in Z and W c U n V.  Using the commutative 

/ En(z, w, \ v) 1 ~ E,(z ,  u) 

En(Z, U n  V 1. 
E,,(U, U n  V )  / I > EntV, un V )  

En-,(un V, W )  

E,(Z, w>-, E,-,(U n V,  W )  

k 
show that the sum of the two exterior homomorphisms: 

is 0. (Exercise 13, Section 23) 

6. Let F A  E"- B be a Serre fibering. Assume that F is ( n  - I)-connec- 
ted and B is (rn - 1)-connected with m 2 2. Use Exercises 7 and 23 of Section 
16 to construct exact sequences 

S17m+n-l(F).+ Sflm+n.-l(E)+ * - *  

+ S R i ( F ) L  mi ( E ) A  Si?, ( B ) 2  SAi-l  ( F )  + * * * 
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and 
i* 

* . * + S R ' - ' (  F ) L  sRi(B) 5 SR'(E) -+ SRi(F) 4 * * . 
-+ SRmfn-'(E)4 sR"'"-'(F) 

with arbitrary coefficients. These are called the Serre exact sequences and T 
is called the transgression. (30.7) 

7. Generalize Exercise 8, Section 16 to the case that X and Yare arbitrary 
well-pointed spaces. 

8. Show that there are isomorphisms, natural in all the variables: 

(a) if Xis  well pointed: 

Ei(X; O A,) o gii(X; A,) ;  

E i ( X ;  0 A,) z 0 F(X; A=).  

(b) if the indexing set is finite: 

(Hint: I t  is sufficient to prove (a) for CW complexes X .  Apply Exercise 10, 
Section 18. For (b), apply Exercise 13, Section 18.) 

9. Define the singular chain complex of a topological space as follows. Let 
C J X )  be a free abelian group with one generator ef for each continuous map 
f: A" -+ X .  Define d: Cn(X) -+ C,- X )  by 

de, = C (- 1)'e,,, . 

Show that d2 = 0. Using the functorial singular complex (16.35) and Exercise 
4, Section 20 show that H,(C,(X)) is naturally isomorphic to S H , ( X ) ,  and 
H*(Hom(C,(X), Z) )  is naturally isomorphic to SH*(X) .  

10. Use Exercise 1, Section 19 and 21.5 to show that if A and B are excisive 
in A u B, there is a Mayer-Vietoris sequence 

n 

s = o  

* . -+ SE,(X, A n B )  -+ SE,( X ,  A )  @ SE,(X, B)  -+ SE,(X, A u B)+ 1 * *. 
(26.7; 26.8; 26.13) 

11. Show that the hypothesis that * E X is nondegenerate may be dropped 
from Exercise 28, Section 16 if Y is a WANE and X is paracompact. In 
particular if E is an Q-spectrum and En is connected and the homotopy type 
of a CW complex for each n, E"(X)  N- [ X ,  En]. (29.13) 



The Relation between Homotopy and 
Ordinary Homology 

In this section we shall make some general observations about ordinary 
homology and cohomology. In particular they vanish in negative dimensions 
when applied to reasonable spaces, and are related to the components in 
dimension 0. In  higher dimensions we prove the Hurewicz theorem which 
illuminates the close relation between homology and homotopy. 

Proposition 22.1 A"'(x; n) = o for m < 0. If (x, *) E N, E ~ , ( x ;  n) = o for 
m <O. 
Proof19 By 18.13, A-"(X; n) z [ ( X ,  *), (O"K(n, 0), *)] = 0 for m > 0 

since in this case QmK(n, 0) N *. Now for any CW complex L, f?,,,(L; n) = 0 
for m < 0. Thus SR,,,(X; n) = R,,,(S(X); n) = 0 for m < 0 by 21.7. fl 

Corollary 22.2 For any pair ( X ,  A )  E CG', H,(X, A ;  n) = 0 and'g 
H"(X, A ;  n) = 0 for m < 0. 

Proposition 22.3 H o ( X )  is a free abelian group whose rank is the number 
of arc components of X .  H o ( X )  E nu& where 2, z 2 and there is one copy 
for each component. 

Proof" Let K X be a resolution of X .  Then X and K have the same 
number of arc components, and if {Ku} are the arc components of K, K r  

l9 The proofs we offer for the cohomology statements depend on the fact that ClK(n, n) N 

K(n ,  n - I )  (see the remark after 18.13). Without reference to this fact the proofs are valid 
only when the spaces under consideration are of the homotopy type of a CW complex. 
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K,. By Exercise 3, Section 19 it is sufficient to show that Ho(K,) g 2. To do 
this we show that Ro(K,) = 0. In fact K, A K(Z,  n) is n-connected so this is 
immediate. If { X u }  are the components of X ,  X = u,, X .  By Exercise 3, Section 
19, H o ( X )  Z n Ho(X,). Thus it is sufficient to show that Ho(X,) z 2. But 

since Z 1: K(Z,  0). I 

K(Z, 1) and let h be the composition 

HO(X,) Z [ ( X , + ,  +), (2, O ) ]  = [ X u ,  Z ]  E z 

If PIZ > 0, define h :  nrn(X) -, Brn(X)  E Hrn(X)  as follows. Note that S' N 

E 
nrn(X)-nrn+l(XAsl) E nrn+l (XAK(Z ,  I ) ) +  Bm(X); 

h is a natural homomorphism, and is called the Hurewicz homomorphism. 

Theorem 22.4 (Hurewicz Theorem) If X is simply connected and well 
pointed, the following are equivalent: 

(a) ni (X)  = 0 for i < n; 
(b) fii(X) = 0 for i < n. 

Furthermore they imply that h:  n,(X) -+ B,(X)  is an (n -t 1)-isomorphism. 

Proof Since Xis well pointed and h is natural, we may assume that X is a 
CW complex by 21.7. Suppose ni(X)  = 0 for i < n. Then E:  n,(X) -, T , + ~ ( S X )  
is an (n  + 1)-isomorphism since n > 1. ( E  is a (2n - 1)-isomorphism by 
16.34.) We consider the composition yrn 

E (1  A h m h  

xr+rn(xA K(Z, m>> + n r + m +  ~ ( X A  K(Z, m> A S'> A 

nr+rn+l(XAK(Z, m + 1)). 
Since X A K ( Z ,  m) is (m + n - I)-connected, E is an isomorphism if r < 
m + 2 n - 1  a n d i s o n t o i f r = m + 2 n - l .  Wenowappealto 

Lemma 22.5 Let f :  X - t  QY and suppose f * :  S X  --+ Y is adjoint to f. 
Then the diagram 

(f*h 
n r  + 1 (SW - n r +  Y )  

commutes. I 
E: n,(K(Z, m)) + Z,+~(SK(Z, m)) is a (2m - 1)-isomorphism by 16.34. 

Hence by 22.5, (hrn)*: n,(SK(Z, m)) -+ n,(K(Z, m + 1)) is a (2m + 1)-isomor- 
phism. By Exercise 7, Section 16 we may assume that (K(2,  W I  + I), SK(2, m)) 
is a relative CW complex with cells in dimensions greater than 2m -t- 1. 
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Hence ( X A  K(2, rn + I) ,  X A  K(2,  m) A S') is a relative CW complex with cells 
in dimensions greater than n + 2rn + 1 .  It follows that (1 ~h,,,)* is an iso- 
morphism if r + rn + 1 < n  + 2rn+ 1 andisontoifr  f m  + 1 = n  + 2 m +  1. 
Thus yrn is an isomorphism if r < m + n and is onto if r = m + n ;  i.e., h is 
an ( n  + 1)-isomorphism. 

We have proven that under condition (a), h is an (n + I)-isomorphism. It 
follows immediately that (a) is equivalent to (b). 1 

Corollary 22.6 I f  X E CG and is simply connected, the conclusion of 22.4 

If A # a, define h :  rri(X, A )  + Hi(X, A )  to be the composition 

remains valid with f?,(X) replaced by S R i ( X ) .  1 

rri(X, A )  3 rr,(X/A, *) + A , ( X / A )  = H,(X, A).  

Proposition 22.7 (Relative Hurewicz Theorem) Suppose A i s  simply 

(a) n i ( X ,  A )  = 0 for i < n ;  
(b) H i ( X ,  A )  = 0 for i < n.  

connected, and q ( X ,  A )  = 0. Then the following are equivalent: 

Either implies that h :  rri(X, A )  + H , ( X ,  A )  is an isomorphism for i I n and 
onto if i = n + I .  

Proof By 21.7 we may assume that ( X ,  A )  is a CW pair. As in the case of 
22.4, we show that (a) implies the final conclusion. But by 16.30, rri(X, A )  
-@L rr,(X/A) is an ( n  + 1)-isomorphism. I 

Corollary 22.8 (Whitehead Theorem) Let f: X +  Y and suppose both 
X and Y are simply connected CW complexes and f*: H,,(X) + Hm( Y )  is an 
isomorphism. Then f is a homotopy equivalence. 

Proof Let Z be the mapping cylinder off. Then X c 2 and H,,(X) + H,,(Z) 
is an isomorphism. Consequently Hrn(Z, X )  = 0 for all rn. X is simply con- 
nected and rr,(2, X )  = 0 since we have an exact sequence in S* 

Xl(Z> + XICZ,  m + n,(X) 
in which both ends are 0. By 22.7, rrrn(2, X )  = 0 so i,: tr,(X) + rrm(Z) induces 
isomorphisms in homotopy. Consequently i is a homotopy equivalence. It 
follows that f = rri is a homotopy equivalence 

x , z  
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Proposition 22.9 There is a diagram 
a i. i* a 

nn + l ( X ,  A )  - nn(A) - n,(x) - nn(X, A )  7 ~ "  - 1 ( A )  - 
lh +: lh i* lh j ,  lh * l a  Ih 

Hn+,(x, A )  - Hn(A) Hn(X) - Hn(x, A )  - Hn - l (A)  - 
where all squares commute except the one involving 8, which commutes up 
to sign. 

Proof The square involving i, commutes by naturality, and the one in- 
volvingj, commutes because of the commutative diagram 

n,(W j *  b n,(X, A )  

To prove the other square commutes up to sign, we use the following: 

Lemma 22.10 There are generators c1 E H,(S") and p E H,,(B", S"-')  such 
that iff: S" + X ,  h ( { f } )  =f*(a) and if g :  (B", S"') + (X, A ) ,  / i({g}) = g*@). 

Proof Let c1 = / 1 ( 1 ~ , ~ )  and p = /?( l (Bfl ,sn-l) )  where 

l,,,: S"+Sn and l (Bn,Sn-l):  (B", Sn-l )+(B",  Sn-l) 

are the identity maps. The result follows from naturality by considering the 
diagrams 

f* n,(S") - n,(X) T"(B", S" - 1) n,( x, A )  

lh f* Ih Ih l h  
H"(S")-+ H,(X) ,  H"(B", S " - l ) A  H"(X,  A )  

c1 and p are generators by 22.4 and 22.7. 
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To finish the proof of 22.9, observe that df i  = +a. Hence ah({g}) = 
dg*(P)=g*(dP) = +f*(cc)  = + h ( { f } )  = +h(d{g})wheref= dg =gls,-l:S"-l 
+ A .  1 

Exercises 

1. A generator a E rc,(K(Z, n ) )  provides a map CL,: S" + K(Z,  n) .  Show that 
if the generators are chosen properly, this defines a map of spectra S +  
H and hence a homomorphism H :  x:(X) + An(X) (see Exercise 4, Section 
18). (Exercise 2) 

2. Prove that there is a commutative diagram (up to sign) 

' n,S(X) h JL(x) 

(see Exercise 1). 
3. Show that the diagram 

lh 
R,(x) ' Rn+l(sx) 

commutes up to sign. 

sequences 
4. Show that given * E A c B c X there is a commutative ladder of exact 

a . . .  -lT,(X, A)-rc,(X,B)-n,-l(B, A)-n , -1 (X ,  A )  - * * I  

l h  l h  l h  l h  f l  

, . . - H , ( X , A ) - H , , ( X ,  B)-H,-,(B, A ) - H , - , ( X ,  A ) - * * .  

in which all squares commute except the one involving a, and that commutes 
up to sign. 

5.* Show that if X i s  a simply connected CW complex and 
n = k  [? n # k ,  

i i , (X )  = 

then X N Sk.  
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6. Use Exercise 3, Section 20 to  show that the kernel of h :  x l ( X ,  *) -+ H , ( X )  
is the commutator subgroup for any space X .  
7.* Show that if X and Y are simply connected and f*: Hi(X) + Hi( Y )  is 

a k-isomorphism, f i s  a k-equivalence. 
8. L e t 8  S" -+ S"and define the degree offto be n iff&) = nx for x E HJS"). 

Prove the Brouwer degree theorem: f - g iff degf = deg g. 
9. Consider the construction 16.14 of a resolution (K, f) of a space Y. 

Su<pose Y is simply connected and 0 --+ B, -% Z ,  H,( Y )  + 0 is an 
arbitrary resolution of If,( Y )  as an abelian group in which Z ,  = Bo = 0 (i.e., 
B, and Z ,  are free and the sequence is exact). Show that the construction 
(K,  f )  can be done so that there is a commutative diagram of exact sequences 

B 

0 - Z,,, - H,(K", Km-l) 

H,,,-,(K"-') - H,(Krn) 
\ If* #/ 

1.. 
0- H,(Z) - H,(Z,  Km-l) 

and hence C, z Z ,  0 Bm-l, and a,(x, y )  = (cc,-,(y), 0) giving ker a, z 2, 
and Im a,,, s' B,.  

10. Show that if M(G, n) and Y(G, n )  are two Moore spaces for the group 
G and integer n, they have the same homotopy type. 

11. Prove a generalized Hurewicz theorem. Consider h,: n S ( X ;  C ) +  
R, (X;  C) (see Exercise 12, Section 18). Show that if X is (Y - 1)-connected, 
h, is an isomorphism and h,+l is an epimorphism. Letf: X - t  Y, and con- 
clude that f * :  A,(X; C) + A,( Y ;  C) is a k-isomorphism iff f*: x S ( X ;  C )  --f 
n:(Y; G )  is a k-isomorphism. (30.13) 

12. Suppose E is a properly convergent spectrum and X is an (n - 1)- 
connected well-pointed space. Show that ~ , , + , ( X A E ~ )  -P Er(X)  is an iso- 
morphism for r I n and is onto if r = n + 1. (See Exercise 14, Section 18.) 
(Exercise 20, Section 23; 27.5) 
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Multiplicative Structure 

In this section we shall show how pairings of spectra (maps p,,,, ,,: Em A Fn -+ 
Gm+, satisfying compatibility conditions), lead to pairings of the various 
homology and cohomology theories defined by the spectra. In particular, we 
establish that under certain conditions on the spectra, the cohomology forms 
a “graded ring,” and both the homology and cohomology are modules over 
the “coefficient ring,” B*(So). These conditions are satisfied for many spectra, 
including S and H R  where R is a ring. 

Proposition 23.1 Let c: [SY,  21 x [SX,  r] -+ [S2X,  21 be given by 
c(a, p) = CI 0 EP. c is bilinear (and hence defines a homomorphism 

c :  [SY, Z] 0 [SX,  r] -+ [SZX, Z] 

if the groups involved are abelian). 
Proof c ( g , f ) ( x ,  s, t )  = g ( f ( x ,  s), t ) .  Hence 

22 1 
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Proposition 23.2 c(Ecc 0 EP) = Ec(cc 0 p). 
Proof c(Ez 0 Ep) = Ecc 0 EzP = E(cc 0 EP) = Ec(cc @ p). 
We shall often deal with spaces of the form S " X A  S" Y, and will choose a 

fixed standard homeomorphism of this with S"+"(XA Y) .  This is defined 
by considering S" = Z"/aZ". Consequently there is a homeomorphism 
qn, m: S" A S" + Sn+" which is defined by 

I 

(Pn,m((Slr . .  3 9 ~ n > ,  . . ., t m > )  = ( ~ 1 ,  . . ., s n ,  tl ,  . . tm)* 

This is associative in  the sense that the diagram 

Proposition 23.3 C," and E," are homomorphisms. They satisfy the 

(a) 
(b) 

identities: 

C; 0 E$ = E$ 0 C,". 
E i  0 Ei: = E i I $ .  

(c) C; 0 C$# = z;::;. 
(d) E,'o = E. 
( e )  I fC=C$, ,C=(- l )m-kE.  
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Proof Xzo(f)(z, x, sl, . . . , s,) = ( z , f ( x ,  s l ,  . . . , s,,,)), hence Cq is a homo- 
morphism. Similarly Eg is a homomorphism. By (a)-(e), Z; =C" 0 C$ = 
(-  l)"("-k'E"Cg and Eg = E" 0 Eg; it follows that and E$ are homomor- 
phisms, once we establish (a)-(e). (a), (b), and (c) follow immediately from 
the associativity of p,,,,, and (d) is the definition of E. To prove (e) we need 
a lemma. 

If (T is a permutation of (1, . . . , n), c induces homeomorphisms T,: (Z", aI") -+ 
(In, 81") by TU(xl, . . . , x,,) = (.x~(~), . . . , x,(,,)) and 73,: sn 3 In /aIn -, Ifl/arn = s". 

Lemma 23.4 (T,)*(x) = sgn (T * x for x E nn(S"). 

Proof The transformation D -, (T,)* is a homomorphism from the 
symmetric group on n letters to Aut(Z) = { _+ I}. There are two such homomor- 
phisms, sgn and 1 ,  since every permutation is a product of transpositions. 

define $: Z2 -+ I' by letting $(u, u) be the point whose distance from the 
Now 7=((:,)2, = E "-2  T(l, 7 2 )  2 ) ,  so it is sufficient to show that (7'{f)29* = -1. We 

Figure 23.1 

diagonal varies from the extremes linearly, as u varies from 0 to 1 and whose 
projection onto the diagonal is (u, u);  see Fig. 23.1. Explicitly, 

UU, 2u(l - u)),  O I U < +  
4 I u < 1. *cu, 0) = ((z (1 - 2(1 - u)(l - u), 1 - 2(1 - u)u), 

is 1-1, onto, and continuous and $(aZ2) t dZ2. Now $-1T(1,2)$(u, u) = 
(u, 1 - u),  so {$-lT'(l, 2,$} = { - 1) E nn,(Z2, aZ2). Hence (T(l, 2))* = - 1 and 
this implies (T(l, 2))* = - 1. I 

To finish the proof of 23.3, we observe that 

= ( l Y A 7 ' ( 1  ,..., k + l ) )  o ( f A z l ) o ( l X A T ( l  ,..., m + l ) )  
(1sq A (- l)kll) 0 ( f A  ZI) 0 ( 1 p . t ~  A (- 1)"11) 

N (fAZ1) 0 (1p71xA(-1)m-kZl)  . = (-  l)"-kE(j). I 
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We now define a general composition pairing 
c m , k :  [sm(VA w), X ]  @ [Sny, Sk(WAZ)]  + [S"+m(VA Y ) ,  S k ( X A Z ) ]  

by c m , k  = C 0 (El  @ C7-l).  

Definition 23.6 Given spectra E = { E n ,  en}, F = {F,, , f n }  and G = {G,, , g,,}, 
a pairing from E and F to G is a collection of maps 

such that the diagrams 
CLm,n: Em AFn + G n + m  

2o One is tempted to call the value of this bifunctor the biology groups of the pair of 
spaces. 
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commute up to homotopy (with the indicated sign). A spectrum E is called 
a ring spectrum if there is a pairing from E and E to E and a mapping 
u:  8-t E such that the diagrams 

1 A P m  k Em A En A Ek - Em A En + k  

Pm,  n A 1 P m , n + k  

+ P m + n . k  + 
Ek--3 E m + n + k  

1 A Un Em A S" - Em A En 

Em+n 

homotopy commute, with the indicated sign (after suspension), where em" = 
- * * S"-'em. If E is a ring spectrum,a spectrum Fis  called a module spec- 

trum over E if there is a pairing from F and E to F such that the diagrams 

homotopy commute. 

Proposition 23.7 _S is a ring spectrum and every spectrum E is a module 
over _S. 

Proof Let pm, = qm, n :  Sm AS" --f S'"'", and u, = 1 ; since em = qm, 1, emn = 
qm, ". All diagrams not involving signs commute pointwise. Those involving 
signs follow from 23.4. For any spectrum E,  define j,, = em": Em AS" + 

Em+,, . Then the diagrams required to homotopy commute do so pointwise. I 
We now establish a pairing from Hn and Hp to H n  0 p .  We consider 
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Proposition 23.8 I f  X is an (n - 1)-connected well-pointed compactly 
generated space and m, n > 1 ,  

c: n,(M(n, m)) n,(x) + Zn+m(M(n,  m) A X )  
is an isomorphism. 

Proof Since X is well pointed and C is natural, we may assume X is a 
CW complex with no cells in dimensions between 0 and n by 21.8. Consider 
the commutative diagram 
~ , ( M ( R ,  m ) )  8 n,(X) A?!-, n,(M(F, m)) @ n,(X) - n,(M(n, m))  8 R , ( x )  - 0 
the bottom row is exact by Exercises 3 and 15, Section 16, since 

M(n,  m) A X N M(F, m) A X ufAlC*(M(R, m) A X } .  

By 16.34 and Exercise 8, Section 16, C1 and C2 are isomorphisms. Further- 
more n,+,-,(M(R, m) A A') = 0. We wish to conclude that C is an isomor- 
phism by the 5-lemma. Now 

0 -+ nrn(M(R, m))  -+ nrn(M(F, m)) -+ n,(M(n, m)) --f 0 

is exact so the result follows from: 

P Lemma 23.9 I f  A 5 B -  C -+ 0 is exact in A, so is 

This fact is often stated by saying that the functor OR D is right exact. It is 
a standard result of homological algebra. A proof will be found in the 
Appendix. I 

lc lc 



23. Multiplicative Structure 227 

We will now choose fixed isomorphisms 

inductively for n 2 1 in  such a way that the diagrams 

commute. 

is the identity (ie., a,+,(a 0 b)  = (p,,,, ,,)*(C(a,(a) Q an@))), 

Proof K(n, m ) ~ K ( p ,  n )  is (n + m - ])-connected by construction and 
hence (K(n,  m) A K(p, n))Lm+"] = K(n O p ,  m + n) by 23.10. Following 
in+,,,: K(n, m ) ~ K ( p ,  n)-)K(rrOp, m + n )  by f,: K(nOp,  m + n ) +  
K(7c 0 p ,  rn + n) where cp is an appropriate automorphism of n Q p ,  we con- 
struct ,urn.". I 

Lemma 23.12 If X is an (n - 1)-connected CW complex, a class {f} E 

[ X ,  K(n, n)] is completely determined by f*: n,(X) -+ 71. 

Proof We assume without loss of generality that X has no cells in dimen- 
sion < n except a 0-cell. Given fi, f2: X -+ K(n, n) with (A)* = cfi)*, we 
certainly have I x,, - f 2  I x" since X" = v S,". 16.3 now implies that fi - f2 
when applied to the diagram 

x x 0 u x " x I u x x  1 - K(n ,n)  I 



228 23. Multiplicative Structure 

We use this lemma to prove: 

Proposition 23.13 The following diagrams homotopy commute 

(-1Y 
K(n, m) A S' A K(p ,  n) 

for homomorphisms cp: n + n' and cp': p 3 p ' .  

K(n, m) A s" 2 K(n, m) A K ( z ,  n) 

where en: S" + K(2, n) is such that {en} = ~"(1) .  

Proof In each case we will apply 23.12. To evaluate the various homo- 
morphisms we will use some formulas, the proof of which is easy. 

(a) If  z1 E nl(S1) is the class of the identity map, C(z Ox) = Xx and 

(b) C(C(x 6 y )  6 4 = C(x 0 C(.Y 0 z)). 

C(x 6 1 )  = EX. 

From (a) and (b) we deduce 

(c) EC(x 6 y )  = C(X 6 Ey), C(EX 6 y )  = C(X 0 w. 
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Corollary 23.14 If R is a commutative ring, HR is a ring spectrum. If M 

Proof Let c: R 6 R -+ R be the multiplication. Define 

A,. n :  K(R, m) A W ,  n) -+ K(R, m + n) 

is a right R-module, HM is an HR-module. 
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to be the composite 

K(R, m) A K(R, n)- K(R 0 R, m + n 1 - 5  K(R, m + n). 
Then pm,,, is a pairing. Let e: Z -, R be defined by e(1) = 1. Define 
u,,: S" --t K(R, n) as the composite 

f e  
S"-% K(Z, n)- K(R, n). 

All diagrams of 23.6 follow immediately from 23.13. For example 

K( R,  n7) A K( R ,  n) A K( R,  k )  K( R @ R,  rn + n) A K( R ,  k )  K(  R ,  rn + n) A K( R ,  k )  

P r n + n . k  I P m  t n ,  k I I A P n ,  k I Lm , ? + A  K(R,  n7)A K ( R @  R,  tn + k)- K ( R @  R @  R ,  ni + I I  + k ) / " -  K ( R @  R ,  m + n + k )  

I, 1 1 
K(R,  m) A K(R,  n + k )  % K( R @ R,  ni + n + k )  - K ( R ,  111 + n + k )  

homotopy commutes. The case of a right R-module is similar, using the 
homomorphism M @ R --f M .  I 

Theorem 23.15 A pairing from E and F to C induces a homomorphism 

M :  Es(VA w, x)@FT,(Y, wAz)-+ Cs+t(VA Y, X A Z )  

which is natural" in V, Y,  X, W, and Z .  

Proof Let am," be the composite 

[ss'm(vA w), XAE,] @ [st+',, W A Z A F , , ]  

5 [ S s + t + m + n  ( V A  Y ) ,  X A E m A z A F , ]  

A [ S s + t + m + n  (VA Y) ,  x ~ z ~ G m + n I  

where f = (1 A pm, ,,) 0 (1 A TA 1): X A  Em A Z A  F,, -, XAZ A Gm+,, . We have 
a diagram which commutes with the indicated signs (see page 231). 

commutes. 
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Let M,,, = [Ssfm( V A W ) ,  X A Em], N,  = [St+' Y, WA Z A Fn] and PP = 
[F+'+P(VA Y), X A Z A  C,]. The diagram on page 231 then reduces, to 

M,,, Q N,, ,  -?!~2!+ P pan OLm,n id:+: 
Mrn 0 Nn-Pm+n 

L",@l  ,arn+" I U r n + l . "  I 
Mm+1 ONn-Pm+n+l 

Let M,, , = (-  l)fma,,  ,, , This induces a homomorphism 

M :  lhJ M ,  0 lhJ N,  -+ P,  +,, 
by 

Lemma 23.16 Let M u ,  N u ,  and P ,  be direct systems in A, directed over 
Zf and suppose we have homomorphisms 

Mu, 0: Mu O R  Nu - + P u + v  

such that the diagrams 
18.2, 

M , + ~  o N ,  M ,  oR N,, - M ,  oR N , + ~  

Pu+ ,+ 1 t--- p,+ v - p,+ v +  1 

commute. Then there is an induced map 

M :  (lhJ Mu) 0 (@ Nu) --* @ P ,  

P 
X 

Proof Define M(x 0 y )  as follows. If x is represented by u E Mu and y by 
E N u ,  let M(x @ y )  = {Mu, ,,(a 0 8)). To see that this is well defined, suppose 
and y are also represented by u' and p' with u' E Mu. and p' E N u . .  Then 

Ar(u) = Ar'(a') and P(p) = As'(j?') where A" = A - . . A .  Now x and y are also 
represented by A"(a) and As@) .  Furthermore 

n - 
Mu+r,u+s(il'(a) O As@)) = A r t S M u ,  v(. O B). 

Mu.+r., ,*+,,(nl'(a) 0 AS'@')) = A.r'+S'M,.,,.(a' 0 P') .  
Similarly, 

Hence {M,,,,(a 0 0)) = {M,.,,.(a' OP')}. Since M is bilinear, it defines a 
homomorphism on the tensor product. I I 
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Definition 23.17 A pairing from E and F to G defines four natural 
homomorphisms 

(a) A : $(A) o F,(B) -+ G,+ t(A A B)  
(b) K : ,??(A) F'(I3) -+ &+'(A A B )  

(d) \: E-Y.4) O Rt(A A B) + Gs+ t(B) 
(C) /: ,!?-'((A A B )  @F*,(B) + &"-'(A) 

by applying 23.15 with: 

(a) V =  W =  Y = S o , X = A , Z = B  
(b) X =  W = Z = S o ,  V = A ,  Y = B  
(c) X =  Y = Z = S o ,  V = A ,  W = B  
(d) V = X =  Y = S o ,  W = A , Z = B .  

The images of an element x 0 y are denoted x A y ,  x ii y ,  x/y and x\y res- 
pectively. The first two are called external products in homology and co- 
homology and the last two are called slant products. 

As in the case of homology and cohomology, a map of spectra 

induces a homomorphism between the bifunctors 

G1: &(A, B)  -+ EJA,  B)  
which is natural in A and B (see Exercise 4, Section 18). 

Theorem 23.18 Suppose there are pairings and maps of spectra which 
make the diagram 

Em'~Fn'-GA+k 

homotopy commute. Then the diagram 
M 

$<VA W, x)oE',(Y,  W A Z ) - G ~ + ' ( V A  Y, X A Z )  

1a.P M' I? 
$ ( V A  W, x)oF",'(Y, WA.Z)-G,+'(VA Y, X A Z )  

commutes. 

Proof This follows immediately by substituting in the various defini- 
tions. I 
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Theorem 23.19 Suppose there is a pairing from E and E to F such that the 
diagram 

E m  A En 

homotopy commutes with the indicated sign (after suspension). This happens, 
for example, if E = I; is a ring spectrum. Then 

&(A, B) 0 &C, 0) - Fs+ t (A  A C, B A D)  
M 

commutes with the indicated signs. In particular 

x K y  = (- l)"'T*(y Tx) and x r \y  = (- l)"'T,(yr\ x) 

Proof If h :  S " + s A ~ B ~ E , ,  and g: S"+'C+ D A E , ,  then ( - l ) u t  
M({h} @(g}) is represented by 

f 
s u + s +  u + I ( A  A c) E (SU+'A) A ( ~ " " ~ ) ~ ( ~ A ~ , ) A ( ~ A E U ) -  

B A D A F, + 

while (- l)""M({g}@ {h})  is represented by 

S" t s t v + t ( A  A C )  -= (P+~c) A ( s u + s A ) ~ ~ ~ -  (D A EJ A (B  A E,J- 
D A B A  F,+,, 

These differ by the sign (- 1)" and (- l)('+s)(u+') (which comes from the 
homeomorphism SU+' A S'+' - = S'+s+'+u E St+' A SU+'). Together with the 
signs ( -  ly and (- 1)"' these combine to give ( -  1)". 

f 

[ 

Theorem 23.20 Suppose there are pairings so that the diagram 

Pm + n, k"' 
J J 

Em A 'n t k - Jm +n + k  

homotopy commutes. This happens, for example, if E = F = G is a ring 
spectrum. 
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commutes. 

Proof This follows immediately by substituting the definitions of the 
various homomorphisms, as in  23.19. The combined sign contribution of 
either composite is (- l )US+Ut+"t  * I  

Diagrams of the above form occur in 23.7 and 23.13. 

Corollary 23.21 
formulas hold :22  

(a) ( X A ~ ) A Z  = X A ( Y A Z ) E J * ( X A  Y A  Z),  
(b) ( x i i y ) i i z = x i i ( y T z ) ~ J * ( X ~  Y A Z ) ,  

(d) x ii (v /z)  = ( x  X v) / z  E J * ( X  A Y ) ,  

Suppose there are pairings as in  23.20; then the following 

(C) X\(U A 2 )  = (X\U)\ 2 E J*( Y A z), 

with u E F J X A  Y )  and u E F*( Y A Z ) ,  and the other variables belong to 
evident groups. 

Proof Apply 23.20 with 
(a) S = T =  v =  W =  y = S o  
(b) U = T = X = W = Z = S O  

(d) T = U = X = Y = Z = S O .  I 
(c) s=u= v =  w =  y = s o  

Definition 23.22 A graded ring is a graded abelian group R = {R,} 
together with an associative multiplication 

Rn 8 Rk + & + k .  

It will be called graded commutative if x . y = (- l)"ky . x. R need not have a 
unit. M = {M,,} is a module over R if there is an associative action Mn 8 R, + 
M,,+k. If R has a unit, it is required to act as a unit on M .  

Theorem 23.23 If E is a ring spectrum, ,!?*(A') is a graded commutative 
ring with unit. 1f.f: X --+ Y,  f* : I?*( Y )  4 I?*(X) is a ring homomorphism. If 

2 2  A comprehensive list of formulas of the type given here, in 23.35, and in Exercises 
6, 7, 10, 13, and 14 is given in Chapter 9 of [4], to which we are indebted. 
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F is a module spectrum over E, P * ( X )  is a module over E * ( X )  such that the 
diagram 

P * ( X )  0 E * ( X ) -  F * ( X )  

E*( Y) 0 E*( Y )  - F*( Y )  
If* f*@f* I 

commutes. 

Proof Let A :  X +  X A  X be the diagonal map. We then have compositions 

p ( X )  @ E k ( x ) A  J!?+~(XA X ) z  J!?+k(X) 

F n ( X ) @ E k ( X ) A P + k ( X A  X ) d l ' p + k ( X ) ;  

i.e., x . y = A*(x K y ) .  

from 23.19 and 23.21. I 

or simply xy. 

The proof of associativity and graded commutativity follows immediately 

This multiplication is called the cup product and is written either x u y 

Theorem23.24 If E is a ring spectrum, E*(So) and E,(So) are graded 
commutative rings with unit and E*(X) and E * ( X )  are modules over ,!?*(So) 
and &(So) in  a natural way. 

Proof {u,,} E [s", En] determines an element u E Eo(So). I f f :  Sk-" -+ Ek 
represents x E &'"'So), x . u is represented by 

Pk,,,(f A U,,): Sk-" A s "  -+ Ek A En -+ Ek+,, . 
However, we have a homotopy commutative diagram 

and 0 f A  1 & + k + l  0 * ' *  0 &({f}) E [Sk-"+", En+k]. 
Since Ek(So) = ,!?-,(So)), E*(So) is a ring with unit. Alternatively, the 

multiplications can be defined by 

: Ek(so) 0 ,!?(so) -+ Ekkn(S0 A So) = Ek+"(s0) 
r\ : Ek(So) @$(so) 4 Ek+n(So A So) = Ek++.(so), 

since A: So -+ So A So is a homeomorphism. 
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The module structure is given by the maps 

Em(X)  @ J!?(S') -+ Em+,,(XA so) = Em+"(X) 
E m C X )  o EnLS') + Em+n(XAs' )  = E m + n ( X ) *  

Verification of the various diagrams is an easy exercise. I 
Corollary 23.25 If R is a commutative ring, R'(x; R) and t l k ( X ;  R) are 

R-modules for each k. I 

Proposition 23.26 Suppose there is a pairing from E and F to G. Let 1 X (  

be the dimension of x. Then: 

(a) (1 AT),((OX)A~) = a(xr\y) = (-l)lxlxr\(ay) E G,(S(XA Y)). 
(b) (1 A T)*((ax) ~ y )  5 a(x T y )  = (- l)lxlx iT(ay) E C*(S(XA Y)). 
(c, (- l)'"'ax/ay = x/y E G * ( X ) .  
(d) (- l)lxlax\(l A T),  ay = x\y E G,( Y). 

