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Preface

This book is an exposition of elementary algebraic topology from the
point of view of a homotopy theorist. The only prerequisite is a good foun-
dation in point set topology. In particular, homology theory is not assumed.
Both homology and cohomology are developed as examples of (generalized)
homology and cohomology theories. The idea of developing algebraic
topology in this fashion is not new, but to my knowledge this is the first
detailed exposition from this viewpoint. One pedagogical advantage of a
course developed in this way is that it may be studied before or after a
course in classical homology theory (e.g. {71] or [28)); alternatively homology
and cohomology could first be introduced, as they are here, as examples of
a more general theory.

The philosophical emphasis here is: to solve a geometrical problem of a
global nature, one first reduces it to a homotopy theory problem; this is in
turn reduced to an algebraic problem and is solved as such. This path has
historically been the most fruitful one in algebraic topology.

The first few sections are introductory in nature. These are followed by a
discussion of the fundamental group, covering spaces, and Van Kampen’s
theorem. The fundamental group serves as a model of a functor that can be
calculated.

In Section 8 we introduce the category of compactly generated spaces.
This seems to be the most appropriate category for algebraic topology.
Many results which are most often stated in the category of CW complexes
are valid in this generality.

The key result we use to make calculations is the Blakers—Massey theorem.
This is strong enough to imply the suspension theorem and the Serre exact
sequences. The Blakers—Massey theorem is proved by linear approximation

vii



viii Preface

techniques in Section 13 (after J. M. Boardman) in the case of a pair of
relative cells. This allows one to calculate ,(S"). The more general form of
the Blakers—-Massey theorem is proved in Section 16.

In Section 18 reduced ‘“ spectral” homology and cohomology theories are
defined from arbitrary spectra on compactly generated spaces. They satisfy
the usual axioms in this generality. It is more complicated to show that
unreduced theories satisfy the usual axioms; this is done in Section 21.
Spectral homology theories agree with their “singular approximations.”
Spectral cohomology theories on paracompact spaces have all the properties
usually associated with Cech theory.

Calculations in the ordinary homology of CW complexes are studied in
Section 20. We develop axioms for the chain complex of a CW complex.
These are strong enough to make all the usual calculations based on ad hoc
decompositions. In particular a proof of the algorithm for the homology of
a simplicial complex is given. (The algorithm for singular homology follows
from the functorial singular complex construction which is included as an
appendix to Section 16.)

The Hurewicz theorem follows quite easily from the Blakers-Massey
theorem. Duality in manifolds in its full generality for an arbitrary ring
spectrum follows from the usual inductive approach using “‘spectral™
homology and cohomology.

In Section 27 we introduce Steenrod operations geometrically via the
quadratic construction. We learned this approach from J. Milgram. The
Adem relations are proven in Section 29 by a method due to L. Kristensen.
This necessitates calculating H*(K(Z,, n); Z,) for which we state, without
proof, the Borel transgression theorem.

Spectral sequences have been omitted for several reasons: their introduc-
tion would increase the length of the book considerably; they are more
difficult to write about than to explain; there already exist expositions which
we feel we cannot improve upon ([21, 41, 31]).

In the last two sections we sketch K-theory and cobordism. This serves as
an introduction to some of the more powerful functors which have been
utilized in algebraic topology. Applications of K-theory to the Hopf invari-
ant and the vector field problem are discussed. In the last section n,(MO) is
calculated.

We have used throughout the symbol | whenever we have finished the
proof of some theorem, proposition, corollary, or claim made earlier.
Sometimes these symbols pile up—for example, if one statement is reduced
to another.

The exercises are an integral part of the development. No exercise requires
outside reading, or the utilization of techniques not previously developed
(usually in the relevant section). A * on an exercise indicates that its under-
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standing is necessary for further study—not that it is difficult. Often termi-
nology used later is first introduced in such an exercise. Many exercises are
used later in only a few places. In such cases it is indicated in parentheses
at the end of the exercise where the result is used.

A one-quarter introductory course could easily be based on Sections
0-13. Section 8 could be skipped if an independent proof of adjointness is
given. Section 8 is used essentially in Section 18 unless one restricts the
homology and cohomology theories to finite complexes.

Occasionally seminar problems are given at the end of a section. These
are topics peripheral to the material in the section and not used elsewhere.
They are intended for students to give a report on, based on the references
given. In our opinion, these problems provide an excellent way for students
to get more actively involved in the subject.

I wish to thank the many mathematicians who offered suggestions and
encouragement, and the typists who suffered through my handwriting.
Particular thanks in this regard are due to Ms. Shirley Bachrach.
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o

Preliminaries

An area of study in mathematics consists at least of a collection of problems
and usually a collection of techniques useful in solving the problems. We
begin by looking at some problems typical of those considered in algebraic
topology.

Let D be the unit disk in the complex plane, i.e., the set {z | |z| < 1}.

Problem 1 Does there exist a continuous (differentiable? analytic?)
function f: D — D with no fixed points (i.e., for no z is f(z) = z)?

One thinks of fas a transformation from the disk to itself, and one might
visualize points moving such as a rotation of the disk or a squashing of it
onto a smaller subset. Can this be done so that every point is moved? It
would seem much easier to solve this problem if the answer is affirmative;
one only needs to write down the equations of such a function or draw it
pictorially. If the answer is no, it might be very difficult to prove.

Let S < D be the unit circle: {z||z| = 1}.

Problem 2 Does there exist a continuous (differentiable?) function
f: D— S with f(z) = z whenever z € §?

Imagine a rubber disk held onto a table by the rim and try to pull the
disk toward the rim without tearing (a tear would represent a discontinuity
since its only use would be to move nearby points away from each other).
Clearly by punching a hole in the rubber, it can be pulled to the rim, but
otherwise it seems intuitively clear that no such continuous map could exist.
How could one prove this?

Let S? be the sphere in three-dimensional space, {V'|| V| = 1}.

1



2 0. Preliminaries

Problem 3 Suppose that to each point of S? is associated a vector whose
tail is at that point and which is tangent to the sphere. (Such a situation can
be thought of as a hairy ball, with all the hairs matted down.) This can be more
quantitatively stated by saying that for each vector V with |[V| =1 we
associate a W with V' L W (ie., V- W =0). Let us write W as W(FV) and
suppose W is continuous as a function of ¥V (continuity corresponds to having
the hair on the ball combed). Does there exist a continuous function W(}V)
with W(V) # 0 for all ¥? (That is, can the hair be combed on a ball without
any baldspots?)

Problem 4 One can easily see that there is a continuous function y: S*
— S? with no fixed points, namely, y(x, y, z) = (—x, —y, —z). This moves
points very far. Does there exist a function y: S? — §? without fixed points
so that [|y(x) — x|| < ¢ for some fixed number &? For which &? (Is there an
““infinitesimal ”’ transformation without fixed points?)

We can see from these representative problems that the spaces we deal with
are simple. They will, to a large extent, be the spaces that arise naturally in
mathematics. Many of the problems arose in analysis, linear algebra, pro-
jective geometry, etc. Our first task will be to define some of the spaces and
then make some general remarks on the type of problem we are considering
and the type of tools we shall use to solve the problem.

Exercises

Exercises 1, 2, and 3 are useful in homotopy theory. They are commonly
contained in a point set topology course. A good exercise to confirm your
mastery over this prerequisite material will be to supply proofs for them. As
references for point set topology we recommend [22; 29; 36].

1.* Given a topological space X and an equivalence relation ~ among the
points of X, one topologizes the set of equivalence classes X/~ as follows.
There is a map IT: X - X/~, and we say that U = X/~ is open iff 1~'(U)
is open in X. This is a topology. Suppose we are given a continuous map
f: X — Y such that for any two points x, x’' € X with x ~ x" we have f(x) =
f(x"); then there is a unique continuous map f: X/~ — Y so that fII =,
i.e., so that the diagram

X[~
VRN
X—T—"Y

commutes.



0. Preliminaries 3

2.* Suppose X = F, U+ U F, where each F; is closed. Suppose f;: F;—» Y
is a continuous map for each i, such that!

fll FinFy; =f1| FynF;
foralliand j. Then the unique map f: X — Y defined by f] r, = f; is continuous.

3.* (Lebesgue’s Covering Lemma) If X is a compact metric space and
{W;,} is an open cover, there exists an e-number—i.e., a positive number &
such that if 4 is any set with diameter <g, there exists an a such that 4 = U,,.

4. Let f: X — Y be a closed continuous map from X onto Y. Suppose X
is Hausdorff and that either X is normal or f~!(y) is compact for each y € Y.
Prove that Y is Hausdorff. (Hint: Find open sets U; > f~!(y;) with U; n
U, =, and consider W; = Y — f(X — U,).) (Exercise 8, Section 7; Exercise
13, Section 13; 16.36,27.9).

5. Let fi(2) =az for |a| <1, fo(z)=t+ (1 —1)z for 0<t<]1, and
f+(z) = z2. Find a fixed point for f; f, f;.

! Given a map f: X— Y and a subspace 4 < X, we use the notation f| , for the map
A — Y given by restricting f to A.



I

Some Simple Topological Spaces

Most of the topological spaces that arise in mathematical problems are
subsets of n-dimensional Euclidean space, and it is natural to give preferen-
tial treatment to such spaces. We begin our study by defining some of the
simpler subspaces of Euclidean space. These spaces will recur in both the
theory and applications of topology, and we take some time to discuss the
relationships among them.

Definition 1.1
R ={(xy, ..., x,)|x, real}, n-dimensional
Euclidean space.
For x € R", write x| =/ x2.
B ={(x,...,x,)e R"||x| <1}, the n-dimensional ball.

S ={(x,,...,x,)e R"||Ix]| =1}, the (n — 1)-dimensional
sphere.

I"={(x;,...,x)eR0< x; <1}, the n-dimensional cube.

A ={(x;,...,x)eR|0<x;<1,Zx,=1}, then-dimensional
simplex.

The last four of these are naturally imbedded in the first, via their descrip-
tion, They are pictured in Fig. 1.1 for n = 2.

The first two of these occur naturally in the four problems listed earlier
(D = B? S =S8!). They are all closely related, however, and the rest of this
section will be a technical exposition of their relation. This may be skipped

4



1. Some Simple Topological Spaces 5

Figure 1.1

by the more impatient students, but is in fact a good introduction to “ seeing
in higher dimensions.”

Write Int X for the interior of X considered as a subset of some larger
space (given by context).

Proposition 1.2 Int I" ={(x,,..., x,)|0 < x; < 1}.

Proof If 0 < x; <1 for each i, let ¢ = min,(1 — x,, x;). Then a ball of
radius & about x is contained in I”, so x is in the interior. If, for some i,
x; =1 (or 0), then a ball of radius r about x will contain points with x; > 1
(<0) no matter how small r is. Thus these points are not in the interior. J

We will write 61" =1I" — Int I",
Proposition 1.3 1" is homeomorphic to B”. Under this homeomorphism
oI" corresponds to S™ 1.

Proof Let I" ={(x,...,x,)| =1 < x; < 1}. Clearly I" and I" are homeo-
morphic and dI" corresponds to

o ={(x,...,x)|—1<x;<1 and x;=+1 forsomei}.
Define ¢,: I" - B" and ¢, : B" - I" by the formulas

B1Cxts e s %) =%’Hxi')m, x40 =0
B )
lpl(xlan'sxn) _m('xh -'-5xn)9 l//1(0)_0

Clearly [y(xy, ..., x)| =max([x;]) <1 and max(Jy, ) =/ExZ <1,
so these maps are well defined and inverse to each other. The continuity at
0 follows from the inequalities

max(|x;|) <||x|| < /nmax(|x,]). I

What we have done in the proof is to shrink every ray from 0 to dI" down
linearly to have length 1 (Fig. 1.2). Its original length is ||x||/max(]|x;]).
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Figure 1.2

We will write = to mean homeomorphism. Thus we have I"=I"= B"
and /" = 8I" = §"~ ! in a compatible way.

Given a space X and a subspace 4, we will write (X, A4) for the pair of
spaces. A map from the pair (X, A4) to (Y, B) is just a map f: X - Y with
f(A4) = B. A homeomorphism from (X, 4) to (Y, B) is just a homeomorphism
from X to Y such that A corresponds to B. Thus we have proven that
(I", 8I") is homeomorphic to (I, 8I*), and this is homeomorphic to (B", S"™1).
We write this as

@, o1 = (I, oI"y = (B*, " 1).

Proposition 1.4 " — 0" = R".
Proof Sincel” — 0I" = (I — 61);& . '~7x (I — 0I), this follows from the fact
that I — 8I = (0, 1) = R'. (We use the homeomorphism ¢ — tan(n/2)(2¢ — 1).)
i

Proposition 1.5 S"—(1,0,0,...,0) = R".

Proof Here we use the familiar stereographic projection (Fig. 1.3).
Placing R" = R"*! by making the first coordinate? 0 and S™ intersecting R" in
the equator, we draw a line from the north pole through a point x € $" and
record ¢,(x), its point of intersection with R*:

x Xy
¢,:8"—(1,0,...,0)— R", ¢2(x1,...,x,,+1)=( 2 “).

1—x 1= x

2 This imbedding may seem strange, but it is necessary if we want (1, 0, ..., 0) to be
the missing point. This is important as it will later be chosen as a *“ base point ** and belongs
to S"for all n > 0.
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/

Figure 1.3

This has an inverse yr,: R"—» S"— (1, 0, ..., 0) given by

1
l//2(xls reey xn) = W ("x"2 - 1’ 2x1’ ey 2xn)‘

It is easy to check that Yy, ¢, =1 and ¢,{, =1 and these are clearly
continuous. |I

Let us write X/A for the quotient space of X with A identified to a point.
If A = &, we will sometimes write X/4 for X*, the disjoint union of X and a
point +. We will also write p,: X — X/A4 for the quotient map. Write X*®
for the one-point compactification of X.

Lemma 1.6 Let U < X, with X Hausdorff and regular, U open, and U
compact. Then
U*=X/X-U.

Proof Consider the map y: U® — X/X — U given by
VNo=bx-v|ly: UcX>X[X-U

and y(o0) ={X — U}.

To show that this is continuous we need only consider open neighborhoods
of {X — U}. If Vis such a neighborhood, let W = (px_p) (V) = X. Since W
is open, U — W is compact. Now y" (V) —0 =WnU=U—-(U- W),
so y”!(V)is open. y is clearly 1-1 and onto. Since U is open and X is regular,
X/X — U is Hausdorff. Hence y is a homeomorphism. J

Corollary 1.7 If U is open and bounded in R",
RIR*—U=U>. |

Corollary 1.8 If X is compact Hausdorff and x € X,
X-x*=X 1
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Corollary 1.9 S" = (R")* = I"/oI" = B"|S"™ L.

Proof The first homeomorphism follows from 1.5 and 1.8 with X = S".
The second follows from 1.4 and 1.6 with X = /1" and U =Int I”. The last
follows from 1.3. ||

Note that under these homeomorphisms, * = (1, 0, ..., 0) € $" corresponds
to oo € (RM®, {0I"}, and {S" '}

Definition 1.10 An n-cell is a pair (X, 4) homeomorphic to (B", "~ ).

Exercises

1. Show that Int B* = B" — S"~!. (One cannot use 1.3 since the notion of
interior depends on the imbedding.)

2.* Show that (X, A) is homeomorphic to (Y, B) iff there are maps
fi (X, Ay—= (Y, B)and g: (Y, B) > (X, A) with fg = 1, and gf = 1.

3. Let B," ={xe S"|x,4; =0}, and B,” ={x e S"|x,,; <0}. Show that
B,* =B, =B"
4, Using the equality I""! x I=1" define J" 'cI" as (0I" V) x ITu
I"1x(1),and 7571 = 1"~ x (0). Then
or=JlonT, @Yy X (0) =J" AL
Prove (J*" ', J" ' n I3~ ") is an (n — 1)-cell. (Section 10; 11.6)

5. Show that Int A""! ={x e A""!|0 < x; < 1}. Prove that (A", 0A" %)
is an (n — 1)-cell where A" ™! = A""! —Int A"~ . (Section 12)

6. One can easily generalize Problems 1-4 to other dimensions; they
represent the case n =2 of a problem for every dimension. State these prob-
lems. Solve them, if you can, for n = 1, Do the solutions generalize?



2

Some Simple Topological Preblems

This section has two simple aims: to generalize the four problems con-
sidered in Section 0, and to study some of the relationships among them.
As generalizations, we propose the following:

Problem 1 Does there exist a continuous (differentiable?) function
f: B® - B" without fixed points?

Problem 2 Does there exist a continuous (differentiable?) function
f: B" = 8" ' with f(x) = x for x € $"~! ? The condition on fis that the diagram

Bn

Sn—l __l_.p Sn—l

““commutes,”” where i: S"~' — B" is the inclusion function and 1 the identity
function. For this to commute means that if you follow a point through the
two paths, the result is the same.

For x, y € R", write x - y for the scalar product:

n
xXry= '21 XiYi-
i=

Problem 3 We transfer our vectors to the origin. Does there exist a
continuous (differentiable?) function

fS ISR

9



10 2. Some Simple Topological Problems

satisfying x - f(x) =0 and f(x) # O for all x? Such a function is called a non-
zero vector field on S"~1,

Problem 4 Given ¢ > 0, does there exist a continuous (differentiable ?)
map y: §"— S" with no fixed points and such that

Iy(x) — x| <&?

(If e > 2, the answer is yes: p(xy, ..., Xp41) =(=X1, -y —Xp41):)

Proposition 2.1 If S” has a nonzero vector field, a map satisfying the
conditions of Problem 4 exists for every ¢ > 0.

Proof Let f: S"— R"*! be a nonzero vector field. Then for A # 0 a real
number, Af’is also a nonzero vector field. By choosing 4 small we may guaran-
tee that [|Af| < ¢ since S" is compact. Thus there are *‘small” vector fields.
Suppose fsatisfies || f| < &/2.

We now get y: S” — S" without fixed points by moving x in the direction
of f(x) (Fig. 2.1):

yx) = 2L W
e+ 7001
Observe that
1
_ 2y Ty — = () =] - —— ).
I =917 = = 100 I =] =2 = 200 =21 = )

However ||x + f(x)| <1 + ¢/2, so

1
- P2l ~ ;
lx =yl ~2( 1+6/2) S H

i.e., 7 is close to the identity.
However, y(x) = x implies

.. _ i el
0=x-f(x) =y(x)f(x) FFYET
Hence f(x) =0, a contradiction. ||
x+ flx)
y (x)

Figure 2.1
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Proposition 2.2  If there exists f: S” — S" without fixed points and such
that || f(x) — x| < 2, there is a nonzero vector field on $".

Proof | f(x) — x|| < 2 is equivalent to f(x) # —x, for all x e S".

Let y(x) =f(x) — (f(x) > x)x. Then y(x) - x =0, so y is a vector field and
it is nonzero, for otherwise f(x) and x are linearly dependent and, hence,
f(x) = % x, a contradiction. |

Thus Problem 3 is equivalent to Problem 4. Likewise, Problem 1 is equi-
valent to Problem 2.

Proposition 2.3 There is a continuous (differentiable) map y: B"— $"~!
such that yi =1 iff there exists a continuous (differentiable) function
J: B® > B" without fixed points.

The first half follows immediately from:

Lemma 2.4 Let f: B"— B" and U ={x|f(x) # x}. Then there is a map
y: U— 8" ! such that y|y.s--1 is the inclusion. If fis differentiable, so is y.

y (x)

Figure 2.2

Proof Let y(x) be the point of intersection of S" ! with the line joining x
and f(x) such that y(x), x, f(x) occur in that order (Fig. 2.2). Then

X)=px+(1-p)f(x), p=21, [yX|=L1

Expanding 1 = |[y(x)| gives a quadratic equation for p: ap® + bp + ¢ =0;
one easily checks that @ > 0, and a + b + ¢ < 0. It follows that b*> — dac >
(b + 2a)* and hence the solution

—-b+./b*—4ac_ —b+|b+ 24|
— > >

= 1.
2a - 2a
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p is differentiable (and hence continuous). Now y|y.g.-1 is the inclusion,
forif |x|| =1, weget b+ 2a>0and a+ b+ ¢ =0; consequently, p= 1. |

To prove the other half of 2.3, suppose such a y: B"— S" ! exists. Define
f(x) = —y(x). Since the image of fis S"~! = B", any fixed point must lie in
S"~1 But for xe S"™ !, y(x) = —x. |1

These problems are quite difficult, but will be solved in Section 13. The
problem that seems most intuitively clear is Problem 2 for n = 2 (the original
Problem 2). It seems that such a function cannot exist. At this point it is
worth the reader’s time to try and solve this. After consideration he will
probably agree to the following:

The difficulty is that there are too many points. If the spaces involved were
finite, such questions could easily be answered, but since the spaces are so
big, it is not immediately clear that one can ever decide the answer in a finite
number of steps.



3

Homotopy Theory

The problems that we have been considering are global problems, in the
sense that if we remove one point from the spaces involved, the problem is
altered. If we remove one point from S?, it is easy to see how one could con-
struct a nonzero vector field on the remainder (and even easier if we remove
two points). If we remove a point from B?, it is easy to see that there is a
map from the remaining space to itself without a fixed point (rotate about
the hole).

One of the fundamental achievements of algebraic topology is to turn
global topological problems into homotopy theory problems. We will proceed
to do this.

Definition 3.1 Two maps f;, f;: X — Y are said to be homotopic if there
is an intermediate family of maps f,: X — Y continuous jointly in x and ¢,
i.e., if there exists

F:XxI-Y

(called a homotopy between f;, and f;) which is continuous and such that
F(x’ O) =f0(x)s and F(x’ 1) =f1(x)

We write f, ~ f (or F: fy ~ f1) to indicate that f;, is homotopic to f;.

Proposition 3.2 ~ is an equivalence relation.
Proof f ~ f by the homotopy F(x, t) =f(x). If F: f~g, then G: g ~fis

13
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given by G(x, 1) = F(x, 1 — ). If F: f ~gand G: g ~ h, then H: f ~ I is given
by

Hx D =160 20— 1),

H is continuous by Exercise 2, Section 0. ||

F(x, 20, 0<r<i
i<r<l

Thus we speak of homotopy classes of maps. If f is a map, we denote its
homotopy class by {f}. We write [X, Y] for the set of homotopy classes of
maps from X to Y.

Proposition 3.3 There exists f: B"— S"™! with f+i =1 iff the identity
map 1: $"7!' - $"~! js homotopic to a constant map.
Proof 1If such a map f exists, we define a homotopy
H:8" ' xI-8§!
by
H(x, 1) = f(tx).

Clearly H(x, 1) = f(x) = x since xe §""! and H(x, 0) =f(0) which is in-
dependent of x.
Conversely, if H exists

H: " 1 xI->g8"1
with H(x, 0) = ¢ and H(x, 1) = x, define
fiB" > §"!
by
SO = Hx/|x], [x),  fO) =c.

Since $" ! is compact, H is uniformly continuous. Thus for every ¢ > 0, there
exists & > 0 depending on ¢ but not on x such that [|[H(x,t) —c|| <9 if
t < &. Consequently fis continuous at 0. |

Proposition 3.4 Let a,: S"— S" be the antipodal map a,(x;, ..., X,4+;) =
(—Xi, ..., —X,+1). If there is a vector field on S, g, ~ 1.

Proof We will use a vector at x ¢ S” to indicate the direction of a path from
x to a,(x) on S" and hence produce a homotopy. Given f: S" —» R"*! with
f(x) # 0 and f(x) - x =0, we will construct a path from x to a,(x) in the
plane determined by x and f(x) and on the sphere:

H(x, 1) = a(t)x + b(t) f(x), |H(x, )]* = 1.



3. Homotopy Theory 15

This yields the equation
a(t)* + b(H)*f(x) - f(x) = 1;

we choose a(t) =1 — 2t and hence b(f) = 2./t — t*/|| f(x)|. These are both
C* for 0 < t < 1 since f(x) # 0. Thus

H(x, 1) =(1 = 20)x + 2/t = 21 0)/If )]

is a homotopy in S" from 1 to a,. |

Remark The converse is also true, but the technical details in proving it
are harder and we will not need it to solve Problem 3. Essentially, given a
homotopy from 1 to a,, one approximates this with a differentiable homo-
topy. Then the tangent line to the curve P.(f) = H(x, t) at t =0 contains a
unit vector pointing in the direction of increasing ¢, which is tangent to the
sphere, and nonzero.

Proposition 3.5 If n is odd, there is a nonzero vector field on §".

Proof We construct a linear nonsingular function f(x) with f(x) x =0
by

f(xl’ X5 eens x2n) = (x29 —Xp, Xgs T X35 0005 X2 '_x?.n—l)’
Clearly this satisfies f(x) 2 0if x 20 and f(x) x=0. |

We have thus reduced our problems to homotopy theory. We will even-
tually show how to turn homotopy theory problems into algebraic problems.

This is where algebraic topology has its strength. It transforms problems
from the very complicated world of spaces and maps to the simple world of
finitely generated abelian groups, or other algebraic worlds that one feels are
simpler.

Exercises

1. Let P be a one-point topological space. Show that [P, X] is in 1-1
correspondence with the set of arc components of X.>

2.* Let /5, fi: (X, A) = (Y, B) be maps. We say f, is homotopic to f; and
write fo ~ f; if there exists a map

F:(XxI,AxI)> (Y, B)

3 We use the words arc connected and arc component interchangeably with path connected
and path component to refer to (not necessarily 1-1) maps p: I — X, although there is some
variety in the literature.
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with F(x, 0) = fo(x), F(x, 1) = fi(x). Show that this is an equivalence rela-
tion. We write [(X, 4), (¥, B)] for the set of homotopy classes as before. Note

that [X, Y] =[(X, &¥), (¥, B)] forany Bc Y.

3.* Letf: (X, A) > (Y, B),g0,9:: (Y, B)->(Z,C),and h: (Z, C)— (W, D).
Suppose g, ~ g,. Show that g, f ~ g, f and hg, ~ hg,.

4. Letf, g: X - S" and suppose that for all x € X, f(x) # —g(x). Show that
S~y

5. Construct a map y: S* — §3 satisfying Problem 4 of Section 2.



4

Category Theory

One criticism of current pedagogical methods in mathematics is that they
tend to compartmentalize mathematics into subjects without emphasizing
the interrelationships among subjects. Thus topology grew out of analysis,
and most of modern algebra grew out of either analysis or number theory.
The deeper one gets into mathematics, the closer one sees the connections.*

A strong connection between various fields in algebra or topology is often
most conveniently expressed through the notion of categories and functors.
Category theory plays somewhat the same role in algebra and topology that
set theory plays in analysis. In both cases the elementary theories are a con-
venient language which is a bit abstract, and not very deep, but from which
one obtains economy of thought. One simply has to get used to the
abstraction, and this is made relatively painless by a wealth of examples.

Definition4.1 A category consists of

(a) A class of objects.

(b) For every ordered pair of objects X and Y, a set hom(X, Y) of
“ morphisms”” with “domain” X and “range” Y; if fe hom(X, Y) we write
fiX->Yor X Ly hom(X, Y)nhom(X’, Y') = unless X = X’ and
Y=vY.

(c) For every ordered triple of objects X, Y, and Z, a function associating
to a pair of morphisms f: X » Y and g: Y — Z their * composite

gefi X-Z.

4 In the words of the Tao Té Ching, “ enumerate the parts of a carriage and you still
have not explained what a carriage is”’ [72, Chapter 39].

17



18 4. Category Theory

These satisfy the following two axioms:
Associativity: Iff: X—Y,g: Y—Z,and h: Z > W, then
ho(gef)=(heg)of: X>W.

Identity: For every object Y, there is a morphism 1,: Y — Y such that if
fiX-> Y, thenlyof=fandif h: Y>Z, thenholy =h.
We use the word map interchangeably with morphism.

Examples

1. B: As a class of objects, take all topological spaces. The set hom(X, Y)
will be the set of continuous functions from X to Y. The composition rule
will be composition of functions.

2. 8: As objects, take all sets; as morphisms, take all functions.
3. G: As objects, take all groups; as morphisms, take all homomorphisms.
4. R:Asobjects,takeall rings; as morphisms, take all ring homomorphisms.

5. My As objects, take (right) R-modules; as morphisms, take all R-
module homomorphisms.

These five examples are the ones one encounters most in algebraic topology:
they are all special cases of a

6. Meta-Example Consider as objects, sets with a given “structure.”
Consider as morphisms, all functions that ““ preserve > the ““structure.”

One could consider other categories, however,

7. As objects take all groups. As morphisms, take all isomorphisms, i.e.,
hom(G,, G,) = all isomorphisms y: (¢, = G, .
8. Let there be only two objects X; and X,. Let
hom(Xy, X;) ={lx},  hom(X;, X;) ={ly,},
hom(Xy, X,) =, and hom(X,, X]) = .

Just about anything can be considered as a category, if you try hard
enough, but the important examples are 1-5.

Definition 4.2 Given two categories C; and C,, a covariant functor from
G, to C,, F, consists of an object function which assigns to every object X
of C, an object F(X) of C,, and a morphism function which assigns to every
morphism f: X — Y of G, a morphism F(f): F(X)— F(Y) of C, such that

@) F(ly) = lpxys
() F(gof) =Fg) - F(f).
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A contravariant functor from C; to C, consists of an object and morphism
function as before except that if f: X —» Y, F(f): F(Y)— F(X) and instead of
(b) we have '

(b") F(gof) =F(f)° F(g);
i.e., a contravariant functor reverses arrows. In either case one writes
F: Cl - Cz

to mean that F is a functor as above.

Example 1 Let A, be the category of vector spaces over k and linear
maps. D: My, — My is given by D(V) = V* and D(f) =f* where V* is the
dual space and f* the adjoint of f. D is a contravariant functor.

Example 2 From the category of R-modules and homomorphisms to
itself we have, for every module M a functor T, defined by T (N) = M @ N,
Ty (f) =1 ®f.Tis a covariant functor. (It can also be thought of as a functor
of two variables.)

Example 3 From the category § to itself we have the functor C defined by
C(G) = commutator subgroup of G =subgroup generated by all [g;, g,] =
9:929:" 95'. C is a covariant functor. Similarly, A(G) =G/C(G) is a
functor from G to Al .

Example 4 The forgetful functor. This is a general type of covariant
functor which applies in many examples. We give three examples:

(1) Mg — My,

(2) Mz,

(3) §-38.
The functor is the identity on objects and maps, but considers them as dif-
ferent things. Thus, every R-module may be considered as an abelian group
by forgetting the R-module structure. Every R-module homomorphism may
be considered as a group homomorphism. Similarly for (2) and (3).

Example 5 The identity functor from any category to itself. It is the
identity on objects and maps and is covariant.

As a method of comparing functors, we have:

Definition 4.3 A natural transformation ¢ from 7; to T,, where T, and
T, are functors from a category C; to a category C,, written

(P:Tl-’Tz,
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is a function from the objects of C; to the morphisms of C, such that for
every morphism f: X— Y in C; the (appropriate) following diagram is
commutative:

¢(X) o(X)

Ty(X)——T(X) Ty (X)—— T,(X)
th(f) T2(S) T1(S) ]Tz(f)
oY) o(Y)
T(Y)——T(Y) Ti(Y)——Ty(Y)

The best known example of this is as follows:

C, = C, =finite-dimensional vector spaces and linear maps;
Ty = identity functor;

T,(V) = V**;

o(V): V - V** is the ‘“natural”’ isomorphism,

That the isomorphism V' ~ V** is natural means precisely that it is a natural
transformation in this sense.
We are mainly concerned with ““topological categories.”” For example:

G is the category of topological spaces and continuous maps.

G* is the category whose objects are topological spaces with a distinguished
point (called the base point and usually written %) and whose maps are con-
tinuous functions which preserve the base point (i.e., /1 X > Y and f(*) = %,
where we use * ambiguously to denote the base point of any space). (The *
here has nothing to do with duality.)

B2 is the category whose objects are pairs (X, 4) of topological spaces and
whose morphisms are maps of pairs (see Section 1).

If Cis any category of topological spaces and continuous maps, we will use
the notation C* and C? with the obvious interpretation.

We will be considering functors defined on “topological categories’’ and
taking values in some ‘““algebraic category.”” The utility of such functors is
that they take diagrams to diagrams, and many problems can be stated in
terms of diagrams.

Exercises

1. Find several examples of categories and functors implicitly or explicitly
in the most recent algebra course you have taken.

2. Prove @(V): V — V** is a natural transformation.

3. In Section 1 we defined pairs (X, 4) and maps between pairs. Show that
given any category C in which there is a well-defined notion of subobject
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(certain morphisms are called inclusions), one can describe a category of pairs
C? from this.

4, Two objects 4 and B in a category C are called isomorphic or equivalent
if there are maps f: 4 » B and g: B— A4 in C with fg =15 and gf =1,.
Interpret this in the examples given.

5.* Each of the categories B, B*, and G2 has an equivalence relation called
homotopy. We now define, from these, new categories G,, G,*, and G,%.
These new categories will have the same objects as the old ones; the morphism
sets, however, will be the set of homotopy classes of maps in the old category.
Thus, inG,,

hom(X, Y) =[X, Y];
inG,*,
hom((X, %), (Y, %)) = [(X, #), (¥, »)];
and in G2,
hom((X; 4), (Y, B)) = [(X, 4), (¥, B)].
Show that G, , B,*, and G,” are categories. (See Exercise 2, Section 3.)

6. Show that, fixing (X, A), [(X, A), (¥, B)]is a covariant functor from G*
or G,? to the category of sets and functions. Similarly, with (Y, B) fixed,
[(X, A), (Y, B)] is a contravariant functor. (See Exercise 5.)

If n > 0, we will write

n, (X, *) = [(I", 0I"), (X, #)).
((I°, 81°) is defined as (*, ¥).)
7.* Show that there is a natural 1-1 correspondence
[(X; A), (Y, $)] [(X/A4, {4}), (¥, »)],
where 4 # ¢F. By applying 1.9 conclude that there is a natural 1-1 corres-
pondence
T,(X, %) <= [(S7, #), (X, %],
where (1,0, ..., 0) = » € S". (See Exercise 2, Section 3.) This correspondence
will be called c.
8. Show that if (E, S) is an n-cell, there is a natural 1-1 correspondence

(X, x) o [(E, S), (X, %)].

9. For (X, A), (Y, B)eG? define (X, A) x (Y, B)=(Xx Y, X x Bu
A x Y). Show that this is a covariant functor in two variables. Observe that
two mappings fo. f;: (X, 4) = (Y, B) are homotopic in B iff there is a map
H: (X, A) x (I, &) — (Y, B) such that H(x, 0) = fy(x) and H(x, 1) = fi(x).



5

The Fundamental Group

The transition from homotopy theory to algebra is most often accomplished
by putting an algebraic structure on sets of homotopy classes of maps. The
simplest and most fundamental example of this is n,(X, *) =[(I, {0, 1}),
(X, *)]. In this section we will put a group structure on 7, (X, *) in a functorial
way.

We shall use the word path to refer to any map p: I— X. If in addition
p(0) = p(1) = », we will call the path a based path or a loop. Thus the ele-
ments of (X, *) are homotopy classes of based paths in X. The only homo-
topies allowed are those that keep the end points fixed throughout the
homotopy.

Definition 5.1 A homotopy H: X x I — Y is called a homotopy relative
to A4, for A < X, if H(a, t) does not depend on ¢ for a € 4. If H(x, 0) =f(x)
and H(x, 1) = g(x), we write H: f ~ g (rel A).

Thus the homotopies involved in 7,(X, %) are homotopies of [ relative to
the end points. One can generalize the construction =;(X, *) as follows.
Choose x, y € X and consider all paths p: I - X with p(0) =x and p(1) =y
(Fig. 5.1). Write n(X; x, y) for the set of all homotopy classes of such paths
relative to the end points. (One abbreviates this to n(x, y) if the space X is
fixed.) Thus n(X; x, x) = n,(X, x).

Our understanding of m,(X, ) is greatly facilitated by an organization of
its elements into a group, which we now describe. We will define the compo-
sition of two based paths. This will induce a composition among the path
classes. More generally, suppose we are given two paths p, and p, subject
only to the requirement that p,(0) = p,(1). We will form a new path traversing

22
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y
¥ X
Path Homotopy
Figure 5.1

through p, at double speed (from s =0 to s = 1), and then through p, at
double speed (Fig. 5.2).

Figure 5.2

This path p; is defined as follows:

_ [Pi(29), 1zs>
P ={p25-1), 12s>

We think of p; as the product of p; and p,:

0
1.

D3 =Pz D1

If p(0) =x, pi(1) = p,(0) =y, and p,(1) =z, this product defines a trans-
formation n(x, y) x n(y, z) - n(x, z). To check that this composition respects
the equivalence relation, suppose

Py:py ~p/, Pyipy~p).
We must find
P3:py~ps'.
The formula is easy:

_[Py(2s, 1) O0<s<i
Py(s, 1) = {P2(2s -1,1), t=<s<l

In particular we have defined a composition operation -, in 7,;(X, *).

Theorem 5.2 7,(X, *) together with - is a group, called the fundamental
group of X (at %).
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Proof We will describe a unit 1, € n(x, x):

Le = {us},

where u, is the constant path u(s) = x for all se I.
If{p} € n(x, y) is another element, u, * p and p * u, are given by the formulas

. x, 0<s<i
(P us) = {p(2s -1, i<s<l;
o0 =[P D202T

Thus p - u, # p but we will show {p-u} ={p}, ie, p-u,~p. Now p-u,
is the path that does not move at all for the first half of the time and hurries
through p at double speed for the second half. A homotopy between p and
this path is given by considering, at time ¢, a path that does not move for
0 < 5 < ¢/2 and then uniformly covers p for #/2 < s < 1. Write P(s, t) for the
image of s € I along the rth path. Then (Fig. 5.3)

x, 0<s<t2

P(s, t) = (2s—t
P\

), t2<s<1.

Clearly P(s, 0) = p(s), P(s, 1) = p - u(s). We note that P is well defined since

[\

-t 2—t
I 2T, i i2<s,

0
-t 2—t

s

A
()

X, PO, 1) =x, and P(l, 1) =y.

oY

Figure 5.3
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Similarly, one can prove u, - p ~ p; however, if we prove associativity and the
existence of a right inverse, a proof of this is not needed.

Given {p} € n(x, ¥), we define {p} ! ={q} € n(y, x) where g(s) = p(1 — s).
If: P py ~ py, we define Q: g4 ~ g, by

Q@s, 1) =P(1 — s, 1).

Since

(@ 00,10 =y 01,10 =x
(®)  O(s, 0) =qos), O(s, ) =q1(9),

this operation is well defined on equivalence classes.
We must show thatp - p~! ~u,. Now p - p~! goes through the path p twice,
first backwards and then forwards:

iy P = 2s), 0<s
There is no reason why the middle of p - p~! must be x. We may take a homo-
topy from p - p~' to u, that at time ¢ moves through part of p (from 0 to ?)
and then back again:

o p(l_zst)s OSS_<_
P(S’t)_{p((Zs—l)t+1—t), j<s<

1
2
L.

IAIA

Clearly:

(@ PO, =PI, 1)=y,

® p(l—-s=pQ2s—Dt+1-1ifs =1,

(©) P(s,0)=y,P(s, 1) =p-p'(s).

It remains to show that - is associative, let {p,}, {p,}, and {ps} € =, (X, *).
Let us compute (p; * p,) - p3 and py * (p2 * p3):

P3(2s), 0<s<i
(P P2) " p3(s) = {Pa(ds—2), 1<s=<i
pds—=3), 3<s<1;
Pi(4s), 0<s<i
p1 (P2 P3)(s) = { py(ds — 1), P<s<i}
pi(2s—1), 3<s<l
It can be seen that the only difference between these paths is the speed.
P3 P2 Py
(P P2) P3: > > >
P3 2] Py

P (P2 p3): v * T
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We could slide one into the other by choosing intermediate speeds; in Fig. 5.4

Py P, P,
/ — — —
G
Figure 5.4

the two slanted lines are given by the equations t =4s— 1 and ¢ =4s — 2.
At level ¢ one then travels the paths

py from s=0 to s=(t+ 1)/4,
p, from s=(@+1)/4 to s=(+2)4,
py from s=(+2)4 to s=1.

This is given by the equation

p3(4s/(t + 1)), 0<s<(t+ 14
P(s,1) ={p,(4s—1 - 1), C+Dd<s<(t+2)4
p((ds—1t~-2)2~1), (+24<s<l.

This is well defined since 4s/(t + 1), 4s —t — 1, and (4s — t — 2)/(2 — 1) are
between 0 and 1 in the appropriate range of s and ¢, and the definition is
consistent for s = (¢ + 1)/4 and s = (¢ + 2)/4. It is easy to see that

P(O’ t) =p3(0)’ P(l’ t) =p1(1)’
P(s,0) = p, - (p; * p3)(5), P(s, 1) = (p; " p2) * P3(s).

This completes the proof. {

Theorem 5.3 7, is a functor from the category G* to G.
Proof Given f: (X, %) > (Y, %) we will define a homomorphism
T (f): my (X, #) = 1y (Y, *).
Let {p} € n,(X, *). Define

~(N){p}) = {/b}.
Since f(¥) = %, fp: [ - X — Y is a based path.
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Now {fp} depends only on {p}, for suppose P: p, ~ p,. Then we define
Q:fpo ~ 11
by
(s, 1) =1 P(s, 1).

Clearly Q: fpo ~fpy, so m,(f) is well defined. To see that =, (f) is a homomor-
phism, we check that

m (NP} {p'D) = m (NP} m()P}-
This holds since both are represented by the class {g} given by

_ [f(P'29)), 0<s<i%
16) = {f(p(2s —1), i<s<l

For reasons of tradition, we always write f, for 7;(f). We must show 1, =1
and (f* g)x =f% * 9. These are both obvious from the definitions. |

Exercises

1. Show that #,(X, *¥) =0 if X is a finite topological space with the dis-
crete topology.

2. Why is it not possible to describe n,(X, *), as in this section, without
reference to the base point?

3. Let I e n,(SY, (1, 0)) be the class of the identity map. Show that n/ is the
class of the map f,: S' —» S* given by f,(z) = z". (Exercise 22, Section 7)

4, Besides using categories to discuss objects that we study, the theory of
categories has another use. This is to discuss sets with a multiplication that is
not always defined. Given a space X the fundamental category of X written
TI(X) is defined as follows. For objects of IT(X) we take the points of X. We
define hom(x, y) = n(x, y). According to the proof of 5.2, this is a category.
Show that the mapping p — p~' defines a transformation r: n(x, y) - n(y, x)
satisfying:

n rr=1
@ r@-a=1=0r@;
B3) r(: B)=r(p) - r®).

Such a category is sometimes called a groupoid. (Sections 6 and 7)
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5. Let 0 <s < 1. Given paths p and g with p(1) =¢(0), define 4 by the
formula

__{p(t/s), 0<r<s
h(t) = {q((t Zo/i-s), s<t<l

Prove that {i} = {q} - {p} € n(p(0), q(1)). State a similar result for arbitrary
products and prove it by induction. (7.12)

6. Show that homotopy relative to a fixed subset is an equivalence relation.
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More on the Fundamental Group

In this section we develop a few elementary facts about (X, x). We
prove that it does not depend in an essential way on *, provided X is arcwise
connected, and show that it is a homotopy type invariant.

On the surface it appears that 7;(X, *) depends both on the space X and
the chosen point *. The following theorem dispenses with the dependency
on *.

Theorem 6.1 Let *,, *, € X and suppose they belong to the same arc
component. Then 7,(X, *;) = m,(X, *,).

However, there is no natural isomorphism. In any case, the isomorphism
type of 7,(X, *) as an abstract group, does not depend on the choice of &,
only on the arc component. (A little thought shows that it could not be affect-
ed by other arc components.) If X is arc connected, one writes this isomor-
phism type as n;(X). One should be very careful here. There is no category
of isomorphism types of groups and homomorphisms. Thus there is no way
to make 7, (X) a functor. Whenever one deals with induced homomorphisms,
one must, at least implicitly, deal with base points.

Proof of Theorem 6.1 Since *, and %, belong to the same arc component,
n(*y, *,) # . Pick a € n(*{, *,). Define (Fig. 6.1)

0q: (X, %) > 7y (X, *,)
by
¢a(B) =0 B r(a)

29
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2 Figure 6.1

(see Exercise 4, Section 5). We also define

Pr@) - (X, *3) = 1y (X, *),
and

Oriay(Pa(B)) = r(@apr(e)a = B,

0o @ray(B)) = ar(a)Bor () = a.

Thus ¢, is 1-1 and onto.
To see that ¢, is a homomorphism, note that

@a(By) = afyr(®) = afr(ayr(@) =¢,(B)e.(y). 1
Proposition 6.2 If f, ~ f;: (X, *) = (7, #), then
fO‘ =f1‘ : 7Tl()(9 *) —’7!1( Y1 *)'

Remark These maps of pairs must be homotopic as maps of pairs, i.e.,
there exists a map

H: XxI->Y
with
H(x, t) =x* for all t,
and
H(x, 0) = fo(x),  H(x, 1) =fi().
Proof fou({p}) = {for} = {/1p} = Sis({pY sincefop ~ fip. 1

Definition 6.3 A map f: (X, A) = (Y, B)is called a homotopy equivalence,
and (X, A4) and (Y, B) are said to be of the same homotopy type if there
existsamap g: (Y, B) » (X, 4) such that g o f~ 1 and fo g ~ 1 (these homo-
topies being homotopies of pairs). In this case, we write (X, 4) ~ (Y, B).
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Theorem 6.4 Iff: (X, *) — (Y, *)isa homotopy equivalence, f : n,(X, %) —»
7, (Y, *) is an isomorphism.

Proof figsx = (f9)sx =14 if fg ~ 1. Similarly g, f, = 1. Thus #,(X) de-
pends only on the homotopy type of (X, ). |

The first problem we will consider is how to calculate z,(X). For example,
one would like to determine =,(B") or #,(S") for n > 1.

Definition 6.5 We say that (X, %) is contractible in G* if (X, #) ~(*, *).
This means that there is a homotopy
H:XxI-X
satisfying:

(a) H(x,0) = *;
(b) H(x, 1) =x;
() H(x, t) =+

We say that X is contractible in G if there is a map H satisfying (a) and (b)
for some point * € X. Thus to be contractible means that the identity map
is homotopic to a constant map in the appropriate category (6 or G¥).

Proposition 6.6 Let * e B” be any point. Then (B", *) is contractible.
Hence #,(B", *) = 0.

Proof A homotopy is given by H(x,?)=tx+ (1 —)*. H(B" x I) c B"
by the Cauchy-Schwarz inequality. H clearly satisfies a, b, and c. Since there
is only one path I — %, (%, ¥) = 0. Thus =,(B", *) =0 by 6.4. ||

Let us return to Problem 1. Suppose there is a map
[ B"> s
such that the diagram
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commutes. Since x = (1,0, ...,0)e S"" !, we have

(B", *)

|

(S"_l,*) 1 (S"«l,*)
Applying 7, we get a commutative diagram
7rl(Bn ’ *)

I

MET ) m(S )

Since m,(B", *) = 0, this could only happen if 7,(S""?, *) = 0. We will even-
tually show 7,(S?, *) # 0, solving the problem for n = 2. Other functors will
be needed for n > 2 since we will show that n,(S", ¥) =0 iff n # 1.

Definition 6.7 X is called simply connected if it is arcwise connected,
and n,(X, %) =0.

Exercises

1. Let Q be the rational numbers. Calculate n,(Q, 0).

2.* Show that homotopy equivalence is an equivalence relation.
3. Show that (B, (0, ..., 0)) is contractible.

4. If » € B" is any point, show directly that (B", %) is contractible
5. Show that if * € R” is any point, (R", *) is contractible.

6. Show that f: B" — S"~! exists such that

B"
i S
Sn—l 1 Sn—l

commutes iff $"~! is contractible. (Hint: There is a natural map y: S$"~! x
I — B", expressing a point in terms of polar coordinates.) (13.16)

7.% A is called a strong deformation retract of X if A = X and there is a
homotopy H: X x I — X such that H(a, f} =a, for ac 4, H(x, 1) = x and
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H(x, 0) e A for x € X. Show that if 4 is a strong deformation retract of X
and B c A4, (4, B) ~(X, B). Show that S""! is a strong deformation retract
R" -0. (13.2, 13.7)

8. Show that there is a 1-1 correspondence n(x, y) > n(x, x) iff n(x, y) #
3. (1.12)

9. Show that if f: X > X and f ~ 1 (in B), then f, : 7, (X, *) - 7y(X, f(*))
is an isomorphism for each point * € X. (Hint: Consider ¢, o fy : 7(X, *) -
7, (X, *) where p is the path from f() to * given by the homotopy.)

10. Using Exercise 9, show that if X~ ¥ in G, = (X, x¢) = n,(Y, f(x0))
where f: X—- Y is a homotopy equivalence. (Hint: First show that
(X, g(f(xo)) = n,( ¥, f(x,)) where g is a homotopy inverse to f.)

11. Show that if X is connected and X ~ Y, then Y is connected.

12. Generalize 6.1 as follows. In each groupoid, Hom(X, X)is a group and
for each X, Y with Hom(X, Y) # &, Hom(X, X) ~ Hom(Y, Y). (See Exer-
cise 4, Section 5.)
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Calculating the Fundamental Group

We have done nothing, so far, to calculate n,(X) except in the most trivial
cases. In this section we shall consider two methods of calculating =, and give
some applications. The first method (covering spaces) is quite geometric and
allows one to work from a conjecture based on intuition to the answer. It is
absolutely useless in proving that a space is simply connected. The second
method (the Van Kampen theorem) is analytical and somewhat more com-
plicated, but can be easily used to show that spaces (such as S" for n > 1)
are simply connected.

We begin by defining a covering space and show how the structure of a
covering space gives information about 7. The simplest example of a covering
space isthe map e: R' — S* given by e(f) = e2"*. Thus e is periodic of period
1. We think of this as a spiral projected down onto a circle (Fig. 7.1).

Figure 7.1

34
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Definition 7.1 Given a space X, a covering space is a space X and a map
IT: X - X such that:

(a) Ilis onto;

(b) for all xe X, there is a neighborhood ¥V of x (called a coordinate
neighborhood) such that II"*(¥) is the disjoint union of open sets each of
which is mapped homeomorphically onto V by I1.

We now prove that the map e: R - S' mentioned above is a covering
space. Clearly e is onto. Choose open sets V' =S' — (1, 0) and W = S* —
(=1, 0). Then Vu W =S! and e"'(V) has components (n—%, n+ 1)
while e~ *(W) has components (n, n + 1). These are clearly mapped homeo-
morphically onto ¥ and W respectively by e since e is open.

In order to relate the structure of a covering space to the fundamental
group of X, we prove two useful results.

Figure 7.2

Proposition 7.2 (Path Lifting Property) Given p: I - X and a e X such
that IT(a) = p(0), there is a unique path p: I — X such that IT§ = p and p(0) =
a. (See Fig. 7.2)

Proof Let {V,} be the collection of coordinate neighborhoods. {p~*(V,)}
is an open cover of I. By Exercise 3, Section 0, choose ¢ > 0 such that if
diam A4 <¢, 4 < p~(¥,) for some o. Now choose n such that 1/n < ¢, and
let ¢, = k/n. Then p([t;—,, t;]) = V,, for some a;.

We define unique liftings p; over the intervals [0, ¢,] such that 5,(0) = a by
induction on i. For i = 0, this is trivial. Suppose p,: [0, #,] = X is defined
and unique. We will show that it has a unique extension p,,: [0, #,,,] = X.
Let W be the component of I17'(¥,,,,) containing p,(t,). Any extension
P+ must map [z, ;4] into W since [f,, ;4] is arc connected. But I},
is a homeomorphism; hence there is a unique map

p:lt, txsl =W
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with ITp = p. We now define

~ Pi(s), 0<s<y,
S} =
Pres(s) {p(s), L <5< Ly

This completes the induction and hence the theorem. §

We give three more examples. That they are covering spaces is left as an
exercise.

Example 1 II, : $* - S! given by I1,(z) = z". Here every point of the base
(= image space) is covered n times. (Such a covering space is called an n-
fold covering.)

P e
Example2 II: R" - S* x --+ x S* given by
(e, ..y Xp) = (275, .., @275),
Example3 II: [0, 1] x R! —=[0, 1] x S' where (s, ©) = (s, eZnit)‘ In

this example we identify [0, 1] x S* with {(x, y) € R?|1 < x* + y? < 4} (Fig.
7.3) under the obvious homeomorphism.

Figure 7.3

Example 3 is a good one to keep in mind for the next theorem. Fix a € X.
Theorem 7.3 (Monodromy Theorem) Suppose p and p’ are paths in X

beginning at ¢ and ending at b. Suppose

{p}={p'ten(X; a, b).
Then 5 (1) = p(1).
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Proof let H: p~p’ be a homotopy (Fig. 7.4), and using Lebesgue’s
covering lemma as in 7.2, choose

O=sg<sy <" <5,=1, and O=t<tyy< " <t,=1

so that
H([s;, ;1] x [t;, i D= Vi

where V;; is a coordinate neighborhood.

Figure 7.4

We now find a lifting H of H; that is, we find H: I x I -+ X such that
His,0=50, A D=p06), HON=a

The proof that this can be done is similar to the proof in 7.2: Given A
on any connected union of the rectangles [s;, s;+1] X [¢;, #;41], it can be
extended over any adjacent rectangle since each rectangle is mapped into a
coordinate neighborhood. We can thus proceed from the edges across the
square inductively.

Now such an H provides a path from j(1) to p'(1) lying in II"*(p(1));
namely

y(0) = H({1, 1)

Let ¥ be a coordinate neighborhood with p(1) € V. Each point of I1™(p(1))
is in a different component of II~*(¥). Thus IT~!(p(1)) has the discrete topol-
ogy. Every path in a space with the discrete topology is constant. Thus

(6 = (0) = y(1), i.e., p'(1) = p'(1). 1
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Now let IT: X — X be a covering space and * € X. We write [T(x) = * € X.
Write F =IT"!(x). We now produce a function
d): nl(X, *) - F
given by ¢({p}) = p(1). By the previous two theorems, this is well defined.

Theorem 7.4 If X is simply connected, ¢ is a 1-1 correspondence.
Proof 1If X is simply connected, we will produce an inverse
¢: Fomy(X, ).

For fe F choose a path p from a to f. Since X is simply connected, any two
such choices are homotopic keeping the end points fixed. Thus {IT-p} is a
well-defined element of n,(X, *). Define o(f) = {IT - p}.

Clearly ¢ o ¢ = 1, since we may choose the original path to define ¢. On
the other hand, ¢ - ¢ = 1 since, given f€ F and a path p, p is a lifting of

nep. |

The function ¢ depends on the choice of an element a € X. We will write
this function as ¢, .

Theorem 7.5 ¢, : Z = n,(S, #) is an isomorphism.

Proof The covering space e: R'—»S' has F=Z. Now ¢, (m)s)=
e2*(m=ms_The homomorphic property of ¢, now follows from

Lemma 7.6 ¢,(b) > ¢,(c) = ¢,(c).

Proof Apply the uniqueness assertion in 7.2. | i

Corollary 7.7 There is no map f: B> —»S! with f(x) = x for xe S*. ||
Corollary 7.8 Every map y: B> - B? has a fixed point. J
Theorem 7.9 (Fundamental Theorem of Algebra) Every nonconstant

complex polynomial has a root.

Proof Consider a polynomial p(z) =z"+a,_;z" ' + -+ +a, with no
roots, Then H(z, ) = p(trz) defines a homotopy

H:S'xI->R*-0
for any r > 0. We now suppose that r > Y |a,|. Then there is a homotopy
H:S'xI-R*-0
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given by H(z, t) = tp(rz) + (1 — 0)z"r". H(z, t) #0; for otherwise z"r" =
t(z"r" — p(rz)), hence

r" < |p(rz) — (rz)"|
= |a,-1(r2)" ' + -+ + ap|
< apoy [P 4+ ao| (X lag])rm~t <.

Combining these homotopies we see z — r"z" is homotopic to a constant map
z - a, as maps S' = R% — 0. But R? — 0 ~ S!, and the equivalence takes the
map z —r"z" to the map ¢(n). This contradicts 7.5 (unless n =0). ||

This theorem is usually proved via Cauchy’s theorem in complex analysis.
There is in fact a relation between =,(S') and Cauchy’s theorem. Given
p: I- R* — 0, p(0) = p(1) = », one can consider this as a contour I". Then

1 dz
2nid z

can be calculated, and it is known that this is an integer (usually called the
winding number). One has

o) = [ %,

2rilp z
as students of complex analysis will realize.

Theorem 7.4 gives us a reasonable method for calculating n,(X). First one
guesses the answer. This is possibly the hardest part. Having guessed the
answer, it is not usually hard to see what a simply connected covering space
must look like. One then defines a space X and a map IT: X — X, and proves
that this is a covering space. It remains to show that X is simply connected.
This can be difficult. We now describe another useful tool for calculating =,
which is often convenient for showing that a space is simply connected.

Suppose X=X, u X, with X; n X, # . Choose xe X; n X,. We
then have  homomorphisms .7 (X; N X,, %) »7(X(, %) and
b :m(X; N X,, *) 5> 7(X,, *). In this situation one can make a general
group theoretic construction. Let G, G;,and G, be groups, and suppose we have
homomorphisms f;: G —=G; and f,: G—G,. We will define the amalga-
mated product of G; and G, over G. Essentially it is the smallest group
generated by G, and G, with f;(x) = f,(x) for x € G. Specifically, let F be the
free group generated by the set G, U G,. We will write x - y for the product
in F. Thus every element of Fis of the form x,* - -+ - x,* where ¢; = +1 and
x;€ G; U G,. Consider the words (xy)' - y~! - x~! defined if both x and y
belong to either G, or G,, and f,(g9)"  (f»(g)) ! for g € G. Let R be the normal
subgroup generated by these words.
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Definition 7.10 The amalgamated product of G; and G, over G, written
G, *¢ G, is the quotient group F/R.

Observe that there are homomorphisms g;: G; —» F/R obtained as com-
positions G; » F— F/R,and g, f; = g, />.

We now suppose that we are given a space X which is the union of two
subspaces X; and X,. The Van Kampen theorem allows one to calculate
7,(X) provided we know =n,(X;), n;(X,), and n,(X; n X,). We must make an
assumption about the relationship of these subspaces.

Definition 7.11 A pair of subspaces (X;, X,) of X is said to be excisive
if X=(Int X;) v (Int X,).
Let j;: X; = X and j, : X, — X be the inclusions.

Theorem 7.12 (Van Kampen Theorem) Suppose (X;, X,) is excisive,
X, Xi, X,, and X, n X, are arcwise connected, and *€ X; n X,. Then
there is an isomorphism

7[1(X, *) = 7T1(X1, *) *n,(x, n Xz,*)nl(X21 *)

in which (j;), and (j,), correspond to g, and g,.°
To prove this we need some results about the amalgamated product.

Proposition 7.13 (a) Suppose h;: G; - H are homomorphisms such that
hyfi = h,f, . Then there is a unique homomorphism k: G, *; G, - H with
hg; = h;.

(b) If every element x € H can be written x = x; -+ x, with x; = h;(a,)
for some i, h is onto.

Proof (a) One defines i': F—> Hby h'
B (Oepx ) X7 T = B (O )R ()T ()™
= gy(x;x)g(x )" 'gx)71;
RS =K1Y =g =15
B (f(@(f2(9) ™) = h(fi(ghha(f29)™") = 1;

hence #'(R) =1 and 4’ determines a homomorphism h: G, *; G, - G. By
construction, hg; = i’ |, = h;. The uniqueness is clear.
(b) If x is of the form mentioned,

6. = h since Fis free on G, U G, .

h(a, " a) = h(gil(al) ot ’gik(ak)) = hil(al) T hik(ak) =x;xe=x |

5 Hopefully there will be no confusion between the various meanings of * such as in
(X, ), Gy %6 G3, j*, etc.
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Proof of 7.12 The mappings (j). @ 7, (X;, *) > n(X, %) combine by

7.11(a) to give a homomorphism
he (X1 #)%,0x, o x0,0 T1( X, %) 21 (X *).
We will show that 4 is an isomorphism.

Given {p} € n,(X, *), cover I by p~'(X;) and p~!(X,) and choose an e-
number for this cover by Lebesgue’s covering lemma. We can thus find
O0=t,<t, < - <t,=1sothatt;, —t;_; <eand hence p([t;_,, t;]) < X, or
X, . Suppose that these are chosen so that p(t;))e X; n X, ; see Fig. 7.5.

Figure 7.5

(If not, [t,_,, t;] and [#;, t;,,,] could be combined into one interval.) Choose
paths q;: I - X; n X, with ¢,(0) = %, g,(1) = p(¢;) for 0 <i < n with g, =
g, = *. We now write p; : I - X for the path p|,. ., ;- By Exercise 5, Sec-
tion §,

P=Puot” P~ Pt n-t Galt " Pum2 Gn-2 Gaz
“q;' P41 47t Podo-
Now each of the paths ¢;'-pi_; "qx_1 belongs to either n,(X;, *) or
7,(X,, *) and hence 4 is onto by 7.13(b).

We speak of paths and homotopies as being small if their image lies in
either X, or X,. Thus the fact that H is onto can be restated by saying that
every based path is the product of small based paths. To prove that ker h = 1,
suppose we have small based paths py, ..., p,, such that A({p,}: - {p;}) = L.
Then there is a homotopy H in X from their product p,, * p,,—, """ p; to the
trivial path *. We would like to show that {p,}---{p;} = | in the amalga-
mated product.
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Figure 7.6

We will subdivide / x I into small rectangles C, ; such that H|, ; is small
(Fig. 7.6). Then following the edges of these rectangles, we get a sequence
of paths in X from p, - - - p; to * each of which is written as a product of small
paths, and such that any two adjacent paths differ by a small homotopy.
One must exercise a little care since these small paths are not necessarily
based, but this technical difficulty is not hard to handle.

Cover I x I by H™'(X;) and H '(X,), and choose an e-number by Lebes-

gue’s covering lemma. Let k& > \/i/zm and n = km. The cubes

=[] [L.221

n n n n
are consequently mapped by H into X, or X, . Let

Pii=Hltm a+ ymixim and 4i,j = Hlimxpim. G+ vm-

p;.; and g, ; are thus small paths but are not in general based paths. For
each vertex (i/n, j/n), choose a path r; ; from H(i/n, jin) to * which lies in
X,, X,, or both if H(i/n, j/n) lies in X;, X,, or both. This is possible since
X,, X,, and X| n X, are arcwise connected. In case H(i/n, j/n) = *, choose
r; ; to be the constant path at *. Thus by conjugation

s -1 ~ -
Pij=Tiv1,i Pi,jVij and qij="Tij+19:,57;

are small based paths. Consequently any word in {p; ;} and {g; ;} represents
an element in the amalgamated product. There is a small homotopy

Gi+1, jPi,; ~ Pi,j+14:,; relative to the end points, for both of these paths are
in the image of

ol (515 525

1
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and by Exercise 8, Section 6

“(ew: (o) 5 50)
Belwn)’\Un T n

has only one element. From the above homotopy it is easy to produce a small
based homotopy

. . Lp—1l . . sl
Fivg,g+1 " Qiv1,j " Pij iy ~TVivr,jer " Pij+r " 9ij 1

and hence a relation
{qH—l,j} : {5;',,'} = {ﬁi,j+1} '{qi,j}
in the amalgamated product. One can thus conclude that
{Pn-1,0}"" '{ﬁo,o} = [{qn_(}} e '{‘7;::—1}][{13"—1,"} n '{ﬁo,n}][{qo,n—x} “{do,0}}
The right-hand product consists entirely of paths constant at * and hence
represents *. We will be finished if we show that
(P {p1} = {Pn-1,00 """ {Po.o}-

Choose a with 0 <a <m— 1. Since n=km, {Po} are all contained in
either X; or X, for ak <s < (a+ 1)k — 1. Thus the word {P +1yk—1,0} """
{Pak,0} is equivalent to the single-letter word {Py+1yk—1,0" " Pak,0} in the
amalgamated product. However

Pa+1 ~ Pu+1)k-1,0" " "Pak,o ™ Pa+rik-1,0"" *Pak,0

SO {Pas1} = {ﬁ(a+1)k—1,0} “AParor 1

Theorem 7.14 7,(S") =0 for n > 1.

Proof We write 8" = X; u X, where
X; ={(xX1, s Xngy) €8"Xp40 <1},
Xy ={(x1s .05 Xpi1) € 8"|Xpsy > — 1
Since X; = X, = R", n,;(X,) = n;(X,) =0; both are open in S", we need
only show that X; n X, is arcwise connected to apply 7.12. This is left as
an exercise. (It is true only forn >1.) |

Lemma 7.15 Suppose f;: G—G,, f,: G-G,, and G, is defined by
generators xy, ..., x, and relations ry(x;, .., x,)=1,...,r{x, ..., x) =1,
and G, is defined by generators yy, ..., »,, and relations s;(yy, ..., Ym) =
1, ..., 5 ..., Yw) = L. Suppose finally that G is generated by zy, ..., z;.
Then G, *; G, has as generators

Xt oo Xns V15 o225 Vs
and as relations ry, ..., Fy, 8y, ..., 8, and fi(z) fo(z) "  for 1 <i <.
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Proof Let G be the group defined by these generators and relations
above. One can clearly find a map ¢: G - G, *¢ G, such that ¢(x,) = x;,
and @(y;) = y; since these relations hold in G, #; G,. On the other hand,
there are maps #; : G, — G with h, f; = h, f, given by h,(x)) = x;, hy(y) = y;.
By 7.13(a) there is a map h: G; *g G, —» G with h(x;) = x; and h(p)) = y;.
Clearly hp = 1 and @h = | since these composites are the identity on a set
of generators. |

Corollary 7.16 Let X be the union of two circles in the plane with one
point in common. Then 7,(X) is the free group on two generators.

Proof Let p be the common point and choose points p; and p, on each
of the circles and not equal to p. Then (X — p;, p) = (S, ¥), (X —p,, p) =
(S*, %), and ((X —py) n (X = py), p) =~ (%, ¥). Thus by 7.12, = (X, p) ~
Z %y, Z. By 7.15, this is the free group on two generators. ||

This will be generalized in Exercise 7.

As a further example of the above techniques we, will discuss some spaces
that arise in projective geometry. They will be important later.

Let F be one of the division rings, R the real numbers, C the complex
numbers, and H the quaternions.® FP" will be thought of as the set of all
lines through the origin in

F'''=F® - @F.
S’
n+1
RP", CP", and HP" are called n-dimensional real, complex, and quaternionic
projective spaces. We topologize FP" by considering it as a quotient space
of F**' —{0}. Every point of F"*' — {0} determines a line through 0. Thus
consider
{(lg, ..., EJ|E;eF notall & =0}

Define (&g, ..., &) ~ Ay, ..., AE,), A€ F, A #0. This is an equivalence
relation. Write [y |-+ |&,] for an equivalence class, and define FP" to be
the set of equivalence classes with the quotient topology.

There is a natural map

F™*1 {0} » FP"

which is continuous, and yields, on restriction to the unit sphere of F"
maps
I,:S*—»RP", 7p,:S*"'>CP", v, o S*t3 L HpP"

Theorem 7.17 II,: S"— RP" is a covering space. n(RP")=Z,, for
n>1 RP'=S"

¢ See the Appendix to this section.
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Proof The sets D" ={(xy, ..., X,01)eS8"|x;>0} and D, =
{(x1, ..., Xp41) € "] x; < 0} are open and cover S”. IT| D;* is 1-1, continu-
ous, and open. Thus if V; =II(D;*) =II(D,”), "' (V) = D;* U D,”; the
sets D;” and D;” are disjoint, open, and homeomorphic to ¥;. Thus ITis a
covering space. I17'(x) contains two points. Therefore, 7,(X, %) has two
elements and must be Z,. |

The maps 7, and v, are not covering maps, but they will qualify for a
generalization of a covering map—a locally trivial bundle; in Section 11
we shall make homotopy calculations using this notion in analogy with the
use of covering spaces in this section.

The fundamental group has been a key tool in low-dimensional topology.
Without giving details, we will indicate two applications.

A surface is a separable metric space such that every point has a neigh-
borhood homeomorphic to the plane R?. Given two surfaces S, and S,
their connected sum S; # S, is defined by removing a disk D from each of
them and connecting them together by a tube S x D'; see Fig. 7.7.

In surface theory one can prove (see [45, 1.5]) that any surface is either

(a) a sphere S2,

(b) a connected sum of tori (S* x S,

(c) a connected sum of projective planes (RP?).

Figure 7.7

It remains to discover which of these surfaces are distinct (not homeo-
morphic). This is accomplished by calculating the fundamental group. The
facts are (see [45, 4.5]):

@ (8% =0;

m———
(b) n(T# - #T)is generated by elements a,, ..., a,, by, ..., b, sub-
ject to the single relation

1 = (aybia; by Nay bya3'03 ") - (a,b,a;, ' Y);
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n

(©) 7, (RP? #o RP?) is generated by elements oy, ..., a, subject to
the single relation

1 = o, %a,% a2

These groups are all distinct as one can see by calculating their abelianiza-
tions. Thus the fundamental group distinguishes among them and they are
not homeomorphic.

The second application is to knot theory. A knot is an imbedding of S! in
R3. Two knots are called equivalent if there is a homeomorphism 4: R® - R?
such that

(@) hky=k,;
(b) there is an integer » such that if | x| > n, A(x) = x.

If k: S' = R is a knot, we define the group of the knot to be 7;(R* — k(S")).
1t is easy to see that equivalent knots have isomorphic groups. Thus two knots
with different groups are not equivalent. One can distinguish between the
trivial knot and the trefoil (Fig. 7.8), for example, since the knot group of

O &

Trivial knot Trefoif
Figure 7.8

the former is Z but the knot group of the latter has two generators « and f
subject to the relation «? = #*. (See [45, 4.6].)

Appendix
The algebra of quaternions H is a four-dimensional real vector space with
basis 1, 7, j, k and multiplication given by
=k Jk=1i ki=j
Jji=—k ki=—i Tk=—j
P=j2=k=—1.

(Observe that H is not commutative.) 1 is a unit, and multiplication is extended
by linearity. Let ¢ = a + bi + ¢j + dk be a general quaternion for q, b, ¢, d
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real numbers. Then define § = a — bi — ¢j — dk (called the conjugate of g).
g —q is linear, and one may check that g,9; =g, §;, §gq = a* + b* +
c? +d*=q)|*. Hence g ' = ﬂ% The quaternions are associative.

Seminar Problems

A. We have said nothing about the existence of covering spaces. [31,
Section 17] has a very readable account of this, We need some definitions:

1. X is semi-locally-simply connected if for all b€ X, there is a neigh-
borhood U of b such that any two paths in U with the same end points are
homotopic in X keeping the end points fixed. (This is the same as saying that
the homomorphism 7, (U, x,) = n,(X, x,) is 0.)

2. X is locally pathwise connected if any point has arbitrarily small path-
wise connected neighborhoods.

If X is semi-locally-simply connected, locally pathwise connected, and
connected, simply connected covering spaces X exist. (See also [64, 2.5].)

B. Calculate n(T# T # -+ #T) and n,(RP? # - -+ # RP?). Calculate the
knot group of the trivial knot and the trefoil.

Exercises

1. Suppose X, I1: X » X and X, IT": X — X are covering spaces. Suppose
X is simply connected. Choose de X and ae X such that T1(a) = IT'(@).
Show that there is a unique continuous map f: X — X such that IT o f=TI
and f(a@) = a. (Hint: A point in X yields a path in X which can be lifted to
X.) Conclude that if X is also simply connected, X = X. The existence of fis
called a “universal property” and a simply connected covering space is
often called a universal covering space.

2. Show that S"is arcwise connected. Show that {(x,, ..., x,.)€ S"|—-1<
x,+1 < 1} is arcwise connected. (Hint: Use the fact that it is homeomorphic
to R" — {x,} for some point x,.) (7.14)

3. Show that for any x e CP", 5, *(x) = S', and for any x € HP", v, }(x) =
S3,

4. Prove that S! and S™ do not have the same homotopy type for n > 1.
Conclude that R* and R”" are not homeomorphic for # > 2.

5. Show that the examples given before 7.3 are covering spaces. Calculate
m,(S! x SY).
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6. Show that ¢: n,(X, *) - Fis onto if Xis arc connected. Show that if ¢
is 1-1, X is simply connected.

7. Let X, be the union of » circles in the plane that intersect at the origin
and only at the origin. Prove (by induction) that n,( X, , 0) is the free group on
n generators. (17.4)

8. Prove that RP", CP", and HP" are Hausdorff. (See Exercise 4, Section 0.)
(Example 3, Section 14)

9. Show that CP! = S and HP' = §*. (13.14)

10. Let U, =CP"—CP"! and U, =CP"—[0|0:--0|1]. Show that
(CP"" 1, %) = (U,, ) is a homotopy equivalence, and that U, is contractible.
Show that U, n U, is arcwise connected. (Use the fact that C — {0, 1} is
arcwise connected.) Conclude by induction that n,(CP") = 0. Does the same
proof work for HP"? Why does it not work for RP"?

11. Let X = {(x, y) € RP" x RP"|x = % or y = *}. (X is two copies of RP"
with one point * in common.) Calculate n,(X, ). Is this group finite?

12. Show that n,(X, #) acts as a group of homeomorphisms on X by using
7.2 and 7.3. (This means that for all ¢ € n,;(X), there is a homeomorphism
T,: X »X such that T, T,=T,,, T, = 1.) Prove that 17, =TI, and that
the action is without fixed points. (This means that if for some x € X and
some o € (X, *), T,(x) = x, then ¢ = 1.) (Exercise 14, Section 11)

13. Suppose X is simply connected and T1: X — X is a covering space.
Show that each component of X is mapped homeomorphically by I1 onto X.
(26.10)

14, The Klein bottle is defined as the quotient space:
K=S8'"%x1I/(z,0) ~ (z™%, 1).

Calculate n,(K). What is 7n,(K)/[n(K), n;(K)]?

15. Let TI: E — B be an n-fold covering space (i.e., [T 1(x) consists of
n points, for all x € X). Show that I1,: n,(E, *x) - n,(B, *) is the inclusion of
a subgroup of index n.

16. Find a double covering IT: S* x §* — K where X is from Exercise 14.
Calculate I, . Is the image of IT, normal?

17. Let X be a “sphere with two handles,” pictured in Fig. 7.9. X is the
quotient of two spaces homeomorphic with S x S! — D where D is a small
open disk by identifying the boundary circles. Calculate n;(X).

18. Let X be a Hausdorff space and 7 a finite group of homeomorphisms
of X such that if cen, x € X, 6x = x, then ¢ = 1. Define X/n to be the set
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Figure 7.9

of equivalence classes where x ~ y iff there exists ¢ € = with x = oy. Show
that the natural map X — X/x is a covering space. (Exercise 19)

19, In Exercise 18let 7 = Z,and X = S~ ' ={(z), ..., z)| ¥, |z:|* = D}.
Define o(zy, ..., 2,) = (A2, ..., Az,) where A=e*"/? and & generates
Z,. Write L,,_y(m) = X/n. L,, (n) is called a Lens space. Prove that
Lyn(Zy) = RP?™ ! and ny(Ly,—(Z))= Z, if n> 1. (Exercise 22, Section
26; appendix to Section 27)

20. The Mobius band is the space
M = (0, 1) x [0, 1}/(x, 0) ~ (x, 1).

M can be imbedded in R? (i.e., M is homeomorphic to a subspace of R?).
Show that M*® = RP?
21. Let D' = (B% — SY) U {(1, 0)}. Show that D" # B? — S'.

22. Prove that ¢: Z - n,(S", %) is an isomorphism by using Exercise 3,
Section 5 instead of 7.6.
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A Convenient Category of Topological Spaces

In this section we shall describe the category of compactly generated
Hausdorff spaces. This contains almost all important spaces in topology,
and restricting to this category and its internal operations provides stronger
results with usually cleaner statements. It is our purpose to develop some
of these results. This section contains excerpts from a typically well-written
and definitive paper by Steenrod [68].

Definition 8.1 A compactly generated Hausdorff space is a Hausdorff
space with the property that each subset which intersects every compact
set in a closed set is itself closed. We denote by CG the category of compactly
generated Hausdorff spaces and their continuous maps.

Lemma 8.2 1If X is a Hausdorff space and if for each subset M and each
limit point x of M there exists a compact set C in X such that x is a limit
point of M n C, then X e CS.

Briefly, if each limit relation in X takes place in some compact subset of
X, then X e CG.

Proof Assume M meets each compact set in a closed set, and let x be a
limit point of M. By the assumption, there exists a compact C such that x
is a limit point of M n C. Since M n C is closed, we have the relation x €
M n C, hence xe M. So M is closed and X e CS. |

Proposition 8.3 The category CS includes all locally compact spaces and
all spaces satisfying the first axiom of countability (for example, metrizable
spaces).

50
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Proof In both cases we apply 8.2. If X is locally compact, we take C to
be the compact closure of a neighborhood of x, and if X is first countable, C
is taken to consist of x and a sequence in M converging to x. ||

Remark The condition in the hypothesis of 8.2 is not equivalent to

X € CG; there is an example of a space in C8 for which the condition does not
hold.

These results show that CS is large enough to contain most of the standard
spaces. Perhaps the simplest example of a Hausdorff space not in CS is the
following:

Example Let Y denote the ordinal numbers preceding and including the
first noncountable ordinal Q. Give to Y the topology defined by its natural
order. Let X be the subspace obtained be deleting all limit ordinals except Q.
The only compact subsets of X are the finite sets, because each infinite set
must contain a sequence converging to a limit ordinal of the second kind.
Therefore the set X — Q meets each compact set in a closed set, but is not
closed in X because it has Q as a limit point.

The example shows that a subspace X of a compactly generated space Y
need not be compactly generated. However, the following results show that
certain subspaces are in CS.

Proposition 8.4 If X is in CG, then every closed subset of X is also in CG.
An open set U of X is in C§ if it is a “ regular ™ open set, that is, if each point
x € U has a neighborhood in X whose closure lies in U.

Proof Suppose A is closed in X and B <« A meets each compact subset
of A in a closed set. Let C be a compact set in X. Then 4 n C is a compact
set of A; hence BN (AN C)=Bn C is closed in A. Since A is closed,
B n Cis closed in X. Because X e CSG, it follows that B is closed in X, hence
also in 4. So 4 € CS.

Let U be a regular open set in X, suppose B = U meets each compact set
of Uin a closed set, and let x € U be a limit point of B. By assumption, there
is a neighborhood V of x in X with closure ¥V < U. If C is compact in X, then
Vo Cis a compact set of X in U. Since it is also compact in the relative
topology of U, it follows that B n ¥ n Cis closed first in U, thenin ¥V n C,
and finally in X. Because C is any compact set in X and X € CG, it follows that
B~ Visclosed in X. Since x is a limit point of B~ V, we seethat xe Bn ¥,
hence x € B, so Bis closed in U. |

Proposition 8.5 Iff: X — Yisa quotient map, X € C§ and Yis a Hausdorff
space, then Y e CG.
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Proof Suppose B < Y meets each compact set of Y in a closed set. Let C
be a compact set in X. Then f(C) is compact, hence B n f(C) is closed, so
f~YB N f(C)) is closed, and therefore f~'(B n f(C)) n C is closed. Since
this last set coincides with f~'(B) n C, it follows that f~'(B) meets each
compact set of X in a closed set. Because X € CS, this means that f~'(B) is
closed. Since f is a quotient map, B must be closed in Y. This shows that
YeCS |

The preceding results show that CS is large in the sense that it contains
many spaces. By definition, it contains all continuous maps between any
two of its spaces. The following proposition sometimes facilitates the recog-
nition of the continuity of a function.

Proposition 8.6 If X € CS, Y is a Hausdorff space, and a function f: X - Y
is continuous on each compact subset of X, then fis continuous.

Proof Let A be closed in Y, and let C be compact in X. Since Y is a
Hausdorff space and f'| ¢ is continuous, f(C) is compact, hence closed in Y.
This implies that 4 n f(C) is closed, hence also

(1 A nfCY=("' ) nC.
Because X e €8, it follows that £ ~*(A4) is closed in X, and this shows that fis
continuous. |

Definition 8.7 If X is a Hausdorff space, the associated compactly gener-
ated space k(X) is the set X with the topology defined as follows: a closed
set of k(X) is a set that meets each compact set of X in a closed set. If
f: X - Yis a mapping of Hausdorff spaces, k(f) denotes the same function

k(X) > k(Y).

Theorem 8.8

(i) The identity function k(X) — Xis continuous.
(i) k(X)is a Hausdorff space.
(iii) k(X)and X have the same compact sets.
(iv) k(X)eCS.
(v) If XeCG, then I: k(X) - X is a homeomorphism.
(vi) If f: X - Y is continuous on compact sets, then k(f) is continuous.
(vii) 1 : n(k(X), ¥) = n (X, *) is a 1-1 correspondence for all n and all *.

The theorem can be paraphrased by saying that k is a retraction of the
category JC of Hausdorff spaces into CG.:

Proof 1If A is closed in X, and C is compact in X, then C is closed in X,
hence also 4 n C. This means that A is also closed in k£(X), and this proves (i).
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Since X is a Hausdorff space, (i) implies (ii). If a set A is compact in k(X),
then (i) implies that A is compact in X. Suppose now that C is compact in X,
and C’ denotes the set C with its relative topology from k(X). By (i), the iden-
tity map C’ - C is continuous; we must prove the continuity of its inverse.
Let B denote a closed set of C’. By definition, B meets every compact set of
X in a closed set; therefore B~ C = B is closed in C. Thus C = C’ is con-
tinuous; this shows that C’ is compact, and (iii) is proved. If a set 4 meets
each compact set of £(X) in a closed set, then by (iii), it meets each compact
set of X in a compact (hence closed) set; therefore A4 is closed in k(X), and
(iv) is proved. (v) follows directly from (iv). To prove (vi), it suffices by 8.6
to prove that k() is continuous on each compact set of k(X). Let C’ be com-
pact in k(X); by (iii), the same set with its topology in X (call it C)is compact
and the identity map C’' — C is a homeomorphism. Since f| ¢ is continuous,
f(C) is compact, and by (iii), so is the same set f(C") with its topology in
k(Y). Thus the function k(f)|c: C'—f(C) factors into the composition
of f|c and two identity maps C’' —C —f(C) - f(C"). Hence k(f)|c is
continuous, and (vi) is proved. By (vi), the maps of closed cells into X coincide
with those into k(X); this implies (vii) because the sets in question are
derived from such mappings. ||

Given X, Y e CG, it may happen that X x . Y, the product space with the
usual Cartesian product topology is not in CS.

Definition 8.9 If X and Y are in CG, their product X x Y (in CS) is
k(X x_ Y), where x_ denotes the product with the usual Cartesian topology.

Theorem 8.10 The product defined in 8.9 satisfies the universal property:
There are continuous projections 7;: X x Y- X and n,: X x Y — Y such
that if /2 W — X and g: W — Y are continuous, and W is in CSG, there is a
unique map F: W — X x Y with f=nFand g =n,F.

Proof Since by 8.8 the identity function X x ¥ - X x_ Y is continuous,
and since the projections X x_ Y into X and Y are continuous, their com-
positions projecting X x Y into X and Y are continuous and, hence, belong
to CS. Let W e CG, and let fand g be maps W — X and W > Y in CS. As
usual, fand g are the components of a unique mapping (f, g): W - X x_ Y.
Applying k£ and using the facts k(W)=W and k(X x_¥Y)= X x Y, we
obtain a unique mapping k(f, g): W — X x Y which, when composed with
the projections, gives fand g. |

It follows from 8.10 that the product X x Y in CS satisfies the usual com-
mutative and associative laws. We can extend the construction to products
having any number of factors, by applying & to the usual product.
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Having modified the concept of product space, we should note what effect
this has on other concepts that are based on products such as topological
group G (G x G —G), transformation group G of X (G x X —» X), and
homotopy (I x X — X). If we restrict ourselves to ¢ and X in C§, any multi-
plications G x .G — G or actions G x X — X that are continuous in the old
sense remain continuous when we apply k. Thus the effect of the new definition
is to allow an increase in the number of groups and actions. The following
theorem asserts that in many cases there is no change; in particular, the con-
cept of homotopy is unaltered.

Theorem 8.11 If X is locally compact and Y e CS, then X x_ Yis in CG;
thatis X x V=X x_ V.

Proof Let A be a subset of X x_ Y that meets each compact set in a
closed set, and let (x,, y,) be a point of its complement. By local compact-
ness, x, has a neighborhood whose closure N is compact. Since N x .y, is
compact, A n (N x_y,) must be closed. It follows that x, has a smaller
neighborhood U such that U x .y, does not meet 4. Let B denote the pro-
jectionin Y of A n (U x_ Y).If Cis a compact setin ¥, then 4 n (U x,C)
is compact, and therefore B n C is closed. Since Y e CG, B must be closed
in Y. Since y, is not in B, it follows that U x (Y — B) is a neighborhood of
(xo , ¥o) not meeting A. This proves that 4 is closed; hence X x_ Yisin C8. |}

In the category of compact spaces, it is well known that a product of de-
composition spaces has the topology of the decomposition space of the pro-
duct. It is not difficult to find counterexamples involving noncompact spaces.
However, the following theorem asserts that each such uses either spaces
not in CS or the wrong product.

Theorem 8.12 If f/: X —» X" and g: Y — Y’ are quotient mappings in CS,
thenf x g: X x Y —> X’ x Y’is also a quotient mapping.

Proof Since f x g factors into the composition (' x 1)(1 x g), and since
a composition of quotient maps is a quotient map, it suffices to prove the
special case where Y = Y’ and g is the identity. Suppose thenthat 4 « X' x Y
and that (f x 1)7%(4) is closed in X x Y. Let C be a compact set in X’ x Y,
and let D and E denote its projections in X" and Y, respectively. Then D x E
is compact. If we can show that 4 n (D x E) is closed, it will follow that
A n C is closed, and since X’ x Y is in CS, this will show that 4 is closed,
and the proposition will be proved. Since (fx 1)} (D x Ey=f"Y(D) x E
is closed in X x Y, it follows that (fx 1)"!(4 n (D x E)) is closed in
f~YD) x E. Substituting X, X', Y for f (D), D, E, respectively, we have
reduced the proof to the case where X’ and Y are compact. Then, by 8.11
X' xY=X xYand Xx ¥Y=Xx_Y.
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Suppose then that Wec X' x Y, (fx D™YW) is open in X x Y, and
(xy’s yo) € W. Choose x, € X so that f(x,) = x,". Since (xo, yo) is in the
open set (f x 1)"!(W) and Y is compact, there exists a neighborhood ¥V of
¥o such that x, x Vlies in (f x 1)7!(W). Let U denote the set of those x € X
such that f(x) x V< W. To see that Uis open in X, let x, € U. We can cover
x; % Vby products of open sets contained in (f x 1)~*(W), and we can select
a finite subcovering; then the intersection of the X factors of these products
is a neighborhood N of x; such that N x Vlies in (f x 1)~(W). Therefore
U'is open. By its definition, U = f ~*(f(U)); hence f(U) is open in X', because
fis a quotient map. Since (x,’, ¥o) is in f(U) x V, and since f(U) x V is
open and contained in W, it follows that W is open. |

Lemma 8,13 1If X and Y are Hausdorff spaces, then the two topologies
k(X) x k(Y)and k(X x_ Y) on the product space coincide.

Proof Since the identity maps k(X) - X and k(Y) — Y are continuous,
so also is the identity map

g k(X)) x k(Y)»Xx_Y;

hence each compact set of k(X) x k(Y) is compact in X x_ Y. Let A be a
compact set of X x Y. Since its projections Band Cin X and Y, respectively,
are compact, they are also compact in k(X) and k(Y), respectively. Therefore
B x,Cis a compact set of k(X) x k(Y); hence g|p._c is bicontinuous.
Since 4 = B x.C, it follows that A4 is compact in k(X) x k(Y). Because
k(X) x k(Y)and X x_ Y have the same compact sets, it follows from Defi-
nition 8.7 of k that their associated topologies in CS coincide. |

For Hausdorff spaces X, Y, let C(X, Y) denote the space of continuous
mappings X — Y with the compact-open topology. We recall the definition:
If A is a compact set of X and U is an open set of Y, let W(A4, U) denote the
set of fe C(X, Y) such that f(4) = U, then the family of W(A4, U) for all
such pairs (4, U) forms a subbasis for the open sets of C(X, Y). Although
X and Y are in CSG, it may happen that C(X, Y) is not in CS.

Definition 8.14 For Hausdorff spaces X, Y, define Y* = kC(X, Y).

Lemma 8.15 The evaluation mapping e: C(X, Y) x X — ¥, defined by
e(f, x) = f(x), is continuous on compact sets. If X and Y are in CG, then e is
continuous as a mapping Y* x X - Y.

Proof Since any compact set of the product is contained in the product
of its projections, it suffices to show that e is continuous on any set of the
form F x A, where F is compact in C(X, Y), and A is compact in X. Let
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(fo, Xo) € F x A, and let U be an open set of Y containing fy(x,). Since f;
is continuous, there exists a neighborhood N of x, in A whose closure satisfies
fo(N) = U. Therefore (W(N, U)n F) x N is open in F x A, it contains
(fo, Xxo), and it is mapped by e into U. This shows that e is continuous on
compact sets.

By 8.8(vi), if we apply k to e: C(X, Y) x, X — Y, we obtain a continuous
mapping. When X e CS, the left side gives, by 8.13,

k(C(X, Y) x . X)=k(C(X, Y)) x k(X) = Y¥ x X;
and when Y e CG, the right-hand side becomes k(Y) = Y. |}

Lemma 8.16 If X is in CG, and Y is a Hausdorff space, then C(X, k(Y))
and C(X, Y)are equal as sets, and the two topologies have the same compact
sets, hence k(C(X, k(Y)) = k(C(X, Y)) as spaces in CG.

Proof 1If f: X = k(Y)is continuous, so is its composition with k(Y) - ¥,
and therefore f € C(X, Y). Conversely, if / X — Y is continuous, then
k(f): k(X) = k(Y) is continuous from X to k(Y). Thus C(X, k(Y)) and
C(X, Y) coincide as sets of functions. Since k(Y) — Y is continuous, it follows
that the identity map C(X, k(Y)) - C(X, Y)is continuous. This implies that
each compact set in C(X, k(Y)) is also compact in C(X, Y).

Now let F < C(X, Y) be a compact set in its relative topology in C(X, Y).
Let F’ denote the same set with its relative topology in C(X, £(Y)). We wish
to prove that F’ is compact. It suffices to show that each open set W of
C(X, k(Y)) meets F' in an open set of F, because this implies that the inverse
correspondence F — F’ is continuous, whence F is compact. It obviously
suffices to prove this when W is a subbasic open set W(C, U), where C is
compact in X, and U is open in k(Y). Suppose then that f, € W(C, U) n F.
Since F x C is compact, and since by 8.15 the evaluation mapping e: F x
C — Y is continuous, it follows from 8.8 that it is also continuous as a map-
ping F x C »k(Y). Hence e~ '(U) is an open set of F x C. Since C is compact
and f, x C = e”!(U), there exists an open set V of F containing f; such that
V x Cce (U). It follows that f, € ¥V <« W(C, U). Hence W(C, U)n F is
open in F. This shows that F’ is compact, and it completes the proof that the
two topologies have the same compact sets. It follows now from Definition
8.7 of k that their associated topologies in CS are equal. |J

Theorem 8.17 If X, Y, and Z are in CS, then Z¥** =(Z")*.
Proof We shall first construct a natural homeomorphism

(A) pw: C(Y x X, Z) —s C(X, C(Y, Z)).
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Corresponding to an fe C(Y x X, Z), define u(f): X->C(Y, Z) by
(DY) = f(p, x). To see that for each x, (u(f))(x) is continuous from
Y to Z, suppose it carries y, into the open set U of Z. Then f(y,, x) € U,
and the continuity of f gives an open set V of Y containing y, such that
SV x x) c U, therefore (u(f))(x) maps V into U. We must now prove

B) If feC(Yx X,Z), then u(f): X—C(Y,Z) iscontinuous.

Let W(B, U) be a subbasic open set of C(Y, Z), and suppose that (u(f))(x,) €
W(B, U). Then f(B x x,) = U. Since U is open and B is compact, there is a
neighborhood N of x, such that f(B x N) < U. This implies (u(f/)(N) <
W(B, U), and it proves (B).

To prove the continuity of p, we start with the continuity of the evaluation
mapping rearranged as

e YxXxCYxX,Z2)-2Z
(see 8.15). If we apply B with X replaced by X x C(Y x X, Z), we find that
ue): X x (Y x X,Z)-C(Y, Z2)

is continuous. Apply (B) again, with X replaced by C(Y x X, Z), Y by X,
and Z by C(Y, Z); then

u(u(e)): C(Y x X, Z) » C(X, C(Y, Z))

is continuous. It is readily verified that u(u(e)) coincides with u of (A).
To show that u has a continuous inverse, let

e: X x C(X, C(Y,2)) - C(Y, 2), e Yx Y, Z2)-2Z
be evaluation mappings. By 8.15 the composition
el xe) Yx XxCX,CY,Z2)—Z
is continuous. Applying (B) with X replaced by C(X, C(Y,2Z)), Yby ¥ x X,
and Z by Z, we see that
ue’(1 xe)): C(X, C(Y,Z)»C(Yx X, Z)

is defined and continuous. It is readily verified that u(e’(l x ¢)) is the inverse
of u in (A).

We now apply the functor k to both sides of (A). On the right hand side
we use 8.16 to obtain

kC(X, C(Y, Z)) = kC(X, kC(Y, Z)) = (ZV)*.
On the left side we obtain kC(Y x X, Z) =Z"**. |

Theorem 8.18 For X, Y, and Z in CS, the composition of mappings
X - Y - Z is a continuous function Z” x Y* - Z*.
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Proof By 8.15, the mappings
ZVx YA x X572V xy-5 7

are continuous, hence e'(1 x e) is also continuous. Applying B with X replaced
by Z¥ x YX, Yby X, Z by Z, and f by €'(1 x e), we see that

ue'(l x e)): Z¥ x Y¥ - C(X, Z)

is continuous. Then k(u(e'(1 x €))): Z¥ x Y*¥ »ZX is also continuous. |

Definition 8.19 We denote by C((X, 4), (Y, B)) the space of continuous
mappings of pairs (X, A) - (Y, B). It is the subspace of C(X, Y) of maps f
such that f(A) = B. We abbreviate k(C((X, A), (Y, B))) by (¥, B)**. The
smash product’” X A Y is obtained from X x Y by collapsing the wedge
Xv Y=(Xx=x*) u(* x Y)to a point that is the base point of X A Y. This
is Hausdorff (see Exercise 6). Define the function space of mappings of pointed
spaces by

(X, 9" = k(C(X, %), (Y, %)),

where its base point is the constant map.

Our objective is to prove the analog of the exponential rule 8.17 in CG*;
but we need a preliminary result. Let X e CG, and let 4 be a closed subspace
of X such that X/4 is a Hausdorff space. Recall the collapsing map
P4 (X, A) »(X/A, %). Let Ye CS*. By composing a map f: X/A — Y with
P4, We obtain fp, e C((X, A), (Y, %)), and this defines a mapping of func-
tion spaces

(p)*: C(X/A4, Y) - C((X, 4), (Y, %)).

Lemma 8.20 The above mapping (p,)* is continuous and one-to-one
(bijective), and it sets up a one-to-one correspondence between compact
subsets. Hence, applying the functor &, we obtain an induced natural homeo-
morphism

(¥, )04 = (¥, ),

Proof The continuity and bijective properties are readily proved. The
crucial point is to show that if F is a compact subset of C((X, A4), (¥, %)),
then (p)* " !(F) is compact. It suffices to show that (p,)* is continuous on

7 When considering functors like X A Y and X V Y it is necessary to have base points
in order to define them. Hence it is not necessary to include the base point in the notation
(unless for some reason, more than one base point is being considered), and it is almost
always suppressed.
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F. Suppose g, € Fand W(C, U)is a subbasic open set of C(X/4, Y)containing
(p.)* " '(go)- This means that g,p, maps C into U. In case C does not con-
tain the base point #, then p;'(C) is compact in X and W(p;!(C), U) is an
open set that contains g,, and is mapped into W(C, U) by (p,) .

Suppose therefore that C contains *. Since F is compact, the evaluation
mapping e: Fx X — Y is continuous, by 8.15. Since e(F x 4) = * and
F x (X/A4) is the decomposition space of F x X obtained by collapsing
Fx A4 to Fxx* (see 8.12), it follows that e induces a continuous mapping
et F x (X/A) — Y. Since €'(g,, *) € U, there exist a neighborhood ¥ of g, in
F and a neighborhood N of * in X/A4 such that ¢’ maps V x N into U. Set
C' =C — Cn N;then C’' is compact and does not contain *. It follows that
V n W(pH(C"), U)is a neighborhood of g, in F, and any g in this neighbor-
hood will map (p,)”'(N) into U because g€ ¥, and it will map (p,)~(C’)
into U because ge W(p;'(C"), U). Since Cc C'U N, it follows that

(P)* Mg e W(C, U). |
Theorem 8.21 If X, Y, Z are in Cg*’ then
(Z, *)(Y AX ) = [(Z, *)( Y, *)](x, .).

Proof Abbreviate the wedge (Y x %) U (x x X) by W. If in 8.20 we replace
Y by Z and (X, A) by (Y x X, W), we obtain the natural homeomorphism

© (Z, 9 E = (2, )W,

The space on the right of (C) is a subspace of Z¥* X which, by 8.17 is homeo-
morphic to (Z¥)*. It is readily verified that, under the latter homeomorphism,
(Z, »Y* X" corresponds exactly to [(Z, #)(V VX9, |

Theorem 8.22 There are natural homeomorphisms

@ XA (YAZD)=(XAY)ALZ,
(b) XA Y=YAX,
© (XvINAZ=XAZ)v(YAZ.

Proof Consider the composite
Xx(Yx2Z) =L X x (YA Z)5 XA (YA 2Z);

since they are both quotient maps (by 8.12), their composite is also. Hence
both X A (YA Z) and (X A Y) A Z are quotient spaces of X x Y x Z
under the same identifications, and are consequently homeomorphic. Similarly
XA Yand Y A X are quotient spaces of X x Y= Y x X. (¢) is proved
similarly after one establishes
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Lemma 823 X v Y has the quotient topology on the disjoint union
XuY.
Proof Since the inclusions X X, XU Yand Y-2 XU ¥ are contin-

uous, they determine a continuous map XY U Y L XV Y. LtFcXvY
and suppose f~!(F) is closed. Then i;*(F) and i;'(F) are closed. Now
F=ciYF)x*uxxi;!(F)isclosedin X x, Yand hencein X x Y. |} |

Theorem 8.24 The homeomorphism of 8.21 induces a 1-1 correspondence
P: (X, 0, (Z, )T [(Y A X, %), (Z, 9]

Thus the base point preserving homotopy classes of base point preserving
maps from Y A X to Z are in 1-1 correspondence with the same from X to
(Z, »)'¥'®. Sometimes we use the sloppier notation

(YA X, Z]=~[X, ZY]
to represent this fact if it is understood that X, ¥, Z e CG*. This property
is called adjointness; it will be utilized in the next two sections.
Proof Suppose go ~ g,: (Y A X, ¥) > (Z, *). Let

G:((YAX)xI*xxI)>(Z, %

be a homotopy. Consider G: (Y x X) x I - Z given by
Yx Xx IS (YA D) x IS 2
where f is the quotient map. This is continuous, hence
F: XxI-Z*

given by 8.17 is also continuous. It is easy to see that F(y, 1) e (Z, x)'*9,

F(y, 0) = fo(»), F(y, 1) = fi(y) where f, and f; correspond to g, and g, under
8.21. Finally F(*, 1) = %, hence F: f, ~ f;. The converse is similar. ||

Exercises

L* Show that X x (Y x2Z)=(Xx Y)xZ and X x Y= Y x X, where
x is the product in CS.

2. Prove that if Y is Hausdorff, C(X, Y)is Hausdorff.

3. Show that if, X, ¥, Ze CS, (Y x Z)* = Y* x ZX. (Hint: First prove
CX, Yx Z)=CX, Y) x,C(X, Z).)

4. Show that if f, ~f,: (Z, ¥) > (Y, »)'**) then gy ~g;: (Z A X, #) —
(Y, %), where g; corresponds to f; under 8.21. (8.24)
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8, Suppose X, Y, Z €T and Y is locally compact. Then u: C(Y x X, Z) -
C(X, C(Y, Z))is a 1-1 correspondence (compare to 8.17). Conclude that 8.24
holds with (Z, )Y replaced by C((Y, ), (Z, %)) if X, Y, and Z are as above.
This is the classical version of 8.17 and 8.24.

6. Prove that if X and Y are Hausdorff, X A Y is Hausdorff. (27.9)

7. If X, e C§ for each «, let 11X, be the disjoint union of the X, with a
topology such that D <11X, is open iff D n X, is open in X, for each a.
Show that LI X, € CG. In the case of two spaces this is written X II Y. Show
that U is commutative and associjative up to homeomorphism and

(X1 Y) x Z= (X x Z) U (Y x Z).
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Track Groups and Homotopy Groups

In this section we will show that (X, ») = [(I", oI"), (X, *)] has a natural
group structure if » > 1. The composition can be constructed directly, but is
most easily constructed via the results of Section 8 if X € C6*. The modifica-
tions necessary to define the composition in general are indicated in the
exercises.

There are two basic ways to construct a natural composition among homo-
topy classes. The first is to make some assumptions about the domain space.

Definition 9.1 SX = X A S! is called the reduced suspension of X.
We often replace S* by I/0 ~ 1 in this definition.
Proposition 9.2 If X and Y are in C8*, F(X, ¥) = [(SX, %), (Y, »)] is a
functor in two variables from CS* to §. (See [11].)
Proof
[(S* A X, %), (Y, ©)] = [(S%, %), (Y, )T = n,((¥, )7, ).

Furthermore (Y, *)*:* is a functor covariant in (Y, *) and contravariant in
(X, *). Hence a map
Si(X, %)= (X', %)
induces
S5 (T (X, 90,
and thus ('), 71, (Y, )%, ) > 7, (Y, »)'®¥, #); this map is vsually

written
SHSX', %), (Y, »)] = [(SX, %), (Y, ¥)];

62
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similarly if g: (Y, *) > (Y, %), we have
gx: [(SX, %), (Y, ¥)] = [(SX, *), (Y, #)].
Clearly (/if2)* =£2*/1* (91920 = (9Dx(g2)x, 1* =1, and 1, =1. ]
Proposition 9.3 Let C*X =(X,*) A (I,1). Then X =« C*X and C*X/X =
SX. Furthermore, (C*(S" 1), S" )= (B", S"™1).
C*X is called the reduced cone on X.

Proof Leti: X —» C*X be given by i(x) = (x, 0). This is clearly an inclu-
sion. It is also obvious that C*X/X = SX by the definitions. Define
F:(C*(S" ™), " ) - (B", S" 1) via

ox,)=(1—-t)x+txeB"

for x, » € 8"~ 1. To find an inverse, apply 2.4 with f(x) = ». We have y(u) =
pu + (1 — p)x and

p—1

xo ok, U (y(u), ) (u # *)

is an inverse to &. (It is a little difficult to show that this is continuous at *,
but unnecessary. It is an inverse in 8 so d is 1-1 and onto. Continuity of §
and compactness of C*(S""?) finish the job.) |
Proposition 9.4 S(I"~'/0I""") = I"/01". This determines a homeomorphism
¢:S(S" ) S"<c R
SUCh that (P(x, 1 - t) = (¢1(xs t)’ LR (P,,(x, t)’ —(pn+l(x, t)) € Rn+1'

Progf Define
O: S(Iter ) - 17joIt
by ®(xy, ..., Xp- 1, 1) = (X1, ..., Xy, £). This is clearly a homeomorphism

since S(I""*/0I""") is compact. To define ¢ we must use the homeomorphism
of 1.9. The homeomorphism f,: S" — I"/0I" is given by

1 2 x 2 _.(x,
f,,(xl,...,x,,H)=§(1+1—rtan 1(1 2 ),...,1+;tan 1(1——+L))

_.xl —xl

=(d1, ""an)
thus

f;,(xl, seey —-x,,+1) = (O‘I’ ey 1 - d,,).

Then @ = f;! o @ o Sf, _, satisfies the above formula. [
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Corollary 9.5 S"=S8'A - A S.
Proof This follows by induction. |

Recall that m,(X, *)=[(I", 0I"), (X, *)]. (See the remark before Exercise 7,
Section 4.)

Corollary 9.6 =, is a functor from C§* to G for n = 1; m,(X, *) is called
the nth homotopy group of X (at ).

Proof
(X, ) = [(S", %), (X, )] > [(SS"7", #), (X, »)].
The result now follows from 9.2 since all of these correspondences are

natural. |

Alternatively, we can define a composition among homotopy classes by
making assumptions about the range space Y. The appropriate structure on Y
is the following generalization of a topological group:

Definition 9.7 An H-space (X, p) is a space X with base point e¢ and
a continuous map u: (X X X, e x ) » (X, e) called the multiplication
such that u|y, x ~V in B*, where V: X' v X — X is the “folding map,”
V(x, e) = V(e, x) = x. (Clearly V is well defined, continuous, and base point
preserving.) We make no assumption about associativity or inverses. (H
stands for Hopf who first studied such spaces [30].)

Proposition 9.8 Suppose (X, ) is an H space. Then [(Y, ), (X, e)] has a
multiplication with two-sided unit, which is natural with respect to Y.

Proof Given f, g: (Y, *) = (X, e), we define /- g: (Y, %) — (X, e) by

9O =10) g

Clearly (f* g)(*) = *. Let x be the trivial map given by *(y) = e for all y. Then
* g ~gn~g-* We must show that g depends only on the homotopy
classes of fand g. Suppose F, G: (Y x I, * x I) > (X, e) are homotopies
with F(y, 0) =1, F(y, 1) =11, G(», 0) =g, G(y, 1) = g,. Then

H(YxLxxI)- (X, e)
given by
H(y,t) = F(y, 1) G(», 1)

is a homotopy from f; - g, to f; * g;. The naturality is immediate. |}
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Proposition 9.9 If (Y,e) is an H-space, the two multiplications in
[(SX, *), (Y, e)] are the same, and they are commutative.

Proof Let f, g: (SX, *) = (Y, e). By Exercise 1, their product f-g in
[(SX, ), (Y, e)] ““induced by the suspension structure” is given by

. _ [g(x,21), 0<r<i
(90 = flx,2t—=1), 1<t<l.

Their product ““ induced by the H-space structure” is given by

(f° g)(x5 t) = “(f(xs t)s g(x’ t))

These two multiplications are ‘‘ independently defined,” and consequently
“commute” with each other. This is expressed by the formula

(feg) (feg)=(f)(g"9)
In fact both sides of this equation are given by the formula

h(x, 1) = {HU7 (% 20, 97Cx, 20)), 0<1<}
wh= M(f(x, 2t — 1), g(x, 2t — 1)), _% <t<l.

The two multiplications are linked together by the fact that they both have
a common unit, namely the trivial map. Letting g =f" = 1, this formula
reduces to

f g =fe9q,
hence the multiplications are equal. Letting /=g’ = 1, this reduces to
g9 f =f-g;

hence the multiplication is commutative. |
Definition 9.10 QX = {w € X' |w(0) = w(1) = *}. QX is called the loop
space on X.

As in the case of the suspension, we suppress the base point * from the
notation unless there will be confusion. We write "X = Q(Q""'X) and
choose the constant loop at * as the new base point. By 8.20 QX = (X, )",

Theorem 9.11 Ifn > 1, Q"X is an H space.

Proof It is sufficient to show that QX is an H space. We take the constant
path * as a unit and path composition (as in 7,) for a multiplication

WX x QX - QX.
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It is given by
 {wy20), O<r<}
ey, 03) = {wl(Zt— N, i<t

To show that this is continuous, observe that a map f: ¥ — X' is continuous
iff the corresponding map Y x I — X given by 8.17 is continuous.
A homotopy H: V ~ | qxvax is given by

s
0<t<~
*, _t_z
H(w, *, 5)(t) =
w2t—s) s<t<l
2-s) 2= 77
and
2t s
O0<t<l —=
w2—s)’ 2
H(x, o, s)(t) =

S
s 1l—-=-<1t<1.
* 2

The proof that this is continuous is as above. |

Proposition 9.12 The 1-1 correspondence
[(SX, %), (Y, ©)] < [(X, %), (QY, %)]
is an isomorphism.

Proof Letf, g:(SX, *) = (Y, *). Then bothf-j and f- g are given by the
formula

h(x) = {g‘(x)(Zt), 0<t

<}
foee-1, i<t<l.

Corollary 9.13 r,(X, %) is abelian if n > 1.
Proof
(X, %) [(S", %), (X, %)] = [(S", *), ("1 (X, *), *)]
= (Q"TN(X, #), %);
since Q" !(X, %) is an H-space, n, is abelian. |}
Remark Since m,(X, %) 2 n,(Q""'(X, #), %), one could calculate =, if
one could calculate m, of every space. However, not much is known, in a

geometrical sense, about Q(X, *) (e.g., what would a simply connected
covering space of Q(S2, ) look like?).
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Proposition 9.14 [S"X, Y] has n multiplications given by the n suspension
coordinates

e ok RO St
They are all equal.
Proof We use induction on ». By 9.12 there is an isomorphism
[S"X, Y]=[$"'Xx, QY]

Thus the last multiplication in [S"X, Y] corresponds to the multiplication
induced by the H-space structure. The first » — 1 multiplications correspond
to the n — 1 multiplications of [S"~'X, QY] induced by the suspension
structure. By induction, these are all equal, and by 9.9 they are equal to the
last one. |}

Exercises

1. Define a multiplication in [(SX, *), (¥, »)], for X, Y € G* by

. _[9(x,21), 0<t<}
o). t)*{f(x,zt— ), t<t<l.

Show that this agrees with that of 9.2 if X, Y e CS8*. Prove that this makes
[(SX, %), (Y, %)] into a group. (Think of a map 1 (SX, *) — (Y, *) as a family
of maps (S?, *) — (¥, *) parametrized over X.) (9.9)

2. Show using Exercise 1 that in 9.6, 9.9, 9.12, 9.13, and 9.14, CS* can be
replaced by G*.

3. (X, p) is said to be homotopy associative if
XxXx x5 xxx

-

XxX —- x

commutes up to homotopy. (X, ) has a homotopy inverse if there is a map
v: X — X such that v(e) = e and

XS xx x2S xxxtx

is homotopic to the constant one mapping all of X toe. Show that if (X, p) is
homotopy associative H-space with homotopy inverse, the set [( ¥, ), (X, e)]
has the structure of a group. Fixing (X, e),show that [(Y, *), (X. e)]is a functor
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from the category of spaces with base point to the category of groups and
homomorphisms.

4. Give a reasonable definition of a homotopy commutative H space (X, )
and prove that if (X, ) is homotopy commutative [(Y, ), (X, e)] is com-
mutative.

5.* Show that 7,(X, *) =, (Q(X, %), *).
6.* Show that C*, defined in 9.3 is a functor
C*: CG* - CG*,
Show that if f: (X, *) = (Y, #), f ~ * (in CG*) iff thereisamap g: C*Y > Y
with
C*X
/N
Y

X =

commutative, where i(x) = (x, 0). Compare this with Problems 1 and 2,
Section 2.

7. If #; and *, € X are two base points in the same arc component, a path
p from #; to *, defines as isomorphism

Yp: Tal X, %) = (X, %),

If X is simply connected, this isomorphism does not depend on the choice of
paths. (Exercise 14, Section 11)

8. Let Z be the integers with the discrete topology and let u: Z x Z —» Z be
addition. Show that [X, Z] with the multiplication induced by 9.8 is isomor-
phic to hom(A, Z) where 4 is a free abelian group with a basis in 1-1 cor-
respondence to the components of X.

9* Letm;: X x Y- Xand n,: X x Y- Y be the projections. Show that
Fin (X x Y, %) > m,(X, ») D7, (Y, »)

given by F({y}) = ({ny}, {r, y}) is an isomorphism (r = 1).

10. Use Exercise 7 to show that if X o YinG, =, (X, %) =~ n,(X, f(*)) where
f* X— Y is a homotopy equivalence (compare to Exercises 9 and 10 in
Section 6).

11.* Define CX = X x I/ X x 1. CX is called the unreduced cone on X.
Prove that C: GG — CSis a functor. A map f: X — Yis called nullhomotopic or
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inessential if f is homotopic to a constant map. Prove-that f* X — Y is null-
homotopic iff there is an extension F: CX — Y where i: X —» CX is the in-
clusion given by i(x) = (x, 0). Compare with Exercise 6. Prove that CS" ! =
B". Define XX = CX/X. X is called the unreduced suspension on X.
Prove that £$" ™! = S".
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Relative Homotopy Groups

Given a subspace 4 < X, it is natural to try to relate x,(X, %) to m,(4, *).
This is most easily accomplished by defining new groups (X, 4, *) which
measure the descrepancy. These groups can be defined in two ways. The first
is to define them to be the homotopy groups of an appropriately constructed
space (as we did with 7, for n > 1). The second is to define them as homotopy
classes of maps. By appropriate use of adjointness the definitions agree and
the algebraic relations between n,(A4, *), 7,(X, *) and 7,(X, 4, *) assume (by
design) a particularly simple form.

Definition 10.1 Let A, B « X. Define
QX; A, B) ={we X'|w0)e 4, (1) e B} = X!
with the induced topology;if * € 4 < X, let m,(X, A, *) = 7, _(Q(X; A4, %), *).
n(X, A, x) is called the nth (relative) homotopy group of (X, 4, *).

Proposition 10.2 =, is a covariant functor on the category of pairs with
base point (X, 4, *), and maps of pairs preserving base point (we will call this
B2*), for n > 1. It is a group if #n > 2, and is abelian if n > 3.

Proof A map f: (X, 4, ¥) - (Y, B, ») in B** (i.e,, a map /> X - Y with
f(A) = B and f(%) = ») induces a map Qf: QX; 4, *) » Q(Y; B, ). This is
functorial and hence induces

Je: (X, A, ) > 1 (Y, B, %).

f« is @ homomorphism if n > 2 and =, is thus a functor. J}

70
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Consider now [(I"; oI", J"™), (X; A, )], the set of homotopy classes of
maps f: I"> X such that f(0I")= A and f(J""!) = +. The homotopies
H:I" x I - X satisfy HOI" x I)< A and HJ"™! x I) = *.

Proposition 10.3 There is a natural 1-1 correspondence

To(X, 4; %) > [(I" 21", "), (X; 4, %))

Proof A mapping

("1, a5 QX5 4, %), %) < (X, %)
determines by adjointness a mapping
("' x Lol x 1)L (X, #).

One sees that f(0I") = A and f(J*~ 1) = «. Hence f' represents an element of
[(1"; 01", J"~ 1), (X; A, *)]. Conversely, a map g: (I"; 8I", J™") = (X; A, *)
determines a map g: I""! —» X7, and one observes that g(@I""') = », and
g(I"" ') e Q(X; A, ). Thus g represents an element of n,(X, 4, *).

Homotopies are also preserved by these transformations; the proof of this
is left as an exercise. ||

There is a continuous map
d:UX; A, ¥) oA,  d»)=x
given by d(w) = w(0). This induces a homomorphism
Ta(X, A, %) = 7, (QX, A, %), $)—> 7, (4, #),

which is usually written as 0.

Lemma 10.4 Under the correspondence 8 of 10.3, 2 is given by
30(S) = {1 m-1x0}

where f: (I", 81", J" 1) - (X, 4, ¥).

Proof This is easy from 10.3 and the definition of d. ||

Note that [(I", oI", J" 1), (X, *, )] = n(X, *»).

Lemma 10,5 In the case A4 =%, the 1-1 correspondence 0: 7,(X, ) —
(X, *, %) is an isomorphism.

Proof The composition

7, - 1(QX, %), %) = 7,(X, *)—L T (X, %, %) = 1, _1(QUX, %), )

is the identity. ||
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We now have constructed homomorphisms
iy: T,(A, *) > (X, *)
Jut (X, #) — (X, %, ) o> 1 (X, A, %)
O X, A, %) > 7w, (A4, %),
where i: (4, ) = (X, *) and j: (X, *, *) - (X, A4, *) are the inclusions.

Lemma 10.6 Suppose n > 1. The compositions
(X, *)-j:-v (X, 4, *)—a—» T,—1(A4, *)
(X, A, 0= Ty (A, )= 7 (X %)
T4, )= 1,(X, )= 1 (X, 4, %)
are all 0.
Proof Letf:(I", 0I") — (X, ). Then 0j,({f}) is represented by the constant
map at *. Let f: (I, oI", J"™") —» (X, A, x). Then i, d({f}) ={f|m-1xo0}. [
is a homotopy from f|m-1,0 t0 f]m-14; and f(0I""' x I) = «. Hence

iy O/} ={f|m~1x1} =0 as elements of 7, (X, »). To prove the last com-
position is zero, we invoke a lemma.

Lemma 10.7 Let f: (I", 0I", J"" ') > (X, A, *). Then f'~ * in n(X, 4, %)
iff there is a map g: I" - 4 and a homotopy H: f ~ g (rel 3I"). (See 5.1.)

Proof Suppose f~ * in n,(X, A4, %) and let
K(I"xLoI"x LLJ" ' x I)» (X, 4, *)
be a homotopy with K(x, 0) = f(x), K(x, 1) = %, x € I". Define H by

K(u, s, 25t), 0<t<d
K(u, s(2 — 2t), 5), i<r<i

for ueI"™'. The last two coordinates are those of a point pictured in Fig.
10.1, where s varies linearly from 0 to 1 as the point varies along the line.
Thus we have a homotopy as t varies from K(u, s, 0) to K(u, 0, s). Clearly
H(u, 5,0) = f(u, s) and H(u, s, 1) € A while H(u, s, t) = f(u, s) if (u, s) € OI".

Suppose conversely that such a homotopy # exists. H: f~g, g(I") c A,
and H(x, t) = f(x) = g(x) for x e 8I". Then f and g represent the same ele-
ment of m,(X; A, *). We must show that if /: (I", J" ') - (4, #), {f} =0 in
n (X, A, ). Define

H <L x LI ' xI)- (A, A, ) = (X, 4, *)

H(u, s, 1) =
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X

Figure 10.1

by
H(u,s,t) =f(u,s + t — st)

H(u, 5,0) =f(u,s), H(u,s,1)=x, and HJ" 'xDh=x* }1}
Lemma 10.8 Let # > 1. Consider the sequence

1Ay )= T (X, %)= (X, Ay )= Ty (A, $)— oy (X, #);

ifju f =0, B=i.aforsomeaemn, (A, *),
if &y =0, y =, B for some f e n,(X, %),
if i, =0, 6 = 0y for some y e n,(X, A, *).

This is a converse to 10.6.
Proof Letj (B) =0inn,(X, A, ) and let f: (I", 0I") > (X, ) represent f.
Since j, =0, f~ g (rel 0I") where g(I") = A. Thus f~ i,({g}) in = (X, *)

and {g} € (4, *).
Let dy =0 and represent y by

fomor, Jm) — (X, A, *).

Since f|pu-1 ~ 0 in 7,_ (A, %), there is a homotopy H: I" - A with H(x, 1) =
f(x,0)for xeI*™ !, H(x, 0) =, and H(OI"™' x I) = *.
Define K: (I" x I, I" x I, J"~ ' x I) > (X, A, *) by (see Fig. 10.2)

He, 1 —t+s(l+18), O0<s<#/(l+1)

K(x,s,t) = fle,s(1+1) — 1), tHl+1)<s<l.

Now K(x, s,0)=f(x,s) and K(x,0,1)==%, so K(x,s, 1): (" dI")—
(X, *). K is thus a homotopy between f and a map whose class is in
T (X, ).
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1 1-7 6]

£
Figure 10.2

Finally, suppose i, & = 0 and represent é by a map
[ ") 5 (A, *).

Let H: I"— X be a homotopy f ~ *. Then H(x, 0) = f(x), H(x, 1) = *,
and H(u, t) = * for ue 81"~ ', Thus H: (I", 1", J" ') - (X, A, *) and clearly
oH=f |

We now have a sequence

A, %) > (X, *) > (X, A, %) > T, (A, %) >
s (X, A, ) o (A, *) - me(X, %)

such that at any point, an element maps to zero iff it is in the image of the
previous map. In the case n > 1 this says that the kernel of a map going out of
a group is equal to the image of the previous map coming in. Such a sequence
is called an exact sequence. It is often very useful. For example:

Corollary 10.9 0: ,(B™, S™"!, ) » ,_(S™', %) is an isomorphism for
n>1.

Proof m,(B", %) =0 for all n, since (B", *) is contractible. Thus we have the
exact sequence

0o (B™ S™ 1, %)~ 1, (ST, %) > 0

Now ker 8 =Im 0 =0and Im d = ker 0 = x,_,(S™"', %), hence d is 1-1 and
onto. |

In the case n =1, d is onto. Since m,(S™ ™!, *) = *, if m > 1 we have
7, (B™, S™"!, %) = . In the case m =1 we conclude that mo(S°, *) has two
elements. This alone is not enough to conclude that n,(B', S° *) has two
elements.
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Exercises

1. Suppose A4 and X are arcwise connected, 4 < X, and n,(X, 4, *)=0
for i < n. Show that the inclusion i: 4 — X induces an isomorphism

iy: A, *) > (X, %)
fori<nandisontoifi=n.

2. Suppose n,(4, *) =Z and n,(X, A, ») = Z,. What are the possibilities
for m,(X, %)?

3. Prove that n,;(B', S% #) has two elements, where » = —1. They are
represented by the trivial map *: /— % = —1 and the homeomorphism
t: I- B' given by #(s) = 1 — 25. Show that '~ * if f(0)= —1 and f ~ ¢t if
f(0) =1 for any f: (I; 0, 1) > (B*; 8°, —1).

4. Suppose 7,(4, *) = (X, 4, *x) =0. Prove n,(X, ») =0.

5.* In the following diagram, three of the four sine waves are exact
sequences. Use the diagram and the fact that the composite =,(B, 4)—
n(X, A) > n (X, B) is O to prove that the fourth is exact.

NN NN N

TI,(B, A) 7Tn—l(A) 7rn—l(",) 7tn-l(A,’ B)
7!,,(8) nn(Xa A) 7Itn—-l(B) nn—l(X! A) nu-Z(B)
r,(X) (X, B) 7,- (B, A) ,_2(4)

VAVAVAVAV

(Here, and in the future, we leave base points out of the notation for homo-
topy groups when the simplification will not lead to confusion.)

6.* Show that if f; g: (X, A, *) > (Y, B, *) and f ~ g in G**,
Jfu =gx: (X, A, ¥) > (Y, B, ¥);
thus if (X, 4, x) ~(Y, B, %), n(X, 4, *) = (Y, B, %).
7. Show that the natural map
r: [(7, 01", J"7Y), (X, A, #)] — [(I", I*, %), (X, A, %)]
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is a 1-1 correspondence for * € JU e M I'. (”Hint: (I", 81", J"" ) ~
(", or, ).). (16.7)

8.* Define 9: B2* - B* by (X, A4, *) = (4, x)andif f1 (X, 4, *) = (Y, B, x),
O(f) =f| 4. Show that 0 is a functor and
0: T, > Moy o0
is a natural transformation. Consequently a map f: (X, 4, *) = (Y, B, %)
induces a commutative ‘‘ladder”
e nn(X, *) -_— ﬂ"(X, A9 *) '—(?—’ nn—l(As *) - nn—l(X: *) —

ft f‘ fil lf#

e 7[n(Y’ *)_—’ nn(Y9 B, *) - nn—l(Ba *) — 7r'n~1(Ya *)—_’ e

9. Use the method of Section 6 to show that if X o 4 and *;, , € 4 are
base points connected by a path in X, Q(X; 4, *) = Q(X; 4, *,) (the homo-
topy equivalence is in G). Hence (X, A4, %) > (X, 4, *;)isn = 2.

10. Write out the details for the claim in the proof of 10.3 that homotopies
in m,(X, 4, *) correspond to homotopies in [(I", 8I", J*~1); (X, 4, ¥)]. (10.3)

11. Prove that there is a natural isomorphism

XV Y, )2n(Xx YV, )@®n (XX Y, Xv Y%
= nn(X’ *) @ Tr'n(Y3 *)@ﬂ"+1(X X Y’ Xv Y, *)
12. Supposef, g: (I",oI",J" 1) - (X, 4, *) and f ~1(4) = g~ '(4). Show that
if f ~ g (rel f71(A4)), then {f} = {g} & 7, (X, 4, *).

13. Show that there is no way to put a group structure on 7i;(S* v S', §?, %)
so that ,(§" v S*, %) » n,(S* v S*, S?, *) is a homomorphism. (§* = S! v S!
is the inclusion of either of the circles.)



IX

Locally Trivial Bundles

The calculation of &, was made possible by the covering space construction
and the Van Kampen theorem. The calculation of n,, for n > 1 is a much more
difficult problem, and it is natural to try to generalize these techniques.
There is no known generalization of Van Kampen’s theorem, but quite an
extensive generalization of covering space theory. We shall describe here a
generalization of covering spaces called locally trivial bundles. We allow the
inverse image of a point to be more complicated than the 0-dimensional
discrete spaces that occur with covering spaces, but still demand the same
uniformity of the inverse image of various points. This allows one to obtain
the same homotopy information. The difficulty lies in the fact that if we
attempt to construct locally trivial bundles (or more generally, fibrations), we
must use very complicated spaces. The complications in the spaces ate in the
nature of the problem. There is, however, a wealth of locally trivial bundles
that “occur in nature,”” and we exploit these for homotopy information.

Definition 11.1 A locally trivial bundle with fiber F is a map n: £E— B
such that for all x, € B there is a neighborhood V of x, and a homeomorphism
o VxForn (V)

such that # o g, (x, f) = x.
The sets ¥ with this property are called the coordinate neighborhoods.

Examples

1. A covering space with connected base is a locally trivial bundle with
discrete fiber.

77
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2. E=Fx B, a(f, b) =b. This is called the trivial bundle or product
bundle.

3. (M)~ M where M is a differential manifold and (M) is its tangent
bundle. (See Section 29 for a definition.)

4. The maps
Nt S2n+l N CP", v, S4"+3—"HP"

are locally trivial bundles with fibers S* and S* respectively, as we will now
see. The proofs are virtually identical, and we do the case of 5,. Define

Vi={[Col""1¢]e CP"|¢; # O}
Then ¥V, for 0 <i < n is an open cover of CP". We now define a homeo-
morphism
@ Vix St N (V)
by
el&o] -1&L A = ‘—l?il—i—— (&', &l fi-lfn)
VEIGP
where 2 € S'. This is well defined since if ¢; = 1¢;’, we have
&1 el
JEET RGP
To prove it is a homeomorphism, we describe its inverse

V) =1, -, ENEIE12 =1, & # O}

&g =&y, and

Define
Yin (V)= Vi x 8
by
S

'ﬁi(éo, e én) = [fol lén]’ Tz 11"
9]
Clearly Y, 0, =1 and ¢;y; = 1. |

We would like to have a path and homotopy lifting property for locally
trivial bundles. 7.2 can be stated as follows. Let P be a one-point space. Given
a commutative diagram

Px0—sX

|

Px]——X
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there is a unique map j: P x I-% X so that

Px0 ———>» X

|

Px1I 7 X

commutes.

Definition 11.2 A map n: E — B has the homotopy lifting property (HLP)
with respect to X if, given a commutative diagram

XXO——I——>E

| b

XxI——B
there is a map 6: X x I — E such that

XxO-—f—>E

1A

commutes.

Definition 11.3 A map n: E — Bis called a Serre fibering if it has the homo-
topy lifting property with respect to I" for each n > 0.

Every locally trivial bundle is a Serre fibering. In fact

Theorem 11.4 A locally trivial bundle has the homotopy lifting property
with respect to any compact Hausdorff space.

Remark The method of proof will be similar to that in 7.2 and 7.3.

First we prove a lemma. Recall that 4 = X is called a retract of X if there is a
map r: X - A with r| , = 1.

Lemma 11.5 Let n: E — B be a locally trivial bundle. Suppose that given
any open cover {U,} of X x Iwecan find X xI=X,> X,_.; 2 " 2> X, =
X x 0 with each X, closed such that

@) X,—~ X,_, c U, for some o;
(b) Xk—l nXk—Xk‘l isaretfact Oka_Xk"l'
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Then 7 has the homotopy lifting property with respect to X (Fig. 11.1).

X,
k-1
! /

+

X

!

Figure 11.1

Proof Suppose we are given a commutative diagram

Xx0—1E

b

XxI——B

Cover X x I with {H™ (V)| V is a coordinate neighborhood in B}. Pick a
sequence of spaces X; as above. We will construct by induction 6,: X; —» E
with 76, = H| x, and 6, x,o =/. This is trivial if k = 0. Suppose we have
defined 6, _;. To define 8, we first define I': X, — X,_, —» E. Choose a coordi-
nate neighborhood U, so that H(X; — X;_;) < U,. Then define

I(x) = @u(H(x), 73 05 -1 (r(x))),

where r: X, — X,_; = X410 X, — X, is the retraction and n,: =~ '(U,) =
U, x F— F is the projection. This is continuous and well defined since
n0,_(r(x)e X, — Xy, < U,. Clearly al' =H|x—x—. Furthermore,
Ix—%~xe., = 0i—1. T and 6,_, thus combine to define a continuous
map 0,: Xy = Xy U X — X, - E satisfying n0, = H| y, and 0,| x, o = 1.
This completes the inductive step. |

Proof of 11.4 Suppose X is compact Hausdorff and we are given an
open cover {U,} of X x I. Choose a finite refinement V, x (a,, b,) and sets
W, so that V, = W, and W, x [a,, b,] c U, for some a. Order the indexing
sety=1,...,n sothati <jimplies a; < a;. Now if § <y, Wj x a; does not
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intersect V, x (a,, b,). Since {V, x (a,, b,)} forms an open cover, W, x a;
Uy<p Vy % (a,, b,). We now construct t,: X— /I fory=0,...,n so that if
X, ={(x, )|t <t,(x)}, X, > V; x [ay, bg] for f < y. Let t, =0. Suppose we
have constructed ¢, ¢, ..., ¢, as above. Then
Wu+1 Xy < U Vy X (ayq b'y) < Xa,
y<a

hence t,|w,,, = dy+1. By Urysohn’s lemma choose u,.;: X > [0, b,yi)
such that u,, (V4 ;) = b4, and u,, (X — W,, ) =0. Define #,,,(x) =
max(ta(x), ua+1(x))' Now

X1 {06 D) Sty (X} D Vg X [0, 511D Voiy X [y bass].

Since X,y > X, it follows that X,., = ¥, x [ag, bs] for B <o+ 1. This
completes the induction. Now X, o V; x (a,, by) for all fso X, =X x I

Xu - Xa—l = {(x9 t)l ta—l(x) <t S ta(x)}
={(x, D] t,o1(x) <t S u,(x)} = W, x [a,, b,]

sinee u, =0 off W,and 1, |y, > a,. Hence X, — X,_, = W, x [a,, b,] = U,
for some y. This verifies (a). To verify (b), define

P Xy Xy > Xa— Xeoqy O Xary

by r(x, t) = (x, t,-,(x)). This clearly belongs to X,..,. If r(x, 1) ¢ X, — X,_4,
t,_4(x) <t Let

f— 1,
ty =ty y(x) +___271£x_).

Then (x, t,)e X, — X,_; and lim(x, 1,) = r(x, t). Consequently r(x, )€
X, — X,_,. Furthermore, if (x, )€ X,_, ta—1(x) = t; thus ¢,_,(x) =t for
eX,—~ Xooy N Xooyo B
Lemma 11.6 (I",J* )= (", I"""' x 0).
Proof We will prove, equivalently, that
(B !'x LB 'x0US""2xD)=(B"' xI, B! x1).
Let
A={(x,t)e B x I|1 — ||x|| <%}
and
B={(x,)e B ' x I|1 — ||x|| = %1}.
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Figure 11.2

Define ¢: B" ' x I - B"" x I by (Fig. 11.2)

2t + 1 3 1
X, T e I 9t A
(3”x” x3lil=3) e
olx, 1) = o
+ 2t
cx, 1=t} 1)eB.
(3_21 x, 1 t) (x,t)e
If (x,t)e A,
T24ld -4 230 -3 -4 =1-120
and
2041 N _2+1
x| T3 ’
if(x,)eB
2+4t.x _2+4tIl | < Ix] <1
6—ar || 64 Spgogh=h
It is equally clear that if (x, )€ A » B,
2t+1 2444 3 1

and 1—l=5(|x[(—-—-

x| 6—4r 2

Hence ¢ is a well-defined and continuous map. Now ¢(4) = 4 and ¢(B) < B,
as can easily be seen. It is now easy to verify that ¢* =1, so ¢ is a homeo-
morphism. Now

@(B"™! % 0) ={(x, D|lIxll <1}
and

@(S" 2 x D) ={(x, DI < x| < 1.
Hence

eB" ' x0uS"ixD=8B""'x1 |

This lemma implies that J" ™! is a retract of I" since I"~! x 0 is a retract of
I
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Proposition 1.7 7n: E— B is a Serre fibering iff given a commutative
diagram

ot L

In H B
there is a lifting 0: I" —» E making the triangles commute.
Proof Suppose n: E— B is a Serre fibering. Consider the composite
diagram

] S

"% 0 y o1 » E
r—2,.pr_2.,p

where ¢ is the homeomorphism from 11.6. Let 0: I" — E be a lifting of this
diagram, i.e., n0 = Hop and 0|;.-1,o = f@. Then 00 ¢~ "' is a lifting for the
original diagram. The converse is similar. ||

Having a good lifting property, we would like to obtain some homotopy
information. Let 7n: E — B be a Serre fibering. Choose * € E and * = n(%) € B.
Let F = n~!(#) be the fiber. Thus 7 induces a map n: (E, F, *) > (B, *).

Theorem 11.8 If = is a Serre fibering, n,: 7, (E, F, ¥) > 7,(B, *)is a 1-1
correspondence.

Proof We first prove that n, is onto. Let f: (I", 0I") > (B, *). Let
g:J"~! — E be the trivial map g(x) = * for all x. Then the diagram

S E

I"___L_)B

commutes. Hence there is a map 8: I" — E with 0(3I") < n~(x)' = F and
6(J""') = «. Thus {0} e n,(E, F, *) and n,({0}) = {nf} = {f}. Now suppose
e ({f}) = ns({g}) where £, g: (I", oI", J"~ ') — (E, F, »). Define

L:J"»E
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by
L{x, 1) = %, xel,

L, 0,t) =f(u,t), uel?,

L, 1,t) =g(u,t), uel?,

L(u, s, t) = *, uedl" .
SinceJ"=I"x1udl"IxIxTul ' x0xIul"!x1 x1I, this defines
L. Let H: I"*' - B be a homotopy from nf'to ng:

H(x, 0) = f(x), xel”,
H(x, 1) = g(x), xel”
H(x,t) = *, xedl"

Define H': I**' - Bby H'(u, s, t) = H(u, t, 5), ue I"™*; then

J—t L E

I"L 1 o' l
g +1

commutes. Hence there is an extension 8 of L to
0:I""* S E,

with 8(x, 0) e F, x € I", and of course
0(x, 1) = *, xel”
0(u,0,1) =f(u,t), uel !,
O(u, 1,t) = g(u,t), wuel"?,
' O(u, s, 1) = *, uedl" .
Let 0': I"*! — E be given by
0'(u, s,t) = 0(u, t, 5), wel" !

then §: (I"x I, "' x0x I, J""' xI)>(E, F, ) and 6’ is a homotopy
between fand g. |

Corollary 11.9 If n: E— B is a Serre fibering with fiber F, there is an
exact sequence

1, (F, %)= m(E, %) > 1,(B, %)~ 7, (F, %) = -
o (B, *) = ﬂo(F, *) — WO(E, *) = my(B, *) I
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Let us consider the case of the simply connected covering space n: X - X.
Since F is discrete, n(F, *) = 0 for i > 0. Hence n(X) ~ n(X) for i > 1 and
0 > m(X) 2> mo(F) — 0

is exact.

Corollary 11.10 #(S', x) =0fori>1. }

We can also get homotopy information from the projective space fiberings.
We need, first, a lemma.

Lemma 11.11 Suppose
04585 C-0

is exact and there is a homomorphism y: C - Bwithgy = 1. Then B= A ® C.

Proof Define I: A® C— B by I(a, c) =f(a) + y(c). I is clearly a homo-
morphism since f and g are homomorphisms. Suppose I(a, ¢) =0; then
gl(a, ¢) =g(f(a)) + g(¥(c)) = g(y(c)) = ¢. Hence ¢ =0. Thus f(a) =0, but
this means a = 0 since we have exactness at 4. We now show that I is onto.
Let be B. g(b —y(g(b))) =0. By exactness, there is ae A with f(a) =
b —y(g(b)); thus b = I(a, g(b)) so I is onto. |

Short exact sequences with B~ 4 @ C are called split exact sequences and
are said to split.

Proposition 11,12

(a) m(RP" )= m,(S"),m>1;

(b) 7 (CP", %) = 1 (S, %), m > 2;

(© 7(CP", %) 21, (S*, ») B Z;

(d) 7w (HP", ) = 1,(S*"*3, %) ® 7, (S, ).

Proof (a) follows from the remark after 11.9. (b) follows from the exact
sequence

Tcm(Sl) - 7Tm(Sz'H—l) - TZm(CP") - nm-l(Sl) - nm—1(82"+l)’
using 11.10. To prove (c), consider the exact sequence
0 - 7,(S"*1) - n,(CP") - Z - 0.

This decomposes into a direct sum by 11.11 since one can define y: Z —
7,(CP") by y(n) = nx where x € n,(CP") is any element with d(x) = 1.
To prove (d) we construct a homomorphism y: =,,_(S%) — n,(HP") such
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that dy = 1 and apply 11.11 again. The existence of y implies that 0 is onto and
(v,)5 is 1-1.
Define F: (B*, §%) - (S*"*3, §%) by
Fg) = (¢.\/1 - 43,0,...,00e H"*;
clearly |F(g){ =1 and F|s is a homeomorphism from S° to v, '(x)
(* =[1]0]---]0]). Let y be the composite

Vi)«

T 1(S?) 2 1, (BY, S, 1) = 1, (S*3, §%) " m, (HPT).
Then 8y = 1 by the definition of 0. |}

We conclude this section with some general results about the construction
of fiberings.

Definition 11.13 A Hurewicz fibering is a map n: E— B that has the
homotopy lifting property with respect to any space X.

This definition and the following constructions can be interpreted in G
or in C§ as desired.

We now consider a construction that will *“turn a map into a Hurewicz
fibering.”” Let f+ X — Y. Define

E;={(x,0)e X x Yw(0) =f(x)} =X x Y'
with the induced topology. There are maps
mE Y, viE,— X, Xk,
given by
n(x, w) = w(l), v(x, ) = x, 1x) = (x, esy)),

where e, is the constant path at f(x).
The diagram

commutes, i.e., mt = f and vi = 1; moreover

Proposition 11.14

(a) wx~lsoXx~E;
(b) mis a Hurewicz fibering;
(©) Fp={(x, w)e X x Y w(0) =7(x), w(1) = *} is the fiber.

The map j,: F; — X given by j, = v|, is given by jp(x, w) = x.
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Proof (a) As a homotopy H: E; x I - E, we take H(x, w, t) = (x, ,)
where w,(s} = w(st).
To prove (b) consider a commutative diagram

AXx0——E,

.,

AxI—2 Yy

Let h(a) = (My(a), hy(a)). Define 0: AXxI->E,c Xx Y' by 0(a, t)=
(0,(a, t), 6,(a, 1)) where 0,(a, t) = h,(a) and
_ [h(a)(s(1 + 1)), 0<s<1/d+1)
0x(a, 1)(s) = {H(a, A+0s—1, 1Yl+n<s<l.
O(a, t)e E, since f0,(a, t) = 0,(a, 1)(0) follows from fh (a) = h,(a)(0). 0 is
continuous since 0, is clearly continuous and 8, is continuous, by 8.17. Finally
O(a, 0)(s) = h(s) and nb(a, t) = H(a, ).

(c) s trivial. |

Seminar Problems

1. Let n: E— B be a Hurewicz fibering and #;, *, two points of B. Show
that 77 (%) = 17 (%,).

2. Let n: E— B be a locally trivial bundle and B a paracompact Hausdorff
space (e.g., a metric space). Show that n is a Hurewicz fibering. (See [64,
2.7.141)

Exercises

1. Let n: X — X be a covering space, and suppose X is arcwise connected.
Then there is a 1-1 correspondence y: F— no(F, *) such that the diagram

1(X) —2—  ne(F)

<~

commutes, where ¢ is the map defined in Section 7.

2. Let n: Q(X; A, B)—> A x B be given by n{w) = (w(0), w(1)). Show
that 7 is a Hurewicz fibering.
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3. Show that the composite of two Hurewicz fiberings is a Hurewicz
fibering. Is this true for locally trivial bundles?

4, Let 1: A — X be an inclusion. Show F, = Q(X, A4, ). Using this, derive
the exact sequence of the inclusion (10.6 and 10.8) from the exact sequence for
a Serre fibering (11.9).

5. Given a locally trivial bundle n: £E— B and f: X — B, define f*(E) =
{(x, e)e X x E| f(x) = n(e)}. Define f*(n): f*(E) > X by f*(n)(x, e) =x
and fz: f*(E) - E by fg(x, ) = e. Show that these maps are continuous and
f*(n) is a locally trivial bundle with the same fiber as n. f*(rn) is called the
induced bundle. (Section 29)

6. Let X=AUB, x=AnB. Let
1:Q(B; AN B, %) > QX; A, %)
be the inclusion. Show that F, is homeomorphic with (Fig. 11.3)
{we X" w0, 1) e A, o(s,0) € B, w(s, 1) = w(l, 1) = *}.

*

B
Figure 11.3

Show that this is homeomorphic to Q(Q(X; 4, B), *). Define n,(X; 4, B) =
7, _(Q(X; A, B), *) and conclude that there is an exact sequence

(X, A, %) > 1 (X A, B) — 1, (B, AN B, ®)>m,_ (X, A, ¥) >

This is called the triad exact sequence, and (X; 4, B) is called a triad.

7. In the notation of 11.11 observe that since g is onto, for every c € C,
there exists b € B with g(b) = ¢. Pick such a b and define y(c) = b. Can we
apply 11.11 and conclude that for any exact sequence

0-A4A—-B->C—-0,
B~ 4@ C? Explain.
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8. n: E— B is said to be a Hurewicz fibering in G* if 11.2 is satisfied for
all X eT* when f and H are in G* and 0 e G*. Show that n: E;,—» Y is a
Hurewicz fibering in G* if f'is in G*.

9. Show that if F—» E— B is a Hurewicz fibering in G* (see Exercise 8),
the sequence [X, F]— [X, E]— [X, B] of base point preserving homotopy
classes is exact in 8*. (One sometimes expresses this by saying that the se-
quence F— FE — B is exact in G*.) (17.19)

10. Let /: X - Y be a map in G*. Show that there is an exact sequence in
S*
1Z, QX] 225 (7, 0Y] - (2, F,] 24 (7, X125 (2, v)
Q I3
> [SZ, Fj] =220 [SZ, X] —2 [SZ, Y]

11. Let 0> 42> B-% C -0 be an exact sequence of R-modules.
Show that the following are equivalent:

(a) There exists y: C— B such that gy = 1.

(b) There exists ¢: B— A such that ¢f = 1.

(c) There exists an isomorphism ¢: B—> A @ C such that n,¢ =g and
of =1, (i.e., the sequence splits).

12. Show that the maps R"*! — {0} - RP", C**! — {0} -» CP", and H"*! —
{0} > HP" are locally trivial bundles with fibers R, C, and H respectively.
(Section 29)

13. Let O(n) be the group of orthogonal n x n real matrices and n: O(n) -
S"~1 be given by n(4) = 4(0, ..., 0, 1). Show that = is a locally trivial bundle
with fiber O(n — 1) (Hint: Let U=8"""~(0,...,0,1) and V=85"""* —
0,...,0, —1). Define a map «: V' — O(n) by letting a(x) be the rotation along
a great circle which takes (0, ..., 0, 1) to x. Define coordinate functions ¢:
Ux O(n—1)-n"Y(U) by ¢(x, A) = —a(—x)(§?) and y: ¥V x O(n — 1) >
n” (V) by Y(x, 4) = a(x)(E7))- (30.7)

14. Show that 7,(X, *) can be made into a module over Z(n,(X, %)) for
n > 1 by defining &7 for é e m, (X, *) and o e n (X, *) to be My vy (T,)s
I, (&) where T, is from Exercise 12, Section 7, y is from Exercise 7, Section 9,
and I1: X - X is a simply connected covering space. (For any group n, Z(r)
is the integral group ring. As an abelian group it is the free group gen-
erated by the elements of 7. Multiplication is linear and determined on the
generators by the multiplication in 7.) Show that n(X v §') = Z(Z) ® n,(X)
as modules if X is simply connected.
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Simplicial Complexes and Linearity

Although we have several theorems relating homotopy groups, we have
as yet made little progress in computing them. In this section we will discuss
linearity, and in the next section use linear approximations to make some
computations.

Recall that in Section | we defined the standard s-dimensional simplex

A ={(x, ..., X DERTO < x; < LY x; =1}

More generally, given n + | points v, ..., v, € R" that are affine independent
(i.e., the equations Y f;,v;=0 and ) 7,=0 imply #, =0 for all {), one can
define the n-simplex spanned by them

(0ov; "0, = {xeR"

x=201i0i9osfisl,zfi=l .

The v, are called the vertices of (vov, - *v,), and the ¢; are called the bary-
centric coordinates of x.

Lemma 12.1 (vyv,--:v,) = A"

Proof Let 0: A" — (vy+ - v,) be given by

n
00Xy, .oy Xpgy) = zoxiﬂvi-
i<
This is continuous and onto. To show that it is 1-1, suppose 0(x,, ..., X,11) =
0(x,’, ..., x,4+1). Then we have equations

0= _Zo(xi+1 = X{+1)%%, and 0 ='—ZO(XL'+1 ~ Xi+g)
Hence x; = x; for all i. By the compactness of A", § is a homeomorphism. ||

90
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The barycentric coordinates of a simplex give it a “linear structure.”
We consider spaces that are the union of simplices in an appropriate sense.
Observe that if (vov, - - - v,) is a simplex, so is (v, v;, " **v;,) Where (iy, ..., i)
is a subset of (0, ..., n). Such a simplex is called a k-face of (v **v,). (Note
that a simplex is a face of itself, and the empty set is a face of every simplex.)
Write t < ¢ if 7 is a face of o.

Definition 12.2 A geometric finite simplicial complex (or complex)® K
is a finite collection of simplices in R™ for some fixed m such that the inter-
section of two simplices is a face of each and each face of a simplex in K
is a simplex in K. Write | K| for the underlying space (i.e., the union of all
simplices). A space that is homeomorphic to K| for some K is called a
polyhedron. By a triangulation of a space X we mean a complex K with
K] = X.

Examples

1. We give some examples of complexes in the plane pictorially in Fig.

<> b

Figure 12.1

2. A simplex (vyv, " v,) is a complex.
3. Define d(vyv, - '+ v,) as the union of the simplices:
0,0 0,), @ovy 7 1,), o003 D)y ooy VoV D,-y)-
This is a simplicial complex (homeomorphic to §*~1).

A subcollection L of the collection of simplices in a complex K is called a
subcomplex if each face of a simplex in L is a simplex in L (i.e., L itself is a
complex).

If K is complex, we write K" for the subcomplex whose simplices are the
k-faces of simplices of K for k < n. K" is called the n-skeleton of K. Thus for
some r, K = K", and we have

(=K 'cK'cK'c-cK' =K.
If in addition K™™' # K, we say that K is r-dimensional and write dim K = r.

8 We use the word complex for abbreviation, although we will define more general com-
plexes in Section 14,
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Definition 12.3 Let X be a complex and f: | K| — R" fis said to be linear
if for each simplex (vqv, - vy) of K and for each x € (vyv, - v,), we have

1@ =f( g0) = 3, 1f @),

Thus a linear map is completely determined by its value on the vertices of
K. By induction on the number of simplices, one easily checks that a linear
map is continuous.

Recall that a coset of a k-dimensional subspace of a vector space is called
a k-dimensional affine subspace or an affine k-plane.

Definition 12.4 A set X < R™ is said to have linear dimension <k if
there exist affine k-planes A4,, ..., 4, with X< 4, U~ U A4,. lindim J =
—1 where J is the empty set.

Hence a k-dimensional complex has linear dimension k; for if x € (vo -« v,),
X = Zt,’(vi“vo)+voe V(Ul""vo, sy Un_00)+00
where V(v; — vg,...,v, — Dp) is the subspace spanned by v, — vg,...,0, — vg.

Proposition 12.5 If X = R™ has linear dimension less than m, X is no-
where dense.

Proof Suppose X < A, u---u A, where the 4; are affine subspaces of
dimension less than m. Then X <A, U - A,. Suppose U is a nonempty
open set and U < X. Choose i so that U A, v U A;_,. Then & #
U—-A4 - —A_cA,. Let xeU—-A4, — -+ —A;,_;. A,—x is a sub-
space of R” of dimension less than m, so there exists a sequence x; —» 0 with
x; ¢ A, — x. It follows that x + x; > x. Since U~ A4, — -+ — A;_; is open,
we must have x + x,e U— A, — -+ — A,., « A, for some »n, which is a
contradiction. Thus X does not contain a nonempty open set. [

A point not in X will be said to be in * general position.”
Proposition 12.6 Suppose K is a complex, /: K— R" is a linear map, and
X < K. Then lin dim X > lim dim f(X).

Proof Suppose X c A; u---uU A; with lindim X' =dim A4; for some
j and K=Jo0,. f]4,ns extends to a linear map f: 4;— R". Hence
lindimf(4; no;) < dimA;. Consequently,lin dim f(4; n K) < dim 4;. Now

]indimf(X)slindimf( UAjmK) =lindim{) f(4;,nK)
ish i1
< max lin dim f(4; n K)
j

<maxdim 4; = lindim X. |
Jj
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Let 4 and B be sets in R™. Define
AxB={x|x=ta+(l -1)b,ac A, be B

This is called the join of 4 and B and is thought of as the set of all points on
line segments from A to B. Define A x f = A where ¢ is the empty set.

Example (vy ' v,) % 0,0, =g " 0,4) if 09, ..., 1,4, are affine inde-
pendent.

Lemma 12,7 Let X< R™andbe R". Thenlindim X * b <lindim X + 1.

Proof If XcA,u---UA;,, XxbcA xbu--UA;*xb Let A =
Ve + vy. Then

A, * b = {subspace spanned by the elements of V;and b — v} +v,. |

Definition 12.8 X < R™issaidto beconvexifx,ye X=tx + (1 —t)y€ X,
when 0 <t < 1.

Lemma 12.9 If A is an affine subspace and ¢ is a simplex with 4 n o #
A N do, we have

(Ando)ysxb=Ango for any beAno—An do.

Proof Since A n o is convex and contains both band 4 N da, A no >
(AN do) xb. Let xe A no. Then x and b determine a line that must inter-
sect 0o in two points p, and p, (Exercise 1). Suppose the points occur in
the order p,, b, x, p,. Then xep,*bc(Ando)*b, hence A no <
(Anda)xb. |

Note that the lemma is true if 4 N do = .

Proposition 12,10 Let K be an m-dimensional complex and f°* K- R"
be linear. Then for all ¢ > 0 there is a point a € R” with |la)] <e such that
lindimf~Ya)<m—n. |

In other words, if a is in general position, lin dim £ ~!(@) < m — n.

Proof By 12.6, lin dim f(K" ') <n. Hence by 12.5 we may choose a
with |lal| <& such that a¢f(K"~!). We shall prove by induction that
lindim f~Y(a) n K< s —n for s > n — 1. By choice of a, this is valid for
s =n — 1. Supposing it to be true for s = k — 1, let o be a k-simplex. Then
o nf1(a) = a ~ A4 for some affine subspace 4. By induction, lin dim dc N
A=1lin dim d6 n f~'(@)<k —n—1. By 12.7 and 12.9, lindimo n 4 <
k—n,solindim K*nfYa)<sk—n. |
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We will eventually approximate maps by linear maps. In order to make
the approximation accurate, the domain space will have to be triangulated
with small simplices. We now discuss a method of triangulating any poly-
hedron with simplices that are arbitrarily small. This will be achieved by
interating a process called barycentric subdivision.

Given a simplex ¢ = (vy " - v,), by the barycenter of ¢ we mean the point
b)) =+ 1)~ (vg + -+ + v,). This is the center of gravity of the vertices
in the usual sense.

Definition 12.11 Let K be a complex. A barycentric subdivision of Kis a
complex K’ such that

(a) the vertices of K are the barycenters of simplices of K;
(b) the simplices of K’ are the simplices (b(o,) - b(c,)) where o; <
;4 and o; # 6,4,

Such a complex is clearly unique if it exists, for we have specified the
simplices of K’ in the definition.

The barycentric subdivision of a I-simplex and a 2-simplex are pictured
in Fig. 12.2.

Figure i2.2

Lemma 12,12 Suppose K is a subcomplex of L and L has a barycentric
subdivision L’. Then K has a barycentric subdivision K’ and it consists of
all simplexes of L’ which lie in | K].

Proof Clearly the simplices of L’ contained in |K| form a subcomplex
of L'. Conditions (a) and (b) are immediate since if ¢, are simplices of K and
UO<“.<0’m9(b(60)”'b(am))camclKl' l

Lemma 12.13 If a barycentric subdivision K’ of K exists, |K| = |K'[.

Proof 1If ©=(b(oy) *** b(g,,)) is a simplex of XK', 1 =0, = |K|. Hence
|K'| < |K|. Let xeo < |K|. Order the vertices of ¢ = (v, *** v,) so that
if x= Y0, to=xty=-2=t, Let 6;,=(vo "> v). Then x = Y 5,b(c;)
where s;= (i + 1)(t; — t;4,). Now 5;>0 and Y s;,= ) t,=1. Hence x¢€
(b(0o) -+ b(a,)) € K’ and thus |K| = |K'|. |
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Lemma 12.14 Let ¢ be a simplex and suppose do has a barycentric sub-
division. Then ¢ has a barycentric subdivision.

Proof let o=(vg-'v,) and b=m+1)"'(wy+---+v,) be the
barycenter of ¢. Let 1= (b, *-* b,) be a simplex of (ds)’ and define tbH =
(b -+ by b). We must show that this is a simplex. Suppose ) #,;b, + tb =0,
Y t;+t =0, and assume ¢ # 0. T is contained in some face o; of o, s0 b, =
YkejAixp WithY . A; = L. Hence

1 1
b=—=Ytibj=~= Y ;A0 =~ ) 50
t S k#j

where Y 4.8 =(=1/0Y e tidip=—1
Thus

1
0=n+ 1 (0 + -+ +0,) +k;jskvk= Yorv,
with ) r, =0. Since o is a simplex, r, =0 for all k, but r;=(n+ 1)7*
so we have a contradiction. Thus f = 0. Hence ), 7,6, =0 and ) 7, = 0. Since
7 is a simplex, we must have ¢; = 0 for each i. Consequently b is a simplex.
The vertices of ¢’ are the vertices of (o)’ and b. The simplices of ¢” are the
simplices b and 1b for each simplex 7 in (do)’. To show that ¢’ is a complex
we need only show that the intersection of two simplices is a face of each.
Buttbnv =1n1and b n b = (1 n t)bso o’ isindeed a complex. |

Let K and L be complexes in R™. We will write K n L for the set of sim-
plices in both K and L and K u L for the set of simplices in either K or L.
K n Lis asubcomplex of K and L, but it is not true in general that K U Lisa
complex.