Proof This is most easily seen by direct substitution. If x is represented by 
IX: Sm+"+ XAE,, ,  and y by p :  S"+'-+ YAF,, then (-l)"'a(xr\y) is repre- 
sented by 

This also represents (- l)"'(ax)~y, since a: &(X)  -+ E,(S' A X )  and 
o:G,(XA Y )  4 G,(S1 A XA Y )  are given by smashing on the left with S'. 
However, (- l ) m ( t + ' ) ~  

f S' A X A  E, A Y A F, - S' A x A Y A Gm+,  . Sl+s+m+t+n h a h a +  

(ay) is represented by 
01 A 1 A S  f 

Ss+m+'+r+n - X A Em A S' A Y A F,, - X A S' A Y A Gm+,, . 
Thus (- l)m(""xr\(oy) differs from (- l)"'a(xr\y) by a permutation of the 
coordinates of Ss+m+'+'+n of degree (- l)s+m. Similar computationsprove the 
other formulas. 1 

The above compositions in reduced theory define corresponding compo- 
sitions in unreduced theory. 

Definition 23.27 A pairing from E and F to G defines four natural 
transformations 

~ : E s ( X , A ) ~ F z ( Y , B ) + C S , , ( X x  Y , X X B U A  x Y )  
: E"(X, A )  @ F'( Y, B) + (?+'(A' x Y, X x B u A x Y )  

/: E-"X x Y, X x B u A x Y) @ F,( Y, B )  -+ G-"-'(X, A )  
\: E-'(X, A )  @ F,(X x Y, X x B u A x Y )  -+ G,+,( Y, B)  
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since there is a natural homeomorphism in CG: 

(Xu CA) A (  Y u CB) = X x Y u C(X x B u A x Y),  

Proposition 23.28 If E is a ring spectrum, 

x 5 y = (- I)"'r*y x x, 
(x X y )  x z = x  x ( y  x z ) ,  

x\(u x z )  = (x\u) x 2, 

x x y = (- I)"'T*y 2 x. 

(x x y )  x z = x  x ( y  x z). 

x x (v /z)  = (x x v)/z.  

Proof Apply 23.19 and 23.21, substituting $ ( X  u CA) for ,!?,(A", A),  etc. I 

Proposition 23.29 I f  E is a ring spectrum, there is a natural multiplication 

Es(X,  A )  @ E f ( X ,  B )  -+ E'+'(X, A u B )  

(called the cup product) which is associative and graded commutative. Hence 
if A = B, E*(X,  A )  is a graded commutative ring. If A = B = 0, this ring has 
a unit. 

Proof As before we use A:  (X, A v B ) + ( X  x X, X x B u A x X )  and 
define x u y = A*(x 2 y ) .  Since E o ( P )  = Eo(So), where P is a one-point space, 
E*(P)  is a ring with unit. Define 1 E E o ( X )  by 1 = (pX)*(l) where px: X -+ P .  
Consideration of the commutative diagram 

E k ( X )  @ EO(X) - E k ( X  x X )  A P ( X )  

I @ (Px)' I 
E'(X) @ EO(P) - E k ( X  x P) ' 

proves that 1 is a unit. I 

Corollary 23.30 If F is a module spectrum over E, F*(X,  A )  is a module 
over E*(X, A )  in  a natural way. I 

. Corollary 23.31 If E is a ring spectrum, E*(X, A )  is a module over E*(P)  
and E,(X, A )  is a module over E,(P). I 

Corollary 23.32 If R is a commutative ring H k ( X ,  A ;  R) and H,(X, A ;  R) 
are R-modules. I 

One can also define X in terms of u. 
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Proposition 23.33 Let n1 : X x Y -+ X and n 2 :  X x Y -+ Y be the pro- 
jections. Let 01 E E * ( X )  and p E E*( Y ) .  Then 

O1 x p = nl*(CI) u n2*(B). 
Proof 

~ , * ( G I )  u n2*(p) = A*(n,*(01) X n2*(P)) = A * ( q  x n 2 ) * ( ~  X p) = CI X p 
Since (nl x n2)  * A = 1. I 

Corollary 23.34 H*(S" x Sm) is freely generated by elements 1, e n ,  e m ,  
and e, LJ e m .  

Proof By Exercise 10, Section 20, H*(S" x S"') is free and has generators 
1, e n ,  em,  and en+m of dimensions 0, n, m, and n + m respectively. We now 
claim en u em * en+ ,  . Let GI E H"(S") and p E Hm(Sm) be generators. Then 
e, = nl*(a) and em = n2*(p). Thus en u em = CL X 8. Let p :  S" x S" -+ Sn+m 
be the projection. Clearly en+" := k p * ( y )  = +01 2 /3 where y E H"+m(S"+m) is 
a generator. I 

This example illustrates the geometric meaning of the cup product. The 
classes en and em represent the n- and m-cells in S" x S". Their cup product 
represents the Cartesian product of the cells-the (n + m)-cell in S" x S". 

Theorem 23.35 Let ( X ,  A) ,  ( Y ,  B )  E CS2 and C c A .  Let 

e : ( A x  Y , A x B u C x  Y ) - + ( A x  Y u X x B , C x  Y u X x B )  
e , : ( X x  B , A  x B ) - + ( A  x Y u  X x  B , A  x Y )  
e 2 :  ( A  x Y, A x B) - ( A  x Y u X x B, X x B)  

be the excision maps. Then if x E E,,(X, A )  and y E Fq( Y, B),  

(a) e,&x I I  Y )  = a(x x v). 
(b) ( - 1)Pe,,(x x ay) = a(x x v). 

If GI E Ep(A), p E Fq( Y,  B) ,  y E Ep(X,  A) ,  and E E Fq(B), 

(c) (601) X p = 6(e2*)-'(a 2 b) if A is closed or B = a. 
(d) (- 1)"y j? (68) = 6(e,*)-'(y 2 E )  if B is closed or A = a. 

If UEEP(AX Y u X x B ,  X x B ) ,  VEFq(Y, B), WEF,(XX Y, A x  Y u  
X x B),  and z E Ep(A, C) ,  

(e) 6u/v = 6(e2*u/v). 

(8) (- l)"z\(e*)-'(dw) = (6z/w)  if A and B are open or B = a. 
(h) (- l)py\(el*)-l(dw) = a(y\w) if A and B are open or A = 0. 

(f) = el *u/av. 
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Each of these formulas may be rewritten as a commutative diagram. For 
example, (a) may be expressed by 

E,(X, A )  0 Fq( Y,  B)-Z!+ E,-i(A) 0 f'& Y, B )  

I? - Gp+q-l(A x Y , A  x B)  
3 l x  a G , + , ( X x B , A  x Y ~ X X B ) - G , + , - ~ ( A  x Y u X x B , X x B )  

Proof The formulas follow directly from the definitions. For example, to 
prove (a) we expand the above diagram as follows. Let j :  X u CA --$ S(A+)  
be the natural map identifying X with the vertex of the cone. Then 
8 :  EJX, A )  4 E,-,(A) is given by the composition 

Observe that A +  A (  Y u CB) = A x Y u C(A x B). Consider the diagram 

&&Xu CA)@F,(Yu CE)%E,,(S(A+))@F,(Yu C B ) Z E , - r ( A C )  OF,(Yu CB) 

I. I 5  I: 
I I I 

G,+,((x~cA)A(Yu C B ) ) - G ~ + ~ ( S ( A  x yucu x BJ));G,,+~-~(A x YUC(A X B ) )  

Gp+&X X y U c(A X Y U X X B))-  G,+,(S(A X Y u X X B u C(X X B)))& G,,+q-i(A x Y u X x B u C(X x B))  

which commutes by the naturality of A and 6, and 23.26(a). 
Observe that the extra conditions in (c), (d), (g), and (h) imply that the 

inverted homomorphisms are isomorphisms. In (g) and (h) one need only 
assume that A and B are deformation retracts of neighborhoods in X and Y 
to draw the same conclusion. I 

Appendix 

Proof of 23.9 Clearly p 0 1 is onto. Let L = B OR D/Im(a 63 1). Then 
A OR D- B OR D Y ' L  is exact. We must prove that C QR D E L. One 
can constructf: L --f C @ R  D such that f y  = p 0 1 since ( p  Q l)(a 0 1) = 0. TO 
construct a map g :  C OR D -+ L it suffices to find a bilinear map a: C x D --* L 
such that g(c, rd) = g(cr, d ) .  For each c E C, choose b with P(b) = c. b is well 
defined mod ct(A) and hence b 0 d is well defined mod (a 0 1)(A g R  D). 
Hence y(b 0 d )  is well defined. Let g(c ,d)  = y(b 0 d ) .  Clearly g is bilinear and 
g(c, rd) = g(cr, d) .  Thus g defines g. Now by definition, g 0 (J 0 1) = y. 
Consequently gfy = y and fg(p@ 1) = p 0 1. Since both y and p 0  1 are 
onto gf = 1 and f g  = 1 .  Thus L E C BR D and the sequence is exact. 

a 0  1 

I 
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B Even if we have a short exact sequence 0 -, A A B -, C + 0 it does not 
follow that 0 -+ A BR D -+ B OR D is exact, i.e., a @ 1 is not a monomorphism. 
This is seen by an example with R = 2; the short exact sequence is 
O - , Z A Z -  2, -0 where d n )  = 2n and j is reduction modulo 2. 
If D = Z z ,  we have that Z Q Z ,  E 2, is generated by 1 0  1 and 
( a@1) (1@1)=2@1 = 1 @ 2 = 0 .  Thusa@1 = O .  

B 

Exercises 

1. Suppose X and Yare well pointed. Show that if X is (m - 1)-connected 
and Y is (n - ])-connected with n, m > 1, 

c: nm(X) @ nn(y) + n,+,(xA y )  

is an isomorphism. (Exercise 20) 
2. Give the omitted details for the proof of 23.13. 
3. Give the omitted details for the proof of 23.14. 
4. Prove the naturality assertions in 23.15. 
5. Show that there are natural homomorphisms 

Ex: J!?~(Y ,Z) -+&(XA Y ,  X A Z ) ,  Ex: E n ( Y , Z ) - , & ( Y ~ X , Z ~ X )  

such that EST = ET E,, EST = Zs& and such that the diagrams 

commute. 

formulas : 
6. Using Exercise 5 above and 23.20 or by direct substitution, prove the 
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7. Given a pairing from E and F to G, one can define a homomorphism 

n: Es(X,  A )  @ F,(X,  A LJ B )  -+ G,-,(X, B )  

by x n y = x\A,(y). x n y is called the cap product of x and y .  Show that 
the cap product is natural in the sense that iff: X - ,  Y is a map such that 
f(A) c A' andf(B) c B' 

for x E F,(X, A LJ B )  and y E E"( Y, A'). One can also define a natural homo- 
morphism 

( 9 ): E"(X, A )  0 E,(X, A )  -+ &(P) 

by (x, y )  = x\y (23.27 with Y = P and B = a). (x, y )  is called the Kron- 
ecker product. Show that if E = F = G is a ring spectrum 

x n ( y  n z )  = (x n yj n z, (x, y n z )  = (x u y ,  z).  

(24.9 Section 26) 

8. Write the details down for the last four formulas of 23.26. 

9. Give complete proofs for the last seven formulas in 23.35. 

10. Keeping the notation of 23.35, prove the formula 

i*(pI*)-1((6cI) x E )  = -j*(e,*)-'(cI x (a&)), 
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where 
i : ( A x  Y u X x B , @ ) + ( A x  Y u X x B , A x  Y )  

j : ( A x  Y u X x B , @ ) + ( A x  Y u X x B , X x B )  
and 

are inclusions, and A and B are closed. 

If u E Ep(X x Y, A x B), prove that 

~ ( ( f * u ) / v )  = (- l>p+1(s*~>/4Y 
where 

and 
f: ( A  x Y ,  A x B) + ( X  x I', A x B) 

g: ( X  x B, A x B)  + ( X  x Y, A x B)  

are inclusions. 
11. Use 23.4 to determine the sign in 18.6. 
12. Let X be a homotopy associative, homotopy commutative H-space. 

13. Suppose X 2 A 3 C, Y 3 B 3 D, with A,  B, C, and D open. Using 
Show that _X + is a ring spectrum. 

(g), (h) and Exercise 5, Section 21 with 

Z = A X Y U X X B ,  U = C X Y U X X B ,  V = A X Y U X X D  

and 
W = C X  Y u X X D  

prove that the diagram 

R'(A,C)@R,,(A x Y u X x E , C x  Y u X x  D )  

R i ( A , C ) @ R X , ( A x  Y u X x B , C x  Y u X x B )  R ' + ' ( X , A ) @ R , ( A x  Y u X X E , A X  Y u X X D )  

Ri(A, C)@R,(A x Y, C x Y u A  x E )  ( - I )  R'+' (X,  A)@R,(X x B, A x E u X  x D )  

commutes with a sign - 1. (Exercise 14) 
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2 (-1) I 
Ri(A, C) 0 R,(A, ( A  n B)  u C )  

14. Suppose X = A u B, C c A ,  D c B, and A ,  B, C, and D are open. 
Using Exercises 7, 13, and the naturality of \, show that there is a commutative 
diagram 

Ri(A, C )  0 R,(X, 0) R'+'(X, A )  0 R,,(X, A u 0) 

15. Use 

E"(SX, C1 X )  0 E"(SX, Cz X )  - E'"+"(SX, S X )  

to show that all cup products in  E*(SX)  are 0. 
16. Let x E E*(A) and y E F*(A A B A S'). Show that x\y = o(ox\(l A T),y). 

Let u E E*(A A B)  and u E F*(B). Show that (I A T)*a(u)/u = o(u/u). 
17. Show that (x 2 y )  u (u 2 v) = (-- l)lyll"l(x u u) X ( y  u v) .  (27.15; 

27.16) 
18. Let p :  R -+ R' be a ring homomorphism. Show that cp:  H * ( X ;  R) + 

H*(X;  R') is a ring homomorphism (see Exercise 11, Section 18). (28.18) 
19. Let X consist of n points with the discrete topology. Calculate the ring 

structure in H o ( X ) .  
20. Suppose X is well pointed and (n  - 1)-connected and E is a properly 

convergent spectrum. Show that R,,(X) E n,(X) 0 E,(Sn). (Use Exercise 12, 
Section 22 and Exercise 1, above.) 
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In this section we shall develop some relationships between chain and 
cochain complexes for spaces with various coefficients, and between the 
chain and cochain complexes of a product of relative CW complexes with 
the original chain and cochain complexes. We will use this to develop the 
Kiinneth theorem and universal coefficient theorems in the next section. 

Exercise 10, Section 20 suggests that H,(X x Y )  bears some relation to 
Oi+ j = n  H i ( X )  0 Hj( Y ) .  The pairing of Hrr and H p  to Hn 0 p provides us 
with transformations 

x :  @ H i ( x , A ; . ) O H j ( Y , B ; p )  - H , ( X x  Y , X X B U A  x Y ; . @ p )  

@ H’(X, A ;  .) 0 H’(Y, B ; p ) +  H”(X x Y, x x B u A x Y ;  n @ p ) .  
i+ j = n  

x : 

For simplicity, we define the tensor product of two graded groups G, and 
i +  j = n  

G,’ by: 

(G 0 GI),, = @ Gi 0 Gj’.  
i + j = n  

With this notation we have 

3 : H*(X,  A ;  n) 0 H*( Y ,  B ;  p)  -+ H*(X  x Y, x x B u A x Y ;  . 0 p )  

: H*(X,  A ; .) 0 H*( Y, B ;  p )  + H*(X x Y,  x x B u A x Y ;  71 0 p )  

as homomorphisms of graded groups. Similarly, one has such maps in 
reduced theory: 

A : fi*(X; 7T) 0 R*( Y ;  p)  -+ 8 * ( X A  Y ;  7C 0 p)  

7 i  : 8 * ( X ;  71) 0 8*( Y ;  p)  -+ R*(xA Y ;  7L 0 p).  

245 
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Lemma 24.1 I f  X and Y are one-point unions of spheres, A is an iso- 
morphism. If  X and Y are finite one-point unions of spheres, T is an iso- 
morphism as well. 

Proof If  both X and Yare spheres, both of these results reduce to 23.10 
since the maps 

z m  
~ ~ ( ~ ( 7 1 ,  n))- nn+,(sm A ~ ( n ,  n)) + Am(sm; 
7cn(K(Z, n)) + A m ( S m ;  7c)  

are isomorphisms. Suppose now that X = vae A S:. Then we have a com- 
mutative diagram 

a E A  a E A  

with the vertical maps isomorphisms by 18.17 and Exercise 12, Section 15. 
If Y is a sphere, the bottom map is an isomorphism by the above argument and 
Exercise 13, Section 15; hence the top map is also an isomorphism. Similarly, 
if X is a sphere and Y is a wedge of spheres, r\ is an isomorphism. Thus 
applying the diagram again we see that if X and Y are wedges of spheres, 
- A is an isomorphism. In the case of cohomology we consider the diagram 

- 
fl*(x; 7C) @ n*( Y; p )  h R*(xA Y; 71 0 p )  

I (n a e A  fi*(st;Z))&fl*(Y;p)- a E A  n f i * ( S : A y ; n @ p )  

where the vertical maps isomorphisms by 18.16. 
This is sufficient to prove the second part of 24.1 similarly to the first part. 

The loss in  generality is due to  the fact that in general we do not have (na A A,) @ B =na A(Aa @ B). (See Exercise 1 .) 

We apply this result to the chain and cochain complexes of relative CW 
complexes. 

I 

Lemma 24.2 Let (A', A )  and (Y, B)  be relative CW complexes. 

Then ( X  x Y ,  X x B u  A x Y) is a relative CW complex with X x Y = 
U m + , , = k X r n x  Y " u X x B u A x  Y,and 

-k 

k- k - 1  v (Xmlxm-' A yn/ p-') E x X Y /x X Y , 
m + n = k  
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proof X m / x m  - 1 A p/ p- I ~ X m  p / X m  p - 1 X m - 1  x Pc 
k -  

X x Y /X x Y k - ' .  This defines a map 

k -  
f: v ( X m / X m - ' A  P"/P"- l )+XX Y / x X  yk-'. 

m + n = k  

It is easy to see that it is 1-1 and onto. In fact both spaces have the quotient 
topology on the same identifications applied to the disjoint union 
Uk,m+nxm x P". Hence f is a homeomorphism. 1 

We define an isomorphism 

A #  : C#(X,  A ; n) @ C,( Y,  B ;  p )  + C # ( X  x Y, X x B u A x Y; 71 @ p )  

by 

@ R * ( X m / P - l ;  .) @A*( P/ Pn-1; p )  
m + n = k  - E 0 f i * ( X m / x m - ' A  Pn/L"-';7C@p) 

E h*( v (xm/Xm- l  A rn/ Y"-'); 7C @ p  

- m + n = k  

1 m + n = k  

k -  k - 1  
r h * ( X x  Y / X x  Y ; n @ p ) .  

Similarly, if (X, A )  and ( Y ,  B) have a finite number of cells in each di- 
mension, we define an isomorphism 

A # : C # ( X ,  A ; n) 0 C #  ( Y, B ;  p )  + C"( X x Y, X x B u A x Y;  71 @ p),  

Now C#(X ,  A ;  n) @I C,( Y,  B;  p )  is given here only as a graded abelian 
group. One would like to make it into a chain complex such that A# is an 
isomorphism of chain complexes. 

Definition 24.3 If {C,,  a,} and {C,', a,} are chain complexes, one makes 
C @ C' into a chain complex by 

d(x B y )  = ax @ y + (- l)I*lx @ ay. 

(Observe that a2 = 0.) 

Theorem 24.4 A #  is a chain isomorphism (i.e., a chain map which is an 

The only point to be checked is that A #  is a chain map, and this follows 

isomorphism). 

from : 
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Lemma 24.5 Let X 3 A 3 A .  and Y 2 B 3 Bo be relative CW complexes, 
and suppose there is a pairing from E and F to G.  Then the diagram 

Proof We expand the diagram into a larger one, where all unlabeled homo- 
morphisms are induced by inclusion mappings, Let, W = A x Y u X x B 
U = A o x  Y u X x B ,  V = X x B , u A x  Y ,  U o = A o x  Y u A x B  and 
Vo = X x Bo u A x B.  We consider the diagram shown on page 249. 

We apply 23.35 and naturality to prove that the part of the diagram not 
involving Q and f l  commutes. CI is induced from a homeomorphism 

(see 24.2). Thus Q is an isomorphism and is given by adding the values of the 
homomorphisms induced by the inclusions. is given on each coordinate by 
the induced homomorphisms of the inclusions. Since 

factors through the pair ( A  x Y, A x Y) ,  and G,(A x Y, A x Y )  = 0,  it 
induces the zero homomorphism. Similarly 

( X  x B,  VO) = (K U )  

induces the zero homomorphism. Hence the triangle commutes, and p is an 
isomorphism. The other isomorphism is an excision. Clearly f la = 8 0 a. 
Since p is a monomorphism, the diagram in 24.5 commutes. 1 

An analogous result is true for cohomology with essentially the same proof. 

23 In order to makes this commutative we define a degree k homomorphism 9, between 
= k .  Then graded groups as a sequence of homomorphisms: P ) ~ :  G. + G i c r .  Write 

define the tensor product of homomorphisms 9, 0 t$ by 

(9, 0 r#)(x OY) = ( - l )~x'~~~ cp(x> 0 t$W. 
Thus 

(a 0 1 + 1 oa)(x 0 ~ )  = ax BY + (-i)Ix1 x 0 ay. 
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Lemma 24.6 Let X 3 A 3 A ,  and Y 2 B 2 B, be relative CW complexes, 
and suppose there is a pairing from E and F to  G. Then the diagram 

x 
E * ( X  A )  8 F*( Y. B) + G * ( X x  Y , X X B U A X  Y )  

Id d@1+1@d I 
{ E * ( A , A o ) 8 ~ * ( Y , B ) ) ~ { E * ( X , A ) 8 ~ * ( B , B , ) } ~ G * ( X x B u A  x Y , A ,  x Y u A  x B u X X B , )  

commutes.24 I 
From this we conclude: 

Corollary 24.7 Let ( X ,  A )  and ( Y ,  B )  be relative CW complexes with a 
finite number of cells in each dimension. Then 

A #  : c#(x, A ; n) 8 c#( Y,  B ;  p)  --t C # ( X  x Y,  x x B u A x Y ;  71 8 p )  

is a chain isomorphism. I 
An important special case of 24.4 is when Y = P, B = @, and n = Z. 

Corollary 24.8 There is a chain isomorphism 

C # ( X ,  4 0 p + C#(X ,  A ; PI.  I 
This determines C,(X, A ;  p )  given C,(X, A) .  

(Exercise 7, Section 23): 
One can also determine C # ( X ,  A ;  n) by studying the Kronecker product 

( 3 ) : EYX, A )  8 Fs(X, A )  --t Co(P). 
By 23.35(g) we have 

(- i )yZ,  am) = (az, 0) 

for z E EP(A)  and w E FJX,  A ) .  The adjoint of ( , ) 
d :  E"(X,  A )  -+ hom(F,(X, A) ,  G,(P)) 

is given by 

and consequently 
d(x)cv) = (x, u>, 

d@cw)(w) = (&, 0) = (- l)P(cw, am> = (- I)pd(cc)(aw). 

If C, is a chain complex and D is a group, we make C" = hom(C, , D) into a 
cochain complex by defining 

6": C"+ cn+l 

24 See footnote 23. 
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via d"(f)(c) = (- l)"f(&). Applying this with E = G = Hn and F = HZ, we 
have proved: 

Lemma 24.9 

d: C"(X, A ;  n) --t hom(C,(X, A ) ,  n) 

is a chain map. 1 

Proposition 24.10 
d: C"(X,  A ;  n)  -+ hom(C,(X, A),  n) 

is a chain isomorphism. 

Proof We show that in  each degree, d is an isomorphism. This follows 
from 

Lemma 24.11 If X is a wedge of spheres, 

d :  H"(X;  n) -+ hom(H,(X), n) 
is an isomorphism. 

Proof In case X = S", this is an isomorphism since 

( , ): An(S,; n) 0 A,(P) --t n 

is an isomorphism by 23.11. Now consider the commutative diagram 

J IId J n I?"(&"; n)- n hom(R,(S,"), n) 

in which we apply Exercises 13, Section 15 and 18.17 to see that d is an 
isomorphism. Note, however, that 

a s A  a e A  

is not in general an isomorphism. 
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24.4, 24.7, 24.8, and 24.10 are useful in calculating various homology and 
cohomology groups as we will see with an example. 

Proposition 24.12 Let p be a prime. 
(a) 

if i = O  or i = n  and n i s  odd 
if i isevenand O <  i < n  

0 otherwise. 

if p = 2  and O l i l n  

otherwise. 

(b) 

H,(RP";Z,)= 2, if i = O  or i = n  and n isodd 

(c) 
if p = 2  and O l i l n  
if i = O  or i = n  and n is odd 
otherwise. 

( 4  
if i = O  

ZZ@2, if i = l  
Hi(RP2 x RP3)  = if i = 2  

Z@Zz if i = 3  
if i = 4 .  

Proof (a) C'(RP") 2 Z with a generator ei dual to ei for 0 I i 5 n and 
& i - l  = - ( 1  + (- 1)')e' by 24.9; for 

(6e'-')(ei) = (- l ) i - le i - l (&i)  
= (- l ) i - l e i - l ( ( l  + (- l ) i ) e i - l )  
= -(I + ( - l ) i ) e i - l ( e i - l )  
= - (1  + (-1))'. 

Hence 2' = C' if i is even or i = n and 2' = 0 otherwise, B' = 2C' if i is even 
and i > 0, and B' = 0 otherwise. Thus (a) follows. To prove (b), we note that 
if p = 2, 8 = 0. Hence Hi(RP"; 2 2 )  = Ci(RP"; 2 2 ) .  If  p # 2, 8: Czi -+ C2i-1 
is an isomorphism. Hence the only cycles are in dimension 0 and n if n is odd. 
To prove (c), observe that the cochain complex has the same form as (a) 
except all calculations take place in 2, instead of Z .  Thus if p = 2, 6 = 0, 
and if p # 2, 6: C2' --f Czi  is an isomorphism. Thus (c) follows. 

(d) is proved by writing down explicit generators for 

C,(RPZ) C3 C#(RP3).  
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Write e, Q e j  = e i ,  j .  Then we have a table of generators 

i 

The boundary is determined by the formulas: 

ae,,, = a ( e 2 Q e 3 ) = a e 2 Q e 3  + e 2 Q a e 3  =2e lQe3  =2e1,,  
ae,, = a(el Q e3) = ae, 0 e3 - el 0 ae3 = 0 
ae2, = a(e2 0 e2)  = ae2 Q e2 + e2 0 ae, = 2e1 0 e2 + 2e2 0 el 

= 2(e1,2 + e2.1) 

ae,, = a(e, Q e3)  = ae, 0 e3 + e, 0 ae, = 0. 

Similarly we have 
8e1,2 = -2e1,1 ae2,o = % , o  
ae2,1 =2e1,1 aeo,l = 0 
aeo.2 = 2e0,1 ael ,o 5 0  
ael, l  = O  aeo,, = 0. 

As a free basis for ker a we have 

As a basis for Bi = Im we have 

i BI=Irna,+,  
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The quotient, Hi = Zi/Bi is thus generated by the following classes: 

i Hi order of generators 

4 tel.31 
5 0  

2 

and this completes the calculation. I 
These calculations demonstrate how knowledge of C , ( X ,  A )  determines 

H , ( X ,  A ;  n) and H * ( X ,  A ;  n) and knowledge of both C,(X,  A )  and C,( Y, B )  
determines H*(X  x Y,  X x B u 
A x Y ;  n). They do  not hint at the remarkable fact from homological algebra 
that these homology and cohomology groups depend only on H J X ,  A )  
and that H,( Y ,  B).  This is the subject of the next section. 

H,(X x Y,  X x B u A x Y ;  n) and 

Exercises 

1. Let Q be the rational numbers. Show that if A c B, Q Q A c Q 0 B. 
(Use Exercise 6, Section 15.) Conclude that Q Q (nr=2Z, , )  # 0. Hence the 
natural transformation H Z,,) is not 1-1 in general since 
Q OZ,, = 0. 

(n 2,) +n ( H  

2. Calculate H ' ( R P ~  x R P ~ ) .  
3. Let Q be the rational numbers. Calculate Hi(RP"; Q) and H'(RP"; Q) .  
4. Let f: C +  C'andg:  D + D' be chain maps. Show that f 0 9 :  C Q  C' + 

D Q D' is a chain map. (25.5) 
5. Show that if C is a free chain complex, Z(C)  is a direct summand. 

Conclude that there is a chain m a p 8  C + H(C) (where H(C) is considered as 
a chain complex with 0 differential) which induces an isomorphism in homo- 
logy. 
6. Show that there is a chain isomorphism 

C + ( X ,  A )  0 iT -+ C # ( X ,  A ;  n) 

if ( X ,  A )  is a relative CW complex with a finite number of cells in each di- 
mension. (Hint: Find a natural isomorphism hom(A, B )  0 C + hom(A, B 0 C )  
when A is free and finitely generated.) 
7. Let R be a commutative ring. Show that there is a natural isomorphism 

C , ( X ,  A ; R )  0, C,(  Y,  B ;  R )  --f C , ( X  x Y,  X x B u A x Y ;  R )  



24. Relations between Chain Complexes 255 

where (X, A )  and ( Y ,  B )  are relative CW complexes. Furthermore, if (X, A )  
and (Y ,  B) have a finite number of cells in each dimension, there is a natural 
isomorphism 

C # ( X ,  A ;  R) OR C#(  Y,  B;  R) + C # ( X  x Y,  X x B u A x Y ;  R).  



25 
Homological Algebra over a Principal Ideal 

Domain : Kunneth and Universal 
Coefficient Theorems 

In this section we develop homological algebra over a principal ideal do- 
main R. This will be applied to the chain isomorphisms of Section 24 to 
prove the Kiinneth formulas and universal coefficient theorems. A more 
general treatment of homological algebra can be found in any of the standard 
texts on homological algebra (see [18,44, 551). Since a principal ideal domain 
by definition is commutative, we make no distinction between left and right 
R-modules. A principal ideal domain has the following characteristic prop- 
erty. 

Proposition 25.1 Let R be a principal ideal domain, M a free R-module, 
and N c M a submodule. Then N is free. 

Proof Let {x,}, a E A be a basis for M and suppose A is well ordered. Let 
M, be the submodule generated by {x,l c1 s p}. Let fa: M -+ R be given by 

&(xu) = 1 ,  &(x,) = 0 for j# a. fa extends to an R-module homomorphism 
since M is free. Thus&(N n Mu) is an ideal in R and we have f , (N  n Ma) = 
(r,). Let T = {a E A I r, # 0) and choose for each a E T, n, E N n Mu with 
h(n,) = r , .  Let m be a free R-module with one generator c, for each a E T. 
Definefi m -+ N by 

256 
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We claim that f is an isomorphism. f is clearly a homomorphism of R- 
modules since N is free. Suppose 

Then Cf:; Painai = -Faknak . Since f , , ( ~ , )  = 0 for u -= uk , h,(na) = 0 for 
u < x k .  Hence 

and thus Fa, = 0. Continuing in this way we see that Fa, = 0 for all i. Hence 
~ ~ = l F a i c a i  = 0. f is consequently 1-1.  I f f  is not onto, choose Cr to be the 
smallest element of A for whichf(N) $ M g  n N .  Choose x E Mg n N - f ( N ) .  
Write x = s c(k it follows that cfk = ~ r .  Letf,(x) = rr,. 
Thenf,(x - rn,) = 0. Hence x - rn, E M, n N for some u < Cr. By the choice 
of Cr, x - rn, ~ f ( n ) ,  so x E~(N) and we have a contradiction. Thus f is an 
isomorphism. I 

This is the only property of a principal ideal domain that we require. In 

Given modules M and N we define R-modules Tor,(M, N )  and Ext,(M, N )  

Fai xu,. If u1 I * 

most applications we have R = Z or R will be a field. 

as follows. According to 25.1 we can find a short exact sequence 

B o -, F+ F; -, M -+ o 
of R-modules with Fl and Fz free. Such an exact sequence will be called a 
resolution of M .  Define Tor,(M, N )  to be the kernel of 

a 0  1 
Fi ORN-FzORN 

and Ext,(M, N )  to be the cokernel of 
a* 

hOmR(F2, N )  - hOmR(F1, N ) .  

Proposition25.2 Tor,(M, N) and Ext,(M, N )  do not depend on the 
resolution of M .  Tor,(M, N )  is a covariant functor of M and N .  Ext,(M, N )  
is contravariant in  M and covariant in N .  

Proof L e t 8  M -, M' and suppose we are given resolutions 

( E )  O-+F,AF~-M-,O B 

(E') o + F ~ ~ ~ F ~ ~ - M ~ + o  B' 
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with which we calculate Tor and Ext. We will construct homomorphisms 

f* TOrR(hf, N )  + TOrR(hf’, N )  

f* : ExtR(M’, N )  -i Ext,(M, N )  

by using the following: 

Lemma 25.3 Let 4 :  N --t N ’  be an epimorphism of R-modules, let F be a 
free R-module, and let I): F +  N ‘ :  then there is an R-module morphism 
A :  F-+ N such that 42 = $. 

Proof Let {xu} be a basis for F. A homomorphism A :  F - i  N is determined 
by the images A(x,). Define @,) to be any element in 4-’($(x,)). This defines 
A and 4A(xu) = $(xu).  Hence = I). 

We now construct homomorphisms A and f, forming a commutative 
diagram 

B o - - - - + F ~ - - - ~  F , - M - O  

Since j’ is onto and F, is free 25.3 implies thatf, exists such that P’f, =fP. 
Since 0 =fPa = P’f, a,f2(a(Fl))  c a‘(Fl’). Thus,f, a :  Fl -+ Im a’ and applying 
25.3 again we can find fl such that a‘fl = f, a. 

Now for any such commutative diagram D we can define homomorphisms 

fD =fl 0 1 : ker a 0 1 -i ker a’ 0 1 

f =fi * : ckr (a’)* -i ckr a*. 