Lemma 12,15 If |Kn L] = |K] n |L|, KU L is a complex.

Proof We must show that if e K and 1€ L, 6 n 1 is a face of both a
and 7. Suppose 4 and B are subcomplexes of K and L respectively. We
claim that |ANnB| = |4] n |B| n|KnL|. Clearly |4 B| < |4] n
|B| n|KNL|. Suppose xeoeAd, xeteB, and xepeKn L. Since 71
and p are simplices in L, Tt n p < p. Similarly 6 n p <, hencee ntn p =
(cnp)n(tnp)<onp<oc. By symmetry, s n 7N p <1 Hence xe
cntnpedn Bandxe |4 n B|. Now let A(B) be the complex consisting
of ¢(1) and all of its faces. Then

[AnBl=cntn|KnLl=cntn |K|n|L]
=@n|K)n@En|L)=cnrt.
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Since 4 n Bis a subcomplex of 4 and B, ¢ N 1 is a subcomplex of ¢ and
7. Since g N 1 is convex, it is a face of ¢ and 7. Thus KulL is a
complex. |}

Theorem 12.16 Every complex has a barycentric subdivision.

Proof We will use double induction, first on the dimension of the com-
plex and second on the number of simplices. Suppose the result is true for
every complex of dimension less than » and every complex of dimension »
with fewer than s n-simplices for s > 1. Let K be an n-dimensional complex
with s n-simplices and let ¢ be an n-simplex. Then there is a subcomplex
L of K with fewer than s simplices such that K =L U ¢. By induction L’
is a complex and (Jo) is a cemplex so by 12.14, ¢’ is a complex. Clearly
K' =L uod’, so it is sufficient to show that |K'no’'| = |K'| n |6’ by
12.15. Clearly K' n ¢’ = (K n g)’ which is a complex by 12.12. By 12.13
and Exercise 10,

|K'nvo'| = [(Kno)|=[Kna|=[K|nle|=|K'|n]d]. 1

Definition 12.17 If K = R™ is a complex, the mesh of K (written u(K))
is the maximal diameter of the simplices.

Proposition 12.18 If dim K =n,
(K') < (K)
u(K i u(K).

Proof By Exercise 6, we need only measure the length of the 1-simplices
of K’. Let (b°, b") be such a 1-simplex with b° < b'. Then &' is the barycenter
of a k-simplex 7 = (vy *** v,) in K. Now given vectors wy, ..., w,, @ and
numbers 1; with ) ¢; = 1 we have

lo— Y tiwill =1 3 tilo —will < Y tilo — wil.
Since b° € (vy *** vy),
16! = 8% = 6" = Y tivil < ¥ 1:]b' — vy
Applying the inequality again we have

Dot 4oy
k+1

U;

llv; —b‘II ='

1 k
< C— v, — .
ST Y o ol S g )

Hence ||b' — b°|| < [k/(k + 1)]u(z). Since k <n implies that k/(k + 1) <
n/(n + 1), we have | — b°|| < [n/(n + D]uK). 1
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Corollary 12.19 If X is a polyhedron and & > 0, there is a complex K
with | K] = X and u(K) <e.

Proof Let K=X". If n=dim X, u(K)<[n/(n+ DI u(X), and by
choosing r large this can be made less than . ||

We finish this section with a famous approximation theorem of the type
we will consider in the next section.

Definition 12.20 Let K and L be complexes. A map /- K — L will be called
simplicial if f(v) is a vertex of L for each vertex v of K, and f is linear. If
g: K— L is an arbitrary map, f will be called a simplicial approximation to
g if for every x e | K| and every simplex o € L, g(x) e ¢ implies f(x) € 0.

Proposition 12.21 Let K, = K be a subcomplex and suppose g: K— L
is a map such that g|, is simplicial. Let f be a simplicial approximation to
g. Then f ~ g (rel K,).

Proof Let L « R™ and define f, : K— R™ by
Jix) = 1f(x) + (1 — Ng(x).

Since both f(x) and g(x) belong to some simplex o, the sum lies in o as well.
Hence f(K) = L. Clearly f, : f~ g (rel K;). 1

Theorem 12.22 (Simplicial Approximation Theorem) Let g: K— L be
continuous. Then for some r >0 there is a simplicial approximation
fiK® S Lofg.

Proof For each vertex v € L, let st(v) = | )., Int o; st(v) is open, contains
v, and the sets {st{v)} for various v forms an open cover of L (see Exercise 11).
Choose an e-number for the covering g~ '(st(v)) of |K| and subdivide | K|
to a complex K@ with u(K™) <eg/2. Now for each vertex ve K™,
diam st » < ¢, sostv = g~ (st w) for some vertex w € L. Choose such a vertex
w for each vertex v € K™ and write f(v) = w. This defines / on vertices, and
we extend f: K™ — R™ linearly. We must show that f(K™) < L. If ¢ is a
simplex in K®, b(c) e st v for each vertex v of . Hence g(b(s)) € st f(v).
Thus (), st f(v) is nonempty and hence the vertices f(v) form a simplex,
and f(K™) < L. Clearly f is a simplicial approximationto g. |

Corollary 12.23 7,(S")=0forr <n.

Proof Let f: (S, *) = (S", *) and assume * is a vertex of triangulations
of §"and S". Choose a simplicial approximation g: (S")® — S" to f by 12.22.
Since g|4 is simplicial, g ~ f (rel ¥) by 12.21. Now lin dim g(S") <r, so
g(8") # S". Choosing ae S" — g(S"), we conclude that g ~ % (rel %) since
m(S"—a,x)=0. |}
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Exercises

1. If ¢ is a simplex and / is a line containing an interior point of o, then
! n ois a closed interval and / n dg consists of the two end points. (12.9)

2. Show that if f: |a| - R" is linear and 1-1, and o is a simplex, f(|o|)
is a simplex.

3. Show that a simplex is convex.

4. The convex hull of a set X < R" is the intersection of all convex sets
that contain X. Show that the convex hull of a set X is convex.

5. Show that the diameter of X is the same as the diameter of its convex
hull.

6. Show that a simplex is the convex hull of its vertices and that its diameter
is the length of the longest l-face. (12.18)

7. Construct complexes homeomorphic to:

(a) the annulus {(x, y) e R*|1 < x* +y? < 4};

(b) the torus S' x S' (use (a));

(c) the projective plane RP? (hard).

8. Show that lin dim 4 * B < limdim 4 + lim dim B + 1.

9. Show that the intersection of two subcomplexes is a subcomplex of
each, and that a subcomplex of a subcomplex is a subcomplex.

10. Show that if K, and K| are subcomplexes of L, | K, n K| = | K| »
|K,|. (12.16)

11. For a simplex ¢ write Int ¢ = ¢ — do. (This notion of interior is not
in general the same as the interior of ¢ as a subspace of R™. The notions
coincide when m = dim ¢ by 26.30.) Show that for any complex K, K =
{J Int o, where the union is disjoint and runs over all simplices of the
complex. (12.22)



13

Calculating Homotopy Groups : The
Blakers—-Massey Theorem

In the previous section we proved that maps between simplicial complexes
are homotopic, after suitable subdivision, to simplicial maps. The basic
concept involved here is that of approximating an arbitrary, and possibly
highly pathological map (e.g., a map from S* onto $?) by a less wild map.
In certain contexts it is possible to approximate by differentiable maps—
in others by linear maps. Often one approximates an arbitrary map by a
differentiable map and then this differentiable map by a linear map (its
derivative). We shall pursue the techniques of linear approximation in order
to prove some fairly strong deformation theorems. The first such theorem
will be a direct generalization of 12.23 to a relative n-cell.

Definition 13.1 A relative n-cell is a pair (Y, X) such that Y is the quotient
space of X LI B" (see Exercise 7, Section 8) under the identifications given by a
map «: S""' > X, namely, x ~ a(x) for x € S""! = B". This identifies S" ! <
B" with a subset of X (Fig. 13.1). One often writes X U, e" for this space
and ¢" = Y — X. a is called the attaching map. If X e CS, X U, ¢" € CS (see
Exercise 6).

Observe that if X = *,

(Y, X)=(Xv,e", X)=(B"/S""1, %)
= (5", %),

hence a relative n-cell is a generalization of a sphere with base point.

Lemma13.2 Ifpee”, then (X u, " — p, X, ») =~ (X, X, %). Consequently,
(X v, e —p, X, %)=0.

99
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n

g
s n-1
X
Figure 13.1

Remark In general, n(X U, e, X, ¥)#0, eg., if X==% n=1, and
i=1l

Proof Let i1: (X, X, ¥)>(Xu,e"—p, X, ») be the inclusion. We
define a strong deformation retraction of X U, e" — p onto X. This is suffi-
cient by Exercise 7, Section 6.

HXue~-pxI-Xue —p

R\

Figure 13.2

Let x: (B", S"™ 1) = (X u, €", X) be the “characteristic map” of the rela-
tive n-cell. This means y is the restriction to B" of the quotient map X L B" —
X u, e" Hence y|gn-1 =a. Let ¢ =3 "(p). We will produce a homotopy

K(B"—q)xI,S" ' xI)-»(B"—q,8"™")

satisfying K(y, 0) =y, K(y, DeS" ! and K(y, 1)=yp if yeS$"'. Now if
f: X - Yis a quotient map, and B is an open subset of Y, f| -« (g :f ~'(B)—>
B is a quotient map. Hence X U ¢”" — p has the quotient topology on X I
(B" —¢) and thus (X u,¢" ~p) x I has the quotient topology on X x [
H(B"—¢q) x I. We define H by using K on (B"—g¢q) x [ and the constant
homotopy on X. (See Fig. 13.2.)

To construct K, first apply 2.4 with f(x) =¢ to produce y: B"—q—
8"~ with p|g.-. = 1. Now define K(y, t) =(1 ~ 0y +ry(y). K@, DIl <
(1—=-0+t<1. If yeS" !, y(y) =y hence K(y, t) =y. Clearly K(y, 0) =y
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and K(y, 1) = y(y) e 8" . Finally, K(y, t) # g, for otherwise
g=(1-=10y+1py+1l-p)y

where y(v) = py + (1 — p)g (see 2.4); hence
(I~t+tp)g=(1~1+1p)y;

since y #¢, 1 =t(1 — p). This is impossible since 1 —p <0 and r>0. |}

Let us write B"(p) ={(x,, ..., x,) e R"||x|| < p}. If x: (B", §"" ) —
(X u, €", X) is the characteristic map, write €'(p) = x(B"(p)) if p<1. A
map ¢: K — e" will be called linear if for some p, ¢(K) = €"(p) and y '¢: K—
B"(p) c R" is linear.

Lemma 13.3 Let f/: I"> X v, €". Then there are complexes N and N’
in I" satisfying (see Fig. 13.3):

(@) TG NcInt N c N < f71(e"}));
(b) ifoe N, diam x~'(f(9) <%

f'% ﬂ

Figure 13.3

Proof By 12.16 we subdivide I" = A" into a simplicial complex with mesh
less than the distance between £~ !(e"(3)) and f~!(X). (We take the distance
between two sets to be oo if either of them is empty.) Thus any closed simplex
meeting £ ~1(e"(3)) is mapped into e". We now transfer the usual metric on
B" — 8"~ 1 to ¢" via the homeomorphism x| ga_gn-:. The sets /= (U) for U
¢", U open, and diam U <% form an open cover of {c|o meets f~'(¢"(§))},
which is compact. Choose an e-number and further subdivide the cube
I" so that the mesh is less than this e-number. Then if ¢ meets £~ (e"(3)),
diam f(6) <{%. Let N be the union of all closed simplices of /" meeting
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F7HE"@). Then f(N) < €"(3 + %) = ¢"(12). Let N’ be the union of all closed
simplices meeting N. Similarly, f(N') < ¢"(+2 + %) = €"(3). We only need
to show that N < Int N'. Suppose {x;} - x € N. We must show that eventually
x; € N'. Each simplex that contains infinitely many x; must intersect N in a
set that contains x, so the simplex is contained in N’. There are only a finite
number of x; which do not belong to such a simplex, so for i large enough,
x;eN. |

Lemma 134 Letf: I”— X U, ¢". Then there is an open set U = /" and a
homotopy 4, : U — €" (rel dU) such that:

() ho=fluv;
(2) thereis a complex N < U such that /, | is linear;
(3) Int N = hy'(e"(3)).

Proof Choose N and N’ via 13.3. Define a linear map ¢g': N'— E" by
x9' () =f(v) forva vertex N'. Ifue N',

lg@l =1L tif@)l < Lal/@)l < Y ;< 1.
Hence we may define a linear map g: N'—¢" by xg =g'. See Fig. 13.4.

/

r

7
Figure 13.4

Let U=1Int N'. Then U < N'. Since N = Int N', N n éN’ = . Choose
@: N' = I such that ¢(N) =1 and ¢(ON') = 0. Define h,: U — e" by

) = {1 = ) + (L — @)}y f(w) + to(w)y ™~ g(u).

This is well defined since (1 ~ #) + #(1 — @(u)) + tp(u) = 1. Since 0U < N/,
h\ sv =f|sv- Conditions (1) and (2) are clear. To prove (3), suppose o =
(vo, ..., vg) is a simplex of N. Then h,(v)=f(v;). Thus diam A (o) =
diam (h,(vp), ..., h(v,) = diam (f(2y), ..., f(vy)) < diam f(0) <. For
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x e, we have | f(x) — f(v)| <+% and |A(x) — h,(v)| <+%. Thus |f(x) —
hy(x)] <%. Consequently if h,(x)ee’(d), f(x)ee'(§) =Int e'(3). Thus
xelnt f73("@)) <= Int N. |

Corollary 13.5 n,(Xwu,¢", X, %) =0forr <n.

Proof Letf:(I',oI',J""') > (X U, €", X, *) represent a homotopy element,
and apply 13.4. U n dI" = ¢ since f(U) c e" and f(6I") ¢ X. Hence h, can
be extended to a homotopy H,: I"' - X v, €" (rel 4I") by
h,(u), uel
f), uel —U.

Now Hy =f, so {f} = {H,}. Choose p € ¢"(}) such that p ¢ H (N) by 12.5
and 12.6. H{ '(p) € H; '(¢"(3)) = N, so H; '(p) = . Thus H, is in the image
of the homomorphism

(X ue"—p, X, ) > a(XU,e X, %).
By13.2,{H,}=0. |}

Our second linearization theorem is more complicated. We set up our
notation as follows. Let X, =4 u,e"and X, =4 uge™ Let X=X, U X,

so that 4 = X; n X,. Let 1: (X, 4) - (X, X;) be the inclusion. Note that
X, -A=X - X,=R". See Fig. 13.5.

Hy(u) =

Figure 13.5

Theorem 13.6 (Blakers—Massey Theorem—First Form) 1,:n,(X;, 4, ¥) >
(X, X,, #) is an isomorphism if r <m +n—2 and is onto if r=m+
n—2. [13].

We will use several lemmas in the proof.®

% The proof we give is due to J. M. Boardman.



104 13. Calculating Homotopy Groups: The Blakers—Massey Theorem

Lemma 13.7 Let p € ¢” and g € ™. Then we have a commutative diagram
in which the vertical maps are isomorphisms and all maps are induced by
inclusions

nr(X]’A9 *) _’_"'__’ n,(X, X2 s *)

”r(X—P,X—P "q,*)‘—“"ﬂr(X,X—q,*)

Proof By 13.2, n(X ~gq, X,, *) =0. By Exercise 5, Section 10 applied
to the triple X > X — g o X,, we have an exact sequence

71:l'(X_'qi X29 *)—)nr(Xy X2a *)q”r(Xs X'—q, *)—'a_’ 75,—1(X—q, Xz; *)-

Since the end groups are zero, the middle map is an isomorphism. Similarly,
(X, A, ¥) = (X — p, 4, *) is an isomorphism since 7 (X —p, X;, ¥) =0
for all r, and n(X —p, 4, ¥) > 7(X —p, X — p — q, *) is an isomorphism
since one can easily argue (as in 13.2) that n(X — p — g, 4, *) =0 for all r.
Since all maps involved are inclusions, the diagram commutes. ||

The idea behind the proof of 13.6 is this: We must push maps and homo-
topies off some point p € ", and throughout the motion the image of 4"
must miss some fixed point g € ™, and J*~! muststayat«. Letw:I" = I""! x
I—I""' be the projection. Let K = w(h™!(¢)) and L = w(h™'(p)). We wish
to choose p and g so that L n (K u dI'" ') = ¢¥. We can then deform I" into
I'"! x 1on L x Ikeeping it fixed on (K U 8I"™") x LIf p is chosen in general
position, £~ !(p) will have dimension < r — n and thus L x I will have dimen-
sion <r—n+ 1 <m. We may thus find ¢ so that 2™ !(g) is separated from
L x I.See Fig. 13.6.

L' (™)

——p"' {g)

—~—M

& .

» P

Figure 13.6
Lemma 13.8 Suppose h: I" > X and there are complexes M and N in
I" with k|, : M —¢e™ and k|, : N — " linear. Suppose r <m + n — 2 and

(@) Int N> h Ye"(3))
(b) Int Mo h™i(e™(d)
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Then there exist points pee” and gee™ such that if w: I'=I""! x > !
is the projection, K = w(h~'(g)) and L = w(h™!(p)) are disjoint.

Proof Apply 12.10 to h|y: N — ¢ Choose p e e"(1) such that lin dim
(Rl "(p)<r—n. By (a), " Y(p) =(h|y)"(p). By 12.6 lin dim L <r —n.
ThuslindimL x I <r —n+ 1 <m. By 12.6 again lin dim A(M n (L x I)) <
m so we may choose g € e"(1) such that g ¢ A(M ~ (L x I)) by 12.5. By (b),
h"N @)= M, so h"'(g)nLxI=. Now if ueKnL,(u, 1)eh (g)n
(L x I) = (& for some ¢. Consequently Kn L= . |

Lemma 13.9 Suppose h: I"— X, p € ¢" and ¢q € ™ are chosen in accordance
with 13.8. Suppose further that

(a) ROl x nHc X;;
(b)) W(I'''x0)c X,;
(©) hI" 1 x1) ==

Then there is a homotopy H,: I" - X such that

(1) H,=h;

(2 p¢H ),
() g¢HUI ™' x0);
(4) Htl.]r—l'——h‘]r—l.

Proof Suppose ue L nol'~'. Then A~ '(p) meets oI'"! x I. Thus pe
h@I'"' x I) = X, by (a). This is impossible since p e e" = X — X,. Hence
La(Kudl' Y=g Letg: I' ' - Isatisfy (L) = 1 and (K w o' ') = 0.
Define H,: I" > X by

H(x, ..., x)=h(xy, ..., %1, | = (1 = x )1 — to(xy, ..., X, 1))
Clearly Hy=h.If p= H\(x;, ..., x,), (X4, ..., X,_;) e L.sThus
p=H(x,....,x)=h(x;, ..., %, Db ' x 1) =x
by (c). This proves (2). If g = H(x,, ..., X,-1, 0), (x4, ..., x._,) € K. Hence
g=hxy, ..., %_, Ohc(I"" ' x0) c X,

by (b). This proves (3). Finally, sinceJ" ™' =" ' x Iu "' x 1, H,| jr-1 =
h| jr-1, for either ¢ =0 or (1 — x,) = 0 on this set. [

Proof of 13.6 We first show that if r<m+n—2, 1, is onto. Let
fidr,er,J ) - (X, X,, *). Choose open sets U and ¥ < I" and deforma-
tions
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according to 13.4. We construct f; : (I, 8I', J* ') > (X, X,, *) by

h(w), wuel
Sy ={k(w), ueV
f(), ueX—-U—V.

This is well defined since h, and &, are homotopies relative to 60U and dV.
f:(8I"y = X, and f, | jo-« = * since the deformations h, and k, remain within
the cells ¢™ and e". Thus {f} ={fy}=1{/f,}. We apply 13.8 and 13.9 to f,.
Conditions (a), (b), and (c) of 13.9 hold since

I 'xJul ' x1l=J"" and I'"!'x0carl.

H,: (I'oI' J”™ ") > (X, X —q, %) since A(J""!) = x. Thus f; = Hy ~ H, in
(X, X — g, *) but H(I") =« X — p. Thus {f}} is in the image of the homo-
morphism

(X —p, X—p—q, %)X, X —q, %)

and 1, is onto by 13.7.

Suppose now that r + 1 <m +n—2, and f,: (I", 3I", J"" ) = (X, X,, %)
is a homotopy with f5(I") u f,(I") = X,. Thus {fo}, {fi} € 7(X;, A, *). We
will prove that {f,} ={f;}. Let F: I x I"— X be defined by F(s, u) = f.(u).
Apply 13.4 to F, once for each cell, to produce U, ¥V < I"*! and homotopies
a,: U—-e™and B,: V- e" As before, define

o, (u), uelU
F(u) = {B(w), ueV
F(u), uvel'*'' -U-V.

Now if F(u) e e™, F,(u) e €™, and if F(u) e €”, F(u) € ¢". Furthermore, if
Fuye A, F(u)= F(u). In particular F{OxI"ul xI")c X;. Let y, =
F,loxr and v, = F,|, . Then u, and v, are homotopies (I*, aI', J' ') -
(Xb A) *) Since Ho = Flel”' =f0 and Vo = Fllx[" =f1) {fO} = {#1} and
{f1} ={v,} in n(X,, A, #). F, is a “linearized ” homotopy from u, to v, (see
Fig. 13.7). We will deform this homotopy so that it misses some point p € €".
We apply 13.8 to F; and choose points p and g accordingly. Now

FOIr'xDecFOxI"™YUF1xI"™)YUFIxJ X,

Hence F,(81I""! x I) c X,.Similarly, F,(I" "' x 0) = X, and F,(I"™* x 1) = *,
Hence we may apply 13.9. Consider the homotopy H, constructed by 13.9.
Now

H:UxI'Ixol' IxJ N> (X—p, X—p—gq,x),
since F(I x J™™') = % implies that H,(/ x J*™ ") = F,(I x J”~') = . But

H1l0x1’=Fll()xI"=ul and Hl‘lxI'=Flllx1’=vl9
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A

Hy Yy
Ky Yy
4
s f f
[¢] f, 1
Linear homotopy

Figure 13.7

hence Hy: y; ~v, in n(X —p, X —p—q, ). It follows from 13.7 that
U =13 1

We are nearly ready to reap the benefits of this deep theorem.

Proposition 13.10 The suspension functor S defines a transformation
E: [(X, »), (Y, ©)] > [(SX, %), (SY, »)].
In particular, we have E: n (Y, *) - n,,.(SY, *).

Proof If HX x I, »xI)> (Y, ) is a homotopy, we easily define
K:(SX x Lx xI)>(Y,¥)by K((x,s),t) = (H(x,1),s). If H: f~ g, K: Sf ~ Sg.
The second part follows since S(S", ) = (S" 71, *).

Proposition 13,11 The diagram

1(X) —— 1,4,(SX)

=
(Y29

,+1(C*X, X)

commutes. In particular, E is a homomorphism.
Proof Let f: (I', oIy - (X, »). We will find F: (I"*', oI"*', J) -
(C*X, X,*) such that 0{F} ={f} and {py  F} = {Sf} = E{f}. Define F by

F(sly v sr+1) = (f(sh ey Sr)’ sr+1)‘

By 10.4, 8{F) = f. Now S(f): I'*1/or** = S(I'/joI") —L2> SX is also given

by this formula, according to 9.4 |
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Let
CiX=Xx[0,%)/(x, 0) ~(x, )
and
Co X=X x[41(x, )~ (x1).

Then C,X and C, X are subspaces of SX, C; XU C, X=8X and C; X n
C, X = X x () = X. We have an inclusion

11 (G, X, X, %) < (SX, C X, ).
Observe that C; X = C, X = C*X, where C* is the functor from 9.3.

Proposition 13.12 The diagram

[0:3'9M

7.‘:r((j2 Xa X9 *)_'__’Tcr(CZ X/X, *)

ie = lay,

1(SX, C, X, ¥) —— m,(SX, %)
commutes where a is the natural homeomorphism C, X/X = SX given by
o(x, 1) ={x, 2t — 1).
Proof apy~i: (C, X, X, ¥)>(SX, CiX, *) where the homotopy is
given by
H(x, t, ) = (x,2t = D1 = %5) + 19). 1

Corollary 13.13 (Freudenthal Suspension Theorem—First Form)
E:n(S") -, (S"*") is an isomorphism if r<2n—1 and onto if
r=2n-1.

Proof Combine 13.11, 13.12, and 13.6, observing that, in the notation
of 13.7, X = C,(S"), B= C,(S"). Hence 1, is an isomorphism if r + 1 <
m+D+m+1)—-2,andontoifr+1<(n+D+m+1)-2. |

Corollary 13.14 7,(S™) = Z generated by the identity map.

Proof By 11.12¢, 12.23, and Exercise 9, Section 7, n,(S%) = Z. It now
follows from 13.13 that E: n,(S") - m,,,(S"*!) is an isomorphism for
n>1 1

Corollary 13.15 If f: B"— B", there exists x such that f(x) = x (Prob-
lem 1).
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Corollary 13.16 There does not exist y: B"— "~ with y|gn-: = 1.
Proof This follows by applying the functor =, to the diagram
B’l

Sn-l __]__’ Su—l

(see the end of Section 6). ||

Corollary 13.17 If n # m, R" £ R™.

Proof 1If so, we would have R"— {0} = R" — {a} = R™ — {0}. But by
Exercise 7, Section 6, R" — {0} ~ S™"! and R" — {0} ~ §" ™!, hence " ' ~
St Ifn<m n,_,(S" ) =0 and n,_,(S" ') = Z so we have a contra-
diction. |

As an immediate corollary to 13.14 we have:

Proposition 13.18 7,(S%) = Z.
Proof Apply 13.14 and 11.12b. |}

75(S?) is generated by the map 5: S5 - S2. 5 is the first example of an essen-
tial map between spheres of different dimensions and as such deserves a little
attention. We will illuminate this map in two ways. We give an explicit
formula for 5 (it is a polynomial), and we give a geometric description of
n. If we identify S? with (C)®, and S as the sphere in C?, n is given by
n(zo, 2;) = z,/2, . The stereographic projection map (see 1.5) ¢, : C* — S? is
given by

- 1 2 _
Y,(2) = ﬁ_—lz—|2(|z‘ 1,2x,2y).

If zy = x4 + yoi and z; = x, + y,i, the composite is given by

1(Xo, Yo, X1, 1) = (X2 + 32 — X6 — Yo7, 2X0 X1 + Yo 1), 2(%0 Y1 — X1Y0))-

Tt is more illuminating to think of S* as the union of two solid tori S* x D?

and D? x S! along their common boundary S' x $'. In fact
S3=0B*=a(D*> x D*)=0D* x D* U D* x 0D*=S'x D?* U D* x S".

To see this, picture S* as (R*)* and a solid torus D? x S' < R>. The exterior
of D* x §'in S? is then a solid torus; see Fig. 13.8. S' x §' is mapped onto
S! = §? by the quotient map (2o, ;) - 2,/z, - This map is extended radially
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/1N

Figure 13.8

into each of the solid tori by moving through the upper and lower hemi-
spheres toward the north and south poles respectively.
Theorem 13.13 (and hence 13.7) is best possible, for

E: 1y(S") - m3(S%)

is not an isomorphism since m,(S') = 0, 7,(S?) = Z.
In fact, E: n5(S2) - n,(S®) is onto but not 1-1 (see 27.19). To calculate
7;(S™) for all i and » is an interesting and difficult unsolved problem.

Theorem 13.19 There is a continuous nonzero vector field on S" iff » is
odd (Problems 3-4).

Proof Half of this is 3.5. We will prove that if n is even, a, ~ 1 and apply
3.4 to conclude the other half of 13.19.
For X €T consider £X as defined in Exercise 11, Section 9, with base point

(x,0). Define I1 (X) = 7, (T X, %).
Lemma 13.20 I, :T — M is a functor for n > 1. T1,(S") = Z.

Proof X:TG —>T* isclearly a functor so the first part is trivial. The second
part follows since £S” is homeomorphic with §7*!, by Exercise 11, Section

9. 1

We will finish 13.19 by showing that (—1)**! =1 (g,): TI,(S") — IT,(S").
Let f;: 8" — S" be given by

SilXy, oo X ) = (X1 ooy Ximgy = X5y Xigs eees Xpgg)
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Now a, =f o fy0 <<= of, (. It is thus sufficient to show that II,(f) = —1.
There is a homeomorphism /4, ;: S" — S” interchanging the ith and jth coor-
dinates, and f; h;; = h;; f;. Hence, it is sufficient to show that IT,(f,+,) = — 1.
There is a natural map X: 7,(X, *) - I1,(X), given by

(1= r=xs Lz,

where a base point of $"*! is chosen corresponding to * € £S” under the
homeomorphism. This is clearly an isomorphism if X = S" so it is sufficient
to show that

1= (for st m(S", %) > 1, (S", %)
But under the homeomorphisms of 9.4
S"= S(S"7 Y,

Jfu+1 corresponds to the inverse map. ||

Seminar Problem

13.6 can be proven by differentiable approximation, instead of linear
approximation. One first proves that one can find disjoint closed subsets
M and N of I" and a homotopy 4, : I"—> X with #, = f and such that A, is
C® on both M and N [see (13.8)]. This follows from the fact that any map
from a compact subset of R" to R is close to a differentiable map. One
then uses Sards theorem to pick the points p € " and g € €™ as in 13.9. (See
{49; 531)

Exercises

1. Let A be a closed subset of X and suppose there is a homotopy
H: X x I - X such that

(@) H(x, 0)=x;

(b) HAxIc A;

() H(Ax1)=nx
Prove that the collapsing map p,: X — X/A4 is a homotopy equivalence.
(16.33)

2. Find X u e with (X U e, X, ) 2Z. (Hint: Let Xue"=S'v S".
Consider a covering space of this.) (By 16.30, it is necessary that 7,(X) # 0
in this example.)
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3. Consider the map 1: X — QSX given by «(x}(¢) = (x, t). Prove that this

is continuous. Show that the diagram
nn(X9 *) Ee—— n"+1(SX, *)

=

Le

1,(QSX, %)

commutes, where the equivalence is that of Exercise 5, Section 9.

4. Show that the suspension
E: [(SX, %), (SY, )] = [(§X, #),(S?Y, )]

is a homomorphism where S"X = S(S" 'X) is the iterated suspension.

§. Prove that 7,(S*) has an element v of infinite order.

6. Show that if X is Hausdorff and a: $" ' > X, X U, ¢" is HausdorfT.
(13.1, 14.6)

7. Let f: $"—> X and ki1,: S"—> S" be a map of degree k. Show that
{foku}=k{f} If X=87" it is not in general true that {ki,, of} = k{f}.
Using (1 Akipo(f AD=f Akiy,=( A 1o(l A ki) and Exercise 4,
show that E{ki,, o f} = E{f o k1,} = kE{f}. (Exercise 21, Section 26)
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The Topology of CW Complexes

We now discuss a generalization of the notion of a simplicial complex
which for many purposes is easier to handle.

Definition 14.1 A cell complex X is a HausdorfT space which is the union
of disjoint subspaces e, (x € #£) called cells satisfying:
(a) To each cell we associate an integer n > 0 called its dimension. If e,
- has dimension n we often use the notation e,” for this cell. We write X” for
the union of all cells ¢,* with k < n. X" is called the n-skeleton.
(b) If e," is an n-cell, there is a ““ characteristic map” y,: (B", S"~ 1) -
(X, X"~ ) such that y,| g»_gn-: is a homeomorphism from B" — S"~! onto e,".

Examples

1. Any finite geometric simplicial complex, as described in Section 12,
is a cell complex. Each open n-simplex is an n-cell, and, in this case, the maps
X are all homeomorphisms.

n

2. The n-sphere is a cell complex with two cells ¢ ¢" where e® =
{(1,0,...,0)}and e" = S" — ¢°. Note that if we wish to write S" as a simplicial
complex, we need (?1?) simplicies of dimension k; hence cell complexes
are more efficient than simplicial complexes.

3. RP", CP" and HP" are cell complexes with one cell of dimension &, 2k,
and 4k, respectively for each & < n.

Proof: By Exercise 8, Section 7, these spaces are all Hausdorff. We will
write the details out in the case of CP". The others are similar. CP" has
(n + 1) cells e** for 0 < k < n, given by

€2k={[zol ]zn]'zk #0, 244 ="=2,=0}

113
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Since B* ={z=(z,, ..., z) € C*| |z} <1}, we define y,: B* —» CP" by
w(z, o z) = [21‘ |zk|\/l :7”427”?2 lol lO]

We write this symbolically as CP"=e® U e* U U e2". Similarly RP" =
e uelurueand HP'=euet U rue*. |

4, Every compact differentiable manifold can be proven to be a finite
cell complex via Morse Theory [52]. ‘

We usually use a 0-cell for a base point in a cell complex (see Exercise 11).

Observe that a finite cell complex is compact since it may be covered by a
finite number of compact sets {y,(B™)}.

If X is a cell complex and A < X, we say A4 is a subcomplex if 4 is a union
of cells e, and e, = 4 if e, = A4. Since é," = y,(B"), we see that X" is a sub-
complex for every n > 0.

Suppose X and Y are cell complexes. Then X x Y can be made a cell
complex by choosing as cells e," x e,” where {¢,"} are the cells of X and
{es™} are the cells of Y. We assign the dimension n + mtoe,” x e,". A charac-
teristic map x,,: B""™ — X x Y is given by

B”+mEIn+m=InXImEB”XBmM—>XX Y.
This clearly satisfies 14.1.

Lemma 142 If X is a finite cell complex, X=X, > X, > > X,,
where X, is one point and (X, X,_,) is a relative my-cell for 0 <n, <n, <
-+ < n,,. Symbolically,

X=euerueruuem
Proof We will show that for each n-cell ¢,", X" = (X" —¢,") U, €". Since
X" — ¢, is a cell complex with one less cell, the result follows by induction.
Let /1 8" 1> X" — ¢,” be 3,|sn-1. One may construct a map h: (X" — e,") oy
e" = X" by h|yn_,»=inclusion, and h|g. = y. h is clearly well defined and

continuous. Moreover, it is 1-1 and onto, so it is a homeomorphism by
compactness. ||

The structure of finite cell complexes is determined by 14.2. Infinite cell
complexes do not behave as well. Any Hausdorff space is an infinite cell
complex with each point as a 0-cell. We must make some restrictions on the
relationship of the cellular structure to the topology if we wish to have a
structure theorem like 14.2 for infinite cell complexes. We consider such
restrictions now.

If A < X is a subset of X, we define K(A) to be the intersection of all sub-
complexes containing 4. If 4 = B, K(A4) = K(B). Hence if p € e, K(p) = K(¢) =
K(e). Thus K(A) is a subcomplex.
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Definition 14.3 (C) X is said to be closure finite if for each cell e,”,
K(e," is a finite subcomplex. (W) X is said to have the weak topology if
for each subset F = X, Fis closed iff Fn e," is compact for each cell ¢,”. A
cell complex satisfying (C) and (W) is called a CW complex. Clearly every
CW complex belongs to CS.

Consider $? as a cell complex with every point a O-cell. This does not
have the weak topology although it is closure finite. On the other hand, B>
with cells e* = B> — §? and one O-cell for every point of S? has the weak
topology, but is not closure finite.

A more illuminating example of the weak topology is as follows. Let
X=\/&. S, an infinite 1-point union of circles. This is a closure finite
cell complex. This space with the weak topology is a CW complex. One
can also give X the induced topology as a subset of [ [, S, with the product
topology. This space which we will call X’ is compact. Both X and X’ can
be imbedded in R? as follows (see Fig. 14.1):

x= n@l{(x, e —n? +y* =n?,

© l 2 1
X = U {(x Wi{x — — + y? }
21 T n?
X/
Figure 14.1

Definition 14.4 A map f: X — Y between two cell complexes is called
cellular if f(X") = Y".

Let 3G be the category of CW complexes and cellular maps, Ju* the corre-
sponding pointed category where * € X is a O-cell, and X, *, 3, the corre-
sponding homotopy categories.

A useful example is given as follows. RP" = RP"*! as a subcomplex. We
may define RP* = )., RP", and this is clearly a closure finite cell complex.
We give it the weak topology so that it is a CW complex. Similarly, we define
CP® and HP* (see Exercise 13).
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Let X be a cell complex and for each cell e,” choose a copy B,” of B".
Let B= 11 B," (see Exercise 7, Section 8) and let y: B— X be the charac-
teristic map of ¢,” on B,".

Lemma 14.5 X has the weak topology iff y: B— X is a quotient map.

Proof yiscontinuous since if F < Xis closed y~'(F) = | J 2 '(F). Suppose
¥~ 1(F)is closed. Then y~!(F) n B," is compact; by Exercise 1, x; "(Fné&,") =
¥ Y(F) n B,.". Hence F n &," is compact. It follows that F is closed and thus
¥ is a quotient map. Suppose y is a quotient map and Fne,” is closed.
Then 3" '(F) n B," is closed. Hence y ™ *(F) is closed, and thus F is closed so
X has the weak topology. |

Proposition 14.6 If X is a CW complex and f: §"> X" < X, then Y =
X Uy e*™!is a CW complex.

Proof By Exercise 6, Section 13, Y is Hausdorff. We choose as cells all
cells e,” of X together with e"*! = Y — X. We use the same characteristic
map as before for e,” and y: (B"*!, $") - (Y, X) as a characteristic map for
e"t!. Now By = By LI B"*!, hence if X has the weak topology, so does Y.

To see that Y is closure finite, we use the following lemma.

Lemma 14.7 Let X be a CW complex and 4 < X a compact set. Then
K(A) is a finite complex.

Proof Suppose K(A) is infinite. There must be infinitely many cells of
K(A) that intersect A, since X is closure finite. For each such cell ¢, choose a
point x, € e n 4. Then any subset S of {x,} is closed since S n é is finite for
each cell e = X. Thus {x,} has the discrete topology. But {x,} being closed is
compact, a contradiction. J [

Proposition 14.8 Let X be a CW complex and e,” an n-cell. Then 4 =
X" — e,"is a subcomplex and X" = A4 U, ¢" for some f: $"7!' —» X" L.

Proof Clearly A is a subcomplex. As in 14.2, let y,: (B", S" ) —
(X, X"~ 1) be the characteristic map for e,” and f = x| s.-.. We can then define
¢: Au;e"— X" by ¢|, = the inclusion map, and ¢|g. = x,. This is 1-1,
continuous, and onto. We will show that it is closed. In fact AU B"—» 4 Uy,
e"— X" is closed since B" is compact and 4 is a closed subset of X". ||

Corollary 149 1let A < X and f: A— Y. Suppose 4 is closed or open
and X has the weak topology. Then fis continuous iff f| 4, is continuous for
each cell e.
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Proof To show that f'is continuous, it is sufficient to show that fo y: B n
%~ '(4) — Yiscontinuous, by 14.5. |

Corollary 14.10 Let A < X be a subcomplex and suppose X has the weak
topology. Then A is closed, and the induced topology is the weak topology.

Proof Let y: B— X. y7'(A) is clearly closed since for each «, x""(A) N
B = or y"'(4) > B,". Thus 4 is closed. It follows that x|,-i., is a
quotient map, so A4 has the weak topology. ||

Proposition 14.11 let X and Y be CW complexes. Then X x Y (with
the compactly generated topology) is a CW complex, and X v Y is a sub-
complex.

Remark The cellular structure is given above.

Proof Clearly X x Yis closure finite, since K(e," x e,™) = K(e,") x K(eg™).
We will show that yy,.y: By,y— X x Y is a quotient map. But By, , =
By x By and yy,y can be factored:

XX XXy

By.y =By x By X x Y.

8.12 implies that yy,y is a quotient map. ||

We now consider an important property on a pair of spaces which is dual
to the notion of the homotopy lifting property (11.2).

Definition 14.12 A pair (X, A) of spaces has the absolute homotopy
extension property (AHEP) if given any space Y, any map f X - Y, and
any homotopy H: A x I - Y with H(a, 0) = f(a), there is an extension
H: X x I- Y of H with H(x, 0) = f(x).

The duality mentioned can be seen by comparing the diagram in 11.2 to
the diagram

N
\\\
A "
AN
N
Yo
A —F Y

where H* is adjoint to H and n(w) = w(0).
This property guarantees that the extension problem in G is equivalent to
the extension problem in G, (see Exercise 15).
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Proposition 14.13 If X is a CW complex and A is a subcomplex, (X, 4)
has the absolute homotopy extension property.

Proof Suppose we are given a map
0_;: Xx0uAdxI->Y

which we wish to extend to X x I. Let X" = X" U A. We will inductively
define maps
0,: X x0uX"xI->Y

which are extensions of the previous ones. To construct §,, observe that the
0-skeleton of a CW complex has the discrete topology since each subset of it
intersects every cell in a finite set and hence is closed. Consequently, one can
extend 0_;, to 05: X x0uU X°xI— Y by 0,(¢° t)=0_,(° 0). This is
clearly continuous. Suppose we have defined an extension 0, and # > 0;

see Fig. 14.2.
e"'x 1 Ax 1 /
)
X
Figure 14.2

For each (n + 1)-cell &2*!, consider the composite

S/ xTUB ! x 0L, X" x [U X x 020 7.

This has an extension I',: B2*! x I— Y by 10.6. Define 0,,,: X"*"' x I u
X x0— Yby

Opstlxnsroxxo =0, and 0n+1|B““+1xI=ra'

These maps are compatible, and 0, , is continuous since X"*! x T U X x 0
has the weak topology (by 14.10). Thus we have constructed 0,,,, and the
induction is complete. Now define : X' x /- Y by Oxg.,; = 0,. This is well
defined, and since X x [ is a CW complex, it is continuous. |}

Definition 14.14 Let f: X — Y. The mapping cone of f, written ¥ U, CX
or C;, is the quotient space
Y u CX/(x, 0) ~ f(x).

(See Exercise 11, Section 9.)
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This construction is a generalization of the construction X U, " of Sec-
tion 13 and is useful because of the following property:

Proposition 14.15  Suppose we are given maps f/ X — Yand g: Y>Z in
T. Then g o f'is nullhomotopic iff there exists h: Y U, CX > Z with h|, = g.

x —f vy — vu,cx

-,
4
s
’
g s’
’
4
’
4

'
VA
Proof By Exercise 11, Section 9, if g of is nullhomotopic, there is an
extension H: CX—-Z of gof. gUH: YHUCX—Z clearly factors over
YU, CX and defines h. On the other hand, an extension 4 determines a
map CX - Y uy, CX — Z which extends g°f. Hence gof is nullhomo-
topic.

Thus the homotopy problem: ““Is gof nullhomotopic?” is equivalent
to the extension problem: “ Does g extend over Y u, CX?”

Let X be a CW complex. Fix # and choose for each n-cell, a copy B,” of
B"and S" ! of S" ' let B,=LRB," and S,., =115""! < B,. Define
Xn: (Bys Sp-y) = (X7, Xn_l) by an Byn = Xao Clearly B, = CS, ;.

Proposition 14.16 X" = X""' U, CS,_, = X"~' U; B,, where f=y,]|

Sn-1"

Proof Define 8: X*~!' U, B, > X" by letting 0] y.-: be the inclusion and
015, = x.. This is well defined, continuous, 1-1, and onto. To prove that it is
a homeomorphism we prove that the composite X" ! LIB, —» X"~ U .
B,— X" is closed. Let A = X" '1I B, be closed. Then 0g(4) A &," =
0g(A n X" 1 U 4 B Since X" is closed in X7, 8g(4 n X" 1) is closed
and 6g(A4 n B”) is compact. Thus 0g(4) né," is closed. Og(4) ne,” =
0g(A N X"~ 1) for m < n, and consequently is closed. Thus 8g(4) is closed. ||

The following corollary is particularly useful when Z=xor Z = I.

Corollary 14.17 Suppose Z& CS. Let /2 X" ' x Z— Y and f,: B x
Z — Y be maps such that f,(u, z) = f(x,(%), z) for ue St~". Then there is
a unique map f: X" x Z— Y such that f |ya-1,z =fand fo x, =f,.

Proof Apply 14.16 and 8.12. |
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Exercises

1. Let ¢,” be a cell in a cell complex and y, its characteristic map. Show
that y,(B") =¢&,". (14.5)

2.* Show that RP" and HP" are CW complexes.
3. Show that every CW complex is the union of its finite subcomplexes.

4. Show that if X and X" for all n > 0 have the weak topology, then X is
a CW complex. (Use 14.7.)

5. Show that CP"u, e*"*?= CP"*' where n,: $*""'— CP" is from
Section 7. Prove similar results for RP" and HP". (Exercise 21, Section 26;
27.19; 28.19; Exercise 12, Section 16).

6. A pair (X, A) is called a relative cell complex if X is Hausdorff and
X — A is a union of disjoint subspaces e, (x € W) called cells satisfying (a)
and (b) of 14.1 except that we now define X" =4 u {J {e, |k <n}. A sub-
complex B of (X, A) is a subset B > A such that B — A is a union of cells e,
and e, = Bimplies &, = B. A subcomplex is called finite if B — A4 is a union of
a finite number of cells. (X, 4) is called closure finite if K(e,"”) is a finite sub-
complex. (X, A) is said to have the weak topology if for each subset F < X, F
is closed iff F n e, is compact for each cell e,” and F n A4 is closed. A relative
CW complex is a relative cell complex which is closure finite and has the weak
topology. Show that if X is a CW complex and A4 a subcomplex, (X, 4) is a
relative CW complex.

7. Show that if (X, 4) is a relative CW complex, X/A4 is a CW complex.
Hence if X and Y are CW complexes, so is X A Y.

8. Generalize 14.13 to relative CW complexes.

9. Show that any cell complex with two cells ¢° and e" is homeomorphic
to S".

10. Prove that each arc component of a CW complex is a CW complex.
11.* Show that each cell complex contains a 0-cell.
12, Show that a CW complex is arcwise connected iff it is connected.

13.* Suppose {X,} are CW complexes and X,_, is a subcomplex of X,.
Let X = | X, with the weak topology. Show that X is a CW complex and
each X, is a subcomplex (use Exercise S5, Section 0). In particular RP>,
CP*,and HP* are CW complexes.

14. Let / X — Y be a base point preserving cellular map. Show that
Y U, CX has the structure of a CW complex.
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15. Given a pair (X, A) and a map f: A — Y, the extension problem is
that of deciding if there is a map f: X - ¥ such that f| , = f. Such a problem
can be formed in any category. Show that if (X, A) has the AHEP, the exten-
sion problem for (X, A) inG is equivalent to the extension problem for (X, 4)
inG,.

16. Define the lifting problem analogous to the extension problem in
Exercise 15, and show that if n: E — B has the HLP (11.2) the lifting problem
for m: E— B in TG is equivalent to the lifting problem for n: E— B in G,.

17. Show that if X, are CW complexes, LI X, is a CW complex.

18. Suppose that (X, 4) and (Y, B) have the AHEP. Show that (X x Y,
XxBuAdx Y)and (X/4, ) have the AHEP. (16.33; Exercise 28, Sec-
tion 16; 21.18)

19. Suppose X is Hausdorff and (X, 4) has the AHEP. Prove that A4 is
closed. (19.5)

20. Show that if (X, A) has the AHEP, there is a neighborhood U of 4 in
X and a retractionr: U — A4. (21.16)

21. Given f: (X, *) > (Y, ), define Y U, C*X as the quotient space of
YL C* X given by identifying (x, 0) € C* X with f(x) € Y. Prove an analogue
to 14.15. (18.4)

22. Let A < X and f: X — Y. Show that the natural map I: Y v, CA >
Y U; CX is an inclusion. If 4 is a strong deformation retract of X, show
that Y Uy, C4 is a strong deformation retract of Y U, CX. Conclude that
iff,g: X>Yand H:f~g, YU, CX= YUy C(XxI)~ Yy, CX. (27.19;
28.18)
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Limits

In this section we shall discuss some algebraic and categorical notions that
will be recurrent in the next few sections.

Definition 15.1 A directed set s is a partially ordered set #, such that
for any two elements o, f§ € /& there is an element y € £ withy > aand y > B.
A directed system of sets (spaces, groups), directed over 4 is a collection of
sets (spaces, groups) {X,|o € £} together with functions (maps, homomor-
phisms) f,,: X, - X, defined when « < B such that f;, /. = f,, and f,, = L.

The most common directed set that occurs in mathematics is the positive
integers, ordered in the usual way. The skeletons of a CW complex form a
directed system of spaces over this set. Here f, ,,: X" — X™ is the inclusion
map. Another example is given by letting £ be the collection of finite sub-
complexes of a given CW complex X, directed by inclusion, and X, =«
considered as a space. Similarly, one could let + be the set of finitely generated
subgroups of a group G, directed by inclusion, and X, = « considered as a
group.

One can replace this definition with a more conceptual (although possibly
more incomprehensible) one using the notions of category theory. Given a
directed set st one can associate a category D.¢ as follows. For objects in
Da, we take the elements of A. We define hom(a, ) = {§,5}—a one-object
set—if « < B and hom(e, B) = F otherwise. We define d;,0,5 = 6,,. Thena
directed system of sets (spaces, groups) is simply a covariant functor
F: D — 8(6, 9). Dually one can define an inverse system by considering con-
travariant functors. The whole notion can be generalized by replacing D4
by a directed category, i.e., one in which hom(X, Y) contains at most one
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element. We then have sets, spaces, groups, etc. directed over a category.
We will not consider this level of generality here for simplicity.

Given a directed system of objects in a category, one can sometimes asso-
ciate with it an object called the direct limit. Intuitively one thinks of this as
being the union (when f,,; are inclusions), and it is in the three examples
given earlier.

Definition 15.2 Given a directed system {X,, f,,}, an object X is called
the direct limit (or right limit) and is written lim X,, if there are maps
Je: X, —= X suchthatfyof,, = f,, and these maps satisfy the following universal
property: given any space X’ and system of maps f,: X, X’ satisfying
J¢' ofup =1, there is a unique map f: X - X’ so thatf, =fof,:

Observe that since fis unique, any two direct limits are isomorphic.

Proposition 15.3 Direct limits always exist in §,G, and A,

Proof (1) In 8. Let X be the disjoint union of the X,. Define x ~y
if xeX,, ye Xy, a <y, <7, and f,,(x) = f;,(»). This is an equivalence
relation. Let lim X, be the set of equivalence classes and f,: X, —»lim X,
be the composite of the inclusion X, = X and the projection n: X — lim X, .
Then f; o f,3 = f,. Suppose f,/: X, —» X' satisfies f" o f,5 = f,/; {f,/} definesa
function F: X —» X' by F|x, =1, Since f}’ o f,5 = f,/, F preserves the equi-
valence relation, and F defines a map f: lim X,— X'. Any two maps
Ji. fy  im X, —» X' satisfying f, f, = f>.f, = f, must satisfy fin = f, n; since n
isonto, f; =/,.

(2) In G. We perform the same construction as in & but topologize it.
Let X = X, and give lim X, the quotient topology. Then the maps f, and
F are continuous. Uniqueness follows as before.

(3) In M. Given a directed system of R-modules {X,} let X = @, 4 X,
i.e., the elements of X are functions f: 4 — () X, with f(x) € X, and f(a) =0
for all but a finite number of elements o of 4. Define (f + g)(o0) = f(x) +
g e X,, (—f)a)= —f(@), (rf)Nz)=rf(x) and O(x) =0. This makes X
into an R-module. Define f,: X, - X by

O A
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This is a homomorphism, and X is generated by the elements of the form
Fux). Let M be the submodule generated by all f,(x) —fs(f,5(x)). Define
lim X, to be the quotient of X by M, and let #: X — lim X, be the quotient
map. We then have nf, =f, : X, — lim X,. Now given f, : X, —» X' satisfying
fy'fap =1 > one can define F: X - X' by F(f) = . f,/(f(®));

F(F(x) = £/ (%) = f3 fup(x) = F(fy(fop(x)),

so F defines a homomorphism f: lim X, — X' with fr = F. As before it is
clear that f'is unique. {|

We think of the objects X, as approximations to lim X, in much the same
way that the elements of a sequence of numbers are approximations to their
limit. The condition that for all «, € 4 there exists y € /£ with « <y and
B < y plays a similar role to the Cauchy condition on sequences, in assuring
that limits are unique.

Proposition 15.4 Let {X,} be a directed system and assume that there is
&, € & such that if f >« >a, f,5 is an equivalence (i.e., has a two-sided
inverse). Then lim X, = X, .

Proof Definef,: X,—» X, by

£ = Joed it o> a
“ Saao if o= a.

Then if o < B, f3fup =Jfa» 50 { X4, fo} is a candidate for the direct limit.
Suppose f,": X, — X'is defined and satisfies f;'f,, = f,’. If there exists /1 X, —
X’ with ff, =f,’, we must have f=f, since f,, = 1. On the other hand,
Ja Sz =1, s0 this also defines a map /% X,,—» X'. |

Proposition 15.5 Suppose X is a space and X = Ua,,E 4 X,, where X,
are subspaces and suppose X has the weak topology on the X,(i.e., F'is closed
iff F X, is closed in X, for all «). Then X =lim X,, where the inclusion
maps are used to form the directed system.

Remark To be consistent, it is necessary to assume that for all a, f there
is a y such that X, > X, U Xj;. This can always be arranged by replacing
{X,} by the set of all finite unions X, -V X, .

Proof The inclusions provide maps /,: X,— X compatible with the
inclusions i,,: X, < X;. To show that the universal property is satisfied,
suppose we are given f, : X, — Y satisfying f, |y, = f; when f <o We are
then forced to define f: X — Y by f'{ s, = f, . These definitions are compatible,
and f'is continuous since if Fis closed in Y,f~'(F) n X, = f; '(F), which isa
closed subset of X, for all a. ||
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Corollary 15.6 Let X be a CW complex. Then X =lim X" where X" is
the n-skeleton. |

Corollary 15.7 Let X be a CW complex and let {X,} be the set of finite
subcomplexes. Then X = lim X,. ||

Proposition 15.8 Let {X,} be a directed system in My, and X = lim X,.
Then:

(a) for each x € X, there is an « and x, € X, with f,(x,) = x;
(b) if x,€ X, and f(x,) =0, there is a f=a with f(x,)=0¢€ X,.

Proof To prove (a), let x = n{f, (x,) + - + £, (x,)}. Pick a > «; for each
i, 1 <i<n Thenf, (x;) = fu fua(%:)), 5O

X = n]a(fala(xl) + o +fa,.az(xn))'

To prove (b), define Fy = @,.4 X,, and define 0;: F; —» X, by 64(f) =

Y [l f(@). If o« < B, f(X,) = Fy and 6, f, = fp,. Suppose now that f,(x,) =
0. Then f,(x,) € M, so

Jar) = ¥ a6 = FulFun 5

Choose § > B; = «;. Then all terms of this equation belong to Fy . By applying

8, to this equation, we get f3,(x,) = 0, since £, 5(x;) = f3,5(fop.(x:))- |

Proposition 15.9 Let X = [ ] X, be Hausdorff and have the weak topology
as above and assume:

(a) For all o, B € A4 there exists 6 € 4 with X, n X = X;.
(b) Forallaed, {feA|p <a}is finite (f < aiff X = X,).

Then z(lim X,) = lim 7;(X,).

The proof will rely on:

Lemma 15.10 Under the hypothesis of 15.9, given a compact set K < X,
thereareq;e AwithK< X,, U U X,

Proofof 15.10 Lete,= X, ~ | J{X;|B <a}. Suppose K& X,, U---U X,
for any choice of @y, ..., o, ; choose inductively distinct points x, € e,, as
follows: Having chosen x,,, ..., X, , note that K¢#e, U --Ue, since
e,V rue, X, u-u X, . Hence there exists x e Kn X, for some «
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and x ¢ {x,, ..., x,,}. By (b), there is «,,; < a withxee, . Letx,  =x.
Now let V c{x,}. We prove that V' is closed. Suppose x;€ V' n X,. Now
x3€ X; N X, = X; by (a). Since x;€e;, 6 = f and hence f <a. Thus (b)
implies that ¥ n X, is finite and hence closed (since X is Hausdorff). It
follows that {x,,} is an infinite set with the discrete topology. On the other
hand, {x,,} is a closed subset of K and hence is compact, a contradiction. ||

Proof of 15.9 The maps i,: X, X induce maps (i,)y: m(X,) = n(X).
Since these are consistent with the inclusions (i g).: m(X,) — n(Xy), they
define a map I: lim n;(X,) - m,(X). Suppose {f} € n(X). Since f(S’) is com-
pact, f(S) = X, = X; hence If,({f}) ={f} where f,: m(X,) —lim n(X),).
Suppose I(x) = 0. Let x = f,({f}) where /> S'~ X,. Then I(x) = {i,f} =0
Choose a homotopy H: B'*! - X. Since H(B'*?) is compact, there exists B
with H(B'™*') = X,. Now clearly H: i, ~0in (X)) so x =0. |

Corollary 15.11 Let X be a CW complex. Then

(@) m(X)=lim n (X"

(b) m(X)=lim m(X,), where the limit is taken over all finite subcom-
plexes.

Proof This follows immediately from 15.6, 15.7, and 15.9. |

Lemma 15.12 Let {4,, f,4} and {B,, /.3} be two systems of abelian groups
directed over the same index set 4, and suppose that for each o € A there is
given a homomorphism g, : A, — B, such that if « < f8, the diagram

A,,,———f“—B—vA,,

f

B,—, B,
commutes. Then there is a unique homomorphism g: lim A4, — lim B, such
that the diagram

A————»_n}A

)

L lim B,

a
commutes.

Proof f,g,: A,— lim B, is defined for each a € A. By the universal pro-
perty (15.2) g exists uniquely. ||
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Lemma 15.13 Let {4,, fu}, {B., fap), and {C,, fz;} be three systems
directed over 4 and suppose we have maps g,: 4,— B, and 4,: B,—C,
as in 15.12 such that

9u ha
Aa ? Ba ? Ca

is exact at B,. Then

lim A, lim B, lim C,
is exact at lim B, .

Proof Let xelim A,. By 15.8, choose « and x,€ A, with f,(x,) = x.
Then

hg(x) = h(g(fo(x))) = h(f;(9(x)) = 1" (h(9.(x))) = /,"(0) = 0.

Let x € lim B, and suppose h(x) = 0. Let x, e B, be such that f,'(x,) = x.
Then f,"(h(x,) = h(f,'(x,)) = k(x) = 0. Hence by 15.8, there exists f with
Saplho(x,)) = 0. Consequently A fas(x,) = fip(ho(x,)) = 0 and thus fy(x,) =
gp(xp). Now

p(xg) = 13'9p(xp) = fofap(x) = 1o (xz) = x,

sokerh=Img. |

Proposition 15.14 (lim X) A Y=1lim (X, A Y), if X,, Y e CG*.

Proof We produce continuous maps going both ways that are inverse to
one another. The inclusion 7, : X, - lim X, induces a map.

AL XA Y- (lim X)AY;
since these maps are compatible, they induce a map
L lim(X, A Y)> (lim X,) A Y.
Let k,: X, — [lim (X, A Y)]” be the adjoint of the inclusion
X, AY-lim(X,AY).
The maps k, are compatible and hence induce a map
K:lim X, — (lim X, A Y)¥;

the adjoint of this is the inverse to 7. |}

Exercises

1. Show that limits directed over the positive integers exist in G,*. (Hint:
Given X, for each n > 0 and f, : (X, *) - (X, 4, *), we define

X = (X, x Df(xy, 1) ~ (fa (%), 0); (%, 1) ~ x.
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See Fig. 15.1. This construction is sometimes called the telescope construction.)
(Exercise 2; 29.14)

Figure 15.1

2. Show that limits directed over the positive integers exist in JU, (see Exer-
cise 1).

3. Show that limits exist in G* and G2. What about T, ?

4, Direct limits do not exist in CS. (Hint: Define X, = I for each n > 0 and
Jut Xy Xoiq bY f,(x) = min (2x, 1).)

5. Suppose X, = X,,; and X = {) X, with X a CW complex and X; a
subcomplex. Show that X, ~ X (see Exercise 1). (Hint: Define f: X, —
{J X, and show that it induces isomorphisms in homotopy. See 16.22.)

6. Consider the directed sequence of abelian groups X, =Z for n > 0 and
Jun+1(x) = nx. Show that lim X, = @ (the rational numbers). (Exercise I,
Section 24)

7. Generalizing the ingredients of Exercise 6, show that every abelian group
is isomorphic to the direct limit of its finitely generated subgroups, directed
by inclusion.

8. Let {X,} be a directed system of spaces and inclusion maps where the
indexing set A satisfies (a) and (b) of 15.9. Suppose {B,} is another such system
with B, = X,. Show that lim n,(X,, B,, *) = n(X, B, ) where X = (J X,,
B= (JB,,and x€(),. 4 B,. (16.4)

9. Given an inverse system {X,, f,,.} in 8 where f,,. : X, = X, foroa’ > a,
define lim{X,, f,,-} as the subset of [ | X, of those functions {x,} with f,,(x,)
= x,. Show that this is an inverse limit in 8. If for each «, X, is a topological
space and f,,. is continuous, show that this is an inverse limit in G if we use
the subspace topology on lim{X,, f,,} and the product topology on ILX,.
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If for each o, X, is an R-module, show that lim X, with coordinatewise addi-
tion is an inverse limit in g . (Exercise 2, Section 17; 21.20; 27.4)

10. The conditions of 15.9 are necessary, for let {4,} be the collection of
countable compact subsets of S'. Then S' has the weak topology on {4},
but every map S' — A4, is constant. Hence 7,(S') = Z and lim n,(4,) = 0.

11, Show that if all spaces belong to CS (or C§¥),
(lim X)x Y=lim(X,x Y) and (limX,)v Y=lim (X, Vv Y). (16.6)
12. Prove (\/,c4 X)) A Y=/, 4 (X, A Y) (Hint: Use 15.14.) (24.1)

13. Let R be a commutative ring. Let {X,} be a direct system in My and
Y e Mg Prove that (lim X,)®z Y =lim (X, ®g Y). (24.1, Section 26).

14. Given a collection of R-modules {X,}, define |, 4 X, as the set of all
functions f: A - ), 4 X, With f(2)) € X,. This is an R-module, as in the proof
of 15.3, and @, 4 X is a submodule. Show that

homg( @ X,, ¥Y)=]] homg (X,, Y). (24.11)
ae A

15. Let X, be the construction from Exercise 1. Prove that if X is compact,
[(K7 *)’ (X(X) 2 *)] g li—rnv[(K’ *)’ (Xn5 *)]'
16. Let A, , be a system of abelian groups with homomorphisms
Jom: Apm— Ay mand g, 0 A, > A, ..y such that the diagrams

fn,m
An,m ? An+1,m

Gn,mjv lgn,m +1

Sam+1
An,m+1 ? An+1.m+1

commute. Let 4, =1im {4, ,, g, and B, =lim{A4, ,,, f, .. Prove that
lim A4, = limB,,. (Exercise 5, Section 28)
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The Homotopy Theory of CW Complexes

This section deals with the homotopy theory of CW complexes. Most of
the results are fairly technical—relating homotopy groups and cellular
structures to various extension and deformation problems. We discuss the
approximation of spaces by CW complexes, construct an (ad hoc) singular
complex for a space and prove Whitehead’s theorem. Using these techniques
we prove the general version of the Blakers-Massey theorem and make
applications. In an appendix we give the functorial singular complex con-
struction. This will be used in Section 21.

Throughout this section we shall discuss CW complexes X and relative
CW complexes (X, A) (as defined in Exercise 6, Section 14). If desired, one
may replace the phrase *“ relative CW complex (X, 4) " by (the more restricted
notion of a) ““ pair (X, A) where X is a CW complex and A4 is a subcomplex.”
Such a change will not restrict most of the applications of our results.

Definition 16.1 A space X is said to be n-connected if n(X, *) =0 for
i <n.

Remark This is independent of the choice of *. 0-connected is the same
as arcwise connected, and 1-connected is the same as simply connected. S" is
(n — 1)-connected by 12.23.

Lemma 16.2 Letg: S" ! > X, f: X — Y, and suppose Y is arcwise con-
nected and m,_ (Y, *) = 0. Then there is an extension of f'to X U, e™

n
Xu,e
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Proof This follows from Exercise 11, Section 9 and 14.15. |}

Corollary 16.3 Suppose S is a set of integers and (Y, X) is a relative CW
complex such that if e, = ¥ — X is a cell, dim e, € S. Suppose that if n€ §,
,—1(Z, *) = 0. Then any map f: X — Z admits an extension f: ¥ - Z:

X — Z

Proof Given any finite subcomplex of (Y, X), it is clear that f extends
over this subcomplex, for the extension can be done a cell at a time using 16.2.
In the general case we apply Zorn’s lemma. Consider the set C of all pairs
(X,, f,) where X « X, = Yis a subcomplex and f, :X, — Y is a extension of
/. Partially order C by inclusion and restriction: (X,, f,) < (X;, f3) if X, < X,
and fy|x, =f,. Increasing chains in C have an upper bound since if {X,} is
such a chain, ({} X,, f) belongs to C, where f|y, =f, (f is continuous by
14.9). Thus C has a maximal element (X', f'). Now X' =Y, forif X' # Y
choose a cell e = ¥ — X’ of minimal dimension. Then e — e < X’. Apply
16.2 to this cell to obtain an extension f: X' U e —>Z of f’, contradicting
maximality. |

Proposition 16.4 Suppose (Y, X) is a relative CW complex with cells (in
Y — X) only in dimensions > n, then (Y, X, *) =0 fori <n.

Proof By Exercise 8, Section 15, it is enough to show that if (X,, X)isa
finite subcomplex of (Y, X), n(X,, X, ) =0 for all / <n. We do this by
induction making key use of 13.5. Suppose (X', X) is a finite subcomplex of
(Y, X)and X = X’ U e* = Y. The exact sequence

”i(XI’ X’ *) - TI,-(Y, X’ *) - 7ri(A_,a Xla *)

has first and last terms equal to 0 for i < n by induction and 13.5 since k& > n.
Hence n(X, X, *) =0fori<n. |

Corollary 16.5 If X is a CW complex with one O-cell and all other cells
in dimensions > n, 7,(X, *x) =0 for i < n.

We now prove a general deformation theorem.

Theorem 16.6 Let S be a set of integers. Let f: (X, A) — (Y, B) and suppose
(X, A) is a relative CW complex with cells (in X — 4) whose dimensions
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belong to 8. Suppose that for any choice of *, (Y, B, *) =0 if k€ 8. Then
there is a map g: X —» B with g ~ f (rel A).
The inductive step will be based on:

Lemma 16.7 Let (X, 4A) be a relative CW complex and X" = X" U A.
Let H: X""! x I U X" x 0— Y. Suppose'® #,(Y, B, ») = 0 for any choice of *
and H(x, 1) € B. Then H extends toamap H: X" x I - Ysuchthat A(x, 1) € B.

Proof of 16.7 By 14.17 it is sufficient to construct maps
H:B'"xI->Y

such that

Hy(x,t) = H(x(x), 1) for xes'!

H (x, 0) = H(y,(x), 0), H/(x,1)eB.
By 11.6 there is a homeomorphism

e:(B"xLB x0UuS" ! x)»(B"xI,B"x1).
One can easily check from the definition that @|g.-.1,; = 1. Define
h,: (B", 8") ~> (Y, B) by
hy=HoQax 1)o@ gy

By Exercise 7, Section 10 there is a homotopy K,: B, xI— Y with
K(x, )=h(x), K(x, 0)=x* and K,(S! 'xI)cB. Let H,=K,- o.
Then ¢(S; ' x I) = B x 1, 50 K, | ys.n-1x1)) = Pa] p(sun-1x1y- Consequently
H(x, t) = H(x(x), t) for x e S"~ . Similarly, H,(x, 0) = H(y,(x), 0). Since
0’ =1,0(x,)eB” x 00U S"! x I. Thus H(x, He B. |

Proof of 16.6 Using 16.7 we construct homotopies H": X" x I—» Y by
induction on z such that

() H"|gn-1yy=H""Y
(b) H"(x, 0) = f(x);
(©0 H"(x,1)eB;
(d) H"a, 1) =f(a).
Define H: X x I» Y by H|x., ;= H". This is well defined by (a) and is

continuous by 15.6 and Exercise 11, Section 15. Define g(x) = H(x, 1). By
(c), g(x) e B and by (b) and (d), H: f~g (rel 4). |

10 We interpret the statement mo(Y, B, *) = 0 to mean that mo(B, *) = mo(7, *) is onto;
i.e., every point of ¥ may be joined by a path to a point in B.
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Definition 16.8 Let (X, A) and (Y, B) be relative CW complexes and
f: (X, A) > (Y, B). fis called cellular if f(X") = Y".

Theorem 16.9 Let (X, 4) and (Y, B) be relative CW complexes 1 (X, A) —
(Y, B). Then f ~ g (rel A) where g is a cellular map.

Proof We construct homotopies H": X* x I - Y inductively such that:

(@) H|gn-1,g=H"1;
&) H(x, 0) = f(x);
(© H(x,1)e Y™

(d) H"a,t)=f(a).

by 16.7, using the fact that for any choice of *, n (Y, Y", ) =0 by 16.4,
Define H: X x I > Y by H| ga,; = H". Asin 16.6, this completes the proof. ||

Corollary 16.10 Let f, g: (X, A)—> (Y, B) be cellular and homotopic
(rel 4). Then there is a cellular homotopy (rel 4) between them (H: (X, A) x
1- (Y, B)is cellular if H(X" x I) c Y"*1),

Proof (X xI, Xx0uAdxIuXx1l1)is a relative CW complex with
n-skeleton X x 0u X" ! x I'u X x 1. Apply 16.9 to the given homotopy
to obtain a new one. ||

As an important special case, we have:

Corollary 16.11 Every map between CW complexes is homotopic to a
cellular map and every two homotopic cellular maps are cellularly homotopic.

Proof Apply 16.9 and 16.10 with A =B = (. |

Thus it is only necessary, from the homotopy theory point of view, to
consider cellular maps and cellular homotopies. One should be careful,
however, because one extra dimension is needed for a homotopy.

Example Let X =S$" and Y = B"*! and consider the inclusion X — Y.
We make X into a complex with one 0O-cell and one n-cell. We make Y into
a complex with a 0-, n-, and (n + 1)-cell. Thus X = Y”" and the inclusion is
cellular. The inclusion is homotopic to another cellular map, namely, the
map sending all of X to the O-cell of Y. However, there is no homotopy
H: X" x I - Y" between these maps.

Definition 16.12 A map f: X - Y is called a weak homotopy equivalence
if fy: (X, x) > (Y, f(x))is 1-1 and onto for all » > 0 and all x € X.
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Note that this is not an equivalence relation. If X is arcwise connected, it
is sufficient to consider f, for one choice of x € X.

Definition 16.13 Given a space Y, a cellular approximation to Y or re-
solution of Y is a pair (K, /) where K'is a CW complex f: K— Y is a weak
homotopy equivalence.

We will show that resolutions always exist and any two of them are equiva-
lent (in a sense we will define later). However, there is considerable choice in
finding a resolution (as the proof will indicate), and neither the dimensions of
the cells nor the number of cells are invariants. As an example, consider the
two resolutions of a one-point space: K; = one-point space with the point as
a 0-cell; K, = B® withcells ¢® = (1, 0, 0), e? = S — ¢% and e* = B> — §2.

If (K, f) is a resolution of Y, K is sometimes called a singular complex for
Y.

Proposition 16.14 Given an (n — 1)-connected space Y there is a resolu-
tion (K, f). If n = 1, we can furthermore assume that K has no cells of di-
mension < n except for a single 0-cell *.

Before proving 16.14 we introduce a lemma.

Lemma 16.15 Given f: X — Y such that f1, is an inclusion, there is a
commutative diagram

3

X._j:__y

where i is an inclusion, nj = 1 and jz ~ 1 (rel i(4)). The space Z is called the
mapping cylinder of the map f.

Remark To visualize this consider first the case 4 = @f. Thus we replace
Y with Z where Z ~ Y and f then corresponds to the inclusion i. If f| , is an
inclusion, one can achieve the same result, but without altering Y on f(4) = A.

Proof Define Z=Yu X x I/(x, 0) ~f(x), (a, t) ~f(a). See Fig. 16.1.
Define i(x) = (x, 1), n(y) =y, n(x, t) =f(x), and j(y) = y. All the claims
are obvious. The homotopy H: jr ~ 1 (rel i(4)) is given by H(y, t) =y,
H(x, s, t) = (x, st). (Compare this construction with 11.14.) ]
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Figure 16.1

Definition 16.16 Let f;: G, — H; be a homomorphism for each ieZ*.
{f:} is called a k-isomorphism if f; is an isomorphism for i < k and f, is onto.
If X and Y are spaces and f: X - Y, f is called a k-equivalence'! if
Ji: m(X, x) > n(Y, f(x)) is a k-isomorphism for all x € X.

Proof of 16.14 Assume first that n > 1. By induction we will construct
an m-dimension complex K™ such that

K'osK" s oK% =4

and m-equivalences f,,: (K™, *) > (Y, ) such that f,,| xm-1 = f,,—;. We begin
the induction with * = K® = K"}, and f,_,(*) = *. Suppose now that we
have constructed (K™, f,,). Let Z be the mapping cylinder of f, (4 = #).
Then we have a commutative diagram

. ni(Zs *) e ni(z’ Kma *) —_—

oo T (Z, K™, %) — (K™, %) s

L—$ ni( Y’ *)

Hence n(Z, K™, %)=0 for i<m. Let {f,} generate m,.(Z, K", %),
£ (B, 8., %) = (Z, K™, x). We construct K™*! as follows:

K" =K"O U B x ~fy(x)  for xeS"c Byl

Umds

K™*! is a closure finite cell complex, and we give it the weak topology.
Hence K™*' is a CW complex and K™ is a subcomplex.

Define F: (K™*!, K™ —(Z, K™) extending the identity by F|pm+: =
foi (BPH1 8™ )= (Z, K™, ). Define f,,,, = nF where n: Z— Y. Then

11 The literature is not consistent on the use of the term k-equivalence. For example,
Whitehead does not assume that f; is onto [73].
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S+t gm = 7| gm = fs. Consider now the mapping cylinder Z’ of F with 4 =
K™, and the diagram

ni(Z’, Km, *) a— ni(Z', Km+1, *)

s

i a(Z' K™Y, 8) —— m(K"*1, K™, %) —— 1(Z, K™, %)

n(Z, K™, %) =0 for i <m and Fy: m, (K™, K™, ¥) > 7,,.(Z, K™, %) is
onto by construction. Hence n,(Z’, K™*!, x) =0 for i <m + 1, and i, is an
m + 1 isomorphism. Now consider n': Z'—>Z and n: Z— Y. These are
homotopy equivalences and nn'i = nF =f,,, . Hence (f,,+1)« has the desired
properties, and the induction is complete.

We now define K= () K™ and f: K— Y by f|xm =f,,. If we give K the
weak topology, we have 7 (K, K™, %) =0 for i < m. Hence in the diagram

(K, *)
\f.‘
it] 71;( Y, *)
Umde
(K™, %)

all maps are isomorphisms.
If n =0, choose a resolution X, for each arc component ¥, of Y and let
K =1 K, . Define f by setting f| x_ to be a resolution of Y,. |

Lemma 16.17 Suppose f: X — Y is a base point preserving map. fis a
weak homotopy equivalence iff given any CW pair (L, L;) and maps
a:Ly—> X, f: L - Y with fu = |, there is a map g: L - X with g|, =«
and fg ~ B (rel L,)

X — Y

Lo —— L

Proof If this property is satisfied, consideration of the diagrams

y—,y x—2.y

e

* Sn Sn B" +1
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leads to the conclusion that f,, is onto and 1-1 in =,, for any choice of x € X.
Suppose conversely that f induces isomorphisms in homotopy. Let Z be
the mapping cylinder of f:

VA

a{ IB
Ly, — L

Define F: L x 0 u Ly x I - Z by F(I, 0) = j8(l) and F(I, t) = (a(/), t) for

le L, Extend F to F: L x I-Z by 14.13. Let y: L - Z be given by y(I) =

F(I, 1). Then y(Ly) =« X x 1. Apply 16.6 to produce g: L - X x 1 with g ~

y(rel Ly). Now g|,, =, and fg=mg ~ny ~p (rel L,) where the last
homotopy is given by (I, t) - nF(l, t). |

Definition 16.18 A map f: (X, A) —» (Y, B) is called a weak homotopy
equivalence if the associated maps f* X - Y and f| ,: 4 — B are weak homo-
topy equivalences. A resolution of a pair (X, 4) isa CW pair (X, L) and a map
fi (K, L) > (X, A) which is a weak homotopy equivalence.

Proposition 16,19 Any pair (X, A) has a resolution.

Proof Let f,: L — A be a resolution. By adding cells to L we may form a
complex K o L and an extension of f, to a resolution f of X by Exercise 7.