Thus choosing E and E’ to calculate Tor and Ext, and choosing D, we get 
transformations 

TorR(M, N )  -+ TorR(M‘, N ) ,  Ext,(M’, N )  -+ Ext,(M, N ) .  

We claim that these homomorphisms do not depend on the choice of D. 
Supposef,‘ and f,’ are chosen instead offi andf, (keeping the same resolu- 
tions E and E‘ as before). Then P’c f ,  - f 2 ’ )  = 0, so applying 25.3 we can 
construct 4:  F, -i F,’ such that a‘+ =f2 - f,’. Now a’4a = f 2  a - f z ‘a  = 
ci’(f, -A‘) ,  hence 4a =fl -fl’ since a’ is a monomorphism. Consequently 
fl @ 1 -fl’ 0 1 = 0 on ker ci 0 1 andf,” -f;* = 0 on ckr a*. Thusf, andfD 
do not depend on the choice of fl and f, . 
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We have shown that for any choice of resolutions E and E‘, there are 
well-defined induced homomorphisms 

TOrR(M, N)fi, TOrR(M’, N ) ,  EXtR(M’, N )  fi, Ext(M, N ) .  

Clearly by definition cfs)* =yes*, 1, = 1 ,  (fg)* = g*f*, and 1*  = 1. We can 
now compare the values of Tor or Ext using two different resolutions of M by 
takingf= 1. It follows that there are homomorphisms going both ways such 
that the composites are the identity. Thus Ext and Tor do not depend on the 
resolution and are functors of M .  That they are covariant functors of N 
follows easily from the definition. Hence 25.2 is proved. 1 

Clearly if R is a field Tor,(M, N )  = Ext,(M, N )  = 0 for we may choose 
F2 = M and Fl = 0. If  R = 2, we abbreviate Tor,(M, N )  and Ext,(M, N )  
by Tor(M, N )  and Ext(M, N ) .  

Proposition 25.4 

(a) Tor,(M, N) z TorR(N, M )  z Ext,(M, N) = 0 if M is free. 
(b) Ext(Z,,, Z) z Z, . 
(c) Tor@, , Z,,) z Ext(Z,, Z,,) E Z, where k is the greatest common 

divisor of m and n. 
(d) TOrR(M, N @ N’) E TOrR(M, N )  @ TOr,(M, N ) .  

EXtR(M, N @ N‘) 2 EXt,(M, N )  @ EXtR(M, N‘) .  
TOrR(M @ M’,  N )  g TOr,(M, N )  @ TOrR(M’, N ) .  
EXtR(M @ M’,  N )  g EXtR(M, N )  @ EXtR(M’, N ) .  

(e) 

Proof (a) To calculate TorR(M, N )  and ExtR(M, N )  take Fl = O  and 
F2 = M. To calculate TorR(N, M )  choose a basis {ma} for M and note that 
if N is another module, every element in N O R  M can be written uniquely 
in the form x n a  0 ma.  Thus if ccr(xa) 0 ma = 0, LY(X,) = 0 and hence x, = 0 
so EX, 0 ma = 0. Consequently c1 0 1 is a monomorphism. 

(b) Take 0 + Z + Z  +Z,,  -, 0 as a resolution of Z,, and observe that 
hom(2,Z) = Z, so Ext(2, Z,) is the cokernel of Z- Z. 

(c) By considering the resolution 0 + Z --4 Z + Zm + 0 one sees that 
Tor(Z, , Z,) is the kernel of Z,, - Z,, and Ext(Zm, Z,,) is the cokernel 
of this map. Since any subgroup or quotient group of a cyclic group is cyclic, 
one sees that the kernel and cokernel are isomorphic, for they have the same 
order. Let k = gcd(m, n). There is a homomorphism Z, -+ Z,, mapping 1 
to nlk. The sequence 

x n  

x m  

x m  z,- z,, - z,, 
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is exact, for mnlk = n(m/k) and hence the composite is 0; on the other hand 
ifx E 2, is such that mx = 0, we have kx = amx + bnx 3 0 since k = am + bn 
for some a and b. Hence n divides kx and x = c(n/k). 

To prove (d), consider the distributive laws 

F@R(N@N’) = F @ R N @ F @ R N ’  
hOmR(F, N @ N’) = hOmR(F, N )  @ hOmR(F, N’)  

applied to F = Fl or F2 to see that ker CI 0 1 and coker CI* split into a direct 
sum. To prove (e), consider resolutions 0 + Fl -+ F2 -+ M -+ 0 and 0 -+ F,‘ -+ 

F2’ -+ M’ -+ 0 and observe that 

0 + Fl @ Fl’ -+ F2 @ F2’ - + M e  M’-+ 0 

is a resolution. Applying the distributive laws above proves (e). I 
Let C be a chain complex of R-modules and consider Z(C) as a subcomplex 

with 0 differential. Define a chain complex B by B, = B,-,(C) with 0 dif- 
ferential. We then have a short exact sequence of chain complexes: 

d 
O+Z(C)A C-+B+O. 

Suppose now D is a chain complex and consider the sequence: 
1 8  1 a 8  1 

I @ 1 and 8 0 1 are chain maps by Exercise 4, Section 24. This is exact by 
23.9. Thus by 25.4(a) we have: 

C@RZ(D)- CORD- C O R D  + 0. 

Lemma 25.5 If C or D is R-free, 
r 0  1 a @  1 

O~CQRZ(D)-CORD-CORD-+O 

is an exact sequence of chain complexes. I 
We now apply Exercise 9, Section 20 to produce a long exact sequence 

H ( r 8  1 )  
* * *  -+H(BQR D)aH(Z(C)ORD)-H(CORD) 

H ( a 8  1) a 
H(B @R D)- H(Z(C)  OR D) + * * .  

We will utilize this to calculate H(C OR D ) .  

Lemma 25.6 Let C be an R-free chain complex with 0 differential, and D 
be an arbitrary chain complex. Then 

H(C O R  D) = C @R H(D). 



25. Homological Algebra 261 

Proof The differential in C O R  D is f 1 @ a. We have short exact se- 
quences 

1 @ 1  ' i @ a  0 + c @ R  z( D) - c @ R  D - c @ R  B( D) - 0 

O j C @ R B ( D ) -  c @ R D - c @ R ( D / B ( D ) ) - t O  

by 23.9 and 25.4(a). 

and 25.4(a) again, we have a short exact sequence 
Hence Im 1 @ 8 = C B R B ( D )  and ker 1 @ a = C ORZ(D) .  Applying 23.9 

0 + c @ R  B(D) + c @ R  z(D) + c @R H(D) * 0. I 
By 25.6, H(Z(C)  @ R  0) = Z(C) @ R  H(D) and H(B OR 0) = B OR H(D).  

Now consider the composite 

{B(C) @ R  H ( D ) } k  = { B  @ R  H(D)}k+ 1 {z(c) @ R  H ( D ) } k  

where a is the homomorphism defined in Exercise 9, Section 20. a is calculated 
as follows. Given x @ {y}  E B(C) OR H(D),  choose u E C so that x = au. Then 

(8 0 l)(u 0 {y>> = x 0 {Y>. 
Now calculate a ( u @ y )  in C O R D .  d ( u @ y ) = 8 u @ y f u @ a y = x @ y  
since y E Z(D) .  x @ y is in the image of Z(C) OR D + C OR D and a(x 0 { y } )  
is its homology class in H(Z(C) OR 0). Thus a = j @  1 wherej: B(C) -Z(C)  
is the inclusion. To calculate ker j Q  1 and coker j 0  1 we observe that 
0 + B(C) A Z(C) -+ H(C) + 0 is a resolution. Hence we have an exact 
sequence 

j0 1 
0 + TorR(H(C), H(D)) 3 B(C) @ R  H ( D ) - z ( c )  @ R  H(D) 

* H ( c )  @ R  H(D)  + 0. 

This proves the first part of: 

Theorem 25.7 If C is R-free, there is a natural exact sequence 
A 

O -+ H(C) OR H( D) A H(C @ R  D) 3 TOrR(H( C), H(D))  3 O 

where v({x} @ {y})  = {x @ y }  and A has degree - 1, 

Proof The statement about v follows since 

v({x) 6 { Y ) )  = H(z 0 l)(x 0 {Y>) = (1.5 6 = {x 0 Y>. 

A has degree - 1 since a @ 1 has degree - 1. Naturality in chain maps is 
clear since all the constructions are natural. I 
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To be more explicit, we write 

O +  @ H ~ ( C ) O R H ~ ( D ) + H , ( C O R  D) --f @ TOrR(Hj(C), Hj(D))+O. 
n = i +  j i +  j = n -  1 

In fact, this sequence splits. That is: 

Theorem 25.8 If both C and D are R-free chain complexes, 

Hn(C O R  0) ( @ Hi(C) O R  Hj(D)) @ (, @ TorR(Hi(C), Hj(D))) * 
n = i + j  l + J = n -  1 

The isomorphism, however, is not natural as we shall see by an example. 
This follows from : 

Proposition 25.9 If C and D are each either R-free or have 0 differential, 

V: 0 {Hi(C) OR Hj(D)) + Hn(C OR 0) 
i f  j = n  

is the inclusion of a direct summand. 

Proof We will find an R-module homomorphism 

7: H(C@RD)+H(C)@RH(D) 
such that yv = 1. This is enough by Exercise 11, Section 11. We claim that if 
a chain complex C is either R-free or has 0 differential, Z ( C )  is a direct 
summand. Under the second hypothesis this is trivial. Suppose C is R-free. 
Since R is a principal ideal domain, B(C) is R-free and hence by 25.3 and 
Exercise 11, Section 11, C,, =Z, (C)@B, , - , (C) .  

Suppose now that Z(C) and Z(D) are direct summands in C and D re- 
spectively. Let a :  C + Z(C)  and p:  D +Z(D) be the projections. They define 
9: C + H ( C )  and $: D + H(D)  by d(x) = {a(x>} and $(y) = {p(y)}. Then 
9 0 $1 C OR D -+ H(C) OR H(D) .  4 0 $ 1 B(C B~ D )  = 0 since 4(B(C)) = 0 and 
$(B(D))  = 0. Hence 4 8  t+b determines y and clearly yv = 1. I I 

Theorem 25.10 (Universal Coefficient Theorem) If C is R-free and n is 
an R-module, there is a natural exact sequence 

A 
O - - ~ H , ( C ) O R I ~ + H , ( C O R I ~ ) - T O ~ , ( H , - , ( C ) ,  n)+O 

which splits (nonnaturally). 

Proof We apply 25.1 with 
n = O  (8: n #o. 

D has 0 differential, so we may apply 25.9. I 
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By 24.4, 24.7, and 24.8, we have the corollaries: 

Corollary 25.11 (Kiinneth Formula) I f  ( X ,  A )  and ( Y ,  B )  are relative CW 
complexes, there is a natural short exact sequence 

X 

0 -  @ H , ( X , A ) @ H j ( Y , B ) - - + H n ( X X  Y , X x B u A  x Y )  
i + j = n  

+ 0 Tor(Hi(X, A),  Hj( Y, B)) + 0 
i+ j = n -  1 

which splits (nonnaturally). I 

Corollary 25.12 (Kiinneth Formula) I f  ( X ,  A )  and ( Y ,  B) are relative CW 
complexes with a finite number of cells in each dimension, there is a natural 
short exact sequence 

O +  @ H ' ( X , A ) O H ' ( Y , B ) ~ H " ( X x  Y , X X  B u A  x Y )  
- 

i = j = n  - 0 Tor(H'(X, A) ,  H'( Y, B)) -+ 0 
i + j = n - 1  

which splits (nonnaturally). I 

Corollary 25.13 (Universal Coejicient Theorem I )  There is a natural 
short exact sequence 

d A 
0 + Hn(X,  A )  0 n -P Hn(X,  A ;  n) - Tor(H,_,(X, A), n) + 0 

which splits (nonnaturally). I 

Corollary 25.14 (Universal CoefJicient Theorem IZ) Let ( X ,  A )  be a 
relative CW complex and assume that n is finitely generated. Then there is a 
natural short exact sequence 

0 -P H"(X, A )  @ n --t H"(X, A ;  n) -P Tor(H"+'(X, A),  n) 0 

which splits (nonnaturally). 

Proof There is an isomorphism of chain complexes 

C y X ,  A )  0 n --f cyx, A ;  n) 

given by 
d 

Cn(X, A )  6 n E' hom(C,(X, A) ,  2) 0 n - hom(C,(X, A ) ,  n) z C"(X, A ;  n) 

where c$( j@ x)(c) = f ( c )  * x.  
25.14 now follows from 25.10. 

is an isomorphism since n is finitely generated. 
I 
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Let k be a field. Then there are chain isomorphisms 

C#(X,  A ;  k )  @kC#(Y,  B ;  k): C # ( X  X Y,  X X B U A X Y ;  k )  

c # ( X , A ; k ) O k C # ( Y , B ; k ) ~ C # ( X X  Y , X X  B U A  X Y ; k )  
induced by 24.4 and 24.7. These induce Kiinneth formulas: 

Corollary 25.15 Let k be a field and suppose ( X ,  A )  and ( Y ,  B)  are relative 
CW complexes. Then 

@ H i ( X , A ; k ) O k H j ( Y , B ; k ~ ~ H n ( X x  Y , X x B u A  x Y ; k )  
i+ j = n  

is an isomorphism. If ( X ,  A )  and (Y ,  B)  have a finite number of cells in each 
dimension, - 

@ H ’ ( X , A ; k ) O k H j ( Y , B ; k ) - - t l - , H ” ( X x  Y , X x B u A  x Y ; k )  
i+ j = n  

is an isomorphism. 

Finally we will exploit 24.10 to prove: 

Theorem 25.16 (Universal Coeficient Theorem III)  Let ( X ,  A )  be a 
relative CW complex. Then there is a natural short exact sequence 

A d 
0 -+ Ext(H,-,(X, A),  n) - H”(X, A ;  n) -+ hom(Hn(X, A) ,  n) + 0 

which splits (nonnaturally). dis the map adjoint to the Kronecker product (see 
the discussion before 24.9). 

This follows from : 

Lemma 25.17 Let C be an R-free chain complex and n be an R-module. 
Then there is a natural short exact sequence 

d 
0 -+ EXtR(Hn-I(C), X )  -+ ff,,(hOmR(C, 7C))- hOmR(H,,(C), n) --* 0 

which splits (nonnaturally). Furthermore 

d({f))({cl) = {f(c>>* 
The proof will be much the same as 25.7 and will depend on the following 

simple lemma which is the analogue of 23.9. 

Lemma 25.18 Let A A B -% C + 0 be exact. Then 
8’ 0 + homR(C, 0) ------* hOmR(B, 0) hOmR(A, D) 

is exact for any D. 
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Proof Letf: C -+ D and suppose /?*(f) = f/? = 0. Since B is onto f ( x )  = 
f&) = 0, for some y E B. Hence f =  0. Clearly a*/?* = (/?a)* = 0. If 
a*f = 0 forf: B -+ D,f(,,,, A = 0 and hencefextends to a map]: B/Im A -+ D. 
Since C z B/Im A , f €  Jm /?*. 

Proof of 25.17 As in 25.7 we consider the exact sequence of chain com- 
plexes 

I 

a 
O - + Z ( C ) ~ C + B - + O .  

This yields an exact sequence 
a* 

0 -+ hOmR(B, n)- hOmR(C, TC)I.’hOmR(Z(C), Z) -+ 0 

by 25.18 and 25.4(a) since B is R-free and 

0 -+Z(C) -+ c-+ B -+ 0 

is a resolution of B. We now apply Exercise 9, Section 20 to produce a long 
exact sequence 

B (a*) ,  
* ’ * -+ H(hOmR(Z(C), n))+ H(hOmR(B, n)) - H(hOmR(C, Z)) 

(l*)* - ff(hOmR(Z(C), n)) -+ . *. 

NOW ff(hOmR(Z(C), n)) E hOmR(Z(C), n) and ff(hOmR(B, 71)) Z hOmR(B, n) 
since in each case the differential is 0. 

Consider the composite 
a 

hOm,(Bk(C), n)  hOmR(Bk+l, n ) t  homR(Zk(C), n). 
This is +j*  for letf: Zk(C) -+ n and choose?: C -+ n so that i*(]) =f. This is 
possible since i* is onto. Hence a{ f }  = +{JIB} = +{f lB}  = +{ j * ( f ) } .  We 
now have a short exact sequence 

0 -+ ckrj* -+ H(homR(C, n))  -+ kerj* -+ 0. 

But since0 --t B ( C ) A Z ( C )  -+ H(C)isa resolution, we have an exact sequence 

0 -+ hOmR(H(C), 71) -+ hOmR(Z(C), n) -+ hOmR(B(C), n) -+EXtR(H(C), n) --f 0 

by 25.18 and the definition of Ext. The exact sequence of 25.17 follows. It is 
easy to check the formula for d, and that A increases degrees by I since d* 
does. To find a splitting, as in 25.9 we see that Z(C) is a direct summand in C. 
Let y :  C-+ Z(C) satisfy y i  = 1. y determines 7 :  C -+ H(C)  and thus 

y*: hOmR(H(C), Z) -+ hOmR(C, E). 

Since y(B(C)) = 0, 6y* = 0 and y* determines a map 7 :  homR(H(C), n) -+ 

H(homR(C, n)). Since d? = 1, the sequence splits by 11.1 1. I I 
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One simple consequence of 25.16 is the following: 

Corollary 25.19 Suppose H,,(X, A )  Z F,, 0 T,, where F,, is a free abelian 
group of finite rank and T,, is a finite abelian group. Then H"(X, A )  = F,, 0 

Proof hom(H,(X, A) ,  Z) = hom(F,,, Z )  = F,, and by Proposition 25.4, 
Ext(H,,-,(X, A) ,  Z )  = Ext(T,,-,, 2) = T,,-l since T,,-, is a direct sum of 
cyclic groups. Hence the result follows from 25.16. 

Observe that the hypothesis of 25.19 is satisfied if ( X ,  A )  has a finite number 
of cells in each dimension. 

Another universal coefficient theorem is given by the natural isomorphisms 
C"(X,  A ;  k )  E {C,(X, A ;  k)}* 

for k a field, where {C,(X, A ;  k)}* is the dual space to C # ( X ,  A ;  k) .  This 
proves : 

T n - 1 .  

' 

Corollary 25.20 Let k be a field and ( X ,  A )  a relative CW complex. Then 
there is a natural isomorphism 

H"(X, A ;  k )  {H, , (X,  A ;  k)}*.  1 
We now give an example to illuminate the nonnaturality of the splitting. 
Let 5 :  RP2 -+ CP" = K(Z, 2) be a map whose homotopy class ( 5 )  E H Z ( R P 2 )  

= 2, (by 24.12(a)) is nonzero. Thus 5*:  Hz(CP") -+ H2(RP2)  is nonzero for 
it maps {I} E [CP", CP"] to ( 5 ) .  

0-Ext(H,(CP"), Z)- H2(CPm)- hom(H,(CP"),Z)-0 
Consider the exact sequences (from 25.16) 

This has the form 
0-0-2-2-0 

o--+z,-z,-o-o 
since H1(CPm) = 0, H,(CP") = Z, H,(RP2) = Z,,  and H2(RP2) = 0 by 
20.11, 24.12, Example 1, Section 20, and 25.4(b). Thus <*: H2(CPm)-+ 
HZ(RPZ) is not equal to 

Ext(S,, 1) 0 horn([, , I ) :  Ext(H,(CP"), Z) 0 hom(H,(CP"), Z )  
-+ Ext(H,(RP2), 2) 0 hom(Hz(RP2), Z )  
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for this map is 0. Thus the isomorphism 
H"(X, n) z Ext(H,_,(X), n) 0 hom(H,,(X), n) 

is not in general natural. In homology one can use the same example. Since 
<* is nonzero, it is onto. Consider the exact sequences (from 25.14): 

0 - Hz(CPm) 0 2, - HZ(CP"; 2,) - Tor(H3(CP"), Z,)  - 0 

This implies that <*: HZ(CP"; Z , )  + HZ(RP2; 2,) is an isomorphism. By 
25.20, (*: H2(RPZ; 2,) + H,(CP"; 2,) is an isomorphism. Thus from 25.13 
we have 

O-H,(RPZ)OZ,- H,(RPZ;Z2) -Tor(Hl(RP2>,2,)-0 

which reduces to 
0-0-z,-z,-o 

0-2,-z2-0- 0 

Consequently the splitting in 25.13 is not natural. One can also see that the 
splittings in 25.1 1 and 25.12 are not natural by considering the map 

( x 1:RP'R x P Z + C P "  x RP', 
and in 25.14 by considering the inclusion S' = RP' c RP'. 

Exercises 

1. Show that if R is a principal ideal domain, there is a natural exact 

O +  @ H i ( X , A ; R ) O , H j ( Y , B ; R ) - , H n ( X x  Y , X x B v A x  Y;R) 

sequence 

i + j = n  

--+ @ Tor,(H,(X, A ;  R), Hi( Y, B ;  R)) 3 0 
i+ j = n -  1 

which splits, where(X, A )  and (Y ,  B)  are relative CW complexes and that there 
is a similar split exact sequence for cohomology if ( X ,  A )  and ( Y ,  B)  have a 
finite number of cells in each dimension. 
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2. Let R be a principal ideal domain. Prove there is a natural exact se- 
quence 

0 4 @ Ai(x; R )  @R Rj( Y ;  R) B, (X  h Y ;  R) 
i + j = n  

-+ @ TOrR(Ri(X; R) ,  flj( Y ;  R ) )  -+ 0 
i +  j=n- 1 

which splits. Derive a similar exact sequence for cohomology. 
3. Suppose f: (K, L) -+ ( X ,  A )  and g: ( K ,  L') -, (Y ,  B) are resolutions. 

Prove that f x g is a resolution. Prove that Exercises 1 and 2 hold for 
singular homology. 

4. Reprove 24.12 using the results of this section. 
5. Show that for any group G,  Tor(Q, G )  = 0 where Q is the rational 

6. Show by example that the splittings in 25.11 and 25.12 are not natural. 
7. Prove analogues to 25.10-25.16 using singular homology and cohomo- 

8. Suppose X is well pointed and 0 -+ R(P' F- G -+ 0 is a resolution. 
Use Exercise 8, Section 21 and Exercise 13, Section 18 to construct natural 
long exact sequences 

-+ E i ( X )  @ R-&X)  @ F - + E i ( X ;  G) -+ Ei-l(X) @ R -+ 

... --t P(X) @ R - B'(X)  @ F+ B'(X; G )  -+ ,!?+ ' ( X )  @R + - . * , 

numbers. 

logy. 
JI 

1 @ c p  

1@cp 

and hence construct universal coefficient exact sequences 

O-+$(X)@G-+~,,(X; G)+Tor(&l(X), C)-+O 
O + b ( X ) @ C + b ( X ;  G)-+Tor(b+'(X), C)-+O 

generalizing 25.13 and 25.14. (Note: These sequences do not split in general.) 
(30.13) 

9. Let 0 -  R-+F-+n-+O be a resolution. Show that the Bockstein 
p :  H,,(X; n) -+ H,-,(X; R) has a factorization 

A 
H,,(X; n)-Tor(H,_,(X),n)-+H,_,(X)@R 2 H,-,(X; R) 

(see Exercise 13, Section 18). State and prove a similar result for cohomology 
if 'I[ is finitely generated. 

10. Using Exercise 9 calculate the Bockstein homomorphism 

H,(RP"; Z2) -+ H,-,(RP") 

corresponding to the sequence 0 -+ Z -+ Z -+ Z 2  -+ 0. 



Orientation and Duality 

In this section we discuss orientation of manifolds and duality. Manifolds 
arise naturally in many analysis problems, and historically homology theory 
was first applied to manifolds. 

A k-dimensional subspace V of R" determines an (n - k)-dimensional 
subspace V' of (R")* by V' = { f l  f ( V )  = 0). In an n-dimensional orientable 
manifold we will generalize this to determine for each k-dimensional cycle an 
(n - k)-dimensional cocycle. This will induce an isomorphism H,(M) 
H"-k(M).  We prove a relative version of this duality theorem for an arbitrary 
ring spectrum E and manifolds that are orientable (in an appropriate sense) 
with respect to the ring spectrum. This has a number of applications to geo- 
metric problems and gives information about the ring structure in the coho- 
mology of manifolds. The exposition we give here has been influenced by 
[20; 28; 481. 

Definition 26.1 

All manifolds that we consider are assumed to be p a r a ~ o m p a c t . ~ ~  
The notion of orientation is quite familiar. A line has two orientations, 

corresponding to the two directions. Similarly, a plane has both a clockwise 
and counterclockwise sense. In making measurements along the line, or 
measuring angles, an arbitrary choice of orientation has to be made. Sim- 
ilarly, the " right-hand rule " for calculating the vector product in R3 corre- 
sponds the choice of one of two orientations of R3. In general, we can orient 
a simplex a" by ordering its vertices. Such an ordering vo , . . . , on determines 

An n-manifold is a Hausdroff topological space M such 
that every point has a neighborhood homeomorphic to R". 

2 5  This is suficient to guarantee that M is a separable metric space. 

269 
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a homology class {e,} E H,,(o, 80) = Z which is a generator by 20.13. Two 
orderings determine the same generator iff they correspond to each other 
under the action of the alternating group (Exercise 12, Section 20). Thus the 
two generators of Z correspond to the two possible orientations of D in intu- 
itive sense. 

Now we have isomorphisms 
H"(o, 80) E H,,(o, o - X) z H,,(R", R" - X) 

for x E Int a; hence a choice of an orientation depends only on some point 
x of O. However for any two points x and y of R", there is a simplex containing 
them. Using this simplex one can determine an orientation at y from one at  x 
and vice versa.26 We express this by saying that R" is orientable. Such a choice 
will be called an orientation. In general, it is not true that a "local orientation" 
of a manifold extends to the whole manifold as above. The simplest examples 
of this phenomenon are the Mobius band M = (0, 1) x [0, l]/(x, 0) - 
(1 - x, 1) (Fig. 26.1) and the Klein bottle (see Exercise 14, Section 7). In these 

Figure 26.1 

two-dimensional manifolds it is impossible to choose a clockwise direction 
" continuously" over the whole manifold. 

Before making precise definitions, we will generalize to arbitrary theories 
defined by a ring spectrum. For the rest pf this section E will denote an arbi- 
trary ring spectrum. If M is a manifold and x E Uc M where U = R", there 
are isomorphisms 

E,(M, M - X) E E,,(LT, U - X) E,,(R", R" - x') 
z En-,(R" - x') E"n-l(s"-l) r Eo(P) 

of Eo(P) modules. Thus E,,(M, M - x) is a free Eo(P) module on one generator. 

26 Thus for example, to choose a clockwise direction at one point in the plane deter- 
mines a clockwise direction at every point. 
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Definition 26.2 An orientation of M at x with respect to E is a choice of 
Eo(P)  module generators of E,(M, M - x) .  Given a collection { X }  of subsets 
of M ,  M is said to be consistently oriented along { X }  with respect to E if 
there is chosen a collection of classes [ X I  E E,(M, M - X) such that 

(a) (d n Y)*[XI = (P: n Y)*[YI 

where p t :  ( M ,  M - A )  -+ ( M ,  M - B) is the inclusion, and 
(b) (p; )*[X]  is an orientation at x. 

A manifold is called E-orientable if it can be consistently oriented along all 
compact subsets. A collection of such classes is called an E-orientation. 

If E = HZ, it is customary to delete reference to E in the above definitions. 
This is the intuitive notion discussed above. Notice that if M is compact, an 
E-orientation is determined by [MI E E,(M). Such a homology class is called 
the fundamental class of M (with respect to E). In this case the only require- 
ment put on [MI is that (p?) , [M] is an orientation at x for all x .  

Proposition 26.3 R" is E-orientable for all E. There is one orientation for 
each unit in Eo(P). 

Proof We first define [b"(r)] where b"(r) = { x  E R"I 1]xI1< r } .  We use the 
sequence of isomorphisms 

E,(R", R" - b"(r)) z E,(B"(r), S"-'(r)) E E,,-l(S"-i(r)) z Eo(So(r)) Eo(P). 

Thus a choice of a generator g E Eo(P) determines a class [b"(r)] E 

EJR", R" - b"(r)) for all r.  If K is compact, Kc b"(r) for some r so we can 
define [ K ]  = (p,),[b"(r)]. This may conceivably depend on the choice of r.  To 
show that it does not, it is only necessary to show that if r < r'. p*[b"(r')] = 
[b"(r)]. Since there is a homotopy of pairs in R" between the identity and the 
map cp which multiplies all vectors by the scalar r'/r ,  p,[b"(r')] = cp,[b"(r')]. 
Restriction of cp induces an obvious homeomorphism from (B"(r), S""(r)) 
to (B"(r'), S"-l(r')) which induces the identity on Eo(P) under the above 
isomorphisms. Thus [ K ]  is unambiguously defined. By definition, (a) of 26.2 
is satisfied. To prove (b) one simply observes that if x ~ b " ( r ) ,  
(p&: E,(R", R" - b"(r)) -+ EJR", R" - x) is an isomorphism. I 

As an example of orientability we consider the spaces RP", CP", and HP". 
These are manifolds; in fact the sets Vi constructed in Example 4 of Section 11 
are homeomorphic to R", R'", and R4" respectively (see Exercise 25). 

Proposition 26.4 RP" is orientable iff n is odd. For each n, CP" and HP" 
are orientable. 
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Proof We do only the case of RP". The others are similar. If n is even, 
H,,(RP") = 0. It is thus impossible to choose [RP"] since (p,) ,([RP"]) must 
have infinite order. If n is odd, choose [RP"] to be a generator. Let xo = 
[ O ( . . . I O ( I ] E R P "  . Then R P " - x o = R P " - '  . Now the homomorphism 
H,,(RP") -+ H,(RP", RP"-')  is an isomorphism by 20.1 1. Hence (p,,)* is an 
isomorphism. To see that (p,.)* is isomorphism for all x, apply 

Lemma 26.5 If M is arcwise connected, the homomorphisms 

H"(M) 3 H J M ,  M - x) E 2 

differ at most by a sign as x varies. 

Proof If x1 and x2 belong to the same coordinate neighborhood, there is a 
line segment L with x1 and x2  as end points, lying inside the coordinate neigh- 
borhood. Hence there is a commutative diagram 

Thus the homomorphisms determined by x1 and x2  differ at  most by a sign. 
Since any two points x and x' belong to a sequence x = xo , xl, . . . , xk = x' 
with xi and x i + l  belonging to  some coordinate neighborhood, the lemma 
follows. 1 1 

Proposition 26.6 Every manifold is orientable with respect to H Z ,  . 
Proof Let U c  M be a coordinate neighborhood and suppose D c  U 

corresponds to B". Then H,(M,  M - D ;  Z,) E H,,(U, U - D ;  Z , )  2 
H,,(R", R" - B"; 2,) E 2,. Thus there is a unique choice for [ D ] .  The proposi- 
tion follows from : 

Lemma 26.7 Let A be a ring. If M is consistently oriented with respect to  
HA along a collection of sets whose interiors cover M ,  there is a unique ex- 
tension to an orientation of M with respect to HA. 

To prove this we need the following lemma. 

Lemma 26.8 If K c  M is compact, and G is any abelian group, 
H,(M, M - K;  G) = 0 for i > n. 
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Proof We first prove this in the case M = R". Call an n-cube [a, ,  b,] x 
* . . x [a,, , b,] a type k cube if ai = mi/k for some integer mi and bi = a, + 
( l / k ) .  R" is a CW complex with the set of all type k cubes as n cells. Any 
open subset U of R" can similarly be made into a CW complex as follows. 
Let Kl be the union of all type 2 cubes contained in U. Having defined K,-,, 
let K I  be the union of K I - ,  and all type 2' cubes contained in U - K l - , .  Kl is 
clearly a CW complex with K l - l  as a subcomplex. Hence U = U K ,  is a CW 
complex. Any element of Ci( U;  G) must lie in the image of Ci(L; G) where L is 
some finite subcomplex of U. Hence any element of Hi(R" - K;  C )  is in the 
image of the homomorphism 

Hi(L; G) -+ Hi(R" - K;  G) 

induced by the inclusion of L for some L c R" - K. In the commutative dia- 
gram 

Hi(L; G) - Hi(R" - K;  G) 

observe that (R", L)  is a relative CW complex with cells in dimensions less 
than or equal to  n, and hence H,+,(R", L ;  C) = 0 for i 2 n. Consequently, 
H,(R", R" - K;  G) = 0 for i > n. 

Suppose now that K c  U c  M where U is homeomorphic to R". Then 
Hi(M,  M - K ;  G) z Hi(U,  U - K ;  G) r H,(R", R" - K ;  G )  = 0 for i > n, by 
excision. 

Suppose now that K is an arbitrary compact set. K = Kl u * * .  u K, where 
each K ,  is contained in a set homeomorphic to R". We show by induction on 
s that H i ( M ,  M - ( K ,  u . * .  u K,);  G ) = O  for i > n  and 15 i l s .  Let 
K ' =  Kl u u K,-, and K " =  Ki.  Then 

H,(M, A4 - K';  G) = H,(M, M - K"; G) = Hi(M,  A4 - (K'  n K");  G) = 0 

for i > n. Applying the Mayer-Vietoris sequence (Exercise 10, Section 21) 

H i + , ( M ,  M - (K'  n K " ) ;  G) --f Hi(M,  M - (K' u K"); G) 
+ Hi(M, M - K ' ;  G) 0 Hi(M, M - K " ;  G) 

one concludes that H i ( M ,  M - (K' u K " ) ;  G) = 0 completing the inductive 
step. [ 

Proof of 26.7 Let {U,} be the interiors of the sets covering A4 along which 
M is consistently oriented. As in the case of 26.8, an arbitrary compact set K 
can be written as K = Kl u * .  . u Kk where Ki  c U,, . We will show that given 
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[K ' ]  and [K"]  with ( p K p  ,, K,,)* [K ' ]  = ( p K p  Kfz )* [K"] ,  there is a unique class 
[K' u K " ]  with (pK*)*[K' u K"] = [K ' ]  and (p,.,)*[K' u K"]  = [K"] .  This is 
sufficient to prove that there is a unique class [K]  with ( p K i ) * [ K ]  = [ K J  Then 
the sets [ K ]  are compatible in the sense of 26.2(a) by uniqueness, and 26.2(b) 
follows immediately. To construct [K' u K"]  we apply the Mayer-Vietoris 
sequence again 

H,+,(M, M - (K' n K") ;  A )  + H,(M, M - (K '  u K");  A )  

A Hn(M, M - K ' ;  A )  0 H"(M, M - K " ;  A )  
4 - Hn(M, M - (K '  n K " ) ;  A )  + 

where cp = ( (pK, ) * ,  ( p K , , ) * )  and 4 = ( p i ;  nK,,)* - ( p K ,  n K , r ) * .  By 26.8, 
H,+,(M, M - (K'  n K " ) ;  A )  = 0, so [K' u K " ]  exists uniquely. 

K" 

1 1 
An important tool in studying orientability is the following result. 

Proposition 26.9 Let M be a manifold. Then there is a double covering 
space n: fi -+ M such that fi is an orientable manifold. 

Applying Exercise 13, Section 7 we immediately conclude : 

Corollary 26.10 Every simply connected manifold is orientable. 1 

Remark 26.11 We could use 26.10 to prove that CP" and HP" are orient- 
able instead of the proof in 26.4. 

Call a coordinate neighborhood U c M special if there is another coordi- 
nate neighborhood V 2 U such that ( V ,  v) = (R", B" - Sn-'). Clearly the 
special coordinate neighborhoods form a basis for the topology. 

Lemma 26.12 Let U be a special coordinate neighborhood. Then for all 
x E i7, 

(p,U)* : H"(M, M - 0) + H"(M, M - x) 
is an isomorphism. 

Proof' Choose V as above. Then ( V ,  V -  U )  c ( M ,  M - 0) and 
( V ,  V - x) c ( M ,  M - x) are excisions. Thus it is sufficient to consider the 
restriction 

p : ( V ,  V -  0 ) + ( V ,  v - x ) ;  
using the homeomorphism of Y with R", this corresponds to  

p : ( R " , R " - B " ) + ( R " , R " - X )  

This clearly induces isomorphisms in homology since R" - B" N R" - x .  1 
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Proof of 26.9 Let &f = {(x,  [ x ] ) ] x  E M ,  [x] is an orientation at x}. Let 
-, M be defined by n(x, [x])  = x .  Let U c M be a special coordinate n : 

neighborhood and [U]  a generator for H,,(M, M - ti). Define 

Wtil) = { (x ,  [ X I )  E fi I x E ti, (P ,D)* ( [v l )  = [ X I 1  

W([ t i ] )  = V ( [ U ] )  n TC-'(U). 

Now the sets W([D]) cover @ since each z E M belongs to some special U and 
(p,')* is onto. In fact we show that the sets W([U]) form the basis for a to- 
pology. Suppose (x, [ X I )  E W([U]) n W([U']). Then x E U n U' and there 
exists a special coordinate neighborhood U" with x E U c U n U'. Define 
[ti"] = (p:..),([U]). Now (x, [x])  E W([V'] )  since (p!3*([8"]) = (p,')*([U]) 
= [ X I .  Since (p:")* is  an isomorphism, (p$)*([U]) = (p;:,),([O']); hence 
[ti"] = (pi:,)*([D']). Consequently if ( y ,  [y]) E w([U"]), 

[Yl = (P,u")*([~"I) = (P3*([UI) = (P,u')*([ti'I), 

and thus W([B"]) c W([D]) n W([O']), and the sets W([t i])  for U special form 
a basis for a topology. 

With this topology TC is continuous, for n-'(U) = W ( [ v l )  u W(- [VJ) and 
W([U]) n W(- [W) = @.  Thus n is a double covering space. Clearly @ is 
an n-manifold since W([U]) = U = R". 

We claim that W([B])  is a special coordinate neighborhood. Since U is 
special, we may choose Vsuch that (V, U) = (R", B" -9""). Let U' correspond 
to {x E R"I ( ( ~ ( 1  < 2). Then U' is special. By 26.12 (&')* is an isomorphism. 
Let [U'] = (p$');'([U]). Then W([V])  c W([ti']). Furthermore n establishes a 
homeomorphism (W([U']), W([U])) = (U' ,  U) so W ( [ u ] )  is indeed special. 

In the diagram 

H"(@, rii - r;ti([O])) > H"(M, M - D) 

H"( W( [ V]) ,  W( [ ti']) - W( [ ti])) - H"( U', U' - ti) 

1% 
* 

the vertical arrows are excisions and the bottom is an isomorphism by the 
above construction. Hence n* is an isomorphism and we define an orientation 
along the sets W([O])  by 

[m[til)l = 7G1([ti1). 

This will orient 
p = ( x ,  [x]) E W([U]) .  Then 

by 26.7 if we show that these classes are consistent. Let 

n*(P,)*([Wtil>l> = [ X I  E H"(M M - 4. 
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Since 7c* is an isomorphism, condition (b) is satisfied and furthermore, if 
P E mm Rr m 

<P&* ( r W [ m  = ( Pp)* ([W ml). 
Thus condition (a) follows from: 

Lemma 26.13 Let K be a compact subset of an n-manifold M ,  and 5 E 

Proof The proofwillbe based on case analysis and the use of the following. 

Hn(M, M - K).  Then t = 0 iff (p;)* ( t )  = 0 for all x E K, 

Basic inductiue step If K = Kl u K2 and 26.13 is true for Kl and K 2 ,  i t  is 
true for K.  

Proof By the Mayer-Vietoris sequence (Exercise 10, Section 21) and 26.8 
we have the exact sequence 

0 -+ Hn(M, M - K )  A Hn(M, M - K,) @ H,,(M, M - K2)  -+ * * * 

wheres(5) = ( ( p ~ , ) * ( t ) , ( p ~ , ) * ( 5 ) ) .  Sincep: = pFip iz  for x E K , ,  it follows that 
if (pE) * ( l )  = 0 for all x E K, we must have s(5) = 0 and hence a = 0. 

Proof of 26.13 We observe that it is true if M = R" and K is a ball B, 
for R" - B N R" - x if x E B. Hence by the inductive step, 26.13 is true if 
M = R" and K is a finite union of balls. Suppose now that K c  R" is an 
arbitrary compact set, and 01 E H,,(R", R" - K). As in the proof of 26.8 one can 
find a complex L c R" - K such that 5 is in the image of the restriction 
homomorphism 

Since K is compact, there exist balls B,, . . . , B, with K c B, u * u B, c 
R" - L. We will suppose in addition that each ball intersects K. Now 5 is in 
the image of the restriction homomorphism 

Hn(R", R" - (B,  u * - *  u B,)) % H,,(R", R" - K ) .  
Let p*(g') = 5. Clearly (px)*( t ' )  = 0 for all x E K. To see that (px)*(c ' )  = 0 for 
x E Bi - K, join x with a point x' of Bi n K by a straight line segment L. 
Then since 

I 

Hn(R", L) -+ Hn(R", R" - K ) ;  

p * :  Hn(R", R" - L) -+ Hn(R", R" - x') 

is an isomorphism, (pL)*(5') = 0, hence (px)*(5 ' )  = 0. Since (p , )*( t ' )  = 0 for all 
x E B, u . * . u B,, 5' = 0 and hence 5 = 0. This completes the proof in the 
case that M = R". If M is arbitrary but K is contained in a coordinate neigh- 
borhood U, the result still holds because of the excision isomorphism 

H,,(M, A4 - K )  N Hn(U, U - K).  
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Now if M and K are arbitrary, K = Kl u u Ki with K i  contained in a 
coordinate neighborhood. It follows from the basic inductive step that the 
lemma holds. I I 

Corollary 26.14 If M is a compact connected n-manifold, H,(M;Z,) t: 2,. 

Proof By 26.6 H,,(M; Z,) # 0. But by 26.5 and 26.13 

@,I* : HJM; 2,) + HAM, M - x ;  2,) = z, 
is a monomorphism. I 

Theorem 26.15 If a manifold is S-orientable it is E-orientable for every 
E (8 is the sphere spectrum). 

Proof The mapping u :  S + E defines a natural transformation 

a choice [ K ] ,  E n:(M, M - K )  thus determines [KIE = u[K] ,  E En( M ,  A4 - K ) .  
Condition (a) is easily seen to  be satisfied. To check (b), we observe that 

u : .*S( x, A )  + E*( x, A )  ; 

noS(So) n;(M, M - x) E,,(M, M - x) r ,!?,(So) 
is a ring homomorphism and hence sends generators to generators. I 

Definition 26.16 An element 5 E H , ( X )  will be called spherical if it is in 
the image of the Hurewicz homomorphism 

h :  ni(x) 4 H,(X) .  

H :  n?(X) + i?,(X) 

5 will be called stably spherical if it is in the image of the stable Hurewicz 
homomorphism 

(see Exercise 1, Section 22). 

Theorem 26.17 If M is compact and orientable, [MI E H,,(M) is stably 
spherical iff M is $orientable. 

Proof Note that if A = *, u = H .  Hence if M is 8-orientable, [MI E H,,(M) 
is stably spherical. Conversely, if [MI E H,, (M)  is stably spherical we choose 
[MI, E n:(M, fa) with u( [M] , )  = [MI. (p , ) , ( [M] , )  is a generator since 

n:(M, M - x) L H,(M, M - x )  

is an isomorphism. I 

Corollary 26.18 S" is 8-orientable. 

Proof This follows immediately from the Hurewicz theorem. I 
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In order to prove the duality theorem we shall construct a duality operator. 
This will be based on the cap product (see Exercise 7, Section 23). Let E be 
a ring spectrum such that for n sufficiently large, En is a CW complex. Let X 
be paracompact and suppose that L c K are closed subsets of X .  We define 
a pairing 

C :  Ei(K, L) @ EJX,  X - K)+ E,,-,(X - L, X - K).  

Let (V ,  W )  be an open pair of subsets of X containing ( K ,  L). We will use the 
symbols i,, i,, . . . to denote various natural inclusion maps. Thus we have a 
homomorphism 

i t*@iz*  
E'(V, W ) O  E,,(X, X - K)- E'(V - L, W - L) @ E,,(X, ( X  - K )  u W )  

( 1  Bi3')- ' 
-E'(V-L, W - L ) @ E , , ( V - L , ( V -  K ) u ( W - L ) )  

since i, is an excision. Define tV,,, to be the composite of this homomorphism 
with 

E'( V - L,  W - L) 0 En( V - L, ( V  - K )  u (W - L)) 
id* 

A E , , - , ( V - L ,  V -  K)-En- i (X-L ,  x - K )  
where n is the homomorphism from Exercise 7, Section 23. <v,w is defined for 
all open pairs ( V ,  W )  containing (K, L). If (V ' ,  W') c (V,  W) ,  there is a 
commutative diagram 

€'( V,  W )  0 En( X ,  X - K )  
. y v  

&-,(A'- L, X - K )  is*  a I 

Ei(  V' ,  W')  0 i EJX,  X - K )  4L 
Hence Itv,+,} defines a mapping 

lim {E'( V,  W )  8 E,,(X, X - K)}  + En- i(  X - L, X - K ) .  

By Exercise 13, Section 15 and Exercise 4, Section 21, the left-hand group 
is naturally isomorphic with E'(K, L)  0 E,,(X, X - K ) .  We define C via this 
natural isomorphism. (Note that if K = Xand L = a, this is the cap product.) 

Lemma 26.19 C is natural in the following sense. Let ( K ,  L) c ( K ' ,  L,'). 
Then there is a commutative diagram 

C 
E'(K, L)  o E,(x, x - K )  - E,- i (x  - L, x - K )  

is'8i7r 1 is* I C 
E'(K', L') 0 E,,(X, X - K')- E,,-i(X - L', X - K') 
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Proof Let (V ,  W )  be a neighborhood of ( K ,  L) and (V',  W')  a neighborhood 
of (K ' ,  L') containing ( V ,  W) .  We can then prove commutativity in the diagram 

TV w E'( v, W )  0 E,(X, x - K)- En- i(x - L, x - K )  

E'( V ' ,  W') 0 E,(X, x - K') - En- i (  x - L', x - K')  

iPC3 ip  1 is*  I b ' w '  

by naturality of n. Taking limits first over all (V,  W )  2 (K ,  L) and then all 
(V', W') 2 ( K ' ,  L') one establishes the lemma. I 

Lemma 26.20 There is a commutative diagram: 

a 

C €'+'(A', L )  0 E,(X,  X - K )  + E , , - j - i ( X - L ,  X - K )  

Proof Let ( V ,  W )  be a neighborhood (K ,  L). We will prove commutativity 
of the diagram 

f w . 0  E ' ( W ) @ E , ( X ,  x-L) - E,- , (X,  x - L )  

/ * 
E'( W) 0 E,(X,  x - K )  

from which 26.20 will follow. Using the definitions of tv,w and ( w , e r ,  
we expand this diagram to the larger one (see page 280). Commutativity of 
the center diagram on page 280 follows from Exercise 14, Section 23 with 
A = W , B = V - L , X = V , C = @ , a n d D = V - K .  I 

Suppose now that M is a manifold and { [ K ] }  is an orientation of M with 
respect to E. Suppose K =I L are compact subsets. Define 

D: E'(K,L)+ E,-,(M - L, M - K )  

by D(x) = C(X 0 [ K ] ) .  
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Duality Theorem 26.21 

The proof will involve repeated use of the following: 

D is an isomorphism. 

Lemma 26.22 If D is an isomorphism for ( K , ,  fa), (K,, fa), and (Kl n 
K ,  , fa), then it is an isomorphism for (Kl u Kz , 0). 

Proof Let K =I L and consider the diagram of exact sequences 
... - E'(K) + E'+'(K, L) 

By 26.19 and 26.20 this is commutative. Suppose D is an isomorphism for 
( K l ,  fa) and (Kl n K , ,  fa). By the 5-lemma D is an isomorphism for 
(K,, K, n K,). Now there are isomorphisms 

E~(K,, K,  n K,) - E~(K, u K ,  , K,)  

En- i (M - (K,  n K,), M - K,)  -En- i (M - K ,  , M - (Kl u K,)) 

by 21.7, 21.2, and 21.20(1). Hence by 26.19 D is an isomorphism for (Kl  u 
K, , Kz).  Consequently by the above diagram and the 5-lemma D is an isomor- 
phism for (Kl  u K ,  , fa). I 

- 

Proof of 26.21 This will be divided into several cases. 

Case I K consists of only one point: If L # fa all the groups are zero. 
Suppose L = a. By Exercise 6c, Section 23, D is an E*(P)-module homomor- 
phism. Since 1 E Eo(P)  is a generator and D(1) = [PI generates E,,(M, M - P )  
by 26.2, D is an isomorphism. 

Case 2 M = R", K is compact and convex, L = fa : For any point P E K, 
we claim that the inclusions P -+ K and R" - K-+ R" - P are homotopy 
equivalences. The first statement follows from convexity. To prove the second 
one, note that K is contained in some ball B centered at P.  Hence a linear 
homotopy away from P retracts both R" - K and R" - P onto R" - B. Thus 

E'(K, fa) -+ Ei(P, 0) and En-i(R", R" - K )  -+ En-i(R", R" - P) 

are isomorphisms. By 26.19, D is an isomorphism in this case. 

Case 3 M = R", K is a finite union of compact convex sets, and L = fa: 
We prove this by induction. Suppose K = Cl u . * 1 u C, with each Ci convex. 
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The case r = 1 is case 2. Suppose the result proven for any union of less than 
r convex sets. Then it is true for 

and 

(C,  u 1 . .  u C,- , )  n C, = (C,  n C,) u u (C,-l n C,). 

By 26.22, it is true for C1 u . . . u C, . 
Case 4 M = R", K is an arbitrary compact set, L = fa : Let { V,} be the 

collection of all compact neighborhoods of K that are the union of a finite 
number of compact convex sets. Since every neighborhood of K contains 
some V, ,  u, ( M  - Vm) = M - K .  By Exercise 4, Section 19, 

En- i(M, M - K )  g l h ~  En- i(M, M - Vu). 

By 21.20(4), 

lim Ei(Va) z Ei(K) .  

Thus by 26.19, D is an isomorphism in this case. 

Case 5 M is arbitrary, K is an arbitrary compact set, and L = fa : Suppose 
K is contained in some coordinate neighborhood U = R" 

E , - i ( U , U - K ) g E " _ i ( M , M - K )  

by excision. If i = 0, this isomorphism determines an orientation on U from 
the orientation on M .  Using this orientation and 26.19, it follows that D is an 
isomorphism in case K is contained in a coordinate neighborhood. 

In general K is covered by a finite number of coordinate neighborhoods. 
Thus we can write K = Kl v * * u K,  where each Ki  is compact and contained 
in some coordinate neighborhood. By 26.22, D is an isomorphism in this 
case. 

Case 6 The general case: This follows from the 5-lemma applied to the 
diagram 

(see 26.22). I 
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Although D :  E'(K, L)  -+ E,,-,(M - L, M - K )  is only defined if K is com- 
pact, we can nevertheless prove 

- 
Corollary 26.23 If K - L is compact 

E'(K, L) r E,,-i(M - L, M - K ) .  

Proof Let C be a compact set containing K - L. Then 

Ei(K,  L) z E'(K n C, L n C )  E E,,-,(M - ( L  n C), M - ( K  n C))  
E E,,-i(M - L, M - C )  

by 21.20(1) and excision (21.2 and 21.7). I 

Corollary 26.24 (PoincarP Duality Theorem) If M is a compact manifold 
oriented with respect to  E, 

D :  E'(M)-+ E n - i ( M )  
is an isomorphism. 1 

There are a few simple observations one can make by applying the PoincarB 
duality theorem to ordinary homology. Let M be a compact manifold. 
Then H i ( M ;  Z,) E H"-'(M; Z,) E H , - , ( M ;  Z,)*. Hence H,(M; Z,) G' 
H i ( M ;  Z2)**, This implies that H i ( M ;  Z,) is a finite dimensional vector 
space. 

If we suppose that M is compact and orientable it follows that it is orient- 
able with respect to HG for any abelian group G. As in the case of 2, it 
follows that H i ( M ;  Zp)  and H i ( M ;  Q) are finite-dimensional vector spaces. 

Suppose that M is compact, orientable, and H i ( M )  E Fi 0 Ti where Fi is 
free and of finite rank, and Ti  is a finite group. By 25.19, H'(M)  E Fi 0 T i - i .  
Hence we have Fi F,,-i and Ti E T,,-i-l. 

Recall the Euler characteristic x defined in Exercise 11, Section 20. 

Corollary 26.25 Suppose M is a compact manifold of odd dimension. 

Proof x (M)  is well defined since H i ( M ;  Z,) is finite dimensional. Since 

Then x ( M )  = 0. 

dim H i ( M ;  Z, )  = dim H,,_ , (M;  Z,),  

x ( M )  = (- I)' dim H i ( M ;  Z,) = 0. 

Corollary 26.26 (Alexander Duality Theorem) Let K be a compact subset 
of S". Then for each ring spectrum E, 

D :  Ei(K,  L)  + En- i(Sn - L, S" - K )  

is an isomorphism. 
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Proof This follows from 26.21 and 26.17. a 
Corollary 26.27 If K is a compact subset of S", 

E y K )  z En- i(sn - K )  

Proof 

Ei-'(K) z Ei-'(K, *) E En-i+l(S" - *, S" - K )  r En-i(S" - K, *') 

1 by 26.26 and the exact sequence of the triple *' c S" - K c S" - *. 
Another version of the duality theorem involves cohomology with compact 

supports. If X is locally compact and paracompact, and E is a spectrum, 
define 

E:omp(X) = E i ( P )  
where X" is the one-point compactification. 

Theorem 26.28 Let M be a manifold orientable with respect to E. Then 

EiOmp(M) z En- , (M).  

Proof Consider all subsets U c M with U compact. Since M is locally 
compact and Hausdorff 

M" s MIM - U. 

Thus ELomp(M) z 
compact 

Ei(M,  M - U) by 21.20(4, 1). Since M / M  - U is 

- 1i.m E'(M, M - U )  z l h ~  E,,-,(U) g En- i (M)  

1 by 26.23 and Exercise 4, Section 19. 

Theorem 26.29 (Jordan Separation Theorem) Let X c S" be a subset 
homeomorphic to  S"-'. Then S" - X has exactly two components, and their 
boundary is X .  

Proof Ho(S" - X )  r H"(S", X) by 26.26. The exact sequence 

0 4- H"(S") 4- H"(S", X )  4- H"- ' (X)  4- 0 

thus yields Ho(S" - X )  2 @ 2. By Exercise 13, Section 20 and the proof of 
26.8, S" - Xconsists of two components U, and U 2 .  Clearly 8, c S" - U2 = 
U, u X .  We now prove X c ti', n 8,. Let x E X and suppose U is an 
open set containing x; we will show that both U, n U and U, n U are non- 
empty. If U, n U = a, then U2 v U and U, are disjoint open sets. Similarly 
if U2 n U = @, U, and U, u U are disjoint open sets. We dispose of these 



26. Orientation and Duality 285 

possibilities by showing that U, u U, u U is connected. Indeed U, u U, u 
U = S" - ( X  - U) and Ho(Sn - ( X  - U)) E H"(S", X - U) z Z .  Thus 
U ,  = U, u X and U ,  = (I, u X .  I 
- 

Theorem 26.30 (Znoariance of Domain) Suppose X c S" and X = R". 
Then X is open. 

Proof Let x E X and h :  R" --t X be a homeomorphism with h(0) = x.  By 
Exercise 8, S" - h(B) is connected. Now S" - h(S"-l)  = {S" - h(B)} u 
{h(B) - h(S"-l)} .  Since these are disjoint and connected they must be the 
components of S" - h(S"-l) by 26.29. In particular h(B) - h(S"-l) is open 
and hence a neighborhood of x in X .  Thus X is open. I 

Corollary 26.31 Iff:  R"' + R" is continuous and 1-1, n 2 m. 

Proof If n < m, R"'- R" c R"' is not open. f 
I 

Corollary 26.32 Let M and N be manifolds of dimension n. If X c  M ,  
Y c N ,  and X E Y, then X is open iff Y is open. 

Proof Suppose X is open. Let h :  X +  Y be a homeomorphism, let y E Y 
and choose an open neighborhood V of y and a homeomorphism y :  En + 
V. h-'( V )  is a neighborhood of h-'(y). Choose an open neighborhood U of 
h-'(y)  with U c h-l(V) and a homeomorphism 8: R" 4 U. By 26.30 applied 
to R" - U+ V + V" = S", one sees that h( U )  is open in V. Since Vis open, 
h(U) is open. Since y E h(U) c Y,  Y is open. The converse is equivalent. 

e h 

I 

Definition 26.33 A homomorphism A 0 B + k where A and B are vector 
spaces over k will be called a dual pairing if its adjoint A + B* is an isomor- 
phism. 

Theorem 26.34 Suppose k is a field and M is a compact n-manifold 
orientable with respect to Hk. Then there is a dual pairing 

SH'(M;  k)  @ H"- ' (M;  k )  + k 

given by (x ,  y )  = ( x  u y ,  [ M I )  where ( , ) is the Kronecker product (see 
Exercise 7, Section 23). 

Proof D: M"-' (M;  k)  + H , ( M ;  k )  is given, in this case by D(y)  = y n [MI. 
By Exercise 7, Section 23 

(x, y )  = ( x  u y ,  [MI) = (x, D(Y)). 
However, D is an isomorphism and ( , ) is a dual pairing by 25.20. I 
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This is useful in calculation. For example: 

Corollary 26.35 (a) Let x E H'(RP";  2,) be the nonzero element. Then 
xk # 0 for k < n and hence generates Hk(RP";  2,). 

(b) Choose a generator y E H2(CP"). Then yk  generates H2k(CPn)  for 
k < n .  

(c) Choose a generator z E H4(HP"). Then zk generates H4k(HPn)  for 
k 5 n.  

Proof (a) We use induction on n. The inclusion RP"-' c RP" induces an 
isomorphism in cohomology in dimensions less than n.  Thus xk # 0 fork < n.  
But x * x"-' # 0 by 26.34 since x"-' # 0. (b) and (c) are proven similarly. 
In these cases we use integer coefficients. We cannot apply 26.34 but the proof 
of 26.34 applies since H,(CP") and H*(HP") are free and hence the Kronecker 
product is a dual pairing. I 

Corollary 26.36 H * ( R P m ;  Z,)  is a polynomial ring over 2, generated by 
x E H 1 ( R P m ;  2,). H*(CP") and H*(HP") are integral polynomial rings 
generated by y E H2(CPm)  and z E H 4 ( H P m )  respectively. I 

Theorem 26.37 (Borsuk-Ulum) If n > m 2 1, there is no map g :  S" 3 
S" such that g(  -x) = -g (x ) .  

Proof Such a map g would induce a map 
f: RPn-+ RP". 

Since a map S' 4, RP" is essential iff it is covered by a map I -  S" 
with b(0) = -p( l ) ,  it follows that f*: n,(RP") + n,(RP") is an isomorphism. 
Hencef*: H'(RP"; 2,) 3 H'(RP";  2,) is an isomorphism. Thus f *(XI)  = x2 
where x1 E H 1 ( R P m ;  2,) and x, E H'(RP";  2,) are nonzero elements. But 
x:" = 0 and since m + 1 I n, $'+' # 0 by 26.35. This is a contradiction since 

B 

f*(X;l+'> = X T + l .  I 
Another version of this theorem is: 

Theorem 26.38 (Borsuk-Ulam) I f f :  S" -+ R" is continuous and n 2 1, 

Proof If not, 
there exists x E S" with f ( x )  = f ( - x ) .  

g ( x )  = ( f ( x )  - f( - x>>/ I I f (4  - f( - x )  II 
defines a continuous map g :  S" -+ S"-' ,  and g(  - x )  = - g ( x )  contradicting 
26.31. I 

The meaning of this result can be better understood if we assume that the 
surface of the earth is S2  and that temperature and humidity are continuous 
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functions of position. Then at any time there are two antipodal points on the 
earth where the temperature and humidity are the same. 

Corollary 26.39 Let A, ,  . . . , A ,  be bounded measurable subsets in R". 
Then there is a hyperplane H that bisects each of the A i .  

Proof Foreachx E S", let A ,  be a hyperplane through (0, . . . , 0, 1) E R"" 
and orthogonal to x ;  see Fig. 26.2. A ,  intersects R" in a hyperplane which 

Figure 26.2 

consequently breaks A into two pieces. Letfi(x) be the measure of the part of 
A i  on the same side of A,  as x. (Clearly x # A ,  unless x = (0, . . . , 0, 1.) In this 
case we definefi(x) = 0.) Since A i  is bounded, f i  is continuous.fi(x) is the ith 
coordinate of a continuous functionf: S" -+ R". Nowfi( - x) is the measure of 
the other part of A i .  Hence a point x withf(x) =f( -x) determines a cut of 
each A i  into two equal parts. 

In case m = 3, this theorem has been called the ham sandwich theorem 
since it indicates that there is a fair way to cut a three layer sandwich in half. 

a 

Proposition 26.40 If M is a compact orientable manifold of dimension 
4k -I- 2, x ( M )  is even. 

Proof x ( M )  = (- 1)' dim(H,(M; Q) = dim &+l(M;  Q) (mod 2) since 
dim Hk(M;  Q )  = dim H 4 k + Z -  i ( M ;  Q). The cup product pairing is a skew 
symmetric dual pairing on &+l(M;  Q),  and hence is represented by a skew 
symmetric nonsingular matrix. This implies that dim H Z k + l ( M ;  Q) is even 
since there are no m x m skew symmetric nonsingular matrices with m odd. 
Thus x ( M )  = 0 (mod 2). I 
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As a final application we will discuss fixed point theory. Let f: X - r  X .  
We will consider conditions for the existence of an x E X with f ( x )  = x.  
Such an x exists iff the graph off and the graph of the identity map intersect. 
This can be expressed diagrammatically as follows : 

x x x  , , , - x x X  

In the diagram A is the diagonal map. The map g exists such that the 
diagram commutes ifffhas no fixed points. Consider now the homomorphism 
L(f) given by the composition 

A (f x I )*  E,(X) 4 E,(X x X )  - E,(X x X )  + E,(X x X ,  X x X - A(x)) 

Proposition 26.41 I f f :  X +  X has no fixed points, then L(f) = 0 for 
every homology theory E,. 

Proof The existence of g clearly implies that the homomorphism is 0. I 
In the case that X is a compact manifold and E = Hk for some field k,  

L ( f ) ( [ M ] )  can easily be calculated. We begin with a definition. 

Definition 26.42 Let Y be a finite-dimensional vector space and A : V + V 
a linear transformation. Then 

8: V* 0 V+ Hom(V, V )  

given by e(x 0 y)(z) = x(z) ’ y  is an isomorphism. Let e :  V* 0 V + k be the 
evaluation. Define the trace of A by the formula 

Tr(A) = e ( P ( A ) ) .  

One can easily check that if A is represented by a matrix, Tr(A) is the sum 
of the diagonal entries. 

Theorem 26.43 (Lefschetz Fixed Point Theorem) If X is a compact n- 
manifold that is orientable with respect to Hk for some field k,  and$: X +  X 
is a map without fixed points, then 

0 = L ( f ) [ M ]  = 1 (- 1)”” Tri(f,), 

where Tr,(f,) is the trace off,: H i ( X ;  k )  -+ H i ( X ;  k).  
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Proofof 26.43 Note that since Xis compact, D(x) = x n [XI = x\A,([X]). 
Let (xu}  be a basis for H,(X; k).  For x E H i ( X ;  k) ,  we will write x* for the 
dual class in H i ( X ;  k). Thus x*\x = 1. Now 

A*([Xl) = 1 x u  X y u  
U 

for some classes y ,  E H,(X;  k )  by 25.15. Thus 

Y. = xu*\@ xu X yU) = x,*\A,([XI) = D(xu*), 

so we have established the formula 

A*([Xl) = 1 x u  x W U * ) .  

We will evaluate the composite 

H , ( X ; k ) & H , ( X x  X;k) ' /"". .H, (Xx X ; k ) - H , , ( X x  X , X x  X - A ( X ) ; k )  

Dz I P D, I A' 
H"(X x X ;  k)- H"(X; k) Ha(X;  k ) L  HO(P; k) 

By Exercise 18, D,(x X y )  = (- l) l"''"D(x) X D(y).  Hence 

W((f  x 11,) A*([Xl> = 1 D;l(f*(Xu) 3 D(xu*N 
U 

= 1 (- I)I""I."D-'(f*(x,)) x x,*. 
U 

Thus 

P,D A*D;'(fx 1)* A,([X]) = P,D(Z (- l)'"~l'"D-'(f*(xu)) . xu*) 
U 

(since (x u y )  n z = x n ( y  n z)) 

since 6(xu* @f*(xu)) =f*. 1 
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Exercises 

1. If A is a closed subset of X ,  show that A" is a closed subset of X " .  If U 
is an open subset of X ,  construct a continuous mapping f": X" --* U". 
Show that X"/A" = ( X  - A)". Hence there is an exact sequence: 

(Section 30) 
2. Let M be a manifold. Each open set U c M homeomorphic to R" 

determines a map r u :  M" + S". Show that if M is arcwise connected, the 
homotopy class of ru  does not depend on the choice of U. 

3. Suppose M is a compact connected manifold. Show that M is orientable 
with respect to  E iff the homomorphism 

. . * E m -  1 comp ( X  - A )  + E$mp ( A )  + EZnp ( X I  + E$mp ( X  - A )  + . * 

r* : En( M )  -+ E,(S") 

is an isomorphism, where r = r,, (see Exercise 2). Show that r* is an iso- 
morphism iff there is a class a E E,(M) such that r*([S"])\a = 1. 

4. Suppose X is a compact subset of R". Prove that H ' ( X )  = 0 for i 2 n. 
5. Let M be a connected n-manifold. Show that if M is compact and orient- 

able, H " ( M )  N Z .  Otherwise H"( M )  = 0. 

6. Prove ( A  x B)" = A" A B". Prove that if M" c R"+k has a neighbor- 
hood U =  M" x Rk such that M" corresponds to M" x 0, then M is a n 
manifold. (30.4) 

7. Show that if M and N are orientable with respect to  E, M x N is orient- 
able and there is a unique orientation such that [ K  x L ]  = [ K ]  5 [L] .  

8. Suppose X c S" and X E B". Prove that S" - X is connected. (26.30) 
9. Prove that a subset of the plane is simply connected iff its complement 

has no bounded components. 
10. A manifold with boundary is a Hausdorff space M" such that every 

point has a neighborhood homeomorphic to R" or H" = {(xl, . . . , x,) E 
R"lx, 2 O}. The set of points with a neighborhood homeomorphic to  R" is 
called the interior of M (Int M ) .  dM = M - Int M is called the boundary of 
M .  Show that Int M is open. Use 26.30 to show that dM is an (n  - 1)- 
manifold. 

11. Let M be a manifold with boundary. Show that 

L = M U {dM X [o, l)}/X - (X, 0)  

is a manifold. 
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12. Using the notation of Exercise 11, let K = M u {dM x [0, +]} and 
B = d M x  4. Show that A4= K -  B, (K,  B ) - ( M ,  d M ) ,  L = M ,  and 
K - K N aM. Hence prove that if L is orientable with respect to E and M 
is compact there are isomorphisms: 

E'(M, a M )  z E,,-i(M), E'(M) z E,-,(M, dM). (30.26) 
13. Use Exercise 12 to show that if M is a compact n-manifold with bound- 

ary, x (dM)  = (1 + (- l)"-')x(M). 
14. Suppose M" is a compact connected n-manifold and M" c N"+l where 

N"t1 is a simply connected (n + 1)-manifold. Then M" is orientable and 
N - A4 has exactly two components. Conclude that R P 2  q! R3. 

15. Prove via Exercise 13 that RP2" is not the boundary of a compact 
manifold with boundary. 

16. Calculate the multiplication structure in H*(RP") using the multi- 
plicative homomorphisms Hk(RPn) - Hk(RP"; 2,). 

17. Suppose that if M is an orientable n-manifold with respect to Hk, 
where k is a field. Suppose L c K c M are compact. Show that there is a 
dual pairing 

H'(K, L ;  k )  Q SH"-'(X - L, X - K;  k )  -, k.  

18. Let M and N be compact manifolds of dimensions in and n that are 
orientable with respect to E. Using the orientation for M x N from Exercise 
7, show that 

by establishing the commutativity (with the sign (- I)"") of the diagram 

D(x x y )  = (- 1)'"' '"D(x)  x D(y)  

\ 
Ek+m(A X B) Q E,+,,(A X B X c X 0) - E,+"-k-,,,(C X 0) 

l @ ( l x T x l ) r  I 
Ek+"'(A x B) Q E,'+,(A x C x B x 0) (- 1)'"' l x i B x  

T 
Ek(A) 0 E"(B) 0 E,(A x C )  0 E"(B x D) 

1 0 T i B 1  

x 

\ @ \  I 
Ek(A) 0 E,(A x C)Q E"(B)O En(B x 0) - EI-k(C)  En-,(D) (26.43) 

19. Show that every map f: X - ,  X has a fixed point where X = CP", 
HP", or RP2". Find a map f: RP2"' -+ RP2"+ without a fixed point (Hint: 
Use a nonzero vector field on S2"+'.) 
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20. Generalize 26.43 to an arbitrary homotopy commutative homotopy 

(a) E, (X)  is free and finitely generated over E,(P).  
(b) E k ( X )  E k ( X )  - Eo(P) is a dual pairing. 