Proposition 16.20 Let /% (K, L)~ (X, A) and g: (K', L'y- (Y, B) be
resolutions and 4: (X, A) — (Y, B). Then there is a map ¢: (K, L) = (K, L)
unique up to homotopy of pairs such that

(K, L')—— (Y, B)
(K, L) —L— (X, 4)

commutes up to homotopy (of pairs).
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Proof Apply 16.17 to the commutative diagram
g—>L

L

L—— B

to produce v': L - L' with gy’ ~hf. By 14.13 y: Kx0uU L x I > Y given
by Aif on K and the above homotopy on L x I extends to I': K xI— Y.
Now apply 16.17 again to the diagram

L2 K

.,

K——Y

to produce an ertension ¥: (K, L)— (X', L'). Then gy ~ T (, 1) ~hf and
the homotopy maps L into B.

To prove uniqueness suppose Y, and ¥, both satisfy the conclusien.
Choose a homotopy H: gy, ~ gi,. This is possible since both are homotopic
to if. We can thus apply 16.17 to the diagram

Lx0ulLx1X2y

LxI—2 B

Let J: L x I - L' be a homotopy between ¥, |, and ¥, |, such that gJ ~ H
(rel L x 0w L x 1). Call this homotopy P. Then

P.LxIxI-B
satisfies
PU,s, ) =gJ(Ls)  P(,0,1) = go(l)
P, 5,0) = H(l, 5) P 0 =g (D).
We will extend P to K x I x I First we extend P to a map from
Z=(KxIx0)u(Kx0xHu(LxIxDHu(Kxl1xlI)
to Y. This is accomplished by defining
P(k, s, 0) = H(k, s)
P(k, 0, 1) = gio(k)
Pk, 1, 1) = g1 (k).
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Now Z=(KxI)x0uU(Kx0uULxIuK=x1)xI and hence by 14.13
there is an extension to K x I x I which we call P. Define H to be the com-
position
KxIEKxlechIxI—{—vY.
Now
H(l,5) =P(l, 5, 1) = gJ(, 5)
H(k, 1) = P(k, 1, 1) = gy, (k).

Again we have a commutative diagram

KxO0ULxTuK x 12220, g
c g
KxI A LY

and we apply 16.17 to construct J: K x I - K’, a homotopy from y, to i,
which extends J; thus ¥, ~ ¥, as maps of pairs (K, L) > (K, L"). 1

Proposition 16,21 There is a functor S: B> — X,> and a natural trans-
formation fy: Io S(X, A)— (X, A) where I: X,2>T,? is the inclusion.
Finally (fx)« is a weak homotopy equivalence.

Proof We use the axiom of choice for classes. For each pair (X, 4) e G*
we choose a CW pair (K, L) and a map f: (K, L) — (X, A) which is a resolu-
tion. Define S(X, 4) = (K, L). If /% (X, A) > (Y, B), there is a unique homo-
topy class S(f): S(X, 4)— S(Y, B) by 16.20. By uniqueness, S(1) =1 and
S(f e g) = S(f) o S(g). The natural transformation follows from the construc-
tion. |}

There seems to be a lot of choice involved in the construction of this functor.
This is more apparent than real, however. Given two resolutions (X, f) and
(X', f) of X, 16.20 provides a map h: K —» K’ with f'h ~ f. Thus 4 induces
isomorphisms in all homotopy groups. 4 is in fact a homotopy equivalence,
as one sees from the following famous

Theorem 16.22'2 (Whitehead Theorem) Let X and ¥ be CW complexes
and assume that g: X — Y'is a weak homotopy equivalence. Then g is a homo-
topy equivalence.

12 This theorem is usually attributed to Whitchead and appears in his classical paper
[73}, where CW complexes were first defined. An earlier theorem which is actually more
general can be found in [33].
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Proof Since g: X — Y is a resolution, 16.17 implies that there exists
h: Y— X with gh ~ 1 in G*. Since 4 is a resolution, we can similarly find
j: X > Ywithkj ~ 1inG*. Now g ~ ghj ~ j, hence hg ~ 1 and /is a homotopy
inverse forg. |

Corollary 16.23 Suppose X is a connected CW complex and 7,(X, %) =0
for i < n. Then X is the pointed homotopy type of a CW complex X’ with no
cells in dimensions <n except for one O-cell.

Remark In particular, every connected CW complex is the pointed homo-
topy type of a CW complex with only one 0-cell.

Proof Combine 16.22 and 16.14. |

Lemma 16.24'> Suppose (X, X,) is ecxisive in X and (Y;, Y,) is ecxisive
in Y. Let ¢: Y- X with ¢(Y;)c X; and ¢(Y,) = X,. If ¢|y,: Y, > X,
Qly,: Y= X,, and @|y,.y,: Y1 n Y, > X; n X, are weak homotopy
equivalences, so is ¢.

Proof Given f: A" X, g: 0A"— Y with @g =f],,» we will find
F: A" - Y with Flsa =g and ¢ o F ~ f (rel 0A"). This is clearly enough to
prove that ¢, is an isomorphism:

OA" — A"

Let ;=g (Y —Int Y)uf (X~—Int X;) for i=1, 2. Then 4, and
A; are disjoint closed sets. Subdivide A" so that no simplex meets both A4,
and A4, . Define

K;={clg(c n dA") = Int Y;, f(c) = Int X}.

Then K, and K, are subcomplexes and A" = K, u K,, for if ¢ is a simplex
that misses 4;, 0 ¢ K;. Furthermore f(K;) < Int X;and g(K; n 0A") = Int Y.
By restriction we have a commutative diagram

YlﬁYZ———q’——leﬂXz
aA"ﬁKlﬁKz————*Kl (\KZ

13 This result is not in the standard expositions on homotopy theory. An equivalent
result is stated without proof in [4, Section 10].
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There exists F: K; n K, > Y n Y, with Flg  x,noan=¢g and @F ~f
(rel A" N K, N K). Now define Gy: K; N (9A" U K;) = ¥, by Gy | g, pnoan =
9|k noan and Gy |k, (x, = F. Then

Gy ~ [k, n@anuky (rel Ky 0 0A").

By 14.13 this homotopy may be extended to a homotopy H: K; x I - X, of f
to a map f;: K; — X; with f] |, neanok, = ©G1. Thus the diagram

Yl—(P)Xl

]Gl ]fl
K, n(0A" U K,)——— K|
commutes and we may find F;: K; — Y; with

Fi |k n@anoky) = G, and oF, ~f; (rel(K; n (A" U K3)))-

This implies that F; ~ f(rel(K; n 0A"). Similarly we construct F,: K; —» ¥,
with F,|x,~@anok,) = G and @F, ~f (rel(K, n 0A"). Now F; and F,
agree on K; N K, , so they definea map F: I" > Ywith F|x, = F, F|x, = F,.
Then F|,s = g.The homotopies @F, ~f; ~f and @F, ~ f, ~ f agree on
(Ky N K;) x I. Since @F, ~f; and @F, ~ f, are homotopies rel X; n K,
and the homotopies f; ~f and f, ~f when restricted to (K; n K;) x I
both yield the homotopy ¢@F ~ f. Hence ¢F ~ f, and this is a homotopy
rel(K; n 0A") U (K5 n 0A") = 0A". |

This result will be applied to a forthcoming chain of generalizations of
13.6.

Theorem 16.25 Let X be a CW complex, X; and X, subcomplexes, and
A=X; nX,. Suppose (X;, A) has cells in dimensions >n and (X,, 4)
has cells in dimensions > m. Then if i: (X;, A) = (X, X3), iy: 7(X}, 4, *) =
n (X, X,, *) is an (m + n — 2)-isomorphism.

Proof Casel X;=Au,e". X,— A consists of a finite number of
cells.

Let k be the number of cells in X, — A. The result is true by 13.6 if k = 1.
By induction suppose X, — A has k cells and X, = X," U ¢ where X," > 4,
X, — A has k — 1 cells, and ¢ > m. Then we have a commutative diagram
of inclusion maps

X, A) —2— (X, X))

N A

(X, 0 X, X,")
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Both i, and i; qualify for the inductive step hence i,, and i3, are (m +n — 2)-
isomorphisms. Consequently (i,), is an (m + n — 2)-isomorphism.

Case 2 X, — A and X, — A consist of a finite number of cells.

We now do induction on the number of cells in X; — A. Call this number k
and note that k =1 is the above case. Suppose now that X; = X;" U ¢,
X," > A, and t > n. Consider the ladder diagram

(X, X)) —— m(Xy, A)—— 1(Xy, A)— (X, X)) —— 7,.(X7, 4)
i1s i2e iy i ize
T (X XU X)) - (X U Xy, X))o m(X, X)) » (X, X' v Xo) - mo (X U X, X))
(where base points are suppressed from the notation for brevity). The horizon-
tal sequences are exact. i;4 and i,, qualify for the inductive hypothesis and

hence are (m + n — 2)-isomorphisms (since ¢ > n). The conclusion for i,
follows from the famous

Lemma 16.26 (5-Lemma) Consider a commutative diagram of abelian
groups and homomorphisms

Ay~ A, > Ay > A, — As
B, - B, »By— B, — B;s
in which the horizontal sequences are exact. Then

(a) if o, and a, are onto and «y is 1-1, a3 is onto:
(b) if a, and «, are 1-1 and «, is onto, a3 is I-1.

Remark No proof is given for this lemma because an essential element
to any understandable proof is a certain amount of manual motion, and
written proofs already abound in standard texts.

We return to the proof of 16.25.

Case 3 General case Let {o} € n(X, X,, *). Since a(I") is compact, it is
contained in a finite subcomplex K of X. Consider the diagram

71Xy, A, $)—— 1,(X, X5, %)
Je
n (KA Xy, KO A, )22 (K, K A X, %)

If r < m +n — 2, (i| x)« is onto and {o} is in the image of j, . Hence i is onto.
Let {o} € m,(X;, 4, ») and i, ({«}) =0. Let H: I'*' 5 X be a homotopy. As
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before H(I"*!) is contained in a finite subcomplex K of X and hence the
same diagram shows that (i| x)«({e}) = 0and hence {a} = 0ifr <m +n -2, ||

Corollary 16.27 (Blakers-Massey Theorem—General Version) Suppose
(X;, X,) is excisive in X. Suppose (X;, X; n X;) is (n — 1)-connected
and (X,, X; n X,) is (m — 1)-connected. Then i,: = (X}, X; N X;, ») -
#n(X; U X,, X,, %) is an (m + n — 2)-isomorphism.

Proof Let f1,: K;, » X; n X, be a resolution. The composite K, -
X; n X, - X, is an (n — 1)-equivalence. By Exercise 7 there is a resolution
fii Ky = X with K, < Ky, f|k,, =/12 and all cells of K; — K, have di-
mension > n. Similarly there is a resolution f,: K, - X, with K|, c K,
Sf21k., =/12, and all cells of K, — K, have dimension > m.

Let K =K, U K, and define f: K— X by f|g, =f; and f|g,=1,. Lct
n: K x I - K be the projection and define K« K x IbyK =K, x0uU K, n
KyxIUK,x1. Let Uy =K—K,x1 and U,=K— K, x0. Then U,
and U, are open in K and K = U, u U, . Define f = fr|g. Then f(U,) < X,
and f(lU,)c X,.Sincen: Uy~ K, m: Uy~ K,,andn: U, n U, ~ K, nK,,
we may apply 16.24 and conclude that f induces isomorphisms in homotopy.
To see that finduces isomorphisms, it is sufficient to prove that the inclusion
K < K x I induces isomorphisms. We utilize:

Lemma 16.28 Suppose (X, 4) has the AHEP. Then the inclusion X x 0 u
A x I'is a strong deformation retract of X x I.

Proof Let h: X x I-» X x0u A x I be a retraction. Define H: X x [
x I—- X x I by

H(x, t, 5) = (hy(x, t(1 —5)), st + (1 — $)hy(x, 1))

where A(x, t) = (h(x, 1), hy(x,1)) e X x I. This clearly satisfies the condi-
tions. 1§

Returning to 16.27, we see that K; x 0 U K; n K, x Iis a strong deforma-
tion retract of K; x I, and K; n K, x I u K, x 1 is a strong deformation
retract of K, x I. Hence K is a strong deformation retract of K x I It now
follows that f,: n(K, K,, ») > (X, X,, *x) and f,: n(K;, K, »)—
n, (X1, A, ») induce isomorphisms in homotopy by applying the 5-lemma to
the exact sequences for the pairs involved. The conclusion follows by applying
16.25 to the diagram

7tr(",l’ A’ *)—_’”r(X, X2 ’ *)

~ o~

n(K;, Ki3, ) —— 1K, K, , *)



144 16. The Homotopy Theory of CW Complexes

since K; — K; n K, has cells in dimensions > »n and K, — K;, has cells in
dimensions = m. |}

Theorem 1629 Let X=X, U X,, A =X, n X, and assume (X;, A)
and (X,, A) have the AHEP. Suppose (X;, 4) is (n — 1)-connected and
(X,, 4) is (m — 1)-connected. Then iy: n(X{, 4, *x) > (X, X,, *) is an
(m + n — 2)-isomorphism.

Proof Replace X by X as in the proof of 16.27. X = U, u U, and one
may apply 16.27 to deduce the conclusion since (U, U; n U,) = (X, 4) and
(X, U))= (X, 4). 1

Proposition 16.30 Suppose (X, A) has the AHEP and is (n — 1)-connected.
Suppose 4 is (s — 1)-connected. Then (p,)y: 7(X, 4, *) > 1,(X/A, *) is an
(n + s — 1)-isomorphism. (Note m,(X, A4, *) is not defined so this applies for
r > 0 only.)

Proof Consider the inclusion i: (X, 4) = (X u CA, CA). Since (CA, A)
has the AHEP (Exercise 4), and X U CA -~ CA= X = A, i,: n(X, A, ¥)—
n(X v CA4, CA, %) is an (n + (s + 1) — 2)-isomorphism. Now (X U CA4,
CA, x) ~ n,(X v CA, *). The conclusion follows from:

Lemma 16.31 Suppose (X, 4) has the AHEP. Then p.,: XU CA - X/A4
is a homotopy equivalence.

Proof By 16.28, X u A4 x I is a strong deformation retract of X x I.
It follows easily that X U C4 is a strong deformation retract of X x I/4 x 1.
We now show that X/A x 1 is a strong deformation retract of X x I/4 x 1.
A deformation is given by H(x, t,s) =(x, t+ (1 —s)(1 —1)). 1

Definition 16.32 A space will be called well pointed or will be said to have
a nondegenerate base point # if (X, *) has the AHEP.

Lemma 16.33 If X is well pointed, ZX ~ SX.

Proof By Exercise 18, Section 14, (X x I, X x 0 u %+ x Tu X x 1) has
the AHEP. Define a homotopy H: (X x0u * x Ju X x 1) x /> ZX by

H(x,0,t) = (% 1/2), H(x,1,1) = (%, 1 — #/2), H(*, 5, t) = (*,5(1 — 1) + 1/2).

Define f: X x I x 0 > ZX by f(x, s, 0) = (x, s5). Since H and f agree on the
intersection of their domains, there is an extension K: X x I x I-XX of
both fand H by the AHEP. K(x, 0, #) and K(x, 1, ) do not depend on
x, so K defines a map K: £X x I - XX by 8.12. Clearly K(x, s, 0) = (x, ),
K(Z* x 1) =(*, 1) and K(Zx x I) c T+, By Exercise I, Section 13, X ~
TX/Zx=SX. |
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Theorem 16.34 (Freudenthal Suspension Theorem—General Version)
Suppose X is (n— 1)-connected with n>1 and is well pointed. Then
E:n(X, ¥) > 7, (SX, %) is a (2n — 1)-isomorphism.

Proof Apply 16.30, 13.11, and 16.33 to the diagram

1,(X, %) ——> 7, (SX, %)

= ]‘ = (Pr;)*

T, 4+1(C*X, X)

o~

T +1(CX, X)W m,(ZX, %) 1

If we consider the sequence of groups =, ,(S"X, *) forn =0, 1, ... and the
suspension homomorphisms between them we observe that if X is a CW
complex $"X has no cells in dimension <n except for a 0-cell. Hence it is
(n — 1)-connected and 7, ,,(S"X, *)=m,, ("X, )= ifn>r+1.
Thus for n large the sequence * stabilizes” and this stable value is called the
rth stable homotopy group of X and is written m,5(X, %) or §,(X). The deter-
mination of these groups for simple spaces seems to be a very difficult prob-
lem. For exarmple, there is no known space X for which n,5(X, %) is known
for all r. An interesting conjecture which also seems very hard is the Freyd
conjecture: If X and Y are finite CW complexes and f: X - Y induces the
zero homomorphism in 7,5 for all r, then S*f ~  for some k.

Appendix

We shall describe the classical construction of the singular complex of a
space and show that it is a resolution. As a corollary (which we will use in
Section 21) we prove the every CW complex is the homotopy type of a sim-
plicial CW complex (defined below).

The classical construction will be called the functorial singular complex,
and the construction in 16.21 will be called the ad hoc singular complex
when we wish to make a distinction. The main advantage of the functorial
singular complex is that it is a functor from G to J, whereas the ad hoc
construction is only functorial in the homotopy category J,. One pays for
this advantage with size. The functorial construction on any finite geometric
simplicial complex of positive dimension has 2°¢ cells in each positive dimen-
sion, where ¢ is the cardinality of the continuum. On the other hand, the
ad hoc construction of a simply connected space can be made very efficiently
by Exercise 9, Section 22. We will also use the notation S(X) for the functorial
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construction if it will not lead to confusion; we now define the functorial
construction,

Let S, be the set of continuous maps F: A" - X with the discrete topology.
Let B(X)= S, x A". B(X)is a disjoint union with one copy of A" for each
map f€S,. Letr,: A,_y > A, be defined for 0 <s <n by 1ty, ..., t,_1) =
(fos s t-1, 0, £y ooy t,—y). Let B(X) =]]7-o B,(X) and let ~ be the
equivalence relation in B(X) generated by

(figo u) ~ (fi1, ()

forall0<s<n ueA"? feS,, and all n = 0.
Definition 16.35 S(X) = B(X)/ ~ with the quotient topology.

Proposition 16.36

(a) S(X)isa CW complex;

(b) §:T - X is a functor;

() ifAdc X, S(A) = S(X);

(d) There is a natural transformation n: S(X) - X.

Proof We use Exercise 5, Section 0 to show that S(X) is Hausdorff.
B(X) is normal. Let ¢: B(X)— S(X) be the quotient map. Then ¢ is closed
since if A = B(X)is closed, {b|b ~ a, a € A} is closed. Thus S(X) is Hausdorff.
Let S"(X) =q(B,(X) U - L By(X)). Then

S"X) - S"" X)) =¢(S, x Int A")= S, x Int A"

since g/, xin a» 18 1-1 and S, x Int A” is open in B(X). For each f€ S,, define
X5t A" = S(X) by x,(u) = q(f, u). This is continuous and y, |Int an 18 @ homeo-
morphism. Furthermore y (A", A" = (8"(X), $"7'(X)). Thus choosing
e;" = x,(Int A") as n-cells, we have a cellular structure on S(X). Clearly S(X)
is closure finite and has the weak topology by 14.5. This proves (a).

Let i: X - Y and define B(h): B(X)— B(Y) by B(h)(f, u) = (hf, u). This is
continuous and preserves the identifications. Hence it defines S(4): S(X) —
S(Y). This is clearly functorial, so we have proven (b).

Suppose 4 < X. Then B(A) is a closed subset of B(X). Hence the subset
g(B(A)) = S(X) has the quotient topology and is thus equal to S(A4). Thus
S(A) = S(X). This proves (c).

Define n: S(X) — X by ng(f, u) = f(u), It is easy to verify that this is well
defined, continuous, and a natural transformation. ||

Definition 16.37 By a semisimplicial CW complex we will mean a pair
(K, {x,}), where K is a CW complex and {y} is a collection of characteristic
maps ¥,: A" - K with one for each cell ¢,” such that for each cell e,” and each s
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with 0 <s < n there is a cell €j,”;, such that y, o = ¥, °1,. A CW complex
is called regular if there is a characteristic map for each cell that is a homeo-
morphism. By a simplicial CW complex we will mean a regular semisimplicial
CW complex such that each cell e, is determined by the set {y,(v;)} where
A" =(vp, ..., v,). We will write | K| for the underlying topological space of a
semisimplicial CW complex K.

To understand the meaning of these definitions it is helpful to notice that
8! can be made into a semisimplicial CW complex with only one O-cell. To
make S’ into a regular CW complex, one needs two O-cells and to make S*
into a simplicial CW complex one needs three 0-cells. However one cannot
make S? into a semisimplicial CW complex without any 1-cells.

Proposition 16.38 (S(X), {,}) is a semisimplicial CW complex.

Proof xs15=15,- |

The function f(x, s) defined in a semisimplicial CW complex K is often
written d,a. Thus an operator 0, is defined from the set of n-cells to the set of
(n — D)-cells for 0 < s < n. (See Exercise 25.)

Clearly a subcomplex of a semisimplicial regular or simplicial CW complex
is a CW complex of the same sort.

One can easily give a finite geometric simplicial complex K the structure of
a simplicial CW complex. By ordering the vertices of K, one defines for each
n-simplex a characteristic map y,: A" —» K which is order preserving on the
vertices. As a converse, we have:

Proposition 16.39 Every finite simplicial CW complex is homeomorphic
to a finite geometric simplicial complex.

Proof Let (K, {x,}) be a finite simplicial CW complex. Let V ={aq, ..., a,}
be the set of O-cells. Define F: V' — A™ by F(a,) = v;. We will extend this over
K. Define F,:e,” = A” by F(yZt;v,)) = Zt; F(x.(v;)). Since K is regular this
is well defined. Since yots = Xp@a,5)» Falepal,, = Fpa s Thus if e,™ < é,",
F,|s,m = F, and the maps F, therefore define a continuous map f: K— A"
Since K is simplicial, Fis 1-1 and hence is a homeomorphism from K to F(K).

Now F(K) is the union of the simplicies (F(x,(vo)), - - . » F(x,(v,))) and hence
is a subcomplex of A™ = R™, |

The process of barycentric subdivision (12.16) can be applied to semi-
simplicial CW complexes and we consider this construction next.

A sequence of subcomplexs 1o < 7, < - < 1, < A" with 1; # 1;,, deter-
mines a k-simplex (b(z,), ..., b(t,)) in A*. We take as a characteristic map
for this cell the map

Jror o Ak—vA"



148 16. The Homotopy Theory of CW Complexes

given by
Ity o b)) =Y £b(1).

Let (K, {x,}) be a semisimplicial CW complex. Define maps x5"> = %: A¥ —
K as the composition y, ¢ I~ *. Define the redundancy of y&' ™ by
(™) =n — dim 1, > 0.

Lemma 16.40 Each map x;° ™ is equal to a map yj> " with
r(XZO, ...,ak) =0.

Prooff We will use induction. Suppose r(y%’ ™) > 0. Then 1, c1,(A"™ 1)
for some s. Define 6, = A" ! by g, =1, (7). Then gy <0, << g, < A""!
and o, # 0,;,,. Furthermore 1 (b(a,)) = b(1;). Hence [0’ " = JI0 %
and consequently ;> ™ = g0 T But r(xposy ) = r(x ) — 1. |

We call y ™ nonredundant in case r(y2 %) =0; ie., 7, = A" We
will write K’ for the underlying space K together with the nonredundant maps
X2’ ™ as characteristic maps.

Theorem 16.41 If K is a semisimplicial CW complex, K’ is a regular semi-
simplicial CW complex. If K is also regular, X" is a simplicial CW complex.

Proof We first observe that if 0 < s <k,

O i Ts—1s Tst1saens Th X;o,.--.a'k—l

TO s eevs Tk — T
Xa T ’s —Xal

for some nonredundant map y% 7! by 16.40. We show now that each
¥ %™ is a homeomorphism by induction on k. This is trivial if k =0.
Choose a map x> . By 16.40 we can assume that it is nonredundant.
Suppose x°H(xg) = X2 v (xy). Let u; = I "™ (x;). Then u; e dA".
But ([ro, ...,tk)—l(aAn) c lk(Ak—-l), SO X; = lk(yi)' Now X;o, ey Tie I = X;o, e T~
SO ylor ko I(yg) = 1 ™ '(yy). By induction y, =y, so x, =x, and
¥ ™ is a homeomorphism.
Now define cells in K’ by

e = r(Int(b(zo), -, b(r))) = £+ *(Int A%
in case 2’ ™ is nonredundant. Then
Int A" = | ) Int(b(zy), . .., b(z})),

where the union is disjoint and is taken over all sequences 14 < -+- <1, =
A" with 1; # 7;,,. Hence the cells ¢}°° ™ are disjoint and cover K’ = K.
Now y® ™ is a characteristic map for. e ™ and since y° ™, =
Agor R, g ™(0AY) < (K)¥ . Thus K’ with these cells is a cell complex.
K’ is clearly closure finite and has the weak topology on the cells &0 ™,
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We have already proved that it is semisimplicial and regular so the first part is
done.

Suppose now that K is regular. Let A* =(v,,...,1,), and suppose
X () = x5 0wy for each i Since ™) = A (b(1)) =
X(b(A")) € e, and similarly 5> *(v,) € e, we must have « = f. Since K is
regular, we must have I " *(p,) = [°° - “(pv;) for each i. Hence b(t;) =
b(c;) and this implies 7; = ¢;. Thus the cell e;°° ™ is determined by the
points y;° %) for0 <i< k. |

Corollary 16.42 (Barratt) If K is a semisimplicial CW complex, K" is a
simplicial CW complex. §

We now state the main result and prove a corollary.

Theorem 16.43 (Giever—Whitehead [25, 74]) (S(X), =) is a resolution of
X.

Corollary 16.44 Every CW complex is the homotopy type of a simplicial
CW complex.

Proof of 16.42 By 1622, 16.36, and 16.43, S(X) ~ X. By 16.38 and 16.41,
|S(X)| = |S"(X)] is a simplicial CW complex. Thus X ~ §"(X). 1|

The proof of 16.43 is complicated and requires some lemmas.

Let S, be the set of characteristic maps of n-cells in a semisimplicial CW
complex K, with the discrete topology. Let B=]] S, x A". Let ~ be the
equivalence relation in B generated by

(Xa s 's(u)) ~ (X])(a, DE u)
for x,e A, and ue A"

Lemma 1645 B/~ =K.

Proof Define F: B/~ —> K by F({().,4)}) = x,(u). This is well defined,
continuous, and onto. To see that it is 1-1 note that every point x € B/ ~ has
a representative (x,, u) with u € Int A*. Thus if F(x) = F(x'), y () = y.().
But e, and e, are equal or disjoint, so « =«  and u = u’". To see that Fis
open, note that both B/ ~ and K are quotient spaces of the disjoint union of
the closed cells. Hence the topologies agree. |

Definition 16.46 Let (K, {y,})and (L,{ys}) be semisimplicial CW complexes.
We will call a map f: K— L simplicial if for every « there is a § such that

Xﬂ sza'

Clearly simplicial maps are continuous.
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Lemma 16.47 Let K be a semisimplicial CW complex and /1 K— X be a
continuous map. Then there is a unique simplicial map S(f): K — S(X) such
that nS(f) = /.

Proof We use 16.45 to construct S(f). Define
B(f): B— S(X)

by B(f){xy, u}) ={(fx,, w}. This is clearly well defined and continuous,
and preserves the equivalence relation. Thus B(f) determines a map
S(f): K- S(X)and nS(f) =1

Suppose g: K— S(X) is a simplicial map with ng =f. Then g({(x,, u}) =
{(0,, u)} for some map 0,: A" —» X. If ng =f we must have 0,(u) = fy,(v)
sog=3S(f). 1

If /: K— S(X) is a simplicial map, there is a unique simplicial map
S’ K’ > S(X) such that the diagram

K —L L, s(x)

.
K-L1osx) "oy

commutes.

Lemma 16.48 f ~ f" (rel K°).

This is the key to 16.43; we defer its proof temporarily.

Proof of 16.43 1t is clearly sufficient to consider the case that X is arcwise
connected. Choose * € X and let ¢ € S(X) be the 0-cell with n(e) = . Then
it is sufficient to show that

T TAS(X), e) > m (X, %)

is an isomorphism for all /. We first show that 7, is onto. Let a; (S", %) — (X, %).
Choose a semisimplicial complex K with | K| = $" such that * corresponds to
a O-cell ve K. By 16.47 there is a simplicial map S(x): S"— S(X), with
nS(e) = a. Since S(a)(v) € S°(X), S(a)(v) = e. Hence S(a): (S, *) - (S(X), e)
and 7, {S(2)} = {a}.

Now let a: (S, %) > (S(X), ¢). We will show that there is a semisimplicial
complex K with | K| = S", a 0-cell v € K corresponding to , and a simplicial
map f: K— S(X) with f ~ « (rel v). Now there is a simplicial map y: S'(X) —»
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S(X) with ny = = and a simplicial map y": $"(X) - S(X) with 7y’ = n. By
16.48 with K = S(X) we see that y ~ 1 (rel S°(X)). By 16.48 with K = S'(X)
and f =y we see that " ~ y (rel S(X)°). Hence y" ~ 1 (rel S°(X)). Thus there
isamap B: (8", *) - (S"(X), ) with 9B ~ a (rel ). Now B(S™ is contained in
a finite subcomplex of S”(X). By 16.39 and the simplicial approximation
theorem, there is a simplicial complex K with |K| = 8" and O-cell v corre-
sponding to * so that f is homotopic to a simplicial map é: K — S"(X) relative
to %, Thus o ~ 0 (rel ) and /' = 9’0 is simplicial for some choice of charac-
teristic maps in K. Consequently {«} ={f}. Suppose n4{f} = 0. Then thereisa
map H: B""!' > X with H|s. = nf. Now there is a semisimplicial complex
L with |L] = B**! and K a subcomplex of L (if K = (9A"®, let L = (A")™").
Then S(H): B"*! - S(X) is simplicial and since K is a subcomplex of L,
S(H)|x =f by uniqueness. Hence {f} =0. |

It remains to prove 16.48.

Proof of 1648 We will call a map 1: A¥ > A" inclusive is 1 if induced by a
1-1 order preserving map of the vertices. Since every inclusive map is a com-
posite of maps of the form i,, we have (x,1, #) ~ (x,, 1(#)) in the equivalence
relation of 16.45, for 1 inclusive, u € A¥, and y,: A" > K.

Now let 4, be a 1-1 correspondence from the nonempty faces of A” to the
integers 0, ..., 2""! —2 such that if 1 <1', A,(z) < 4,(t) and A,({v;}) =i
Define linear maps

AT AT B (AT 5 AT, g AT A,

by 1,(v;) = v;, b;(b(1)) = v, (., Where b(t) is the vertex of (A")’ which is the
barycenter of 1, and x;(v;) = b(4;*(i)).

If 0 <s<n,1,: A" ! - A" induces an inclusion of the faces of A"~ ! into
the faces of A"; by the condition on 4,, this inclusion corresponds to an
inclusive map I;: A”"~% —» A>™"'~2, We then have I, 1, =1, 1,, I,b, = b, 1,, and
n, I, =1,7,. Now define 0,:A" - A2""'~2 by

gt =tb;‘ +(1 - t)l}.'

We are now prepared to define a homotopy f;: K" — S(X). We represent a
point in K’ via 16.45 by a pair (32 ™, u) for ue A* and y™© ™ non-
redundant. Recall that /: K — S(X) is a simplicial map. Define

JOE ™ u) = (fama, 0,170 ™(u)).

Note that 0,1~ "(u)e A”"'~% and nfy,m;: A*""'~2 > X. Thus this
pair represents a point in S(X).
We show that the formula for f, is valid even if y;° =™ is redundant by
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induction on the redundancy. Suppose it holds for pairs (}i°' ™, u) of
redundancy less than p, and dim 7, + p =n. Let o; =1 '(t,). Then
06 ™ w) = £33 ™ )

= (Wf¥als T, 0,170 7 *(u))

= (@fyami I, 0. 1° " "(u))

~(ftamas I 0,170 7(u))

= (s, 0,1, 170 7(u)

= (WfYams, 0,1 " ™).

Hence the formula holds in this case as well.
We must show that f; preserves the equivalence relation in K (16.45). But

Fee ¥ 1 W) = (Wfyama, 0,17 ™ 1(w)
= (Afia iz, 0,1 5= et ()
=f;(xro, s Ts— 1y Tstte cees Tl u)
a 3
:.f‘t(x;o, very T lsy u)‘
Note that in the case s = k, 2 "~ is redundant and we have used our

earlier result.
Now 0, =1, which is inclusive. Hence

Sole %, 4) = (Wfte T ().

The homeomorphism K’ = K is given by (¢ =™, u) > (x,, I " ™(u)),
$0 fo =/.
On the other hand, 8, = b,, and b, I*®> -~ is the inclusive map that sends
v; to v, - Hence
[ ™ u) = @fygmy, b I ™(u))
= (ananlbl[rO! m'tk’ u)
= (fier ™ w).
Since f; is simplicial, f; = f".
Finally,if (x°' ™, u)isa vertex of K, /™ = *(u) = v; . Hence f,(y3°' "~ ™, u)
= (tf{a 72, 0,0;) = (Wfya 71, v3), since 0,(v;) = v;. |}

Exercises
1. Show that if U c Int 4, i,: n(X — U, A — U) » n,(X, A) is an isomor-

phismif r<m+n—-2andisontoifr=m+n-2if (X—-U, A—U) is
(n — 1)-connected and (4, A — U) is (m — 1)-connected.
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2. Write down a homotopy that makes K a strong deformation retract of
K x I (notation from Theorem 16.27).

3. Prove that if f: (X, ») = (Y, ) and (X, *) is well pointed, Y u, C*X ~
Yu,CX. (23.8)

4. Show that (CX, X) has the AHEP. (16.30)

5. Suppose X and Y are arcwise connected and the homotopy type of CW
complexes. Let f+ X — Y induce fi: (X, *) - n,(Y, *). Prove that if f
is an isomorphism, fis a homotopy equivalence.

6. Suppose f: X — Y is a weak homotopy equivalence and K is a CW
complex. Show that f,.: [K, X]— [K, Y]isa 1-1 correspondence. (Section 17)

7. Using the proof of 16.14, prove the following generalization: Given
Jo:A— Ysuchthat (f)y: (A4, *) > n,(Y, x)is an (n — 1)-isomorphism, there
is a space X > A4 such that (X, A) is a relative CW complex with cells in
dimension > and an extension f: X — Y of f; which is a weak homotopy
equivalence. (Exercise 10; 16.19; 16.27; Exercise 6, Section 21; 22.5)

8. By considering the pair (X x Y, X v Y) prove that if X is (n— 1)-
connected and Y is (m — 1)-connected, and both X and Y are CW com-
plexes,

m(Xv Y, «)2nX)®r(Y)

for k < m + n, the isomorphism being given by a — ({p1)4(®), (P2)x(x)). Use
this, induction, and a limit argument to prove that if X, is (n — 1)-connected
for all «,

AVEAEKRIES
acA aed
for k < 2n. (23.8)

9. Give an alternative proof of 16.4 without using Zorn’s lemma based on
proving thatif Xc X c Yand X = XU e, U - Ue,, (X, X, *) =0.

10. Let K — X be a resolution and suppose X is (n — 1)-connected and
well pointed. By applying 16.34, Exercise 3, Section 13, and Exercise 7 above
conclude that there is a resolution K’ of QSX such that K'> K and K’ — K
consists of cells of dimension >2n:

K—X
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By applying (16.10) conclude that if M is a CW complex E: [M, X]—
[SM, SX}isa I-1if dim M < 2n — 1 and is onto if dim M < 2n.

11. Showthatif A € X and 4 is contractible inG, X is a strong deformation
retract of X U CA. Prove a similar result in G*.

12. Prove that m,(RP", RP" ', )@ Z@® Z if n > 1. (Hint: Use Exercise 5,
Section 14 to evaluate the homomorphism n(RP"~!) — n,(RP").) Note that
n(RPY/RP"™', ¥) = Z. Compare this to 16.30.

13. Let S* = { )72 ,S" with the weak topology. Prove that $* is contractible,

14. Show that i,: n(X, 4, *) > (XU CA, CA, %) is an (n+s—1)-
isomorphism if (X, A) is (n — 1)-connected and A is (s — 1)-connected. (Hint:
Use 1627 with XU CA=(Xu A x[0,4)u(XuC4d-X))

15. Suppose (X, A) is (n — 1)-connected and A is (s — 1)-connected. Prove
that there is an exact sequence

Tcn+s—2(A) - nn+s-2(X) - nn+s—2(X Y CA) - nn+s—3(A) =

truncated on the left at =, ._,(A). (Exercise 23; 23.8)

16. Let A4 be the graph of sin(1/x), with x > 0in R? and B = {(x, y)|y <0,
x>0, x*+3y2=16}. Let X=A4uU Bu0 x [~4,0]. Let x = (0, —4). Show
that 7, (X, ) =0 for all » > 0 but X is not contractible.

17. Using the formula for E({f}) in 13.11 construct a homomorphism
E:n (X, 4, %) > 1, (SX, S4, %)
such that there is a commutative diagram

(X, ¥) > (X, A, #) s 1, (A4, *)

lE lE E
s 1 (SX, %) —— 70,4 (SX, SA, %) —— 7,(SA, %)

Prove that if A4 is (m — 1)-connected, X is (k — 1)-connected, * is a non-
degenerate base point in both 4 and X, and r = min(2k — 1, 2m), then
E: n(X, A, *) > n,,.(SX, SA, *) is an r-isomorphism.

18. Let X be a connected one-dimensional CW complex. Show that X has

the homotopy type of a wedge of circles. (A one-dimensional CW complex is
topologically the same as a graph.)

19. Show that /: X — Yis a k-equivalence iff given any CW pair (L, Ly) of

dimension <k and maps a: L, — X, f: L —» Y with fa ~ 8] , , there is a map
g: L— X withg|, =aand fg ~ f (rel L,).
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20. Suppose (X, A) has the AHEP. Show that pey: XU C*4 - X/A is a
homotopy equivalence in G*. (18.10, 18.11)

21. Use 16.24 to show that if 4 = X has a neighborhood U such that A4 is
a strong deformation retract of U, X u CA —» X/4 is a weak homotopy
equivalence.

22. Let X ={xeR'|x =0 or 1/x € Z}. Show that X is not the homotopy
type of a CW complex. (Hint: Calculate n,(X) and find a resolution
J: K— X. Show that f has no homotopy inverse.)

23. Let F—» E > B be a Serre fibration. Construct a map y: £u CF—» B
extending 7 and show that y,: n.(Eu CF, x) > (B, %) is an (n + m)-
isomorphism if F is (n — 1)-connected and B is (m — 1)-connected. (Hint:
Consider the maps (F, F) - (E u CF, CF) — (B, %).) (Exercise 6, Section 21)

24. Use 16.20 to show that if K is a CW complex and there are maps
f: K- Xandg: X - Ksuch that fg ~ 1, X is the homotopy type of a CW
complex.

25. An abstract semisimplicial complex is a sequence of sets X, for n >0
and transformations 0;: X, —» X,_; for 0 <i <n such that 6;0; = 0;_,0; if
0 < i <j < n. Show that there is a 1-1 correspondence between semisimplicial
CW complexes and abstract semisimplicial complexes.

26. An abstract simplicial complex is a pair (¥, S) where V is a set and S
is a collection of nonempty finite subsets of V' (called simplices) such that:

(a) ifveV,{v}eS
(b) feeSandtco,1€S.

Show that every simplicial CW complex determines an abstract simplicial
complex, and if two simplicial CW complexes determine the same abstract
simplicial complex they are homeomorphic. (21.14, 21.15)

27. Let X be a regular CW complex (16.37). Show that there is a simplicial
CW complex Y with | X| = | Y|. (Hint: Suppose K is a simplicial CW com-
plex with |K| = S find a simplicial CW complex L with |L| = B"*! and K
a subcomplex.)

28. Let F: [(X, %), (Y, %)] = [X, Y] be the transformation which ignores
the basepoint. Suppose that * € X is nondegenerate and Y is arcwise con-
nected.

(a) Prove that Fis onto.

(b) Define an action of =n,(¥, %) on [(X, %), (Y, %)] as follows. Let
[ (X, %)= (Y, ) and a: (1, {0, 13) = (Y, *) and choose K: X x I— Y such
that K(x, 0) = f(x) and K(*, t) = a(z). Let f* = K(x, 1). Show that the homo-
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topy class of f* depends only on that of f and « (use Exercise 18, Section 14).
(c) Show that F({f*}) = F({f})
(d) Show that if F({f}) = F({g}).f=g"
(e) Show that if (Y, %) is an H-space with unit, K may be chosen so that
fe=r

(Compare with Exercise 14, Section 11.)
29. Suppose f: (X, A) — (Y, B) is a weak homotopy equivalence. Prove that

the induced map f: X u C4A -~ Y U CB is a weak homotopy equivalence.
(21.8).



17

K(n, n)’s and Postnikov systems

At the time of writing there is no finite simply connected CW complex all
of whose homotopy groups are known—with the exception of contractible
complexes. In the absence of such information it is reasonable to try to turn
the problem around. Given a sequence of homotopy groups can one find a
space X realizing this sequence? Do any conditions have to be put on the
sequence ? The question then is one of constructing spaces with preassigned
homotopy properties. We cannot expect our constructions to be finite cell
complexes in general. In fact they will be objects somewhat beyond ordinary
geometric imagination. We will think of them in terms of their categorical
properties rather than their geometry and treat them with secondary con-
cern—as tools and guideposts. Their properties will make them useful, as we
will see in the sequel.

We begin by looking at a few examples.

Proposition 17.1 (a)

s =B 17
(b) _

ern - 123
(©

Z, i=1
m(8') = {0 i1,

Proof This follows from 11.10, 11.12, 13.14, 13.5, and 15.9. ]

157
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The simplest constructional question is to ask if there are other spaces with
one nontrivial homotopy group. The existence of such spaces could be useful.
16.6 shows, for example, that we can expect to have good control over the
mappings of a CW complex into such a space.

Definition 17.2 A CW complex with a single nonvanishing homotopy
group m occurring in dimension » is called an Eilenberg-MacLane space
K(m, n).

Thus RP” is a K(Z,, 1), CP* is a K(Z, 2), and S' is a K(Z, 1).

There are three questions which naturally arise:

1. For which n and » do K(n, n) spaces exist? More generally, which
sequences of groups m;, 7,, ... with 7, abelian for i > 2 can be realized as
the homotopy groups of some space.

2. Can spaces with many nonzero homotopy groups be decomposed into
spaces with fewer nonzero homotopy groups.

3. Does 16.6 give enough information to calculate [(X, %), (K(n, n), %)]
(assuming K(m, n) exists)?

We will show:

Theorem 17.3 If n is a group that is abelian and if # > 1, there exists a
CW complex K(n, n).

The construction will depend on several lemmas.
Let \/ S," be a one-point union of n-spheres S," (where o runs over an
indexing set #) with the weak topology.

Lemma 174 1f n > 1, n,(\/ S,”) = free abelian group generated by {i,}
where i,: §" = S," = \/, S," is the inclusion. 7,(\/S,") is free and generated by
{i}.

Proof Consider first the case that theindexingsetisfinite. If n = 1, the result
is Exercise 7, Section 7.Suppose n > 1. Then S;, v -+ v S = 8, X *++ x 8
and is a subcomplex. The cells of S, x -+~ x 8§, — (S, v **+ v S;) are in
dimensions > 2n so

TSy, X o x Sp, Sy, Vv S,

ax® Pa e *) =0
for i < 2n and hence

TSy, vV v Sy

o ¥) R TSy X X Sg,)

RTSI)D D (S )= ZD DL
For the case of arbitrary indexing sets, apply 15.11. |

Let F4" be the free (abelian if n > 1) group generated by the elements of the
set . 17.4 implies that F4" = 7,(\/,c 4 S
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Lemma 17.5 Let F4" and F3" be as above and ¢: F4" — Fg" be a homo-
morphism. Then there is a unique (up to homotopy) map f: \/,e 4 S," —

\/ﬁ ) Sﬁn such that @ =f* : nn(\/ae A Sa") - nn(\/ﬂs B Sﬂn)'

Proof Let e F4" be the generator corresponding to « € A. Then ¢(d) €
Fg" = n,(\/se5S5"). Choose f,: S"— \/sc5 S;" with £, € ¢(&). Define f by
fls.» = f.. This is well defined since £, is base point preserving and continuous
since \/,. .4+ S," has the weak topology. Clearly f,(&) = ¢(&) for all o € A so
f+ = @. To prove uniqueness, suppose g: \/mE A, — \/l,emSﬁ" has the re-
quired property. Since i,: S"=S," = \/,4 S, represents &, gi, represents
(). Hence g|s » ~ f, (rel ). 1t follows that g ~ f (rel *). |}

Proposition 17.6 Let n be an integer and 7 be an (abelian if n > 1) group.
Then there is a CW complex with one O-cell and all other cells in dimensions
n and n + 1, M(r, n), such that n,(M(rn, n)) = 7.

Proof By 17.5 such a space exists if 7 is free (free abelian if n > 1).

Let 0 » R —>» F— 7 —0 be a resolution of 7, i.e., a short exact sequence
with R and F free. Let f: M(R, n) » M(F, n) be a cellular map such that

fx=0.
Let Z be the mapping cylinder of £ (16.15) with 4 = ¢ and define
M(n,n) = M(F,n) U, CM(R,n) = Z/|M(R, n)
If n > 1, we have an exact sequence:

ﬂn(M( R’ n)) Im— 7rn(z) — 7I"(Z, M(Ra n)) — 0

NN

@ nn(M(F’ n)) nn(M(n’ n))
U
F

The last isomorphism follows from 16.30 since n > 1. Consequently 7
7, (M(m, n)). Suppose now that n =1. Applying 7.12 with X = M(xn, 1),
X, = M(n, 1) — M(R,n) x 1, and X, = M(n, 1) — M(F, n), we conclude that
n(M(n, 1)) = Fxp{l} & F/[Re=n. |

M(=, n) is called a Moore space for the group 7.

Proposition 17.7 Let ¢: n — p. Then there is a map f: M(rn, n) - M(p, n)
with 1, = o.
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Proof Construct a commutative diagram of groups

(3]

0 » R, > Fy > 7T >0
0 » R, e > F, —p »0

By 17.5, there are maps

M(R,,n) —2— M(F,n) —— M(n, n)

lf. l ’
MRy, n) —L M(F,,n) —— M(p,n)

The diagram commutes up to homotopy by the uniqueness assertion in 17.5.
We thus may construct f by 14.15. Applying =, to the diagram, one easily
concludes that £, = ¢. |

We now consider a construction for “Kkilling”” homotopy groups. We will
apply this to M(n, n), killing all homotopy groups above the nth to construct
K(m, n).

Proposition 17.8 Given X and n there is a space X™ and inclusion
i,: X = XU such that:

(@) (X™, X)is a relative CW complex with cells in dimensions >»n + 2.

b) 7(X"™)=0ifi>n.
©) (i) m(X) - (X" is an isomorphism if i < n.

The proof will depend on a lemma.

Lemma 17.9 Let X be a space. Then there is a relative CW complex
(X’, X) with cells in dimension n + 1 only such that 7,(X") =0 and 7;(X) =
n,(X') for i <n.

Proof of 17.9 Let {e,} be a set of generators and f,: S" — X represent e, .
Define

X =XU[]B*xeS," ~ fi(x).
Let i: X— X’ be the inclusion; then i.(e,) =0 so i (r,(X))=0. But
n{X’, X) =0 for i <n by 16.9; consequently m,(X’) =0 and n,(X) ~ n(X")
fori<n. ||

Proof of 17.8 Apply 17.9 to produce X’ with m,.,(X’)=0. Apply it
again to X’ to produce X” with 7, , ,(X") =0, etc. Let X™ = { )X with the
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weak topology. (a) is clear. (b) follows since n,(X™) =0 for n <i <r, and
(X" = lim 7, (X®) by 15.9. (c) follows from (a). |

Proof of 17.3 Let K(m, n) = M(n, ®)"™. n(K(r, n)) = 0 for i > n'by 17.8(b),
n,(K(n,n)) = nby 17.8(c), and n(K(rn,n)) =0fori <nby17.8(c)and 17.6. |

Lemma 17.10 Let ¢: n — p, M(m, n) be as constructed in 17.6 and suppose
K(p, n) satisfies 17.3. Then there is a unique (up to homotopy) map
f+ M(n, n) > K(p, n) such that ¢ = fy: n,(M(x, n)) > n,(K(p, n)).

Proof We show existence by constructing a map j: M(p, n) - K(p, n) and
combining this with 17.7. Since M(p, n)" has cells only in dimension »
excepting for a O-cell, M(p, n)" = \/yenSs" Let i,: S, = \/,eaS," and
it \/ae 4 S:" = M(p, n) be the inclusions. Let x, = {ii,} € n,(M(p, n)) ~ p.
Let f,: S," — K(p, n) be a representative of x,ep =m,(K(p, n)). Define
F: \/as.&San _>K(p’ n) by Flsa" :f(;z' Now ker Fy= ker Iy < nn(\/uezt S.z”)
since F,({i,}) = x, = ix({i,}). Hence for any (n + 1)-cell €}*" of M(p, n) with
attaching map fj, we have {Ff;} = Fi({f;}) = . We thus construct an exten-
sion F, of F over e;“ and hence an extension j: (Mp, n) = K(p, n) of F.
Since the diagram

Je

"n(M(P, n)) EE—— ”n(K(P, n))

N

™ ( vV 54)

e A

commutes and i, is onto, j, is an isomorphism.
Given two maps fy and f; with (fp)« = (fi)x, we have

fo fo

Vaeﬁsa” Vaex’tsa"

since

{fois} = (fodiizy = (flil} = {fii,}.
To construct an extension of this homotopy to M(n, n) x I, consider the
diagram

M(r,ny x { _

~
~
~
~o
~
~
~
~
~
~
~

Mr,nyx 00 \/ S,"x1u M(r,n)x1 — K(p, n)

agt
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Since the cells of M(m, n) x I —{M(m,n) x 0 U \/qet S," x I'U M(m, n) x 1}
are of dimension n + 2, the extension exists by 16.3. |

Proposition 17.11 Let ¢: n — p. Let K(n, n) = M(xn, n)" and let K(p, n)
satisfy 17.2. Then there is a map f: K(n, n) » K(p, n) unique up to homotopy
with f = o.

Proof By 17.10 we can construct f": M(n, n) —» K(p, n). f’ can be extended
to f: K(n, n) > K(p, n) by 16.3. To prove uniqueness, let 13, f>: K(n, n) -
K(p, n) and suppose (f)« = (S5 then fi|ye,m~S2lm,ny by 17.10.
We consider the extension problem

K(r, n) x 1\

~

K(n,n) x 0w M(n,ny x I'u K(n,n) x 1 — K(p, n)
and apply 16.3 again. ||

Corollary 17.12 Any two CW complexes K(r, n) satisfying 17.2 are of the
same homotopy type.

Proof They are both the same homotopy type as [M(n, n)]" by 17.11
appliedtop =1. |

Corollary 17.13 For each n > 1, there is a functor from AL, to X, (from
G to X, if n = 1) taking n to a K(m, n) space.

Proof This follows immediately from 17.11 and 17.12. ||

Proposition 17.14 Let f: X —» Yand i,: X - Y™, i’: ¥ o Y satisfy the
conclusion of 17.8 with m < n. Then there is a unique (up to homotopy) map
So,m: X" = Y™ such that the diagram

X—f—>Y

XM Snm y yiml

commutes. In particular, X - X™ is a functor J~£,,-+Jt,,, where K is the
category of CW complexes and continuous maps.
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Proof We apply 16.3 to the diagram

X[n]
I‘.n \\\\\
\\\
f "m‘ > [
X — Yy —=— yMm

to conclude the existence of £, ,,. To prove uniqueness, suppose f, , and f, ,,
are extensions. Consider the diagram

X"

~
~
~
~
\\
~
~
-
~
~a

XM x QUXxTuXMx] —2 ym

where G(x, 0) = f, (%), G(x, 1) =f, n(x) for x € X" and G(x, 1) = i, (f(x))
for x € X, and apply 16.3 again. The map £, ,: X™ — Y™ will be written
S, Clearly f1" o g™ = (fo )" by the uniqueness assertion. A functor is
thus defined by choosing for each X, a space X' satisfying the conclusion
of 17.8. |

The space X' is called the nth Postnikov section of X. These sections fit
together to form a tower called the Postnikov system or Postnikov tower of X.

X

The maps p,: X — X"~13 are constructed by applying 17.14 to the identity
map with m = n — 1. We think of the sequence X" as being approximations
to X (see Exercise 2).
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The next result shows that if X is a CW complex, the homotopy type of X!

does not depend on the choice of X,

Proposition 17.15 Let X be connected and X", X1 be two spaces satis-
fying the conclusion of 17.8. Then there is a weak homotopy equivalence
e: X" o X1 which is the identity on X.

Proof By 17.14 there is a map e: X" - X which is the identity on X.
It is easy to see that e induces isomorphisms in homotopy groups by the
commutativity of the diagram

TT,-(X["]) SRS BN ni()‘(‘[n])

\n). /n’t

n(X) i

Definition 17.16 Let X™ be a resolution of the fiber F of the map
i,: X - X ie., we convert i, to a fibering

F —— E 2, xmn

Ry

Xm ___ﬁ'____.,

according to 11.14. X is called the nth connective covering space of X.
If n =1, this is equivalent to the ordinary covering space construction (see
Exercise 1). A map j,: X™ — X such that the square commutes up to homo-
topy is induced by the construction.

Proposition 17.17  (j,)x: 7(X™) > n(X) is an isomorphism if i> n,
and 7 (X™) =0ifi <n.

Proof This follows from the long exact sequence of the fibering. [|

Proposition 17.18 Let /> X — Y and suppose j,: X — X. Then if m < n,
there are maps f™™: X™ - ¥™ guch that f™™ogh"~(fog)*™, and
1™" = 1, Furthermore, the diagram

ym_ "7, ym

X—>Y

commutes up to homotopy.
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Proof In 17.16, F = Q(X™", X, %). We define
Fome QX X, ) —— O(YI™, Y, %)

by f™(w)(t) = f,, m(e(p)). Clearly f™™ogh" ~ (fg)™ and ™"~ 1. ™" is
constructed by applying 16.20. The diagram commutes up to homotopy
since

QX X, )~ (YN, Y, %)

1,,1 f l

X —

commutes. [

We describe now a technique for analyzing various homotopy theory
problems, called obstruction theory. We will consider only one problem:
Given f% X > Y, is f nullhomotopic? We assume X is the homotopy type of
a CW complex, and we take a Postnikov system for Y. We will say fis n-
trivial if i, fis nullhomotopic:

x—L .y, ym,
This does not depend on the choice of Y™, for if we choose ¥ — ¥},
there is a map e: Y™ - Y[ inducing isomorphisms in homotopy and such
that ei, ~1,. Since X is the homotopy type of a CW complex, there is
a 1-1 correspondence [X, Y™ [X, Y] s0 i,/ ~ iff i,f ~ *. (See Exercise
6, Section 16.)

Lemma 17.19 If X is a k-dimensional CW complex, f is k-trivial iff f
is trivial.

Proof If fis k-trivial, there is a map f* X —» Y® such that f~ j, f by
Exercise 9, Section 11. Now apply 16.3 to the extension problem

¥y —I 4 yw

Since CX — X has all cells in dimensions <k + 1 and n(Y®) =0 for i <k,
an extension exists. Thus fand hence fis trivial. The converse is easy. |

If X is an infinite CW complex, there may exist maps that are k-trivial for
all k but which are essential. Such maps are called phantom maps. (See (26].)



166 17. K(m, n)'s and Postnikov Systems

For finite CW complexes one may take an inductive approach to the prob-
lem. Let A"(X: ) = [(X, %), (K(n, n), *)]. As we shall see in the next section,
this set is an abelian group called the n-dimensional (ordinary) cohomology
of X with coefficients in x, if 7 is abelian.

Proposition 17.20 Let /2 X — Y. If fis (n — I)-trivial, there is defined a
set 0, (f) € A"(X; n,(Y)). 0€0,(f) iff fis n-trivial.

Proaf Consider the exact sequence in 8* (by Exercise 10, Section 11)
[X, K(m(Y), m)) = [X, Y] > [X, Y= 1)

let ©,(f) = a5 '(i, - /). This is nonempty iff fis (n — 1)-trivial and 0 € 0,(f) iff
fis n-trivial. |

O,(f) is called the n-dimensional obstruction set to f being essential. 17.20
is most useful if we know that A"(X, n,(Y)) = 0 for all n.

Corollary 17.21 If 0 = A"(X; n,(Y)) for all n and X is an arcwise con-
nected finite CW complex, [X, Y] ==*. |

Exercises

1. Show that if X is the homotopy type of a CW complex, XV is the
homotopy type of the simply connected covering space of X.

2. Show that if the maps p, are converted inductively into fibrations,
there is a map i: X — lim X such that n,i = i,, where the i, are chosen so
that p, i, = i,_,. Show that i/ induces isomorphisms in homotopy. (Show first
that n(lim X™) = lim =,(X™).) See Exercise 9, Section 15.

3. Lets: E > Bbe afibering with B connected. Show that there are fiberings

n,: EM — E" 1 for all n > 0 and factorizations f,: E — E™ with n,f, = f,_,
such that

(@) E™=Bf,=f;

(b) the fiber of =, is K(r,(F), n) where F is the fiber of f;

©) (f): nE) - n(E™) is an isomorphism for i < n;

(d) fr=mn, o on,: EM> B, (f"y: 1,(E™) - n,(B)is an isomorphism
for i > n.

This generalizes the constructions X" and X®.

4. Generalize 17.21 to show that if X is an arcwise connected finite CW
complex and H*(X; 7, (Y)) = O for all k # n, there is a transformation from
A"(X; m(Y)) onto [X, Y]. Furthermore, if HX; m,,,(Y)) =0 for all
k < n — 1, this transformation is also 1-1.
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5. Deduce from Exercise 4 the famous Hopf theorem: If X is an arcwise
connected finite CW complex of dimension n, there is a 1-1 correspondence
between A"(X; Z) and [X, S"].

6. Show that any sequence of groups 7, 7,, ... with 7; abelian for i > 2
can be realized as the homotopy groups of some space. (Hint: Do it first for
a finite sequence.)

7. Calculate [RP®, CP*]. That is how many homotopy classes are there ?
(Hint: Compare with [RP?, CP®].)

8. Let K be the Klein bottle (see Exercise 14, Section 7). Show that K =
K(n, 1) where = is a group on two generators x, y with the single relation
xXyx = y.

9. Let p: RP* > RP?*/RP' = 8% I1,: § » RP?. Let f = I, p. Prove that:

(1) fis essential;

(2) 0 =f*: nl(RP29 *) —’nl(sza *)a

(3) RP = M(Z,,1).

(Compare to 17.7 and 17.10.)

10. Let 0> 7 —2» p—i» g—0 be a short exact sequence of abelien
groups. Construct maps

K(n, 1) — K(p, n) - K(o, n)

as in 17.11. Prove that this sequence is homotopy equivalent to a fiber se-
quence; i.e., if g is converted into a fibering there is a homotopy commutative
diagram

F, - E, - K(o,n)

[

K(n,n) —— K(p,n)

11. Show that K(n, n) is an H-space iff = is abelian.
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Spectral Reduced Homology and Cohomology

Theories

This section is concerned with the definition of spectral homology and
cohomology functors. The ordinary homology group H,(X) can be thought
of as an approximation to n,(X).

We think of x,(X) as a classification of n-dimensional ““elements” in X.
In this case, by an n-dimensional element we mean a continuous image of S".
The groups =,(X) are easy to define, and, as we have seen, hard to calculate.
A different notion of element is given if we consider elements as represented
by imbedded cells. Then S* x S' has a 2-dimensional element even though
7,(S* x 8§') = 0. The number of cells in a given dimension is not, however, a
topological invariant. The ordinary homology in dimension # is designed to
be the classification of certain invariant combinations of the n-dimensional
cells (called cycles). The difficulty with homology theory is exactly the oppo-
site to homotopy theory. Homology groups are easy to calculate, but hard to
define (in an invariant way). In Section 20 we shall give a more detailed
explanation of what we mean by a cycle and when two cycles are homo-
logous. Our present task is to define certain general functors called homology
and cohomology theories on any space in CG*. They will be topological (in
fact homotopy) invariants. In Section 20 we shall show that they correspond
to the homology classification of cycles in the case of ordinary homology
theory. Our general theories’* will include stable homotopy theory and

14 Sometimes the theories described here are called extraordinary homology and
cohomology to distinguish them from the ordinary theory described above. However, as
times goes on, they become less extraordinary.

168
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other functors which have recently become important in algebraic topology—
K-theories and cobordism theories. A brief description of these is found in
Sections 29 and 30.

We begin by defining the notion of a spectrum E = {E,, ¢,} and show that
each spectrum gives rise to two sequences of functors E,, and E™ from CG*.
to A, the first covariant and the second contravariant. These are the spectral
homology and cohomology functors.

Definition 18.1 A spectrum E ={E,, e,} is a sequence of spaces E, and
maps e,: SE,—» E,,, for n =0 (or equivalently ¢,: E, > QE, ;) in C§*,
E is called a suspension spectrum if e, is a weak homotopy equivalence, for
all n sufficiently large and an Q-spectrum if ¢, is a weak homotopy equivalence
for all » sufficiently large.

Examples

1. Let X € CS and define X by X, = §"X, and x,: S(S"X) - S"*1 X to be
the natural homeomorphism. Any suspension spectrum is obviously of this
form ““up to weak homotopy ™ where X = X,. This spectrum will be written
X and S° will be abbreviated S.

2. Hrn is given by (Hn), = K(xn, n), and (hn),: K(n, n) > QK(n, n + 1) a
chosen resolution.

Given a spectrum E (we often suppress the spaces F, and maps e, from the
notation, when it will not lead to confusion), and a space X we will define
groups E,(X)and E™(X) for each integer m.

Definition 18.2 A graded abelian group is a sequence {G,} of abelian
groups, defined for each integer n. A homomorphism f: {G,} - {G,’} of
graded groups is a sequence {f,} of homomorphisms f,: G, — G,’. One often
writes G, for {G,}. Similar definitions may be made for graded R-modules, or
graded sets.

Such objects and homomorphisms form a category written M., Mg,
or 8, in the cases of graded abelian groups, graded R-modules, and graded
sets respectively. )

Example The sequence G, =n,(X, *) forn>1and G,=0if n<0isa
graded abelian group if n; is abelian (otherwise it will be called just a graded
group), and the sequence of homotopy groups yields a functor m,: T* — Moz .
This sequence is called positively graded since G, =0 if n <0.

Let C* be a category of spaces with base point and base point preserving
mappings.
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Definition 18.3 A reduced homology (cohomology) theory on C* is a
covariant (contravariant) functor {E,} ({£™}) from C* to M. satisfying:

(A) Iff: X— Y, write fy.: E(X)—>E(Y) (f*: E"(Y)~ E™(X)) for the
induced homomorphism. Then if f~ g in C¥*, f,, = g, and f* = g*.

(B) There is a natural transformation:

W(X) = E,i1(SX) (00 E"(X) > E"1(SX))
which is an isomorphism.

(C) ffi X>Yandi: Y- Y u,C*X, the sequence:

E(x) -1 m(Y)i. (Y U, CEX)
(Em(x) L Eny) & Emy uy C*X))
is exact in the middle.

We now construct, for each spectrum E, functors {£,,} and {E™} which are
reduced homology and cohomology theories on CS8*. These will be called
spectral homology and cohomology theories (to distinguish them from
theories constructed in other ways). If E = Hr, these groups will be called
the ordinary spectral reduced homology and cohomology theories with
coefficients in 7. These are classically written H,(X; ) and A™(X; n). As we
shall see, ordinary cohomology agrees with the functor introduced in Section

17 with the same name. If = = Z, this is abbreviated H,(X) and A"(X).
Given X e CS8*, consider the directed systems

i 77:n+m(X A En)lf—' nn+m+l(X A En+1) -t
S IS"TK BN (ST X By (2 m),
where the homomorphisms y, and 4, are the composites

(1 Anen)s

n+m(XA E)_’nn+m+l(XA E A S )_—_—’nn+m+1(XA En+1)
[Sn—mX! E] [Sn+1 mX SE] (endy [Sn+1—mX, E,,+1].
Define

E(X) =lim{m, (X A E), 7} and  E"(X) =lim{(S"""X,E,], 4,}.

Theorem 18.4 {£™} is a reduced cohomology theory on CS*.

Proof f: X - Y induces homomorphisms

(en)s

[Sn mY E]———>[S"+1 mY SE] [S"+I_mY,En+1]

l(sn—mf)* (Sn+ti1-myyx (Shtl-mpyx

(en)x

[Sn mX E]—E—>[S"+l mX SE] [Sn+1—mx, En+1]
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This induces 2 homomorphism from the direct sequence for E”(Y) to the
direct sequence for £™(X), and hence a homomorphism f*: £"(Y) - E™(X)
by 15.12. By the uniqueness assertions, 1* = 1, and (fg)* = g*f*.

Proof of (A) Suppose /'~ g in CG*. Then " ™f ~ $" "g in CS* so
(S =(S""g)*: [S"TY, El - [S"TMX, E,
Hence f* =g*. |

Proof of (B) Replace SX by X A S! and note that the natural homeo-
morphisms X A S*=(X A S") A $*! induce (unlabeled) natural isomor-
phisms

[XA $ " E] [XAS™ASLEAST— S1xA S E,, ]

= ~ x

(XA SYA S El—2 S [(X A SY A S A S E, A ST-"2L[(X A S A ™ E,, )

Now the diagram commutes, and both horizontal composites are 1,, as
occurring in the direct limit for £m(X) and E"* (X A S"), it follows that the
limits are naturally isomorphic. |

Proof of (C) By Exercise 21, Section 14, the sequence

[S"™"(Y U, C*X), E,] —— [S"""Y, E,] —L— [s"""X, E,]
U . 2l o U
[Y U, C*X, Q" "E,]—— [Y, Q" "E,| —— [X, Q"""E,]

is exact at the middle. By 15.13 we are done. ||

Theorem 18.5 {E,} is a reduced homology theory on CS*.

Proof To define f,, consider the commutative diagram

Tyem+1(X A E,iq)

(S A (f A1) (fal),

A €n)y
7(,,+,,,(X/\ En)_E_—)nn+m+1(XA En A Sl) a

E (1 Aen)s
nn+m(Y/\ En)___"’nn+m+1(YA En A Sl)'——’nn+m+1(YA En+l)

15.12 provides a map f,: E,(X) — E,(Y) and the uniqueness assertions imply
that 1, =1 and (fg)s = /4 gx-

Proof of (4) This follows as before since if f~ g, fA 1 ~g A 1 and hence
(f/\ 1)-V~ = (g A 1)¥: nn+m(XA E,.)_') 7Tn+m(Y/\ E) I
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Proof of (B) We define ¢ as follows. For any space X, define
2: 1, (X) > T4 (ST A X)
by 2{6} = {1 A 6}. The diagram
TnemX A E)—— Tyemir(S' A X A E)

E E
>
Tpsmit(X A E, A ST —— 7,03 2(ST A X A E, A S
l(ll\en)»‘ (1 Aen)

z
7'E,,+,"+1(X/\ E'n+1)_—_’7.cn+m+2(S1 A XA En+1)

commutes, hence ¥ induces a natural transformation ¢: E,(X)—
E,. (S A X)= E,,, (SX), where the isomorphism is given by the natural
transposition homeomorphism Ty: S' A X > X A S' = SX.

The proof that ¢ is an isomorphism will depend on a lemma.

Lemma 18.6 The diagram

X)) —EF—— n,(S'A X)

ok
(X AS) —E— 7, ,(S'AXASYH

commutes up to sign.

Proof Tg: S'A S"—>S"A S' is a homeomorphism and hence, after
identification of the spaces involved with spheres, is homotopic to +1. Thus
the upper triangle commutes up to sign since for f: §" - X,

Stast =L, 50 A x
T Tx
A ST 2L, x A s
commutes. Let f: $" > S' A X. Then

S'AS X STASIAX

17—5" lTsle Tsi1a1

S"AS! AL, SstAaxAS o, SIAS'AX

commutes.
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Now Ty = E(x) for some a: S'—S' with {«} = £1. Thus (Tg: A 1) o
(1 A f) ~an f. Consequently

UADeoTg) = AT Tss A D)oL Af)~an Txf.
Thus + E({f}) ={(1 A Txf) o (x A 1)} = £ Z(T)x({/1)- 1

We now complete the proof of B. By 18.6 the diagram

7.cn+m(A, A En) —2_’ T[n+m+1(Sl AXA En)

£ % £ £
v v

Twsmss(X A EpASY) —— 1, (S'A XA E, A SY)

(1A ens (1A en)y

ir v

Tpem+1(X A Epiq) — Tim+2(S' A XA Epyy)

commutes up to sign. If o(a) =0, there is an x € n,,,(X A E,) such that x
represents o« and £x = 0. Consequently Ex =0so« =0. If x € £, (S’ A X)
there is an x €@, ,,41(S' A X A E,) which represents «. But y,(x)=

Z((1 A e) Ty,g)x(x), soaelmageo. |
To prove (C), we need some lemmas.

Lemma 18.7 Letf: X — Y. Then in the diagram

(Py)x

7tn-i-l(Y'k)f C*X)—’ nn+](SX)
E

7,(X)—Los 7,(¥)

E(ker fi) < Im(py)s .

Proof Letoa:S"— Xrepresent an element of n,(X) and H: C*S" > Y be
an extension of fu. Define f: $"*' = 88" > Y U, C*X by

_[@0),2t-1), +<t<1
pe. t)—{H(O,l—Zf), 0<i<}

for 8 € S". A homotopy H: Sa ~ py o B is given by

_ «(0), 2 — )2 —5) s2<t<l1
H®, ”s)z{*, 0<r<s2 1
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Lemma 18.8 The diagram

Py urc*x

C*Yu,C*X — SY
SX

Proof At time t we will pinch a piece of size # off of C*Y and size 1 —¢
off of C*X (see Fig. 18.1):

commutes up to homotopy.

Figure 18.1

, 4 8), s<1 —t¢
H(Y,s,t)={iy ) s> 1 —1;

X)), t =), s <t
H(x, s, 1) = {*, s>t
This is a well-defined homotopy H: (C*Y u, C*X) x I - SY between
pesx and (=Sf) e pesy. |

Proof of (C) Let a € E,(Y) with ig(a) = 0. There exists x € 71, (Y A E,)
with iy(x) =0 € m,,((Y U C*X) A E,) such that x represents o. Applying

18.7 to the diagram
nm,,,,(Y/\ E,,) EE— nm+n((Y UfC*X) A En)
AN

Tm+n+1(CHY A E) Urat C¥HX A E)) > Tpine1(S(Y A EL))

- I‘Sf &

nm+n+1(s(XA En)) an D ad ﬂn+m+l(S(X/\ En))
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(which commutes by 18.8), one finds an element y € 7, ,,. 1(S(X A E,)) such

that (S7)«(y) = E(x). Consequently, (1 A ¢)s(0) €y ymi1(X A E, 1) is a
representative for an element g € E,,(X) such that f,(8) = «. This proves C and
completes the proof of 18.5. | i

Theorem 18.9 Let f/: X — Y. Let {£,} and {£™} be reduced homology and
cohomology theories. Then there are exact sequences

oo B0 L B () B(Y U, CHX) 22 B (X) >
v B L By S By O, OF ) B (X e

where i1 Y- YU, C*X is the inclusion, A, =0 "o(py)s, and A" =
(py)* ° 0, where o is the suspension isomorphism.

Corollary 18.10 Let (X, A) have the AHEP. Then there are exact se-
quences

cov o B ()= B(X) 220 B (X A)—s By (A) > -+
e BmA) S B P B A < B (d) e

where i: 4 — X is the inclusion, ps: X — X/A4 is the quotient map, V,, =
Ay o (Peen)y ', and V" = (pug)* o A™

The corollary follows from the theorem since peuy: X v C*4 — X/A is a
homotopy equivalence by Exercise 20, Section 16. ||

The theorem follows from:

Proposition 18.11 The following diagram commutes up to homotopy,
where the last two horizontal arrows are the inclusion into the mapping cone
of the previous map, and the vertical arrows are homotopy equivalences:

X Loy — vou,0*x —> C*Yu,C*X ——— C*

=[ pcry Progevx = pescr opctx
Py

sSYx —~ sy

Proof The statements about the right-hand triangle follow from those
about the left-hand one by replacing f: X —» Yby i: Y > Y U, C*X. pcuy is a
homotopy equivalence by Exercise 20, Section 16. The middle triangle com-
mutes by 18.8. |

18.11 implies that the sequence

B (0L BN (Y U, Cxx) 225 B (s)— B (5X)
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is exact. (—Sf), may be replaced by (Sf), since —1: SX — SX is a homotopy
equivalence and

E(SX) —2 E/SY)

(l’\(-l)).l (=5 1(1/\(—-1)),

Esxy =L, £ (sY)

commutes. Similarly in cohomology we have an exact sequence
Er(x) L Bm(yy e Bn(Y U, C*X) 2 B x) &L fmsy)

Piecing these together and using the natural isomorphism ¢, one proves
189 1

Proposition 18.12 The sequences of 18.9 are natural, i.e., a commutative
square

X——Y

induces commutative ladders

e B ()= B (V) B (Y Uy CFX) s B (X

J(al)t l(al)w lat 1(11)*

‘Em(X’) (f)* (Y)—'_'_’E (Y’ s C*X)____’ (XY ——s

— E"(X) L EM(V) et EM(Y U, CF X)) B (X ) e
I(“l)‘ (ax2)* (a)* (ay)*

e Em(X')4 c

En(y) & By Uy O XY S B (X e

where a: YU, C*X - Y' U, C*X" is constructed from a«; and a, in the
obvious way.

Proof This follows immediately from the various naturality results about

E,, E* ando. |

The sequences of 18.9 are called the long exact sequences of the homology
and cohomology theories. They are infinite in both directions.



18. Spectral Reduced Homology and Cohomology Theories 177

Proposition 18.13 Suppose E is an Q-spectrum and X is a CW complex.!®
There is a natural isomorphism £"(X) = [X, E,,].

Proof Consider the diagram

'‘n

[S""™X,E,] —=>— [§"™ "X, E,.,]

@ I""

[S"" "X, QE,.,]

where é,: E,— QE,., is the adjoint to e,: SE,— E,,, and § is the 1-1
correspondence of 8.24. It is easy to verify that the diagram commutes, and
since (2,)x and ¥ are 1-1 correspondences 4, is a 1-1 correspondence. Hence

Erxy=[S""X,E])=[X,Q" "E,)x~[X,E,] |

Proposition 18.14 For any spectrum E, £,(S*) = E¥(S™).

Proof By property (B), it is sufficient to show that E,(S°) = E~™(S°).
These are both the direct limit of the sequence

— Tum(E) T Mpipei(Eney) T

s

7rn+m+1(SE‘n) l

This group is called the mth homotopy group of the spectrum E and is
sometimes written 7,(E). It is also called the group of coefficients for the
theories £, and £*.

Theorem 18.15 Suppose X = |} X, = lim X, has the weak topology and
assume’®:

(a) Forall a, f, € A, there exists ¢ € 4 such that X, n X = Xj.
(b) Forallaed, {feAd|pf<a}isfinite (f <aiff X; = X,}.

Then E,(lim X,)  lim E,(X,).

15 The hypothesis that X is a CW complex is used in our proof, but may be dropped if
each E, is a CW complex since it is known [50] that in this case QE, is the homotopy type
of a CW complex (see the proof).

16 Compare to 15.9.
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Proof The inclusions i,: X, » X induce homomorphisms (i,): E,.(X,) >
E,(X). These are compatible with the homomorphisms (I,p)x: E.(x)-
E,(X;) and hence induce a homomorphism I: lim £,(X,) — E,(X). Suppose
I(x) = 0. x must have a representative v € 7, (X, A E,) such that (7,),(v) =
0€m, (XA E,). Let f: S"""— X, A E, represent v and H: i,f~ x be a
homotopy. Since X A E, =(lim X,) A E, = lim(X, A E,), we may apply
15.10 and conclude that there exists fe 4 with H(S"*" x )< X; A E,.
Thus (i5)«(v) =0 so x =0. Hence I is 1-1. Let xe E (X). Choose ve
TninlX A E) to represent x and f: S"*"— X A E, to represent v, As
before f(S™*") < X, A E, for some o. So v €& (i)x(M,+,(X, A E,)). Hence
Iis onto. |

Theorem 18.16

Em(Xl Vv Xn) = Em(X1)® B '®Em(Xn)’
ErXxyv v X))z EMX)® @ E"X,)

The decomposition is given by the induced homomorphisms from the maps
e Xy X veeev Xpandp Xpv v X o X forl <k <n.

Proof We first do the case n = 2. Observe that since C*Y is contractible
in C8* pay: Xv C*Y— X is a homotopy equivalence. Consequently,
the sequence

(i2) (P1)«

E(Y)y—>E(Xv Y)—>E(X)

is exact in the middle. Since the diagram

E(y) —2, Exvy) —2% Ex)

/ \
(Pz).u
E.(Y) E.(X)

commutes, (i,), is @ monomorphism, (p,)4 is an epimorphism, and we may
apply 11.11 to prove the splitting. If n > 2, we apply induction, observing that
X;v-vX,=(X;v v X,.)v X,. The case of cohomology is
similar. |

Given R-modules M, , the direct sum &, , M, was introduced in 15.3. One
similarly defines the direct product [],., M, to be the set of all sequences
{x,} with x,e M,. Addition and scalar multiplication are coordinatewise.
Note that @, 4 M, <] .4 M, and if 4 is finite, they are equal.
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Let (X,, *,) € CS* be indexed by a set 4. By \/,., X, we will mean the
quotient space [ [ ¢4 Xo/*s ~ %3 If A is finite, this is the one-point union
Xy v v X,.

Theorem 18.17 £, (\/, .4 X,) = @ E,(X,). If (X,, *,) are CW complexes'’
and {E,, e,} is an Q-spectrum, E"(\/, . 4 X,) = [oe 4 E"(X,).