21. Let kz,: S" -+ S" be a map of degree k.  Then {ki2 q }  = nk{q} = {q  * n k  1 3 }  

associative ring spectrum such that, for the manifold X in question: 

\ 

(c) E n ( X  x, O k E k ( X ) O E , ( P ) E n - k ( X ) .  

since q generates 7c3(S2). The homotopy commutative diagram 

defines a map 0: CP2 + CP2 by Exercise 5, Section 14. Using 26.35 show that 
n k  = k2. Using Exercise 7, Section 13, prove that 2E{q} = 0. (27.19) 

22. Show that L2n-1(Zp) is an orientable manifold (see Exercise 19, Sec- 
tion 7). Supposep > 2. Use 26.34 to prove that H*(L,,-,(Z,); Zp)  has genera- 
tors x and y of dimensions l and 2 and relations x2 = 0 and yn = 0. Show 
that L(Z,) = u:=l L2n-.l(Zp) is a space K(Z,,, l),  and H*(K(Z,, I ) ;  2,) E 
Z,,[y]OA(x) where Z,[y] is a polynomial algebra over Z,  and A(x) is 
an exterior algebra (&) has generators 1 and x and a single relation x2 = 0). 
(Appendix, Section 27) 

23. Let f: M" -+ N" be a 1-1 continuous mapping where A4 and N are n- 
manifolds. Prove that f i s  open. (Hint: Apply 26.32.) 

24. Choose an orientation for R" and hence for each open subset of R". 
Call a homeomorphism h :  U+ V orientation preserving if h,( [K])  = [h(K)] 
for each compact K c U. Show that a manifold M is orientable iff there is a 
coordinate system {U,, h,} such that hi'h,: h;'(U,) + h;l(U,) is orientation 
preserving. 

25. Consider the projective spaces RP", CP", and HP" of Sections 7 and 11. 
Show that [to 1 . .  . It,,] -+ (t;'t, , . . . , t;'t,,) is a homeomorphism from Vi to 
R", R2", or R4" respectively. 

26. Let us consider D to be the basic duality operator in a manifold. Then 
there is a pairing dual to the cup product which is in fact its historical pre- 
decessor. This pairing, called the intersection pairing, is defined for any two 
open sets U and V in a manifold M" that is orientable with respect to E 
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is defined to be the composition 

E,(u) o E,( v)+ E ~ M ,  M - u) 0 E ~ - s ( M ,  M - v) - 

U E Z ~ - ~ - ~ ( M ,  M - (u n v)) 
D - Er + s - n(u n v). 

Show that l i s  graded-commutative and associative. Show that if M is compact 

If 5 and q are ordinary homology classes represented by cycles c(5) and 
c(q) in "general position," their intersection will have dimension r + s - n. 
This intersection will represent I(5 0 q). As a simple example of this consider 
curves on a torus. 

27. (Leruy-Hirsch Theorem) Let F 2 E 5 B be a locally trivial bundle 
with B compact. Let R be a principal ideal domain. Suppose there are classes 
x i  E SH"'(E; R) such that { i* (x i ) }  is an R-free basis for SH*(F; R) .  Then { x i }  
is an SH*(B; R )  free basis for SH*(E; R) (Hint: Construct a model functor 
L*(A) = free H*(A;  R )  module generated by { x i } ,  for A c B, a reality functor 
K*(A) = SH*(rr-'(A); R),  and a natural transformation 8,: L*(A) -+ K*(A)  
which is the SH*(A;  R)  module homomorphism which sends the generator x i  
of L*(A) into ( iA)*(x i )  where iA:  rr-'(A) + E is the inclusion. The object is to  
prove tIB is an isomorphism. Construct Mayer-Vietous sequences for L* and 
K* and use induction over the open subsets of B, using the fact that 8" is an 
isomorphism if U is a coordinate neighborhood by the Kiinneth theorem.) 
(30.7) 

4 5  0 [MI) = t. 

28. Prove that the only compact contractible manifold is a point. 



27 
Cohomology Operations 

In this section we shall discuss natural transformations in homology and 
cohomology theories. Operations will be constructed in ordinary theory, and 
we will make applications to geometric problems. 

I n  Exercise 4, Section 18 the notions of stable homology and cohomology 
operations were introduced. The simplest examples of such operations are 
coefficient transformations. Suppose that E is a ring spectrum and C L E  

rc,(E) = $(So) = E-"(S0). Then the transformations 

c#la(x) = CLAX, c#l"(X) = cciix 

Ek(x) -+ P-"(x) .  These are clearly define operations 4a: Ek(x) -+ g"+k(X) 
natural and stable. In  fact they are induced by a mapping of spectra: 

These facts thus follow from Exercise 4, Section 18. In ordinary theory these 
operations correspond to the action of the coefficient ring R on the modules 
n * ( X ;  R) and f i * ( X ;  R). 

Proposition 27.1 In x,'(X) and rcs*(X), all stable operations are coeffi- 
cient operations. 

Proof Let 0, be the set of stable homology operations of degree k in 
n*'. This set has a natural addition given by adding values. We have defined a 
homomorphism 

A homomorphism E :  0, -+ n:(So) is defined by E(0) = e( l )  where 1 E nos(So) 
is the class of the identity. It is easy to see that E4 = 1. To prove that q5 and 

c#l : n:(So) 0 , .  

294 
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E are inverse isomorphisms, we prove that E is a monomorphism. Suppose 
E(8) = 0. Let x E x>(X) .  Then there is a mapping f: Sn+k 4 S"X such that 
f*(a"+k(~)) = o"x. We then have 

an(~(x)) = o(dyx)) = ~ ( f * ( ~ " + ~ ( ~ ) ) )  =f*(e(an+k(I))) =f*(on+k(e(I))) = 0. 

Hence O(x) = 0 and thus 0 = 0. The proof in  stable cohomotopy is similar. 

example, the map Sq(x) = x2 defines a natural transformation 

1 
There are cohomology operations unrelated to stable operations. For 

fin( X )  -+ B y  X ) .  

By 23.34, Sq(x + y )  # Sq(x) + Sq(y), so this operation is not a homomor- 
phism, and hence not a stable operation. It is, however, natural. f * ( S q ( x ) )  = 

f * ( X 2 )  = (f*(x>>z = Sq(f*(x)). 

Definition 27.2 A cohomology operation of type (E, m, F, n) is a natural 
transformation 

4 :  iP-+pn. 
Let {E,  rn, F, n} be the abelian group of all cohomology operations of type 

( E ,  rn, F, n). We define a homomorphism 

R: { E ,  rn, F, n} + &Ern) 

by R(8) = O ( r )  where I E Em(Em) is the class of the identity map. 

Theorem 27.3 I f  E is an R-spectrum and each En is a CW complex, R is 
an isomorphism. 

Proof We define a homomorphism C: F""(Em) -+ {E, m, F, n}  as follows. 
Let 

x E E m ( X )  = [X, Em]. 

Letf: X-+ Em represent x. Then define C(a)(x) = f * ( a ) .  C is clearly a homo- 
morphism and is natural since 

C(4(g*(x))  = (fg>*(.> = g * f * ( 4  = g*(C("x)). 

Furthermore, R(C(a)) = C(a)(i) = a, and C(R(Q))(x) =f*(R(O)) =f*(Q(z))  
= e(j-*(I)) = e(x). I 

Corollary 27.4 If E is an R-spectrum and each En is a CW complex, the 
graded abelian group of all stable cohomology operations of degree k from 
8* to P* is isomorphic to 

F+k(En) 
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where the mappings in the limit are 

p + k(E,) p +  k +  '(SE,,) + k +  (En +& - 
Proof Since an element of @ F n + k ( ~ , )  is a sequence of elements x, E 

F+k(E,) such that 

4xn) = en*(xn+l) 

(Exercise 9, Section 15), and a stable cohomology operation is a sequence 4, 
of cohomology operations such that 4,,+ l(a(x)) = a(q5,,(x)), we need only show 
that these two relations are equivalent, under 27.3. Suppose x, corresponds to 
4,, and x , + ~  to Let x E P(X) be represented by f: X - ,  E n .  Then a(x) is 
represented by e,(Sf ). Thus 4,,(~) =f *(x,) and 4 n + l ( c ( X ) )  = (Sf)*en*(xn+l) 
= (Sf)*a(xn) = df *(xn)) = 4 4 n ( X ) ) .  I 

Corollary 27.5 If E is an R-spectrum, each En is a connected CW complex, 
and F is properly convergent, the group of stable operations of degree k from 
E to F is isomorphic to P2k+1(&+,) and 

is a monomorphism. 

Proof Apply 27.4, Exercise 14, Section 18, and Exercise 12, Section 22 to 
see that a-le,*: p + k + l ( E , + , )  -+ p + k ( E , , )  is an isomorphism for n > k and 
is 1-1 if n = k.  I 

Corollary 27.6 If both E and F a r e  0-spectra, and the spaces En and F,, 
are CW complexes, every stable cohomology operation is determined by a 
mapping of spectra. 

Proof By 27.4 we have for each operation cp of degree k and each n a 
mapping cp,: En -+ Fn+k such that a({q,,>) = e,*({cp,+l>). This is precisely the 
diagram of Exercise 4, Section 18. 

We will investigate the stable cohomology operations in ordinary theory in 
the case that n = p = Z 2 .  However, the methods we use can be applied to 
other cases. 

We construct stable operations Sq'; w"(X;  Z,)  -+ i i "+ ' (X;  Z , )  called the 
Steenrod squares. The method of construction in essence occurs in Steenrods 
paper [66], but we will follow a slick modification due to Milgram [47]. 

I 

Definition 27.7 Let X N Y = X x Y/* x Y 
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Proposition 27.8 (a) r"(X) is a covariant functor from CQ* to CQ*. 
(b) There is a natural inclusion 

ryx) -+ rfl+l(x) 
write T(X) for the union with the weak topology. T(X) is called the quadratic 
construction on X .  

(c) There is a natural map 

H :  ryx) x I +  ryx XI r) 

ryx) >Q I H m(x M I )  ryx) >Q I ryx M I )  

such that the diagrams 

/ 
Ffl( w 

i i H ' rn+*(x x I ) ,  J -n+l (X)  M I 

commute. 

n. 
(d) Iff-  g, T"(f) - P(g) and the homotopies are compatible for various 

(e )  ro(x) E X A  X. 
(f) There are compatible natural mappings 

ryx A y> 2 ryx) A P( Y )  

with Lo the natural homeomorphism. 

Proof (a) P ( X )  clearly belongs to CQ* since it is a quotient space of 
s" X ( X A X ) .  Iffi  x+ Y,  

1 X (fAf): s" X (xA X ) - + s "  X ( Y A  Y )  

induces a map r"Cf): P ( X )  -+ r"( Y )  and the functorial identities are obvious. 
(b) The equatorial inclusion S" c 9"' induces a map S" x ( X A  X )  -+ 

x (XA X )  preserving the identifications. The induced map is clearly p+l 

natural. It is 1-1 and closed, hence an inclusion map. 
(c) Define H by 

H(8, x, x', t )  = (8, ( x ,  t ) ,  ( X I ,  t ) ) ;  

this clearly preserves the identifications, and the commutativity of the dia- 
grams is trivial. 

(d) If K:  f g is a homotopy, r " ( K )  0 H :  T"(X) >a I -+ r"( Y )  is a homo- 
topy between P(f) and P(g) by (c). 
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(e) This is obvious. 
(f) Define L by 

this is natural and preserves the identifications. I 

Theorem 27.9 Suppose Xis  a CW complex with cells {earn, *}. Then T(X) 
is a CW complex and P ( X )  is a subcomplex. To(X) 5 X A  X has the cellular 
structure of X A  X .  The cells of P ( X )  - r"-'(X) are of the form ea ,a t ;  one for 
each pair of cells earn, e,".'. dim ea,af  = n + nz + m'. 
Proof By Exercise 13, Section 14, i t  will be sufficient to show that P ( X )  is 

a C W  complex with I7""(X)  a subcomplex. We apply Exercise 4, Section 0 to 
the quotient map q:  S" x (XA X )  + r"(X). S" x (XA X )  is Hausdorff by 
Exercise 6 ,  Section 8 and q- ' (y)  is compact for each y .  Since q is closed, P ( X )  
is Hausdorff. 

We now describe the cells of r " ( X )  - m-'(X). Let f;: B" -, S" be the 
characteristic map for the upper hemisphere of S" (see the proof of 20.10). 
For each pair of cells earn, er: of X,  not the base point, define a map 
x ~ , ~ , :  Br"'+'' --f P ( X )  by 

Brn+rn'+n = J. " X X  X X . '  
- B" x B" x ~ m '  - S" x ( X A  ryx) 

where q is the quotient map. Since every point of r " ( X )  - r"-'(X) can be 
written uniquely in  the form q(0, x, x') for 0 E Int B; =f:(Int B"), the sets 
ea,or' = x,, Int Brn+rn'+n ) cover ryx) - m-l(x). In fact 

qlIn, B + n x ( x - * ) x ( x - * ) :  Int B; x ( X -  *) x ( x -  *)+rfl(x) -r"-'(x) 
is a homeomorphism. Hence ~ ~ , ~ . l , , , ,  g m + m , + n  is a homeomorphism onto 
ea, If we use the cellular structure of XA X for r o ( X ) ,  we have a complete 
description of the cells of T"(X). x ~ , ~ , ( S " + " " + "  ) rn(X)rn+rn'+n-l since 
x$,(S" x B" x Bm') c x ~ ' , ' ) ( B ~ + ~ ' + " - ~  ). Thus m ( X )  is a cell complex. It is 
closure finite, since if xa(Brn) c K and xa,(Brn') c L, 

x a ,  a I (B" + rn' + " r y K  u L). 
X Since S" x (XA X )  is a CW complex, B(S" x (XA X ) )  - s" x (XA X )  

is a quotient map. Moreover, there is a commutative diagram 

B(Sn X ( X A  x ) ) a  S" X ( X A  X )  
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Hence x: B(T"(X)) -+ Y ( X )  is a quotient map and thus P ( X )  has the weak 
topology. I 

Corollary 27.10 If X is an (n - 1)-connected CW complex, T k ( X )  is 
(2n - 1)-connected for all k .  

Proof X =  Y where Y has no cells in dimensions less than n, except for 
*. By 27.8(d), P ( X )  N r"( Y).  Now Y( Y )  has no cells in dimensions less than 
2n, except for *. Thus I?( Y )  is (2n - 1)-connected. I 

X A x  

which commutes up to base point preserving homotopy ; by 23.14 and 
23.6, y1 exists in the case X =  K(Z, ,  n) and Y = K ( Z z ,  2n) (the sign 
(- 1)"' is immaterial here, since the maps under consideration belong to 
H ' " ( X A  X ;  2,)). Now the cells of T(X) - T ' ( X )  have dimensions at least 
2n + 2 .  Hence an extension of y' to T(X) exists by 16.3. Now 

[r(x), ~ ( z , ,  2n)3 = HZ"(r(x); z,) = z, , 
for there is only one cell of dimension 2n in T(X). Consequently, there is 
only one nontrivial homotopy class of maps T(X) + K(Z,, 2n). Uniqueness 
follows since pn, n :  K ( Z 2 ,  n) A K ( Z , ,  n) 4 K ( Z , ,  n) is nontrivial. 1 

Theorem 27.12 There is a transformation 
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such that 

(a) i * ( y ( x ) )  = x7ix where 1 :  X A  X - +  T ( X )  is the inclusion; 
(b) iff: A' -+ Y, y C f * ( x ) )  = r ( f ) * ( y ( x ) ) ;  
( 4  Y ( X .  Y )  = Y W  * Y ( Y ) .  

Proof Let 5 :  X -+ K(Z, , n) represent x. Define y ( x )  = {y 0 r(5)). By 27.8(d), 
this is well defined. Now ~ * ( y ( x ) )  = { y  0 r(5) 0 t }  = {p,,,,, 0 (5  A 5 ) )  = X K X .  
Iff: x-+ Y, 

r c f ) * w )  = {Y re) r m  = {Y 0 re o f ) }  = Y G  o f 1 1  = Y ( ~ * w .  

Finally we observe that the diagram 

N Z , ,  2n + 2 ~ )  ~ ( K ( z , ,  n + P ) )  

@ 2 " . 2 P  i 

commutes by 23.12, for the nontrivial map 

Sz"+zp -+ T(K(Z,, n) A K(Z,,  p ) )  

yields the nonzero element of HZnS2p(SZn+2p; 2,) under both compositions. 

y ( x )  y(y) is represented by the composition 
Now if x = {f} and y = {g}, where f :  X -+ K ( Z , ,  n) and g: X - +  H Z ,  , p ) ,  

r(.r) A r(e) r(x) -A rw) A r(x) - UKG, , n)) A r ( m ,  P>> 
P2" 2P - K(z2, n) A K(Z,, p )  K(Z2 , 2 n  -k 2p). 

One can easily see that the diagram 
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commutes. Hence y(x) * y(y) is also represented by 

wn, p )  - r(K(z,, 2n + 2 p ) L  K(z,, 2n + 2p). 

This, however, also represents y(x * y) .  

We now define d": RP" x X 4  P ( X )  by d"{(e}, x) = ((6, x, x)} for 0 E S". 
This is well defined and continuous for X E  CQ. Furthermore, the maps d" 
fit together to define a map 5: RP* x X +  T(X). 

I 

Lemma 27.13 5 is natural. The diagram 

commutes where zz(x) = (*, x). 

Proof These facts are easy to verify. I 

Definition 27.14 I f  x E rl"(X; Z,) ,  we define Sq'(x) E B"+'(X; Z,) (read: 
squared) be the formula 

1 x " - ~  x sqi(x) = A*(Y(x)) E H ~ " ( R P *  x X ;  2,) 

where x " - ~  E H"-'(RP"; Z,) is the nonzero element (see 26.35). 
Sq'(x) is well defined by 27.14 if X is a CW complex. This hypothesis is 

necessary to apply 25.15. It is easy to extend Sq' to f l n ( X ;  Z,) for any X E CQ* 
by 27.3, and thus one may also define Sqi on S f f " ( X ;  Z2). 

The operations Sq' are called the Steenrod squaring operations or Steenrod 
squares; an operation that is a sum of products of Steenrod squares is called 
a Steenrod operation. 

Theorem 27.15 Sq': B"(X; Z,) -+ Anfi ( X ;  2,) is a cohomology operation 
satisfying: 

(a) Sq'(x) = 0 if i < 0 or i > n. 
(b) Sq"(x) = x'. 
(c) (Cartan Formula) Sqk(x u y )  = E Sq'(x) u Sq"'(y). 
(d) Sq'(a(x)) = a(Sq'(x)). 
(e) Sqo = 1, Sq' is the Bockstein homomorphism associated with the 

sequence 0 4 Z ,  -+ Z4 -+ 2, -+ 0. 
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Proof Since and y are natural, Sq' is natural. I f  i > n, Sq'(x) = 0 since 
H"-'(RP"; Z , )  = 0. Suppose i < 0. Let = X / X " - ' .  For x E f i " ( X ;  Z , )  
there existsy E A"(X, , - , ;  Z , )  such that ( ~ ~ , , - ~ ) * ( y )  = x. Thus Sq' x = ( p X n - , ) *  
(Sq'(y)) = 0, since H " + ' ( X , _ , ;  2,) = 0. Now Sq" x = i2*(x"-i  X Sq'(x)) = 
i2*A*(y(x)) = X*i*(y(x)) = a*(x 7 x )  = x2. Applying a* to the equation 
Y ( X .  Y )  = y(x) * Y(Y> yields 

C X n + m - k  - x sq"x. y )  = (T x n - i  X Sqi(x')(T x m - j  x Sq'(y)). 
k 

(c) follows by calculating the coefficient of x ~ + ~ - ~  on the right-hand side 
(using Exercise 17, Section 23). To prove (d) and (e) we need some lemmas. 

Lemma 27.16 Sqk(x 2 y )  = CSqi(x) X Sqk-'(y). 

Proof This follows immediately from (c) and Exercise 17, Section 23, 
for x x y = (x x I) * (1 2 y )  = p l * ( x )  p 2 * ( y ) .  I 

Lemma 27.17 Let u E H'(S1; 2,) be the nonzero element. Then Sqou = u. 

Proof We will describe a cellular structure on T'(S') such that a: S' x 
S1+ T'(S1) is cellular. We use this to evaluate u X Sq'u. Now 

ro(sl) z s1 A s1 3 r/arAr/az = z2pz2.  
We give this space a cellular structure so that the diagonal A :  S' + S' A S' is 
cell~ilar; see Fig. 27.1. 

* * 

Figure 27.1 

Let * be a 0-cell. We define a 1-cell and two 2-cells with characteristic 
maps 

xl: I -+12]dZ2 ,  x 2 ' :  A 2  -+I2/dI2, xZ2: A2 + Z 2 / a I 2  
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Figure 27.2 

defined by xl(s) = (8, s>, xzl( to ,  t , ,  1,) = ( t 2 ,  to + tz>, and x z 2 ( t 0 ,  tl, t 2 )  = 
(11 + t 2  9 t l h  

Now T'(S') = Z x (S' A S')/-  has an additional 2-cell and two 3-cells with 
characteristic maps 

x 2 3  : z x z -+ rl(sl), 
x31  : I x A2 4 F'(S'), 

x3': Z x A' -+ F'(S') 

defined by ,yZ3(s, t )  =(s, t ,  I), x31(s, t o ,  t , ,  t 2 )  = (s, t 2 ,  to + t,), and 
~ 3 ~ ( s ,  t o ,  tl, 1,) = (s, t l  + t 2 ,  tl). We choose generators of C#(T'(S'); Z,) 
given by these characteristic maps: 

eoE Co, el E Cl, e2 ,e ,  , e ,  EC,, and e 3 1 , e 3 2 ~ C 3 .  

ae31 = ae32 = e,' + eZ2 + eZ3, 
aeZ3 = 0,  ae21 = deZ2 = el, 

1 2 3  

One calculates 

ae, = O  ae, = 0. 
See Fig. 27.2. 

Now a: S' x S' -+ T'(S') is cellular. Choose generators xo, xll, xlZ, and 
x2 corresponding to the cells of S' x S'. Then n,(xll) = 0, d#(xl2) = el and 
i i # (x , )  = eZ3. 

We now evaluate a*(y(u))({x,}): 

a#<Y(u>>(x2> = Y(u>(a#(xz)> 
= y(u)(ez3) 
= y(u)(e2' + c , ~ ) ,  

since 
o = s(y(u))(e3') = y(u)(ae32) = y(u)(eZ1 + e2' + e23). 
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e,' + e2 ,  = i # ( v r \ v )  where u E R,(S';  2,) is a nonzero class and 1 :  S' A S' 
-+ T'(S') is the inclusion. Thus 

a#(y(u))(x,) =l" (y (u ) ) (ur \u )  = (uiiu)(vr\o) = I .  

Thus A*(y(u)) # 0 and hence Sqo u # 0 so Sqo u = u. I 
We continue with the proof of 27.15. Let u X x E ET"+'(S' x X ;  2,). Then 

by 27.16 and 27.17 Sq'(u X x) = Sqo u X Sq'x = u X Sq'x. Letp: S' x X . +  
S X  be the quotient map. Then p*(o(x)) = tl X x, hence p*(a(Sq'(xj) = 
u x Sq' x = Sq'(u x x) = Sq'(p*(o(x))) =p*(Sq'(a(x)). Since p* is a mono- 
morphism, (d) follows. By 27.5 there is only one nonzero stable cohomology 
operation of degree 0. Since Sqo u # 0, Sqo = 1. 

Now let X E  H'(RP"; Z,)be the nonzero element. Sq'x = xz # 0. To 
evaluate p(x), observe that the monomorphism 2, .+ Z4 induces an isomor- 
phism H ' ( R P m ;  Z 2 ) 4  H'(RP"; Z4). Thus by Exercise 13, Section 18 
p(xj # 0. Consequently p(x) = Sq' x.  By 27.5, /3 = Sq'. I 

Corollary 27.18 Sq' is a homomorphism. 

Proof This follows directly from 27.4 and Exercise 4, Section 18. [ 

Proposition 27.19 I T , + ~ ( S " )  = Z,  for n > 2. S"'q: s"" .+ S" is essential. 

Proof If S"-2q  N *, CS,,-',, N S"vS"+' by Exercise 22, Section 14. Now 
by Exercise 5, Section 14, S2  u ,,e4 = CP'. Hence 

S " - 2 ~ ~ 2  E S" u Sm-2,,en+2 N S"V,.Y"+~. 

Consequently there is a map u :  S"-,CP2 4 s" inducing an isomorphism in 
An( ; 2,). Choose x E P ( C P ;  Z,), and y E P ( S " ;  Z,) with cc*(y) = x # 0. 
Sq2 y =0,  so Sq2 x = O .  On the other hand Sq2 x =Sq2(o"-2(u)) = 
on-2(Sq2 u )  = O " - ~ ( U ~ )  # 0, for u E A2(CP2;  2,) a generator. This contra- 
diction implies that S"-,q N *. By 13.18 and 13.13, z,+,(Sn) is generated by 
s"-'q, and by Exercise 21, Section 26, S"-2q has order 2. I 

Proposition 27.20 Let X E  H'(RP"; Z , ) ,  U E  H 2 ( C P a ;  Z,), and v E 

H 4 ( H P m ;  Z,) be nonzero elements. Then: 

(1) sq' x = (;)x"+'. 
(2) sq2' U" = c>un+i. 
(3) sq4' u" = (;)u"+'. 

Proof We use induction on n. I f  n = 1 Sq 'x  =x2,  S q 2 u =  u2 and 
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Sq4 v = v 2 ,  and these are the only possible nonzero values by 27.15(a). 
The inductive step applies the Cartan formula as follows: 

sqi X n + l  = sqi (xn . x) = sqi Xn . + sqi-l Xn . x2 

the cases of u and v are similar. I 
Thus for example, x2" = Sq2"-' Sq'"-' * 1 .  Sq' x 
One can define the operations Sq' in H*(X,  A ;  Z,)  and one easily proves: 

Proposition 27.21 The operations Sq': W ( X ,  A ;  Z,)  + H " + i  ( X ,  A ;  Z , )  
satisfy 27.15 and furthermore Sq'6 = 6Sq' where 6: H"(A;Z, )  -+ 

H"+'(X, A ;  Z , )  is the coboundary. I 
In particular, 27.16 also holds for x E H " ( X ,  A ;  Z , )  and y E H"( Y, B ;  2,). 
By 27.6 one can also define Sq,: H,(X, A ;  Z , )  -+ Hn- i (X ,  A ;  Z,) .  

Theorem 27.22 

(a) Sqi ((~(x)) = a(Sq,(x)); Sqi ax = a Sq, x. 
(b) SQ(X X Y )  = x i + j = k  Sqi x X Sqj Y .  

(c) Sqo = 1,  Sq, is the Bockstein associated with the sequence 0 + Z ,  + 

Proof The proof of (a) is easy. To prove (b) and (b') observe that the 

(b') sqk(x\y) = x i +  j = k  sqi x\sqj Y'  

Z4+Z,+0. 

Cartan formula can be written as a homotopy commutative diagram : 

I n P n + i , m t k - i  I 
P n ,  m 

Proof of this follows from evaluating Sqk(r, K 1,)  where i1 E H"(K(Z,,  n); 2,) 
and 1 ,  E H"(K(Z,, m);  Z,) .  

Thusif IX :  S'+" + XA K ( Z , ,  n) and p :  S"'" + Y A K ( Z , ,  m) are representa- 
tives for x E H , ( X )  and y E H,( X ) ,  sqk(x A y )  is given by (1 A Sq") 0 (1 A pn, ") 
o (1 A T A 1). (a A j?). Applyingthediagram, this becomesx Sqix A Sqk-iy. 
Applying this to H"( X ,  A ; Z,)  r I?"( X + / A +  ; 2,) gives (b). A similar argument 
proves (b'). (c) follows for reasons very similar to those in 27.15. I 
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Corollary 27.23 Let S" 3 K 1 L with K and L compact. Then the diagram 
D 

Hk(K, L;  2,) - H,,-k(S" - L, S" - K ;  z,) 

commutes. 

Proof Let 
C: H'(K, L ;  Z,)  0 H,,(S", S" - K ;  2,) + Hn-i(S" - L, S" - K ;  2,) 

be defined as in Section 26. Then clearly 

sqk c(x 0 y )  = c c(sqs x 0 sqtu) 
k = s + f  

by 27.22(b') and the definition of C. Now [ K ]  = i,([S"]) and Sq,([Sn]) = 0 
unless t = 0. Hence Sq,([K]) = 0 unless t = 0. Since D(x)  = C(x 0 [ K ] ) ,  
Sqi(D(x)) = C(Sq' x 0 [ K ] )  = D(Sqi x ) .  

In addition to Sq' it is possible to define cohomology operations (SqJ* by 
25.20. These operations are different from S q ' .  More generally, for each 
stable cohomology operation 4' of degree t, there is a corresponding homo- 
logy operation 4' of degree - t by 27.6. Since H*(X; 2,) and H , ( X ;  Z,) are 
dual vector spaces 4' determines a stable cohomology operation (+J* of 
degree t .  Let us write 4 2 )  for the &-algebra of stable cohomology operations 
with Z, coefficients. We can define x: 4 2 )  + 4 2 )  by ~ ( 4 ' )  = (43*. 

Proposition 27.24 

(1) ~ ( L Y P )  = ~(P)x (LY) ,  ~ ( 1 )  = 1, and x is a homomorphism. 
(2) C:=oX(Sq"-f)Sq' = 0 if n > 0. 
(3) 
(4) If LY is a Steenrod operation," x2(a) = LY. 

Observe that Eq.  (2) or ( 3 )  determines x on Sq" inductively, and hence on 

Proof (1) is immediate since (UP), = u t P r  and (atPr)* = Pf*af*. Let x = 
x (Sq"-') Sq' y and suppose x # 0. Let X* be a dual homology class. 

Sq"-' X(Sq') = 0 if n > 0. 

all Steenrod operations. 

Then 
1 = x\x* = C(Sg,-,)* Sq'y\x* 

= Sq' Y\Sqn - t X* = Sqn(Y\X*) 
by 27.22(b'). 

2 7  We will prove in Section 28 that every element of 4 2 )  is a Steenrod operation. 
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Consideration of the diagram 

proves that there is no class u E H,,(X; Z,) with Sq,(u) = 1. This contradiction 
implies x = 0 and establishes (2). 

By using (2) and induction one proves that 

x(Sq") = 1 Sq" . . . Sq". 
i l + * .  . +ik=n 

i ,>O 

This function can easily be seen to satisfy Eq. (3) as well by symmetry. 
Assume that x2(Sqi) = Sq' for i < n. Applying x to (2) we get 

c x(Sq') Sq"-' + x,(Sq") = 0. 
170  

Comparing this with (2) we get xz(Sq") = Sq". By iterated application of (I), 
we see that x2(a) = a if a is a Steenrod operation. I 

Theorem 27.25 (Thorn) I f  K is a compact subset of S", the homomor- 
phism 

X(Sq'): H"-"(K; 2,) --+ H"-'(K; Z,) 

is 0. 

Proof We first show that for any A t S", Sq': H'(S", A ;  Z,)+ 
H2'(S", A ;  2,) is 0. Now Sq'x = xz. Letf: (S", 0) + (S", K )  be the inclusion. 
Then x2 =f*(x) u x = O  unless i = n. In this case Sq'x = 0 since 
H2"(Sn, K;  Z,) zH- , (S"  -K;Z,) = 0. Consequently x(Sqi): HZi(S", A ; Z z )  + 
Hi@", A ;  2,) is 0. 

We now consider the commutative diagram 

H y K ;  2,) E H"+(S", S" - K ;  2,) 

Hk+' (K;  2,) z Hn-,-i(S", S" - K ;  Z,) 
with A = S" - K ,  k = n - 2i. The result follows. I 

Theorem 27.26 (Peterson) If n = 2', RP" cannot be imbedded in S2"-l, 
( ~ 1 )  
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Proof By 27.25, it is sufficient to evaluate 

x(sqi): ~ 2 n - 2 ;  - 1 (RP"; Z,) -, H2"- ' - l  (RP"; Z,). 

We show that x(Sq"-')(.x) = X" iff n = 2s for x E H 1 ( R P m ;  Z , )  a generator, by 
induction on n. The result is clear for n = 0. Suppose we have proven the 
result for all r < n. Then 

t < n  r = 2 " - l < n  

Now (7) = 1 (mod 2) iff  
satisfying t = 2* - 1 < n and t + 1 = n - t. This is true iff n = 2'. I 

= 0 or 2". Hence x(Sq")(x) = x"" iff there is a t 

Appendix 

In analogy with the 
pth power operations 

Recall that Z ,  acts 
Define 

~ squaring operations in Z ,  cohomology, one can define 
in Z ,  cohomology for p a prime. 
without fixed points on S2"-' (Exercise 19, Section 7). 

P - rn (P) ( X )  = SZn-l x (XA - .  . A x)/(e, x l ,  . . . , xp)  - (a,O x ,  , . . . , xp, x l )  

where r~ is the generator of 2,. By analogy with 27.12 we can define, for each 
x E ikn(X; Z,) a class y(,,(x) E HnP(T, , , (X);  Z,). One then defines a natural 
transformation A: Lzn-l(Zp) x X - ,  r? , ) (X)  by A({@, x) = ((0, x, . . . , x) } .  
This induces a cohomology homomorphism and we write 

z * ( Y ( p ) ( x ) )  = Dk(x) @ wk 

where " 2 k  = yk and W Z k + l  = xyk (see Exercise 22, Section 26). By a suitable 
choice of constants ur, ,, E Z ,  we define 

P'(x> = ur,n D(n-zr)(p-l)(x) 

for x E p ( X ;  Zp). One can then prove 

Theorem 27.27 P': E?"(X; Z,) -, i kn+2r (p -1 )  ( X ;  Z p )  is a stable cohomology 
operation satisfying 

(a) PO = 1; 
(b) if dim x = 2r ,  P'x = xp; 
(c) if dim x < 2r, P'x = 0 ;  
(d) P ' ( x ~ )  = C P ' ( x ) P ' - ' ( ~ ) .  
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Exercises 

1. Show that for any ring spectrum E, there are ring homomorphisms 

E:  O,(E) -+ g*(So), 4 :  &(So) 4 O,(E) 
such that E 4  = 1. Prove a similar result for cohomology. 

class in R"(X; Z , )  for an arbitrary space X E CG*. 
2. Show that the properties stated in 27.15 hold when Sqi is applied to a 

3. Prove that S n - 4 ~ :  Sn+3 -+ S" is essential. 
4. Fill in the details to 27.22(b'). 
5. Show that (Sq,)*: ( X ;  2,) 4 ii"(X, Z,)  given by the dual to Sq, 

is a stable cohomology operation. Prove a Cartan formula: 

6. Let x E H'(RP"; Z,) .  By computing SqzSql(x i i x  K x )  and Sq3(x i ix  iix), 

7. Let x E H'(RP"; Z , )  be a generator. Show that 
show that Hn+3(K(Z2, n); 2,) has dimension at least 2 for n > 3. 

j k  = 2k-' for each k 
otherwise. 

sqis sqL- 1 . . . sq'iX = 

(28.15) 

8. Show that for a spectrum E, 

Rk(E; 2,) = W"'k(En; Z,) 

is a module over &(p) and that maps of spectra induce A($) module homo- 
morphisms. 



28 
Adem Relations 

It is the purpose of this section to determine the algebra 4 2 )  of stable 2, 
cohomology operations. We do this by calculating H*(K(Z,,  n); Z,). We will 
find that every operation is a Steenrod operation, i.e., can be written in  the 
form Sq" 0 * * * 0 Sqin. We also derive all relations among the Steenrod squares. 
There is, in fact, a family of nontrivial relations called the Adem relations. 
The existence of these relations makes the application of Steenrod operations 
very pungent (see 28.18 and 28.19). 

We will base our calculation of H*(K(Z, ,  n); 2,) on a theorem of A. 
Bore1 [I41 which we quote without proof. The proof is a straightforward 
application of the Serre spectral sequence [62; 64, 9.4, Corollary 9;  21 ; 41 ; 
311 and the comparison theorem [3; 761. See [3] for details. 

Definition 28.1 A commutative algebra Jc. over Z ,  is said to  have a simple 
system of generators {xu} if the monomials x,, . * * xu" form a vector space basis 
for A as {al, . . . , a,} varies over all finite subsets of {a}. (The empty subset 
corresponds to the monomial 1.) 

Example 28.2 Let Z,[xl, . . . , x,] be the polynomial ring over Z ,  generated 
by the indeterminates xl, . . . , x,. Then Z,[x,, . . . , x,] has a simple system of 
generators (x:", . . . , xik"}. For example, 

To prove this in  general observe that the monomials form a basis, and any 
monomial can be written in this form since for any n, n = x E o ~ i 2 i  where ci 
is 0 or 1. 

310 
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As a second example we consider the exterior algebra A(xl, . . . , x,). This 
is generated as an algebra over Z ,  by x,, . . . , xk subject to the relations 
xixj  = xjx i  and xi2 = 0. It has dimension 2" and { x i }  forms a simple system 
of generators. 

Definition28.3 Let E be a spectrum. We define a homomorphism 
X: B'(X)  -+ ,!?-'(ax) called the suspension by 

E'(x)-E(snX)4+P-l(nx) f' 
- - 

wheref: Sax-, X is given byf(s, w )  = w(s). 

Theorem 28.4 (Borel) Suppose that Xis simply connected and there are 
elements xu E R * ( X ;  Z,) such that C(x,) form a simple system of generators 
for H * ( R X ;  Z,). Assume that there are only finitely many xu in  each grading. 
Then H * ( X ,  Z,) is the polynomial ring Z,[{x,}]-generated by the indeter- 
minates xu.  

Example 28.5 Let u E H2(CPm ; Z,) be a generator. Then C(u) E H'(S' ; Z,) 
is a generator and {X(u)} is a simple system of generators for H*(S';  Z2). 
Hence H*(CPm; Z,) z Z,[u] which also follows from 26.35. 

Let I = ( ik ,  . . . , il) be a finite sequence of integers. We define Sq' = Sqik * .  
Sq'l. We define the dimension of I as ik + ... + i,. Furthermore we identify 
the sequence ( i k ,  . . . , i,, 0) with the sequence ( i k ,  . . . , i,). We call 1 (and Sq') 
admissible if i s + ,  2 2is for k > s 2 1. We define the excess of I (and of Sq') by 

ex(]) = ik - + * . *  + i l)  = (ik - 2ik-1)  + . . *  + (iz - 2i,) + i,. 
The notion of admissibility and excess are invariant under the above identi- 
fication. Note that if I is admissible, ex(Z) 2 0. 

Theorem 28.6 (Serre) H*(K(Z,; n) ;  2,) is a polynomial algebra with 
one generator xI for each admissible sequence of excess less that n. xI has 
dimension I I  + dim I and xI = Sq'i where I E H"(K(2, , n ) ;  2,) is a generator. 

Before proving this result we will examine its contents for n = 1 and n = 2. 
If ex([) = 0, it follows that i, = 0 and is = 2is-1. Hence each is = 0. That is, 
the only admissible sequence I with ex(I) < 1 is the sequence (0, . . . , 0). 
Hence, as expected, H*(K(Z,, 1); 2,) Z2[x0] where xo = Sqoi = I .  Now 
suppose n = 2. ex(1) = 1 can only happen if I =  (2k, 2 k - 1 , .  . . , 1). Thus 
H*(K(z, , 2 ) ;  z,) = zZ[i, xo , x,, , , .I where xk = Sq"'. . . Sq'i. 

In  fact the proof of this is quite easy and is typical of the inductive step. 
H*(K(Z, , 1 ) ;  Z,) has a simple system of generators, xZk = Sqzk-'Sqzk-2.. * 

Sq'x. Now if I E H2(K(Z,, 2); Z,) is the generator, Ci = x. Thus X(Sqzk-' * - 
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Sq'i) = xZk, since C = o-'f* commutes with the action of Steenrod opera- 
tions. Hence 28.6 follows in the case n = 2 by applying Borel's theorem. 

Proof of28.6 Suppose now that H*(K(Z, ,  n);  Z,) is as stated above. 
Then a simple system of generators is given by (Sq' z)" for s 2 0 and Z 
admissible with ex(Z) < n. Suppose dim Sq'i = n + i, + . * * + ik = m. Then 

(sqJ Z s  = s Z r - ' m .  . .s  q m s q i ~ . . . s q i i  if >o. 
The sequence (2'-'m,. . . , m, i k ,  . . ., i,) is clearly admissible and has excess 
n. Furthermore, every sequence Z of excess n can be written uniquely in this 
form. Thus H*(K(Z, , n); Z,)  has a simple system of generators of the form 
Sq' for I admissible and ex(1) 5 n. 28.6 in  the case n + 1 now follows from 
Borel's theorem since SqJ(Ci) = C(SqJi) for any sequence J .  

I )  9 

I 

Corollary 28.7 4 2 )  has as a basis the admissible mononomials Sq'. 

Proof A basis i n  dimension k is given by HZk+'(K(Z2, k + 1); Z,)  by 27.5. 
This is generated by all admissible monomials of excess s k and dimension k .  
However dim I = k implies ex(Z) I k.  Hence the admissible monomials Sq' 
of dimension k form a basis in  dimension k.  I 

We list a basis in  dimension k for k I 10. 

k 
0 1  
1 Sq' 
2 sq2 
3 sq3 
4 sq4 
5 sq5 
6 Sq6 
7 sq7 

9 sq9 
10 Sq'O 

8 Sq" 

Thus the algebra 4 2 )  is generated by Steenrod operations and is called the 
Steenrod algebra. 

I t  is quite clear that there must be some relations among the Steenrod 
operations. For example, Sq'Sq' has dimension 3 and hence Sq'Sq' = 
ASq3 + pSq'2~'). Applying this equation to x E H1(RPm; Z, ) ,  one concludes 
that p = 0. Applying it to x3 E H3(RP"; Z , )  yields A = 1 so Sq'Sq' = Sq3. 

In  general, if a < 26,28.7 implies that there is a formula Sq"Sqb = X A I  Sq,, 
where Z runs over all admissible sequences of dimension a + b and A, E Z ,  . 
Using the spaces RP" x x RP", one can calculate the coefficients A, and 
prove 
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Theorem 28.8 (The Adem Relations) If a < 2b, 

We will prove 28.8 by applying a little more theory and a little less calcula- 
tion than the above outlined method. Our method is due to Kristensen 
[38; 391. 

By the Cartan formula and induction, we have for any sequence I =  
(i,, . . . , i l ) ,  and any two cohomology classes x and y 

Sq‘(x . y )  = CsqJ x * sq’- y 

where the sum is taken over all sequences J = (jk, . . . ,,j,) with j ,  5 i s ,  and 
I - J = (ik - j ,  , . I . , i, - j,). We define a linear map 

cp :  4 2 )  + A(2) Q 4 2 )  

q(Sq’) = CsqJ Q sq’-J 
by 

for I admissible. 

Lemma 28.9 Suppose there are operations j?, p i ,  and pi‘ such that for all 
x and y 

P(x * Y )  = c Pi(x) * Pi’(U)* 
i 

Then cp(p) = cpi 8 pi’. 
Proof Let q(p) - Lai 0 pi’ = xi ai  0 mi’ E 4 2 )  8 4 2 ) .  cp(p)(x 8 y )  = 

p(x. y )  since this is clearly true when p is an admissible monomial. Con- 
sequently, 

&(x) . ai’(y) = 0. 

Let k > dim x u i  Q a; and I E Hk(K(Z2,  k ) ;  Z2).  Let x = pl*(z) and y = p2*(z) 
where p ,  and p 2  are the projections K ( Z 2 ,  k)  x K(Z2 ,  k )  -+ K(Z2,  k). Now 

0 = C U i ( X )  a,’(y) 

’ = Cai(pl*(l)) * ai’(~2*(1)) 

= CPl*(ai(l)> * ~2*(ai’(z)) 

= C m i ( i )  R ai’(i). 

Now 25.15 implies that Cai ( i )  Q mi’(i) = 0. However the mapping 

4 2 )  0 4 2 )  4 H*(K(Z2 9 k);  Z,)  8 H*(K(Z2 9 k )  ; Z,)  
is an isomorphism in this dimension, so C a i  Q ai‘ = 0. I 
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Corollary 28.10 Suppose p(a) = x u i  @ cti ’  and p(@) = cflj @ P j ’ .  Then 

cp(afl) = Cai f l j  o ai’Bj’. 

Proof c$(x * y )  = c t ( c f l j x  . Pj’y) = cc t iPjx  ai’Pj’y. The result follows 
from 28.9. 1 

Proposition 28.11 (Milnor) The diagrams 

commute, where p is composition, T is transposition, and E :  A(2) -+ Z2 is 
given by 

d i m x > O  (e: dim x = 0. 

Proof All of the diagrams except the last one follow from the definition. 
The last diagram is 28.10. 

The mapping p is called a comultiplication and E is called a counit. The 
first three diagrams express that 4 2 )  is a coassociative cocommutive coal- 

E(X)  = 

I 
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gebra. These diagrams are duals to the diagrams one ordinarily has for 
algebras, The last condition says that cp is an algebra homomorphism where 
the multiplication in 4 2 )  p)(1 @ T O  1). These 
conditions (except for cocommutativity) are usually expressed by saying that 
4 2 )  is a graded Hopf algebra. 

4 2 )  is given by ( p  

Let I be an admissible sequence. 

Definition 28.12 Define KI: A(2), + ~ % ( 2 ) , , - ~ ~ , , , ~  

d x )  = CKr<x> Sq' 

These operations were first defined by Kristensen [38]. 
By 28.7 we can write equations 

Sq'SqJ = C&lSqM, SqT = CUMTSqM 

where the sums are taken over all admissible mononomials SqM and the 
coefficients aMT are 0 or 1. 

Proposition 28.13 

~ d x ~ )  = C%iJKK-,(x)K.r(Y) ; 
K M ( K L ( x ) )  = C C ~ , ~ U ~ - ~ K ~ ( X > .  

The first sum is taken over all admissible sequences I, J with dim I + dim J 
= dim M .  The second sum is taken over all admissible sequences I and all 
sequences J with J I I .  

Proof The first formula follows from 28.10 and the second from the 
cp)cp. We will do only the first as the coassociativity of cp, i.e., (cp 

proofs are similar and easy. 
1)cp = (1 

By 28.10, 

C K ~ X Y )  o SqM = <CKr<x> o Sq')(CKJ(y) o SqJ) 
= CKr(X)KAY) o Sq 'W 
= C n y K , ( X ) K , ( y )  O SqM. 

The sums here are taken over all I ,  J ,  and M that are admissible. I 
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Proof I f  A!i; # 0, dim Z + dim J = 1. Hence we must have Z = (1) and 
J = (0) or Z = (0) and J = (1). I n  these cases A ( i f  = 1 so 28.13 yields 

K(XY) = K(O)(X)K(Y) + K(X)K(O)(Y) 
= XK(Y) + K(X)Y. 

Suppose now that # 0. Then we have the following possibilities: 

However Sq'Sq' = Sq3. Hence the only cases in which $ifl) # 0 are 

I J 

Thus we have 
K'(X.4 = K'(X1.Y + K(2,(X)K(Y) + X K ' ( Y ) .  

Now K(K(x)) = K ( , ) ( x )  by the second part of 28.13. This proves the second 
formula. The formulas for K(Sq") and K'(Sq") follow from the Cartan for- 
mula. I 

Proposition 28.15 Sq2n+1 Sq"" = 0. 

Proof By 28.7 we have 

s q 2 n + 1 s q n + l  = En, Sq'. 
We first prove that ,II = 0 if Z has length greater than 2. To prove this we 

apply this equation to x x i k  E H~+'(RP" x K(z,, k ) ;  Z2): 

sq"+'(x lk) = x X Sqn+'lk + x2 2 Sq"/, 
sq2"+'sq"+'(x 2 lk) = x X sq2"+'sq"+'lk + x2 2 Sq2"Sq"+'rk 

+ x2 sq2"+'sq"lk + x4 % sq2"-1sqnlk. 

By Exercise 7, Section 27 
J # (2", 2s-1, . . . , 1)  
J # (2s, 2s-1, . . . , I). sq  x = ; , + I  (: 9 
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Hence 
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sq'(x 2 lk) = c s q J x  2 sq'-'lk 
= C X 2 S + l  2 sq'-rslk 

where Is = (2', 2'-', . . . , 1).  Now if I is admissible, I - 1, is admissible. 
equation implies that lISq'-lsik = 0 for s 2 2. If k is sufficiently large, 
implies that 1' = 0 if Z has length >2. I 

Now we write 
n 

sq2n+'sqn+l = 1 AsSq3"-"+2sq9 

sq2 = K(S93) = rC(Sq'Sq2) = sq2 + sq'sq'. 

s = o  

We prove 28.15 by induction on n. Since Sq'Sq2 = Sq3, we have 

The 
this 

Hence Sq'Sq' = 0. This is the case n = 0. Observe that rc'(Sq"Sqb) = 
Sq"-' Sqb-' by 28.14. Assume Sq2"-'Sqn = 0. Then 

0 = sq2"-'sq" = K'(Sq2n+lSqn+l) 

Sq3n-sSq"-' is admissible so we conclude that As = 0 for each s and hence 

The equations Sq2"+'Sqn+' = 0 together with the derivation K yield more 

sq2"+'sq"+' = 0. I 

relations. Applying K we have 
0 = K(sq2"+'sq"+') = SqZ"sq"+l + SqZ"+'sq"; 

sq2nsqn+1 = sq2n+1sqn; 

s q 2 n - 1 s q n + '  + sq2nsqn = sq2nsqn + sq2n+1sq"-l 

since SqZn+'Sqn is admissible, we have 

applying IC again we get 

or 

sqZn+ 'sqn- l .  
sq2n-1sqn+' = 

Proceeding in  this way we obtain relations 
sq2n-2sqn+'  + sqZn- ' sqn  = s q 2 n s q n - l  + sq2n+'sqn-2 
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or 
s q Z n - Z s q n + l  = s q Z n s q n - l  + s q Z n + 1 s q 1 1 - 2 .  

I f  we apply this process r times, we get a formula for Sq2"+'-" Sq"+' in terms 
of admissible monomials. This will be our proof of 28.8. 

Proof of 28.8 Observe that i f j  < a - b + 1 o r j  > [a/2], (!I47 ') = 0. Hence 
we can consider the sum over all j .  Let r = 2b - a. We will prove 28.8 by 
induction on r.  If r = 1 ,  the left-hand side is SqZb-'Sqb = 0. The right-hand 
side is 

This can only be nonzero if  2 6 - 2 j -  1 I b - j -  1 ,  and b -j- 1 2 0 .  
Thus all the terms are 0. This completes the proof in  the case r = 1 .  Suppose 
the formula is proved if a = 2b - r :  

Applying K we get 

SqZb-' - Sqb + s q 2 b - r s q b - 1  

~ ~ Z b - r s ~ b - 1  = s q Z ( b - l ) - ( r - 2 ) s q b - l ,  

so by induction, we have 

Although 28.8 expresses the Adem relations in a compact formula, it is 
very complicated and sometimes inconvenient. I f  one wishes to calculate all 
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the Adem relations in a given range of dimensions, it is much easier to begin 
with 28.15 and apply K .  The expression for SqaSqh is then calculated by induc- 
tion on k = 2b - a, using the formula SqaSqh = Sqa+'Sqb-' + K(Sqa+'Sqb). 
Using induction, the right-hand side of this equation is already tabulated in 
terms of admissible monomials. 

Table 1 (pages 358-359) gives the expressions for SqaSqb for a < 2b 5 12. 
We now show that there are no other relations in  A(2). 

Corollary 28.16 Let A be the algebra over Z ,  generated by Sq' subject to 
the Adem relations (28.8) Then A E 4 2 ) .  

Proof One can easily define an algebra homomorphism A: A + 4 2 )  by 
28.8. A is onto and it suffices to show that A is 1-1. To do this it is sufficient to 
show that the admissible monomials in A generate d t  as a vector space. 

For any sequence I = ( i l ,  , , . , ik),  we define the moment of I by m(Z) = 
cf=lsis. m(Sqo) = 0, m(Sql) = 1, and all other monomials have moment 
greater than 1. We prove that Sq' is a sum of admissible monomials by in- 
duction on m(Z). Suppose is  < 2is+1. Then 

sqI = sq(" ..... is-i)sqiSsqis+i s q ( i s + z ,  ... , i d  

- - c~~ sq(ii. ... , i s  - l)sqL + is + I -jsqjsq(iS + 2 ,  ... . i d  

= CAj Sq'j. 

Now 

since 2 ( j  - is+l)  5 is - 2iS+, < 0. By induction Sq'j can be written as a sum 
of admissible monomials and hence Sq' can as well. I 

An element c1 E 4 2 )  is called indecomposable if it cannot be written in the 
form Ccliai' with dim cli > 0 and dim mi' > 0. 

Proposition 28.17 The indecomposable elements of 4 2 )  are the elements 
Sq2" for n 2 0. 

Proof Clearly the only elements of A(2) that can possibly be indecompos- 
able are the elements Sqkfor k > 0. Now we let x E H'(RPm ; Z , )  be a generator. 
Then 

0,  s # 2" 
, s = 2". Sq"2" = (,,"+ 1 
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I f  Sq'" weredeconiposable, we would havex'"'' = Sqz"x2" = x u i  ai'xz" = 0. 
Thus Sq'" is indecomposable. Suppose on the other hand that s # 2". Then 
2k c s < 2k+1 for some k and 

Sq"-'kSq'k = ( 2k-  1 )Sq"+ c /l,Sq"-jsq'. 
s - 2k j > O  

By 28.20 (in the Appendix), rk b ') = 1 (mod 2) 

for 0 5 s 5 2k - 1. Thus Sq' occurs with a nonzero coefficient in  the formula 
and so it is decomposable. I 

One of the simplest applications of the Adem relations is to the Hopf 
invariant problem. Let a :  SZn-' -+ S". Then R*(Sn u,e'") has generators r 1  and 
r 2  i n  dimensions n and 2n. Hence 1'' = kr, for some integer k.  k depends on the 
choice of generators up to sign, but otherwise depends only on the homotopy 
type of s" u, e2" and hence only on the homotopy class of a (by Exercise 22, 
Section 14). Thus we can define a transformation H :  TI,,,-~(S") -+Z.  H is 
called the Hopf invariant. H(q)  = H(2r) = H ( v )  = 1 by 26.35 and Exercise 5, 
Section 14. 

Proposition 28.18 If  there exists an element a E  TI^^-^(^") with H(a)  odd, 
n = 2', 

Proof Let cp: l?*(Sn u, e'") -+ 8*(F u, e'"; Z , )  be the coefficient trans- 
formation induced by the epimorphism p :  2 -+ Z ,  . By Exercise 18, Section 23, 
cp is a ring homomorphism and hence cP(z1)' = c,(r,). Thus Sq"c,(i,) = 
~ ~ ( 1 , ) .  Since H"+'(S" u, e2"; Z,) = 0 for 0 < i < n, Sq'c,(r,) = 0 for 0 c i 
< n. Hence 28.17 implies that Sq"c,(r,) = 0 unless n = 2'. 

In  fact this phenomenon occurs iff n = 1 ,  2, 4, or 8 (see 29.19). The cases 
n = 1,2,  and 4 correspond to the maps 21:  S' -+ S', q :  S3 -+ Sz, and v :  S' -+ 

S4. A map Q:  SI5 -+ S* with H(a) = 1 can also beconstructed using the Cayley 
number multiplication. (The construction in  Section 7 does not work for the 
Cayley numbers because they are not associative and hence N is not an  
equivalence relation.) 

As a final application of 28.8, we prove: 

Proposition 28.19 Let q E n3(S2) be the Hopf map. Then {S"(Sq 0 q)} # 0 
for each n 2 0. 
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Proof Let us write q k  for Sk-2q:  Sk+' -+ Sk. Our object is to prove that 
{qk 0 &+I} # 0 for each k .  Supposing q k  0 q k + l  - *, we can construct an 
extension 

0 
s k + l  u , , ~ + ~  ek+3-  Sk 

of r l k .  Let X be the mapping cone of 0. Then X has cells in dimensions 0, 
k ,  k + 2, and k + 4 :  

x = sk ug c(Sk+' v , , ~ + ~  ek+3).  

xk+2 = Sk e k + 2  = s k - 2 ~ ~ 2  and X / S k r S k + 2  ek+4= - s k CP2 
q k + 2  

- 4k - 

Choose generators x, E H " ( X ;  2,) for n = k,  k + 2, and k + 4. Since Xk+4 
E Sk-2C~2, sq2xk = x k + 2 .  The mapping n: A'+ SkCPz induces a homo- 
morphism in cohomology and n*(aky) = xk+2, n*(aky2) = xk+4 where 
y E H ~ ( C P ' ;  Z,) is a generator. Hence sq2xk+2 = &+4.  

Now by 28.8,  Sq2Sq2 = Sq3Sq'. Hence 

xk+4 = sq2xk+2 = sq2sq2xk = sq3sq'xk = 0,  

since X has no cells in dimension k + 1. This contradiction implies that such 
a space X cannot exist and hence that q k  0 q k + l  w *. 1 

Appendix 

In calculating Adem relations it is often useful to have an algorithm for 

Proposition 28.20 Let a = C ~ ! o a i 2 i  and b = 1r=obi2 i  be binary expan- 
sions. Then 

(:) = i =  fi 0 (::)(mod 2). 

Proof (1 + x ) ~  = 1 + x2 (mod 2), so by induction, (1 f x)'" = 1 + x2". 
Hence 

m m 

i = O  i = O  

The coefficient of xb in this product is 
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Seminar Problem 

The structure maps of 28.11 make 4 2 )  into a Hopf algebra. Since this 
structure is self-dual, and dim A(2), is finite, 4 2 ) *  is also a Hopf algebra. 
Prove the Milnor theorem [3]. 

Theorem 28.21 (Milnor) 

A(2)* E Z,[t1,52 9 . * .I 
as algebras, where Z,[<,, r 2 ,  . . .] is a polynomial algebra with generators t i  
in dimension 2' - 1. The diagonal in &(2)* is given by 

~ * ( t r )  = 2 o t i '  
i = O  

g, is defined by $(x )  = (4 ,  t i ) x 2 '  for 4 s A ( 2 )  of dimension 2' - 1 and 
x E H'(RP" * Z, )  the nonzero element. 

2, Cohomology Operations 

There are Adem relations for the operations P' analogous to  those in 28.8. 
These can be proven by the same method as in this section. One proves a 
version of the Bore1 theorem for Z p  cohomology (this theorem is much more 
complicated in statement than the 2, version). From this one can calculate 
H*(K(Z, ,  n); 2,). This information can then be utilized in determining the 
relations among Z ,  cohomology operations. Since P' raises dimension by 
2r(p - l ) ,  the Bockstein p, associated with the sequence 0 -, Z , 4  Zp2 -+ 2, 
-, 0 is not in the algebra generated by the operations P'. We define a Steenrod 
operation with Z ,  coefficients to be any operation in the algebra generated by 
8, and the operations P'. Then every stable Z, cohomology operation is a 
Steenrod operation and the relations take on the form 

Theorem 28.22 (Adem Relations) I f  a < pb, 

I f  a 5 pb, 

(See [67] for details.) 
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Exercises 

1. Use the method of 28.19 to show that S"(2v) rl.l * in  ~ c , , + ~ ( S " + ~ )  and 
Sn(v 0 S3v) rl.l * in n,+10(Sn+4). 

2. Show that H*(K(Z, n); Z,)  is a polynomial ring with one generator 
x, = Sq' z for each admissible sequence Z = ( i k ,  . . . , il) with ex(Z) < n and 
il > 1 for n 2 2. 

3. Prove that 

sqlsqn = [ SqL+' if n is even 
if n i s  odd. 

4. Prove that if X is a homotopy associative H space and k is a field, 

5. If E and F a r e  spectra, define &(F) as h~ $+,,(Fn) where the homo- 
H * ( X ;  k) is a graded Hopf algebra. 

morphisms arc 

Show that if _X is the suspension spectrum of X, & ( _ X )  5Z &(X).  Prove that 
Ek(F) z Fk(E). (See Exercise 16, Section 15.) 

6. Show that Hm+k(K(n, m); p)  E Hm +k(K(p, ?I?); 7 ~ )  for k < m. (Hint: Use 
Exercise 5).  

7. Prove that if En is a ring spectrum, F,(E) is a commutative ring. 
8. A group is called a 2-group if every element has order 2s for some s 2 0. 

Show that if n is a finite 2-group, Hm+k(K(n, m)) and Hm+k(K(n, m)) are finite 
2-groups for k <  m. (Use Exercise 6.) 

9. Show that the map RP" A * * A RP" + K(Z,  , n) induces a monomor- 
phism in Z ,  cohomology in dimensions less than 2n. (Hint: It is only nec- 
essary to show that the admissible monomials Sq' take linearly independent 
values on the z i i * * * i i i . )  (30.12) 



&Theories 

Historically, the first examples of "extraordinary " cohomology theories 
are the K-theories that arise from the study of vector bundles. It is the purpose 
of this section to give an exposition (rather than a development) of K-theory. 
We do not, therefore, discuss the most general K-theories, nor prove the Bott 
periodicity theorems which give K-theory its power. We sketch two important 
applications of K-theory : the solutions of the Hopf invariant problem and 
the vector field problem. 

All spaces in this section will be Hausdorff. Let k be one of the division 
rings R, C,  or H. 

Definition 29.1 A k vector bundle is a locally trivial bundle ( = {E ,  n, B} 
such that each fiber n-'(b) has the structure of a vector space over k ,  and 
there exist coordinate transformations cpa: U, x k" + n-'(Va) that are linear 
over each point b E B(i.e., ( p a (  bukn: k" -+ n-'(b) is linear). 1; is called an n-plane 
bundle or an n-dimensional vector bundle if n-'(b) has dimension n for 
each b E B. 

Not every vector bundle has a dimension. However it is easy to see that 
over each component of the base, n-'(b) has constant dimension. Hence 
each vector bundle with a connected base has a dimension. 

It is possible to put more restrictions on the cpa than that they are linear 
(such as orientation preserving), but we will not consider any such refine- 
ments. 

Vector bundles occur readily in geometric situations. We list some impor- 
tant examples. 

324 
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Examples 

1. The bundle k"" - {0} + kP" given in Exercise 12, Section 11 is a k-line 
bundle. For each x E kP", C'(X) is a one-dimensional k-linear subspace of 
k"" and the coordinate transformations are k-linear (see also Example 4, 
Section 11). 

2. Consider the case k = R and n = 1 in the above example. This is the 
Mobius band projected onto a central circle. (See Section 26. We must, of 
course, transpose a vector space structure onto (0, 1) by a homeomorphism 
R' = (0, I).) This is a nontrivial vector bundle that is easy to visualize, and 
is a good picture to keep in mind. The twisting that occurs in this bundle is in 
some sense typical of the complications that distinguish a general vector 
bundle from a product bundle: k" x B -+B. 

3. The tangent bundle to a differential manifold z ( M )  + M is a realn-plane 
bundle [49, Chapter 21. This is most easily defined if M is differentiably im- 
bedded in Rn'k. Let M" c R"'k be a C' imbedding; i.e., M" is covered by 
coordinate systems {U, ,  cp,} with 9,: R" + U, c M" c R"' differentiable 
and such that the Jacobian of cp, has rank n. We then define T ( M )  as follows. 
For each x E M ,  let T, be the tangent space to M at x .  Then the total space 
of T ( M )  is {(x, y )  E M x R " + k l ~  + y E: T,} and n:  z ( M )  + M  is given by 
n(x, y )  = x. The coordinate functions qa: U, x R" + z ( M )  are given by 

This depends on the imbedding M t Rn+k, but one can show that different 
imbeddings give equivalent vector bundles (in the sense of 29.2). 

Definition 29.2 Let g = {E, n, B} and g' = {E', d, B'} be vector bundles. 
A bundle map f: 4 +(' is a pair ( f E ,  f,) of maps fE: E - + E ' a n d  f,: B + B  
such that 

(a) nIfE=fBz; 

(b) f E  1 -+.) is an isomorphism for each x E B. 

f i s  called an equivalence if B = B' andf, = 1. In this case we write 5 r'. 
Lemma 29.3 Equivalence of bundles over B is an equivalence relation. 

Proof Reflexivity and transitivity are immediate. To prove symmetry, let 
f: g -+ g' be an equivalence. Then fE: E + E' is a continuous 1-1 correspon- 
dence. To see that fE is open it suffices to show that fEIn-l(U,) is open. In 
terms of local coordinates this is given by (x, u) + (x, A,u) where Ax is a 
nonsingular linear transformation depending continuously on x. This map 
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has a continuous inverse since matrix inversion is continuous. Hence 
f E l  x -  

A bundle will be called trivial if it is equivalent to a product bundle 
B x k" -+B. 

We will write Vect,(X), for the set of equivalence classes of n-dimensional 
k-vector bundles over K. This is in fact a contravariant functor. For each map 
f: X' -+ Xand vector bundle 5 over X ,  there is a vector bundlef*({) over Xi 
(see Exercise 5, Section 11). One defines a bundle map (n2, f) where 
n2:f*(E) -+ E is the projection. Then f*(o = { f * ( E ) ,  n,, X'}  is a vector 
bundle with coordinate functions 9,: U, x k" - f * ( E )  given by @,(u, x )  = 
(u,  cp,(f(u), x) ) .  It is easy to see that (n2, f) is bundle map from f*(<) to 5 ,  
and that if 5 z 5' , f * (5)  ~f*({'). Consequently the transformation 5 +f*(t) 
makes the set VectJX) into a cotravariant functor. 

Finally we observe that iff: 5 -+ 5' is a bundle map, 5 ~f*( t ' ) .  In fact the 
mapfinduces a bundle map e :  5 -+f*({') so that 5 -+f*((') + 5' is the bundle 
map$ Since e B  = 1, e is an equivalence. 

is a homeomorphism and fE is open. 1 

Let k" = uFz1 k" with the weak topology. 

Definition 29.4 A Gauss map for a k-vector bundle 5 is a continuous map 
F: E + k" for some m, 1 I m I 00 such that for eaCh x E B, PI 11- l(x) is a linear 
monomorphism. 

Under mild restrictions, a Gauss map always exists. In Example 1, the 
inclusion E = k"" - {0} c k"" is a Gauss map. In the case of a differential 
manifold M" c R"' (differentiably imbedded) the mapping F: T ( M )  -+ Rn+' 
given by F(x, y)  = y is a Gauss map. 

Proposition 29.5 If 5 = {E,  n, B} is a vector bundle and B is paracompact, 
a Gauss map exists for 5 .  

In the case that B is compact, one can find a Gauss map F: E + k" with 
m < 00. We will prove 29.5 in this case. The general case is a little more 
complicated [48, Theorem 7; 34, 13, 5.51. 

Proof in this case Choose a finite collection of coordinate neighborhoods 
U u l ,  . . . , U,_ that cover B. Choose an associated partition of unity f,, . 
Define F,,: E + k" by 

Thus F,, is a linear monomorphism on n-'(x) iff,,(x) # 0. A Gauss map 
F: E + k"" is thus defined by 

W )  = ( 4 , ( x ) ,  * .  - 9  F,,(X)). 1 
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Let V be a vector space over k .  We will describe an n-plane bundle y"(V) 
which is universal in the sense that if 4 is an n-plane bundle and F: E(5) + V 
is a Gauss map, there is a bundle mapf: 5 --t y"( V )  (and hence t z f * ( y " (  V)) .  

The description of y"( V )  is easy enough. As base space we take G,( V)-the 
set of all n-dimensional subspaces of V. (G,( V )  is called the Grassmanian on 
V.) As total space we take En( V )  to be the set of all pairs (x, M )  E V x G,( V )  
with x E M .  We define n,: E,(V) + G,(V) by z,(x, M )  = M .  Then y"(V) = 
{En( V ) ,  n, , G,( V)}.  Now suppose we are given an n-plane bundle 5 and a Gauss 
map F :  E(4) + V. We define f: 4 + y"( V )  by 

f&) = {F(z-'(x))}, fAe> = (F(e),f,(n(e))). 
One easily checks that n,fE =f,n and that fE is an isomorphism on each 
fiber. We have carefully sidestepped the question of how we will topologize 
G,(V). Continuing in this vein, we will describe the local product structure in 
y"( V ) .  Choose a continuous inner product in V. For each M E- G,( V )  let P ( M )  
be the orthogonal projection onto M. (This is well defined even if Vis infinite 
dimensional since M is finite dimensional.) Let U ( N )  = { M  E G,( V )  ( P ( M )  I 
has rank n}. N E  U ( N )  so { ( / ( N ) }  is an (open) cover of G,(V). We define 
qN: U ( N )  x N + n - ' ( U ( N ) )  by q N ( M ,  X) = ( M ,  P(M)(x ) ) .  This is a 1-1 
correspondence which is linear on each fiber. 