Proof Let X =\/,c4X, and consider all subspaces X, . , =
X, v -+ v X, of X. This satisfies the hypothesis of 18.15 so

EX)=limE(X, v Vv X,)
= ll‘.n. Em(Xou) @@ Em(Xa,,) = ('BasAEm(Xa)'
In the cohomology case, the hypothesis implies that X = \/, ., X, isa CW
complex so we may apply 18.13. Let i,: X, — Y be the inclusion, and consider

the homomorphisms (7,)*: E™(X) —» E™(X,). These induce a homomorphism
I: E"(X) > ]qe 4 E™(X,). Consider now the diagram

E(x)—— 1 £"x,)

(X, E,] —— [1 (X, E,]

In the bottom row I is a 1-1 correspondence, for given {f,} where f,: X, —
E,, one easily constructs f* X — E,, with f|x, =f,. If f|x_ ~ & for each a;
the homotopies H,: X, x I - E, define a homotopy H: X x I - E, by
H|x, 1= H, since they are base point preserving homotopies. Hence 7 is an
isomorphism. |

The conclusion of 18.17 is sometimes called the wedge axiom.
Consider now the sphere spectrum S. In this case the homology group
S,(X) is given by the direct limit

nm+n(X/\ Sn) j—"ﬂm+n+1(X/\ S"+1)—>"',

This is also written x,,5(X), and is the functor defined at the end of Section 16.
18.15 implies that 7,5(X) = 0 if m < 0 and X is a CW complex.
Similarly one defines the stable cohomotopy groups ng™(X) as the cohomo-
logy theory associated with this spectrum, i.e., the direct limit of the sequence
[Sn_mX, S"]—E—P [S"-m+1X, Sn+1] —_ e,

These groups can be nonzero for negative values of m when applied to CW
complexes. For example, 75 '(S°) & 7,(S?) = Z, (see 27.19).

17 See footnote 15.
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Exercises

1. Give a detailed proof that the diagrams in the conclusion of 18.12
commute.

2. Give a detailed proof of the isomorphism
lim £,(X,) @ @ E(X,,) = ® E,(X,)

acd
in the proof of 18.17.

3. Define #: n(X) - n5(X) to be the injection homomorphism from the
first group of the direct system for 7. 5(X) into the limit. Show that if X is
simply connected, the following are equivalent:

(a) my(X)=0fori<n;

(b) n5(X)=0fori<n;
they imply that 4: n;(X) - n,5(X) is an isomorphism if 1 <i<2n—~1 and
onto if i =2n — 1.

4. Let ¢,: E, - E,’ be defined for each n > N, such that the diagrams

SE,—* SE, .,

len Ie'n+k

E, s )
commute. Such a sequence {p,} will be called a map of spectra of degree k.
Show that spectra form a category with this definition of morphism. Show
that if ¢ ={¢,}: E— E’is a map of spectra of degree k, it induces natural
homomorphisms of homology and cohomology theories

@: E(X)~ E,_(X), ¢: E"(X)> E™* (X)

for all m commuting with the suspension isomorphism; i.e., (a(x)) = a(@(x)).
Such a transformation is called a stable homology or cohomology operation.
(Exercise 11; Exercise 1, Section 22; Section 27)

5. A spectrum E and the corresponding theories are called connective if
E, is (n — 1)-connected. Show by taking connected covering spaces that
given any spectrum E, there is a connective spectrum E, and a mapping
¢, E, — E, of spectra such that (¢,). is an isomorphism in #; for i > 0.

6. Let P be a one-point topological space. Show that £,(P) =0 = E™(P)
for any functors E, and E™ satisfying axioms (A)~(D).

7. Let f: X — Y be a map in CS* and suppose f ~ * in CG*. Show that
fr=0=f,.
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8. Let E be a spectrum and define W, to be the telescope construction
(Exercise 1, Section 15) on the system

Q*epax
N k n k+1 -
Ey = QMBS ghtp

Show that £"(X) = [(X, ), (W,, #)] for X a compact Hausdorff space. Show
that {W,, w,} is an Q-spectrum where w,: W, - QW, ., is given on the kth
term of the telescope by

QB+
_

k K+ 1
QFE, 1, Q" E, i1

9. Show that £,(X) = lim £,,(K) where the limit is taken over all compact
subsets K of X containing *,

10. Let ¢: E.(X)— E,/(X) be a natural transformation such that ¢:
E\(S°) — E,/(5° is an isomorphism. Show that ¢: E (X)— E,/(X) is an
isomorphism for each CW complex X. Prove an analogue for cohomology if
X is a finite complex. (30.25)

11. Using Exercise 4, construct for each homomorphism ¢: n— p co-
efficient transformations

ot B(X;m) > B(X;p),  ¢,: A"(X; n) > H(X; p)

and show, using these, that homology and cohomology are covariant func-
tions of the coefficient groups. (Exercise 18, Section 23)

12, Given a spectrum E and an abelian group G define EG = {EG,, eG,} by
EG,=M(G,1)A E,_,
and
(eG),=1Ae,_: M(G,1)AN E,_; A S* > M(G,1) A E,.

We write £,(X; G) for EG(X) and E*(X; G) for EG*(X). Show that if
E = H, these definitions agree with the ordinary definitions if X is a CW
complex.'8 (Hint: Use Exercise 10.) (Exercise 13; Exercise 11, Section 22)

13. Let 0 G - H - J 0 be a short exact sequence of abelian
groups. Construct natural long exact sequences

oo B(XG G) =S B (X H) - B(X; )L B V(X G -+
o B(X; G) =5 B(X: H) - B(X; D) B (X G) > -+

181t is actually only necessary to assume that X is well pointed by 21.7.
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This is called the Bockstein sequence and f is called the Bockstein homomor-
phism. Show that if E=H, ¢ =c¢,, and d = ¢,,. (Exercise 8, Section 21;
27.15)

14. A spectrum E is called properly convergent if e,: SE, > E,,, is a
(2n + 1)-isomorphism for each n > 0. Show that if E, is well pointed for each
n and E is properly convergent, E, is (n — 1)-connected. Show that if £ is an
Q-spectrum and E, is connected for each »n, E is properly convergent.
(Exercise 12, Section 22; 27.5)



I9

Spectral Unreduced Homology and Cohomology
Theories

By a simple transformation we can transfer the domain of our theories
from CS* to C82. Homology and cohomology theories defined on pairs
(X, A) are called unreduced homology and cohomology theories (sometimes
the adjective unreduced is dropped). We define unreduced theories here and
develop their properties on the category & of pairs in CS with the AHEP. In
the next section we will consider unreduced theories on more general pairs.

Definition 19.1 For (X, A) € CG? we set
E (X,A) =E, (XU CA), E™X,A)=FE"(XuCA),

where the vertex of the cone is chosen as base point. If 4 = ¢ we interpret
X u CA4 to mean X with a disjoint point added and used as base point.
E, and E™ are called the unreduced homology and cohomology theories
associated with the spectrum {E,}.

Definition 19.2 Let C be a category of pairs of topological spaces. An
unreduced homology (cohomology) theory defined on C is a sequence of
covariant (contravariant) functors E,, (E™) for m € Z satisfying the axioms:

(A) (Homotopy) Letf, g:(X, 4) = (Y, B). Suppose f~ gin C (i.e., there
isamap H: (X x I, 4 x I) > (Y, B)in Cwith H(x, 0) = f(x), H(x, 1) = g(x)).
Then

fe=94: EJ(X,A)>E(Y,B) and f*=g* E™(Y,B)—>E"(X, A4).

183
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(B) (Excisiony If U is open and UclInt A4, the inclusion
e: (X—U A—-U)— (X, A induces isomorphisms in homology and
cohomology.

Abbreviate E,(X, &) and E"(X, &) as E,(X) and E™(X).

(C) (Exactness) There are natural transformations &: E. (X, A)—
E,_(A4) and &: E™(A) > E™*'(X, A) which fit into exact sequences

- Ep(A) = Ep(X) = Ey(X, A)= Ep_y(A) =+
cr = E™(A) E"(X) « E™(X, A) «— E"1(4) .
For the homology and cohomology theories we construct, we will prove

stronger excision properties than axiom (B). There are two types of
strengthenings of axiom (B):

Type 1 excision 1f U < Int A4, e induces isomorphisms (U is not assumed
to be open).

Type 2 excision If Uis open and U c A, e induces isomorphisms.

As we will see in section 21, type 1 excision is natural for homology and
type 2 excision is natural for cohomology.

Lemma 19.3 Type 1 excision is equivalent to the condition that if (X, X,)
is excisive in X,

E(X; Vv X5, X)) X E (X, X; N X))
and
E™(X; v X3, X1) 2 E"(X,, X; 0 X))
Proof To prove B, let X;=A and X,=X—U. Then Int X; v

Int X, =Int A u X —U-=X. Conversely, if B holds, making the same
substitutions we see that U = X — Int X, < Int X; =Int 4. ||

Definition 19.4 Let & be the atcegory of pairs (X, 4) € CG? with the AHEP.
Let N’ =6 n CS* be the category of well-pointed spaces.

Theorem 19.5 On &, E, and E™ are unreduced homology and cohomology
theories.

Proof 1f f: (X, A) > (Y, B) define /* X U CA— Y u CB by f(x) =f(x)
and f(a, t) = (f(a), t). fis base point preserving. Furthermore, if f~ g in §,
f~§inC8* Since X U CA ~ X/A,E (X, U X,, X)) 2 E.(X,, X, 0 X;)and
E"X; v X,, X)) = E"(X,, X; n X,) with no hypothesis, for X, u X,/X;
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= X,/X; n X,. (By Exercise 19, Section 14, X, is closed.) Exactness
follows immediately from the homeomorphism

XtuC*4AT=XuC4
and 18.9. |

Corollary 19.6
E (X) = E, (X, %) ® E, (%), E™(X) = E™(X, ) @ E™(%).
Proof The exact sequences
= E (x)> E(X)> E (X, *)> "
e EM(#) — E™(X) « E™(X, * )«

split since there is a map py: X — = with pyi = 1, by Exercise 11, Section 11
and 11.11. |

Proposition 19.7 If Xe N, E, (X, ) = E,(X) and E™(X, ») = E"(X).
Hence

EX)z2E(X)®E,(x) and E™(X) = E™(X) @ E™(»).

Proof Let X* =X u Cx. Then E, (X, *) = E,(X*) and E™(X, )=
E™(X*). It is sufficient to show that if X € N, (X, %) >~ (X*, 1). Thereis an
obvious map «: X*— X in CG*, and since X e N there is a retraction
B: X xI — X* Let y(x) = f(x, 1). Then y: X - K* is in C6*. Now aff: 1 ~
ay. Consider H: X* x I-> X x I defined by H(x,s)=(x,s), H(,s)=
(*, s + #(1 —5)). Then BH: 1 ~ yo and hence (X*, 1) ~ (X, *). The second
statement follows by applying 19.6. |}

Corollary 198 E,(*) =~ E (S~ E™"(x). |

Corollary 19.9 If X e N,

N H.(X;7) m#0
Ho(X, ﬂ)={ﬁo(X; nenr, m=0,
—— ~i—?"‘(X;rt), m#0
H(X’n)':{ﬁo(X;n)(-Bn, m=0. |}

Proposition 19.10 If X is a CW complex, A"(X; n) = H,(X; n) =0 for
m<0.

Proof X A K(m, n) is a CW complex with all cells in dimensions # and
larger, except for O-cells. Hence 7, (X A K(m, n)) =0 for m <0 and n > I.
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Thus #,(X; 1) = 0 for m < 0. Since S™~"X has all cells in dimensions n — m
and larger, except for O-cells, [S"™™X, K(n, n)] = 0if m < 0 by 16.3 applied to
the diagram

(LA ¢

~
N
~
~
~
N
N
N

N

Ssmy — K(n,n) |}

The Eilenberg-Steenrod axioms on a positively graded functor are the laws:
(A), (B), and (C) of 19.2 together with the dimension axiom:

(D)
. o0, i#0 v~ |0, i#0
Hm=1, =0y HE&ED=z oo

A functor satisfying these properties is called an ordinary homology or
cohomology theory. They are characteristic properties and are often used as a
starting point for making calculations with ordinary homology and cochomo-
logy. By 19.5, 19.9, and 19.10 ordinary spectral homology and cohomology
satisfy the Eilenberg-Steenrod axioms on the category of CW pairs.

Exercises

1.* Prove that if X > 4 o B, there are long exact sequences

+++ = Ey(A, B) = Ep(X, B) > Ey(X, A)— E,,_ (4, B) > -
-+ E™(A, B) « E™(X, B) « E™(X, A) «— E" (4, B) « ---.
(Compare with Exercise 5, Section 10.)

2. Let E, (E™) be an unreduced homology (cohomology) theory. Define
E(X) = E X, *) (E"(X) = E"(X, %)). Show that £ (E")is a reduced homology
(cohomology) theory with the modification that SX is replaced by TX in
Axiom (B) and X' u C*4 is replaced by X U CA4 in Axiom (C).

3. Show that E(J[X,) = @® E,(X,), and if X, are CW complexes and E is
an Q-spectrum, E"(][X,) 2[]E"(X,). The assumption that the X, are CW
complexes may be dropped if we assume that E, is a CW complex for each
n (see footnote 15).

4. Let {U,} be an open cover of X such that for all o, o’ there exists «” with
U, v U, = U,.. Show that E(X) = lim E,(U,). (26.22, 26.28)
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Ordinary Homology of CW Complexes

We begin this section with a description of chains, cycles, and homologies,
and show how the ordinary homology groups of a complex provide us with
a classification of cycles up to homology.

Suppose X is a CW complex. A chain is simply a collection of oriented
cells with multiplicities. A chain is called a cycle if there is cancellation at the
boundary of each cell. Thus consider the cells in the plane shown in Fig. 20.1.

Y

c

Figure 20.1

The chain consisting of @ and b with multiplicity 1 and ¢ with multiplicity 2
is a cycle since its boundary at y gets a contribution of +1 for @ and b and a
contribution of —2 for ¢. Similarly, we have cancellation at x.

To make this more precise, we define the n-dimensional chain group of
X, C,(X) to be the free abelian group with one generator for each n-cell.
For each oriented n-cell ¢,, let de, be the n — 1 chain that is its boundary.
Then ¢ extends to a homomorphism 8: C,(X) — C,_,(X) and the kernel of 9

187
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is the set of c¢ycles. In the above example da =y — x b=y — x and dc =
x —y. Thus 0(a + b + 2¢) = 0.

Two cycles will be called homologous if there is a chain whose boundary is
their difference. Thus in Fig. 20.2 a and b are homologous since dd = a — b.

a Y

d b
Figure 20.2

A homology is the obvious analogy of a homotopy among cycles. We write
a ~b to indicate that ¢ and b are homologous. If Z(X) is the set
of cycles, the n-dimensional homology group of X is just Z(X)/~ =
Z,(X)Im(@: C, 4+ 1(X) = C(X)).

Our first task will be to prove that this quotient group is in fact H,(X). We
proceed with a sequence of lemmas. That this description of homology is
correct will follow from the calculations we do in the last part of this section.

Lemma 20.1 Let X be a CW complex. Then

. " Ut . onto if m#n+1
Ty Hm(X H n)_’Hm(X s 71:) 18 {mono if m # n;
mono if m#n+1

k., fymeyntl. fym¢yn. 5
% HM X" m)y - H™(X™; n) 1s {onto if men.

Proof Apply 18.17 to the exact sequences

(X" X" 1) > B (X" 1) » H (X5 1) = H (X7 X" 7)
Ui di
Hyi(v S35 m) H,(v §;"';m)
F‘Im+1(Xn+1/Xn; TE)(—-—H"‘(X"; 7I)<—- ﬁm(Xn+1; n)(_ﬁm(X'ﬂl/Xn; 775)
W Al
Am+'(v ¥t @) Amv 8§t 7). |

Lemma 202 A (X";n)=0if m > n.

i B (X", m)->H(X;n) s

isomorphic if m<n
onto if m=n.
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A™X";n)=0if m > n.

i*: Bm(X: m) - A"X"; ) is isomorphic 3f m<n
mono if m=n.
Proof Consider the sequences (where we abbreviate by not writing =)
o B (X772 H, (X710 Ho(X™) s H (X
Hm(Xm+2)i> e

R ~ I'_'I’M(Xm—Z)‘z_Hm(Xm—l) epi HM(Xm) mono Hm(Xm+1)

— HmXmY
The result for homology now follows from 15.6 and 18.15 since H,(X°) =0
for m > 0. The result for cohomology follows similarly except here we argue
that i*: A™(X) —» H™(X™*') is an isomorphism from 18.13 and 16.3 applied
to the diagrams

X' XXI e

X"t K(n, m) XXx0uX"™!'x JTUX x1 —— K(n,m) |}

Define C(X, A; n)=H,(X", X" '; n) where X"=A4 u X". Define
0,: C(X, A; ) > C,_(X, A; n) as follows:

CAX, A;m) = Hy(X", X1 1)~ H,_ (X!, 4; 1) —> H,_ (X", X""2; n)
It
Cn—l(Xa A, 71?).

Observe that since
H(X", A5 1) » H(X", X' 1) = H, (X", 4; )
is exact, 0,0,4, = 0.

C.(X, A; n) is called the n-dimensional chain group of (X, 4) with coeffi-
cients in 7 and its elements are called n-dimensional chains.

Theorem 20.3 H, (X, A; n) = ker 0,/Im 0,,,.
Proof By Exercise 1, Section 19,

H,_ (X2, A; m)— H,_ (X", A; m)—> H,_ (X", X" 2; )
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is exact. H,_,(X""%, A; )= H,_(X""2"JA*; 1) =0 so i, is a mono-
morphism. Hence ker 9, = ker ¢ = Im j, in the diagram

HX", A5 1) > H(X", A; 1) =25 H(X", X" m) = H, (X", 4; m)

Al
AX"'" (4% n).

li

0
Reapplying 20.2 we see that j, is a monomorphism so ker 0, = H(X", 4; ).
Define ¢: ker 8, = H(X, A; ) by ¢ = k4 jy ' where k: (X", 4) > (X, A4) is
the inclusion. ¢ is onto by 20.2 and the diagram

H(X", A;n)> H(X, A;n)
Ul Ul
A(X" 1A% 0)» H(XF/AT; ).

ker ¢ = Im j, 6, where 0: H,, (X, X"; n) > H(X", A; n). Now consider the
diagram

H,o(X, X" 1) =0
4+

Hyo(X, X" 1) —— H(X", A;7)

S

epi [/ Ju

Ot

H,( (X" X" 1) ——— H(X,X""';n)
where it is proved that H,(X, X"*!; n) = 0 by applying the long exact se-
quence and 20.2. It follows that ker ¢ =Im j, 0 =Im J,,,. |}
Define C(X, A; n) = HY(X", X"~ ', n)and §,: C'(X, 4; 1) » C" (X, 4; n)
as the composition
C'(X, A: 7) = H'(X", X'~ ; 1) > H'(X", A; m)— H* (X" X", m)
]
C"* (X, A; ).

C"(X, A; =) is called the n-dimensional cochain group of (X, 4) with coeffi-
cients in 7 and its elements elements are called #n-dimensional cochains.

Theorem 20.4 6,5,_, =0, H'(X, A; ) = ker 6,/Im 6,_;.
The proof of 20.4 follows from 20.2 just as the case for homology. |

Definition 20.5 A collection of abelian groups {C,} ({C"}) and homomor-
phisms d,: C, = C,_; (8,: C"— C"*') such that 8,0, =0 (3,6,-, =0) is
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called a chain complex (cochain complex). The groups H,(C)=ker 0,/
Im 4,,, (H'(C) = ker §,/Im §,_,) are called the homology (cohomology)
groups of the chain (cochain) complex. A chain map (cochain map)
F{CY = {D,} (f: {C"} = {D"}) between two chain (cochain) complexes is a
sequence of homomorphisms f,: C,— D, (f": C"— D") such that 0,f, =
foci0, (f*1168, = 8,f™). Z, = ker 0, is called the group of cycles and B, =
Im d,,, is called the group of boundaries. Two cycles (cocycles) are called
homologous if their difference is a boundary (coboundary). Similarly, Z" =
ker 6, and B" = Im J,_, are called the groups of cocycles and coboundaries.
A chain complex is called acyclic if H,(C) =0 for i # 0 and Hy(C) = Z.

Let us write C, for the category of chain complexes and chain maps.

Proposition 20.6 Taking homology defines a functor H: C, — (M), .

Proof Iff,:C, — D, isachain map, f,(Z,(C)) c Z,(D)and f(B,(C)) =
B,(D). Hence f, induces a map f: H,(C)— Hy(D) and this is clearly
functorial. |

Let us write Jiz for the category of relative CW complexes and cellular
maps.

Theorem 20,7 H,: Xz - (Mz), factors into H - C, where C,: Kz - C,
is a functor satisfying the axioms:

(a) If X is contractible, C4(X) is acyclic.

(b) Leti: (X, A)— (X, X""!). Then i,: C(X, 4) - C,(X, X" 1) is an
isomorphism. In particular each characteristic map y,: (B", S" ') —
(X, X"~!) defines a homomorphism

(1) Cu(B") = Cy(B", S 1) —%2%, € (X, X"~ 1) = (X, A).

(¢) C, (X, A)is a free abelian group with one generator for each n-cell of
(X, A). Write B" as a CW complex with only one n-cell and choose a generator
e" e C(B") = Z. Then {(x,)«(e"} is a free basis for C,(X, A) as ¢ varies over
the n-cells of (X, A4).

Proof 1f f: (X, A) > (Y, B)is cellular, f(X") = Y"; hence finduces a map
i H(X", XY — H,(Y", Y"~') which we take to be f, . This is clearly a
chain map and induces f,: Z,(X, A) = Z (Y, B) since Z,(X, 4) = H(X", A).
Since the diagram

H(X", 4)—— H,(X, A)
f‘ Js

H,(Y", B)—— H,(Y, B)



192 20. Ordinary Homology of CW Complexes

commutes, f} induces fy in homology. (a) and (b) are immediate. (c) follows
from

Lemma 20.8 Let A4, be the set of n-cells of X — A. The maps
(t)x: H(B", S""1; n) > H(X", X""!; n) for ¢ € A, determine an isomor-
phism

12 @® HyBS" S ' m)— H(X", X" 1; ).

c€Ay

Proof By the definition of unreduced homology, we have

v @ H(S;m)— A XX m)

occAp

which is an isomorphism by 18.17. | |

If (X, A) has a finite number of cells in each dimension, H,(X, A) will be a
finitely generated abelian group, and hence a direct sum of cyclic groups.
The rank of the free part of H, (X, A) is called the nth Betti number. The
orders of the finite cyclic summands are called the torsion coeflicients. These
invariants occurred historically before the notion of homology groups was
formalized.

Observe that we used the existence of homology to define C,(X, A). One
might try to define C,(X, 4) by 20.7. The groups are well defined but the
existence of 8 and chain maps requires a lot of attention. In the end, it would
be difficult to prove that homology is a topological invariant (i.e., it does
not depend on the choice and number of cells). C, for example, is not a
topological invariant. C, counts cells, and H, makes C, into a topological
invariant. It is common philosophy to think of generators of ordinary homol-
ogy as representatives of ““natural cells.”

We now study the chain complexes and homology of various cell com-
plexes, based on treating 20.7 as axioms for C .

1. CP" has one cell in dimension 2k for k < n and hence

VA i=2k<2n
CACP") = {0, otherwise
Since all odd groups are 0, we must have ¢ = 0. Thus

Z, =2k <2n V4 i=2k

H(CP") = 0, otherwise; and H(CP™) = 0 otherwise

by 20.2.
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2. HP" is similar:

Z, i=4k < 4n H(HP) = g, i =4k

H(HP") = {O, otherwise; , otherwise

The case of RP" is much harder since J # 0 in general. We will save this
case until we deal a little more with complexes in which 9 # 0.
3. Let P be a one-point space. Then

Z, i=0
Cip)= {0, otherwise.
Choose a generator e° € Cy(P). Clearly
Z, i=0
H(P) = {O, otherwise.

4. Consider I as a complex with two O-cells 6,° =0 and ¢,° =1, and
one l-cell ¢'. Let i,: P — I be the cellular map onto ¢,° for ¢ = 0 or 1. Define
e’ = (i,) 4 (e%). These are generators of Cy(I) by (c). Let p;: I—p. Then
(P#(e.%) = (p11) (%) = €% Since (p)y(0e') =0, de' =k(e,®—e%). It
follows that k = £ 1 since C,(I) is acyclic. A choice of k corresponds to
choosing the generator e'. We think of this as ‘‘ orienting” the simplex and
express this by associating a direction to the I-cell. Thus the choice de! =
e,° — e,° corresponds to the picture

0'00 o——»l———o 0'10

Similarly de! = e,° — e,° corresponds to the picture

0’00 o———<—l————o 0’10
5. Consider I? as a CW complex with O-cells ¢,° for 1 <i <4, l-cells
ol for1 <i<4, and a 2-cell o2

G
0.10 i 0.20
0-41 Y Qz/ 4 0-21
0 > 0o
o, - o,
c
3

Choose cellular maps g;: I — I? such that g, is a linear characteristic map for
o;!, and the sense of increasing is indicated by the arrow in the diagram.
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Define e;' = (g,)4(e') and e,° = (h,),(e°) where h;: P —0,°. Then {e;/'} and
{e;°} are generators for C,(1*) and C,(/?) respectively. One calculates

de' = 0((g9)#(e") = (g1)#(3e") = (g:1) p(e,° — €0°) = ,° — ¢,°,
and similarly
de) =e,° —ey®, Oey! =e%—e,° e, =e,° — e’

Now Z,(I?) is infinite cyclic generated by e, — e,' —e;' + e,'. Hence we
may find e € C, with de? =¢,! —¢,! —e;! 4+ ¢,'. €? is clearly a generator.
e? corresponds to the clockwise orientation indicated by the curved arrow.
This direction is consistent with ¢,' and 6,' and opposite to that of ¢,' and
a5'. The other choice corresponds to the counterclockwise orientation.

6. We now calculate H,(T) where T = S' x S is the torus. We make use
of a cellular map 1> 1> -» T. T in fact is a quotient space of /> under the identi-
fication (x, y) ~ (x + 1, p) ~(x, y + 1). T has a 0-cell 6° = f(5,°), two 1-cells,
0,' =f(6,)) = f(0,") and o,' = f(0,") = f(0,"), and a 2-cell 6> = f(0?). As
characteristic maps for these cells we may choose fg;, f- &;; this determines
generators € = f4(e,%), e,' =fyle') =f4(es'), €' =fs(es") = fy(es'), and
e? = f,(e?). Hence we calculate

0e* = Of y(€?) = f4(0€®) = fyle,' — €' —e3' +e,')
=e' —e) —el +e,) =0

aell =f#(aell) =f#(ezo - 910) =0

56’21 = 0
Hence:
Proposition 20.9
Z, i=0
_Z®Z, i=1
H{(T)= A i=2
0, otherwise. ||

7. We choose a particular cellular decomposition of S” in order to cal-
culate H,(RP") as in (6). Let /%, f*: B¥ - E¥*! be given by

Lo x) =gy ov vy Xi, /1 = 2x)
S x) = (=%, ..., =X, —\/1 Zx2).

Let BY =f¥(B* and B* =f*(BY. Then $"=B" UB" and $"'=
B" n B". This makes S" into a CW complex with cells B%, B* for
0 < k < n. The antipodal map is a cellular homeomorphism a: " — S" and
hence induces a chain automorphism a, .
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Lemma 20.10 There are generators €, ¢ for C(S") for k <n such

that
6e2k ank ea—k—l +e2k—1
Ot Tl = _getkTl = 2k _ g2k,

Proof €% must be homologous to ¢° by axiom (a) applied to the sub-
complex B}. Hence e — % € 0C;(Bl). Choose a generator el so that del
=% — ¢°. Choose a generator e! of C,(B') so that (f])(e') = e.. Define

= (f1),(e"). Then a, el = e'. Consequently

Oet =0da,(el) =au(0e)) = a,(el —e) =e° —€f.
Suppose by induction the generators e and e* are picked for k <2m <n
satisfying the formulas in the conclusion and a,(e%) = e* . Now d(e?™ — ™)
= 0. Since H,,(B2"*!) = 0, there is a generator €2"** of C,,,,,(B>"*!) with
deim*l = ¢2m _ 2" Choose a generator e2"*! of C,,,(B*"*') such that
(f2m+1) (eZm+1) 2m+1. Let e2m*t = (f2m+l) (82m+1) Then e2™+1 =
ay(e*™* ). Hence

692m+1 = da (eZm-H) =q (ae2m+l) _ a#(eim _ eim) = eZ_m _ eim

by induction). Now d(e?"*! + ¢2"*1) = 0. Since H,,.+(B>"*?) =0, we
+ 2m +
may choose a generator e2" 2 with 0e?"*2 = ¢2"*+! 4 o2+l Ags above, we
y g > 2 2
choose ¢2"*2 and find

ae2_m+2 aa (eZm+2) — a#(ae2m+2) =q (62m+1 + e2_m+1) — e?_m+1 + eim-i-l.

This completes the proof of 20.10.

Let IT,: $" — RP". Then II, is cellular. In fact (see Section 14) IT,f*
I1,/* = the characteristic for the k cell of RP". Let & = (I1,)4(e") =
(T1,) »(e* ), which is consequently a generator of C,(RP").

We have

fi

08 = AT (4) = (M)u(0) = ey 00

We have proven:

Proposition 20.11

Z, i=0 Z, i=0

Z,, iodd, i<n  H{RP®)= {Zz, iodd

Z, iodd, i=n 0, otherwise. J
0, otherwise

H(RP") =
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8. Let X = A" be the standard n-simplex. Define
nk:A”-l—-)A” by r’k(x09"'9xn—1)=(XO’""xk—lsoaxk""’xn—l)

for 0 <k <n. X is a simplicial complex and hence a CW complex with
n+1y kecells for 0 <k <n n@A" )< X" 2 so n: (A"', A" >

k+1

(X""1, X""?). Let e, € C,_;(A""?) be a generator. Then H,_;(X"~', X""?%)
is freely generated by (1) #(e,—1) for 0 < k <n.

Theorem 20.12 There are generators e, € C,(A") such that
e, = RZO (= D) wlen-1)

forn>1.

Proof The case n =1 is Example 4 above. Suppose by induction that the
formula is valid for 1, ..., n. Observe that n,n; = 1,41 if j = k and conse-
quently 1, 17; = n; -, if j < k. We now prove

n+1
o('%, (- Daten) =0
Since 1, is a cellular map, (1) «(e.) = (1) #(0e,). Hence

n+1 n+i
a( Y (—1>"(nk)#(en)) = (= 1) Gey)
k=0 k=0

+
—_

. (_l)k+j(’1k’1j)#(en—l)

= Y (=Dmn ) len-1)

nt+1z2k>j20

+ (“I)Hj(ﬂk’lj)#(en—l)

nzjzkz20

= Z ("l)k+j(’7j’1k—1)#(en—1)

n+12k=2j=0

+ (=D e mi=1) wlen-y)

nxl-12kz=0

I
1=

0 j=0

=0.

Since A"*! is acyclic, one may find e, ; € C,,+,(A""") with

ey = % (= DA (e

e,+1 is a generator, since Z;’Z},( — 1)¥(n,) #(e,,) may be chosen to be a generator

of C,. 1
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Let K be a simplicial complex. Order the vertices of K, vy, ..., v,. If g is
an p-simplex, there is a unique order preserving linear homeomorphism
Xo: A" given by xdo,...,a,) = a-oa,v;, where o= (v, v, v,
and iy, <iy < <i,. x,(A"Y""")= K"! so y, determines a generator
e, = (1,)x(e,) € C,(K). Since y, is cellular, we have

aeo:r = a(XG)#(en) = (Xa')#(aen) = (Xa)# (kgo (“ I)k(r’k)#(en—l))
= 3 (=D sleny).
k=0

If 0 = (v, v;) write

Jk = (viovi1 U Uik—1vl'k+1 e Ui")‘

Now Xl = Xak > 8O (XG nk)*(en—l) = eok' Hence
aea = 2 (“' l)keak
k=0

Thus given a simplicial complex K, the chain complex is completely deter-
mined, and we have proven

Theorem 20.13 Let K be a simplicial complex with vertices ordered
Vo, ..., ,. For each n-simplex ¢ = (v;,, - v;) With iy <i; <+ <i,, let
6, =i, Vi, Uy, " 0;) be the kth face for 0 < k < n. Then C(K)
has free generators {e,}, one for each n-simplex o, and ¢ is determined by the
formula

de, =Y (=D, 1
k=0

Note that by 20.13, one can define H,(K) for any simplicial complex,
but it is very hard to prove directly that what is defined is a topological
invariant.

As an example we will calculate H,(S?) by this method. Write S* = 0A>.
We have vertices v, =(1, 0,0, 0), », =(0, 1, 0, 0), v, =(0, 0, 1, 0) and
vy =(0, 0,0, 1). Write €y v, = i in- Then

C, is freely generated by ¢y, ¢, e,, e;.
C, is freely generated by eqy, €92, €03> €125 €13 €23 -
C, is freely generated by €15, €013» €023 €123 -
C,=0ifn>2.
We have
Oeg1a = €15 — €9z + €oy Oegz3 = €23 — €g3 T &g,

Oegry = €13 — €g3 t €gy Oty =€33 — €3+ €.
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Z,(0A%) is freely generated by

€012 — €013 T €023 — €123+
Hence H, = Z.
Jegy =€ — € deys =€, — ¢
Oegy =€, — € deyz3 =e€3— €,

degy = €3 — €
. P B ) .
It is easy to see that C,— C;—» C, is exact at C,. B, is generated by

e, —eg, e, — e, and e; — ey. Hence Hy = Z is generated by e, .

Exercises

1. Give details for a proof of 20.4.
2. Prove H,(X, X", 7)) =0=H"(X, X"; m) if n < m.
3. Show that

n=k

At ) = {g,/[”’ ”]’ n#k

where [n, 7] is the commutator subgroup (=1 if n > 2). (Exercise 6, Sec-
tion 22)

4. Let (X, {x.}) be a semisimplicial CW complex (16.37). Show that one
may choose generators e, € C4(X), one for each cell such that

Je, = i (—1)%e;,.
5=0

(Exercise 9, Section 21)

5. The Klein bottle K is defined to be a quotient space of S' x 7 under the
identification (z, 0) ~ (z7%, 1). Calculate H.(K). (Hint: X is a cellular quo-
tient space of /2.) (See Exercise 14, Section 7.)

6. Calculate (IT,),: H,(S") » H,(RP") if n is odd.

7. Show that if (X, 4) is a CW pair, there is a short exact sequence of chain
complexes:

0 Cy(A) = Cu(X) > Cy(X, A) >0

(i.e., the maps are chain maps, and it is exact in each dimension).

8. Calculate C,(I*) where I° has the standard cellular decomposition with
8 O-cells, 12 1-cells, 6 2-cells, and 1 3-cell.
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9. Let 0 —» C—» D —"+ E—0be an exact sequence of chain complexes and
chain maps as in Exercise 7 above. Prove that there is a long exact sequence
-+ HC) " H(D) -2 H(E)-2> H(C)— -+

where 0{e} is defined as follows. Let f(d) = e. Then B(dd) = 0 so there exists
c € C with a(c) = dd. Define &{e} = {c}. Show that c is a cycle and {c} depends
only on {e}. (Section 25; Exercise 4, Section 30)

10.* Calculate H,(S" x S™).

11. Given a graded vector space {V,} with V, # 0 for only finitely many
values of », define the Euler characteristic of {V,} by

(V) =2 (=) dim ¥,
Show that if {V,, 0,} is a chain complex with {V,} as above, y({V,}) =
X(H{V,, 0.1).
Define the Euler characteristic of a finite CW complex X as y(Hy(X; k))
where & is any field. Thus

Y (=1)"rank C,(X) =Y (—1)"dim C(X; k) = y(X)

is a homotopy type invariant and does not depend on k. Note that y(S?) = 2,
hence for any CW decomposition of §?, dim C, — dim C; + dim C, = 2.
(26.25)

12. Let 6 = (vy, ..., v,) be a simplex with ordered vertices and let o, =
(r(0y» - - -» Ur(my) Where T is a permutation of n letters. Show that {e,} =
sgn T-{e, T} in H, (o, do). (Section 26)

13. Let X be a CW complex. Show that Hy(X) is a free abelian group whose
rank is the number of arc components. (26.29)

14. Consider the simplicial complex K with vertices vy, vy, U5, U3, Us. AS
simplices, take all proper subsets of (v, v,v,) and all proper subsets of (v, v3 v4).
Calculate the homology of K with integer coefficients. Check your answer by
verifying that K = S' v S*.
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Homology and Cohomology Groups of More
General Spaces

In this section we discuss the existence and properties of homology and
cohomology theories when applied to more general spaces than CW com-
plexes. The easiest method to obtain such theories is the singular extension.
This is described in general. Its historical predecessor, the ordinary singular
homology and cohomology functors are described in Exercise 9.

Assuming that for n sufficiently large (E,, *) € N, we then prove that
singular homology agrees with spectral homology under mild assumptions.
Finally, assuming that for » sufficiently large (E,, *) is the homotopy type of
a CW complex with 0-cell as base point, we derive the properties of spectral
cohomology theories when applied to paracompact compactly generated
spaces.

Definition 21.1 If (X, A)eG? define SE,(X, A) = E,(S(X, A)) and
SEMX, A) = E"(S(X. A)) where S(X. A) is the singular complex (16.21).
Similarly SE(X) = E(S(Y)) and SE"(X)= E"(S(X)). These are called the
singular homology and cohomology theories associated with the spectrum E.

Ordinary singular homology and cohomology £ = Hn are classically
defined in a different way. (See Exercise 11.)

Proposition 21.2 SE, and SE" are unreduced homology and cohomology
theories on G2 with type 1 excision. That is, SH,(X, 4; =) and SH"(X, A; n)
satisfy the Eilenberg-Steenrod axioms (A), (B), and (C) of 19.2 on G2

200
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Proof Axioms (A) and (C) are clear. To prove (B) we prove that if (X, X,)
is excisive, SE"(X; U X,, X;) @ SE"(X,, X; n X,) and SE(X; v X,, X)) =
SE(X,, X; n X,). We construct a resolution f,: K;, - X; n X, and extend
this to resolution f;: K; — X; and f,: K, = X, where K; n K, = K{,. As in
the proof of 16.27, we define f* K, U K, » X; U X, and by 1624, fis a
resolution. The isomorphisms follow. ||

Singular homology and cohomology theories have the following charac-
teristic property.

Proposition 21.3 Let f: (X, 4A) - (Y, B) be a weak homotopy equivalence.
Then f,: SE(X, A) - SE,(Y, B) and f*: SE"(Y, B) —» SE"(X, A) are iso-
morphisms.

Proof Since f'is a weak homotopy equivalence, S(f) is a homotopy equi-
valence. Hence f, and f* are isomorphisms. ||

Proposition 21.4 Let SE,, and SE™ be the reduced singular homology and
cohomology theories associated with E (21.1). Then

SE (X) = SE,(X) ® E,(+), SE™X) & SE™(X) @ E™(%).
Proof By 19.6 it is sufficient to show that E,(S(X), *) = E,(S5(X)) and
E™(S(X), *) = E™(S(X)). This follows from 19.7. §

An important and useful property of singular theory is given by the Mayer-
Vietoris sequences.

Proposition 21.5 (Mayer-Vietoris) 1If (X, X,) is excisive in X, there are
long exact sequences

s = SE"(X, N X,) —— SE"(X,) @ SE"(X,) <2~ SE"(X, U X,)
S SETNX, A Xy e o
cr 2 SE,(Xy 0 Xy) = SE(X,) ® SE,(X;)—— SE,(X; U X;)
S SE,_ i (X; 0 Xp) -
0 and & are natural. The other homomorphisms are given by

o*(@) = (ji* (@), /2*@), ¥, B) =i*(@) — i,*(B),
ig(0) = (i 4(a), I24()), Puler, B) = ji*(@) — j2*(B)
wherej,: X,—» X; u X, and i;: X; n X, > X,.
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Proof Since as the proofs are similar, we will do the homology case only:
SE (X, U X5, X;) = SE(X,, X; n X,). Consider the diagram

"'—‘—"SEn(Xl)—j—_"SEn(Xl U X)) —— SE(X; U X, X)) ——
1%

S

s SE, (X; 0 X)) —— SE(Xy)—— SE(X,, Xy nXy)——>

The proof follows from:

Lemma 21.6 (Barratt-Whitehead) Given a commutative diagram

in In kn
;An ‘Bn =Cn :An—l IBn—l * L1
lan lﬂn l)’n lan—l lﬂn—l l)‘n—l
v A’ in,“B’ Jn' v ' k' A y B y C! .
— 4tn T Pn e ] > A, T Pn—1 7 %n—1 v

in which v, is an isomorphism, and the rows are exact, there is an exact
sequence

'”—’An_f—’An’@Bn_-'Bn,—h_'An—l_)'“
n gn n

where f,(x) = (2,(x), iy(X)), ga(x, ¥) = i, (X) = B,(»), and h, = k,y,” '
Proof This is an elementary diagram chase and is omitted. [ i

We now assume that for n sufficiently large (E,, *) € N'. We will first dis-
cuss the consequences for the spectral homology theories.

Theorem 21.7 For any (X, »)e N, SE (X)=~ E (X). For any pair
(X, Ay e C82, SE, (X, A) = E, (X, 4). In particular, E, is a homology theory
on C82. If X is Hausdorfl, SE (X, A) = E, (k(X), k(4)) where k(X) is the
associated compactly generated space (8.7).

The proof will depend on:

Proposition 21.8 Let (X, %), (Y, %), and (E, %) € N. Suppose f: (X, *) —»
(Y, %) is a weak homotopy equivalence. Then f A 1: X A E~»Y A Eis a
weak homotopy equivalence.

Proof of 21.7 Suppose (X, %), (Y, *) e N> and f: (X, ¥) > (Y, *) is a weak
homotopy equivalence. Then

(f/\ ])* 7T,,+,"(X A En)—*nn+m(Y A En)
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is an isomorphism for n sufficiently large. Considering the ladder that defines
fe: E(X)—= E (Y) (18.5), it follows that f, is an isomorphism. Hence
SE(X) = E(S(X)) = E(X). If f: (X, A)~>(Y, B) is a weak homotopy
equivalence, f: XU C4A— YU CB is a weak homotopy equivalence by
Exercise 29, Section 16. Since Xuw C4 and Y u CB belong to N,
fei E(X, A) > E, (Y, B) is an isomorphism. Thus SE, (X, 4) = E, (X, A).
Finally by 8.8, (k{X), k(4)) - (X, A) is a weak homotopy equivalence. Hence

SE, (X, A) = SE,(k(X), k(4)) = E,(k(X), k(4)). 1

Proof of 21.8 By Exercise 18, Section 14, (X x E, Xv E) and
(Y x E, Yv E)have the AHEP. Hence by 16.31,

XANE~(XxE)yuC(Xv E) and YAE~(YXE)uC(YvV E).
Consequently it is sufficient to show that
(XxE)yuC(Xv E)y=>(Yx E)Yu C(YvV E)

is a weak homotopy equivalence. By Exercise 29, Section 16 it is sufficient to
showthatfx l: X x E-» Y x Eandfv 1: X v E— Y v E are weak homo-
topy equivalences. It is obvious that f x 1 is a weak homotopy equivalence.
21.8 thus follows from:

Lemma 21.9 Suppose (X, #), (Y, ¥), and (E, x) € N’ and f: (X, *) > (7, *)
is a weak homotopy equivalence. Then(f v 1): X v E—» (Y v E) is a weak
homotopy equivalence.

Proof For any two spaces A and B with nondegenerate base points a
and b,

a~0,

AvB:AquB/b~1

where the homotopy equivalence is obtained by pinching 7 to a point. This
follows from 16.31 since

AquB/Z:(l) = (411 B) U C({a, b).

Thus it is sufficient to show that the map X W U E/~ > YU IUE/~is a
weak homotopy equivalence. This follows directly from 16.24 with

XUIUE/~=Xul/l~)yulUEl~)
and
YUIUE/~=(Yull~Yu{lVE~) }I
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Spectral cohomology behaves somewhat differently than spectral homo-
logy. There is an arcwise connected compact subset X of R2, with m,(X, *) = 0
for all i >0 but H'(X) = Z (see 21.21). Since SH'(X) =0, we do not have
SE"(X) = E"(X) in general. In order to proceed we assume that for n suf-
ficiently large (E,, *) is a CW complex with a O-cell as base point. We prove
only that E" is a cohomology theory on paracompact compactly generated
spaces. We must exploit a special property of (E,, *) in order to achieve
this. This property is contained in the following.

Definition 21.10 (7, *) is called a weak absolute neighborhood extensor
(WANE) if for each paracompact space X, each closed subspace 4 < X, and
each continuous map f: A — Y, there is a neighborhood U of 4 in X and a map
g: U— Y such that g| , ~ f (rel £ (¥)).

To utilize this concept we make some observations about paracompact
spaces.

Lemma 21,11 Let X be paracompact, 4 = X be a closed subset, and K be
a compact Hausdorff space. Then A4, X/A4, and X x K are paracompact.

Proof (1) Given an open cover {U,} of 4 choose open sets U, with
VU, nA4="W,. Then {VU,, X — 4} is an open cover of X. A locally finite
refinement of this, when restricted to A, is a locally finite refinement of
{Wy.

(2) Let {W,,} be an open cover of X/A. Suppose {4} € W,,. Let U, =
P2 (W,). Since X is paracompact it is normal. Choose /> X — I with f(4) = 1,
f(X~9,)=0. Let W=f"[0, 4)) and D =/7([0, £]). Then X — U,
W< D < X — A. Since D is closed, it a paracompact. Choose a locally finite
refinement {T.} of {D n V. p;'p T, n W)=T,n W. Since W is open,
pA(T, n W) is open. Suppose T, = U,. Then p (T, W) < p(VU,) = UW,.
Hence {p4(T, n W), W,} is a refinement of {W,} by open sets. It covers
X/A, since if x ¢W,,, xep, (W) and hence xep (W nT,) for some y.
Finally, we claim that {p(T, n W), W,,} is locally finite. If x ¢ p (D),
p.(X — D) is a neighborhood of x which intersects only W, . Suppose
x ep D). Lety = p;'(x) € D. There exists a neighborhood W, of y in D such
that U, intersects only finitely many of the 7',. Let U, be an open set in X
such that U, n D =U,. Then p, (U, — 4) is a neighborhood of x and
PV, — A) np (T, n W)y=py(W,n W~ T,) and this is only nonempty
for finitely many y.

3. Clearly X x K is Hausdorff. Let {Wl,} be an open cover of X x K.
Choose a refinement {#£; x B4} with £, open in X and B, open in K. For
each x € X there exist f,(x), ..., Bx(x) such that

x X Ia Ay oy X Bpy UV g X B -
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Let V(x) = () #, - Choose a locally finite refinement {C,} of the open cover
{V(x)} of X. For each y, choose x, € X such that C, = V(x,). Then

Cy X By © Kpxy) X Bpyix,y © Wy

for some «, 50 {C, X By} refines {W,}. Given (x, t) € X x I. Choose y with
x€C,. Now te By, , for some isince x, x /is covered by the sets A (, )X
Byx,y- Thus (x, 1) € C, x B,y and {C, x By, )} is an open cover. To
show that it is locally finite, let (x, ) € X x I. Let W, be a neighborhood of x
in X which meets only finitely many C,. Then W, x I can meet only finitely
many C, x B,y |

In particular if X is paracompact and A4 is closed, X U CA, X u C*A4,
XX, and SX are all paracompact.

Proposition 21.12 (a) If (Y, ») ~(Z, *) and (Y, %) is a WANE, (Z, ¥) is
a WANE.

(b) If(Y,*)is a WANE, (Q(7, *), *) with the compact open topology is a
WANE.

Proof (a) Letf: A—»Zandlet ¢: Z—> Y and ¢': Y- Z be homotopy
inverses in G*. Then there is a neighborhood U of 4 and a mapg: U— Y
such that g|,~ ¢f (rel(¢/)™'(¥). (B/)'¥)>f7'(*) so ¢'gla~¢'¢f
(rel f71(%)). But ¢¢’ ~ 1 (rel %), so ¢p'g| 4 ~ f (rel £71(¥)).

(b) Letf: A—>QY, #). Then

SRUXLF T ) XTUAX0UA X 1)>(Y, %)
is continuous. f* extends to a map
FXX0UAXTUXXLf ' B XxTuXXx0UXx1)-(Y,%

Since X x 0 u A xIu X x1isclosed in X x Iand X x [ is paracompact,
there is a neighborhood U of X x0u A xIu X x1in X x I and a map
g: U—(Y, %) such that g|y,o, axroxxi~F@elf 1) xIuXx0uU
X x 1). Since I is compact, there is a neighborhood Vof 4 in X with V' x I c U.
Let i =(g|y, )*: V- QY, *). Then h| ,~ f(rel £~ '(x)). |

The reason for introducing WANE’s is:

Theorem 21.13 Every CW complex is a WANE.

This result will allow us to derive many properties of E"(X, 4A) when the
spaces {E,} are CW complexes for » sufficiently large. We will prove 21.13
by showing that every simplicial complex is a WANE. 21.13 then follows from
16.44 and 21.12.

Recall (Exercise 26, Section 16) the definition of an abstract simplicial
complex.
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Proposition 21.14 Every abstract simplicial complex K= (V, S) deter-
mines a simplicial CW complex.

Proof Let V be partially ordered in such a way that each ¢ € S is linearly
ordered. Given f: ¥V — I write sup f = {v € V| f(v) # 0}. We define the realiza-
tion of K by

|K| ={f: V—»IlsupfeSandZVf(v) =1}

The sum is finite since every set in S is finite. For each ¢ € S write |o]| =
{fe |K||sup f< a}. Suppose ¢ = (vy, ..., v,). Then o is called an n-simplex.
There is a 1-1 correspondence x,: A" — |a| given by yx,(xy, ..., X,+ )(®) = x;.
We topologize |o| by making y, a homeomorphism. This does not depend on
the ordering of the vertices. {K| = (J,.s|o|. Topologize | K| with the quo-
tient topology:

X.'a]e_ya} - | K]|.

The inclusion | K| = IV is continuous, where I' has the product topology,
although | K| does not have the induced topology in general. In any case | K|
is Hausdorff. As n-cells we take y,(A" — 0A") for all n-simplexes o. For each
o, x, is a homeomorphism, hence | K] is a cell complex. | K| is obviously
closure finite and by 14.5 it has the weak topology. By construction it is a
simplicial CW complex. |

Corollary 21.15 Every simplicial CW complex is homeomorphic to | K]
for some abstract simplicial complex K.

Proof This follows immediately from Exercise 26, Section 16. |

Theorem 21.16 Let v, be a vertex of K. Then (| K|, |v,]) is a WANE.

Progf Let X be a paracompact, 4 < X closed, and f: A — |K|. Given
v € V define the star of v by

sto={fe |K|| /@) #0}.

Clearly, {st v|v € V'}is an open cover of | K|.{f ~'(st v)} is thus an open cover
of A. Choose, for each v, an open subset WL, = X such that W, N 4 =
ST st o). {U,, X — A4} is an open cover of X. Choose a subordinate parti-
tion of unity

p: X1, P, X—1,
with {x|p(x) =0} c X — 4, {x|p,(x) #0} =W,. Let W ={x|p(x)#1}.
Define functions
g, W -1
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by q,(x) = p,(x)/(1 — p(x)). Then{q,} is a partition of unity of U’ subordinate
to U, n W'. Define a simplicial complex K’ with vertex set ¥ and simplex
set

S'={ccV|iceS or g, x)#0 forsome xe9U andall ved}.

Then K’ =(V, 5) is a simplicial complex. |K| = |K’| as a subcomplex.
We define g': W - |K'| by ¢'(x)(®) =¢,(x). This is well defined for
{v|g'(x)(v) # 0} e S". To see that g’ is continuous at x € U’ choose a neigh-
borhood U, of x such that only finitely many g, # 0 on U, . Then g'(L,) is
compact. Thus the topology on g'(W,) is the induced topology as a subset of
I". Since ¢’ is clearly continuous with this topology, ¢'|qy, is continuous.
Thus ¢’ is continuous.

Now ¢'(4) = | K], for if g(a)(v) # 0, a € W, and thus f(a)(v) # 0. Define
g: A— | K| by g(a) = g'(a). We show that g ~ f (rel £~ *(|v]). Define H by

H(x, D) = if(x) + (1 — 1)g(x).

H(x, 1) e | K| for if H(x, t)(v) # 0, f(x)(v) # 0. A proof of continuity for H is
similar to that of g’. H is a homotopy rel £ ~!(|v|), for if f(x) = |v|, p,(x) =1
and hence g,(x) = 1, so g(x) = |v|. It is only necessary to show that g extends
to a map g: W — | K|. By Exercise 20, Section 14 there is a neighborhood V
of |K| in |K’| and a retraction r: ¥ — |K|. Let W = W' n g’ "}(¥). Define
g=rs" 11

Proposition 21.17 Suppose X is paracompact and 4 < X is closed. If
(Y, %) is a WANE and

[ XXx0uAxI-»Y

S~ g (relf~'(x)) and g extends to a map G: X x I - Y.

Proof By 21.10 and 21.11 we can find g, a homotopy f~ g (rel f~1(»))
and an extension § of g over a neighborhood W of X x0u A4 x I'in X x L.
Choose a neighborhood V of 4 in X such that V' x I< W. Let a: X1
satisfy a(X — V) =0 and a(A4) = 1. See Fig. 21.1. This is possible since every
paracompact space is normal. Then define G: X x I~ Y by

G, 1), a(x) = ¢
G(x’ t) - {g(x, a(x)), CX(X) <t l

Proposition 21.18 Let (Y, *) be a WANE, X paracompact, and C a closed
subset of X that is contractible in G*, Then

(Pc)*3 [(X/C’ {C})a (Y’ *)] - [(Xa *)’ (Y9 *)]

is a 1-1 correspondence.
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4

—
A

Figure 21.1

Proof let K: Cx I—C be a contraction of C in B* K(x,0) = x,
K(x, 1) = %, and K(*, t) = *.

To prove that (pc)* is onto, let f: (X, ) > (Y, *). Define F: X x0u
C x I- Y by F(x, 0) =f(x) and F(c, t) =f(K(c, t)). By 21.17 there exists
G: X x I - Y and a homotopy

F~G|Xx0qu,(rel*XIUC><l)

Let g(x) = G(x, 0); then f'~ g (rel *). If g'(x) = G(x, 1), g'(C) = *, so {g'} €
Im(po)*. However G: g ~ g’ (rel %), so (pc)* is onto.
Suppose now that H: fp. ~ gpc (rel #). Define

H:XxIx0uCxIxI->Y
by
H(x, s,0) = H(x, 5), H(c, s, t) = H(K(c, 1), 5).

Then HICx 0O xTuCx1xTusxIxIuCxIx1)=x% Thus there
exists

G: XxIxI-Y

and a homotopy

L:H~ Gy rvoucxixr
el CxOxTuCxIxTuxxIxITuCxIxl).

L(x, 0,0, 0) = fpc(x), and

LlXXOXOXI:prNLIXXOXOXI (rel C)
Similarly

ng~L|Xx1x0x1 (rel O).
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Let f', g’: X/C—> Y be given by f'(x) = L(x, 0,0, 1) and ¢'(x) = L(x, 1, 0, 1).
Then {f} ={f"} and {g} = {¢'}. Now define M: X x I — Y by

G(x, 0, 37), 0<t<}
M(x,t) = {G(x,3t-1,1), +<t<%
G(x,1,3 =31, %<t<l.

MCxDcGICx0xTuCxIx1uCx1xlI) ==« Hence M defines a
homotopy ,

M: (X/C) x I- Y (rel {C})

and M: f' ~ g’ (rel {C}). Thus {f} ={f"} = {9} ={g}- 1
Let £ be the category of paracompact Hausdorff spaces.

Corollary 21.19 Let X e 2 n CS. Suppose * € C < X and C is contract-
ible in CS* and closed. Then

(pc)*: EM(X/C) - E™(X)
is an isomorphism.

Proof S""™C is a closed contractible subset of S""™X, and §" ™" X/S" " "C
= §"""(X/C). Hence

(pc)*

[Sn_m(X/C)’ En]_—*’ [S"—mX’ En]

is an isomorphism by 21.18. ||

Theorem 21.20 The functors E": & n C82 — M, satisfy the following
properties:

1. Relative Homeomorphism Let f: (X, A) — (Y, B) and assume that f'is
a closed map, 4 and B are closed subsets, and fly. . ,: X—4—>Y—Bisa
I-1 correspondence. Then f*: E™(Y, B) » E™(X, A) is an isomorphism.

2. Neighborhood Extension Property Let & e E™(X, A) and suppose A4 is
closed. Then there is a neighborhood U, of A in X and a class & e E"(X, Ué)
such that i*(&") = ¢ where i: (X, 4) - (X, U,) is the inglusion.

3. Excision Suppose U is an open subset of X and U = A. Then the
inclusion i: (X — U, A — U) = (X, A) induces isomorphisms. In particular,
{E"} is a cohomology theory. (This is type 2 excision.)

4. Continuity Let{X,}be an inverse system of compact Hausdorff spaces.
Then there is a natural isomorphism

lim E"(X,)— E™(lim X,).
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5. If Cis closed and contractible, (po)*: E™(X/C) - E™(X) is an isomor-
phism.

Proof 1. By 2L.11 and 21.19, E"(X, A) = E"(X U CA) = E™(X/A). The
hypothesis implies that finduces a homeomorphism

f: X/A— Y/B.
2. Let £ e E™(X, A) be represented by a map
[XUCA NS E,
Definea: ¥ x0uAxIuXx1->Q"""E, by
afx, 0) = f*(x), ala, t) = f*a,t), a(x, 1) = *,

where f*: X U CA - Q" "E,is the adjoint of f. This is continuous in the com-
pact open topology. Hence there is a neighborhood Wof X x 0u 4 x Tu
Xx1in Xx I, a map g~ o (rel X x 1), and an extension § of g over
Q. There is a neighborhood U, of A in X such that U, x I = . Hence
§lU, x I'u X x Odefinesamap g': X U CU, - Q" "E, suchthatg’|y , c4 ~
f* (rel ). Since X U CU, is compactly generated, g’ is continuous in the com-
pactly generated topology on Q" "E,. Hence the adjoint of g’ represents a
cohomology class in E™(X, Ué) which restricts to £.

3. Suppose B = C < D are inclusions of spaces. Then the map C/B — D/B
induced by the inclusion of C into D is 1-1 and continuous. We show that
C/B has the induced topology. Let p,: C— C/B and p,: D — D/B be the
projections, and suppose W is open in C/B. Then p; '(W) is open in C and we
can thus find an open set V in D with V'~ C = p; '(AL). Now p5 'p,(V) =V
50 p,(V) is open in D/B. Since p,(V) n C/B = UL, we have accomplished this
task.

It follows that A/Uc X/U and A -U/U-Uc X -U/U~-U. All of
these spaces belong to 2 n C8 by 21.11, so we consider the diagram

E™(X, A) « E™(X/U, AJU)

|

E"X—-UA-U)e——E"X~UU~UA-UU-U)

Now we claim that (X — U/U — U, 4 — U/U - U) = (X/U, A/U). There is
clearly a 1-1 continuous map from (X — U/U — U, A — U/U — U) onto
(X/U, AJU) induced by the inclusion of X — U into X. To see that this map
is closed, observe that the composite X — U — X - X/U is closed. Thus the
right-hand vertical map is an isomorphism. 1t is thus sufficient to show that
the horizontal maps are isomorphisms. The lower one is a special case of the
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upper one by replacing Uc Ac Xby U - Uc A —Uc X — U. Consider
the diagram

ot s E" X, U)—— E™ (4, 0) E™X, 4) E™X,U)——E™(4, U)— - -~

<o EmY(XJU, #) ——— E™ V(AU #)~— E™(X/U, AJU)y——E™(X/|U, ) ———s E™(A[U, ¥) > - -

The horizontal sequences are exact by the techniques of 19.5, and the result
follows from the 5-lemma and part 1.

As in 19.5 the other properties of a cohomology theory are easily proven.

4. By Exercise 9, Section 15

ljm Xa = {{xrz} EH Xa[f;m'(xa’) =X fOI' d’ 2 a}'

There is a continuous map p,: lim X, —» X, given by p,({x,}) = x,. Since
f;u’pa’ = Pus pa* = p:’ at’ . Hence {pa*: E"(X(z) - E"(!—im Xa)} deﬁnes a homo-
morphism

p:lim EN(X,) — E"(lim X,).

Define By = {{x,} €[ [o<g Xul fauw(Xs) = X, for o’ >a}. Clearly By= Xj.

Let Cy = By x[]a>3CX,. Then gz: C; — X, given by projection is a homo-

topy equivalence. Furthermore if > ', Cy = Cy., and ﬂ Cg = lim X,.
Now it is sufficient to show that

0: lim E"(Cy) — E"(() Cy)

is an isomorphism where @ is defined similarly to p, for we have a commuta-
tive diagram

lim E"(C,)—— E*(} Cp)
{g8*} | = =
lim E"(X,) —— E"(lim X,)

Let C = (| Cy and note that C is compact and Hausdorff. Let {e E”(E).
By part 2 there is a neighborhood U, of Cin C; and a class £’ € E"(Cy, Uy)
with {*(¢) = §¢. By contemplating the diagram

E"*(C,, C) e—— E(C)e—— E"(Cy)

E™NCy, U)e—— E"(U) — E"(C})
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one sees that there exists &’ e E"(U) with i*(£") = £. The open sets U and
X — Cyfor all g with C; D C, an open cover of C. Since C is compact, there
is a finite subcover and hence for some f, C; = U. Thus £ = 0,*(£") for some
" € E"(Cy) and hence 0 is onto.

Suppose 0(£) = 0, and ¢ is represented by e € E"(C,). Then i*(e) = 0 where
i: C— C, is the inclusion. Choose d € E"(C,, C) such that j*(d) = e. By part 2
we can choose U; » C and a class d' € E"(C,, U,) such that i*(d’) = d. Again
by compactness, one sees that there exists § with C < Cy < U,. Thus we can
find d" = E"(C,, Cy) with i*(d") = d. Hence a*(e) = 0 where a: Cy — C, is the
inclusion. Thus & =0.

5. The map pc: (X, C) = (X/C, {C}) is a relative homeomorphism. Since
EYC) = E"({C}), the result follows by the 5-lemma and part 1. |

The properties expressed in 21.20 are characteristic for what is often called
a continuous cohomology theory. Two continuous versions of ordinary co-
homology are common in the literature. They are the Cech cohomology
groups—written H"(X, A; n)—and the Alexander cohomology groups—
written H"(X, A; n) (see [64]). These agree with each other and with ordinary
spectral cohomology on paracompact compactly generated spaces. (All three
are initial objects in the category of ordinary cohomology theories with
coefficients in z.) [32]

Figure 21.2

Example 21.21 Let X be the union of the closure of the graph of y = sin n/x
for 0<x <1 and the sets [—1, 0] x 0, [-1, 1] x 2,1 x [0, 2], and —1 x
[0, 2]; see Fig. 21.2. There is a continuous map from X to the rectangle
determined by the lines y =0, y = 2, x = +1. This is defined by pinching the
closure of the curve sin n/x down to the line y =0. Let Y =0 x [—1, 1].
Then Y < X and the above rectangle is homeomorphic to X/7Y, since X is
compact. Since Y is contractible, E(X) = E"(X/Y) = E"(S!); in particular
HY(X) = Z. §H'(X) = 0 since every homotopy group of X is 0.

Corollary 21.22 If X e 2, E"(X) = E"(X, %).
Proof By 2120 E"(X u C(») = E"X). |
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Exercises
L. If {E,} is an Q-spectrum, show that SE"(] [X,) =[]SE"(X,).
2. Prove that if Xe 2 and 4, B are closed subsets, there is a Mayer-
Vietoris sequence

e~ E"(X A B) E"(A) ® E"(B) « E"A U B)« E"" AN B) -

3. Let X=S8"x [0, ) = R* and 4, be a plane in R* through the line
(1, y, 0) and making an angle o with the x, y plane. Choose an increasing
sequence of numbers o; > 0 with lim «; = n/2. Define X, as the points of X
above the plane A, . Show that lim X; = ()X, is the line (1, 0, z) and hence
H'(lim X;) = 0. Show that H'(X,) = Z and lim H'(X)) = Z.

4. Let A c B < X be closed subsets and suppose {(U,, V,)} is the inverse
system of all neighborhoods of (B, A) directed by inclusion. Show that the
natural map

lim E"(U,, V) - E"(B, A)
is an isomorphism. (Hint: Consider first the case B = X.)

5. Suppose (U, V)isexcisiveinZ and W < U n V. Using the commutative
diagram containing three exact sequences

E(Z, W)
E(Z, V) T~ E(Z, U)
\ | /
= EZ Un V) Ig

EWU,UNnYV) EWV,UnYV)

T

E_(UnV, W)
show that the sum of the two exterior homomorphisms:

E(Z W)->E,_(UnV, W)
is 0. (Exercise 13, Section 23)

6. Let F->EZ>B be a Serre fibering. Assume that Fis (n — 1)-connec-
ted and B is (m ~ 1)-connected with m > 2. Use Exercises 7 and 23 of Section
16 to construct exact sequences

Sﬁm+n-1(F)_’ SHm+n-1 (E)_’ ‘tT
— SH,(F)— SH,(E)-=> SH;(B)—> SH,_; (F)~
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and
o SH(F) = SH(B) o SAI(E)— SH(F) — - +-
~ SA™*""Y(E)— SH™* "~ \(F)
with arbitrary coefficients. These are called the Serre exact sequences and t

is called the transgression. (30.7)

7. Generalize Exercise 8, Section 16 to the case that X and Y are arbitrary
well-pointed spaces.

8. Show that there are isomorphisms, natural in all the variables:
(a) if X is well pointed:
E(X; @ A= @ E(X; 4);
(b) if the indexing set is finite:
EX; @ 4) = @ E(X; A).
(Hint: It is sufficient to prove (a) for CW complexes X. Apply Exercise 10,
Section 18. For (b), apply Exercise 13, Section 18.)

9. Define the singular chain complex of a topological space as follows. Let
C,(X) be a free abelian group with one generator e, for each continuous map
f: A" > X. Define 0: C,(X)~ C,_(X) by

dep= Y (~1’%.

Show that 8% = 0. Using the functorial singular complex (16.35) and Exercise
4, Section 20 show that H,(C,(X)) is naturally isomorphic to SH,(X), and
H*(Hom(C,(X), Z)) is naturally isomorphic to SH*(X).

10. Use Exercise 1, Section 19 and 21.5 to show that if 4 and B are excisive
in A U B, there is a Mayer-Vietoris sequence

v SE(X, A" B) > SE(X, A) ® SE(X, B) »SE(X, AU B)— .
(26.7; 26.8; 26.13)

11. Show that the hypothesis that * € X is nondegenerate may be dropped
from Exercise 28, Section 16 if ¥ is a WANE and X is paracompact. In
particular if E is an Q-spectrum and E, is connected and the homotopy type
of a CW complex for each n, E"(X) =~ [X, E,]. (29.13)
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The Relation between Homotopy and
Ordinary Homology

In this section we shall make some general observations about ordinary
homology and cohomology. In particular they vanish in negative dimensions
when applied to reasonable spaces, and are related to the components in
dimension 0. In higher dimensions we prove the Hurewicz theorem which
illuminates the close relation between homology and homotopy.

Proposition 22.1 A™(X; ) =0 form < 0. If (X, x) € N, H,(X; n) = 0 for
m<0.

Proof'® By 18.13, A ™(X; n) = [(X, %), (Q"K(x, 0), ¥)] =0 for m >0
since in this case Q"K(n, 0) ~ *. Now for any CW complex L, H,(L; 7) =0
for m < 0. Thus SA,(X; n) = H,(S(X); 1) =0 for m <0 by 21.7. |

Corollary 22.2 For any pair (X, 4)e C8%, H, (X, A; n) =0 and'®
H™(X, A; ) =0 for m<0.

Proposition 22.3 H(X) is a free abelian group whose rank is the number
of arc components of X. H(X) = [[,Z, where Z, = Z and there is one copy
for each component.

Proof'® Let K L, X be a resolution of X. Then X and K have the same
number of arc components, and if {K.} are the arc components of K, K =

19 The proofs we offer for the cohomology statements depend on the fact that QK (ar, n) ~
K(m, n — 1) (see the remark after 18.13). Without reference to this fact the proofs are valid
only when the spaces under consideration are of the homotopy type of a CW complex.

215
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11K, . By Exercise 3, Section 19 it is sufficient to show that Hy(K,) & Z. To do
this we show that Hy(K,) = 0. In fact K, A K(Z, n) is n-connected so this is
immediate. If {X,} are the components of X, X = [ [, X . By Exercise 3, Section
19, H°(X) =[] H°(X,). Thus it is sufficient to show that H°(X,) = Z. But

H(X) = [(X,*, +).(Z,0] =[X,,Z]=Z
since Z ~ K(Z,0). |
If m >0, define h: =, (X) - H,(X)= H,(X) as follows. Note that §' ~
K(Z, 1) and let & be the composition
To(X) > Ty (X ASY) 2 11,04 (X AK(Z, 1)~ H,(X);

h is a natural homomorphism, and is called the Hurewicz homomorphism.

Theorem 22.4 (Hurewicz Theorem) If X is simply connected and well
pointed, the following are equivalent:

(a) n(X)=0fori<n;

(b) H/(X)=0fori<n.

Furthermore they imply that #: 7,(X) — H,(X) is an (n + 1)-isomorphism.

Proof Since X is well pointed and / is natural, we may assume that X'is a
CW complex by 21.7. Suppose n,(X) =0 for i < n. Then E: n(X) - 7, 1(SX)
is an (n + 1)-isomorphism since n > 1. (E is a (2n — I)-isomorphism by
16.34.) We consider the composition 7,

(1 Abm)e
—_—

nr+m+1(XAK(Za m + 1))

Since XAK(Z, m) is (in + n — l)-connected, E is an isomorphism if r <
m+ 2n — 1 and is onto if r = m + 2n — 1. We now appeal to

Ty e (X AK(Z, 7))~ Ty s s 1(X AK(Z, 1) A ST)

Lemma 22.5 Let f: X > QY and suppose f*: SX - Y is adjoint to f.
Then the diagram

%)
T4 1 (SX) ——— 7, (Y)

7,(X)—"— 7,@Y)
commutes. |

E: n(K(Z, m))—> 7, (SK(Z, m)) is a (2m — 1)-isomorphism by 16.34.
Hence by 22.5, (1)« 7(SK(Z, m)) - n(K(Z, m + 1)) is a (2m + 1)-isomor-
phism. By Exercise 7, Section 16 we may assume that (K(Z, m + 1), SK(Z, m))
is a relative CW complex with cells in dimensions greater than 2m + 1.
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Hence (X A K(Z,m + 1), X A K(Z, m) A 8?) is a relative CW complex with cells
in dimensions greater than n + 2m + 1. It follows that (1 Ah,,)y is an iso-
morphism if r+ m+ 1 <n+2m+ landisontoifr +m+1=n+2m + 1.
Thus y,, is an isomorphism if r <m + n and is onto if r =m + n; ie., h is
an (n + 1)-isomorphism.

We have proven that under condition (a), / is an (n + 1)-isomorphism. It
follows immediately that (a) is equivalent to (b). |1

Corollary 22.6 If X € CG and is simply connected, the conclusion of 22.4
remains valid with A (X) replaced by SH,(X). |}

If 4 # &, define h: n (X, A) > H(X, A4) to be the composition
m(X, A) "2 (X[ A, *) > A (X]4) = H(X, 4).

Proposition 22.7 (Relative Hurewicz Theorem) Suppose A is simply
connected, and 7,(X, A) = 0. Then the following are equivalent:

(a) n(X,A)=0fori<n;

(b) H(X, A)=0fori<n.

Either implies that 4: n,(X, A) - H,(X, A) is an isomorphism for i < » and
ontoif i=n+1.

Proof By 21.7 we may assume that (X, A4) is a CW pair. As in the case of
22.4, we show that (a) implies the final conclusion. But by 16.30, n,(X, 4)

(P n{X/A) is an (n + 1)-isomorphism. ||

Corollary 22.8 (Whitehead Theorem) Let f: X > Y and suppose both
X and Y are simply connected CW complexes and f,: H,(X) - H,(Y)is an
isomorphism. Then f is a homotopy equivalence.

Proof LetZ be the mapping cylinder of f. Then X = Z and H,,(X) - H,(Z)
is an isomorphism. Consequently H,(Z, X) =0 for all m. X is simply con-
nected and n;(Z, X) = 0 since we have an exact sequence in 8*

1(Z) - m(Z, X) - mo(X)
in which both ends are 0. By 22.7, n,(Z, X) = 0so0 iy n,(X) — n,(Z) induces
isomorphisms in homotopy. Consequently / is a homotopy equivalence. It
follows that f = =i is a homotopy equivalence

X —— 7

f

P

Yy 1
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Proposition 22.9 There is a diagram
2y (X, A) o T,y () —

Ty 1 (X, ) —— m,(A) —— 7,(X)
Jh +1 lh lh Jh +1 lh
Hy o (X, A) — s H(A) —s H(X) —2s H (X, ) —2— H,_,(4) ——

where all squares commute except the one involving d, which commutes up
to sign.

Proof The square involving i, commutes by naturality, and the one in-
volving j, commutes because of the commutative diagram

1(X) —2— n X, 4)

{Pade (Pa)e
v

T(X/[A, %)

h

v

v

A0 —2 A,x/4)
[ , I
H(X) —=— H/(X, A)

To prove the other square commutes up to sign, we use the following:

Lemma 22.10 There are generators « € H,(S") and e H,(B", S" ') such
that if 2 §" - X, h({f}) = fu(2) and if g: (B", §"~") = (X, 4), h({g}) = g+(B).

Proof Let o = h(lg.) and B = A(1 n gn-1)) Where
lgu: S" > S" and L, sn-1): (B, 8" 1)y > (B", 8" 1)

are the identity maps. The result follows from naturality by considering the

diagrams
m(B", S" Y —Z s n (X, A)

N . |
! H(B", S~ 1) —2s H (X, A)

*

Hn(S") - Hn(X)s

(8" —L 7, (X)

« and f are generators by 22.4 and 22.7. |
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To finish the proof of 22.9, observe that 08 = +a. Hence dh({g}) =
0gx(B) = gx(0P) = % filw) = Lh({f}) = +h(d{g}) wheref = dg = g|sn-1:8"""
-A4. |

Exercises

1. A generator a € 7, (K(Z, n)) provides a map «,: " — K(Z, n). Show that
if the generators are chosen properly, this defines a map of spectra §—
H and hence a homomorphism H: n,%(X)— H,(X) (see Exercise 4, Section
18). (Exercise 2)

2. Prove that there is a commutative diagram (up to sign)

1(X) —— n5(X)

\ /
A,.(X)

(see Exercise 1).
3. Show that the diagram

(X)) —=— m,,,(SX)

Fo)

AX) —=— H,.(5X)

o~

commutes up to sign.
4. Show that given * € 4 = B « X there is a commutative ladder of exact
sequences

e 1 (X, ) — 1, (X, B)———a—wr,,_l(B, A)——n,_ (X, ) —— -+

N

e H,(X, A) —— H (X, B)—— H,_ (B, ) —— H, (X, A) —— -

in which all squares commute except the one involving 8, and that commutes
up to sign. :
5.* Show that if X is a simply connected CW complex and

~ Z, n=k

H,(X) = {0, n+#k,

then X ~ S*,



220 22. The Relation between Homotopy and Ordinary Homology

6. Use Exercise 3, Section 20 to show that the kernel of 4: n,(X, ») > H,(X)
is the commutator subgroup for any space X.

7.* Show that if X and Y are simply connected and f,: H(X)—> H/(Y) is
a k-isomorphism, f is a k-equivalence.

8. Letf: S" —» S"and define the degree of fto be nif f,(x) = nx for x € H,(S").
Prove the Brouwer degree theorem: f ~ g iff deg f = deg g.

9. Consider the construction 16.14 of a resolution (X, f) of a space Y.
Supiaose Y is simply connected and 0 —»Bm—i"—»Z,,,——ﬂ"—v H,(Y)—-0 is an
arbitrary resolution of H,(Y) as an abelian group in which Z, = B, =0 (i.e.,

B, and Z,, are free and the sequence is exact). Show that the construction
(K, f) can be done so that there is a commutative diagram of exact sequences

0 > Z, — H,(K" K"™")

lsm lh H,_ (K" 1) —— H, (K™
0 —— H(Z) —— H,(Z,K"™")

and hence C,, = Z,, ® B,,_;, and 0,(x, ) = (a,,-;(»), 0) giving ker 8,, &= Z,
and Im d,,,, = B,,.

10. Show that if M(G, n) and Y(G, n) are two Moore spaces for the group
G and integer n, they have the same homotopy type.

11. Prove a generalized Hurewicz theorem. Consider 4,: n5(X; G)—
H.(X; G) (see Exercise 12, Section 18). Show that if X is (+ — 1)-connected,
h, is an isomorphism and 4, ., is an epimorphism. Let f: X - Y, and con-
clude that f,: A.(X; G)— H(Y; G) is a k-isomorphism iff f,: n,5(X; G) -
7,5(Y; G) is a k-isomorphism. (30.13)

12. Suppose E is a properly convergent spectrum and X is an (n — I)-
connected well-pointed space. Show that m,, (XA E)— E(X) is an iso-
morphism for r < n and is onto if r =n + 1. (See Exercise 14, Section 18.)
(Exercise 20, Section 23; 27.5)
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Multiplicative Structure

In this section we shall show how pairings of spectra (maps p,,, ,: E, A F,, =
G, ., satisfying compatibility conditions), lead to pairings of the various
homology and cohomology theories defined by the spectra. In particular, we
establish that under certain conditions on the spectra, the cohomology forms
a ““ graded ring,” and both the homology and cohomology are modules over
the “ coefficient ring,”” E*(S°). These conditions are satisfied for many spectra,
including S and HR where R is a ring.

Proposition 23.1 Let c: [SY, Z] x [SX, Y] [S2X, Z] be given by
c(a, ) = a o Ef. c is bilinear (and hence defines a homomorphism

c:[SY,Z]®[SX, Y] - [$*X, Z]
if the groups involved are abelian).
Proof c(g,f)x, s, t) =g(f(x, s), t). Hence

o+ o s = (BFERT 02

— c(gl’f)(xa s, 2t)a 0<t<
- {C(gz,f)(x, s2t—1), i<t<l1
= (C(gpf) + 0(92 ’f))(x9 S, t),

_ [gUi(x, 29), 1), 0<s<}
Ao fo + 1) 5 1) = {g(fZ(x’ 2s — 1), 1), i<s<l

c(g, f1)(x, 25, 1), 0<s<i

B {C(gsfz)(x, 2s — 1’ t)a % <s < 1
= (C(g’-fl) + c(g’fZ))(x’ S, t);

since addition may be defined using any suspension coordinate by 9.14. |

IA A

%
1
3

221
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Proposition 23.2 c(Ex ® Ef) = Ec(a ® f).
Proof c(Ex® EB) = Eoo E*f = E(ao Ef) = Ec(a ®f). |

We shall often deal with spaces of the form S*X A S$™Y, and will choose a
fixed standard homeomorphism of this with $"*™(X A Y). This is defined
by considering S"=1I1"/0I". Consequently there is a homeomorphism
@O mt S"AS™ > 8" which is defined by

(Pn,m((sls ~--asn)a (rl’ DR tm)) = (sla cery S", tly sy tm)'
This is associative in the sense that the diagram

k @nym Al
—_

S"AS™AS Sntma Sk

1A@m, K Pntmsk

S A Stk Pnim+k gntmtk

commutes. We define

Bam: (S"X)A(S"Y) > S"TM(X A Y)

by
¢n,m(x’ u, y, U) = (x’ s (pn,m(us l)))
Now define
0 [S™X, S* Y] [S"T™(Z A X), S"THZ A V)]
and

EL: [S"X, S Y] - [S"™(X A Z), S"H(Y A Z)]

by smashing a map on the left (right) by the identity map of S"Z and resorting
using the maps @, ,. Explicitly, 7 is the composition

(@ns m ™ 1)%(Pny 1>

[S""™ZAY), "M (ZAY)]

[S™X, S¥¥] > [S"Z A S"X, S"Z A S*Y)

and E’ is the composition

(Prs n™ )*(Pr, n)*

[S"*™X A Z), S"™* (Y A Z)]

[S™X, S*Y] — [S"X A S"Z, S*Y A §"Z]

Proposition 23.3 X," and E," are homomorphisms. They satisfy the
identities:

(a) IioEl =ELo3,"

(b) Ej-Ep=E;ly.

(¢) Tjo Xy =I5

(d) EL=E.

() IfL =3k, X=(-1)""*E
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Proof E°(f)z, X, 8,5 .., 8y) =(2, (X, 51, ..., 5m)), hence TJ is a homo-
morphism. Similarly E} is a homomorphism. By (a)-(e), £ =X"0 £ =
(—=1)"™~BE"E) and E} = E" o EY; it follows that T3 and E} are homomor-
phisms, once we establish (a)—(e). (a), (b), and (c) follow immediately from
the associativity of @, ,, and (d) is the definition of E. To prove (¢) we need
a lemma.

If 6is a permutation of (1, ..., n), o induces homeomorphisms T,: (I", I") —
(" 01" by Ty(xy, « . o5 X,) = (Xoq1)s - - - » Xoqm) and T,: 8" = I"/0I" — I"/OI" = S”.

Lemma 23.4 (T,),(x) =sgn o - x for x € n,(S").

Proof The transformation ¢ —(T,), is a homomorphism from the
symmetric group onn letters to Aut(Z) = {4 1}. There are two such homomor-
phisms, sgn and 1, since every permutation is a product of transpositions.
Now T((,) = E"2T{}),,, so it is sufficient to show that (T(,)), = —1. We
define : I> - I? by letting Y(u, v) be the point whose distance from the

Figure 23.1

diagonal varies from the extremes linearly, as v varies from 0 to 1 and whose
projection onto the diagonal is (u, u); see Fig. 23.1. Explicitly,

W, v) = (2uv, 2u(1 — v)), O<ux<i

=20 w1 =), 1 =2(1 —u)), I<u<l.
Y is 1-1, onto, and continuous and Y(0I%) < dI*. Now Y ~'Ty Wy, v) =
(u, 1— U), SO {ll’_lTv(l,z)lp} = {—1} € 7T2(12, 612) Hence (7‘(1)2))* = -1 and
this implies (T(; 5))s = —=1. |}
To finish the proof of 23.3, we observe that

L) =UyATq, . key) o (fA1) c(Ix AT, L mery)
~ (Lgey A(=1!1) o (f A1) o (Tsmx A(=D™y)
~(fAy) o (Igmy A(=1)""4y)
=(=D"*E(f). 1
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We now define a general composition pairing
Con it [SVAW), XIQ[S"Y, SYWAZ) - [S""(VAY), SHX AZ)]
by Cp,x =co (EZQI}Y).

Proposition 23.5 EoC, = Cp 41 ° (1 QE)=(~1)""*Cpiy 1 (E®]1).
Proof
E-C, (a®p)=E-c(Eja @Ey™'f) = o(E® E)Ejx ® L} 'B)
= c(E§"'a @ EZy'B) = o(E5 ' @ ZP T EP)
=Cpni+1(@@EB) =Cp 41 °(1® E)a®p)
EoC, (2 ®P) =EcclEfa @2y 'f) = (EQ E)(Efa @ TP ™' )
= c(Ejt e @ (= 1)""*Z7B)
=(=1)"""(E; @IP)NEx ® B)
= (_l)n—kcm+l,k (EQD@®p. |
It will be convenient to define a functor of two variables generalizing
homology and cohomology, thus handling both cases at once.

Let E = {E,, e,} be a spectrum. Define?® E(X, Y) as the direct limit of
the system

co o [SHX, Y AE, ] [SKX, YAE, ]

where 4, is the composite
[S**"X, ¥ A E,]— [S**"*1X, YA E, A S']
Then E(S°, Y) = E(Y)and E(X, S°) = E"}X).

(1 Aen)s

[S“""*1X, YAE, )

Definition 23.6 Given spectra E = {E,, e,}, F={F,, f,} and G ={G,, g,},
a pairing from F and Fto G is a collection of maps

um,n: EmAFn - Gn+m
such that the diagrams

1 mon Al 1 1 ms 1 1
E,AF,AS #mrtl  GuinAS E AF,AS! #montl GuinAS
Lafn l”"'*" E,AS'AF, (="
HBmsn+1 Gm+n

EmAFn+l ? Gm+n+1 em Al

Hm+1t,n
Em+l AFn—’Fm+n+1

20 One is tempted to call the value of this bifunctor the biology groups of the pair of
spaces.
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commute up to homotopy (with the indicated sign). A spectrum E is called
a ring spectrum if there is a pairing from E and E to E and a mapping
u: 8§ — E such that the diagrams

1 Apn,«

E . ANE ANE, E ANE, .,

lpm,"/\l HBm,n+k

Hm+n, k
x+nAEk ? Em+n+k

E

m

1A up

EMAE,,\ E . AS" —— E_AE,
l’r (- l)""; E, in M /"'"
E, A Em% Epin
homotopy commute, with the indicated sign (after suspension), where ¢,* =
€miny " S" e, .If Eis aring spectrum,a spectrum Fis called a module spec-

trum over E if there is a pairing from F and E 1o F such that the diagrams

F,ANE,AE, ‘22 F AE,.,, F, AS" % F_AE,

lﬁm.n/\ 1 Iﬁm.n«#k &," /ﬂ.n
F,

Am+nk
Fm+n A Ek

Fm+n+k m+n

homotopy commute.

Proposition 23.7 S is a ring spectrum and every spectrum E is a module
over S.

Proof Letfy »=@n S"AS"> S" " and u, = 1;sincee, = @, y,e," =
@m, - All diagrams not involving signs commute pointwise. Those involving
signs follow from 23.4. For any spectrum E, define i, ,=e,": E,AS"—
E, ... Then the diagrams required to homotopy commute do so pointwise. J

We now establish a pairing from Hr and Hp to Hn ® p. We consider
C: nm(X) ® nn(Z) - 7Tn+m(/Y/\Z)

given by setting ¥ =W =Y =2S% and k=0. One easily checks that
CHf1®{g) ={frg}
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Proposition 23.8 If X is an (n — 1)-connected well-pointed compactly
generated space and m, n > 1,

C: nm(M(TC’ m)) ® nn(X) - nn+m(M(TCa m) A X)
is an isomorphism.

Proof Since X is well pointed and C is natural, we may assume X is a
CW complex with no cells in dimensions between 0 and »# by 21.8. Consider
the commutative diagram

T(M(R, m)) @ n(X) L8}, 1 (M(F, m)) ® m,(X) —— m,(M(n, m)) ® n,(X) ——0

¢, Cy c

T m( MR, m) A X) L2200

Tt M(F, M) A X) —— 11, , (M(1, M) A X) ———> 1, - (M(R, m) A X)
the bottom row is exact by Exercises 3 and 15, Section 16, since
M(r,myAX ~ M(F,m)A X Uy, CH{M(R, m) A X}.

By 16.34 and Exercise 8, Section 16, C; and C, are isomorphisms. Further-
more 7, ,_1(M(R, m)a X) =0. We wish to conclude that C is an isomor-
phism by the 5-lemma. Now

0 - 7, (M(R, m)) - n,(M(F, m)) > n,(M(n, m)) >0

is exact so the result follows from:

Lemma 23.9 If A— B-2» C -0 is exact in Mg s0 is

AR D2 By D22 C®y D 0.

This fact is often stated by saying that the functor ®g D is right exact. It is
a standard result of homological algebra. A proof will be found in the
Appendix. [
Corollary 23,10 Ifm,n>1,
C: nm(K(n5 m)) ® Tf"(K(p, n)) s nn+m(K(ﬂs m) A K(p’ n))
is an isomorphism.

Proof Consider the commutative diagram in which all maps are isomor-
phisms :

ﬂm(M(ﬂ.', m)) ® H"((K(p, n))_—_* Tfm(K(ﬂ, m)) ® 7T.n(]<(p’ n))

c Cc

Ty e m( M7, m) A K(p, M) — 7, o K, m) A K (p, ) 1
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We will now choose fixed isomorphisms

o, T—s m(K(r, n))

inductively for n > 1 in such a way that the diagrams

(K (7, 1)) —— 1, o (K (7, 1) A §P)

@n

= (S

m— 7y (K, 7 4 1)

commute.

Corollary 23.11 There are maps u,,, ,: K(n, m) AK(p,n) - K(n ® p, m + n)
such that the composite

am@ap (B, n)x

7 ® p 2 1, (K(, 1)) @ T K(p, m)—> Ty (K, 1) A Klp, 1))
T e (K @ p, m + m)) ==

1

T®p
is the identity (i.e., &, (@ ® b) = (i, )1{C(%(a) @ a,(D))).

Proof K(m, myAK(p, n) is (n + m — 1)-connected by construction and
hence {K(n, m)AK(p, m)"*" =K(n®p, m+n) by 23.10. Following
ivem: K(t, myaK(p, n)>K(zn®p, m+n) by f,: Kn®p, m+n)—
K(n ® p, m + n) where ¢ is an appropriate automorphism of n ® p, we con-
struct g, ,. M

Lemma 23,12 If X is an (#» — 1)-connected CW complex, a class {f} e
[X, K(r, n)] is completely determined by f: n,(X) - =

Proof We assume without loss of generality that X has no cells in dimen-
sion < n except a O-cell. Given f,, f5: X — K(n, n) with (f))s = (f2)x, We
certainly have f; | x» ~ f2] x» since X" =\/S,". 16.3 now implies that f; ~ f,
when applied to the diagram

X x1

Y

Xx0uX'xITuXxl —— K(n,n) 1|}
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We use this lemma to prove:

Proposition 23.13 The following diagrams homotopy commute

K(r, m) AK(p, ) A ST 220 K(n @ p, m + n) A ST <221 K, m) A K(p, m) A S
(=1)" 11”

LAfn Smn K(n, m)AS* AK(p, n)
lfm/\l

Kr®p,m+n+1) 22 K(n, m + 1) AK(p, n)

Bmsyn+1

K@, m)AK(p,n+ 1)

Hms n A

K(n, m) A K(p, n) A K(0, p) 22255 K(n ® p, m + 1) AK(a, p)

1 App, p ll‘m*—n,p

Hmsn+p

K(n,m)AK(p®o,n+p)

Kr®p®a,m+n+p)

Kz, m) AK(p, )22 K(n @p,m +1n)  K(w, m) A K(p, m)——> K(z @ p, m + n)
lr (=™ lf'r 1” Afor 1f¢w

K(p, n) AK(n, m)—="s K(p @ 7, m + 1) K(', m) AK(p', ) ——> K(n' @ p’, 1 + 1)

for homomorphisms ¢: 7>z’ and ¢': p—p’.

Km,mya S" 2%, K(n,m)A K(Z,n)

\ Jl‘m.n

K(n,m + n)
where e,: S" — K(Z, n) is such that {e,} = «,(1).

Proof In each case we will apply 23.12. To evaluate the various homo-
morphisms we will use some formulas, the proof of which is easy.

(a) If y em(SY) is the class of the identity map, C(® x) = Zx and
C(x®1) = Ex.

(b) C(C(x®y)®2)=CxQ C(y®?2))
From (a) and (b) we deduce
() EC(x®y»)=C(x®Ey), C(Ex®y)=Cx®Ly).
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(d) LetT: XA Y- YA X be the switching homeomorphism. Then
T C(x®y) = (=1)"C(y ® x)
forxen,(X)and yen,(Y).
From (a) and (d) we conclude that

(e) TyEx =(—1)"%x for x e n,(X).

() (fAg C(x ®y) = C(fi(x) ® g4()-
(g) If ¢: n—p, the maps f,: K(n, n) = K(p, n) can be chosen so that

(p)x(aa(x)) = a((x)).

The commutativity of the various diagrams then follows quite easily. We
carry out the details in the top diagram only.
Elements of the form x = EC(a,(a) ® a,(b)) generate 7, ,.,(K(x, m)A

K(p’ n) A Sl) WC evaluate (fm+n)*(”m, n A 1)* ’ (:um, n+1)*(1 Af;l)* ’ and
(Mm+1, )% A Dg(1 AT), on these elements.

(fm+n)*(#m, n A 1)*(EC((X",(0) ® an(b))) = (.fm+n)*(E((#m, n)*C(am(a) ® an(b))))
= (fm+n)*(Eam+n(a ® b)) = am+n+1(a ® b)
by 23.11, and the choice of a,,, ;.

(i, n+D)5l1 AS)s(EC(0(@) @ 0,(D))) = (tm, 4 1)5(1 AS2)4(Cl2(a@) ® Eet, (b))
= (U 40+ ) C((@) ® (f)4E((D))))
= (Hm+n+1)2(Clan(@) ® 0, 1.1(5)))
= O 4n+1(a @ b)
by (c), the choice of «,,,, and 23.11.

(1,5 (f A D1 A T)(EC(2,(a) ® ,(b)))

= (i, xn A D C(2n(@) ® Ty E(0,(D))))
= (= 1"t +1, ) A Ds(Clan(a) ® Zat, (b))
= (= 1)t +1, ) A D5 C(Ett,(@) @ 0,(B))
= (= 1)"(m+1, ) C((fr) 5 Eom(@) @ 01,(D))
= (= 1)"(tm+1, )5 C%m+1(@) ® %,(b)) = (— 1)y 11(a ® D),

by (a), (), (e), (c), the choice of «,,,, and 23.11. |

Corollary 23,14 If R is a commutative ring, HR is a ring spectrum. If M
is a right R-module, HM is an HR-module.

Proof Let c: R® R — R be the multiplication. Define
Um, n: K(R, m)A K(R, n) > K(R, m + n)
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to be the composite
K(R, m) A K(R, )22 K(R® R, m + n)—> K(R, m + n).

Then p,, , is a pairing. Let e: Z— R be defined by e(1) =1. Define
u,: S" = K(R, n) as the composite

5" K(Z, n) =25 K(R, ).
All diagrams of 23.6 follow immediately from 23.13. For example
KR, n)AK(R,n)AK(R, k) "L KGR® R,m + n)AK(R, k) _L< ', K(R, m + n) AK(R, k)

1 Adtn, K Hm+n, k Hm+n, k

Hm,n+ik

KR, m)AK(R® R, m + k) 225 K(R® R® R, m + n +k) —25 K(R® R, m + n + k)
tafe fioe fe
KR nyAK(R, 1 + k) 2225 K(R® R, i+ n + k) —n K(R, m1 + 1 + k)

homotopy commutes. The case of a right R-module is similar, using the
homomorphism M @ R—> M. |}

Theorem 23.15 A pairing from E and F to G induces a homomorphism

M:E(WVAW, X)QF(Y, WAZ)» G, . (VAY, XAZ)

which is natural?* in V, Y, X, W, and Z.

Proof Let a, , be the composite

[S**™(V A W), X NE,] ® [S'™*"Y, WAZ AF,)]
R [SsHHfm* (VA Y), XAE,AZAF,]
L[St A Y), XAZAG,,,]

where f=(1Ap, ) (AATAL): XAE,AZAF,—» XAZAG,,,. We have
a diagram which commutes with the indicated signs (see page 231).

21 Naturality in W means that if £ W - W', the diagram

1® 1)y ~
L8UA D v A W, X) @ FLY, WA Z)

EWVAW,X)QF(Y,WAZ)
(tAafnx®1 M

M
EVAW, X)@F(Y, W ANZ)———— G (V¥ N Y, X\ Z)

commutes.
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IS YV AW), XAEni 1 ®[S™"Y, WAZAF,] S L[S " YV AW), XAEp AZAF,] It [S*F ™ (YA Y)Y XAZAGyess]
I

(1 nem)®1t (Lnema )y (-

(L AGm+nds

(S YV AW), S(XAE ) ®[S™"Y, WAZ AF,] —— [S*F 4™ (Y A W), S(X A By AZ AF,)] —20% [§5H+m4m4 (Y A Y), S(XAZ A Gy i )]
t

E®1 (—nr E E
[S* (VA W), XAE]® [S™"Y, WAZAF)]  ——s [S ™ VA Y), XAE,AZ AF,] L L[S A ), XAZAG,,,]
1®E E E

S " (VA W), X AE, ) ® [SH"41Y, S(WAZ A F,)] —— [S* 1m0+ L (Y A YY), S(X A Ey AZ AF,)] —22%, [§55 40+ (Y A Y), S(XAZ A Gy 1 )]

101 A Sfn)e (AT

(L AGm+n)e

[SH™(VAW), XAE,® [S*" Y, WAZAF, ] —

[  (VAY), XAERAZ Ay ] =2 [SH " VA Y), XAZAGag]
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Let M, =[S**™(VAW),XAE,], N,=[S"""Y, WAZAF,] and P, =
[S5***2(V A Y), X AZ AG,). The diagram on page 231 then reduces, to
My ®@Nyyy 2t Py

1®4, Am+n

Uy n

Mm®Nn—’Pm+n

lz,,,@l (1Y lz

Am+1,n
Mm+1 ®Nn

Pm+n+1
Let M,, , = (—1)"a,, ,. This induces 2 homomorphism

M:MMMC)DI_imNn_’lium-%n
by

Lemma 23,16 Let M,, N,, and P, be direct systems in My directed over
Z* and suppose we have homomorphisms

Mu.v: Mu@R Nv—"Pu+v

such that the diagrams

Iu®1 1®4,
Mu+1 ®Nu‘_——Mu®R Nu—_’Mu®R Nv+1

lMu+l,u lMu,v lMu,u+1

Pyipire Py » Puyprt

commute. Then there is an induced map
M: (lim M,) ® (lim N,) - lim P,,.

Proof Define M(x ® y) as follows. If x is represented by « € M, and y by
BeN,,let M(x ®y) ={M, (o« ® B)}. To see that this is well defined, suppose
x and y are also represented by ¢’ and ' with o’ € M, and '€ N,,. Then

A(@) = 7o) and A%(B) = A°(B’) where " = A---A. Now x and y are also
represented by A'(«) and A°(#). Furthermore
Mu+r,v+s(}"(a) ® As(ﬂ)) = 'lr+sMu, v(a ® B)
Similarly,
Mysp, e (@ ® 2(B)) = A7 M, (' ® B).

Hence {M, («® B)} ={M, (&' ®P)}. Since M is bilinear, it defines a
homomorphism on the tensor product. § §
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Definition 23.17 A pairing from E and F to G defines four natural
homomorphisms

@ 2r:E(H)@F(B)-G, . (AAB)
(b) =: E(4) ® F'(B)—» C**'(4 A B)
) [:E"(AAB)®F(B)—> G *"Y(4)
@ \: E—S(A) ®F1(A AB)— Gs+t(B)

by applying 23.15 with:
@ V=W=Y=8X=4,Z
(b) X=W=Z=8V=4,Y
© X=Y=Z=S V=4 W
d) V=X=Y=8°, W=A4,Z=B.

B
B
B

The images of an element x ® y are denoted x A y, x Ay, x/y and x\y res-
pectively. The first two are called external products in homology and co-
homology and the last two are called slant products.

As in the case of homology and cohomology, a map of spectra

{o,}: {E} = {E,}
induces a homomorphism between the bifunctors
a:E(4,B)— E/(A, B)
which is natural in A and B (see Exercise 4, Section 18).
Theorem 23.18 Suppose there are pairings and maps of spectra which
make the diagram

EmAFn——’Gn+k

l"m ABn 17n+k

E,/ANF'—— G,
homotopy commute. Then the diagram
E(VAW, X)QELY, WAZ)~2 8, (VAY, XAZ)
a®p Y
E(VAW, X)QF/ (Y, WAZ)—— G, (VA Y, XAZ)
commutes.

Proof This follows immediately by substituting in the various defini-
tions. |



234 23. Multiplicative Structure

Theorem 23.19 Suppose there is a pairing from E and E to F such that the
diagram

E"l A Ell
Hm.n
T —_ l)"”l
¢ Fm+1l
E,ANE, /

homotopy commutes with the indicated sign (after suspension). This happens,
for example, if £ = Fis a ring spectrum. Then

E(4, BY® E(C, D)—2F,, {(ANC, BAD)
T (—1) T*T,
E(C, D)® EJA4, B) — F..(CAA, DAB)

commutes with the indicated signs. In particular
xRy =(=1)"T*(yAx) and xAy =(—1D"Ty(yaXx).
Proof If h:S***4—BAE, and g:S8"*'C—> DAE,, then (—1)“
M({h} ®{g}) is represented by

SO A C) = (ST A) A(STHIC) — 4 (BAE) A(D AE) D
BADAF,,,

while (—1)"M({g}® {h}) is represented by

Su+s+u+t(AAC) = (S”+tC)/\(S“+sA)_g—/l’(D/\Ev)A (B/\ E”)—iy
DABAF,,,

These differ by the sign (—1)* and (=1)#**9®*? (which comes from the
homeomorphism S**SAS™*0 = gutsti+r = §1+v A §4Fs) Together with the
signs (—1)* and (—1)*' these combine to give (—1)*. |

Theorem 23.20 Suppose there are pairings so that the diagram

Hmyn AL
EmAFnAGk—_—_’ m+nAGk

11 Abns i’ ll‘m*'m K

—_
E, AL, Y mtntk
B ntk

homotopy commutes. This happens, for example, if £= F= G is a ring
spectrum.
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Then the diagram

M®1

E(SAT, U)y@F VAW, TAX)®GCG(Y, WAZ)—— B, (SAVAW, UAX)QC(Y, WAZ)

19M’ M
ESAT, U)®L,(VAY, TAXAZ)—— ], . (SAVAY, UAXAZ)

commutes.

Proof This follows immediately by substituting the definitions of the

various homomorphisms, as in 23.19. The combined sign contribution of
either composite is (—1)**“**1, |

Diagrams of the above form occur in 23.7 and 23.13.

Corollary 23.21 Suppose there are pairings as in 23.20; then the following
formulas hold :??

@) (xay)az=xA(Arz)e( (XAYAZ),
b) xANARz=xAYA2)eJH(XAYAZ),
(© x\(waz)=(x\wazel(YArZ),

(d) xA@2)=ExAv)zeJ*(XAY),

with we F( (XA Y) and ve F¥(YAZ), and the other variables belong to
evident groups.

Proof Apply 23.20 with

@ S=T=V=W=Y=S5°
(b) U=T=X=W=Z=2S8°
) S=U=V=W=Y=S5°
d) T=U=X=Y=Z=S"° |

Definition 23.22 A graded ring is a graded abelian group R ={R,}
together with an associative multiplication
Rn ® Rk - Rn+k .

It will be called graded commutative if x - y = (= 1)™y - x. R need not have a
unit. M = {M,} is a module over R if there is an associative action M, ® R, —
M, .. If R has a unit, it is required to act as a unit on M.

Theorem 23.23 If E is a ring spectrum, E*(X) is a graded commutative
ring with unit. If /: X - Y, f*: E¥(Y) - E*(X) is a ring homomorphism. If

22 A comprehensive list of formulas of the type given here, in 23.35, and in Exercises
6, 7, 10, 13, and 14 is given in Chapter 9 of [4], to which we are indebted.
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F is a module spectrum over E, F*(X) is a module over £*(X) such that the
diagram
F¥(X)® E*(X)—— F*(X)

*er I*

EXY)® EXY)—— FX(Y)
commutes.

Proof LetA: X - X A X be the diagonal map. We then have compositions
E"(X) ® EN(X)—2 E*H(X A X)—2s EnR(X)
Fr(X) ® E(X)—o FroH(X n X)=" FrH(X);

ie,x y=A*xRAy).
The proof of associativity and graded commutativity follows immediately
from 23.19 and 23.21. |

This multiplication is called the cup product and is written either x U y
or simply xy.

Theorem 23.24 If E is a ring spectrum, E*(S°) and E,(5°) are graded
commutative rings with unit and E*(X) and E,(X) are modules over E*(S°)
and E,(S°) in a natural way.

Proof {u,}e[S", E,] determines an element u e E°(S°). If f- S*"" > E,
represents x € E™(S°), x - u is represented by

e (S AU): S*TMAS" > Ey AE, - By
However, we have a homotopy commutative diagram

s-ma st 2 E AE,

lf/\ l/ Jﬂh.n

Cx
n
EAS — nt+k

and ¢ o fAl =Ayipiy oo AN e[S E, ).
Since EX(S°) = E_,(S°), E«(S®) is a ring with unit. Alternatively, the
multiplications can be defined by
:Ek(SO)® E‘n(SO) —+Ek+"(S0ASO) — Ek+n(SO)
 E(S®) ® E(S°) - E,+,(S° A S°) = E,,..(5°),

since A: S° — $° A S® is a homeomorphism.

> >l
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The module structure is given by the maps

E"'(X) ® E"(SO) - E’"+”(XAS°) — E‘m+n(X)
EM(X) ® Em(So) - Em+n(X/\ So) == Em+"(X)

Verification of the various diagrams is an easy exercise. |

Corollary 23.25 If R is a commutative ring, H*(X; R) and H.(X; R) are
R-modules for each k. |

Proposition 23.26 Suppose there is a pairing from E and Fto G. Let | x|
be the dimension of x. Then:

@) (1AT)((ox)ay) = o(xAy) = (=1)*x a(0y) € GL(S(X A Y)).

(b) (1 AT)*(ox) Ry) = o(x Ry) = (= )*x R(ap) € GX(S(X A Y)).

) (=D¥ox/ay = x/y e GX(X).

(d) (=D¥lax\(1 AT), 0y = x\y € Gy(Y).

Proof This is most easily seen by direct substitution. If x is represented by
o S"*5 5 XAE, and y by B: S"** - YAF,, then (—1)™o(xAY) is repre-
sented by

S1+s+m+t+n Laang

S'AXAE, A Y/\F,,-—-—f—fSIAXA YAG,in-

This also represents (—1)"(ax)ay, since o: E (X)— E(S*AX) and
0:G(XAY)> G (S'A XA Y) are given by smashing on the left with S
However, (—1)"**Yx A (ap) is represented by

Ss+m+1+t+n anl B

XAE,AS'AYAF,~1s XAS'AYAG,,,.

Thus (—1)"**Dx A (sy) differs from (—1)™o(x Ay) by a permutation of the
coordinates of S**™*1*1+% of degree (— 1)**™. Similar computations prove the
other formulas. |

The above compositions in reduced theory define corresponding compo-
sitions in unreduced theory.

Definition 23.27 A pairing from E and F to G defines four natural
transformations
E(X,A)QF(Y,B)> G, (X x Y, XxBUuAXY)
E(X,A)Q@F(Y,B)» G (X x Y, XX BUAXY)
E (XX Y,XxBuAdx YYQF(Y,B)-»G (X, A)
VETX, ARQF(XxY,XxBuAdxY)>G,(Y,B)

X1 IX
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since there is a natural homeomorphism in CS:

XUuCAHOA(YUCB)= X X YUC(X xBuAdxY)

Proposition 23.28 If E is a ring spectrum,
x Xy=(~1)"Tyy X x, x Xy =(=1)"T* % x.
xRy Rz=x%X( X2, (EXyXz=xX(yXx2).
X\uxz)=u) Xz, xX(@2)=(xXv)

Proof Apply 23.19 and 23.21, substituting £,(X U CA) for E(X, A), etc. |

Proposition 23.29 1f £ is a ring spectrum, there is a natural multiplication
E(X, A)® E'(X, B) - E*{(X, A v B)

(called the cup product) which is associative and graded commutative. Hence
if A = B, EX(X, A) is a graded commutative ring. If 4 = B = ¢¥, this ring has
a unit.

Proof As before we use A: (X, AUB)—»(Xx X, XxBuAdx X)and
define x U y = A*(x % y). Since E°(P) = E°(§°), where P is a one-point space,
E*(P) is a ring with unit. Define 1 € E°(X) by 1 = (py)*(1) where py: X — P.
Consideration of the commutative diagram

EXX)® E%X) —— EYX x X) —2— E4X)
1@ (p)* axp* A
EXX)® E%(P) —— E*X x P)
proves that 1 is a unit. 1§

Corollary 23.30 If Fis a module spectrum over E, F¥(X, A) is a module
over E*(X, A) in a natural way. |J

Corollary 23.31 If Eis a ring spectrum, E*(X, A4) is a module over E*(P)
and E.(X, A) is a module over E,(P). §

Corollary 23.32 If R is a commutative ring H*(X, 4; R) and H,(X, 4; R)
are R-modules. |

One can also define X in terms of U.
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Proposition 23.33 Let 7,: X x Y>> X and n,: X x Y—> Y be the pro-
jections. Let « € E¥(X)and 8 € E*(Y). Then
a X B =m*a) v m*B)
Proof
m (@) U m*(B) = A¥(m *(2) X m*(B)) = A*(my X )M (e X B) =a X B
Since (my x m,)-A=1. |

Corollary 23.34 H*(S" x S™) is freely generated by elements 1, e,, e,
and e, Ue,.

Proof By Exercise 10, Section 20, H*(S" x S™) is free and has generators
1, e,, e, and e, ,, of dimensions 0, n, m, and n + m respectively. We now
claim e, Ue, te,,,. Let a € H'(S") and f e H"(S™) be generators. Then
e, = () and e, = n,%(B). Thus e, Ue, =a % B. Let u: S" x ™ g+m
be the projection. Clearly e, .., = +u*(y) = o X  where y € H"*"(S"*™) is
a generator. |

This example illustrates the geometric meaning of the cup product. The
classes e, and e, represent the n- and m-cells in S x S™. Their cup product
represents the cartesian product of the cells—the (n + m)-cell in S" x S™.

Theorem 23.35 Let (X, A), (¥, B)e C8% and C < A. Let
e:(AXx Y, AXxBUCXY)o(AxYUXxB CxYuXXxB)
:(XxBAXxB)»(AxYUXxXxB AXxY)
e,:(Ax Y, AxB)»(AxYuXxB,XxB)
be the excision maps. Then if x € E,(X, 4) and y € F(Y, B),
(a) e24(0x X y) = 0(x X y).
() (—=DPers(x X 8y) = d(x X p).
If x € EP(4), f € F(Y, B), y € E’(X, A), and ¢ € F4(B),
(€) (da) x B =0d(e,*) Yo % B) if A is closed or B = (.
(d) (=D x (9e) = d(e;*)"'(y % &) if Bis closed or 4 = (.
If ue EFP(Ax YU X x B, X xB), veF(Y, B), weF(XxY, AxYuv
X x B), and z € E?(A, C),

(e) Jufv = 5(e,*ufv).

) = e, *u/ov.

(g) (—1)Pz\(ex)” '(@w) = (8z/w) if A and B are open or B = (.
(h) (—=1)Pp\(e;4) (8w) = d(y\w) if 4 and B are open or 4 = (.
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Each of these formulas may be rewritten as a commutative diagram. For
example, (a) may be expressed by

E,(X, A) ® F(Y, B) 22, E,_(4) ® F(Y, B)

X

z Gpig-1(A X Y, A X B)

= | (e2)«

Gpyf X X B, A X YU X X B)———Gpyyy(4 x YU X x B, X x B)
Proof The formulas follow directly from the definitions. For example, to
prove (a) we expand the above diagram as follows. Let j: X U CA - S(4™)
be the natural map identifying X with the vertex of the cone. Then

E, (X, A)— E,_,(A4) is given by the composition
E (X, A) = E(X U CA) 2% AS(A)) e E,_((4%) = E,4(4).
Observe that AT A(Y U CB)= 4 x Y u C(4 x B). Consider the diagram

E XU CAHBF(Y U CBL2L E(SU*) F(Y U CB)+ 2 E, (A*) @F(Yu CB)

A A 2

8y (X U CAYA(Y U CB)-L2 G, (S(A X Y U C(A % B))) ——C,p,q-1(d x YU C(A x B)

G

i d XX YUCAX YU XX B)—— G, (S(AX YUXxBUCX % B)))e——C,rgr(d x YU X x BU CX x BY)

which commutes by the naturality of A and o, and 23.26(a).

Observe that the extra conditions in (c), (d), (g), and (h) imply that the
inverted homomorphisms are isomorphisms. In (g) and (h) one need only
assume that A and B are deformation retracts of neighborhoods in X and Y
to draw the same conclusion. f

Appendix

Proof of 23.9 Clearly f®1 is onto. Let L = B®x D/Im(x®1). Then

A®RD——1-81DB®RD-—>LIS exact. We must prove that C®z D = L. One

can construct /: L — C ®z Dsuch that fy = B ® 1 since(f ® 1)(« ® 1) =0. To
construct amap ¢g: C ® D — L it suffices to find a bilinear mapg: C x D— L
such that g(c, rd) = g(cr, d). For each ¢ € C, choose b with f(b) = c. b is well
defined mod a(4) and hence b ®d is well defined mod (o ® 1)(4 ®x D).
Hence y(b ® d) is well defined. Let §(c,d) = y(b ® d). Clearly g is bilinear and
g(c, rd) =g(cr, d). Thus § defines g. Now by definition, g (B ®1) = 7.
Consequently gfy =y and fg(B®1) =B ® 1. Since both y and f® 1 are
onto gf =1 and fg = 1. Thus L = C ®, D and the sequence is exact. ]



23. Multiplicative Structure 241

Even if we have a short exact sequence 0 » A —» B 2L, €0 it does not
followthat0 — 4 ®z D — B ®g Disexact, i.e.,« ® 1 is not a monomorphism.
This is seen by an example with R =Z; the short exact sequence is

022z, Z, >0 where a(n) =2n and B is reduction modulo 2.
If D=Z,, we have that Z®Z,~Z, is generated by 1®1 and
@RIDNAI®D)=2®1=1®2=0. Thusa®1 =0.

Exercises

1. Suppose X and Y are well pointed. Show that if X is (m — 1)-connected
and Y is (n — 1)-connected with n, m > 1,

C: nm(X) ® 7Tn(Y) g nm+n(XA Y)

is an isomorphism. (Exercise 20)
2. Give the omitted details for the proof of 23.13.
3. Give the omitted details for the proof of 23.14.
4. Prove the naturality assertions in 23.15.

5. Show that there are natural homomorphisms
L EY,Z)->E (XANY,XAZ), Ex:E(Y,Z)-E(YAX,ZAX)

such that Eg; = Ep Eg, Lgp = X5 X, and such that the diagrams

E VAW X)QF(Y,WAZ) \
G

Ez ® Iy
M

EWAWAZXANZ)QF,(VAYVAWAZ)

men VA Y, XAY)

E Y. Z)
Yoo
EXXAY,XAZ) —T% E(YAX.ZAX)

commute.

6. Using Exercise 5 above and 23.20 or by direct substitution, prove the
formulas:
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@) v/(\w) = (1 AT)*(vAp)lfu e J*(X)
ve EMXAZ),ue G (Y AZ), ye FXY).
(b) (/2)ly = t{(Tlz2y)) € THX)
1e EXXAYAZ), ze Fu(Z),ye Gu(Y).
(© N =(T*y7rN))\teJ(2)
te G XAYAZ), xe F¥(X),ye EX(Y). (26.21)
(d) (W =w\TADupav)leJdZ)
we EXXAY),0eGu(XAZ),yeFu(Y).
7. Given a pairing from E and F to G, one can define a homomorphism
n: EXX, A) ® F(X, A U B) - G,_(X, B)
by x N y = x\Ax(»). x N y is called the cap product of x and y. Show that
the cap product is natural in the sense that if f: X — Y is a map such that
f(4)c 4’ and f(B) < B’
L) N x) =y n fulx)

for xe F(X, A v B)and y e E*(Y, A’). One can also define a natural homo-
morphism

oD ENX, A) @ ELX, A) — Eo(P)

by <x, ) = x\y (23.27 with Y = P and B = ). {x, y) is called the Kron-
ecker product. Show that if £ = F = G is a ring spectrum

xn{(ynzy=(xnynz {x,ynz)=<_{x vy, z).
(24.9 Section 26)
8. Write the details down for the last four formulas of 23.26.

9. Give complete proofs for the last seven formulas in 23.35.

10. Keeping the notation of 23.35, prove the formula

*(e*) T ((0w) % &) = —j*(e2*) ™ (@ X (J2)),
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where

HAXYUXXxB )2 (AXYUXXB AXY)
and

JAXYUXXxB Z->(AxYUXxB XxB)
are inclusions, and 4 and B are closed.

Ifue EP(X x Y, A x B), prove that
S((f*w)fy) = (= 1)P " (g*u)/oy
where
fidxY, AxB) > (Xx Y, Ax%xB)

and
g:(XxB,Ax By=»(Xx Y,A X B)

are inclusions.
11. Use 23.4 to determine the sign in 18.6.

12. Let X be a homotopy associative, homotopy commutative H-space.
Show that X * is a ring spectrum.

13. Suppose X2 A4 =>C, Yo B> D, with 4, B, C, and D open. Using
(g), (h) and Exercise 5, Section 21 with

Z=AxYuU XXB, U=CxYuXxB, V=AxYuwuXxD

and
W=CxYulXxD

prove that the diagram

R(A, C)@R(AXx YUX xB,Cx YUXx D)

iy I®ia

RA,C)@QR(AX YUXx B Cx YUXx B) R* (X, A)@R(AXx YUX XxB Ax YUXx D)

R(A,C)@R(AX Y, Cx YUAXB) -1 R* (X, A) @R, (X x B,Ax Bu X x D)
l 1\
R, Y. B) 2 Ry_y-y(B, D)

commutes with a sign —1. (Exercise 14)
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14. Suppose X =AU B, Cc A, Dc B, and 4, B, C, and D are open.
Using Exercises 7, 13, and the naturality of \, show that there is a commutative
diagram

Ri(4, C)® R,(X, D) —224 RITI(X, A) ® R(X, A U D)

R(4,C0)® R(X,BuC) R*Y(B,AnB)®R,(B,(4An B)yu D)
= (-1
R(4, C)® R,(4, (4 " B) U C)

al

R, (4,4 " B)—— R, _/(X, B)—L*Rn-i-l(B, D) (26.20)
15. Use
E"(SX, C; X)® E™(SX, C, X)—— E"""(SX, SX)

E"(SX, ¥) ® E™(SX, ) —— E™*"(SX, )

to show that all cup products in E¥(SX) are 0.

16. Let x € E*(A4) and y € Fy(A A BAS?). Show that x\y = a(6x\(1 A T)yy).
Let u € E*(4 A B) and v € Fy(B). Show that (1 A T)*a(u)/v = a(u/v).

17. Show that (x xy) U xv)=(-D"M¥x v x (yuv). (27.15;
27.16)

18. Let p: R— R’ be a ring homomorphism. Show that ¢,: H*(X; R) —
H*(X; R') is a ring homomorphism (see Exercise 11, Section 18). (28.18)

19. Let X consist of n points with the discrete topology. Calculate the ring
structure in H°(X).

20. Suppose X is well pointed and (n — 1)-connected and E is a properly
convergent spectrum. Show that E(X) = n,(X)® E,(S"). (Use Exercise 12,
Section 22 and Exercise 1, above.)
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Relations between Chain Complexes

In this section we shall develop some relationships between chain and
cochain complexes for spaces with various coefficients, and between the
chain and cochain complexes of a product of relative CW complexes with
the original chain and cochain complexes. We will use this to develop the
Kiinneth theorem and universal coefficient theorems in the next section.

Exercise 10, Section 20 suggests that H,(X x Y) bears some relation to
@i+ j=nHi(X) ® H(Y). The pairing of Hr and Hp to Hn ® p provides us
with transformations

X: @ H(X,A;m)QH(Y,B;p) H(XXx Y, XxBuAdxY,n®p)

i+j=n

T @ HX, A;m)Q@HN(Y,B;p)oH (XX Y, XxBuAdx Y;n®p).

i+j=n

X1

For simplicity, we define the tensor product of two graded groups G and
G, by:

G®G),= @ G®G;.

i+j=n
With this notation we have
X H (X, A; 1)@ He(Y,B; p) > He(X x Y, X X BUAX Y;m®p)
X H¥X, A;m) @ H¥(Y,B;p) > H(X x Y, X XBUAX Y;n®p)

X

as homomorphisms of graded groups. Similarly, one has such maps in
reduced theory:

T H (X n)QH(Y;p) » H(XAY; n®p)
cHYX; )@ AXY; p)-» HX(X A Y; n® p).

> D

245
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is an iso-
is an iso-

Lemma 24.1 If X and Y are one-point unions of spheres,
morphism. If X and Y are finite one-point unions of spheres,
morphism as well.

A
A

Proof If both X and Y are spheres, both of these results reduce to 23.10
since the maps
(K (7t, 1)) T (8™ A K, 1))~ H,(S™; 7)
n(K(r, n)) > H™(S™; 7)

are isomorphisms. Suppose now that X = \'/(,,E 45, Then we have a com-
mutative diagram

AuX;m)® A Y;p) —=— H (XA Y; 1 ®p)

= ~

© AuS M @AY p)—— @ AuSIAYin®p)

aE aeA

with the vertical maps isomorphisms by 18.17 and Exercise 12, Section 15.
If Yis asphere, the bottom map is an isomorphism by the above argument and
Exercise 13, Section 15; hence the top map is also an isomorphism. Similarly,
if X is a sphere and Y is a wedge of spheres, A is an isomorphism. Thus

applying the diagram again we see that if X and Y are wedges of spheres,
A is an isomorphism. In the case of cohomology we consider the diagram

H*(X: n)®ﬁ*(Y;p)——X—-> A¥XAY;n®)p)

&~ ~

(I Avssim) © A2V —— ] A5 ATi70))
aecAd aeAd
where the vertical maps isomorphisms by 18.16.

This is sufficient to prove the second part of 24.1 similarly to the first part.
The loss in generality is due to the fact that in general we do not have
([Jeca A) ® B =] [, 4(4, ® B). (See Exercise 1.) |}

We apply this result to the chain and cochain complexes of relative CW
complexes.
Lemma 242 Let (X, 4) and (Y, B) be relative CW complexes.

—aree— k.
Then (X x ¥, X x BuA x Y)is a relative CW complex with X x ¥ =
Umsn=t X" x Y"U X x BU A x ¥, and

\/ (Ym/X‘m—lA )_/n/ )_/n*l)_____Xx Yk/XX Yk_l
k

m+n=
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Proof X™Xm A YY" 1=X"x Y/X"x Y"1UuX"1x V"<
Kk —————k

-1
XxY [XxY . This defines a map

[ — ——f k-1
'V XX A Y ) -XxY [XxY .
m+n=k
It is easy to see that it is 1-1 and onto. In fact both spaces have the quotient
topology on the same identifications applied to the disjoint union
Uk=m+nX™ x Y". Hence f is a homeomorphism. ||

We define an isomorphism
Ap: Cu(X, A; M) Q@ Cu(Y,B;p) »Cu(X x Y, XXBUAX Y;"n®p)
by
@ R (X"X" L m)@ (YY" p)

mtn=k

— @ HX"X"AYIY L 2®p)

= m+n=k

i

ﬁ*( V (X"X"A 7"/7"");n®p)

m+n=k
~ ——k——— k-1
*HXxY [XxY ;7n®p).

Similarly, if (X, A) and (Y, B) have a finite number of cells in each di-
mension, we define an isomorphism

A*:C*(X, A;m)® C*(Y,B;p) > C*(X x Y, Xx BUu A X Y;7®p).

Now C.(X, A; 7)) ® C,(Y, B; p) is given here only as a graded abelian
group. One would like to make it into a chain complex such that A, is an
isomorphism of chain complexes.

Definition 24.3 If {C,, 0,} and {C,’, 0,} are chain complexes, one makes
C® C’ into a chain complex by

(x®y)=0x®@y+ (—DH*x® dy.
(Observe that 6% = 0.)
Theorem 24.4 A, is a chain isomorphism (i.e., a chain map which is an
isomorphism).

The only point to be checked is that A, is a chain map, and this follows
from:
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Lemma 24.5 Let X o 4 o> A, and Y > B > B, be relative CW complexes,
and suppose there is a pairing from F and F to G. Then the diagram

Ey(X, ) ® F (Y, B) = G (XX Y, XxBUuAXY)
R1+E80 2

{Ef(A, Ap) ® Fy(Y, B)} ®{E\(X, A) ® Fy(B, B))} —— Gu(X x BUA X ¥, Ag x YU A x BU X x By)
commutes.23

Proof Weexpandthediagraminto a larger one, where all unlabeled homo-
morphisms are induced by inclusion mappings. Let, W=Ax YU X x B
U=A;xYUXxB, V=XxBy,uAdxY, Uy=A,x YUA X B and
Vo = X x By u A x B. We consider the diagram shown on page 249.

We apply 23.35 and naturality to prove that the part of the diagram not
involving « and f§ commutes. « is induced from a homeomorphism

Ax Y/Uyv X x BlVy= WUy, UV,

(see 24.2). Thus « is an isomorphism and is given by adding the values of the
homomorphisms induced by the inclusions. § is given on each coordinate by
the induced homomorphisms of the inclusions. Since

(A X Y, Uy = (W, Uy u Vo)< (W, V)

factors through the pair (4 X ¥, 4 x Y), and Gu,(A x Y, Ax Y)=0, it
induces the zero homomorphism. Similarly

(X x B, Vo)< (W, U)

induces the zero homomorphism. Hence the triangle commutes, and f is an
isomorphism. The other isomorphism is an excision. Clearly 0 =0 @ 4.
Since f is a monomorphism, the diagram in 24.5 commutes. [ [

An analogous result is true for cohomology with essentially the same proof.

23 1In order to makes this commutative we define a degree kK homomorphism ¢ between
graded groups as a sequence of homomorphisms: @i: G, - Gy Write |@| = k. Then
define the tensor product of homomorphisms ¢ ®¢ by

(@ ® H)x @ y) = (1)1 p(x) @ $(»).
Thus

CRI+1Q BN =x®y+ (- xQoy.



E X, A)®F(Y, B)

IVl +1®d

{Eo(4) ® Fy(Y, B)) ®{EL(X, A) ®Fy(B)} —— Gy(Ax Y, Ax B)®Gy(X x B, Ax B) —— Go(W, X x B)®Gy(W, Ax Y)

{EL(A, A) ® Fu(Y, B)} ®{Es(X, A) @ Fo(B, B))} —2— Go(Ad x Y, Up) ®Go(X X B,Vy) ——————— G (W, U)D G (W, V)

Ix

G X x Y, W)

2+d

| L

T

G, (W,UuV)

sax2]dUi0) UIDY) UIIMIIG SUOUDIIY BT

6¥C
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Lemma 24.6 Let X > A > Agand Y o B > B, be relative CW complexes,
and suppose there is a pairing from E and F to G. Then the diagram

E*(X, A)® F*(Y, B) % GHXx Y, XxBUAxY)
3R1+184 8
{E*(A, A,) @ F*(Y, B)} @ {E*(X, A) ® F*(B, Bo)}—;-—vG'(X XBUAX Y, Agx YUAXBU X x By)

commutes.2*

From this we conclude:

Corollary 24.7 Let (X, A) and (Y, B) be relative CW complexes with a
finite number of cells in each dimension. Then

A*:C*(X, ;1)@ C*(Y,B;p)» C*(X x Y, X xBUAX Y;7®p)
is a chain isomorphism. ||

An important special case of 24.4 is when Y =P, B= Qf, and n = Z.

Corollary 24.8 There is a chain isomorphism
Ca(X, A)®@p— Cu(X, 45p). 1

This determines C,(X, 4; p) given C,(X, A4).
One can also determine C*(X, 4; n) by studying the Kronecker product
(Exercise 7, Section 23):

LD E(X, A) @ Fi(X, A) - Go(P).
By 23.35(g) we have
(— Dz, dw) = {3z, )
for z e EP(A) and w € F (X, A). The adjoint of { , )
d: E°(X, A) - hom(F(X, A), Gy(P))
is given by
d(x)(y) = <x, 7,

and consequently
d(6a)(w) = (o, w) = (— e, dw) = (—1)Pd()(Cw).

If C, is a chain complex and D is a group, we make C" = hom(C,, D)into a
cochain complex by defining

3" C"—> Cn+1

24 See footnote 23.
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via 6*(f)(c) = (= 1)"f(0c). Applying this with E = G = Hr and F = HZ, we

have proved:

Lemma 24.9
d: C"(X, 4; n) = hom(C,(X, A), n)

is a chain map. |

Proposition 24.10
d: C'(X, A; ) - hom(C,(X, A4), n)

is a chain isomorphism.
Proof  We show that in each degree, d is an isomorphism. This follows

from

Lemma 24,11 If X is a wedge of spheres,
d: H'(X; n) —» hom(H (X), n)

is an isomorphism.
Proof Incase X = 8" this is an isomorphism since

LY ES, @ (SN -1
is an isomorphism by 23.11. Now consider the commutative diagram

(Y 5si) = ron(( Y, 52) 2

o~

hom( @ B8, n)

acA

[ A7(S,"; ;) —=— [T hom(A,(S,"), )
acd acA

in which we apply Exercises 13, Section 15 and 18.17 to see that d is an
isomorphism. Note, however, that

¢ ,>:ﬁ"(\/ S,";n)caﬁn(\/ s,
acAd axeAd

is not in general an isomorphism. | |

)—=
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24.4, 24.7, 24.8, and 24.10 are useful in calculating various homology and
cohomology groups as we will see with an example.

Proposition 24.12 Let p be a prime.

(a)
4 if i=0 or i=r and nisodd
H(RP™) = {Zz if i isevenand O0<i<n
0 otherwise.
(b)
z, if p=2 and 0<i<n
H(RP";Z)) = {Zp if i=0 or i=n and »n isodd
0 otherwise.
(©
Z, if p=2 and 0<i<n
HRRP"; Z,)) = {Zp if i=0 or i=n and n isodd
0 otherwise.
(d)
Z if i=0
Z,®7Z, if i=1
H{(RP? x RP®) ={Z, if i=2
Z®Z, if i=3
Z, if i=4.

Proof (a) C'(RP") = Z with a generator e’ dual to e, for 0 <i<n and
dei"t = —(1 + (=1))e' by 24.9; for

(Ge 1) (e) = (— 1) "'t~ 1(2e))
= (=D)L + (—1)e;-y)
= (L +(=D)e ey
= —(1+ (1)~

Hence Z: = C'if i is even or i = n and Z' = 0 otherwise, B' = 2C"if i is even
and i > 0, and B’ = 0 otherwise. Thus (a) follows. To prove (b), we note that
if p=2,0=0. Hence H(RP"; Z,) = C(RP"; Z,). If p#2, 0: Cp; — Cy;_,
is an isomorphism. Hence the only cycles are in dimension 0 and 7 if n is odd.
To prove (c), observe that the cochain complex has the same form as (a)
except all calculations take place in Z, instead of Z. Thus if p=2, 6 =0,
and if p # 2, §: C¥ 1 - C% is an isomorphism. Thus (c) follows.
(d) is proved by writing down explicit generators for

C,.(RP?) ® C4(RP?).
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Write e; ® ¢; = ¢; ;. Then we have a table of generators:

i

wmh W= o

€o,0
€0,1
€0,2
€o0,3
€1,3
€2,3

€10
€11 €20
€1,2 €21
€3,2

The boundary is determined by the formulas:

dey 3 = 0(e, ®e3) =De, ®ez + e, ® ey =2¢, @ ey =2e 5

681,3=6(el®€3)=681®e3 -—el®ae3=0

dey , =0(e,@e;) =0e,@e; +e,®0e; =2¢,Qe; + 26,0 ¢

=2(ey,, +€5,1)

deg, 3 = 0(eo @ €3) = deg @ e3 + e ® Je3 = 0.

Similarly we have

561,2= —281'1 332’0:261’0
662,1 =261’1 aeo’l =0
deg , = 2e4, 4 de; o =0
ael’l '—‘—'0 an,o=0.
As a free basis for ker & we have

i Zy=ker &;

0 €9,0

1 €0,1 €10

2 €1,1

3 €9,3 81,2‘4‘32,1

4 €y,3

5 0

As a basis for B; =Im 9;,, we have

B =

Im 9,4,

wm AW N=O

0
2eq,1
281,1

2e1,0

2(es1,2 + €2,1)

2e 3
0

253



254 24. Relations between Chain Complexes

The quotient, H; = Z,/B; is thus generated by the following classes:

i H, order of generators
0 {eo,0} o

1 {eo.1}, {er.o} 2,2

2 {e1,1} 2

3 {eo,3}, {e1,2 +ez,1} 0,2

4 {e1,3} 2

5 0

and this completes the calculation. ||

These calculations demonstrate how knowledge of C,(X, A) determines
Hy (X, A;m)and H*(X, A; n) and knowledge of both C,(X, 4A) and C,(Y, B)
determines H (X x Y, XxBuAdxY;n) and H*(XxY,XxBu
A x Y; n). They do not hint at the remarkable fact from homological algebra
that these homology and cohomology groups depend only on H,(X, A)
and that H (Y, B). This is the subject of the next section.

Exercises

1. Let Q be the rational numbers. Show that if A< B, 0® A4 < Q® B.
(Use Exercise 6, Section 15.) Conclude that Q ® (] [:%2Z,) #0. Hence the
natural transformation H ® ([ Z,) ][] (H ® Z,) is not 1-1 in general since
0®Z,=0.

2. Calculate H(RP? x RP3).

3. Let O be the rational numbers. Calculate H,(RP"; Q) and H'(RP"; Q).
* 4, Letf: C—> C’and g: D — D' be chain maps. Show that f®g: C® C’' —
D ® D' is a chain map. (25.5)

5. Show that if C is a free chain complex, Z(C) is a direct summand.
Conclude that there is a chain map f: C - H(C) (where H(C) is considered as
a chain complex with 0 differential) which induces an isomorphism in homo-

logy.
6. Show that there is a chain isomorphism
C*(X,A)@n—- C*(X,A; n)

if (X, A) is a relative CW complex with a finite number of cells in each di-
mension. (Hint: Find a naturalisomorphism hom(4, B) ® C —» hom(4, B® C)
when 4 is free and finitely generated.)

7. Let R be a commutative ring. Show that there is a natural isomorphism

Cu(X, A; R)® Cy(Y,B; R)>Cu(X x ¥, X x BUAXY; R)
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where (X, A) and (Y, B) are relative CW complexes. Furthermore, if (X, 4)
and (Y, B) have a finite number of cells in each dimension, there is a natural
isomorphism

C*(X,A; )@z C*(Y,B; R)>C*(X x Y, X x BUA X Y;R).
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Homological Algebra over a Principal Ideal
Domain: Kiinneth and Universal

Coefficient Theorems

In this section we develop homological algebra over a principal ideal do-
main R. This will be applied to the chain isomorphisms of Section 24 to
prove the Kiinneth formulas and universal coefficient theorems. A more
general treatment of homological algebra can be found in any of the standard
texts on homological algebra (see [18, 44, 55]). Since a principal ideal domain
by definition is commutative, we make no distinction between left and right
R-modules. A principal ideal domain has the following characteristic prop-
erty.

Proposition 25.1 Let R be a principal ideal domain, M a free R-module,
and N = M a submodule. Then N is free.

Proof Let{x,}, « € A be a basis for M and suppose A4 is well ordered. Let
My be the submodule generated by {x,Ja < B}. Let f,: M — R be given by
fix) =1, fi(x;) =0 for B #ua. f, extends to an R-module homomorphism
since M is free. Thus f(N ~ M,) is an ideal in R and we have /(N n M,) =
(r). Let T={xe A|r, #0} and choose for each aeT, n,e N n M, with
fi{n)) =r,. Let N be a free R-module with one generator ¢, for each x e T.
Define f: N> N by
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We claim that f is an isomorphism. f is clearly a homomorphism of R-
modules since N is free. Suppose

TN

f( Faicai)=0 and 0 <Oy < o <oy,
i=1

Then Y [F,n, = —F,n,. Since f,(M,) =0 for a<a, f,(n)=0 for
o < o, . Hence

~t

k=1
e Ve =f;tk(iuknak = _f;zk (.Zlia;na,-) = 0,
=

and thus 7, = 0. Continuing in this way we see that 7,, = 0 for all /. Hence
Nk P, =0. fis consequently 1-1. If f is not onto, choose & to be the
smallest element of 4 for which f(N) # M; n N. Choose x € M; n N — f(N).
Write x = Y k., 7, x,,. If oy <+ < o it follows that o, = & Let f;(x) = rr,.
Then fo(x — rn;) = 0. Hence x — rn; € M; n N for some o < & By the choice
of &, x — rnz e f(N), so x € f(N) and we have a contradiction. Thus f is an
isomorphism. | .

This is the only property of a principal ideal domain that we require. In
most applications we have R = Z or R will be a field.

Given modules M and N we define R-modules Torg(M, N) and Extgz(M, N)
as follows. According to 25.1 we can find a short exact sequence

05F-5F M0

of R-modules with F; and F, free. Such an exact sequence will be called a
resolution of M. Define Torg(M, N) to be the kernel of

F,®xN—""5 F, ®; N
and Extg(M, N) to be the cokernel of
homg(F; , N)—— hom(F;, N).
Proposition 25.2 Torg(M, N) and Extg(M, N) do not depend on the

resolution of M. Torg(M, N)is a covariant functor of M and N. Extp(M, N)
is contravariant in M and covariant in N.

Proof Letf: M — M’ and suppose we are given resolutions
(E) O0-F—5F,-5 M50

(E) 0-F' 5F im0



258 25. Homological Algebra

with which we calculate Tor and Ext. We will construct homomorphisms
Ju: Torg(M, N)— Torg(M', N)
S*Extpg(M', N) = Extg(M, N)

by using the following:

Lemma 25.3 Let ¢: N - N’ be an epimorphism of R-modules, let F be a
free R-module, and let y/: F— N’: then there is an R-module morphism
A: F— N such that ¢4 = ¢.

Proof Let {x,} be a basis for F. A homomorphism A: F— N is determined
by the images A(x,). Define A(x,) to be any element in ¢ ~*(/(x,)). This defines
Aand ¢A(x,) = ¥(x,). Hence pA =y. |

We now construct homomorphisms f; and f, forming a commutative
diagram

O F—t s Fy s M——0
(D) lfl lfz l/
0 » ' al > F,’ o M——0

Since B’ is onto and F; is free 25.3 implies that f, exists such that f'f, = fB.
Since 0 = fBo = f'f; a, f5(a(F})) € o' (F"). Thus f, o1 F; —» Im o’ and applying
25.3 again we can find f; such that o'f; = f, a.

Now for any such commutative diagram D we can define homomorphisms

So=fi®l:kera®@1 - kera' ®1
SP =fi*: ckr (a)* = ckr a*,

Thus choosing E and E’ to calculate Tor and Ext, and choosing D, we get
transformations

Torg(M, N) - Torg(M', N), Extg(M’, N) - Extg(M, N).

We claim that these homomorphisms do not depend on the choice of D.
Suppose f;' and f;" are chosen instead of f; and f, (keeping the same resolu-
tions E and E’ as before). Then f'(f, —f,') =0, so applying 25.3 we can
construct ¢: F, = F;’ such that a'¢ =f, — f,’. Now o'¢a =f0—f,’a =
o'(fy —f1'), hence ¢o =f, — f;’ since «' is a monomorphism. Consequently
fi®l—f,'®1=00onkera®1andf,* —f{* =0 on ckr a*. Thus f, and f/°
do not depend on the choice of f; and f,.
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We have shown that for any choice of resolutions E and E’, there are
well-defined induced homomorphisms

Torg(M, N)—25 Torg(M', N),  Extg(M’, N)—Z> Ext(M, N).

Clearly by definition (fg)x = fugs, lx = 1, (fg)* =g* *, and 1* = 1. We can
now compare the values of Tor or Ext using two different resolutions of M by
taking f = 1. It follows that there are homomorphisms going both ways such
that the composites are the identity. Thus Ext and Tor do not depend on the
resolution and are functors of M. That they are covariant functors of N
follows easily from the definition. Hence 25.2 is proved. [

Clearly if R is a field Torg(M, N) = Extg(M, N) =0 for we may choose
F, =M and F, =0. If R =Z, we abbreviate Torz(M, N) and Ext,(M, N)
by Tor(M, N) and Ext(M, N).

Proposition 25.4

(a) Torg(M, N) = Torg(N, M) = Extg(M, N) =0 if M is free.
(b)y Ext(Z,,2)>Z,.
(© Tor(Z,, Z,) =Ext(Z,, Z,) = Z, where k is the greatest common
divisor of m and ».
(d) Torg(M, N@® N’) = Torg(M, N) @ Torg(M, N’).
Extz(M, N® N') = Extp(M, N) @ Extg(M, N).
(e) Torg(M ®M', N) = Torg(M, N) @ Torg(M’, N).
Extp(M & M’, N) = Extz(M, N) @ Extg(M’, N).

Proof (a) To calculate Torg(M, N) and Extg(M, N) take F; =0 and
F, = M. To calculate Torg(N, M) choose a basis {m,} for M and note that
if N is another module, every element in N ®; M can be written uniquely
in the form Y n, ® m, . Thus if Y a(x,) ® m, =0, a(x,) =0 and hence x, =0
s0 Y x, ® m, = 0. Consequently « ® 1 is a monomorphism.

(b)Take 0-Z -Z—>Z,—0 as a resolution of Z, and observe that
hom(Z, Z) = Z, so Ext(Z, Z,) is the cokernel of z—-%7Z

(¢) By considering the resolution 0 - Z—-Z—>Z, -0 one sees that
Tor(Z,,, Z,) is the kernel of Z,,—XLZ,, and Ext(Z,, Z,) is the cokernel
of this map. Since any subgroup or quotient group of a cyclic group is cyclic,
one sees that the kernel and cokernel are isomorphic, for they have the same
order. Let k = ged(m, n). There is a homomorphism Z, —» Z, mapping 1
to n/k. The sequence

Z——Z,— 7,
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is exact, for mn/k = n(m/k) and hence the composite is 0; on the other hand
if x e Z, is such that mx = 0, we have kx = amx + bnx = O since k = am + bn
for some a and b. Hence n divides kx and x = c(n/k).

To prove (d), consider the distributive laws

FRyNON)=FRNOF®yN'
homg(F, N ® N’) = homg(F, N) @ homg(F, N')

applied to F = F; or F, to see that ker « ® 1 and coker «* split into a direct
sum. To prove (e), consider resolutions 0 » F; - F, > M >0 and 0 - F;’ —
F,” > M’ — 0 and observe that

0-FL®F,'>F,®F, - M®&M -0
is a resolution. Applying the distributive laws above proves (e). |

Let C be a chain complex of R-modules and consider Z(C) as a subcomplex
with 0 differential. Define a chain complex B by B, = B,_,(C) with 0 dif-
ferential. We then have a short exact sequence of chain complexes:

0 Z(C)—> ¢ B0,

Suppose now D is a chain complex and consider the sequence:

C®rZ(D)—2 C®r D22 C®z D 0.
1®1 and 8 ® 1 are chain maps by Exercise 4, Section 24. This is exact by
23.9. Thus by 25.4(a) we have:

Lemma 25.5 If C or D is R-free,
05 C®RZ(D)—22s C®R D22 CR®x D —0
is an exact sequence of chain complexes. [

We now apply Exercise 9, Section 20 to produce a long exact sequence

= H(B®g D)—= H(Z(C) ® g D) =22

H@®1)
—_—

H(C®g D)
H(B @3 D)— H(Z(C) ®x D) >+
We will utilize this to calculate H(C @y D).

Lemma 25.6 Let C be an R-free chain complex with 0 differential, and D
be an arbitrary chain complex. Then

H(C®g D) = CQg H(D).
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Proof The differential in C®gx D is +1® J. We have short exact se-
quences

0~ C@rZ(D)—25 C ®y D—2s C @ B(D) —— 0
0 C ® g B(D)—— C ® D—— C ®x(D/B(D)) =0

by 23.9 and 25.4(a).
Hence Im 1 ® 8 = C®¢ B(D) and ker 1 ® 8 = C ® g Z(D). Applying 23.9
and 25.4(a) again, we have a short exact sequence

0> C®gB(D)> C®RrZ(D)—> CQrH(D)~0. |

By 25.6, H(Z(C)®r D) = Z(C) ®x H(D) and H(B®g D) = BQg H(D).
Now consider the composite

{B(C) @ H(DY, = {B @ H(D)}e 1 — {Z(C) @ H(D)k,

where 0 is the homomorphism defined in Exercise 9, Section 20. 0 is calculated
as follows. Given x ® {y} € B(C) ® g H(D), choose u € C so that x = du. Then

@D =x®{y})

Now calculate du®yp) in CRgrD. (u®y)=URy+uR®dy=xQy
since y € Z(D). x ® y is in the image of Z(C) ®x D » C®z D and d(x ® {y})
is its homology class in H(Z(C) ® g D). Thus 0 =j ® 1 where j: B(C) — Z(C)
is the inclusion. To calculate ker j® 1 and coker j® 1 we observe that

0- B(C) R Z(C)— H(C)— 0 is a resolution. Hence we have an exact
sequence

0 — Torg(H(C), H(D)) - B(C) ® x H(D) -2+ Z(C) ® x H(D)
— H(C) ® g H(D) - 0.

This proves the first part of:
Theorem 25.7 1If Cis R-free, there is a natural exact sequence
0 - H(C) ®x H(D)— H(C ® D)~ Torg(H(C), H(D))~0

where v({x} ® {y}) = {x ® y} and A has degree —1.

Proof The statement about v follows since

V(@D =HER@DNx®{}) ={1x®y} ={x R}

A has degree —1 since d ® 1 has degree —1. Naturality in chain maps is
clear since all the constructions are natural. ||
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To be more explicit, we write

0- @ H(O)®rH{(D)-> H,(C®rD) > @ Torg(H(C), H(D))—0.

n=i+j i+ti=n-1

In fact, this sequence splits. That is:
Theorem 25.8 If both C and D are R-free chain complexes,

H(C®D)=| @ HE(C)®RH,-<D)}@{ @  Torg(H(C), H(D)).

n=i+j i+j=n—1

The isomorphism, however, is not natural as we shall see by an example.
This follows from:

Proposition 25.9 If C and D are each either R-free or have 0 differential,
V:'+-® {H,(C) ®¢ Hj(D)} - H,(C®g D)
i+j=n

is the inclusion of a direct summand.

Proof We will find an R-module homomorphism

y: H(C @ D) - H(C) @ H(D)

such that yv = 1. This is enough by Exercise 11, Section 11. We claim that if
a chain complex C is either R-free or has O differential, Z(C) is a direct
summand. Under the second hypothesis this is trivial. Suppose C is R-free.
Since R is a principal ideal domain, B(C) is R-free and hence by 25.3 and
Exercise 11, Section 11, C, = Z,(C) @ B,_(C).

Suppose now that Z(C) and Z(D) are direct summands in C and D re-
spectively. Let a: C— Z(C) and : D — Z(D) be the projections. They define
¢: C— H(C) and y: D — H(D) by ¢(x) ={u(x)} and ¥(y) = {B(»)}. Then
d@Y: C®rD— H(C)®r H(D). d ® Y| pc®rp = 0since ¢(B(C)) =0 and
W(B(D)) = 0. Hence ¢ ® Y determines y and clearly yv=1. | I

Theorem 25.10 (Universal Coefficient Theorem) 1If Cis R-free and = is
an R-module, there is a natural exact sequence

0 - H,(C) ® 5 1 = Hy(C @ m)—> Torg(H,,(C), m) >0
which splits (nonnaturally).

Proof We apply 25.7 with

n, n=20
D=0,  n#o0.

D has 0 differential, so we may apply 25.9. |
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By 24.4, 24.7, and 24.8, we have the corollaries:

Corollary 25.11  (Kiinneth Formula) 1f (X, A) and (Y, B) are relative CW
complexes, there is a natural short exact sequence

0> @ H(X, A)Q H(Y,B)—>H(Xx Y, Xx BUA X Y)

i+j=n

—» @ Tor(H(X, A), H(Y, B)) -0

i+j=n—1

which splits (nonnaturally). |

Corollary 25.12 (Kiinneth Formula) If (X, A) and (Y, B) are relative CW
complexes with a finite number of cells in each dimension, there is a natural
short exact sequence

0> @ H(X,A)@ H(Y,B)—> H'(X X Y, X x BUA x Y)
i=j=n
> @ Tor(H'(X, A), H(Y, B))~»0

itj=n—1

which splits (nonnaturally). |

Corollary 25.13 (Universal Coefficient Theorem I) There is a natural
short exact sequence

0— H(X, A) ® n— H(X, A; 1) — Tor(H,_,(X, A), 1) = 0
which splits (nonnaturally). |}

Corollary 25.14 (Universal Coefficient Theorem II) Let (X, A) be a
relative CW complex and assume that = is finitely generated. Then there is a
natural short exact sequence

0- H"X, A ®n— H(X, A; n) - Tor(H"*(X, A), ) » 0
which splits (nonnaturally).
Proof There is an isomorphism of chain complexes
C'(X,A)®n—> C"(X,A; )
given by
C'(X, A) ® 1 & hom(C,(X, 4), Z) ® 1 —» hom(C,(X, A), 1) = C*(X, 4; )

where ¢(f ® x)(c) = f(c) - x. ¢ is an isomorphism since = is finitely generated.
25.14 now follows from 25.10. |
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Let k be a field. Then there are chain isomorphisms
Co(X, A3 K) @, Cu(Y, B; k) — Co(X x Y, X x BU A x Y; k)
C*(X, A;k) ®,C*(Y, B;k)—— C*(X x ¥, X x BU A x Y; k)
induced by 24.4 and 24.7. These induce Kiinneth formulas:

Corollary 25.15 Let k be a field and suppose (X, 4) and (Y, B) are relative
CW complexes. Then

@ H{X, A; k)@ H, (Y, B;k)——> H(X x ¥, X x BU A x Y; k)

i+j=n

is an isomorphism. If (X, 4) and (Y, B) have a finite number of cells in each
dimension,

@ H(X,A; k) ®,H(Y,B;k) —>H (X x Y, X x BUA X Y; k)

itj=n
is an isomorphism. ||
Finally we will exploit 24.10 to prove:

Theorem 25.16 (Universal Coefficient Theorem III) Let (X, A) be a
relative CW complex. Then there is a natural short exact sequence

0 = Ext(H,_ (X, A), 1) —> H™(X, 4; 1) —> hom(H,(X, A), 1) =0

which splits (nonnaturally). d is the map adjoint to the Kronecker product (see
the discussion before 24.9).
This follows from:

Lemma 25.17 Let C be an R-free chain complex and n be an R-module.
Then there is a natural short exact sequence

0 - Extx(H,_1(C), n) » H,(homg(C, n)) 2, homg(H,(C), 1) =0
which splits (nonnaturally). Furthermore

d({fHdeh) ={/ ()}

The proof will be much the same as 25.7 and will depend on the following
simple lemma which is the analogue of 23.9.

Lemma 25.18 Let A— B LR C — 0 be exact. Then

0 - homg(C, D) —— hom (B, D) —— homg(4, D)

is exact for any D.
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Proof Letf: C— D and suppose *(f) =fB =0. Since § is onto f(x) =
JB(y) =0, for some yeB. Hence f=0. Clearly o*f*=(fu)* =0. If
a*f=0forf: B> D,fllmA = 0 and hence fextends to a map f: B/Im 4 — D.
Since C = B/Im A4, feIm f*. |

Proof of 25.17 As in 25.7 we consider the exact sequence of chain com-
plexes

0 - Z(C)—> C-5 B—0.
This yields an exact sequence
0 - homg(B, 1) —— homx(C, 1) — homgx(Z(C), 7) — 0
by 25.18 and 25.4(a) since B is R-free and
0-Z(C)-C—-B—-0

is a resolution of B. We now apply Exercise 9, Section 20 to produce a long
exact sequence

= H(homg(Z(C), 7)) —— H(hom (B, 1)) ——> H(homg(C, 7))

(%)

— H(homg(Z(C), n)) — .

Now H(homg(Z(C), n)) = homg(Z(C), =) and H(homg(B, n)) = homg(B, n)
since in each case the differential is 0.
Consider the composite
hom(By(C), 1) = homg(By 1, 1) «— homg(Z(C), 7).

This is +j* for let f: Z,(C) — = and choose f: C — = so that 1*(f) = f. This is
possible since 1* is onto. Hence o{f} = +{f| B} = +{f|B} = £{j*(f)}. We
now have a short exact sequence

0 — ckr j* - H(homg(C, m)) - ker j* - 0.

Butsince0 — B(C)—jv Z(C) - H(C)isaresolution, we have an exact sequence
0 - homz(H(C), n) = homz(Z(C), n) » homz(B(C), n) = Extz(H(C), 1) - 0

by 25.18 and the definition of Ext. The exact sequence of 25.17 follows. It is
easy to check the formula for d, and that A increases degrees by 1 since 0*
does. To find a splitting, as in 25.9 we see that Z(C) is a direct summand in C.
Let y: C — Z(C) satisfy yi = 1. y determines 5: C - H(C) and thus

7*: homz(H(C), m) - homg(C, 7).

Since 7(B(C)) =0, §7* =0 and 7* determines a map §: homg(H(C), n) —»
H(homg(C, n)). Since dj = 1, the sequence splits by 11.11. | I
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One simple consequence of 25.16 is the following:

Corollary 25.19 Suppose H, (X, A) = F,® T, where F, is a free abelian
group of finite rank and T, is a finite abelian group. Then H*(X, A) = F, ®
T,_,.
Proof hom(H,(X, A),Z) =hom(F,,Z) =F, and by Proposition 25.4,
Ext(H, (X, A),Z2) =Ex{(T,_,,Z)=T,., since T,_, is a direct sum of
cyclic groups. Hence the result follows from 25.16. § ~

Observe that the hypothesis of 25.19 is satisfied if (X, 4) has a finite number
of cells in each dimension.

Another universal coefficient theorem is given by the natural isomorphisms

CH(X, A; k) = {Cu(X, 4; k)

for k a field, where {C4(X, A; k)}* is the dual space to C,(X, 4; k). This
proves:

Corollary 25.20 Let k be a field and (X, A) a relative CW complex. Then

there is a natural isomorphism
H(X, A5 k) = {H(X, 4; k)}*. |

We now give an example to illuminate the nonnaturality of the splitting.

Let &: RP? - CP” = K(Z, 2) be a map whose homotopy class {¢} € H3(RP?)
= Z, (by 24.12(a)) is nonzero. Thus *; H2(CP*) - H*(RP?) is nonzero for
it maps {1} € [CP®, CP*] to {&}.