We must find a topology in whichf, and qN are continuous and U ( N )  is 
open. The details of this are a little delicate and often neglected. To makef, 
continuous it is sufficient for f,l to be continuous for each coordinate 
neighborhood Ua.  For x E U,, f,(~) = {FqJx x k")}. Let L, c V" be the set 
of linearly independent n-tuples of vectors in V. Give L, the induced topology. 
Let p :  L, + C,( V )  be the natural map which assigns to each n-tuple its span. 
p is onto and we give G,(V) the quotient topology. fBlu. factors through L, 
and the map U, +L, is given by x +(Fq, (x  x v , ) ,  . , . , Fq,(x x u,)) where 
u,, . . . , 0, is a basis for k". Thus fB is continuous. To ensure that qN is con- 
tinuous and U ( N )  is open it is only necessary to check that M + P ( M )  is 
continuous, where P ( M ) E  V" and V" has the function space topolgy. Let 
V, c L, be the subset of orthogonal n-tuples. Then p(V, )  = G, and V, is a 
closed subset of L, .  Thus G, has the quotient topology on V,, and it  is only 
necessary to verify that V, c L, 5 C,( V )  -+ V" is continuous. This composite 
is given by (xl, . . . , x,) +f where f ( x )  = (x ,  x i ) x i .  Since the adjoint 
V, x V --t V is continuous, we are done. 

Since C,( V )  + V" is continuous and 1-1, G,( V )  is Hausdorff. In fact, if V 
has dimension n + p  < co, G,(V) is a differential manifold of dimension 
np [49]. We conclude: 

Proposition 29.6 For each n-plane bundle 5 with paracompact base, there 
is a bundle mapf: 5 -y"((k") and hence 5 ~ f * ( y " ( k " ) ) .  
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The mappingfdepends on the choice of a Gauss map. One can show that 
any two Gauss maps are homotopic through Gauss maps. One first uses a 
linear homotopy to put one Gauss map in even dimensions and the other in 
odd dimensions and then takes a linear homotopy between them. (For details 
see [34,13,6.2].) This induces a homotopy between the respective bundle maps. 
Thus an equivalence class of bundles determines a homotopy class of maps 
from B to G,,(k"). Conversely a mapf: B -+ G,(km) induces a vector bundle 
over Band one can show that the equivalence class of this bundle only depends 
on the homotopy class off [34, 13, 4.7; 65, 11.5; 9, 1.4.31. Hence 

Theorem 29.7 (ClassiJicarion Theorem) Let B be paracompact. Then 
the transf0rmation.f -tf*(y"(k")) induces a 1-1 correspondence 

[B, G,,(k")] -+ Vect,(E). 

We define some notation in universal use. BO(n) = G,(R"), BU(n) = 
G,(Cm), and BSp(n) = G,,(Hm). Here O(n), U(n), and Sp(n) are the ortho- 
gonal, unitary, and symplectic groups of n x n matrices, and our baptism is 
based on homotopy equivalences O(n) N QBO(n), U(n) = RBU(n), and 
Sp(n) N QESp(n). (See Exercise 8.) 

We describe now the Whitney sum of two vector bundles. This is a general- 
ization of the notion of direct sum of vector spaces to vector bundles. If t 
and q are vector bundles over E, 5 0 q will be a bundle over B such that the 
fibers in t 0 q will be the direct sum of the fibers in 5 and r] .  To construct such 
a bundle we consider the vector bundle 5 x r]  = { E  x E', n x n', B x 3). 
Let d :  B --f B x B and define t 0 q  = d*(t x q). Thus a point in E ( t  0 r ] )  
is a pair (e,  e') E E x E' with n(e)  = n'(e'). 

One immediately checks that there are equivalences 

50rlzq05 

0 0 5 E : r  
5 O(q on> ( 4  Oq) 01 

where 0 is the 0-plane bundle. Finally, if t E 5' and q = q', C: @ q  = c' 0 ~ ' .  
Thus the set of equivalence classes of vector bundles over B is a semigroup 
with the operation 0. 

There is a natural way of producing from this semigroup an abelian group. 
The construction, called the Grothendieck construction, is as follows, Let 
F ( X )  be the free group generated by isomorphism classes of vector bundles 
over X .  Given a vector bundle 5 we write [t] for the corresponding element of 
F ( X ) .  Let R be the subgroup generated by all elements of the form [t @ q ]  
- [t] - [a] ,  and let Kk(x) be the quotient group. The functor Kk(X) is called 
K-theory. 
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In the case k = R or C it is possible but a little more complicated to extend 
some other functors from vector spaces to vector bundles. Of particular 
interest is the tensor product < 0 q of two vector bundles, and the exterior 
power [17, AIII, 471 of a vector bundle A'(5). These operations satisfy the 
laws 

501zq0 t  
(50490 r=<0(1or) 

< 0 (yl1 8 1 2 )  z (5  0 1?1) 0 ( r  0 v 2 )  

<€31z< 

where 1 is a trivial lihe bundle, and 

no(<) z 1 
A'(<) = 5 

If 5 z 5' and q = q', then 5 0 g = 4' 0 q' and A'(<) z A'(<'). Details of these 
constructions can be found in [34, 15, Section 6; 9, $1.21. 

Since the tensor product distributes over the Whitney sum, it induces a 
natural commutative ring structure on &(X) and the exterior power opera- 
tions define natural transformations A': &(X) -+&(A') such that 

A"x) = 1, A'(x) = x, 

It is easy to see that Kk(P) is isomorphic to the integers if P is a one-point 
space, and the isomorphism is a ring isomorphism (in case k = R or C) .  The 
operations are given by Ai(n) = (1). 

is 
thus a functor from (39 to AZ. If we choose a base point * E A', this induces 
a splitting 

We now define reduced K-theory by $(X) z coker{Kk(*) -, &(X)}. 

&(X) Kk(X) @z. 
It is easy to see that K k ( X )  E ker{Kk(X) -+ &(*)} where the later group depends 
on the choice of a base point. The advantage of the later group is that a ring 
structure is transferred onto $(X) since the kernel in question is an ideal. This 
ring structure conceivably depends on the choice of *. 

We give an alternative description of reduced K-theory when Xis compact. 

Proposition 29.8 Let X be compact and < be a vector bundle over X.  Then 
there is a bundle <' over X with < 0 5' trivial. 
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Proof Let F :  E(5)  -+ k" be a Gauss map with m < co. Choose an inner 
product in k" and let E' = {(u, x) E k" x XI u . y = 0 for all y E F(n-'(x))} .  
Thus E' is the orthogonal complement of F(E(5))  in k". (A good picture to  
look at here is the Mobius band imbedded in Dz x S'.) We claim that 
(' = {E', n2, X }  is a vector bundle and 5 @ 5' = {km x X ,  n 2 ,  X } .  For details 
see [49,2.20]. (In the case of the Mobius band p over S', one easily sees that 
P' "= P.) I 

We will think of each integer n as an n-dimensional trivial bundle. 

Definition 29.9 Two vector bundles 5 and q over X are stably equivalent 
(written ( ~ ' ~ q )  if there are trivial bundles n and m such that t On E' q CD m. 

This is clearly an equivalence relation. We define a function cp from the 
equivalence classes to &(x)  by cp({5}) = [5] (mod 2). This is well defined and 
1-1. 

Proposition 29.10 If X is compact, cp is a 1-1 correspondence. 

Proof Let x E &(X). We can write x = [ 5 ]  - [q], and since X is compact, 
x = [ 5  0 q'] - m by 29.8. Hence x = [ c  O q'] (mod 2) and thus cp is onto. I 

We define mappings Vect,(X) + Vect,+,(X) by 5 -, 1 O 5. Corresponding 
to this there is a continuous mapping 1 :  G,(k") -+ G , + l ( k m )  given by M 4 

k O M c k @k" E' k". Then ~*(y"+'(k")) E 1 @ y"(k") so we have a com- 
mutative diagram 

Vect,(X)- Vect,+,(X) 

I I  
[ ~ j  G,(~")I- [x, ~n+,(k") l  

We define G(k") = upEl G,(k") with the weak topology. 

Proposition29.11 If X is compact and connected, there is a 1-1 corre- 
spondence 

Proof There is a 1-1 correspondence 
[ X ,  G(k")lc*R,(X) 

lim vect,(X)ct17k(x) 

given by 5 -+ [5 ]  - [dim 51. (Every vector bundle 5 over a connected space 
has a constant dimension, written dim 5.) This is clearly well defined, 1-1, 
and onto. There is also a 1-1 correspondence 

lim V e c t , ( X ) o h  [ X ,  G,(k")]; 
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since X is compact and G(k") has the weak topology, the conclusion follows 
by the method in 15.10. 

G,,(k") is classically written BO, BU, or BSp in the cases k = R, C, or H. 
1 

Theorem 29.12 (Bott Periodicity Theorem) 
R'BU N BU x Z ,  SZ4BSp N BO x Z ,  

There are basically three methods of proving this theorem, all of which are quite 
complicated. The first method, which is the original method of Bott [IS, 161, 
uses Morse theory to analyze SZX for X a Lie group. The best reference for 
a proof in this spirit is [52] where all the prerequisite Morse theory is devel- 
oped. Bott's proof was quickly followed by homotopy-theoretic proofs [70] 
in the case of BU,  and [23] in the general case). The third method of proof is 
to analyze directly a vector bundle over S'X. A proof in the case of BU by 
this method was given [lo] and this was later generalized [8]. Ideal references 
are [8; 231. 

R4B0 N BSp x Z 

Theorem 29.13 There are spectra K, KO, and KSp such that : 

(a) R"(Xj g R"+'(x). 
(b) K%(X) z K?P"+~(X). 
(c)  pyx) g TO~+~(X). 

Furthermore, if X is compact we have: 

(d) R0(X) z R,(X), K o ( X )  g K,(X). 
(el Zo(xj z R,(x), K O O ( X )  z K ~ ( x ) .  
(f) 
Proof By 29.12, BO, BU, and BSp are H spaces. In fact they are connected 

CW complexes [48, VI; 671 so they are WANES. Thus by Exercise 11, 
Section 21, we have 

for X paracompact and connected. Thus for arbitrary compact X ,  we have 

K?po(X) z R,(X) ,  KSpo(X) E K,(X).  

[X, G(k" ) Io  [ ( X ,  *I, (G(k"), *>I 

Rk,CX>* [ ( X ,  *I, ( Z  x G(k"),  *>I 
We define R-spectra as follows: 

K' = (::;, z, even 
n odd. 

KO, = Rj(B0 x Z ) ,  n = 8r + j ,  0 r j  < 8. 
K S ~ ,  = ~ 4 ~ 0 , .  

The maps are determined by the homotopy equivalences in 29.12. I 
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In particular KSp is completely determined by KO. Since K O ( X )  is a ring 
whereas K S p ( X )  is not, one usually neglects KSp altogether. KO(X),  K ( X ) ,  
and KSp(X)  are called real, complex, and symplectic K-theory respectively. 

Tensor product of vector bundles determines a map BO A BO -+ BO, and 
BUABU-+BU, although care must be taken at this point. BUABU, for 
example, is not compact and hence a map BU A BU -+ BU does not correspond 
to a vector bundle. However if X c BU is a finite subcomplex, the inclusion 
map determines a bundle cx over X u p  to stable equivalence. Let n1 and n2 be 
the projections X x X - +  X .  Then vx  = nl*(tx) 0 n,*( tx)  is a well-defined 
bundle over X x X and determines a map p x :  X x X-+ BU. The maps px 
are compatible up to homotopy, and this is enough to define a map ji: 
BU x BU -+ BU by Exercise 5 ,  Section 15. Let p :  BU A BU -+ BU be the 
map determined by ji - n1 - n,: BU x BU -+ BU. One defines a map 
(BU x 2) A (BU x 2) -+ (BV x 2) by p on the O-components and p on the 
other components, together with multiplication of integers. Maps Q(BU x Z )  
A (BU x 2) 3 Q(BU x Z )  and n(BU x 2) A Q(BU x 2) -+ BU x 2 are then 
determined and these maps make K into a ring spectrum. The proof of associa- 
tivity and commutativity are subtle since the requisite diagrams are only given 
to commute on each finite subcomplex of the domain space. This is not 
sufficient in general to prove that they commute, but in the circumstances the 
difficulties are easily overcome. See [26]. The multiplication induced in K ( X )  
can easily be seen to be the tensor product of vector bundles. 

Similar considerations produce a map B O A  BO -+ BO and give KO the 
structure of a ring spectrum. 

Thus we have 

Theorem 29.14 K and KO are ring spectra and if X is compact the in- 
duced multiplications K o ( X )  and KOo(X)  coincide with the multiplications 

Before discussing applications, we give an account of the coefficient rings 
{K"(*)} and {KO"(*)}. We will write Hfo r  the Hopf bundle over S2 (the com- 
plex line bundle of Example 1). Let b E K-'(*) correspond to [HI - 1 E 

K d X )  and KR(X) .  I 

R,(P)  "= R-z(sO) "= K-Z(*) .  

Proposition 29.15 The periodicity isomorphism 
&: K"(X) 3 K n - y x )  

is given by &(x)  = x 2 b. 
This follows from the proof of 29.12 [8; 231. 
In particular, there is a class c E K'(*) such that 1 = c Z b. Since U(n) is 

connected (see Exercise 5 ) ,  BU(n) is simply connected for each n and hence 
n,(BU) = 0. Thus R,(S') = 0 and we have 
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Corollary 29.16 

K2"(*) is generated by b" if n < 0 and C" if n > 0. Furthermore, bc = 1. I 
A more compact statement of 29.16 is K*(*) z Z[b ,  c]/(bc - 1). 

Proposition 29.17 [z, nr -1 or -2(mod8) 
KO"(*) z Z ,  n = 0 (mod 4) 

otherwise. 

See [34, I1 8, 5.2; 161 or Exercise 7. 
w 

The generator of KO-'(*) 2 KO(S') is [p] - 1 where p is the Mobius line 
bundle (Example 2). The generator of KO-'(*) z KO(S') is ( [ p ]  - 1) K 
( [ p ]  - 1) = [p 6 p]  - 1. Other multiplicative relations are given by 

z 

Proposition 29.18 Generators x E KO-'(*), y E KO*(*), u E and 
v E KO4(*) may be chosen such that xy = 1, u2 = 2x, and 

yr generates K''(*) ; 
py' generates K"-' (*); 

(If r < 0, we interpret y' as x - ~ . )  

problems. 

and proved that if H(a) is odd, n = 2" (28.18). 

p'y' generates K"-'(*); 
uy' generates K"-~(*) .  

We will now indicate two celebrated applications of K-theory to geometric 

Recall that we defined a transformation H :  ~ T ~ , , - ~ ( S " )  + Z  in Section 28 

Theorem 29.19 (Adarns) If H(a)  is odd, n = 1, 2, 4, or 8. 

This was first proved using other methods than the one given here [l]. The 
version we give is conceptually and technically simpler [6]. The importance of 
29.19 is that it is the most difficult step in the cyclic proof of: 

Theorem 29.20 The following are equivalent : 

(1) n = 1, 2, 4, or 8. 
(2) R" has the structure of a normed algebra. 
(3) R" has the structure of a division algebra. 
(4) S"-' is parallelizable (i.e., z(S"-') is trivial). 
( 5 )  S"-' is an H space. 
(6) There exists a mapf: S'"-' + S" with H(f) = 1. 
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For a detailed exposition of the proof of 29.20 see [27]. We will indicate the 
method here. (1) 3 (2) (3) are pretty easy. Suppose R" is a division algebra. 
Choose a basis e l ,  . . . , en with el = 1, n - 1 linearly independent vector fields 
are defined on S"-' by 

a, i = 2 ,  ... n.  Vi(a) = aei - - (a,  aei) 
llalIZ 

Hence (3) * (4). 
There is a projection z(S"-') -+ S"-' given by projecting a vector tangent to 

S"-' onto S"-' by a line through the origin. If S"-' is parallelizable we thus 
have a map R"-' x S"-' -= T(S"-')  -+ S"-'. It is easily seen that this map ex- 
tends over x S"-' and that the resulting map is a multiplication on 

with two sided unit. Thus (4) e- (5). s n - 1  

The proof that ( 5 )  (6) is more complicated. Let 

If we are given a map f: X x Y -+Z, the Hopf construction is the map 
h ( f ) :  X *  Y +CZ given by h ( f ) ( x ,  t ,  y )  = ( f ( x ,  y) ,  1). Suppose X =  Y = 
2 = S"-' and f is a multiplication with two-sided homotopy unit. There is 
a homeomorphism 6 :  Sm-' * S"-' -+S'"+"-' given by O(u, t ,  u)  = 
(u cos(nt/2), v sin(nr/2)). Under this identification, h ( f ) :  SZ"-' -+ S". 

Lemma 29.21 h(f) has Hopf invariant 1. 

Proof Let M = ZZ u h ( f )  C ( X  * Y) = S" u h ( f ) e 2 n .  Let p E H"(M).  We will 

c p : X * Y - + C X x  Y u x x c Y c c X x c Y  

prove that f12 is a generator of H2"(M).  There is a homeomorphism 

given by 

We identify X * Y with q ( X  * Y )  under this homeomorphism. Thus we define 
a relative homeomorphism 

L : ( C X x  C Y , X *  Y ) - + ( M , C Z )  

by 

( t ,  ((s, x), y ) )  E C(CX x Y )  if s 2 t 



29. K-Theories 335 

This formula determines a point of C ( X  * Y )  under Cq-' and hence a point 
of M.  Choose xo E X.  Then we can define a,  : Y -+Z and I ,  : C Y  + C X  x C Y  
by al (y)  = f ( x o ,  y )  and zl(y, t )  = ((xo, 0) ,  ( y ,  t ) ) .  Then we have a commutative 
diagram 

(CXX C Y , X *  Y )  , ( M , Z Z )  

where C'Z and C - Z  are the cones in CZ with t 2 4 and t I +  respectively. 
Let fi' E H"(M, C'Z) and p' E H"(CY, Y )  be generators corresponding to 
1 E H"(M). Since a, - 1, (t1)*(p') = 1 2 p'. Similarly, by choosing yo E Y 
we can define a similar diagram and (t2)*(p-) = p' x 1 (note: X = Y ) .  Now 
H2"(CX x CY,  X * Y )  is generated by 

p' j? p' = (p' x 1) u (1 j? p') = t z * ( p - )  u tl*(P') = L*(p- u p'), 

Since L is a relative homeomorphism, H2"(M,  ZZ)  is generated by 1- u p'. 
Letj :  ( M ,  @) + ( M ,  C Z ) .  Then 1' = j * ( p -  u p') is a generator. 

To prove that (6) =.(I), let f: S2"-' -+S" and M = S" useZ". Let 
A M :  M - ~ M A M  be the diagonal map. Since A M I p  factors through 
As": S" + S" AS" it is nullhomotopic. Thus there is a factorization of A M  

I 

where p: M + Sz" is the quotient map. Now R , , ( M A  M )  is generated by the 
inclusion y: S2" = S" A S" + M A  M ,  so v = ky for some integer k. Since 
(AM) * (a 2 b) = a u b, we can evaluate both homomorphisms in cohomology 
and it follows that k = H ( f ) .  Thus H(f) determines the homomorphism 
(AM)* in any cohomology theory. We consider R o ( M ) .  There is an exact 
sequence 

Rl(S2") t P ( S " )  t P ( M )  4- RO(S2") 4- R -'(S"); 

0 + Z  4- RO(M) +z 4- 0, 
by 18.9. This reduces to (by 29.16) 
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so R o ( M )  is free of rank 2. Let x ,  = ([HI - 1) K X ( [ H ]  - 1) ER(S'"). 
Then x ,  is a generator. Let 5 = p*(x,) and choose q E g o ( M )  so that I*(v) = 
x,/2 where I : S" + M is the inclusion (n is even by 28.18). Then 5 and q gen- 
erate R0(A4). Now qz = (A,) * ( q  K q )  = p*v*(q K q )  = p*(H(f )x , /2Kxx, /2)  = 
H(f )p*(x , )  = H(f)r. Similar arguments show that 5' = 0 and ( q  = 0 since 
i * ( { )  = 0. We complete the proof by showing that if H(f) is odd, and n # 
2, 4 ,  or 8 this ring structure is incompatible with the cohomology operations 
Ai. 

The operations Ai for i > I are not homomorphisms. In  fact A2(x + y )  = 
A2(x) + A'(x)A'(y) + A2(y). However $'(x) = x2 - 2AZ(x) is a homomorphism. 
In a similar fashion, Adams constructed polynomials $ k  in the operations 
A', . . . , Ak which are homomorphisms. 

Theorem 29.22 (Adarns) There are natural transformations $ k :  K ( X )  -+ 

K ( X )  satisfying: 
(a) $ k ( X  + Y )  = IClk(X) + $k(Y>. 

(c) $"XY) = $k(x)$k(Y). 
( 4  $k($'(X>> = $kl(x).  

(b) If x is a line bundle, $ k ( ~ )  = xk.  

(e) If p is a prime $,(x) = x p  (mod p ) .  
(f) If u E R(S'"), $ k ( ~ )  = k"u. 

The best references for a proof of this are [9; 34, 11,121. 
Let us now apply these operations to I f o ( M ) .  By (f), 

$k(O = $ k ( ~ * ( ~ n > )  = p*($k(Xn>) = k"p*(Xn) = knt* 

Let @(q) = ak q + p k  4 .  Then 

akX,/2 = l*(akq + p k t )  = l * ($k (q ) )  = $k( l * (q ) )  = $k(xn/2) = k n / 2 ~ , / 2 ,  

SO ctk = k"". By (d), $2($3(q)) = $3($2(q ) ) .  However, 

1 1 / 3 ( $ 2 ( q ) )  = $3(2n/2q + pz 4 )  = 2n/2(3n/21 + p3 5 )  + 3% 4 ,  
and $'(t+h3(q)) = 3"'2(2"12q + p2 4 )  + 2,P3 5 .  Thus 

2n1Zf13 + Ypz = 3n'2fi2 + 2,P3, or 2"/2(2n/2 - 1)p3 = 3n/2(3n/2 - 1)p2. 

By (e), $'(q) = q' = 5 (mod 2). Thus p2 is odd. Consequently 2"12 I 3"12 - 1. 
It now follows from elementary arithmetical arguments that n = 2 , 4 ,  or 8. I 

The second important application of K-theory is to the question of vector 
fields on spheres. Recall that there is a nonzero vector field on S"-' iff n is 
even (13.19). Vector fields V,, . . , , Vk are said to be linearly independent if 
for every x E S"-', V l (x ) ,  . . . , Vk(x) are linearly independent in T(S"-'>~. A 
classical problem is to determine the maximal number of linearly independent 
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vector fields on S"-'. The problem is to find a function r(n) such that S"-' has 
r(n)  - 1 linearly independent vector fields but it does not have r(n) linearly 
independent vector fields. 13.19 can be restated as r(2n) > 1 and r(2n + 1) = 1. 

We first consider the problem of constructing vector fields. It is natural, in 
view of 3.5 to construct linear vector fields, i.e., linear nonsingular functions 
f: E" -+ E" with x . f ( x )  = 0. Let p(n) - 1 be the maximal number of such 
functions such that for each x # O,f , (x ) ,  . . . , fp(n)- l (x)  are linearly indepen- 
dent. Then r(n) 2 p(n). The determination of p(n) is a problem in linear 
algebra. As an example we have three linearly independent vector fields on S3 
given by the equations 

fl(X,, x2 9 x3 9 x4) = (-x2, x1, -x4, x3). 

S2(x,, x2 9 x3 9 x4) = (-x3 9 x4, XI, - x d .  
f&, x2 9 x3 9 x4) = (-x4 9 -x3, x2 9 x1). 

Theorem 29.23 (Radon-Hurwitz-Eckmann) Let n = (2k + l)2'+4d with 
0 s c 5 3. Then p(n) = 2' + 8d. 

For a proof see [34; I1 111. 
We list the first few values of this rather complicated function. 

n 2 4 6 8 10 12 14 16 18 20 22 

p(n) 2 4 2 8  2 4 2 9 2 4 2 

This very unlikely looking function is in fact a best possible result. 

Theorem 29.24 (Adam) p(n) = r(n). 

The proof of 29.24 is complicated and we will give only the briefest outline. 
First we observe that if there are k linearly independent vector fields on S", 
there are k orthogonal vector fields on S". This follows from the Gram- 
Schmidt orthogonalization process [12]. Consequently the problems of 
finding linearly independent or orthogonal sets of vector fields are the same. 
We will concentrate on the later problem. Recall that in the discussion before 
29.6 we introduced a space V,, which we now write as Vk(R"), consisting of 
orthogonal k-tuples in R". There are continuous maps 

vk-l(R"-') Vk(R") A S"-' 

given by i(xl, . . . , xk-1) = (xl, . . . , X k - l ,  *) and n(xl, . . . , x,,) = x,, where 
* = (0, . . . , 0, 1). In fact n is a locally trivial bundle with fiber V,-,(R"-') 
(compare with Exercise 13, Section 11) [65, 7.8; 34, 17, 3.81. The spaces Vk 
(and sometimes Lk) are called Stiefel manifolds. (One can prove that they are 
manifold by induction on k using this locally trivial bundle.) 
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Now it is easy to see that a map f: S"-' -+ Vk(R") such that nf = 1 corre- 
sponds to a collection of k - 1 orthogonal vector fields on S"-'. Thus we 
concern ourselves with the lifting problem 

vk(R") 

Since x is a locally trivial bundle, it has the homotopy lifting property. Thus 
a liftingfexists ifffexists up to homotopy. At this point we have converted 
the problem into a homotopy theory problem. The next step is due to James 
P51. 

Proposition 29.25 (James) r(n) I r(kn). 
Proof We construct a map 

h h ( R m )  * Vk(R") ----t Vk(Rm+") 

by h(U1, . . . , U k ,  t ,  2)1, . . . , Uk) = (W1, . . . , H'k) where Wj = ( U i  COS(nt/2), 
ui sin(nt/2)). Then the diagram 

h Vk(Rm) * Vk(R")- Vk(Rm+") 

commutes where O(u, t ,  v )  = (u cos(nt/2), v sin(nt/2)). Thus the maps 
f :  sm-' -+ Vk(Rm) and g :  s"-' + Vk(R") with nf = 1 and ng = 1 yield e = 
h (j- x 9) 8-1 : s m + n - l  -+ Vk(Rm+") and xe = 1. Consequently r(m + n) 2 
min (4mh 44). I 

Corollary 29.26 Suppose k is odd and p(kn) = r(kn). Then p(n) = r(n). 

Proof p(n) I r(n) I r(kn) = p(kn) = p(n). I 
Our task will then be to show that for each n there is an odd integer k such 

that r(kn) I p(kn), i.e., there does not exist f: Skn-' --+ Vp(n)+l(Rkn) with 

The next step is to replace Vk(R") in our discussion by RP"-'/RP"-k-'. 
xf = 1. 

There is a natural map ' 

1: RP"-'/RP"-k-' + Vk(R") 
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such that nR is the map pRP,,-'.  We will define 1 as a composition 
Rpn-1IRpn-k-1 - O(n)/O(n - k )  5 Vk(R"); 

1, is induced by a map y : RP"-' --f O(n) defined as follows. Let 1 be a 
line through the origin in R". Then y ( l )  is the reflection through the hyper- 
plane perpendicular to 1. 1, is a homeomorphism defined by R2(A) = 
(Ae,,-k+l, . . . , Ae,) for A E O(n), and e ,  . . . , en an orthogonal basis for R". 

Proposition 29.27 1 is a 2(n - k)-equivalence. 

Proof If k = 1, 1 is a homeomorphism. We proceed by induction on k .  
Suppose k > 1 and consider the commutative diagram 

x,(RPn- I RP" - k - l ,  RP" - ' /RP"- k -  '> 

By 16.30, (d), is a (2n - k - 2)-isomorphism, hence 1, is a 2(n - k)- 
isomorphism (since k > 1). We complete the inductive step by using the 5- 
lemma and the exact sequences for the above pairs. 

Corollary 29.28 Suppose p(n) # r(n). Then if k 2 (2p(n) + I)/n and k is 
odd, the map 

Rpkn - l/Rpkn-p(n)- 2 S k n -  1 

has a right homotopy inverse a (i.e., (d) 0 a - 1). 

Proof If there exist p(n)  linearly independent vector fields on S"-', there 
exists p(n)  = p(kn) vector fields on Skn-l for k odd by 29.26. Thus a map 
f: skn-l --t Vp(n)+l(Rkn) exists with nf = 1. By 29.27 f - Ra for some map 
a :  Sk"-l --+ RPkn-11RPk"-P(")-2 and x1a N nf = 1. 

It is in this form that a contradiction is proven. Such a map a would induce 
I 

a homomorphism 
) k n - 1  RpkII-1 - p ( 1 1 ) - 2  K*(Sk"-l) -% K,(RP , 

compatible with the operations I l / k .  One then needs to calculate these groups, 
(d),, and the operations c l / k  to show that such a homomorphism cannot exist. 
Equivalently, one can consider the dual situation by imbedding all the spaces 
involved in a large sphere and applying 26.21. This has the advantage that 
the K-cohomology groups are easier to calculate because of the cup product 
structure. The details are found in [2; 341. 
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Exercises 

1. Show that the bundle k"" - (0) -+ kP" from Exercise 12, Section I 1  is 
a k-line bundle. 

2. Let A c B and let 5 = {E ,  11, B} be a vector bundle. Define ( I A  = 
{ x - ' ( A ) ,  7 ~ / , - , ( ~ ) ,  A } .  Show that tIA is a vector bundle equivalent to i*(t) 
where i : A -+B is the inclusion. 

3. Show that C,(k"+') = kP". Conclude that C,(k") = kP". Let i n :  kP" -+ 

kP" be the inclusion. Show that in*(yl(km)) is the line bundle of Exercise 12, 
Section 11. (30.12) 

4. Using y :  (RP", RP"-') -+(O(n + l), O(n)) and 13.11 prove that there 
is a commutative diagram 

a 
nr + l(Sn) - nr(o(n)> 

where 

2 if n is even 
0 if n is odd. deg u =  

(Exercise 6 )  
5. Use the fiberings 

O(n - 1) -+ O(n) -+ Saw', U(n - 1) -+ ~ ( n )  -, sZn-l, 
Sp(n - 1) -+ Sp(n) -+ S4"-1 

to prove that 

n,(O(n)) -+ n,(O(n + 1)) is an (n - 1)-isomorphism. 
xr( U(n)) --+ rr( U(n + 1)) is a 2n-isomorphism. 
nr(Sp(n)) -+ nr(Sp(n + 1)) is a (4n + 2)-isomorphism. 

Use the homeomorphisms U(1) E S' and @(I) = S3 and the above to make 
the calculations 

no(U(n)) = 0. n,(U(n)) = 2 if n > 1. ni(Sp(n)) = 0, i -= 3. 
nl(U(n)) = 2. n,(U(l)) = 0. M ? p ( n ) )  = z. 
n2(U(n)) = 0. n4(Sp(n)) = z, . n4(U(2)) = 2, . 
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6. By Exercises 4, 5, and 29.27, and the homeomorphism O(2) = S' Ll S' 
to prove that 

n1(O(n)) = 2 2 ,  n > 2. n3(O(4)) = 2 $2. 

n3(0(3)) = 2. 

n2(O(n)) = 0. n3(O(5)) =2 or Z@Z,. 

7. Using Exercises 5, 6, and 29.12 to prove 

n8n(0> = z2 * Ic8n + 4(O) = O* 
~fJn+l (O)  = 2 2 *  nfJn+5(O) = O. 
n 8 n + 2 ( 0 )  = O* %"+do) = 0. 
n8,,+3(0) = 2 or 2 02,. n e n + , ( 0 )  = Z .  (29.17) 

8. Show that there are compatible locally trivial bundles 

O(k) + Vk(Rn) -+ G,(R"), U ( k )  -+ Vk(Cn) -i G,(C"), 
SP(~) + J'dH") + G A W  

for k 5 n I: a. Using the map I and its complex and quaternionic analogues 
show that V,(R"), V,(C"), and V,(H") are contractible. Conclude that there 
are maps O(k) + RBO(k), U(k) + RBU(k), and Sp(k) --t QBSp(k) inducing 
isomorphisms in homotopy (and hence homotopy equivalences). 

9. Find a generalization of 29.21 to determine the multiplicative structure 
in E*(M) from the homomorphisms (al)* and (az)* for any ring spectrum E 
and any map f: X x Y-2. 

10. Calculate K(CPn) as a ring. (Hint: Use the method employed in 26.35.) 



3 O  
Cobordism 

This section is intended as an introduction to cobordism theory. There are 
two aspects to this. The first is the reduction of the geometric problem to 
one in homotopy theory. We give a brief sketch of this. It involves techniques 
from differential topology (see [43, 49, 531) which have little to do with this 
work. We give a more detailed account of the solution to the homotopy 
theory problem. 

Cobordism was first described by PoincarC [57]. His notion of homology is 
essentially the same as the modern notion of cobordism. In fact the solution 
of the unoriented cobordism classification problem leads to a spectrum and 
the corresponding homology theory has a geometric description very similar 
to classical singular homology. 

For simplicity we study only the unoriented cobordism theory. At the end 
of the section we will give some indications of other cobordism theories. 

At this point we will assume that the reader is familiar with sope of the 
elementary aspects of differential topology. We consider only compact C" 
manifolds. Two such manifolds without boundary are called cobordant if 
there is a third manifold whose boundary is their disjoint union. This is an 
equivalence relation. Write 91n for the set of equivalence classes of compact 
C" n-manifolds. 

{gn} is in fact a graded ring. The sum is induced by the disjoint union of 
manifolds and the product by the Cartesian product. 0 is represented by the 
empty manifold and 1 by the one-point manifold. Clearly every element of 9I* 
has order 2 since a(M x I )  = ( M  u M )  u @. 

Suppose now that M and N are C" manifolds and f: M --* N is a C" 
imbedding. Then the tangent map df: t ( M )  + z ( N )  is a monomorphism of 

342 
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bundles. Hence z ( M )  is a subbundle of f* ( z (N) ) .  We define the normal bundle 
v of the imbedding to be the quotient bundle. Then there is an isomorphism 

f * ( z ( N ) )  z z (M)  @ v. 

v can be visualized as the bundle of  vectors in z (N)  which are orthogonal to 
M .  Thus, for example, the normal bundle of the usual imbedding S" c R"+l 
is a one-dimensional trivial bundle. As one might expect from this example, 
we have : 

Theorem 30.1 (Tubular Neighborhood Theorem) Let M" c R"+k be an 
imbedding. Then there is a neighborhood of M" in E(v) which is mapped 
diffeomorphically onto a neighborhood of M" in R"+k. 

This is true in more generality. We may replace R"+k by any manifold 
N"+k. For a proof, see [49, 3.61. 

Let 5 be a vector bundle over a paracompact space X .  Choose a Riemannian 
metric in 5 and let D(5) be the subspace of I?(<) consisting of all vectors u with 
]lull I 1. Let S(5) be the subspace consisting of all vectors u with llull = 1. 
D ( t )  and S(5) are called the associated disk and sphere bundles with fibers D" 
and S"-' respectively. Furthermore D(5) and S(5) do not depend on the 
choice of a metric-up to bundle equivalence. 