Consider the exact sequences (from 25.16)
0 ——— Ext(H,(CP*), Z) —— H*(CP*)—— hom(H,(CP*),Z) —— 0

| | |

0 —— Ext(H,(RP?),Z) —— H*(RP*)—— hom(H,(RP?),Z)—— 0
This has the form

0 » 0 » Z > 7 » 0
0 »Z, v Z, »0 » 0

since H,(CP®) =0, H,(CP*)=2Z, H,(RP?) =2Z,, and H,(RP?) =0 by
20.11, 24.12, Example 1, Section 20, and 25.4(b). Thus &*; H2(CP®) —
H*(RP?) is not equal to

Ext(£,, 1) @ hom(&,, 1): Ext(H,(CP®), Z) ® hom(H,(CP®), Z)
- Ext(H,(RP?), Z) ® hom(H,(RP?), Z)
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for this map is 0. Thus the isomorphism
H'(X, n) = Ext(H,_(X), n) ® hom(H,(X), n)

is not in general natural. In homology one can use the same example. Since
&* is nonzero, it is onto. Consider the exact sequences (from 25.14):

0 —— HXCP®) ® Z, —— H¥CP*; Z,) — Tor(H¥(CP®), Z,) — 0

0—— HXRP>)®Z,— H*RP?;Z,) —> Tor(H}(RP?),Z,) — 0

This implies that é*: H>(CP®; Z,) -» H*(RP?; Z,) is an isomorphism. By
25.20, ég: Hy(RP?; Z,) — H,(CP™; Z,) is an isomorphism. Thus from 25.13
we have

0 —— H,(RP?) ® Z, —— H,(RP?; Z;) —— Tor(H\(RP?),Z,) ——0

| |

which reduces to
0 » 0 > Z, »Z, » 0

N

0 +Z, »7Z, > 0 -» 0
Consequently the splitting in 25.13 is not natural. One can also see that the
splittings in 25.11 and 25.12 are not natural by considering the map
¢ x 1: RP?R x P* - CP® x RP?,
and in 25.14 by considering the inclusion S! = RP! < RP2.

m

Exercises

1. Show that if R is a principal ideal domain, there is a natural exact
sequence

0- @ HX, 4;R@gH(Y,B;R)~»H(XxY,XxBuAxY;R)
i+j=n
- @ TorR(Hi(X, A; R)’ Hj(Ya B; R))—*O
i+j=n—1
which splits, where (X, 4) and (¥, B) are relative CW complexes and that there

is a similar split exact sequence for cohomology if (X, A) and (Y, B) have a
finite number of cells in each dimension.
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2. Let R be a principal ideal domain. Prove there is a natural exact se-

quence
0-» @ H(X;R®xH(Y; A ->H(X A Y; R)

itj=n

- @ TorR(ﬁi(X; R), H,( Y;R))-0

itj=n—-1
which splits. Derive a similar exact sequence for cohomology.

3. Suppose f: (K, LY— (X, 4) and g: (K, L'y~ (Y, B) are resolutions.
Prove that fx g is a resolution. Prove that Exercises 1 and 2 hold for
singular homology.

4. Reprove 24.12 using the results of this section.

5. Show that for any group G, Tor(Q, G) =0 where Q is the rational
numbers.

6. Show by example that the splittings in 25.11 and 25.12 are not natural.
7. Prove analogues to 25.10-25.16 using singular homology and cohomo-
logy.

8. Suppose X is well pointed and 0 — R P-4 GH0isa resolution.
Use Exercise 8, Section 21 and Exercise 13, Section 18 to construct natural

long exact sequences
1®¢

"'—’Ei(X)®R'———'Ei(X)®F—’Ei(X; G)"’Ei—l(X)®R—'"‘
v B @ R—225 B{(X)® F— E(X; G) » E*'(X) @R -+,
and hence construct universal coefficient exact sequences
0 E(X)® G — E(X; G) - Tor(E,_,(X), G) >0
0-E"(X)® G- E"(X; G) » Tor(E"*(X), G) » 0
generalizing 25.13 and 25.14. (Note: These sequences do not split in general.)
(30.13)
9, let 0-R—>F—-n—0 be a resolution. Show that the Bockstein
B H(X; n) » H,_(X; R) has a factorization
H(X; )= Tor(H,-,(X), 7) » Hy, y(X)® R = H,_(X; R)

(see Exercise 13, Section 18). State and prove a similar result for cohomology
if @ is finitely generated.

10. Using Exercise 9 calculate the Bockstein homomorphism
H,(RP";Z;) > H,_,(RP")

corresponding to the sequence 0 »Z—+Z > Z, - 0.
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Orientation and Duality

In this section we discuss orientation of manifolds and duality. Manifolds
arise naturally in many analysis problems, and historically homology theory
was first applied to manifolds.

A k-dimensional subspace V of R" determines an (n — k)-dimensional
subspace V* of (R")* by V* = {f| f(V) = 0}. In an n-dimensional orientable
manifold we will generalize this to determine for each k-dimensional cycle an
(n — k)-dimensional cocycle. This will induce an isomorphism H (M) =
H" %(M). We prove a relative version of this duality theorem for an arbitrary
ring spectrum E and manifolds that are orientable (in an appropriate sense)
with respect to the ring spectrum. This has a number of applications to geo-
metric problems and gives information about the ring structure in the coho-
mology of manifolds. The exposition we give here has been influenced by
[20; 28; 48].

Definition 26.1 An n-manifold is a Hausdroff topological space M such
that every point has a neighborhood homeomorphic to R".

All manifolds that we consider are assumed to be paracompac

The notion of orientation is quite familiar. A line has two orientations,
corresponding to the two directions. Similarly, a plane has both a clockwise
and counterclockwise sense. In making measurements along the line, or
measuring angles, an arbitrary choice of orientation has to be made. Sim-
ilarly, the “right-hand rule” for calculating the vector product in R* corre-
sponds the choice of one of two orientations of R>. In general, we can orient
a simplex ¢" by ordering its vertices. Such an ordering vy, ..., v, determines

t.25

25 This is sufficient to guarantee that M is a separable metric space.

269
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a homology class {e¢,} € H,(0, 00) = Z which is a generator by 20.13. Two
orderings determine the same generator iff they correspond to each other
under the action of the alternating group (Exercise 12, Section 20). Thus the
two generators of Z correspond to the two possible orientations of o in intu-
itive sense.

Now we have isomorphisms

H (o, 00) = H(0,6 — x) = H,(R", R" — X)

for x € Int 6; hence a choice of an orientation depends only on some point
x of 0. However for any two points x and y of R”, there is a simplex containing
them. Using this simplex one can determine an orientation at y from one at x
and vice versa.?® We express this by saying that R" is orientable. Such a choice
will be called an orientation. In general, it is not true that a ““ local orientation™
of a manifold extends to the whole manifold as above. The simplest examples
of this phenomenon are the M&bius band M= (0, 1) x [0, 1]/(x, 0) ~
(1 — x, 1) (Fig. 26.1) and the Klein bottle (see Exercise 14, Section 7). In these

Figure 26.1

two-dimensional manifolds it is impossible to choose a clockwise direction
“continuously > over the whole manifold.

Before making precise definitions, we will generalize to arbitrary theories
defined by a ring spectrum. For the rest of this section E will denote an arbi-
trary ring spectrum. If M is a manifold and x € U< M where U = R", there
are isomorphisms

EM,M—x)2E(U,U-x)=E(R",R"—Xx')
= n—l(R” - x’) = En—l(Sn_l) = EO(P)
of Eyj(P)modules. Thus E,(M, M — x) is a free E,(P) module on one generator.

26 Thus for example, to choose a clockwise direction at one point in the plane deter-
mines a clockwise direction at every point.
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Definition 26.2 An orientation of M at x with respect to E is a choice of
Ey(P) module generators of E,(M, M — x). Given a collection {X} of subsets
of M, M is said to be consistently oriented along {X} with respect to E if
there is chosen a collection of classes [X] e E, (M, M — X) such that

@ (pX sl X1 = (0% o 4l Y]

where pi: (M, M — A) » (M, M — B) is the inclusion, and
(b) (p¥)«[X]is an orientation at x.

A manifold is called E-orientable if it can be consistently oriented along all
compact subsets. A collection of such classes is called an E-orientation.

If E = HZ, it is customary to delete reference to E in the above definitions.
This is the intuitive notion discussed above. Notice that if M is compact, an
E-orientation is determined by [M] € E,(M). Such a homology class is called
the fundamental class of M (with respect to E). In this case the only require-
ment put on [M] is that (p™),[M] is an orientation at x for all x.

Proposition 26.3 R" is E-orientable for all E. There is one orientation for
each unit in Ey(P).

Proof We first define [b"(r)] where b"(r) = {x € R*||lx|| < r}. We use the
sequence of isomorphisms

E(R", R = b"(r) 2 E(B"(r), "7 '(r)) 2 E,_ (5" !(r)) = Eo(S°(r)) = Eo(P).

Thus a choice of a generator ge Ey(P) determines a class [0"(r)]e
E,(R", R* — b"(r)) for all r. If K is compact, K < b"(r) for some r so we can
define [K] = (px)«[b"(r)]. This may conceivably depend on the choice of r. To
show that it does not, it is only necessary to show that if r < r’. p,[b"(r")] =
[6"(r)]. Since there is a homotopy of pairs in R"® between the identity and the
map ¢ which multiplies all vectors by the scalar r'fr, p,[b"(r")] = @[6"(r)].
Restriction of ¢ induces an obvious homeomorphism from (B"(r), S*~!(r))
to (B"(r’), S !(r")) which induces the identity on E,(P) under the above
isomorphisms. Thus [K] is unambiguously defined. By definition, (a) of 26.2
is satisfied. To prove (b) one simply observes that if xebd"(r),
(p)sx: ER", R" —b"(r)) -~ E,(R", R* — x) is an isomorphism. |

As an example of orientability we consider the spaces RP", CP", and HP".
These are manifolds; in fact the sets V; constructed in Example 4 of Section 11
are homeomorphic to R", R*", and R*" respectively (see Exercise 25).

Proposition 26.4 RP" is orientable iff # is odd. For each n, CP" and HP"
are orientable.
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Proof We do only the case of RP". The others are similar. If n is even,
H,(RP" = 0. It is thus impossible to choose [RP"] since (p)«([RP"]) must
have infinite order. If n is odd, choose [RP"] to be a generator. Let x, =
[0[---]0|1]e RP". Then RP"—x,~RP""'!. Now the homomorphism
H,(RP™ - H,(RP", RP""") is an isomorphism by 20.11. Hence (p, ) is an
isomorphism. To see that (p,)4 is isomorphism for all x, apply

Lemma 26.5 If M is arcwise connected, the homomorphisms

(Px)x

HM)—HM, M -x)=Z
differ at most by a sign as x varies.

Proof If x; and x, belong to the same coordinate neighborhood, there is a
line segment L with x, and x, as end points, lying inside the coordinate neigh-
borhood. Hence there is a commutative diagram

HM M-x)=Z

(P,l e /

HM) — HM,M~L)

o

(I’,‘z)t

HMM-x,)=2Z

Thus the homomorphisms determined by x; and x, differ at most by a sign.
Since any two points x and x’ belong to a sequence x = Xg, X, ..., X = X’
with x; and x;,; belonging to some coordinate neighborhood, the lemma
follows. {1 i

Proposition 26.6 Every manifold is orientable with respect to HZ, .

Proof Let U<« M be a coordinate neighborhood and suppose Dc U
corresponds to B". Then H(M, M - D; Z,) =~ H(U, U~ D; Z,) =
H/(R", R" — B"; Z,) = Z, . Thus there is a unique choice for {D]. The proposi-
tion follows from:

Lemma 26.7 Let 4 be a ring. If M is consistently oriented with respect to
HA along a collection of sets whose interiors cover M, there is a unique ex-
tension to an orientation of M with respect to HA.

To prove this we need the following lemma.

Lemma 268 If K< M is compact, and G is any abelian group,
H(M, M -K; G)=0fori>n.
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Proof We first prove this in the case M = R". Call an n-cube [a,, b,] x
+-- x la,, b,] a type k cube if a; = m;/k for some integer m; and b, = a; +
(k). R* is a CW complex with the set of all type k cubes as » cells. Any
open subset U of R” can similarly be made into a CW complex as follows.
Let K, be the union of all type 2 cubes contained in U. Having defined X _,,
let K, be the union of K;_; and all type 2’ cubes contained in U — K;_,. K| is
clearly a CW complex with K;_, as a subcomplex. Hence U = ( JK;is a CW
complex. Any element of C,(U; G) must lie in the image of C(L; G) where L is
some finite subcomplex of U. Hence any element of H;(R" — K; G) is in the
image of the homomorphism

H{(L; G)-» H(R" - K; G)

induced by the inclusion of L for some L < R" — K. In the commutative dia-
gram

H(L; G) ——— > H(R" — K; G)
=|é =|d
H,.(R" L; G)— H,, ,(R", R" — K; G)

observe that (R", L) is a relative CW complex with cells in dimensions less
than or equal to », and hence H;,,(R", L; G) =0 for i > n. Consequently,
H(R" R"—-K; G)=0fori>n.

Suppose now that K Uc M where U is homeomorphic to R". Then
HM, M-K,G)=H(U, U-K; G)= H(R", R* — K; G) =0 for i > n, by
excision.

Suppose now that K is an arbitrary compact set. K = K; U -+ u K, where
each K; is contained in a set homeomorphic to R*. We show by induction on
s that H(M, M —(K;v---uK); G)=0 for i>n and 1 <i<s. Let
K=K v--uUK;_,and K"=K;. Then

HMM-K;G)=HMM~-K";G)=HM, M- (K'nK");G)=0
for i > n. Applying the Mayer-Vietoris sequence (Exercise 10, Section 21)
H, (M, M —(K' A K"); G)—> H(M, M — (K’ U K"); G)
> HM, M-K;G)®HM,M—-K";G)
one concludes that H, (M, M — (K' v K"); G) =0 completing the inductive
step. |

Proof of 26.7 Let {U,} be the interiors of the sets covering M along which
M is consistently oriented. As in the case of 26.8, an arbitrary compact set K
can be written as K = K; v -+~ U K, where K; = U,,. We will show that given
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[K'] and [K"] with (pg ~x)x [K']= (px ~x)«[K"], there is a unique class
[K'U K"] with (pg)«[K’ U K"] = [K'] and (pg-)4[K' U K"]=[K"]. This is
sufficient to prove that there is a unique class [K] with (pg )«[K] = [K]. Then
the sets [K] are compatible in the sense of 26.2(a) by uniqueness, and 26.2(b)
follows immediately. To construct [K' U K”] we apply the Mayer—Vietoris
sequence again

H,. (M, M — (K' 0 K"); A > H(M, M — (K' U K"); 4)
2 HM, M —K'; AY® H(M, M — K"; A)
XS H(M, M — (K’ A K"); A)~

where Q= ((pK’)*a (pK’)*) and ¢ = (pﬁ’ hK")* - (pﬁy r\K")* . By 268’
H, (M, M —(K'nK"); A) =0, so [K' U K"] exists uniquely. | §

An important tool in studying orientability is the following result,
Proposition 26.9 Let M be a manifold. Then there is a double covering
space m: M — M such that ¥ is an orientable manifold.
Applying Exercise 13, Section 7 we immediately conclude:
Corollary 26.10 Every simply connected manifold is orientable. |
Remark 26.11 We could use 26.10 to prove that CP" and HP" are orient-
able instead of the proof in 26.4.

Call a coordinate neighborhood U = M special if there is another coordi-
nate neighborhood ¥V > U such that (V, U) = (R", B" — S"!). Clearly the
special coordinate neighborhoods form a basis for the topology.

Lemma 26.12 Let U be a special coordinate neighborhood. Then for all
xel,
(p,")s: H(M, M = U)—> H(M, M — %)
is an isomorphism.

Proof Choose V as above. Then (V, V—-U)c (M, M—-U) and
(V, V—x) (M, M — x) are excisions. Thus it is sufficient to consider the
restriction

p:(V,V=U)>(V,V-x);
using the homeomorphism of ¥ with R", this corresponds to
p: (R, R"— B> (R", R" — x)

This clearly induces isomorphisms in homology since R* — B"~ R" — x. |}
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Proof of 26.9 Let M = {(x, [x])|x € M, [x] is an orientation at x}. Let
n: M — M be defined by n(x, [x]) = x. Let U< M be a special coordinate
neighborhood and [U] a generator for H,(M, M — U). Define

WD = {(x, [x]) € M|x e U, (p)«([UD = [x]}
w({U)D = W(UD n 2~ (D).

Now the sets W([U]) cover M since each z € M belongs to some special U and
(p.Y)x is onto. In fact we show that the sets W([U]) form the basis for a to-
pology. Suppose (x, [x])e W({UD n W([U']). Then xe Un U’ and there
exists a special coordinate neighborhood U” with x € U" « U n U’. Define
[U"] = (pg)«([U]). Now (x, [x])e W([U"] since (p7)u([U"D = (0.0):(T])
= [x]. Since (p?")y is an isomorphism, (pF)({UD = (p)({U'D; hence
[U"] = (p§)+([U']). Consequently if (y, [y]) e W([U"]),

1= ()T’ = (PD£(TD = (0} )4([T"D),

and thus W([U"]) € W([U]) n W([U')), and the sets W([U)) for U special form
a basis for a topology.

With this topology = is continuous, for n~*(U) = W([U]) v W(~[U]) and
W(UD) n W(—[U]) = &. Thus n is a double covering space. Clearly M is
an n-manifold since W((U]) = U= R".

We claim that W([U]) is a special coordinate neighborhood. Since U is
special, we may choose ¥ such that (V, U) = (R", B" —S"%). Let U’ correspond
to {x € R"| x| < 2}. Then U’ is special. By 26.12 (p¥), is an isomorphism.
Let [U'] = (p§)5 '((UD. Then W([U]) = W([U")). Furthermore r establishes a
homeomorphism (W([U']), W(U)])) = (U’, U) so W([U)) is indeed special.

In the diagram

H/(M, M — W(U])) Lt > H, M, M —0)

HW(T'), W(U')) — W(O) —— H U, U’ - T)

the vertical arrows are excisions and the bottom is an isomorphism by the
above construction. Hence =, is an isomorphism and we define an orientation
along the sets W([U]) by

[W(IUD] = ny {(LUD.
This will orient M by 26.7 if we show that these classes are consistent. Let
p = (x, [x]) e W([U]). Then
(P )((W(UD)) = [x] € H(M, M — x).
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Since m, is an isomorphism, condition (b) is satisfied and furthermore, if
pe W(U) n W(VD),

() ((WATD]) = (p ) ((W(LVD)).

Thus condition (a) follows from:

Lemma 26.13 Let K be a compact subset of an n-manifold M, and £ e
H(M, M — K). Then & = 0 iff (pX),(§) =0 for all xe K.

Proof Theproof willbe based on case analysis and the use of the following.

Basic inductive step 1f K= K, U K, and 26.13 is true for K| and K, it is
true for K.

Proof By the Mayer-Vietoris sequence (Exercise 10, Section 21) and 26.8
we have the exact sequence

0—H(M, M —K)~> H(M, M — K)) ® H{(M, M — K,) > -+~

where s(£) = ((pX )+(8), (pK ) +(). Since pX = pXipX for x € K;, it follows that
if (p%),(&) = 0 for all x € K, we must have s(¢) = 0 and hence « = 0. |

Proof of 26.13 We observe that it is true if M = R" and K is a ball B,
for R" — B~ R" — x if x € B. Hence by the inductive step, 26.13 is true if
M = R" and K is a finite union of balls. Suppose now that K < R" is an
arbitrary compact set, and « € H,(R", R" — K). As in the proof of 26.8 one can
find a complex L = R” — K such that ¢ is in the image of the restriction
homomorphism

H(R", L)y- H(R", R" — K);

Since K is compact, there exist balls By, ..., B, with Kc B, U+ U B, <
R" — L. We will suppose in addition that each ball intersects K. Now € is in
the image of the restriction homomorphism

H(R", R"— (B, U -+ U B)) = H(R", R" — K).

Let p, (&) = &. Clearly (p,)«(€") = 0 for all x € K. To see that (p,),(¢) = 0 for
x € B, — K, join x with a point x” of B, n K by a straight line segment L.

Then since
px: H(R", R" — L) > H(R", R" — x')

is an isomorphism, (p;)(€) = 0, hence (p,)+(£") = 0. Since (p,) (&) = 0 for all
xeB v UB, =0 and hence ¢ = 0. This completes the proof in the
case that M = R". If M is arbitrary but K is contained in a coordinate neigh-
borhood U, the result still holds because of the excision isomorphism

H(M, M — K)~ H(U, U — K).



26. Orientation and Duality 277

Now if M and K are arbitrary, K= K| U -+ U K, with K, contained in a
coordinate neighborhood. It follows from the basic inductive step that the
lemma holds. | |

Corollary 26.14 If M is a compact connected n-manifold, H(M;Z,) ~ Z,.
Proof By 26.6 H,(M; Z,) # 0. But by 26.5 and 26.13
(px)*: Hn(M’ ZZ) g Hn(M’ M - X, ZZ) = ZZ

is a monomorphism.

Theorem 26.15 If a manifold is S-orientable it is E-orientable for every
E (S is the sphere spectrum).

Proof The mapping u: S — E defines a natural transformation
u: mS(X, A) = Ey (X, A);
a choice [K]s € n,5(M, M — K) thus determines [K]; = u[K]s € E(M, M — K).
Condition (a) is easily seen to be satisfied. To check (b), we observe that
1o5(S°) = 1, S(M, M — x) — E(M, M — x) = Ey(S°)
is a ring homomorphism and hence sends generators to generators. |

Definition 26.16 An element ¢ € H,(X) will be called spherical if it is in
the image of the Hurewicz homomorphism

h: m(X) - Hi(X).

& will be called stably spherical if it is in the image of the stable Hurewicz

homomorphism
H:n5(X)— H(X)

(see Exercise 1, Section 22).
Theorem 26.17 If M is compact and orientable, [M]e H,(M) is stably
spherical iff M is S-orientable.

Proof Note that if 4 = %, u = H. Hence if M is S-orientable, [M] € H (M)
is stably spherical. Conversely, if [M]e H,(M) is stably spherical we choose
[M]s € n,5(M, &) with u([M]s) = [M]. (p,)«({[M]s) is a generator since

nS(M, M — x) = H(M, M — %)

is an isomorphism. ||

Corollary 26.18 S” is S-orientable.

Proof This follows immediately from the Hurewicz theorem. |
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In order to prove the duality theorem we shall construct a duality operator.
This will be based on the cap product (see Exercise 7, Section 23). Let E be
a ring spectrum such that for » sufficiently large, E, is a CW complex. Let X
be paracompact and suppose that L = K are closed subsets of X. We define
a pairing

C:EK,L)QE(X,X—-K)»E,_(X~L, X—K).
Let (¥, W) be an open pair of subsets of X containing (K, L). We will use the

symbols 7,, i,, ... to denote various natural inclusion maps. Thus we have a
homomorphism

EW, W@ E(X, X~ K)2ZL By — L, W — L)® E(X, (X — K) U W)
O BV — L W-L)QE(V ~L,(V - K)u (W —L))

since 75 is an excision. Define &,y to be the composite of this homomorphism
with

EW—-LW-L®EWV—L (V-K)uW-—L))
L E, (VL V—K—HE _(X~L X—K)

where r is the homomorphism from Exercise 7, Section 23. &y, 4 is defined for
all open pairs (¥, W) containing (K, L). If (V', W) < (V, W), there is a
commutative diagram

E(V, WYQE,X, X — K)

fv.w

Istol E,_{(X-L,X-K)

E(V'.W)®EX, X —K)~_
Hence {{) ) defines a mapping
“_n'l {El(Va W)® En(X9 X - K)}—’ En—i(X - L9 X - K)

By Exercise 13, Section 15 and Exercise 4, Section 21, the left-hand group
is naturally isomorphic with E{(K, L) ® E(X, X — K). We define C via this
natural isomorphism. (Note that if K = X and L = &, this is the cap product.)

Lemma 26.19 C is natural in the following sense. Let (K, L) = (XK', L').
Then there is a commutative diagram

EK,L)® E(X, X ~ K)——— E,_(X — L, X — K)
ic*@i7* ig*

E(K',L)® E(X, X — K')——E, (XL, X~ K’)
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Proof Let(V, W)be aneighborhood of (K, L) and (V', W’) a neighborhood
of (K’, L") containing (V, W). We can then prove commutativity in the diagram

E(V, W)@ E(X, X - K) L2 E, (XL, X - K)
ig*® iy ig*
E(V, WYRE(X, X - K)-2" S E _(X—-L, XK'

by naturality of n. Taking limits first over all (¥, W) > (K, L) and then all
V', W) o (K’, L) one establishes the lemma. §

Lemma 26.20 There is a commutative diagram:

E(\L)QE(X, X ~-L) ——— E, (X, X-L)
1® i./‘
E(WL)®E(X,X - K) P

E*NK,LY®E(X,X—K) —S— E,_;_.,(X-L X-K)

Proof Let (V, W) be a neighborhood (K, L). We will prove commutativity
of the diagram

)

EAW)REL(X, X - L) E,_{X,X—-L)

E(W)®E(X,X - K)

NN
fV. w

EY'V,W)RE(X,X~-K) —"— E,_;_(X—-L, X-K)

from which 26.20 will follow. Using the definitions of &y and &y 5,
we expand this diagram to the larger one (see page 280). Commutativity of
the center diagram on page 280 follows from Exercise 14, Section 23 with
A=W, B=V-L X=V,C=Z,and D=V ~-K. |}

Suppose now that M is a manifold and {[K]} is an orientation of M with
respect to E. Suppose K o L are compact subsets. Define

D:.E{K,L)> E,_(M —L, M — K)
by D(x) = C(x® [K]).



EW)QEW,W—-L) —"— E,_(W,W~1L) E,_(V,V-L) ———— E,_ (X, X—L)

EW)®E(X,X-L) «——— EW)®E\V,V~L)

d ]
E(W)®E(X,X—L) «—— EW)®EV,V-L)
E® iy
! | |
21 E IV, WYQEV,(V —K)U W) Ep; (V=L V—K) ——E ;. (X—L X—K)
W‘ L

+
Ei+1(V, W)

QEX,X—K) — E*'V =L W—L)®E(X,(X~K)UW) «—— E* VL, W —L)QE(V —L,(V - K)u(W - L))
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Duality Theorem 26.21 D is an isomorphism.

The proof will involve repeated use of the following:

Lemma 26.22 If D is an isomorphism for (K, &), (K,, &), and (K, n
K, , &), then it is an isomorphism for (K; U K, , &¥).

Proof Let K o L and consider the diagram of exact sequences

EYK) EX(L) E"YK, L) E'Y(K)

b D D D

oot = E (MM ~K) —E,_(M,M—-L) —s w-i-t(M —LLM —K) —~——E, | (M,M— K)— -

By 26.19 and 26.20 this is commutative. Suppose D is an isomorphism for
(Ky, &) and (K|, n K,, ). By the 5-lemma D is an isomorphism for
(Ky, K; n K;). Now there are isomorphisms

EYK,, K, n Ky) — E(K, U K,, K))
E, (M — (K, A K;), M — K})«—E,_ (M — K,, M — (K; U K))

by 21.7, 21.2, and 21.20(1). Hence by 26.19 D is an isomorphism for (K; U
K,, K,). Consequently by the above diagram and the S-lemma D is an isomor-
phism for (K; U K,, &). 1

Proof of 26.21 This will be divided into several cases.

Case 1 K consists of only one point: If L # ¢ all the groups are zero.
Suppose L = . By Exercise 6c, Section 23, D is an E*(P)-module homomor-
phism. Since 1 € E%(P) is a generator and D(1) = [P] generates E,(M, M — P)
by 26.2, D is an isomorphism.

Case 2 M = R", Kis compact and convex, L = ¢F: For any point P e K,
we claim that the inclusions P— K and R"— K— R" — P are homotopy
equivalences. The first statement follows from convexity. To prove the second
one, note that K is contained in some ball B centered at P. Hence a linear
homotopy away from P retracts both R® — K and R" — P onto R" — B. Thus

E'(K, &) — E\(P, &) and E _(R,RP—K)->E,_ (R',R"—P)
are isomorphisms. By 26.19, D is an isomorphism in this case.

Case 3 M = R" Kis a finite union of compact convex sets, and L = (¥:
We prove this by induction. Suppose K = C; U -+ u C, with each C; convex.
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The case r = 1 is case 2. Suppose the result proven for any union of less than
r convex sets. Then it is true for

Ciu--uC_,
and
(Ciu-ulC_)nC=(CnClu- U (C.ynC).
By 26.22, it is true for C; U -+~ U C,.

Case 4 M = R", K is an arbitrary compact set, L = ¢: Let {V,} be the
collection of all compact neighborhoods of K that are the union of a finite
number of compact convex sets. Since every neighborhood of K contains
some V,, | J. (M — V,) = M — K. By Exercise 4, Section 19,

E,_(M,M—K)xlimE, (M,M—=V,).
By 21.20(4),
lim E'(V,) = E{(K).
Thus by 26.19, D is an isomorphism in this case.

Case 5 M is arbitrary, K is an arbitrary compact set, and L = {f: Suppose
K is contained in some coordinate neighborhood U = R"

E,_ (U, U—K)~E,_(M, M- K)

—i

by excision. If i = 0, this isomorphism determines an orientation on U from
the orientation on M. Using this orientation and 26.19, it follows that D is an
isomorphism in case K is contained in a coordinate neighborhood.

In general K is covered by a finite number of coordinate neighborhoods.
Thus we can write K = K; v -+ U K, where each K; is compact and contained
in some coordinate neighborhood. By 26.22, D is an isomorphism in this
case.

Case 6 The general case: This follows from the S-lemma applied to the

diagram
EYK) EXL) » B YK, L) ———— E*Y(K) ———— B (L) —— -
D D D b D

~E, (M M~-K)—E_MM-L->E_ (M-LM-K)>E_, (MM-K)=>E,_; (M,M—L)—"

(see 26.22). 1|
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Although D: E{K, L)~ E,_(M — L, M — K) is only defined if K is com-
pact, we can nevertheless prove

Corollary 26.23 If K — L is compact
EK,Ly~E,_(M~—L, M — K).

Proof Let C be a compact set containing K — L. Then

EKL=EXKNCLANCOXE,_(M-—(LnC),M—-(KnC)
~E,_M—-L M-C)
by 21.20(1) and excision (21.2 and 21.7). |

Corollary 26.24 (Poincaré Duality Theorem) 1If M is a compact manifold
oriented with respect to E,

D: E(M)— E,_{M)
is an isomorphism. {

There are a few simple observations one can make by applying the Poincaré
duality theorem to ordinary homology. Let M be a compact manifold.
Then H(M; Z,)~ H" i(M; Z,)= H,_(M; Z,)*. Hence H,(M; Z,)=
H{M; Z,)**. This implies that H(M; Z,) is a finite dimensional vector
space.

If we suppose that M is compact and orientable it follows that it is orient-
able with respect to HG for any abelian group G. As in the case of Z, it
follows that H(M; Z,) and H(M; Q) are finite-dimensional vector spaces.

Suppose that M is compact, orientable, and H (M) = F; ® T; where F; is
free and of finite rank, and 7 is a finite group. By 25.19, H{M) =~ F;® T;_;.
Hence we have F; = F,_;and T, =7, _;_,.

Recall the Euler characteristic y defined in Exercise 11, Section 20.

Corollary 26.25 Suppose M is a compact manifold of odd dimension.
Then (M) = 0.

Proof x(M) is well defined since H,(M; Z,) is finite dimensional. Since
dim H(M; Z,) = dim H,_(M; Z5),

(M) =Y. (=1) dim H(M; Z;) =0. 1

Corollary 26.26 (Alexander Duality Theorem) Let K be a compact subset
of S™. Then for each ring spectrum E,

D: E(K,L)> E,_(S"— L, S" - K)

is an isomorphism.
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Proof This follows from 26.21 and 26.17. |

Corollary 26.27 If K is a compact subset of S”,
E-'K)= E,_ (5"~ K)
Proof
ErY K =2E YK AA)ZE,_;4(S"— % S"-K)=E,_(S"—K, )
by 26.26 and the exact sequence of the triple +' = §" — K < §" — . ||

Another version of the duality theorem involves cohomology with compact
supports. If X is locally compact and paracompact, and E is a spectrum,
define

Elomp(X) = EN(X™)

where X® is the one-point compactification.

Theorem 26.28 Let M be a manifold orientable with respect to E. Then
Eiomp(M) & E,_(M).
Proof Consider all subsets U = M with U compact. Since M is locally
compact and Hausdorff
M® = lim M/M - U.
Thus El,mp(M) = lim E((M, M — U) by 21.20(4, 1). Since M/M — U is
compact
lim E'(M, M — U) = lim E,_(U) = E,_ (M)
by 26.23 and Exercise 4, Section 19. |

Theorem 26.29 (Jordan Separation Theorem) Let X — S" be a subset
homeomorphic to S"~*. Then S” — X has exactly two components, and their
boundary is X.

Proof H,(S"— X)=~ H"(S", X) by 26.26. The exact sequence
0« H"(S") « HY(S", X) « H" 1(X)«0

thus yields Ho(S" — X) = Z @ Z. By Exercise 13, Section 20 and the proof of
26.8, S" — X consists of two components U; and U, . Clearly U, =« 8" — U, =
U, v X. We now prove X< U, nU,. Let xe X and suppose U is an
open set containing x; we will show that both U; n U and U, n U are non-
empty. If U, n U = &, then U, v U and U, are disjoint open sets. Similarly
if Uy n U=, U, and U; u U are disjoint open sets. We dispose of these
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possibilities by showing that U, u U, u U is connected. Indeed U, u U, u
U=8"-(X-U) and Hy(S"—-(X-U)=2HYS", X—-U)=Z Thus
U1=U1UXandU2=U2UX. I

Theorem 26.30 (Invariance of Domain) Suppose X < S" and X = R".
Then X is open.

Proof Let xe X and A: R - X be a homeomorphism with 4(0) = x. By
Exercise 8, S"— h(B) is connected. Now S"— h(S" ') ={S"— h(B)} U
{h(B) — h(S"~1)}. Since these are disjoint and connected they must be the
components of S — A(S"™!) by 26.29. In particular A(B) — h(S"" ") is open
and hence a neighborhood of x in X. Thus X is open. |

Corollary 26.31 If f: R" — R" is continuous and 1-1, n > m.
Proof Ifn<m, R™ s R R™ is not open. |

Corollary 26.32 Let M and N be manifolds of dimension . If X < M,
Y< N, and X = Y, then X is open iff Y is open.

Proof Suppose X is open. Let A: X — Y be a homeomorphism, let ye ¥
and choose an open neighborhood V of y and a homeomorphism y: E* —
V. h~Y(V) is a neighborhood of A~ '(y). Choose an open neighborhood U of
h~Y(y) with U = h~(¥) and a homeomorphism 0: R* — U. By 26.30 applied

to R" 2 U—hv V— V> = S", one sees that A(U)is open in V. Since V'is open,
h(U) is open. Since y e W(U) = Y, Y is open. The converse is equivalent. ||

Definition 26.33 A homomorphism 4 ® B — k where 4 and B are vector
spaces over k will be called a dual pairing if its adjoint 4 — B* is an isomor-
phism.

Theorem 26.34 Suppose k is a field and M is a compact n-manifold

orientable with respect to Hk. Then there is a dual pairing
SHM; k)@ H" {(M; k) >k

given by (x, y) = (x vy, [M])> where { , > is the Kronecker product (see
Exercise 7, Section 23).

Proof D:M" {(M;k)— H(M,k)is given, in this case by D(y) = y n [M].
By Exercise 7, Section 23

(x, y) = <{x vy, [MD) = <x, D(y)).

However, D is an isomorphism and {, ) is a dual pairing by 25.20. |i
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This is useful in calculation. For example:

Corollary 26.35 (a) Let x € H'(RP"; Z,) be the nonzero element. Then
x* s 0 for k < n and hence generates H*(RP"; Z,).

(b) Choose a generator y € H*(CP™. Then y* generates H**(CP") for
k<n.

(¢) Choose a generator ze H*(HP"). Then z* generates H**(HP") for
k<n.

Proof (a) We use induction on n. The inclusion RP"~!' = RP" induces an
isomorphism in cohomology in dimensions less than n. Thus x* # 0 for k < n.
But x - x"~! # 0 by 26.34 since x*~! # 0. (b) and (c) are proven similarly.
In these cases we use integer coefficients. We cannot apply 26.34 but the proof
of 26.34 applies since H, (CP") and H,(HP") are free and hence the Kronecker
product is a dual pairing. |}

Corollary 26.36 H*(RP®; Z,) is a polynomial ring over Z, generated by
xe HY(RP*®; Z,). H¥(CP®) and H*(HP™) are integral polynomial rings
generated by y € H*(CP®) and z € H*(HP®) respectively. |

Theorem 26.37 (Borsuk-Ulam) If n > m > 1, there is no map g: S"—
S™ such that g(—x) = —g(x).

Proof Such a map g would induce a map

f: RP"— RP™,

Since a map S -2+ RP" is essential iff it is covered by a map 125 8"
with B(0) = — B(1), it follows that f: n,(RP") = n,(RP™) is an isomorphism.
Hence f*: HY(RP™; Z,) » H'(RP"; Z,) is an isomorphism. Thus f*(x,) = x,
where x, e HY(RP™; Z,) and x, € H'(RP"; Z,) are nonzero elements. But
x7*' =0andsincem + 1 < n, x7*! # 0 by 26.35. This is a contradiction since

PACHADEE /AR |

Another version of this theorem is:

Theorem 26.38 (Borsuk-Ulam) If f: S"— R" is continuous and n > 1,
there exists x € S" with f(x) = f(—x).

Proof 1If not,
9(x) = (f(x) = f(=x)N/[ f(x) = f(—=x)]
defines a continuous map g: S"— S""!, and g(—x) = —g(x) contradicting
26.37. 1

The meaning of this result can be better understood if we assume that the
surface of the earth is §? and that temperature and humidity are continuous
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functions of position. Then at any time there are two antipodal points on the
earth where the temperature and humidity are the same.

Corollary 26.39 Let A,,..., 4,, be bounded measurable subsets in R™.
Then there is a hyperplane H that bisects each of the 4;.

Proof Foreachx e S™,let A, be a hyperplane through (0, ...,0,1) e R™*1
and orthogonal to x; see Fig. 26.2. A4, intersects R™ in a hyperplane which

Figure 26.2

consequently breaks A; into two pieces. Let f;(x) be the measure of the part of
A, on the same side of 4, as x. (Clearly x ¢ 4, unless x = (0, ..., 0, 1.) In this
case we define f;(x) = 0.) Since A4, is bounded, f; is continuous. f;(x) is the ith
coordinate of a continuous function f: S™ -—» R™. Now f;( — x) is the measure of
the other part of 4;. Hence a point x with f(x) = f(—x) determines a cut of
each 4; into two equal parts. ||

In case m = 3, this theorem has been called the ham sandwich theorem
since it indicates that there is a fair way to cut a three layer sandwich in half.

Proposition 26.40 If M is a compact orientable manifold of dimension
4k + 2, x(M) is even.

Proof x(M)=Y (—1) dim(H(M; Q) = dim H,,,(M; Q) (mod 2) since
dim H(M; Q) =dim H,,,_ i(M; Q). The cup product pairing is a skew
symmetric dual pairing on H,, . (M; Q), and hence is represented by a skew
symmetric nonsingular matrix. This implies that dim H,,,,(M; Q) is even
since there are no m x m skew symmetric nonsingular matrices with m odd.
Thus y(M) =0 (mod 2). ||
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As a final application we will discuss fixed point theory. Let f: X — X.
We will consider conditions for the existence of an xe X with f(x) = x.
Such an x exists iff the graph of f and the graph of the identity map intersect.
This can be expressed diagrammatically as follows:

_a X x X —A(X)

-

X’:;AH XxX —57> Xx X

In the diagram A is the diagonal map. The map g exists such that the
diagram commutes iff £ has no fixed points. Consider now the homomorphism
L(f) given by the composition

(fx 1)

Ef(X) =25 Ey(X x X)=LEG E(X x X)— Eo(X % X, X x X — A(X))

Proposition 26.41 If /© X — X has no fixed points, then L(f) =0 for
every homology theory E,.

Proof The existence of g clearly implies that the homomorphism is 0. |

In the case that X is a compact manifold and E = Hk for some field &,
L{f)[M})) can easily be calculated. We begin with a definition.

Definition 26.42 Let V be a finite-dimensional vector space and A: V-V
a linear transformation. Then

0: V*® V- Hom(V, V)
given by 0(x ® y)(z) = x(z) 'y is an isomorphism. Let e: V*® ¥V — k be the
evaluation. Define the trace of A4 by the formula
Tr(A) = e(071(A4)).

One can easily check that if 4 is represented by a matrix, Tr(4) is the sum
of the diagonal entries.

Theorem 26.43 (Lefschetz Fixed Point Theorem) 1If X is a compact n-
manifold that is orientable with respect to Hk for some field k, and /1 X - X
is a map without fixed points, then

0=L(NIM] =Y (=D Tri(fy),
where Tr,(f,) is the trace of f,: Hy(X; k) » H(X; k).



26. Orientation and Duality 289

Proof of 26.43 Note that since X is compact, D(x) = x n [X] = x\A ([ X]).
Let {x,} be a basis for H,(X; k). For x e H,(X; k), we will write x* for the
dual class in H(X; k). Thus x*\x = 1. Now

Ay([XD =) Xo X Ya

for some classes y, € H,(X; k) by 25.15. Thus

Y= xa*\(z Xg X ya) = xa*\A*([X]) = D(xa*)a
so we have established the formula
A[X]) =) x, X D(x,*).
We will evaluate the composite

HX; k) B H(X x X; k) Y*Ds H(X x X; k) —— H(X x X,X x X — A(X); k)

4

Dy 21D

H(X x X; k)

A D P,

H(X; k) Ho(X; k) —2s Ho(P; k)
By Exercise 18, D;(x x y) = (— 1D)*!""D(x) x D(y). Hence
DIH((f x 1) Au([X]) =Za: DT (fi(xa) X D(x.¥))
=2 (DD (filx) X X%

Thus

PyD A*DA(f x 1)y Ay(IX]) = P*D(z (= D" D1 (fy(x) x,*)

P*D(; (= Dl x> - D“(f*(xa)))

P(E (=Dt 0 £y
(since(xuy)nz=xn(ynz)

=P*(;(—1)i ' Yo ox* mf*(xa))

X =i

= z( - 1)l Z xa*\f*(xa)

fxa| =i

= Z(— DTr(f%)
since 0(x,* ® fiu(x)) =fo- |
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Exercises

1. If A is a closed subset of X, show that A® is a closed subset of X®. If U
is an open subset of X, construct a continuous mapping f©: X - U®.
Show that X*/4%° = (X — A)*. Hence there is an exact sequence:

e Efgnp (X — A) = By, (A) & Efomp (X) < Egymp (X — A) & -+
(Section 30)
2. Let M be a manifold. Each open set U c M homeomorphic to R"

determines a map r,: M* — S". Show that if M is arcwise connected, the
homotopy class of r; does not depend on the choice of U.

3. Suppose M is a compact connected manifold. Show that M is orientable

with respect to E iff the homomorphism
rt E(M)— E(S")

is an isomorphism, where r = r, (see Exercise 2). Show that r, is an iso-
morphism iff there is a class « € E,(M) such that r*([S"])\ax = 1.

4. Suppose X is a compact subset of R". Prove that H(X) =0 for i > n.

5. Let M be a connected n-manifold. Show that if M is compact and orient-
able, H"(M) ~ Z. Otherwise H"(M) = 0.

6. Prove (4 x B)® = A® AB*. Prove that if M"< R"** has a neighbor-
hood U= M" x R* such that M" corresponds to M" x 0, then M isa
manifold. (30.4)

7. Show that if M and N are orientable with respect to E, M x N is orient-
able and there is a unique orientation such that [K x L] = [K] X [L].

8. Suppose X < S"and X = B". Prove that S” — X is connected. (26.30)

9. Prove that a subset of the plane is simply connected iff its complement
has no bounded components.

10. A manifold with boundary is a Hausdorff space M" such that every
point has a neighborhood homeomorphic to R" or H"={(x,,...,X,) €
R"|x, = 0}. The set of points with a neighborhood homeomorphic to R" is
called the interior of M (Int M). 0M = M — Int M is called the boundary of
M. Show that Int M is open. Use 26.30 to show that dM is an (n — 1)-
manifold.

11, Let M be a manifold with boundary. Show that
L=Mu{eM x [0, D}/x ~ (x,0)

is a manifold.
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12. Using the notation of Exercise 11, let K= M u {0M x [0, 1]} and
B=0M x 1. Show that M~K—- B, (K, By~(M, dM), L~M, and
K — K~ JM. Hence prove that if L is orientable with respect to E and M
is compact there are isomorphisms:

E(M,0M)= E, (M), E(M)=E,_ (M,0oM). (30.26)

13. Use Exercise 12 to show that if M is a compact n-manifold with bound-
ary, x(@M) = (1 + (= D" Hy(M).

14. Suppose M"is a compact connected n-manifold and M" = N**! where
N"*! is a simply connected (# + 1)-manifold. Then M™ is orientable and
N — M has exactly two components. Conclude that RP2 ¢ R3.

15. Prove via Exercise 13 that RP?" is not the boundary of a compact
manifold with boundary.

16. Calculate the multiplication structure in H*(RP") using the multi-
plicative homomorphisms H*(RP") - H*(RP"; Z,).

17. Suppose that if M is an orientable #n-manifold with respect to Hk,
where k is a field. Suppose L « K = M are compact. Show that there is a
dual pairing

H(K,L;k)® SH" {X — L, X — K; k) > k.

18. Let M and N be compact manifolds of dimensions m and » that are
orientable with respect to E. Using the orientation for M x N from Exercise
7, show that

D(x x y) = (= D*I""D(x) x D(y)
by establishing the commutativity (with the sign (—1)™) of the diagram
E**"™(4 x B)® Eys (A X Bx Cx D)———E;,,_,_n(C x D)

11 xTx 1)y I
E**"(4 x BYQE, (AXxCxBx D) (=)™
2 ® x x
EXA)® E"(B)® E((A x C)® E,(B x D)

18T®1

EXA) ® E\(4 x C)® E"(B)® E,(B x D) ——— E;_(C)® E,_ (D) (26.43)

19. Show that every map f: X — X has a fixed point where X = CP",
HP", or RP?", Find a map f: RP?*! - RP?"*! without a fixed point (Hint:
Use a nonzero vector field on $2"*1))
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20. Generalize 26.43 to an arbitrary homotopy commutative homotopy
associative ring spectrum such that, for the manifold X in question:

(a) E.(X)is free and finitely generated over E.(P).
(b) EXX)®jcp E(X)— E(P) s a dual pairing.
(€) E(X x X)= @y E(X) ®p,py Ea-r(X).

21, Let ki,,: S™ — S™ be a map of degree k. Then {ki, n} = m {n} = {n - m13}
since 5 generates 15(S?). The homotopy commutative diagram

§3—— 52

nkul lklz

g3 ", 82

defines a map 0: CP2 — CP? by Exercise 5, Section 14. Using 26.35 show that
n, = k2. Using Exercise 7, Section 13, prove that 2E{5} = 0. (27.19)

22. Show that L,,_,(Z,) is an orientable manifold (see Exercise 19, Sec-
tion 7). Suppose p > 2. Use 26.34 to prove that H*(L,,_(Z,); Z,) has genera-
tors x and y of dimensions ] and 2 and relations x* = 0 and »" = 0. Show
that L(Z,) = \ ). L;,-1(Z,) is a space K(Z,, 1), and H¥*(K(Z,, 1); Z,) =
Z,[y] ® A(x) where Z,[y] is a polynomial algebra over Z, and A(x) is
an exterior algebra (A(x) has generators 1 and x and a single relation x* = 0).
(Appendix, Section 27)

23. Let f: M”—> N" be a 1-1 continuous mapping where M and N are n-
manifolds. Prove that fis open. (Hint: Apply 26.32.)

24. Choose an orientation for R* and hence for each open subset of R".
Call a homeomorphism A: U — V orientation preserving if h([K]) = [A(K)]
for each compact K = U. Show that a manifold M is orientable iff there is a
coordinate system {U,, h,} such that h; *hs: h;'(U,) - h; '(U,) is orientation
preserving.

25. Consider the projective spaces RP", CP", and HP" of Sections 7 and 11.
Show that [&y] | &) = (67, ..., €7 1E,) is a homeomorphism from V; to
R", R*" or R*" respectively.

26. Let us consider D to be the basic duality operator in a manifold. Then
there is a pairing dual to the cup product which is in fact its historical pre-
decessor. This pairing, called the intersection pairing, is defined for any two
open sets U and V in a manifold M™ that is orientable with respect to E

I Er(m ® ES(V) i Er+s—n(U N V)
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is defined to be the composition

E(U)® E(V) 22 B "(M, M -~ U)® E" (M, M — V)

c R

_ Y LERTTS (M, M — (U V)
_D_’ r‘%s—n((]h V)

Show that 7 is graded-commutative and associative. Show that if M is compact
I¢Q[M]) =¢.

If ¢ and 5 are ordinary homology classes represented by cycles ¢(£) and
¢(n) in “ general position,” their intersection will have dimension r 4+ s — n.
This intersection will represent 7(£ ® #). As a simple example of this consider
curves on a torus.

27. (Leray-Hirsch Theorem) Let F — E-55 B be a locally trivial bundle
with B compact. Let R be a principal ideal domain. Suppose there are classes
x; € SH™(E; R) such that {i*(x;)} is an R-free basis for SH*(F; R). Then {x}
is an SH*(B; R) free basis for SH*(E; R) (Hint: Construct a mode! functor
L*(A) = free H*(A4; R) module generated by {x;}, for 4 < B, a reality functor
K*(4) = SH*(n"'(4); R), and a natural transformation 6 ,: L*(4) - K*(A)
which is the SH*(4; R) module homomorphism which sends the generator x;
of L*(A) into (i )*(x;) where i,: n7'(4) - E is the inclusion. The object is to
prove 0 is an isomorphism. Construct Mayer-Vietous sequences for L* and
K* and use induction over the open subsets of B, using the fact that 8 is an
isomorphism if U is a coordinate neighborhood by the Kiinneth theorem.)
(30.7)

28. Prove that the only compact contractible manifold is a point.
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Cohomology Operations

In this section we shall discuss natural transformations in homology and
cohomology theories. Operations will be constructed in ordinary theory, and
we will make applications to geometric problems.

In Exercise 4, Section 18 the notions of stable homology and cohomology
operations were introduced. The simplest examples of such operations are
coeflicient transformations. Suppose that E is a ring spectrum and «€
n(E) = E(S° = E~"(5°). Then the transformations

Pu(x) =anx,  P(x)=aRx
define operations ¢,: E(X) = E,.1(X) ¢*: E(X) — E*~"(X). These are clearly
natural and stable. In fact they are induced by a mapping of spectra:
E =S AE 25 E,NE, - Ey .

These facts thus follow from Exercise 4, Section 18. In ordinary theory these
operations correspond to the action of the coefficient ring R on the modules
A.(X; R)and H*(X; R).

Proposition 27.1 In 7,5(X) and ng*(X), all stable operations are coeffi-
cient operations.

Proof Let O be the set of stable homology operations of degree k in
n,>. This set has a natural addition given by adding values. We have defined a
homomorphism

¢: m3(S°) - O
A homomorphism E: ©, - 1,5(S°) is defined by E(0) = 0(:) where 1 € 1,5(5°)
is the class of the identity. It is easy to see that F¢ = 1. To prove that ¢ and

294
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E are inverse isomorphisms, we prove that E is a monomorphism. Suppose
E®) =0. Let x € m,5(X). Then there is a mapping f: S"** — $"X such that
J+(a"T¥(1)) = 6"x. We then have

" (0(x)) = 0(a"(x)) = O(f(a" (1)) = fol0(a" (D)) = fila" T “(0(1))) = 0.
Hence 6(x) = 0 and thus 8 = 0. The proof in stable cohomotopy is similar. |

There are cohomology operations unrelated to stable operations. For
example, the map Sq(x) = x? defines a natural transformation

H"(X) > B*(X).

By 23.34, Sq(x + ») # Sq(x) + Sq(»), so this operation is not a homomor-
phism, and hence not a stable operation. It is, however, natural. f*(Sq(x)) =

*?) = (f*(x)* = Sq(f*(x)).

Definition 27.2 A cohomology operation of type (E, m, F, n) is a natural
transformation

¢: Em— F.

Let {E, m, F, n} be the abelian group of all cohomology operations of type
(E, m, F, n). We define a homomorphism

R:{E,m, F,n} > F(E,)
by R(0) = 0(1) where 1 € E™(E,,) is the class of the identity map.

Theorem 27.3 If E is an Q-spectrum and each E, is a CW complex, R is
an isomorphism.

Proof We define a homomorphism C: F*(E,) — {E, m, F, n} as follows.
Let
xe E"(X) =[X, E,].
Let /* X — E,, represent x. Then define C(a)(x) =f*(«). C is clearly a homo-
morphism and is natural since
Cla)(g*(x) = U9)*(@®) = g*f*(0) = g*(C(@)(x))-

Furthermore, R(C(®)) = C(@)(1) =«, and C(R(O))(x) =fF*(R(0)) = f*(6())
=0(/*(») =0(x). 1

Corollary 27.4 1If E is an Q-spectrum and each E, is a CW complex, the
graded abelian group of all stable cohomology operations of degree £ from
E* to F* is isomorphic to

lim F**X(E,)
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where the mappings in the limit are

F"+k(E”) —L>F"+k+l(SE") ﬁ_ F”+k+1(E"+,1).

=

Proof Since an element of lim F"**(E,) is a sequence of elements x, €

Fr*%(E,) such that
G'(Xn) = en*(xn+1)

(Exercise 9, Section 15), and a stable cohomology operation is a sequence ¢,
of cohomology operations such that ¢, ., (a(x)) = o(¢,(x)), we need only show
that these two relations are equivalent, under 27.3. Suppose x, corresponds to
¢,and x,,, to ¢, . Let x € E"(X) be represented by f: X — E,. Then o(x) is
represented by e,(Sf). Thus ¢,(x) =/*(x,) and ¢,.,(a(x)) = (5)*€,*(xs+1)
= (8§f)*o(x,) = o(f*(x,)) = o(¢.(x)). 1

Corollary 27.5 If Eis an Q-spectrum, each E, is a connected CW complex,
and Fis properly convergent, the group of stable operations of degree k from
E to Fis isomorphic to F3**1(E, ,,) and

o le¥: F*YY(E, ) » FPEY
is a monomorphism.

Proof Apply 27.4, Exercise 14, Section 18, and Exercise 12, Section 22 to
see that g~ te,*: F"*¥+*Y(E |y F***(E) is an isomorphism for n > k and
isl-lifn=4k. |}

Corollary 27.6 If both E and F are Q-spectra, and the spaces E, and F,
are CW complexes, every stable cohomology operation is determined by a
mapping of spectra.

Proof By 27.4 we have for each operation ¢ of degree k and each n a
mapping @,: E, — F, . such that 6({,}) = ¢,*({¢,+,}). This is precisely the
diagram of Exercise 4, Section 18. |

We will investigate the stable cohomology operations in ordinary theory in
the case that = = p = Z,. However, the methods we use can be applied to
other cases.

We construct stable operations Sq'; A"(X; Z,) —» A" '(X; Z,) called the
Steenrod squares. The method of construction in essence occurs in Steenrods
paper [66], but we will follow a slick modification due to Milgram [47].

Definition 27.7 Let X XY =X xY/«+ x Y
I'"(X) = 8" x (X AX)O, x, x') ~ (=0, X', x)
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Proposition 27.8 (a) T™"(X)is a covariant functor from C8* to CG*.
(b) There is a natural inclusion

rn(X) -~ rn+1(X)

write I'(X) for the union with the weak topology. I'(X) is called the quadratic
construction on X,
(¢) There is a natural map

H:T"(X) x [»>T"(X x I)

such that the diagrams

MXx)x! —2— mMxxrn Mx)yxIl —2— mxxrn
1 l [ TG,
Myxyx] —2— MY(X x), ™(X)
commute.

(&) Iff~g, I'"(f) ~ I'"(g) and the homotopies are compatible for various
n.
e) T°X)=XAX.
(f) There are compatible natural mappings

(XA Y)— T(X) AT"(Y)
with L° the natural homeomorphism.

Proof (a) I™(X) clearly belongs to C8* since it is a quotient space of
S"X(XAX)Iff1 X— Y,

1x (fAf): 8" X (XAX)>S"x (YAY)

induces a map I'(f): I'™(X) - I'"(Y) and the functorial identities are obvious.
(b) The equatorial inclusion $" < $"*! induces a map " x (XA X)—
St % (X A X) preserving the identifications. The induced map is clearly
natural. It is 1-1 and closed, hence an inclusion map.
(c) Define H by

HB, x, x',t) =(0, (x, 1), (x, 1));

this clearly preserves the identifications, and the commutativity of the dia-
grams is trivial.

(d) IfK:f~gisahomotopy, I"(K)o H: T"(X) x I »T"(Y) is a homo-
topy between I'"(f) and I"(g) by (c).
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(e) This is obvious.
(f) Define L by

L0, (x, y), (x", y)) = (0, x, x'), (0, ¥, ¥'));

this is natural and preserves the identifications. |

Theorem 27.9 Suppose X is a CW complex with cells {¢,”, *}. Then I'(X)
is a CW complex and I'™(X) is a subcomplex. [°(X) = X A X has the cellular
structure of X A X. The cells of I"(X) — I~ !(X) are of the form ¢,_,.; one for
each pair of cells e,”, el’. dim e, o =n + m + .

Proof By Exercise 13, Section 14, it will be sufficient to show that I'*(X) is
a CW complex with T"~}(X) a subcomplex. We apply Exercise 4, Section 0 to
the quotient map ¢: S" X (YA X)->TI"(X). §" x (XA X) is Hausdorff by
Exercise 6, Section 8 and ¢~ '(y) is compact for each y. Since g is closed, I"(X)
is Hausdorff.

We now describe the cells of I'(X) — I !(X). Let f": B"— S" be the
characteristic map for the upper hemisphere of S" (see the proof of 20.10).
For each pair of cells e, ¢7. of X, not the base point, define a map
Ao o' Bm+m'+n N rn(X) by

S "X Xa X Yar
RN

Brtmtn = pn . pm . pm’ 5" x (X A X)—5 T(X)

where ¢ is the quotient map. Since every point of I™(X) — I'""}(X) can be
written uniquely in the form g(8, x, x") for 6 € Int B", = f1(Int B"), the sets
€y ar = A, o(INL B™F™ ") cover T(X) — I~ 1(X). In fact

110t B x(X—%)x (x—%)- 10t By x (X — %) x (X — x) = T"(X) —r"_l(X)
is a homeomorphism. Hence ¥, , | gm+m +» i @ homeomorphism onto
€. . If we use the cellular structure of X A X for ['°(X), we have a complete
description of the cells of IM(X). y, (S™ ™ *") < T(X)"*™*"~! since
28" x B™ x B™) <y (B 771, Thus I™(X) is a cell complex. It is
closure finite, since if y,(B™) < K and y,(B") c L,

Xa, o (B"F™ ) c T(K U L).

Since S" x (XA X) is a CW complex, B(S" x (XA X)) LI LBV (XA X)
is a quotient map. Moreover, there is a commutative diagram

B(S" x (XA X)) —=— 8" x (XA X)

|

B(I"(X)) ———— T"(X)
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Hence y: B(I'"(X)) —» I'(X) is a quotient map and thus I""(X) has the weak
topology. 1|

Corollary 27.10 If X is an (n — 1)-connected CW complex, T*(X) is
(2n — 1)-connected for all k.

Proof X ~ Y where Y has no cells in dimensions less than n, except for
*. By 27.8(d), I'"(X) = I"(Y). Now I'"(Y) has no cells in dimensions less than
2n, except for *. Thus I'"(Y) is (2n — 1)-connected. 1

Lemma 27.11 There exists a unique homotopy class of maps
y: T(K(Z,,n) - K(Z,, 2n)
such that
Hoyon =7 | O(K(Z2, n))" K(Z,,m)AK(Z;,,n) > K(Z,, 2n).
Proof ’

rNx)sIx(xXaX)/©0,x,y) ~(1,yp x)
(t, *, %) ~ *

Thus a map y': T'(X) - Y with y!| rocx) = M is determined by a diagram
XAX
IT
/
XA X

which commutes up to base point preserving homotopy; by 23.14 and
23.6, y! exists in the case X = K(Z,, n) and Y = K(Z,, 2n) (the sign
(—1)" is immaterial here, since the maps under consideration belong to
H*(X A X; Z,)). Now the cells of T(X) — I''(X) have dimensions at least
2n + 2. Hence an extension of y! to I'(X) exists by 16.3. Now

([(X), K(Z,, 2n)] = H*(I(X); Z,) = Z>,

for there is only one cell of dimension 2x# in I'(X). Consequently, there is
only one nontrivial homotopy class of maps I'(X) — K(Z,, 2n). Uniqueness
follows since u, ,: K(Z,, ") AK(Z,, n) - K(Z,, n) is nontrivial. |

Theorem 27.12 There is a transformation

y: A"(X; Z,) » A*™(T(X); Z,)
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such that

(a) 1*(y(x)) = x Ax where 1: X A X - I'(X)is the inclusion;
(b) iff: X Y, y(f*(x)) = TU/Y*G(x);
(© y(x-y) =v(x) Q)

Proof Leté&: X — K(Z,, n) represent x. Define y(x) = {y o I'({)}. By 27.8(d),
this is well defined. Now *(y(x)) ={ye (&) o1} = {p, , o (EAE)} = x A x.
Iff: Xx-7%,

D(NH*(x) = {y o L) e T} ={y e [ o )} = y({E o /) = (S ¥(x)).
Finally we observe that the diagram

K(Z,,2n + 2p) — [(K(Z,,n+p))

I“zn.u Lﬂ(“n.p)

K(Z,, 2n) A K(Z,, 2p) [(K(Z,, n) A K(Z,, P))

N(K(Z,,m) A T(K(Z,, p)

commutes by 23.12, for the nontrivial map
S+  I(K(Z,,n)AK(Z,, p))

yields the nonzero element of H2"*27(§2"*27; Z,) under both compositions.
Now if x ={f} and y = {g}, where /1 X > K(Z,,n) and g: X > K(Z,, p),
y(x) * () is represented by the composition

I'(f)AT()
—_——

I(X)— [(X) AT(X) T(K(Z,, m)) AT(K(Z;, P))

H2n, 2p

L K(Z, W AK(Z,, p)—225 K(Z,, 20 + 2p).

One can easily see that the diagram

r(X) ——— I(X) A T(X)

N

(X A X)
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commutes. Hence y(x) - y(») is also represented by

rx)—22 r(x a )22, 1 K(Z,, n) AK(Z,, p))
LUnn) NK(Z,, 20 + 2p) = K(Z,, 21 + 2p).

This, however, also represents y(x * y). |

We now define A": RP" x X - I'"(X) by A"{(6}, x) = {(, x, x)} for O € S".
This is well defined and continuous for X € CS. Furthermore, the maps A"
fit together to define a map A: RP® x X - I'(X).

Lemma 27.13 A is natural. The diagram
X — XAX

RP® x X —~T(X)

commutes where 1,(x) = (%, x).

Proof These facts are easy to verify. |

Definition 27.14 If x e A"(X; Z,), we define Sq‘(x) e H"*'(X; Z,) (read:
square-i) be the formula

Y X7 % Sq'(x) = A¥(y(x)) € H*(RP™ x X; Z,)

where x" "' e H"{(RP%; Z,) is the nonzero element (see 26.35).

Sq(x) is well defined by 27.14 if X is a CW complex. This hypothesis is
necessary to apply 25.15. It is easy to extend Sq' to H*(X; Z,) for any X € CG*
by 27.3, and thus one may also define Sq’ on SH"(X; Z,).

The operations Sq' are called the Steenrod squaring operations or Steenrod
squares; an operation that is a sum of products of Steenrod squares is called
a Steenrod operation.

Theorem 27.15 Sq': A"(X; Z,) - A"*'(X; Z,)is a cohomology operation
satisfying:

(@) Sqi(x)=0ifi<0Oori>n.

(b) Sq"(x) = x>

(¢) (Cartan Formula) Sq*(x U y) = Z Sq‘(x) U Sq* ().

(d) Sq¥(a(x)) = a(Sq'(x)).

() Sq° =1, Sq' is the Bockstein homomorphism associated with the
sequence 0 »Z, »Z, —»Z, - 0.
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Proof Since A and y are natural, Sq’ is natural. If / > 1, Sq’(x) = 0 since
H""{(RP™; Z,) =0. Suppose i <0. Let X,_; = X/X"~!. For xe Ax; z,)
there exists y € H"(X,_; Z,) such that (py.-)*(») = x. Thus Sq° x = (pyn-1)*
(Sq'(y)) =0, since H""Y(X,_;; Z;) =0. Now Sq" x = 1,*(x""* % Sq'(x)) =
1L*A*(y(x)) = A*1*(y(x)) = A¥(x A x) = x*. Applying A* to the equation
Yx - ) = y(x) - ¥(p) yields

LR S p) = (LT RSA)) (24" % S40)).
i J
(c) follows by calculating the coefficient of x™*”~* on the right-hand side
(using Exercise 17, Section 23). To prove (d) and (e) we need some lemmas.

Lemma 27.16 Sq*(x % ) = £Sq/(x) % Sq*~(»).

Proof This follows immediately from (c) and Exercise 17, Section 23,
forx xy=(xx1) (1 Xy)=p*x) p*3»). |

Lemma 27.17 Letue H(S'; Z,) be the nonzero element. Then Sq°u = u.

Proof We will describe a cellular structure on T'*(S') such that A: §* x
St T(SY) is cellular. We use this to evaluate v x Sq°u. Now

T(SY) = S A S = IO A IJOI = I2[012.

We give this space a cellular structure so that the diagonal A: S* - S' A S is
cellular; see Fig. 27.1.

€

2
6\

* * *

Figure 27.1

Let x be a O-cell. We define a 1-cell and two 2-cells with characteristic
maps

Rl B 1) GNPV CF) CRENPICY LIS L)
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Figure 27.2

defined by y,(s) = (s, ), 25" (to, 11, 15) = (13, to + 1), and y,2(to, 1y, ;) =
(ty + 15, 11).

Now I''(87) = I x (§* A §')/~ has an additional 2-cell and two 3-cells with
characteristic maps

x> I x I- TS,
x3t I x A2 TS,
132 I x A2 5 TS
deﬁnEd by X23(Ss t) =(S: t’ t).- 131(37 ’0’ tls IZ) = (S, 12 > tO + 12)’ and
%370, 10, t, 1) = (5,1, + 1,,1,). We choose generators of C,(I''(8Y; Z,)
given by these characteristic maps:
e€eCo, e eC, ele%e,°€C,, and el e2eCy.

One calculates
dey! = dey2 = e, +e,% + e,’,
dey® =0, et =de,? =y,
Oe; =0 Oey = 0.
See Fig. 27.2.

Now A: §' x 8§ - T'(S) is cellular. Choose generators xg, x4, %2 and
x, corresponding to the cells of §* x S*. Then & ,(x,') =0, A ,(x,2) = ¢, and
Ay(x;) = e*.

We now evaluate A*(y(u))({x,}):

K*(p(w))(x) = p(u)(B 4(x,))
= y(u)(e,?)
= y(u)(€21 + 622)9

since
0= 5(?(“))("32) = ’y(u)(ae32) = Y(“)(‘-’zl + 6’22 + 923)-
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et +e,? = 1,(vAv) where ve H,(S'; Z,) is a nonzero class and 1: ST A §!
— I'Y(S") is the inclusion. Thus

K*(y(w)(x2) =1* ) av) = @Ru)(vav) = 1.
Thus A*(y(u)) # 0 and hence Sq° u #0s0Sq° u=u. |

We continue with the proof of 27.15. Let u x x € H"*}(S! x X; Z,). Then
by 27.16 and 27.17 Sq'(u x x) =Sq°u X Sq° x = u x Sq’ x. Letp: §* x X -
SX be the quotient map. Then p*(o(x)) = u X x, hence p*(6(Sq'(x)) =
u % Sq' x = Sq'(u X x) = Sq'(p*(s(x))) = p*(Sq'(a(x)). Since p* is a mono-
morphism, (d) follows. By 27.5 there is only one nonzero stable cohomology
operation of degree 0. Since Sq° « # 0, Sq° = 1.

Now let xe H'(RP®; Z,)be the nonzero element. Sq'x = x? # 0. To
evaluate f(x), observe that the monomorphism Z, - Z, induces an isomor-
phism H'(RP*; Z,)— HY(RP*; Z,). Thus by Exercise 13, Section 18
B(x) # 0. Consequently f(x) = Sq' x. By 27.5,  =Sq*. |

Corollary 27.18 Sq’ is a homomorphism.
Proof This follows directly from 27.4 and Exercise 4, Section 18. |

Proposition 27.19 7, ,(S") = Z, forn > 2. 8"~ 2: §"*1 — §" is essential.

Proof 1f §"7%n ~ %, Csu-z, ~ S"Vv §"*2 by Exercise 22, Section 14. Now
by Exercise 5, Section 14, §? U ,¢* = CP?. Hence

Sn—ZCPZ =S"u sn—2,,e"+2 ~ S"VS"+2.

Consequently there is a map «: "~ 2CP? - S" inducing an isomorphism in
H"( ; Z,). Choose x € H(CP; Z,), and y € H"(S"; Z,) with a*(y) = x # 0.
Sq? y=0, so Sq> x=0. On the other hand Sq®> x =Sq*(c" %(v)) =
6"~ 2(Sq? v) = 6" "%(?) # 0, for ve A*(CP?; Z,) a generator. This contra-
diction implies that $"~ 25 ~ . By 13.18 and 13.13, n,,,(S") is generated by
S"~2y, and by Exercise 21, Section 26, S"~ 2y has order 2. ||

Proposition 27.20 Let xe H'(RP®; Z,), ue H*(CP®; Z,), and ve
H*(HP®; Z,) be nonzero elements. Then:

(1) Sq'x=("
@) S u' = ('t
(3) Sq* "= ("

Proof We use induction on n. If n=1 Sq'x =x? Sq?u=wu4* and
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Sq*v = v?, and these are the only possible nonzero values by 27.15(a).
The inductive step applies the Cartan formula as follows:

Sq’ x"*! =8Sq‘ (x"- x) =Sq' x" - x + Sg' ' x" - x?

([ e

the cases of ¥ and v are similar. ||

Thus for example, x2" = Sq*" 7' Sq®"* -~ Sq* x
One can define the operations Sq' in H*(X, A; Z,) and one easily proves:

Proposition 27.21 The operations Sq': HY(X, 4; Z,) > H" (X, 4; Z,)
satisfy 27.15 and furthermore Sq'6 =6&Sq° where &:H"(A;Z,)—
H"*Y(X, A; Z,) is the coboundary. |

In particular, 27.16 also holds for x € H(X, A; Z,) and y € H™(Y, B; Z,).
By 27.6 one can also define Sq;: H(X, 4; Z,) » H,_ (X, 4; Z,).

Theorem 27.22

(@) Sq; (o(x)) = a(Sq(x)); Sq; 0x = Sq, x.

(b) Squlx X ¥) =4+ ;=x Sq; x X Sq; y.

(b") Squx\y) = Zi+j=k Sq" x\Sq; y.

(¢) Sqo =1, Sq, is the Bockstein associated with the sequence 0 - Z, —
Z,~7Z,—0.

Proof The proof of (a) is easy. To prove (b) and (b") observe that the
Cartan formula can be written as a homotopy commutative diagram:

TI(Sq* ASqk 1)

k
K(Z, , MAK(Z,, m)—————[[{K(Z,,n + ) AK(Z,,m + k — i)}
o
Mpn+i, mer~1i

Bn,m I_IK(Z2,m+n+k)

K(Z,, m + n) 2 s K(Zy, m+n+k)
Proof of this follows from evaluating Sq*(i; A1,) where 1, € HY(K(Z,, n); Z,)
and 1, € HNK(Z,, m); Z,).

Thusifa: S**" - X AK(Z,,n)and B: S**™ — Y AK(Z,, m) are representa-
tives for x e H,(X)and y € H(X), Squ(x A y)is givenby (1 A Sq*)o (1 A p, )
o (1 AT A 1)o(a A B). Applying the diagram, this becomes ) Sq;x A Sq;—;)-
Applying thisto H'(X, A; Z,) = AN X *|A™* ; Z,) gives (b). A similar argument
proves (b"). (c) follows for reasons very similar to those in 27.15. |}
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Corollary 27.23 Let §" o K > L with Kand L compact. Then the diagram
HYK,L; Z)) —— H,_(S" = L, S" = K; Z,)

Sq! Sqi

H¥ (K, L; Z))—— Hy o (" — L, 8" — K3 Z,)
commutes.
Proof Let
C: H(K,L; Z)® H(S", 8" —K; Z)) > H,_(S"~ L, S" - K; Z,)
be defined as in Section 26. Then clearly
Sq, C(x®y) = ) C(Sq'x®@Sq,y)

k=s+t

by 27.22(t’) and the definition of C. Now [K] = i,([S"]) and Sq([S"]) =0
unless ¢ =0. Hence Sq,([K]) =0 unless ¢ =0. Since D(x) = C(x ® {K]),
Sqi(D(x)) = C(Sq' x® [K]) = D(5q" x). 1

In addition to Sq¢’ it is possible to define cohomology operations (Sq;)* by
25.20. These operations are different from Sq'. More generally, for each
stable cohomology operation ¢* of degree 1, there is a corresponding homo-
logy operation ¢, of degree —¢ by 27.6. Since H*(X; Z,) and H.(X; Z,) are
dual vector spaces ¢, determines a stable cohomology operation (¢,)* of
degree t. Let us write A(2) for the Z,-algebra of stable cohomology operations
with Z, coefficients. We can define y: #£(2) » A4(2) by x(¢") = (¢)*.

Proposition 27.24

) x(@B) = x(Bx(x), x(1) = 1, and y is a homomorphism.

(2) Yi-ox(Sq")Sq" =0if n>0.

3 YroSq" " x(Sq") =0ifn>0.

(4) If ais a Steenrod operation,2” y2(a) = a.

Observe that Eq. (2) or (3) determines y on Sq” inductively, and hence on
all Steenrod operations.

Proof (1) is immediate since (af), = o, 8, and (o, f)* = B,*a,*. Let x =
%0 x (Sq""") Sq' y and suppose x # 0. Let x* be a dual homology class.
Then

1 =x\x* =) (8q,_,)* Sq'y\x*

=Y Sq' y\Sq,_,x* = 8q,(y\x*)
by 27.22(b").

27 We will prove in Section 28 that every element of A4(2) is a Steenrod operation.
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Consideration of the diagram
H(X: Zy) —"— Ho(X; Z5)
Px Px
Hy(%; Z5) — Ho(¥3 Z5)

proves that there is no class u € H,(X; Z,) with 8q,(#) = 1. This contradiction
implies x = 0 and establishes (2).
By using (2) and induction one proves that

xS = Y Sg...Sqx
iyt Tig=n
is>0
This function can easily be seen to satisfy Eq. (3) as well by symmetry.
Assume that x%(Sq’) = Sq’ for i < n. Applying x to (2) we get

Y x(Sq)Sq""" + x*(Sq") =0.

t>0

Comparing this with (2) we get ¥*(Sq") = Sq". By iterated application of (1),
we see that y%(a) = « if « is a Steenrod operation. [

Theorem 27.25 (Thom) If K is a compact subset of S”, the homomor-

phism
2(8a)): H" *(K;Z;) » H'(K; Z))
is 0.

Proof We first show that for any AcS" Sq': H(S", A; Z;)-
H?(S", A;Z,)is 0. Now Sq'x = x2. Let f: (S", &) — (5", K) be the inclusion.
Then x? = f*(x) ux=0 unless i=n In this case Sq'x=0 since
H*(S" K;Z,)~H_(S"—K;Z,) =0. Consequently y(Sq,): H,,(8", 4;Z,) >
H(S" A; Z,)is 0.

We now consider the commutative diagram

HYXK;Z,) = H,_(S", 8" - K; Z,)
2(Sah) x(5a)
H¥'(K;Z,) = Hyy - (S, 8" — K; Z))
with A = 8" — K, k = n — 2i. The result follows. ||

Theorem 27.26 (Peterson) If n =2°, RP" cannot be imbedded in $*"~1,
(M)
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Proof By 27.25, it is sufficient to evaluate
1(8q): H* "2 1(RP"; Z,) - H*" "I "{(RP"; Z,).

We show that 3(Sq"~!)(x) = x" iff n = 2° for x e H'(RP®; Z,) a generator, by
induction on n. The result is clear for n = 0. Suppose we have proven the
result for all r < n. Then

X(Sqn)(x) — Z Sqn—tx(sqt)(x) - Z Sqn—txt+1 =t=2121< (f + l)xn+1.

i<n 1=2%— 1<y n—t

Now (2;) =1 (mod 2) iff § =0 or 2% Hence x(Sq")(x) = x"*! iff there is a ¢
satisfyingt =2* —~ 1 <nand 1+ 1 =n—¢ Thisis true iff n = 2°. ||

Appendix

In analogy with the squaring operations in Z, cohomology, one can define
pth power operations in Z, cohomology for p a prime.

Recall that Z, acts without fixed points on S~ 1 (Exercise 19, Section 7).
Define

p

—
TX) =821 (XA AX) O, xy, ..., x,)~ (0,0 x5, ...,%,, %)

where o is the generator of Z,. By analogy with 27.12 we can define, for each
xe ANX; Z ») a class y,(x) e H"(I',(X); Z,). One then defines a natural
transformation A: L,,_y(Z,) x X > T{,(X) by A{0}, x) ={(®, x,...,x)}.
This induces a cohomology homomorphism and we write

K*(}’(p)(x)) =) Di(x) ® w,

where w,, = y* and wy,,; = x)* (see Exercise 22, Section 26). By a suitable
choice of constants a, , € Z, we define

Pr(x) = ar,n D(n—-2r)(p—1)(x)

for x € H"(X; Z,). One can then prove

Theorem 27.27 P": A"(X;Z,) » A"*?"®*~D(X; Z ) is a stable cohomology
operation satisfying

(@ P°=1;

(b) ifdim x =2r, P'x = xP,;
(¢) ifdimx<2r, P'x=0;
(d) P(xy) =Y P(x)P'(p).
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Exercises

1. Show that for any ring spectrum E, there are ring homomorphisms
E: ©,(E)~ Ey(S°), ¢: Eo(S°) > O (E)
such that E¢ = 1. Prove a similar result for cohomology.