Definition 30.2 T(<) = D(t) /S( t )  is called the Thom space o f  5. 

Proposition 30.3 If Xis compact, T(5) = E(5)". 

Proof Clearly D(5) - S(<) E I?({). Since D(5) is compact and E(5) is 
regular, I?(<)" = ( D ( t )  - S(5))" = D(t)/S(T) by 1.6. 

Proposition 30.4 (a) I f  A c X is a closed subspace, T ( < J A )  c T(t)  as a 

(b) If  X = uu Xu has the weak topology and each X ,  is closed, T(<) = 

(c) Given bundles 5 over X and q over Y with X ,  Y E  CB, T(( x q )  = 

closed subspace. 

uo T(5 I x,) with the weak topology. 

T(t) A T(rl). 

map D(t I 
Proof (a) D(5IA) is a closed subset of D(<). Hence the 1-1 continuous 

(b) There is a well-defined 1-1 continuous map 
I A )  -, D(tYS(5) is closed. 

u T(5 I x.) -b T(t) 
U 

which is onto and closed. 
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(c) Since X ,  Y E  (33, it is sufficient to prove this for X and Y compact by 
(b) and 15.14. By Exercise 6, Section 26 and 30.3 we have 

T(t x ?) = E(t x ?)" 
= ( E ( 0  x E(rl))" = E(0" A JW" 5 T ( 0  A T(rl). I 

Let y k  be the universal k-plane bundle over BO(k). We will write MO(k) = 
T(yk). The inclusion I : BO(k) + BO(k + 1) defines an isomorphism 

z*(y'+') z y k @  1 = y k  x R'. 

Since z is closed, there is an inclusion 

MO(k) A S' -= T(yk x R1) = T(z*(y'+')) T(y*+') = MO(k + 1). 

We designate this inclusion by mo(k). Thus MO = (MO(k),  rno(k)} is a 
spectrum. 

Next we indicate how a cobordism class of compact n-manifolds determines 
an element of n,(MO). 

We need: 

Theorem 30.5 (Whirney) Let M" be a compact C" manifold. Then there 

For a proof, see [49, 1.321. 
Let M" be a compact C" manifold; choose an imbedding M" c R"' for 

some k and a tubular neighborhood U of M" in Rn+k. U is diffeomorphic 
with a neighborhood V of M" in E(v). Choose a Riemannian metric in v. 
Since M is compact, we can find a smaller neighborhood U' of M" in R"" 
homeomorphic to the set of all vectors with length < E in E(v). This is dif- 
feomorphic with E(v) and hence there is a map 

is a differentiable imbedding M" c RZ"+' as a closed subset. 

S"+k = (R"+')"& V" E E(v)" = T(v) 
since V is open in Rn+k (see Exercise 1, Section 26). This does not depend on 
the choice of E up to homotopy. 

Now choose a mapf: M" + BO(k) which classifies v. Since M" is compact, 
f is closed and hence 

fE: E(v) + mk) 
is closed. This consequently induces a map 

T(v)= MO(k). 

The composition T(fE)r: (S"+k, *) + (MO(k),  *) represents an element in 
n,,,(MO(k), *) and thus an element in n,(MO). Conceivably this depends on 
the choice of an imbedding. However, if k i s  large, one can show that any two 
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imbeddings are isotopic (i.e., homotopic through imbeddings). This is 
enough to guarantee that the homotopy class does not depend on the 
imbedding for k large. By imbedding the cobordism, one can see that it 
depends only on the cobordism class of M .  To see that the element in n,(MO) 
does not depend on k,  consider an inclusion M" c R"" c Rn+k+'. Let v' be 
the normal bundle of the composition. Then v' r v @ 1 = v x R'; let 

r': S""+' + T(v') = T(v) A S'. 

Then r' = S(r). It is easy to verify that the diagram 

T(v) A S' T ( J E )  , MO(k) A S' 
111 

T(v x R') 
111 1 

T(v') T ( f E ' )  MO(k + 1) 

commutes. Thus T(fE.)  0 r' = rno(k) 0 S(TcfE) 0 r ) .  Consequently the element 
8(M) E n,(MO) is well defined. 

Theorem 30.6 (Thorn) 8: 'iR* + n,(MO) is an isomorphism of graded 

For details, see [19, Chapter I ;  69, Chapter 11; 49, Chapter 111; 42, 

We will now show how to calculate n*(MO). We begin by calculating 

rings. 

Chapter 51. 

H*(BO; 2,) and then H*(MO; Z,). 

Theorem 30.7 H*(BO(n); 2,) E Z2[w1, . . . , w,]. The inclusion BO(n - 1) 
+ BO(n) induces a homomorphism i* with i*(wi) = w i  for i < nand i*(w,) = 0. 
dim w i  = i. 

Corollary 30.8 H*(BO; Z2) r Z,[w,, . . . , w,, . . .I. 
Proof of 30.7 Let BSO(n) be the simply connected covering space of 

BO(n), and 8: BO(n) x BO(l)+BO(n) be the map classifying the tensor 
product nl*(y") @ n2*(y1). Then the map BSO(n) x RP" + BO(n) x BO(1) 
-+ BO(n) induces isomorphisms in homotopy groups. Hence BO(n) N 

BSO(n) x RP'". We show that H*(BSO(n); 2,) N Z,[w,, . . . , w,]. 
In Section 29 we considered maps y": RP"-' --t SO(n) such that the diagram 

~ ~ n - 1  y" SO(n) 
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commutes. It follows that n*; H"-'(S"-'; Z,) -+ H"-'(SO(n); Z,) is 1-1. By 
Exercise 6, Section 21, the map 

H'(SO(n); Z , ) 2  H'(SO(n - 1); Z,)  

is an isomorphism for r 5 n  - 2. We now prove by induction that 
H*(SO(n);Z,) has a simple system of generators xl, . . . , x,,-~ with dim xk = k, 
i*(xk) = x, if k < n  - 1, and i * ( ~ , , - ~ )  = 0. This is clear if n = 2 since 
SO(2) E S'. We apply the Leray-Hirsch theorem (Exercise 27, Section 26) 
to the locally trivial bundle (see Exercise 13, Section 11) 

with R = Z ,  . Suppose xl, . . . , x,-, is a simple system of generators for 
H*(SO(n - 1); Zz).  Since i *  is an isomorphism for r I n - 2, there are classes 
xi E H*(SO(n); Z,)  with i*(xi) = x i  for i 5 n - 2. It follows that the products 
xi, * *xi, which form a Z,  basis for H*(SO(n - 1); Z,)  are the image of the 
corresponding products in H*(SO(n); Z,) .  By the Leray-Hirsch theorem 
xl, . . . , x,-, and x,-~ = n*(e) (e  # 0) form a simple system of generators for 
H*(SO(n); Z,) ,  completing the induction. 

We wish to apply the Bore1 theorem (28.4), so we must find elements w i  E 
H*(BSO(n); Z,)  with Zwi = x i - l  for 2 I i 5 n. (By Exercise 8, Section 29, 
SO(n) N ClBSO(n).) From the commutative diagram 

r 
Hk(BO(k), BO(k - 1)) Hk-i(O(k), O(k - 1)) 2 E ffk-](Sk-') 1. 

* l h  n* 

. Ih  
n,(BO(k), BO(k - 1)) nk-](O(k), O(k - 1)) - - nk-l(Sk-') 

we see that C is an isomorphism and hence by the universal coefficient 
theorem (25.16) 

H'(BO(k), BO(k - 1); 2,) 5 H'-'(O(k), O(k - 1); Z,) 

is an isomorphism for r I k .  Next consider the ladder 

." - H ' - ' ( O ( k ) . O ( k -  1);Zz) - H'-'(o(k);zz)- H'- ' (O(k-  I);Z*) - "' 
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i* is an isomorphism if r I k - 1 and if r = k, ker i* consists of an element w 
with cwk = xk-,. Consequently it is a simple matter to construct, by induction, 
classes w i  with the required properties. I I 

Theorem 30.9 i?*(MO; Z,) E H*(BO; Z,). 

Proof We will construct a compatible sequence of isomorphisms 

8,: Hr(BO(n); Z,) + l?""(MO(n); Z 2 )  
The proof will then follow by taking limits. BO(n) = 
are bundle maps 

G,(Rk), and there 

Since G,,(Rk) is compact, we have MO(n) = up= E(y"(Rk))". The isomorphism 
8, will in  turn be induced by a compatible sequence of isomorphisms 

8,": Hr(G,(Rk); Z,) -+ i?""(E(y"(Rk))"; Z2). 

Now G,(Rk) is a compact n(n - k)-manifold. Hence E(y"(Rk)) is an (n + 
n(n- k))-manifold. Since n:  E(y"(Rk)) -+ G,(Rk) is a homotopy equivalence, 
26.24 and 26.28 imply 

Hr(GncRk); 2 2 )  H n ( n  - k )  -r(Gn(Rk); 2 2 )  

Hn(n-,,-r(E(yn(Rk)); Z2) 
E A " + r ( ~ ( y n ( ~ k ) ) m ;  z2). I 

The Whitney sum nl*(y") 0 n2*(ym) 5 y" x y m  is classified by a bundle 
map 

y" x ym --f y"+m.  

This induces structure maps 

MO(n) A MO(m) = T(y") A T(ym) _= T(y" x y") -+ T(y"+") = MO(m + n) 
The inclusion of a point in BO(n) induces a bundle map 

R" -+ E W ) ,  
and hence induces a map S" _= T(R") -+ MO(n) for each n 2 1. These maps 
make MO into a ring spectrum. 

Lemma 30.10 If E is a properly convergent ring spectrum and k is a field 
R*(E; k)  is a coalgebra. 
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Proof The maps 

are independent of m and n if m, n > r.  This yields a diagonal map $: R*(E;  k )  
+ A*(,!?; k )  @ f i* (E;  k).  Similarly one constructs a counit 1 E R o ( E ;  k )  E 
j7"(Es: k )  and the coassociativity and cocommutativity properties follow 
from the corresponding properties for E. 

We will call a graded coalgebra C connected if C" = 0 for n -= 0 and Co is 
freely generated over k by the counit. 

Lemma 30.11 (Milnor-Moore) Let A be a connected Hopf algebra over 
a field k.  Let M be a connected coalgebra over k with counit 1 E M o  and a 
left module over A such that the diagonal map $: M --t M @ M is a map of A 
modules. Suppose the map v: A + M given by v(a) = a * 1 is a monomorphism. 
Then M is a free left A module. 

For a proof, see [54; 691. 

Theorem 30.12 R*(MO;  Z,)  is free over 4 2 ) .  

Proof All that we need to show is that the nontrivial map MO -+ HZ2 
induces a monomorphism in cohomology. We will show that the maps 

MO(n) + w, 9 n) 

induce monomorphisms in dimensions less than 2n. This is enough by 27.5 
since both MO and HZ, are properly convergent. 

The Whitney sum map 

E(y') x . . . x E(y') + E(y") 

induces an isomorphism in Ho( ; Z 2 ) ,  By the proof of 30.9, the map on Thom 
spaces 

CI: M O ( ~ ) A . . . A M O ( ~ ) - + M O ( ~ )  

induces an isomorphism in k"( ; Z2) .  Now MO(1) = D(yl)/S(y'). By Exercise 
3, Section 29, S(y') = S" and hence is contractible. Thus MO(1) N- D(y') 
N BO(1) s RP". Thus the composition 

RP" A " *  ARP" + MO(n) -+ K ( Z , ,  n )  

induces an isomorphism in k"( ; Z , )  and is therefore the map considered in 
Exercise 9, Section 28. The conclusion follows. I 

Proposition 30.13 Let E be a properly convergent spectrum. Suppose that 
every element in n,(E) has order p and R*(E; Z,) is a free module over &(p)  
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generated by classes {x,} and that there are only finitely many c1 in each di- 
mension. Then n,(E) is free over Z ,  generated by classes {u,} of the same 
dimension and (x,, ph(u,)) = 1 where h :  n,(E) + A@) is the Hurewicz 
homomorphism, p :  A,(E) + A,(E; Z,) is the coefficient homomorphism, 
and ( , ) is the Kronecker product. In particular, h is a monomorphism. 

Proof Let 

X,, = n K(Z,,, n + dim x,). 

R'(E; Z,) E' A""(E,,; Z,) for n > r .  If dim x, < n choose cp,: En -, K(Z,,  n + 
dim x,) representing x,. Let cp: E,,+X,, have components {cp,]. Then 
cp*: p ( X , , ;  Z,,) + R'(E,,; Z,) is an isomorphism if r < 2n. The statement about 
n,(E) will be proved in dimensions less than m if we show that 
cp*: -n,,+,(E,,)+n~++,(X,,) is an isomorphism for r srn < n .  By 25.20 
cp*: H,(E,; Z,,) + Hr(X,,;  Z,) is a (2n - 1)-equivalence. Thus by the generalized 
Hurewicz theorem (Exercise 11, Section 22), cp*: n?(E,,; Z,,) + n?(X,,; Z,) is 
a (2n - I)-equivalence. We now consider the universal coefficient exact 
sequences (Exercise 8, Section 25). Note that if every element of n has 
order p ,  n 0 Z ,  E' n z Tor(n, Z ) .  Thus we have a commutative diagram 

d i m c < n  

0 - nrS(En) - nrS(En; Z,) - ns- I(#%) - 0 
which is exact for r < 2n - 1. Since cp* in the middle is an isomorphism, cp* 
on the left is a monomorphism and q* on the right is an epimorphism. 
Thus q*: np(E,,) + n;(X,,) is an isomorphism for r < 2n - 1. We have thus 
calculated n,(E) in dimensions less than n - 2 ;  it is free on generators 

a + E n  with qua +, *. Let : S d i m x , + n  

= h(cp*(ua)) Hn+dim xu (K(zp  7 + dim xa))* 

Let (i,, pa,) = 1. Then cp*(i,) = x, and 

( X a  9 phua) = (P* ( la ) ,  phu) = ( l a ,  ~ * ( p h ( u a ) ) )  

= ( l a ,  ph(q*(ua))) = ( l a  pa,) = 1 

Corollary 30.14 %, = n,(MO) is a Z ,  vector space with one generator 

Proof Clearly MO is properly convergent for 

for each 4 2 )  free generator in R*(MO; ZJ. 

j E j r + n + l  (MO(n + l) /SMO(n); Z , )  E' H'(BO(n + l), BO(n); Z , )  = 0 
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if r < n + 1 .  By 30.6 every element in rr,(MO) has order 2. Thus by 30.12 and 
30.13 we are done. a 

As yet we have not determined the multiplicative structure in rr,(MO). 
To do this one must calculate the multiplicative structure in  g * ( M O ;  2,). 

Let U"E RZ"(MO(n); Z,)  be a generator. Then we have a commutative 
diagram 

sun-' SMO(n - 1 )  - SK(2,  , n - 1) 

Hence mo(n - l)*(Sq" U") = 0. On the other hand, consider 

u :  RP" A "  A RP" + MO(n). 

Then u*(Sq" U") = ( I  ii* * .  T 2)' # 0. Since the kernel of the homomorphism 
H"(BO(n); Z,)  -+ H"(BO(n - 1); Z,) is generated by w,,  we have O,(w,) = 
Sq" CJ". It follows that 0(w,) = Sq" U where 

0: H*(BO; Z,) -+ R*(MO; 2,) 

is the isomorphism from 30.9 and U = O(1). 

the ring spectra structure. Let f ik  = Sqk Urn+". Then 
Fix m, n > k and let p: MO(rn) A MO(n) -+ MO(m + n) be the map giving 

p*(uk) = sqk p*( urn+") = sqk( urn T v) 

i+ j = k  i+ j=k 

This determines the coalgebra structure in  R*(MO; Z,) .  
Now the maps yrn x y" -+ ym+" classifying the Whitney sum determine 

compatible maps BO(m) x BO(n) --f BO(m + n). Thus BO is an H space. By 
the definition of 0, it preserves the coalgebra structure. Hence the diagonal 
in H*(BO; Z,)  is given by $(wk) = z i + j = k  w i  @ w j ,  

The multiplication in BO makes H,(BO; Z,)  into an algebra, whose multi- 
plication is the dual to $. 

Proposition 30.15 H@O; Z,) ZZ[yl, y ,  , . . .]. 
* n ,  1 Proof We first study the map BO(n) x BO(1) - BO(n + 1). By the 

above analysis, ($,,, l ) * (w j )  = w j  0 1 + w j - l  0 w1 for j I n and ($,,, 1)* 

(w,,+J = w, @I w l .  Consider the composition 
n 
I 

BO(1) x * * * x BO(1) -+ a * .  -+ BO(n - 1) x BO(1) + BO(n) 
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By induction one sees that $*(wj)  =j th  elementary symmetric function in the 
polynomial generators of H*(BO(l) x 1 . .  x BO(1); Z2) .  Thus Im $* is the 
subring of symmetric polynomials and in particular, $* is a monomorphism. 
It follows that $, is an epimorphism. Since every element of H,(BO( l )x  
1 .  . x BO( 1); 2,) is a tensor product of elements in H,(BO( 1); 2,) it follows 
that the images of these elements generate H,(BO;Z,) as a ring. Let 
yn E H,(BO; Z , )  be the element in dimension n which is in the image of 
H,(BO(l); Z,). Then the elements y i  generate H,(BO; 2,). Since the diag- 
onal in H*(BO; Z,)  is cocommutative, H,(BO; Z,) is commutative. Since 
the rank of H,(BO; 2,) is the same as the rank of Z 2 [ y , ,  . . . , yk ,  . . .] in each 
dimension, the conclusion follows. I 

Now one can easily check that the isomorphism fir(MO; Z,) r Hr(BO; Z,)  
is multiplicative by using the diagrams 

W") x D(Y "> - D(Y" + "1 

I I 
BO(n) x BO(rn)- BO(n + m) 

Consequently, 

Corollary 30.16 A,(MO; Z , )  z Z2[y1, . . . , y n ,  . . .I. I 

Now H*(MO; 2,) E 4 2 )  0 C for some vector space C. Hence H,(MO;Z,) 
z &(2) 0 C,. Furthermore, C, = im h(n,(MO)). h is also multiplicative, 
so C, r n,(MO) as algebras. Since A,(2) r Z,[tl, (, , . . .] with one poly- 
nomial generator (, for each i = 2" - 1 by 28.21, we have 

Corollary 30.17 (Thorn) %* r n,(MO) z Z,[x, , x4,  x5 ,  . . .] with one 
generator x i  for each i # 2" - 1. h(xJ  E y i  (modulo decomposable ele- 
ments). I 

Definition 30.18 If 5 is a vector bundle over X ,  we will define classes 
w i ( ( )  E H i ( X ;  Z , )  by w j ( ( )  = f * ( w i )  wheref: X +  BO is a classifying map for 
(. w i ( ( )  is called the ith Stiefel-Whitney class of 5. 

Proposition 30.19 The Stiefel-Whitney classes have the following (charac- 
teristic) properties: 

(a) If ( is an n-plane bundle, w i ( ( )  = 0 for i > n. 

(c) (Whitney Formula) wk(( 0 q) = X i +  j = k M ' i ( ( ) W j ( q ) .  

(d) Let H be the canonical line bundle over RP". Then w l ( H )  # 0. 

(b) Iff:  W + X ,  w i ( f * ( t ) )  = f * ( w i ( t ) ) .  
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Proof (a), (b), and (d) are obvious. (c) follows from the formula $(wk) = 

X i +  j = k  wi 0 w j .  I 

Definition 30.20 For any compact connected manifold M" and any homo- 
geneous polynomial p ( w , ,  . . . , wk)  of degree n, define the normal Stiefel- 
Whitney number corresponding to p as 

(P(Wl(V), * ' .  9 W k ( V h  [ M I )  E z, 
where v is the stable normal bundle of M .  

wk(v))  depends only on the stable isomorphism class of v .  
Since wi(v 0 m) = Xwj(v)wi-,(m) = w,(v),  thecohomology classp(w,(v), . . . , 

Proposition 30.21 I f  p(w, ,  . . . , wk) E H"(B0; Z,)  and M is a compact 
connected n-manifold, the Stiefel-Whitney number corresponding to p is 
given by 

where h :  'ill, -, A*(MO; 2,) is the Hurewicz homomorphism and 
0*: a * ( M O ;  Z,) -+ H*(BO; 2,) is the dual to the Thom isomorphism (30.9). 
In particular, two manifolds are cobordant iff all their Stiefel-Whitney 
numbers are equal. 

( P ( W l 9  * .  . 9  Wk)? O*h({M})) 

Proof Let f: M -+ BO(m) classify v. Then 

< P ( W l ( V ) ,  ' ' .  9 W k ( V ) ) ,  [MI)  = (P(Wl9 * 3 . 1  Wk)?f*([MI>>. 
Now h { M }  = T(f),r*(i) where 1 E Hn+k(S"+k; 2,) is nonzero, and r :  Sn+k-+ 
T(v). Thus O*h{M} = f* cp'r*(t) where cp': R,+,(T(v); Z, )  -+ H,(M; 2,) is the 
isomorphism in Exercise 1.  Thus we need only show that cp'r,(i) = [MI. By 
Exercise 1, it is only necessary to show that the inclusion E(v) c En+k induces 
an isomorphism in H,( ; 2,). This follows since M is connected. 

By calculating the normal Stiefel-Whitney classes for RP", one can prove 
I 

Proposition 30.22 x Z n  = {RP2"} (modulo indecomposable elements). That 
is {RP2"} may be taken as a ring generator of %* in dimension 2n. 

For details of the calculation, see [69]. Compare this result with Exercise 15, 
Section 26. 

We give a geometric description of the groups MO,(X, A )  due to Atiyah 
[7 ] .  One should observe the similarity between this description and theclassical 
definition of singular homology. (See Exercise 9, Section 21.) Simplices are 
replaced by manifolds. 

For a fixed pair (A', A )  define a singular manifold in (X, A )  to be a mapping 
f :  (M, 8 M )  --f ( X ,  A )  where M is a compact C" manifold of dimension n. 
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Such a manifold will be said to bord when there is a compact C" manifold N 
of dimension n + 1 and a mapping I; : N -+ X such that (i) M is a submanifold 
of (ii) F( = f, and (iii) F(dN - M )  c A .  Two singular manifolds 
( M ,  dM, f) and ( M ' ,  d M ' , f ' )  will be called bordant if their disjoint union 
( M  u M',  dM u dM' ,  dfu df') bords. This is an equivalence relation and 
we write %,( X ,  A )  for the set of equivalence classes. Clearly %,,(*, 4) = %,, . 

Theorem 30.23 (Atiyah) If ( X ,  A )  E eG2, there is a natural isomorphism 

%,(X, A )  s MO,(X, A) .  

The proof of this will be based on 

Lemma 30.24 %,(A', A )  is a homology theory with type 1 excision on 
z2. 

This is proved in [19, 1, 5.11. 

Proof of 30.23 We construct a natural transformation 

4:  %,(X, A )  + MO,(X, A )  
and prove that it is an isomorphism. Let f: ( M ,  d M )  + ( X ,  A )  be a 
singular n-manifold, and E(v) the total space of the normal bundle to M - dM. 
A mapping u:  E(v) + E(v) x ( M  - dM) is defined by a(x) = (x, n(x)), 
where n: E(v) + M -  dM is the projection. This map is proper and 
hence induces 

U': T(V) + T(V) A M+/dM' ,  

since M+/dM+ = ( M  - dM)". Thus the composition 
T ( f E )  A f S " + k L  T ( V ) L  T(V)A M+/dkf '  Mo(k)A X+/At 

defines an element of 

n,+k(Mo(k) A ( X + / A + ) )  = &,(X+/A+) = MOn(X, A) .  

This is well defined by arguments similar to before, and gives the natural 
transformation cp. In particular, if Xis  a point, cp is an isomorphism by 30.6. 
By induction (as in Exercise 10, Section 18) cp is an isomorphism for each CW 
pair ( X ,  A) .  The theorem will follow from 21.7 if we show that %,(S(X)) 
%*(X) where S ( X )  is the singular complex of X .  Let ( M ,  f) represent an 
element of %,,(X). Since M is a compact C" manifold, it is a CW complex 
[52, I,  Part 31. Hence there exists g: M -+ S(X)  with ng -f. The homotopy 
H :  M x I +  Xgives a cobordism from (M,f) to n,(M, 9). Hence n* is onto. 
Suppose n,(M, f) = 0 where f: M + S ( X ) .  Since every element of %,(S(X) 
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can be represented by such a pair it is sufficient to show that (M,f) bounds. 
Suppose d N =  M a n d  h :  N - l  X i s  a map with h l M  = nJ By 16.17 there is a 
map g: N 4 S ( X )  with g1 

The homology and cohomology theories derived from unoriented cobor- 
dism are not essentially different from ordinary Z2 homology and cohomo- 
logy because of the following. 

=J Hence ( M ,  f) bounds and we are done. I 

Proposition 30.25 (a) If (Y ,  B)  E CQ', 

MO*( Y, B) Z !TI* 8 H*( Y, B ;  Z2) 
(b) If (Y ,  B) is a finite relative CW complex2' 

MO*( Y, B) r !TI* 8 H*( Y, B ;  Z,) 

Proof In the proof of 30.13, we constructed a spectrum X = {X, , ,  x,} with 
X ,  =ndima<,,K(Z2, n + dim a) and a map cp: MO -1 X .  cp induces natural 
transformations 

cp: MO*( Y, B)  + X*( Y, B),  cp: MO*( Y, B) 4 X*( Y, B). 
We now observe that !TI* @H,(Y, B ;  Z,)  and !TI* @ H * (  Y, B ;  2,) are 
homology and cohomology theories. The only point needing attention is the 
exactness axiom, but for Z, modules A 8 B z A BZ2 B and since all 2, 
modules are free is an exact functor. We produce natural trans- 
formations 

rll  
X d  Y, B)+ 8 H*( Y, B ;  Z2) 
X*( Y, B)* !TI* 8 H*( Y, B;  Z,) 

as follows. 
Let $a: X ,  4 K(Z, , n + dim u) be the projection if dim cx < n and other- 

wise trivial. This defines a map of spectra $=: X +  Ea where E," = 
K(Z,, n + dim u). Clearly Ema( Y, B)  = Hm+dim.( Y, B ;  Z,) and similarly for 
cohomology. The maps and $, are given by 

$1(u) = C a 8 $a(u) and $z(u) = C a 8 $a(u). 
Thus $cp is a natural transformation : 

MO*( Y, B) + 8 H*(K B ;  2 2 1 ,  MO*( Y, B )  + a* 0 H*( Y, B;  Z2) 

These transformations are isomorphisms if ( Y ,  B)  = (*, fa). Hence by Ex- 
ercise 10, Section 18 and 21.7 the first part of 30.25 is proven. The second part 
is even easier. I 

28 This can be improved. One only needs to assume that Y is compact of finite dimen- 
sion and B is closed by [24, A', 10.11. 
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We now define a natural transformation p: MO,(X) + H * ( X ;  2,). For 
each pair (M,  f) let p((M, f)) = f * ( [ M ] ) .  I f  M = dN and h:  N +  X with 
h I =f, we have a commutative diagram 

By Exercise 12, Section 26 there is a commutative diagram 

HO(N; 2,) E H"(N, M ;  Z,) 

1 1 
HO(M; 2,) E H,-..,(M; 2,) 

from which it follows that d is an isomorphism and hence i , ( [M])  = 0. Thus 
f * ( [ M ] )  = 0 and p is well defined. 

Proposition 30.26 (Thorn) p is onto. 

Remark This says that every 2, homology class is represented by a map 
from a manifold. The corresponding statement for integral homology is 
false. 

Proof Consider the composition 

cp : %* 6 H * W ;  2,) --f MO*(X)  2 H*(X; Z,) 

Define cp,(x) = cp(a 6 x). cp,: H,,(X; 2,) -+ Hn+,i,,(X; Z,), and clearly 
cp(Cai 6 x i )  = Ccpu,(xi). If dim CI > 0, cp, = 0 since for each n-dimensional CW 
complex K ,  cpu = 0. Thus cp(x) = cpo(xo) for some operation cpo : H,,(X; 2,) + 
H,(X; 2,). Since p # 0 when X = S". cpo # 0 in this case. Let K be an n- 
dimensional CW complex. Then we have a commutative diagram 

0 = l; Z, )  - H,(K; 2,) - Hn(VS0"; Z,) 

0 = H " ( R -  ; 2,) - H,(K; Z,) - H,(VS,/; Z,) 

P0'1 I- lo I 
Thus cpo = 1 in this case and thus for any CW complex. By 21.7, cpo = 1 and 
thus p(Cai 6 x i )  = xo . p is clearly onto. I 
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Other cobordism theories yield analogous results, but 30.25 and 30.26 do  
not hold in general. The simplest generalization is to consider cobordism of 
oriented manifolds. I n  this case, two oriented manifolds M and N are co- 
bordant if there is an oriented manifold K with dK = M u N a n d  such that 
the orientation induced on dK (through the isomorphism H,+,(K, dK) z 
H,,(dK)) agrees with that on M and is opposite to  that on N .  One writes this as 
dK = M u - N .  Thus it is no longer true that every element has order 2, since 
d(M x I )  = M u - M. An orientation on M determines an orientation of both 
the tangent and normal bundles. That is, the linear transformations that 
occur in comparing coordinate neighborhoods must be orientation preserving 
(as maps R"+R") .  Such bundles are classified by maps into BSO(n), and 
oriented cobordism is classified by n,,(MSO) where MSO = {MSO(n), 
mso(n)} is the Thom spectrum obtained from the universal bundle over 
BSO(n). H , ( M S O ;  2,) N Z2[u2,  u 3 ,  , . .]. The existence of elements of infinite 
order in n,(MSO) makes the calculation problem harder. The solution is 
rather complicated (see [69; 191). 

This is the first example of cobordism of manifolds with " structure." The 
structure given is an orientation ofthe stable normal bundle. (This is equivalent 
to  an orientation of the tangent bundle.) Such an orientation corresponds to a 
choice of a homotopy class of liftings in the double covering: 

BSO 

M 2 BO 

In more generality, we can consider pairs consisting of a manifold M and a 
lifting A. 

BG 

I 

M - BO 

where G is a suitable subgroup of 0. (For example, U = U:=lU(n), Sp = ur=l Sp(n). Such liftings are determined if M is a complex (simplectic) 
manifold.) 

The generalized Thom theorem says that such cobordism classes are 
classified by n,(MG). ([69]). 

The two cases U and Sp are of special interest. n,(MU) was calculated by 
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Milnor [51] and has a particularly simple structure. n,(MU) Z [ x ,  , x4, . . .I 
where x,,, = [CP"]. The cohomology theory MU* has turned out to be useful 
in many applications to homotopy theory. ([63; 751). 

The case of MSp is at this time a mystery. n,(MSp) is not, as yet, completely 
known, although much partial information is available [61; 58; 59; 60; 371. 

Exercises 

1. Let 5 be a vector bundle over a compact manifold X .  Then T(5) = E(l)". 
Prove that 

P'r(T(5); 2,) E H'(M; Z,)  
f i n +  r(T(t); 2 2 )  HAM; 2 2 ) .  

This is called the Thom isomorphism theorem and is true without assuming 
that X is a compact manifold. (30.21). 

2. The connected sum of two n-manifolds M and N is defined as follows. 
Let U c M and V c N be coordinate neighborhoods. Remove disks D and D' 
from U and V and attach a tube S"-' x Z to M - D v N - D' by connecting 
one end to the boundary of D and the other end to the boundary of D' by 
homeomorphisms. Prove that the quotient space M # N is a manifold. Show 
that M # N is cobordant to M u N .  (See Fig. 7.7.) 

3. Calculate H*(BU) and H*(BSp) as rings. 
4. Prove the exactness and homotopy axioms for %*(X, A) .  (See Exercise 

9, Section 20.) 
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TABLE 1 

b = l  2 3 

a 0 3 0 
23 
22 
21 
20 
19 
18 
17 
16 
15 
14 
13 
12 

11 
10 

9 
8 

7 
6 
5 

4 
3 
2 
1 

0 

23.11 
23.10 

23.9, 22.10 
23.8 

23.7, 22.8, 21.9 
23.6, 21.8 

23.5, 22.6, 20.8 
23.4 

23.3, 22.4, 21.5, 19.7 
23.2, 21.4, 19.6, 
23.1, 22.2,20.4 

19.5, 18.6 
23, 19.4 

22, 21.1, 18.4, 17.5 

21, 17.4 
20, 16.4 

0 

15.3 
15.2 

15.1, 14.2 
15 

14, 13.1 
13 

3.1 5,  4.1 
I 0  5.1 

0 

21.10 
21.9 

21.8, 20.9 
21.7 

21.6, 20.7, 19.8 
21.5, 19.7 

21.4, 20.5, 18.7 
21.3 

21.2, 20.3, 
19.4, 17.6 

21.1, 19.3, 17.5 
18.3, 17.4, 

21, 20.1, 16.5 
17.3 

19, 16.3, 15.4 

15.3 
14.3 

0 
13.2 
13.1 

13, 12.1 
0 

0 
19.9 
19.8 

19.7, 18.8 
19.6 

19.5, 18.6, 17.7 
19.4, 17.6 

19.3, 18.4, 16.6 

19.2 
19.1, 18.2, 
17.3, 15.5 

19, 17.2, 15.4 
18, 16.2, 

15.3, 14.4 
15.2 

14.2, 13.3 
13.2 
12.2 
0 

11.1 
11 

b = 1 2  11 10 

The notation a. b represents SqaSqb, and the notation x ,  y represents 
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4 5 6 a 

5 0 7 1 
6, 5.1 6.1 7.1 2 

7 7.1 0 3 
7.1, 6.2 9, 8.1, 7.2 10, 8.2 4 

7.2 9.1 11, 9.2 5 
7.3 9.2, 8.3 11.1, 10.2, 9.3 6 
0 9.3 11.2 7 
0 

17.8 
17.7 

17.6, 16.7 
17.5 

17.4, 16.5, 15.6 

17.3, 15.5 
17.2, 16.3, 14.5 

17.1 
17, 16.1, 

15.2, 13.4 
15.1, 13.3 

14.1, 13.2, 12.3 
13.1 

12.1,11.2 
11.1 
10.1 
0 

11.3, 10.4 

11.5 
15.7 11 
15.6 0 13 

15.5, 14.6 13.6 12 

15.4 13.5 11 
15.3, 14.4, 13.5 13.4, 12.5 10 

15.2, 13.4 13.3 9 
15.1, 14.2, 12.4 13.2, 12.3, 11.4 8 

15 13.1, 11.3 7 
14, 13.1, 11.3 13, 12.1, 10.3 6 

13, 11.2 0 5 

12, 11.1, 10.2 11, 9.2 4 
11 9.1 3 

10, 9.1 9, 8.1 2 
9 0 1 

9 8 7 

x + y .  Thus for example, 15.5, 14.6 represents Sq15Sq5 +SqI4Sq6. 
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