2. Show that the properties stated in 27.15 hold when Sq’ is applied to a
class in H*(X; Z,) for an arbitrary space X € CG*.

3. Prove that S""*v: §"*3 — §" is essential.

4, Fill in the details to 27.22(b").

5. Show that (Sq,)*: A"~'(X; Z,) - A"(X, Z,) given by the dual to Sq;
is a stable cohomology operation. Prove a Cartan formula:

(Sq)*(x X ) = . (8q)*() X (Sa)*()-

k=i+j

6. Let xe H'(RP*; Z,). By computing Sq2Sq*(x A x X x) and Sq3*(x A x A x),
show that H"*3(K(Z,, n); Z,) has dimension at least 2 for n > 3.

7. Let x € H'(RP*®; Z,) be a generator. Show that

x¥, g, =2¢"1! foreachk

Sq*Sq7t o+ Sqtx = {0, otherwise.

(28.15)
8. Show that for a spectrum E,
ANE; Z,) = lim A"*ME,; Z,)

is a module over A(p) and that maps of spectra induce #(p) module homo-
morphisms.
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Adem Relations

It is the purpose of this section to determine the algebra A(2) of stable Z,
cohomology operations. We do this by calculating H*(K(Z,,n); Z,). We will
find that every operation is a Steenrod operation, i.e., can be written in the
form Sq'! o -+ o Sq'™». We also derive all relations among the Steenrod squares.
There is, in fact, a family of nontrivial relations called the Adem relations.
The existence of these relations makes the application of Steenrod operations
very pungent (see 28.18 and 28.19).

We will base our calculation of H*(K(Z,, n); Z,) on a theorem of A.
Borel [14] which we quote without proof. The proof is a straightforward
application of the Serre spectral sequence [62; 64, 9.4, Corollary 9; 21; 41;
31] and the comparison theorem [3; 76]. See [3] for details.

Definition 28.1 A commutative algebra s over Z, is said to have a simple
system of generators {x,} if the monomials x,, ‘- * x, form a vector space basis
for A as {o,, ..., a,} varies over all finite subsets of {«}. (The empty subset
corresponds to the monomial 1.)

Example 28.2 LetZ,[x,, ..., x,] be the polynomial ring over Z, generated
by the indeterminates xy, ..., x,. Then Z,[x,, ..., x,] has a simple system of
generators {x2**, ..., x2*"}. For example,

3 6 4
X +xel5=x11'X12+xZ 'XZZ'XI Xy

To prove this in general observe that the monomials form a basis, and any
monomial can be written in this form since for any n, n = Y 2, ¢;2" where ¢;
isOorl.

310
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As a second example we consider the exterior algebra A(x,, ..., x,). This
is generated as an algebra over Z, by x,, ..., x, subject to the relations
x;X; = x;x; and x;? = 0. It has dimension 2" and {x;} forms a simple system
of generators.

Definition 28.3 Let E be a spectrum. We define a homomorphism
T: E'(X) - E'"1(QX) called the suspension by

En-Ls Bsax) — EFQx)
where /7 SQX — X is given by f(s, @) = w(s).

Theorem 28.4 (Borel) Suppose that X is simply connected and there are
elements x, € H*(X; Z,) such that X(x,) form a simple system of generators
for H*(QX; Z,). Assume that there are only finitely many x, in each grading.
Then H*(X, Z,) is the polynomial ring Z,[{x,}]—generated by the indeter-
minates x,.

Example 28.5 Letu e H3(CP*®;Z,) be a generator. Then Z(u) € H'(S*; Z,)
is a generator and {I(u)} is a simple system of generators for H*(S'; Z,).
Hence H*(CP*; Z,) =~ Z,[u] which also follows from 26.35.

Let 7 = (i, ..., i) be a finite sequence of integers. We define Sq' = Sq'*- - -
Sq'’. We define the dimension of  as i, + * -+ + i;. Furthermore we identify
the sequence (i;, ..., i;, 0) with the sequence (i, . .-, i;). We call I (and Sq’)
admissible if i,,, > 2i,for k > s > 1. We define the excess of I (and of Sq") by

ex() =iy — (g + o+ 1) = (i = 2iy) + - + (i = 28) + ;.

The notion of admissibility and excess are invariant under the above identi-
fication. Note that if [ is admissible, ex(/) = 0.

Theorem 28.6 (Serre) H*(K(Z,; n); Z,) is a polynomial algebra with
one generator x, for each admissible sequence of excess less that n. x; has
dimension » 4+ dim I and x; = Sq't where 1 € H"(K(Z,, n); Z,) is a generator.

Before proving this result we will examine its contents forn =1 and n = 2.
If ex(I) = 0, it follows that i, =0 and i, = 2i,_;. Hence each i; = 0. That is,
the only admissible sequence I with ex(/) <1 is the sequence (0,...,0).
Hence, as expected, H*(K(Z,, 1); Z,) = Z,[x,] where xo = Sq°% =1. Now
suppose n =2. ex(I) =1 can only happen if 7=(2% 271 ..., 1). Thus
HXK(Z,, 2); Z,) = Z,[1, Xo, Xy, ...] where x, = Sq®*---Sq'1.

In fact the proof of this is quite easy and is typical of the inductive step.
H*(K(Z,, 1); Z,) has a simple system of generators, x>* = §q27'Sq?*™*---
Sq'x. Now if 1 € H¥(K(Z,, 2); Z,) is the generator, ¢ = x. Thus £(Sq** ™"+
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Sq'1) = x¥*, since T = ¢~ f* commutes with the action of Steenrod opera-
tions. Hence 28.6 follows in the case n = 2 by applying Borel’s theorem.

Proof of 28.6 Suppose now that H¥(K(Z,, n); Z,) is as stated above.
Then a simple system of generators is given by (Sq’ 1)*° for s >0 and I
admissible with ex(/) < n. Suppose dim Sq’t =n +i; + *** + i, = m. Then

(8q')* =8q*>* '™ --Sq"Sq’*---Sq'! if §>0.
The sequence (2 'm, ..., m, i, ..., i) is clearly admissible and has excess
n. Furthermore, every sequence I of excess # can be written uniquely in this
form. Thus H*(K(Z,, n); Z,) has a simple system of generators of the form

Sq’ for I admissible and ex(I) < n. 28.6 in the case » + 1 now follows from
Borel’s theorem since Sq’(Z1) = X(Sq”’1) for any sequence J. |

Corollary 28.7 #(2) has as a basis the admissible mononomials Sq’.

Proof A basis in dimension k is given by H**Y(K(Z, , k + 1); Z,) by 27.5.
This is generated by all admissible monomials of excess < k and dimension 4.
However dim I = k implies ex(I) < k. Hence the admissible monomials Sq’
of dimension k form a basis in dimension &. |

We list a basis in dimension k for k < 10.

1

Sq!

Sq?

SqJ Sq(Z,l)
sq4 Sq(3, 1)
qu Sq(4,l)

Sq6 Sq(5,1) Sq(4.2)

Sq7 Sq(ﬁ.l) Sq(5.2) Sq(4,2‘1)

qu Sq(7,1) Sq(6.2) Sq(5,2,1)

ng Sq(s.\) Sq(7,2) Sq(6.3) Sq(G'Z.l)

SqIO Sq(O,l) Sq(B,Z) Sq(7,3) Sq(7.2,l) Sq(6,3,l)

SO XN RARWN = O X

s

Thus the algebra #(2) is generated by Steenrod operations and is called the
Steenrod algebra.

It is quite clear that there must be some relations among the Steenrod
operations. For example, Sq'Sq? has dimension 3 and hence Sq!Sq? =
28q? + uSq> V). Applying this equation to x e H'(RP*; Z;), one concludes
that u = 0. Applying it to x> € H*(RP*; Z,) yields 4 = 1 so Sq'Sq? = Sq°.

In general, if a < 2b, 28.7 implies that there is a formula Sq°Sq® = £4,Sq;,
where I runs over all admjssible sequences of dimension @ + b and 1,6 Z,.
Using the spaces RP® X -+ x RP®, one can calculate the coefficients 4, and
prove
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Theorem 28.8 (The Adem Relations) 1f a < 2b,
j=lal2)l /p _i_ 1 L
S aS b — ( J ] )S a+b—JS 1'
14 j=aZb+1 a-— 2.] q a

We will prove 28.8 by applying a little more theory and a little less calcula-
tion than the above outlined method. Our method is due to Kristensen
[38; 39].

By the Cartan formula and induction, we have for any sequence I =
(i, ..., i), and any two cohomology classes x and y

Sq'(x-y)=¥Sq’ x-Sq¢’" 7y

where the sum is taken over all sequences J = (ji, ..., j;) With j; < i, and
I—J=(i,—Jjc,- -»i; —j;). We define a linear map

@: A2) - AQ2) ® A(2)
by

»(Sq") = >'Sq’ ® Sq' 7
for I admissible.

Lemma 28.9 Suppose there are operations f, f;, and f;" such that for all
xand y

Bix ) = ¥ B - B/O).

Then () = ¥, ® /"

Proof Let o(B) =Y B:i® B/ =2,4,@% € A&2)® #2). ¢p(fYx® )=
B(x - y) since this is clearly true when f§ is an admissible monomial. Con-
sequently,

Z“i(x) '(y) =0.
Letk > dim Yo, @ &} and 1 € HYK(Z,, k); Z,). Let x = p*(1) and y = p,*(1)
where p, and p, are the projections K(Z,, k) x K(Z,, k) = K(Z,, k). Now
0= Z“i(x) “o(y)
= Z“i(l’l*(l)) o' (p2*(1)
=3 P *(@:(1)) - p2* (o (D)
= Zai(l) % o;'(D).
Now 25.15 implies that ) «;(1) ® «;'(1) = 0. However the mapping
A(2) ® A(2) > HX(K(Z,, k); Z,) @ H(K(Z,, k); Z5)

is an isomorphism in this dimension, so Zcxi ®a'=0. |}
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Corollary 28.10 Suppose ¢(x) = Y o; @ o, and @(B) = Y B; ® ;. Then
o(af) = Z“iﬁj ® o B

Proof af(x-y)=a(} B;xB;'yy =Y B;x a/B;y. The result follows
from 28.9. |

Proposition 28.11 (Milnor) The diagrams
A2)®2Z,

ja
\?,

Z, ® A(2)
A(2) ? A(2) ® A(2) A(2) ® #A(2)

lw ®1 A(2) g JT
e

A2 ® AQ2) 25 AQ)® AQQ) ® A((2) A(2) ® A(2)
AQ2) @ A(2) - » AQ2)

- P
v

A2) @ A2)® A ® A2) —— AQ)® A(2)

l2

AQ2) ——— AQ2)® A(2)

1R

®

1®T®1
Uu®u

v
A(2)® A2 ® A(2) ® A(2)
commute, where yu is composition, 7' is transposition, and ¢: AQ2) - Z, is
given by
£(x) = 0, dimx >0
X, dim x = 0.

Proof All of the diagrams except the last one follow from the definition.
The last diagram is 28.10. ]

The mapping ¢ is called a comultiplication and ¢ is called a counit. The
first three diagrams express that A(2) is a coassociative cocommutive coal-
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gebra. These diagrams are duals to the diagrams one ordinarily has for
algebras. The last condition says that ¢ is an algebra homomorphism where
the multiplication in A(2) ® A(2) is given by (u® u)(1 ® T® 1). These
conditions (except for cocommutativity) are usually expressed by saying that
A(2) is a graded Hopf algebra.

Let I be an admissible sequence.

Definition 28.12 Define x;: A(2), = A(2),_aim 1
o(x) = ZKI(X) ®5q’

These operations were first defined by Kristensen {38].
By 28.7 we can write equations

Sq'Sq’ =Y /i'Sq",  Sq" =} ay'Sq"

where the sums are taken over all admissible mononomials Sq™ and the
coefficients AL, o™ are 0 or 1.

Proposition 28.13
Kp(xy) = Zlﬁjx,(x)lc,(y) ;

Kp(ep(x)) = Yo 0L iy (%).
The first sum is taken over all admissible sequences /, J with dim I + dim J

= dim M. The second sum is taken over all admissible sequences I and all
sequences J with J < I.

Proof The first formula follows from 28.10 and the second from the
coassociativity of @, i.e., (¢ ® 1)¢ = (1 ® ¢)p. We will do only the first as the
proofs are similar and easy.

By 28.10,

S iu() ® SqM = (L) @ Sa)(Tk,0) @ Sa°)
= Yk rX)K,(») ® Sq'Sq’
= Y07k (0K ,(y) ® Sq™.

The sums here are taken over all I,J, and M that are admissible. ]

Corollary 28.14 Let k = x;y and x" = K3, ). Then
K(xy) = k(x)y + xK(y).
K'(xp) = k' (0)y + xK'(y) + Kk (x)x(y).
x(Sq) =Sq""!,  x'(S¢") =0.
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Proof If A{;] #0, dim I + dim J = 1. Hence we must have I = (1) and
J =(0) or I =(0) and J = (1). In these cases 4(;] = I so 28.13 yields
K(xp) = K0)(XK() + K(X)k0)()
= xx(y) + k().

Suppose now that 437, # 0. Then we have the following possibilities:

I J
3 0
2,0 0
2 1
1 2
0 3
0 2,10

However Sq'Sq? = Sq°. Hence the only cases in which 1(37;, # 0 are

I J
@,n 0
2 1
0o @n

Thus we have
K'(xy) = K'(xX)y + K@) () (p) + xk'(p).

Now k(k(x)) = K(;)(x) by the second part of 28.13. This proves the second
formula. The formulas for k(Sq") and x'(Sq") follow from the Cartan for-
mula. |

Proposition 28.15 Sq?"*! Sq"*! = 0.
Proof By 28.7 we have

Sq"*t1Sqrt! = le Sq’.
We first prove that A; =0 if I has length greater than 2. To prove this we
apply this equation to x X 1,€ H**'(RP* x K(Z,,k); Z,):
Sq" (x x 1) = x X Sq" 'y + x* X Sq"1,
Sq2n+1Sqn+l(x ; lk) =X ; Sq2n+lsqn+11k + x2 i SanSqn+llk
+ x? x Sq¥"*1Sq", + x* X Sq®""1Sq™,.
By Exercise 7, Section 27

.o, J#QL 2N
Sax={2t @t )
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Hence
Sq'(x % 1) = ZSqu % Sq" Ty,
= sz’“ % Sqf " 1s,

where I, = (25, 2°71, ..., 1). Now if I is admissible, I — I, is admissible. The
equation implies that A;Sq" ™', = 0 for s > 2. If k is sufficiently large, this
implies that 4, = 0 if 1 has length >2. |

Now we write
Sq2n+lsqn+1 — lesq3n—s+2sqs.
s=0

We prove 28.15 by induction on n. Since Sq'Sq? = Sq°, we have
Sq? = x(Sq®) = x(5q'Sq?) = Sq? + Sq'Sq".

Hence Sq'Sq! =0. This is the case n=0. Observe that x'(Sq°Sq’) =
Sq°~2 Sq°~! by 28.14. Assume Sq?"~!Sq" = 0. Then

0= Sq2n—lsqn — K’(Sq2n+lsqn+1)

= Zois K/(Sq3n—-s+ 2SqS)

— lesqﬁ)n—ssqs—l.
s=0
Sq3"7*Sq*~! is admissible so we conclude that A, =0 for each s and hence

Sq2n+lsqn+1 =0. I

The equations Sq2"*1Sq"*! = 0 together with the derivation x yield more
relations. Applying x we have

0= K(sq2n+lsqn+1) — SanSqn+1 + Sq2n+lsqn;
since Sq2"*1Sq" is admissible, we have
SanSqn+1 = Sq2n+lsqn;
applying x again we get
Sq2n—lsqn+1 + Sq2nsqn — SanSqn + Sq2n+lsqn—1
or
Sq2n—lsqn+1 — Sq2n+lsqn—1'
Proceeding in this way we obtain relations

Sq2n—2sqn+1 + San—lsqn — SanSqn—l + Sq2n+lsqn—2
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or
Sq2n—ZSqn+1 — SanSqn—l + Sq2n+lsqn-2.

If we apply this process r times, we get a formula for Sq2"*!~"Sq"*! in terms
of admissible monomials. This will be our proof of 28.8.

Proofof28.8 Observethatifj<a—b+ 1orj> [a/2], (] 21 1) = 0. Hence
we can consider the sum over all j. Let r = 2b — a. We will prove 28.8 by
induction on r. If r = 1, the left-hand side is Sq?*~'Sq® = 0. The right-hand
side is

b —] -1 at+tb—jQnqJ
Z(2b _2j— 1)5‘1 S,

This can only be nonzero if 2b—2j—1<b—j~1, and b—~j—-120.
Thus all the terms are 0. This completes the proof in the case r = 1. Suppose
the formula is proved if a =2b — r:

., b—j—1 e
Squ qu — z(zb —JZJ B r)Squ Jj Sq_l

Applying k we get
qub—r—lsqb + Sq2b—rsqb—1

Z(zb 2] ){qub j—r— lsq +Sq3b J— quJ 1}

Sq2b—rsqb—1 — SqZ(b—l)—(r—Z)qu—l’
so by induction, we have

b b—j—2 o
Sqlb qu lzz(zb_éj_r)sqlib 1 _]Sq‘]'

Hence

Sq2b—(r+1)sqb
— b—j—=2 b—j—1 b—j—2 3b-r—j-1QnyJ
_Z{(Zb—Zj—r)+(2b—2j—r)+(2b—2j—r-—2 Sq™8q

ol b-i-2 b=i=2 \legsrorioto

—Z{(Zb—Zj—r—l)+(2b—2j—r—2)}sq Sq’
1 3b—r—j-—-1 J

Z(Zb 2j—r—l)Sq Sa’ 1

Although 28.8 expresses the Adem relations in a compact formula, it is
very complicated and sometimes inconvenient. If one wishes to calculate all
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the Adem relations in a given range of dimensions, it is much easier to begin
with 28.15 and apply . The expression for Sq°Sq” is then calculated by induc-
tion on k = 2b — a, using the formula Sq°Sq® = Sq**1Sq® ™! + x(Sq°*'Sq").
Using induction, the right-hand side of this equation is already tabulated in
terms of admissible monomials.
Table 1 (pages 358-359) gives the expressions for Sq*Sq® for a < 2b < 12.
We now show that there are no other relations in #4(2).

Corollary 28.16 Let s be the algebra over Z, generated by Sq' subject to
the Adem relations (28.8) Then £ =~ A(2).

Proof One can easily define an algebra homomorphism A: /& — A(2) by
28.8. 4 is onto and it suffices to show that A is 1-1. To do this it is sufficient to
show that the admissible monomials in # generate + as a vector space.

For any sequence J = (i;, ..., i), we define the moment of I by m(I) =

k_isig. m(Sq®) =0, m(Sq') =1, and all other monomials have moment
greater than 1. We prove that Sq’ is a sum of admissible monomials by in-
duction on m(I). Suppose iy < 2i., . Then

Sql - Sq“" is~l)SqisSqis+ lSq(is+2, vens 1K)
Zlesq(ib""i’_‘)Sqi"+is+l_jsqjsq(is+2""'i")
=Y 4;Sq".

Now
m(l;) = mI) + s(isyy —J) + (s + D(J — is41)
=m(l) + (J = is4y) <m(l),

since 2(j — iy4,) < i, — 2i,,; < 0. By induction Sq'/ can be written as a sum
of admissible monomials and hence Sq’ can as well. ||

An element « € A(2) is called indecomposable if it cannot be written in the
form Y oo/ with dim «; > 0 and dim ;" > 0.

Proposition 28.17 The indecomposable elements of A(2) are the elements
Sq?" for n > 0.

Proof Clearly the only elements of A(2) that can possibly be indecompos-
ableare the elements Sq*for k > 0. Now we let xe H'(RP®; Z,) be a generator.
Then

-~ [0 §#2
§.21 s
Sq xXT = {x2"+‘ § = 2"



320 28. Adem Relations

If Sq2" were decomposable, we would have x2"*" = Sq?"x2" = Yo, ,'x2" = 0.
Thus Sq?” is indecomposable. Suppose on the other hand that s # 2". Then
2% < 5 < 2¥*! for some k and

2k —

Sq° 2S¢ = (s _ 21)qu + Y 2;8q" IS’
j>0

By 28.20 (in the Appendix),

(Zk s_ 1) =1(mod 2)

for 0 < s < 2 — 1. Thus Sq° occurs with a nonzero coefficient in the formula
and so it is decomposable. |

One of the simplest applications of the Adem relations is to the Hopf
invariant problem. Let a: §2"~* — §". Then H*(S" U, €*") has generators 1, and
1, indimensions n and 2n. Hence 1,2 = k1, for some integer k. k depends on the
choice of generators up to sign, but otherwise depends only on the homotopy
type of S" U, %" and hence only on the homotopy class of « (by Exercise 22,
Section 14). Thus we can define a transformation H: n,,_(S")—Z. H is
called the Hopf invariant. H(n) = H(2i) = H(v) = 1 by 26.35 and Exercise S,
Section 14.

Proposition 28,18 If there exists an element o € n,,_,(S") with H(x) odd,
n=2°%

Proof Let c,: H¥(S" U, e*") » A*(S" U, €*"; Z,) be the coefficient trans-
formation induced by the epimorphism p: Z - Z, . By Exercise 18, Section 23,
¢, is a ring homomorphism and hence ,(11)* = ¢,(1,). Thus Sq"c,(1,) =
c,(13). Since H"*(S" U, e*"; Z,) =0 for 0 <i<n, Sq'c,(i;) =0 for 0 <
< n. Hence 28.17 implies that Sq"c,(1;) = 0 unless n = 2°. |

In fact this phenomenon occurs iff n = 1, 2, 4, or 8 (see 29.19). The cases
n=1,2, and 4 correspond to the maps 2:: S' —» 8%, n: $* - $2, and v: 87 —»
S*. A map o: §'5 - S® with H(s) = 1can also be constructed using the Cayley
number multiplication. (The construction in Section 7 does not work for the
Cayley numbers because they are not associative and hence ~ is not an
equivalence relation.)

As a final application of 28.8, we prove:

Proposition 28.19 Let 5 € n3(S?) be the Hopf map. Then {S"(Sy o n)} # 0
for each n = 0.
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Proof Let us write #, for $*~2y: $**! 5 S* Our object is to prove that
{MeoMms1} #0 for each k. Supposing o nq ~ *, We can construct an
extension

[}
Sk+1 U”k+1€k+3 Sk

of n,. Let X be the mapping cone of §. Then X has cells in dimensions 0,

k,k+2,and k + 4:
X =8u, C(S** v, , ).

X**r=8ky, 2 =8"2CP*  and  X/S*=S? o,

M+ 1

ek+4 = SkCPZ

k+2

Choose generators x, € H'(X; Z,) for n =k, k + 2, and k + 4. Since X***
= §*~2CP?%, Sq®x, = x;4,. The mapping n: X — S*CP? induces a homo-
morphism in cohomology and =#n*(¢*y) = x,,,, n*(6*y?) = x,,, where
y e H*(CP?; Z,) is a generator. Hence Sq2x;,, = X344 -

Now by 28.8, Sq2Sq> = Sq3Sq!. Hence

Xera = 59°%,, 2 = 5q7Sq’x, = 8q°Sq'x, = 0,

since X has no cells in dimension k£ + 1. This contradiction implies that such
a space X cannot exist and hence that o n .y ~ *. |

Appendix

In calculating Adem relations it is often useful to have an algorithm for

calculating (Z) modulo 2.

Proposition 28.20 Leta =Y ,a;2" and b =) ., b,;2' be binary expan-

sions. Then
(Z) = 1_'1 (Zf)(mod 2).

Proof (14 x)?=1+ x? (mod 2), so by induction, (1 + x)*"=1 + x?",
Hence

1+x'=1+x)%=s ﬁ 1+ x*)= ﬁ (Z(‘?)x"‘).

i=Q i=0

The coefficient of x* in this product is

(b) I
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Seminar Problem

The structure maps of 28.11 make #4(2) into a Hopf algebra. Since this
structure is self-dual, and dim #4(2), is finite, £(2)* is also a Hopf algebra.
Prove the Milnor theorem [3].

Theorem 28.21 (Milnor)
A* = 2Z,[¢, &5, - ]

as algebras, where Z,[¢;, &,, ...] is a polynomial algebra with generators ¢;
in dimension 2! — 1. The diagonal in A(2)* is given by

E) = i;)zfil ®F.

¢ is defined by ¢(x) = (¢, £;>x*' for ¢ € A(2) of dimension 2'—1 and
x € H'(RP® - Z,) the nonzero element.

Z, Cohomology Operations

There are Adem relations for the operations P™ analogous to those in 28.8.
These can be proven by the same method as in this section. One proves a
version of the Borel theorem for Z, cohomology (this theorem is much more
complicated in statement than the Z, version). From this one can calculate
H*(K(Z,, n); Z,). This information can then be utilized in determining the
relations among Z, cohomology operations. Since P" raises dimension by
2r(p — 1), the Bockstein f8, associated with the sequence 0 »Z,>Z,. » Z,
— 0 is not in the algebra generated by the operations P". We define a Steenrod
operation with Z,, coefficients to be any operation in the algebra generated by
B, and the operations P". Then every stable Z, cohomology operation is a
Steenrod operation and the relations take on the form

Theorem 28.22 (Adem Relations) 1f a < pb,

PP = [afl(_l)a+t((p - 1)(b - t) - I)Pa+b—tPt'
t=0

a—pt
If a < pb,
[a/p]
a b __ _1yatt (p_l)(b—t)—l a+b—tpt
Pp,P* = ¥ (1) ( av pt B, PP
[(a—1)/p] _ ( _1)(1,__,)_1
_pate-1{(P a+b-tpt
+ :Zo (1) ( a—pt—1 )P P*.

(See [67] for details.)
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Exercises

1. Use the method of 28.19 to show that S"(2v) » = in =, ,(S"**) and
S"(v o S3v) ~ *in m,,10(S"H ).

2. Show that H¥(K(Z, n); Z,) is a polynomial ring with one generator
x; =Sq" 1 for each admissible sequence I = (i, ..., i;) with ex(/) <n and
iy >1forn>2.

3. Prove that
Sq**!  if niseven

1 n o__

SIS =1"0  if nisodd.

4. Prove that if X is a homotopy associative H space and k is a field,
H*(X; k) is a graded Hopf algebra.

5. If E and F are spectra, define E(F) as lim £, . (F,) where the homo-
morphisms arc

a (Fn)e
E;t+n(Fn)_E.’ Ek+n+1(SFn)——’ Ek+n+1(Fn+l)
Show that if X is the suspension spectrum of X, E(X) = E,(X). Prove that
E(F) = F,(E). (See Exercise 16, Section 15.)

6. Show that H,,, (K(x, m); p) = H,, . (K(p, m); n) for kK < m. (Hint: Use
Exercise 5).

7. Prove that if E, is a ring spectrum, F,(E) is a commutative ring.

8. A group is called a 2-group if every element has order 2° for some s > 0.
Show that if 7 is a finite 2-group, H,,.(K(n, m)) and H™**(K(n, m)) are finite
2-groups for k< m. (Use Exercise 6.)

Y. Show that the map RP® A*-+ ARP™ = K(Z,, n) induces a monomor-
phism in Z, cohomology in dimensions less than 2n. (Hint: It is only nec-
essary to show that the admissible monomials Sqf take linearly independent
values on the 1A+ A1) (30.12)
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K-Theories

Historically, the first examples of ‘““extraordinary” cohomology theories
are the K-theories that arise from the study of vector bundles. It is the purpose
of this section to give an exposition (rather than a development) of K-theory.
We do not, therefore, discuss the most general K-theories, nor prove the Bott
periodicity theorems which give K-theory its power. We sketch two important
applications of K-theory: the solutions of the Hopf invariant problem and
the vector field problem.

All spaces in this section will be Hausdorff. Let k be one of the division
rings R, C, or H.

Definition 29.1 A k vector bundle is a locally trivial bundle ¢ = {E, n, B}
such that each fiber 77!(b) has the structure of a vector space over k, and
there exist coordinate transformations ¢,: U, x k" - n~!(U,) that are linear
over each point b € B(i.e., @, | xxn: k" = n~1(b) is linear). & is called an n-plane
bundle or an n-dimensional vector bundle if n~!(b) has dimension n for
each b e B.

Not every vector bundle has a dimension. However it is easy to see that
over each component of the base, n~!(b) has constant dimension. Hence
each vector bundle with a connected base has a dimension.

It is possible to put more restrictions on the ¢, than that they are linear
(such as orientation preserving), but we will not consider any such refine-
ments.

Vector bundles occur readily in geometric situations. We list some impor-
tant examples.

324
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Examples

1. The bundle k"*! — {0} — kP" given in Exercise 12, Section 11 is a k-line
bundle. For each x € kP", n~(x) is a one-dimensional k-linear subspace of
k"*! and the coordinate transformations are k-linear (see also Example 4,
Section 11).

2. Consider the case k = R and n =1 in the above example. This is the
Mobius band projected onto a central circle. (See Section 26. We must, of
course, transpose a vector space structure onto (0, 1) by a homeomorphism
R! = (0, 1).) This is a nontrivial vector bundle that is easy to visualize, and
is a good picture to keep in mind. The twisting that occurs in this bundle is in
some sense typical of the complications that distinguish a general vector
bundle from a product bundle: k" x B —» B.

3. The tangent bundle to a differential manifold ©(M) — M is arealn-plane
bundle [49, Chapter 2]. This is most easily defined if M is differentiably im-
bedded in R***. Let M" = R"** be a C' imbedding; i.e., M" is covered by
coordinate systems {U,, @,} with ¢,: R* - U, cM" < R*** differentiable
and such that the Jacobian of ¢, has rank #n. We then define t(M) as follows.
For each x € M, let T, be the tangent space to M at x. Then the total space
of t(M)is {(x, y) e M x R"**|x +y e T,} and n: ©(M) > M is given by
n(x, y) = x. The coordinate functions @,: U, x R" —» (M) are given by

0Q,
(pu(u, tiy v tn) = ((pa(u), 2 'gu— ti)‘

This depends on the imbadding M = R"** but one can show that different
imbeddings give equivalent vector bundles (in the sense of 29.2).

Definition 29.2 Let £ ={E, n, B} and &' ={E’, n’, B’} be vector bundles.
A bundle map f: £ - &' is a pair (fg, f) of maps fz: E—~E"and fp: B> B’
such that

(@) 7fg=/fgm;

(b) f&|z-1x is an isomorphism for each x € B.

fis called an equivalence if B = B’ and f5 = 1. In this case we write & = &'.

Lemma 29.3 Equivalence of bundles over B is an equivalence relation.

Proof Reflexivity and transitivity are immediate. To prove symmetry, let
fi & =& be an equivalence. Then fi: E — E’ is a continuous 1-1 correspon-
dence. To see that f; is open it suffices to show that fg|.-1y,, is open. In
terms of local coordinates this is given by (x, v) = (x, 4,v) where A, is a
nonsingular linear transformation depending continuously on x. This map
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has a continuous inverse since matrix inversion is continuous. Hence
Je|z- 1, is @ homeomorphism and f;; is open. I '

A bundle will be called trivial if it is equivalent to a product bundle
B x k" - B.

We will write Vect,(X), for the set of equivalence classes of n-dimensional
k-vector bundles over X. This is in fact a contravariant functor. For each map
f: X' = X and vector bundle £ over X, there is a vector bundle f*(¢) over X’
(see Exercise 5, Section 11). One defines a bundle map (rn,, f) where
7. f*(E) > E is the projection. Then f*(&¢) = {f*(E), =;, X'} is a vector
bundle with coordinate functions @,: U, x k" = f*(E) given by @,(u, x) =
(u, @, (f(w), x)). It is easy to see that (w,, f) is bundle map from f*(¢) to ¢,
and thatif £ = &, f*(€) = f*(&’). Consequently the transformation & — f*(&)
makes the set Vect,(X) into a cotravariant functor.

Finally we observe that if f: ¢ — £ is a bundle map, € = f*(&’). In fact the
map finduces a bundle map e: & - f*(&') so that £ - f*(£") —» ¢’ is the bundle
map f. Since ez = 1, e is an equivalence.

Let k* =1 );°, k" with the weak topology.

Definition 29.4 A Gauss map for a k-vector bundle £ is a continuous map
F: E - k™ for some m, 1 <m < oo such that for eath x € B, F| -1, isalinear
monomorphism.

Under mild restrictions, a Gauss map always exists. In Example 1, the
inclusion E = k"*! — {0} = k"*! is a Gauss map. In the case of a differential
manifold M" < R"** (differentiably imbedded) the' mapping F: t(M) — R"**
given by F(x, y) = y is a Gauss map.

Proposition 29.5 If £ = {E, n, B} is a vector bundle and B is paracompact,
a Gauss map exists for &.

In the case that B is compact, one can find a Gauss map F: E — k™ with
m < 0. We will prove 29.5 in this case. The general case is a little more
complicated [48, Theorem 7; 34, 13, 5.5].

Proof in this case Choose a finite collection of coordinate neighborhoods
U,,...., U, that cover B. Choose an associated partition of unity f,..
Define F,,: E—k" by

_ ﬂi(n(e)) ' 7[2 (Pd_il(e)’ 7'[((’) € Uai
Fule) = { 0, n(e) ¢ U,,.
Thus F,, is a linear monomorphism on n~'(x) if J.(x) #0. A Gauss map
F: E - k™ is thus defined by

F(X) = (Fd((x)’ R Fam(x))' l
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Let V be a vector space over k. We will describe an n-plane bundle y"(V)
which is universal in the sense that if £ is an n-plane bundle and F: E(&) - V
is a Gauss map, there is a bundle map f: £ = y"(V) (and hence & = f*(y"(V)).

The description of y"(V) is easy enough. As base space we take G,(V)—the
set of all n-dimensional subspaces of V. (G,(V) is called the Grassmanian on
V.) As total space we take E,(V) to be the set of all pairs (x, M) e V x G, (V)
with x e M. We define =n,: E(V) > G,(V) by n,(x, M)= M. Then y"(V) =
{E,(V),m,, G,(V)}. Now suppose we are given an n-plane bundle £ and a Gauss
map F: E(&) - V. We define 12 € > y"(V) by

[ ={Fa™'x))},  fele) = (Fle), f5(n(e))).

One easily checks that r,fp = fs7 and that f; is an isomorphism on each
fiber. We have carefully sidestepped the question of how we will topologize
G,(V). Continuing in this vein, we will describe the local product structure in
y"(V). Choose a continuous inner product in V. For each M € G,(V) let P(M)
be the orthogonal projection onto M. (This is well defined even if V is infinite
dimensional since M is finite dimensional.) Let U(N) = {M € G, (V)| P(M)| 5
has rank n}. Ne U(N) so {U(N)} is an (open) cover of G,(V). We define
@y: UN) x N>n~'(UN)) by ox(M, x)=(M, P(M)(x)). This is a 1-1
correspondence which is linear on each fiber.

We must find a topology in which /5 and ¢y are continuous and U(N) is
open. The details of this are a little delicate and often neglected. To make f;
continuous it is sufficient for f3|y, to be continuous for each coordinate
neighborhood U, . For x e U,, fi(x) = {Fo,(x x k")}. Let L, = V" be the set
of linearly independent n-tuples of vectors in V. Give L, the induced topology.
Let p: L, = G,(V) be the natural map which assigns to each n-tuple its span.
p is onto and we give G,(V) the quotient topology. f3|y, factors through L,
and the map U, =L, is given by x - (Fp,(x X v)), ..., Fo,(x x v,)) where
vy, ..., b, i1s a basis for k". Thus fj is continuous. To ensure that ¢y is con-
tinuous and U(N) is open it is only necessary to check that M — P(M) is
continuous, where P(M)e V¥ and V" has the function space topolgy. Let
V, < L, be the subset of orthogonal n-tuples. Then p(V,) =G, and ¥V, is a
closed subset of L,. Thus G, has the quotient topology on V, and it is only
necessary to verify that V, c L, SN G (V) - V" is continuous. This composite
is given by (xy, ..., x,) =»f where f(x) =Y (x, x)x;. Since the adjoint
V, x V — V is continuous, we are done.

Since G,(V) — V" is continuous and 1-1, G,(V) is HausdorfT. In fact, if V
has dimension n+ p < o0, G, (V) is a differential manifold of dimension
np [49]. We conclude:

Proposition 29.6 For each n-plane bundle ¢ with paracompact base, there
is a bundle map f: & - y"(k*) and hence & = f*(y"(k™)). |}
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The mapping f depends on the choice of a Gauss map. One can show that
any two Gauss maps are homotopic through Gauss maps. One first uses a
linear homotopy to put one Gauss map in even dimensions and the other in
odd dimensions and then takes a linear homotopy between them. (For details
see [34, 13, 6.2].) This induces a homotopy between the respective bundle maps.
Thus an equivalence class of bundles determines a homotopy class of maps
from B to G,(k*). Conversely a map f: B — G,(k®) induces a vector bundle
over Band one can show that the equivalence class of this bundle only depends
on the homotopy class of £ [34, 13, 4.7; 65, 11.5; 9, 1.4.3]. Hence

Theorem 29.7 (Classification Theorem) Let B be paracompact. Then
the transformation f — f*(y"(k*)) induces a 1-1 correspondence

[B, G,(k*)] = Vect,(B).

We define some notation in universal use. BO(n) = G,(R*), BU(n) =
G,(C™), and BSp(n) = G(H®). Here O(n), U(n), and Sp(n) are the ortho-
gonal, unitary, and symplectic groups of n x n matrices, and our baptism is
based on homotopy equivalences O(n) =~ QBO(n), Un) ~ QBU(n), and
Sp(n) ~QBSp(n). (See Exercise 8.)

We describe now the Whitney sum of two vector bundles. This is a general-
ization of the notion of direct sum of vector spaces to vector bundles. If ¢
and n are vector bundles over B, £ ® 7 will be a bundle over B such that the
fibers in & @ n will be the direct sum of the fibers in £ and 5. To construct such
a bundle we consider the vector bundle ¢ x # ={E x E', n x n’, B x B'}.
Let d: B—>B x B and define £ @y = d*(¢ x n). Thus a point in E(£ @)
is a pair (e, e’) € E x E" with n(e) = n'(¢’).

One immediately checks that there are equivalences

EDN=n@E
(M=l on®i
0@é=¢

where 0 is the O-plane bundle. Finally, if { x & and n=1n', E @y =& @7
Thus the set of equivalence classes of vector bundles over B is a semigroup
with the operation @®.

There is a natural way of producing from this semigroup an abelian group.
The construction, called the Grothendieck construction, is as follows. Let
F(X) be the free group generated by isomorphism classes of vector bundles
over X. Given a vector bundle £ we write [£] for the corresponding element of
F(X). Let R be the subgroup generated by all elements of the form [¢ @ #]

— [£] — [n], and let K,(X) be the quotient group. The functor K,(X) is called
K-theory.
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In the case k = R or C it is possible but a little more complicated to extend
some other functors from vector spaces to vector bundles. Of particular
interest is the tensor product ¢ ® n of two vector bundles, and the exterior
power [17, AIlI, §7] of a vector bundle A/(&). These operations satisfy the
laws

(@n=n®¢
N L{=iRM®)
(R D) =(E®n) D(E®n,)
E®1=(¢

where 1 is a trivial line bundle, and

o=l
MO =¢
»ﬂ@®ms‘zkﬂO®HM)
i+j=
If ¢~ ¢ and n =7, then ¢ ® n = & ® n’ and Ai(&) = AY(&). Details of these
constructions can be found in {34, I5, Section 6; 9, §1.2].
Since the tensor product distributes over the Whitney sum, it induces a

natural commutative ring structure on K,(X) and the exterior power opera-
tions define natural transformations A’: K,(X) — K,(X) such that

Nx)=1, Ix) =x,
Fax+yy= 3 A@FW).

i+j=k
It is easy to see that K (P) is isomorphic to the integers if P is a one-point
space, and the isomorphism is a ring isomorphism (in case k = R or C). The
operations are given by Ai(n) = (7).
We now define reduced K-theory by K (X) = coker{K,(*) = Ki(X)}. K, is
thus a functor from CS to M. If we choose a base point * € X, this induces
a splitting

KX =R(X)®Z.

It is easy to see that Ky (X) = ker{ K,(X) — Ki(»)} where the later group depends
on the choice of a base point. The advantage of the later group is that a ring
structure is transferred onto K, (X) since the kernel in question is an ideal. This
ring structure conceivably depends on the choice of *.

We give an alternative description of reduced K-theory when X is compact.

Proposition 29.8 Let X be compact and ¢ be a vector bundle over X. Then
there is a bundle &’ over X with & @ &’ trivial.
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Proof Let F: E(£) » k™ be a Gauss map with m < c0. Choose an inner
product in k™ and let E' = {(u, x) ek™ x X|u-y =0 for all y e F(z~'(x))}.
Thus E’ is the orthogonal complement of F(E(£)) in k™. (A good picture to
look at here is the Mobius band imbedded in D* x S'.) We claim that
& ={E', n,, X}is a vector bundle and ¢ @ ¢’ = {k™ x X, n,, X}. For details
see [49, 2.20]. (In the case of the Mdbius band u over S?, one easily sees that
W) d

We will think of each integer »n as an n-dimensional trivial bundle.

Definition 29.9 Two vector bundles ¢ and n over X are stably equivalent
(written & 2 n) if there are trivial bundles n and m such that { @nn @ m.

This is clearly an equivalence relation. We define a function ¢ from the
equivalence classes to K,(X) by ¢({&}) = [¢] (mod Z). This is well defined and
1-1.

Proposition 29.10 If X is compact, ¢ is a 1-1 correspondence.

Proof Let x € K, (X). We can write x = [£] — [5], and since X is compact,
x=[®n']—mby29.8. Hence x = [{ ®#'] (mod Z) and thus ¢ is onto. |

We define mappings Vect,(X) — Vect, . (X) by £ -1 @ &. Corresponding
to this there is a continuous mapping 1: G(k*) = G, (k™) given by M —
k@OMck@k®=k® Then *(y"t (k™)) = 1 ®y"(k™) so we have a com-
mutative diagram

Vect,(X) — Vect, , (X)

|

[X, G (k)] —— [X, G,y (k)]
We define G(£k%) = | J;2, G, (k) with the weak topology.
Proposition 29.11 If X is compact and connected, there is a 1-1 corre-

spondence
X, G(k™) ] Ky(X)

Proof There is a 1-1 correspondence
lim Vect,(X) < K, (X)

given by & — [¢] — [dim £]. (Every vector bundle £ over a connected space
has a constant dimension, written dim £.) This is clearly well defined, 1-1,
and onto. There is also a 1-1 correspondence

lim Vect,(X) lim [X, G,(k*)};
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since X is compact and G(k®) has the weak topology, the conclusion follows
by the method in 15.10. |

G,(k*) is classically written BO, BU, or BSp in the cases k = R, C, or H.

Theorem 29.12 (Bott Periodicity Theorem)
Q*BU~BUxZ, Q*BSp~BOxZ, Q'BO~BSpxZ

There are basically three methods of proving this theorem, all of which are quite
complicated. The first method, which is the original method of Bott [15, 16],
uses Morse theory to analyze QX for X a Lie group. The best reference for
a proof in this spirit is [52] where all the prerequisite Morse theory is devel-
oped. Bott’s proof was quickly followed by homotopy-theoretic proofs [70]
in the case of BU, and [23] in the general case). The third method of proof is
to analyze directly a vector bundle over S2X. A proof in the case of BU by
this method was given [10] and this was later generalized [8]. Ideal references
are [8; 23].

Theorem 29.13 There are spectra K, KO, and KSp such that:

(@) R"(X)==K"*%(X).

(b) KO"(X)= KSp*4(X).

(c) KSp"(X) = KO"**(X).

Furthermore, if X is compact we have:
@ RN = Re(X), K°(X) = Ke(X).
() KO°(X)=Rp(X), KO°(X) = Kp(X).
(f) KSp°(X) = Ry(X), KSp°(X) = Ky(X).
Proof By29.12, BO, BU, and BSp are H spaces. In fact they are connected
CW complexes [48, VI; 67] so they are WANEs. Thus by Exercise 11,
Section 21, we have
[X, G(k™)] & [(X, %), (G(k™), *)]

for X paracompact and connected. Thus for arbitrary compact X, we have
Ry(X) e [(X,%),(Z x G(k*), %))

We define Q-spectra as follows:

K = BU x Z, n even
" 1QBU, n odd.
KO,=Q/BOxZ), n=8+j 0<j<8.
KSp, = Q*KO,.

The maps are determined by the homotopy equivalences in 29.12. |}



332 29. K-Theories

In particular KSp is completely determined by KO. Since KO(X) is a ring
whereas KSp(X) is not, one usually neglects KSp altogether. KO(X), K(X),
and KSp(X) are called real, complex, and symplectic K-theory respectively.

Tensor product of vector bundles determines a map BO A BO - BO, and
BUABU - BU, although care must be taken at this point. BUA BU, for
example, is not compact and hence a map BU A BU — BU does not correspond
to a vector bundle. However if X « BU is a finite subcomplex, the inclusion
map determines a bundle &y over X up to stable equivalence. Let m, and n, be
the projections X x X —» X. Then ny = n,*(€y) ® n,*(¢y) is a well-defined
bundle over X x X and determines a map puy: X x X - BU. The maps py
are compatible up to homotopy, and this is enough to define a map f:
BU x BU — BU by Exercise 5, Section 15. Let u: BU A BU — BU be the
map determined by i~ n, —n,: BU x BU - BU. One defines a map
(BU x Z) A (BU x Z) - (BU x Z) by p on the O-components and ji on the
other components, together with multiplication of integers. Maps Q(BU x Z)
A (BU x Z) - Q(BU x Zyand Q(BU x Z) A (BU x Z) - BU x Z are then
determined and these maps make K into a ring spectrum. The proof of associa-
tivity and commutativity are subtle since the requisite diagrams are only given
to commute on each finite subcomplex of the domain space. This is not
sufficient in general to prove that they commute, but in the circumstances the
difficulties are easily overcome. See [26]. The multiplication induced in K(X)
can easily be seen to be the tensor product of vector bundles.

Similar considerations produce a map BO A BO — BO and give KO the
structure of a ring spectrum.

Thus we have

Theorem 29.14 K and KO are ring spectra and if X is compact the in-
duced multiplications K°(X) and KO°(X) coincide with the multiplications
Ko(X)and Kg(X). |

Before discussing applications, we give an account of the coefficient rings
{K"(x)} and {KO"(»)}. We will write H for the Hopf bundle over S (the com-

plex line bundle of Example 1). Let b€ K~ %(x) correspond to [H]— 1€
Ro(S?) = R72(8%) = K™ %(%).

Proposition 29.15 The periodicity isomorphism
Ba: K"(X) - K""*(X)
is given by f,(x) = x X b.
This follows from the proof of 29.12 [8; 23].
In particular, there is a class ¢ € K*(*) such that 1 = ¢ x b. Since U(n) is

connected (see Exercise 5), BU(n) is simply connected for each n and hence
n(BU) = 0. Thus K(S') = 0 and we have
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Corollary 29.16

N LA n odd
K = {Z, n even.

K?*'(x) is generated by 5" if n < 0 and ¢" if n > 0. Furthermore, bc = 1. |

A more compact statement of 29.16 is K*(x) = Z[b, c]/(bc — 1).

Proposition 29.17
Z,, n= —1or —2 (mod 8)
KO"(x) = {Z, n =0 (mod 4)
0, otherwise.

See [34, I1 8, 5.2; 16] or Exercise 7.

The generator of KO ™'(») = ]?5(5‘) is [u] — 1 where u is the Mobius line
bundle (Example 2). The generator of KO~ %(x) = KO(S?) is ([u]—1) A
([u] = 1) = [u® p] — 1. Other multiplicative relations are given by

Proposition 29.18 Generators x € KO~ 8(x), y € KO®(»), u € KO~ *(») and
v € KO*(*) may be chosen such that xy = 1, u? = 2x, and

y" generates K8 (); 12y generates K8 " 2(x);
wy" generates K8 ~1(x); uy” generates K% ~4(»).

(If r < 0, we interpret )" as x™".)

We will now indicate two celebrated applications of K-theory to geometric
problems.

Recall that we defined a transformation H: n,,_,(S™) - Z in Section 28
and proved that if H(«) is odd, n = 2° (28.18).

Theorem 29.19 (Adams) If H(a)is odd,n=1, 2, 4, or 8.

This was first proved using other methods than the one given here [1]. The
version we give is conceptually and technically simpler [6]. The importance of
29.19 is that it is the most difficult step in the cyclic proof of:

Theorem 29.20 The following are equivalent:

(1) n=1,24,or8.

{2) R" has the structure of a normed algebra.

(3) R" has the structure of a division algebra.

(4) S""!is parallelizable (i.e., T(S"™') is trivial).

(5) S"'isan H space.

(6) There exists a map f: $2"! = S" with H(f) = 1.



334 29. K-Theories

For a detailed exposition of the proof of 29.20 see [27]. We will indicate the
method here. (1) = (2) = (3) are pretty easy. Suppose R" is a division algebra.
Choose a basis ey, ..., e, with e; = 1, n — 1 linearly independent vector fields
are defined on §" ! by

(aa aei)

Vi(a) =ae; — W— a,

Hence (3) = (4).

There is a projection t(S"~!) — $"~! given by projecting a vector tangent to
S"~! onto $"~! by a line through the origin. If §"~! is parallelizable we thus
have a map R"™! x §"! = 1(S""!) —» $""L. It is easily seen that this map ex-
tends over (R"1)® x S"7! and that the resulting map is a multiplication on
S"~! with two sided unit. Thus (4) = (5).

The proof that (5) = (6) is more complicated. Let

(x,0,y) ~ (x,0,y)
XxY=XxIxY >
* (x, Ly~ (&, 1,p).

If we are given a map f: X x Y —»Z, the Hopf construction is the map
h(f): X* Y >XZ given by h(f)(x, t, y) =(f(x, ¥), t). Suppose X =Y =
Z = 8""! and fis a multiplication with two-sided homotopy unit. There is
a homeomorphism 6: S™71 x §*7! 5 S™*" 1 given by O(u, t, v)=
(u cos(nt/2), v sin(nt/2)). Under this identification, A(f): $2"~! — §"

Lemma 29,21 A(f) has Hopf invariant 1.

Proof Let M =37 Uy, C(X*Y)=5" uh(f)ez". Let B e H'(M). We will
prove that 2 is a generator of H*(M). There is a homeomorphism

P X*Y>CXXxYUXxCYcCXXCY
given by

[, (v, 1 = 21)), t<i
o, 1, v) = {((u, 2—1),1), 1>}

We identify X * Y with ¢(X * Y) under this homeomorphism. Thus we define
a relative homeomorphism

L:(CXx CY, X% Y)—>(M,X2)
by

(5, %), y)eC(CXxY) if s>t
L(x, 9, (3» D) = {(s, () eC(X x CY)  if s<t.
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This formula determines a point of C(X * Y) under Co ™! and hence a point
of M. Choose x, € X. Then we can definea;: Y >Zand 1,: CY->CX x CY
by a,(y) = f(xq,y)and 1,(y, 1) = ((xo, 0), (»,1)). Then we have a commutative
diagram

(CXxCY,XxY)_L (M, 22)

(CX x CY,CX x Y)—s (M, C*2Z)

Cay

(CY,Y) ———(C"Z,2)

where C*Z and C~Z are the cones in £Z with t >} and ¢ < 1 respectively.
Let " € H'(M, C*Z) and B’ € H(CY, Y) be generators corresponding to
B e H'(M). Since a, ~ 1, (£)*(") =1 % B’. Similarly, by choosing y,e Y
we can define a similar diagram and (£,)*(7) =’ x 1 (note: X = Y). Now
H™CX x CY, X * Y) is generated by

Bxp=FxDuldxp)=ELB)0EHBT) =LY U p).
Since L is a relative homeomorphism, H*"(M, £Z) is generated by = u *.
Let j: (M, &) — (M, £Z). Then B* = j*(B~ U B*) is a generator. ||

To prove that (6)=(I), let f: S ' —>S" and M =S"uU,e*. Let
Ay: M—>MAM be the diagonal map. Since Ayl factors through
Agn: 8" = S" A S" it is nullhomotopic. Thus there is a factorization of A,,

S2n
M —2 . MAM

where y: M — §*" is the quotient map. Now 7,,(M A M) is generated by the
inclusion y: S?"=S"A S" > M A M, so v =ky for some integer k. Since
(Ay) * (a X b) = a U b, we can evaluate both homomorphisms in cohomology
and it follows that k = H(f). Thus H(f) determines the homomorphism
(Ay)* in any cohomology theory. We consider K°(M). There is an exact
sequence

Kl(s2n) 4__12’0(5") FKO(M) G—KO(SZ") PK_I(S");
by 18.9. This reduces to (by 29.16)
0Z R (M)eZ«0,
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so K°(M) is free of rank 2. Let x, = ([H] — 1) X -+ A([H] —1) e K(S*").
Then x, is a generator. Let & = p*(x,) and choose n € K°(M) so that 1*() =
x,/2 where 1: S" - M is the inclusion (n is even by 28.18). Then ¢ and 5 gen-
erate K°(M). Now n? = (Ay) * (n An) = p*v¥(n Rn) = p*(H(/)x\/2Rx,[2) =
H(f)p*(x,) = H(f)¢. Similar arguments show that ¢2 =0 and &n = 0 since
1*(£) = 0. We complete the proof by showing that if H(f) is odd, and n #
2, 4, or 8 this ring structure is incompatible with the cohomology operations
AL

The operations A’ for i > 1 are not homomorphisms. In fact A%(x +y) =
A2(x) 4+ A1(x)A(p) + A3(y). However Y2(x) = x* — 2A%(x) is a homomorphism.
In a similar fashion, Adams constructed polynomials ¥* in the operations
Al, ..., ¥ which are homomorphisms.

Theorem 29.22 (Adams) There are natural transformations y*: K(X) —
K(X) satisfying:

@) YMx + ) = ¥R + ).

(b) If x is a line bundle, Y*(x) = x*.
©) ¥Hxy) = YW

(d) YY) = yH).

(e) If pis a prime ¥ ,(x) = x? (mod p).
) If ueR(S™), y*u) = k"u.

The best references for a proof of this are [9; 34, 11,12].
Let us now apply these operations to K®(M). By (f),

YHE) = YHu*(xn) = (W (x,) = k"u*(x,) = K"E.
Let y*(n) = o, n + B, & Then
0 X2 = ¥4 + Bi&) = X)) = YHH(m) = WAxa12) = k"2 x,[2,
so o = k"2 By (d), Y*(y*(m)) = ¥ (¥*(n)). However,
WA = W3R + B2 &) = 2723 + B3 &) + 3B, ¢,
and Y2 ) = 372Q"%n + B2 &) + 285 & Thus
228, + 378, = 32, 4 2"8,, or 2V2(2M2 — B, = 3V2(3"2 — B, .

By (e), ¥*(n) = n? = ¢ (mod 2). Thus B, is odd. Consequently 2"/?|3"2 —1.
It now follows from elementary arithmetical arguments that n = 2,4, or 8. |}

The second important application of K-theory is to the question of vector
fields on spheres. Recall that there is a nonzero vector field on S" ! iff n is
even (13.19). Vector fields V,, ..., V, are said to be linearly independent if
for every x € S"7!, V,(x), ..., Vi(x) are linearly independent in (S""%),. A
classical problem is to determine the maximal number of linearly independent
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vector fields on $"~!. The problem is to find a function r(n) such that $” ! has
r(n) — 1 linearly independent vector fields but it does not have r(n) linearly
independent vector fields. 13.19 can be restated asr(2n) > land r(2n + 1) = 1.

We first consider the problem of constructing vector fields. It is natural, in
view of 3.5 to construct linear vector fields, i.e., linear nonsingular functions
f: E" = E" with x - f(x) =0. Let p(r) — 1 be the maximal number of such
functions such that for each x # 0, fi(x), ..., f,m—1(x) are linearly indepen-
dent. Then r(n) = p(n). The determination of p(n) is a problem in linear
algebra. As an example we have three linearly independent vector fields on .$*
given by the equations

Si(xy, X2, X3, X4) = (=X, X1, — X4, X3).
fl(xla X2, X3, x4) = (’—X3, X4 Xy, —x2)'

f3(xy, X2, X3, X4) = (X4, —X3, X3, Xy)-
Theorem 29.23 (Radon-Hurwitz—Eckmann) Let n = 2k + 1)2°7*4 with
0 < ¢ < 3. Then p(n) = 2° + 8d.

For a proof see [34; IT 11).
We list the first few values of this rather complicated function.

n 2 4 6 8 10 12 14 16 18 20 22

pn) 2 4 28 2 4 2 9 2 4 2

This very unlikely looking function is in fact a best possible result.

Theorem 29.24 (Adams) p(n) = r(#n).

The proof of 29.24 is complicated and we will give only the briefest outline.
First we observe that if there are k linearly independent vector fields on S”,
there are k£ orthogonal vector fields on S". This follows from the Gram-
Schmidt orthogonalization process [12]. Consequently the problems of
finding linearly independent or orthogonal sets of vector fields are the same.
We will concentrate on the later problem. Recall that in the discussion before
29.6 we introduced a space V,, which we now write as V,(R"), consisting of
orthogonal k-tuples in R". There are continuous maps

Vi i(R™1) = V(R — s™

given by 1(xq, ..., Xg_1) = (X5 ..., X4—1,*) and 7w(xy, ..., x,) =x, where
*=(0,...,0, 1). In fact = is a locally trivial bundle with fiber ¥,_(R*™ 1)
(compare with Exercise 13, Section 11) [65, 7.8; 34, 17, 3.8]. The spaces V,
(and sometimes L,) are called Stiefel manifolds. (One can prove that they are
manifold by induction on k using this locally trivial bundle.)
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Now it is easy to see that a map f: S"~' — V,(R") such that nf = 1 corre-
sponds to a collection of k — 1 orthogonal vector fields on S"~!. Thus we
concern ourselves with the lifting problem

Vi(R")
l”

1
;

S"'l _— Sn—l

Since = is a locally trivial bundle, it has the homotopy lifting property. Thus
a lifting f exists iff f exists up to homotopy. At this point we have converted
the problem into a homotopy theory problem. The next step is due to James
[35).

Proposition 29.25 (James) r(n) < r(kn).
Proof We construct a map

Vi(R™) % V(R") = Vi(R™*")
by h(uy, ...y U, t, 0y, oo., D) =Wy, ..., W) where w,=(u; cos(nt/2),
v; sin(n#/2)). Then the diagram
Vi(R™) # V(R —— V(R"*")

Sm—l *Sn—-l 6 , Sm+n—l

commutes where 0(u, t, v) =(u cos(nt/2), v sin(nt/2)). Thus the maps
8" 'S V(R and g: S" ! > V(R with nf=1 and ng = | yield e =
ho(fxg)of7t: S"*" 1 5 V(R™*") and ne = 1. Consequently r(m + n) >
min (r(m), r(n)). 1

Corollary 29.26 Suppose k is odd and p(kn) = r(kn). Then p(n) = r(n).

Proof p(n) <r(n) <rlkn) = p(kn) = p(n). |

Our task will then be to show that for each » there is an odd integer k such
that r(kn) < p(kn), ie., there does not exist f: S~ — ¥V, . (R™) with
af=1.

The next step is to replace Vi(R") in our discussion by RP""!/RpP"~*~1,
There is a natural map

A: RP"YRP"*1 o V(R
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such that nd is the map pgpn-2. We will define 1 as a composition
RP"™RP"™ =1 25 Om)[O(n — k) —2» Vi(R");

4, is induced by a map y: RP"! - O(n) defined as follows. Let / be a
line through the origin in R". Then y(l) is the reflection through the hyper-
plane perpendicular to I 1, is a homeomorphism defined by 1,(A) =
(Ae,_y+1> ..., Ae,) for A€ O(n), and e, ..., e, an orthogonal basis for R".

Proposition 29.27 1 is a 2(n — k)-equivalence.

Proof If k =1, 4 is a homeomorphism. We proceed by induction on k.
Suppose k > 1 and consider the commutative diagram

7.,:r(RPn—I/RPn—k—-l’ RPn-Z/RPn—k—l)

(mA)
A (Sn—l )
~ T, s ®
72,.( Vk(R")’ Vk-l(R"—l)) /"

By 16.30, (nd)y is a (2n — k — 2)-isomorphism, hence 4, is a 2(n — k)-
isomorphism (since k > 1). We complete the inductive step by using the 5-
lemma and the exact sequences for the above pairs. i

Corollary 29.28 Suppose p(n) # r(n). Then if k > (2p(n) + 1)/n and k is
odd, the map

ni

RPkn—l/RPkn—p(n)-Z s Skn‘l
has a right homotopy inverse « (i.e., (td) o a ~ 1).

Proof If there exist p(n) linearly independent vector fields on $"~!, there
exists p(n) = p(kn) vector fields on S*"~! for k odd by 29.26. Thus a map
fi S oV, 04 (R exists with nf = 1. By 29.27 f~ Za for some map
a; S~1 5 RP*TLRPMPM=2 gnd nla ~ nif = 1. |

It is in this form that a contradiction is proven. Such a map « would induce
a homomorphism

K*(Skn—l) -—a‘—iK*(RPk"—l, RPkn—l-p(n)—Z)

compatible with the operations ¢*. One then needs to calculate these groups,
(m2)x, and the operations §* to show that such a homomorphism cannot exist.
Equivalently, one can consider the dual situation by imbedding all the spaces
involved in a large sphere and applying 26.21. This has the advantage that
the K-cohomology groups are easier to calculate because of the cup product
structure. The details are found in [2; 34].
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Exercises

1. Show that the bundle &"*! — {0} - kP" from Exercise 12, Section 11 is
a k-line bundle.

2. Llet Ac B and let £ ={E, n, B} be a vector bundle. Define ¢], =
{n"YA), 7|14y, A}. Show that |, is a vector bundle equivalent to i*(&)
where i : A — B is the inclusion.

3. Show that G,(k"*"') = kP". Conclude that G,(k%) = kP>. Let i,: kP" -
kP* be the inclusion. Show that i,*(y'(k®)) is the line bundle of Exercise 12,
Section 11. (30.12)

4. Using y: (RP", RP"™') > (O(n + 1), O(n)) and 13.11 prove that there
is a commutative diagram

1, 41(S") —— 1,(0(n))
E Ty
(S" ) — > m($"7Y)
where

deg o = 2 if niseven
E%=\0 if nisodd.
{Exercise 6)
5. Use the fiberings
on~1)-0m—S"1, Un — 1) - U(n) -» S22,
Sp(n — 1) - Sp(n) » $**~*
to prove that
7,(0m)) - 7, (O(n + 1)) is an (n — 1)-isomorphism.
7,(U(n)) = n,(U(n + 1)) is a 2n-isomorphism.
n(Sp(n)) » =, (Sp(n + 1)) is a (4n + 2)-isomorphism.
Use the homeomorphisms U(1) = S* and Sp(1) = S° and the above to make
the calculations
no(Un)) = 0. n(Um) =2 if n>1. n(Sp(n)) =0, i<3.
T (Um) =Z.  my(U(1)) =0. n3(Sp(n)) =Z.
,(UM) =0.  m,(U(Q2) =2,. n4(Sp(m) = Z,.



29, K-Theories 341

6. By Exercises 4, 5, and 29.27, and the homeomorphism O(2) = §' II S*
to prove that

21 (OM) =Z,, n>2. 7,(0@8)=ZBZ.

7,(0(n)) = 0. n,(05)=2Z or Z®Z,.
n3(0(3)) = Z.

7. Using Exercises 5, 6, and 29.12 to prove
n3.(0) = Z,. Tgn+4(0) = 0.
Tgn+1(0) = Z;. . Tga+5(0) =0.
Tign+2(0) = 0. Tgu+6(0) = 0.

Tgu+3( ) =Z or ZPZ,. Tgns7(0)=2Z. (29.17)
8. Show that there are compatible locally trivial bundles

O(k) = Vi(R") - G(R"),  U(k) = V(C") = G(C™),
Sp(k) = Vi(H") > Gy (H")
for k < n < . Using the map 4 and its complex and quaternionic analogues
show that Vi (R®), Vi(C*®), and V,(H®) are contractible. Conclude that there
are maps O(k) - QBO(k), U(k) - QBU(k), and Sp(k) - QBSp(k) inducing
isomorphisms in homotopy (and hence homotopy equivalences).
9. Find a generalization of 29.21 to determine the multiplicative structure

in E*(M) from the homomorphisms (,)* and (&,)* for any ring spectrum E
and anymapf: X x Y—=Z.

10. Calculate K(CP") as a ring. (Hint: Use the method employed in 26.35.)
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Cobordism

This section is intended as an introduction to cobordism theory. There are
two aspects to this. The first is the reduction of the geometric problem to
one in homotopy theory. We give a brief sketch of this. It involves techniques
from differential topology (see [43, 49, 53]) which have little to do with this
work. We give a more detailed account of the solution to the homotopy
theory problem.

Cobordism was first described by Poincaré [57]. His notion of homology is
essentially the same as the modern notion of cobordism. In fact the solution
of the unoriented cobordism classification problem leads to a spectrum and
the corresponding homology theory has a geometric description very similar
to classical singular homology.

For simplicity we study only the unoriented cobordism theory. At the end
of the section we will give some indications of other cobordism theories.

At this point we will assume that the reader is familiar with some of the
elementary aspects of differential topology. We consider only compact C”
manifolds. Two such manifolds without boundary are called cobordant if
there is a third manifold whose boundary is their disjoint union. This is an
equivalence relation. Write N, for the set of equivalence classes of compact
C® n-manifolds.

{M,} is in fact a graded ring. The sum is induced by the disjoint union of
manifolds and the product by the cartesian product. 0 is represented by the
empty manifold and 1 by the one-point manifold. Clearly every element of 9t
has order 2 since (M x =(M o M)v .

Suppose now that M and N are C* manifolds and /: M > N is a C*
imbedding. Then the tangent map df: (M) — 1(N) is a monomorphism of

342
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bundles. Hence (M) is a subbundle of f*(z(N)). We define the normal bundle
v of the imbedding to be the quotient bundle. Then there is an isomorphism

f*eN) = t(M)Dv.

v can be visualized as the bundle of vectors in ©(N) which are orthogonal to
M. Thus, for example, the normal bundle of the usual imbedding §" = R"*!
is a one-dimensional trivial bundle. As one might expect from this example,
we have:

Theorem 30.1 (Tubular Neighborhood Theorem) Let M"™ < R"** be an
imbedding. Then there is a neighborhood of M” in E(v) which is mapped
diffeomorphically onto a neighborhood of M" in R**¥,

This is true in more generality. We may replace R"** by any manifold
N"*k For a proof, see [49, 3.6].

Let £ be a vector bundle over a paracompact space X. Choose a Riemannian
metric in ¢ and let D(¢) be the subspace of E(¢) consisting of all vectors v with
o]l < 1. Let S(&) be the subspace consisting of all vectors v with |jv|| = 1.
D(&) and S(&) are called the associated disk and sphere bundles with fibers D"
and S""! respectively. Furthermore D(¢) and S(¢) do not depend on the
choice of a metric—up to bundle equivalence.

Definition 30.2 T7(&) = D(£)/S(£) is called the Thom space of &,

Proposition 30.3 If X is compact, 7({) = E(£)™.

Proof Clearly D(&) — S(&) = E(€). Since D(E) is compact and E({) is
regular, E(§)® = (D(§) — S(£))* = D(&)/S() by 1.6. 1

Proposition 30.4 (a) If A — X is a closed subspace, T(¢] ) = T(€) as a
closed subspace.

(b) If X ={J, X, has the weak topology and each X, is closed, 7(¢) =
= T(&] x,) with the weak topology.

(c) Given bundles ¢ over X and n over Y with X, Ye CG, T({ x ) =

T() A T(m).

Proof (a) D(&],) is a closed subset of D(£). Hence the 1-1 continuous

map D(&| )/S(E] ) — D()/S(&) is closed.
(b) There is a well-defined 1-1 continuous map

L!J T x)~ T()

which is onto and closed.
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{c) Since X, Y e CS, it is sufficient to prove this for X and ¥ compact by
(b) and 15.14. By Exercise 6, Section 26 and 30.3 we have

T x )= E¢ x n)®
= (E@) x Em)* = EQ)” AEM™ =T ATH). 1

Let y* be the universal k-plane bundle over BO(k). We will write MO(k) =
T(p%). The inclusion 1: BO(k) — BO(k + 1) defines an isomorphism

l*(’yk+1) ~ ,Yk@ 1= vk X Rl.
Since 1 is closed, there is an inclusion
MO(k)AS* = T(Y* x RY) = T(*(** ) » TG**') = MO(k + 1).

We designate this inclusion by mo(k). Thus MO = {MO(k), mo(k)} is a
spectrum.

Next we indicate how a cobordism class of compact »-manifolds determines
an element of #,(MO).

We need:

Theorem 30.5 (Whimey) Let M" be a compact C* manifold. Then there
is a differentiable imbedding M™ = R*"*1 as a closed subset.

For a proof, see [49, 1.32].

Let M" be a compact C® manifold; choose an imbedding M" = R"** for
some k and a tubular neighborhood U of M" in R"** U is diffeomorphic
with a neighborhood ¥V of M”" in E(v). Choose a Riemannian metric in v.
Since M is compact, we can find a smaller neighborhood U’ of M" in R"**
homeomorphic to the set of all vectors with length <e in E(v). This is dif-
feomorphic with E(v) and hence there is a map

Sntk = (R L, e = By)® = T(v)

since ¥ is open in R"** (see Exercise 1, Section 26). This does not depend on
the choice of ¢ up to homotopy.

Now choose a map f: M" — BO(k) which classifies v. Since M" is compact,
fis closed and hence

fe: EG)— EGY)
is closed. This consequently induces a map

TW)—L=, MO(k).
The composition T(fg)r: (S"**, *) - (MO(k), *) represents an element in
.1 (MO(k), *) and thus an element in 7,(MO). Conceivably this depends on
the choice of an imbedding. However, if k is large, one can show that any two
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imbeddings are isotopic (i.e., homotopic through imbeddings). This is
enough to guarantee that the homotopy class does not depend on the
imbedding for k large. By imbedding the cobordism, one can see that it
depends only on the cobordism class of M. To see that the element in 7,(MO)
does not depend on k, consider an inclusion M" = R"** c R****1 Tet v’ be
the normal bundle of the composition. Then v/ = v@® 1 = v x R'; let

PSP T(Y) = T A ST
Then r' = S(r). It is easy to verify that the diagram
T)AST_TUBDAL MO(K) A S?
]
T(v x RY) mo(k)
]
(') TUe) MOk + 1)

commutes. Thus T(fz) o r’ = mo(k) o S(T(fy) o r). Consequently the element
(M) € =, (MO) is well defined.

Theorem 30.6 (Thom) 0:N, — 7, (MO) is an isomorphism of graded
rings.

For details, see [19, Chapter I; 69, Chapter 1I; 49, Chapter 1II; 42,
Chapter 5].

We will now show how to calculate n,(MO). We begin by calculating
H*(BO; Z,) and then H*(MO; Z,).

Theorem 30.7 H*(BO(n); Z,) = Z,[w,, ..., w,}). The inclusion BO(n — 1)
— BO(n) induces a homomorphism 1* with 1*(w;) = w;fori < nand 1*(w,) = 0.
dim w; =i.

Corollary 30.8 H*(BO; Z,) =Z,[wy, ..., W,,...].

Proof of 30.7 Let BSO(n) be the simply connected covering space of
BO(n), and 0: BO(n) x BO(1) - BO(n) be the map classifying the tensor
product 7,*(y") ® n,*(y!). Then the map BSO(n) x RP® — BO(n) x BO(1)
— BO(n) induces isomorphisms in homotopy groups. Hence BO(®n) =
BSO(n) x RP*. We show that H*(BSO(n); Z,) ~Z,[w,, ..., w,].

In Section 29 we considered maps y": RP*~! - SO(n) such that the diagram

RP"™! —— SO(n)

PRpR—2

Sn—l
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commutes. It follows that n*; H"~'(S""1; Z,) — H""}(SO(n); Z,) is 1-1. By
Exercise 6, Section 21, the map

H'(SO(n); Z;)—— H'(SO(n — 1); Z,)

is an isomorphism for r<n —2. We now prove by induction that
H*(S0(n); Z,) has a simple system of generators x, . .., x,_, withdim x, = k,
*(x)=x, if k<n—-1, and 1*(x,_;) =0. This is clear if n =2 since
SO(2) = S*. We apply the Leray-Hirsch theorem (Exercise 27, Section 26)
to the locally trivial bundle (see Exercise 13, Section 11)

SO(n — 1) » SO(n)—» S"~!

with R =2Z,. Suppose x,,..., X,_, is a simple system of generators for
H*(SO(n — 1); Z,). Since 1* is an isomorphism for r < n — 2, there are classes
x; € H¥(SO(n); Z,) with 1*(x;) = x; for i < n ~ 2. It follows that the products
X;, ***x;, which form a Z, basis for H*(SO(n — 1); Z,) are the image of the
corresponding products in H*(SO(n); Z,). By the Leray-Hirsch theorem
X1 - e0s Xy—p and x,_; = 1*(e) (e # 0) form a simple system of generators for
H*(SO(n); Z,), completing the induction.

We wish to apply the Borel theorem (28.4), so we must find elements w; €
H*(BSO(n); Z,) with Zw; = x;_; for 2 < i < n. (By Exercise 8, Section 29,
SO(n) ~ Q BSO(n).) From the commutative diagram

HyBO(K), BOGk — 1)) —— H,_,(O(K), Ok ~ 1)) —=— H,_,($*"")
x|k h =
7(BO(K), BO(k — 1)) e——— m,_ (O(K), Ok — 1)) ——> 7, _y(8*"")

we see that X is an isomorphism and hence by the universal coefficient
theorem (25.16)

H'(BO(K), BO(k — 1); Z,) = H™Y(O(k), Otk — 1); Z,)

is an isomorphism for r < k. Next consider the ladder

. ——— H'(BO(k), BO(k — 1);Z,) —— H'(BO(k),Z,) —L s H'(BOK —1):Z;) — -

T

L HTUOK), Ok = 1):Zy) —— HNOK): Zy) — H T O = 15,25) —— -

N A

Hr-l(sk—l;zz)
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1* is an isomorphism if r < k — 1 and if r = &, ker 1* consists of an element w
with Zw, = x,_,. Consequently it is a simple matter to construct, by induction,
classes w; with the required properties. | |

Theorem 30.9 H*(MO; Z,) = H¥(BO; Z,).
Proof We will construct a compatible sequence of isomorphisms
8,: H'(BO(n); Z,) » H"*"(MO(n); Z,)

The proof will then follow by taking limits. BO(n) = | J;~, G,(R*), and there
are bundle maps

E(y"(RY) — E(Y")

|

G(R*)— BO(n)
Since G,(R¥) is compact, we have MO(n) = | i, E(y"(R*))*. The isomorphism
6, will in turn be induced by a compatible sequence of isomorphisms
0,5 H(GRY; Z;)— A" (EG"(R)™; Z,).
Now G,(R¥) is a compact n(n — k)-manifold. Hence E(y"(RY) is an (n+
n(n— k))-manifold. Since n: E(y"(R¥)— G,(R") is a homotopy equivalence,
26.24 and 26.28 imply
Hr(Gn(Rk)9 ZZ) = Hn(n—k)-r(Gn(Rk); ZZ)
= n(n—k)—r(E(yn(Rk)); ZZ)
= A" (EG"(R); Zy)- 1
The Whitney sum 7,*(y") @ n,*(y™) = y" x y™ is classified by a bundle
map
n n n+m
LR didh A
This induces structure maps
MO(m) A MO(m) = TG ATG™) = TG" x y™) = T ™) = MO(m + n)

The inclusion of a point in BO(n) induces a bundle map

R"— E(Y"),
and hence induces a map S" = T(R") - MO(n) for each n > 1. These maps
make MO into a ring spectrum.

Lemma 30.10 If E is a properly convergent ring spectrum and k is a field
H*(E; k) is a coalgebra.
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Proof The maps
A", s ) = A E N B k) = @ ANE; K @ A" (E,; k)

stt=r
are independent of m and n if m, n > r. This yields a diagonal map y: H*(E; k)
— B*(E; k) ® A*(E; k). Similarly one constructs a counit 1 € A%E; k) =~
A°(E,: k) and the coassociativity and cocommutativity properties follow
from the corresponding properties for E. |}

We will call a graded coalgebra C connected if C" =0 for n <0 and C° is
freely generated over k by the counit.

Lemma 30.11 (Milnor-Moore) Let A be a connected Hopf algebra over
a field k. Let M be a connected coalgebra over k with counit 1 € M°® and a
left module over A4 such that the diagonal map y: M - M ® M is a map of 4
modules. Suppose the map v: 4 — M given by v(a) = a - 1 is a monomorphism.
Then M is a free left A module.

For a proof, see [54; 69].

Theorem 30.12 H*(MO; Z,) is free over #A(2).

Proof All that we need to show is that the nontrivial map MO - HZ,
induces a monomorphism in cohomology. We will show that the maps

MO®) ~ K(Z,, n)

induce monomorphisms in dimensions less than 2a. This is enough by 27.5
since both MO and HZ, are properly convergent.
The Whitney sum map

E@') x -+ x EGyY)—> EG")

induces an isomorphism in H°( ; Z,). By the proof of 30.9, the map on Thom
spaces
oa: MO() A+ AMO(1) > MO(n)

induces an isomorphism in A" ; Z,). Now MO(1) = D(y')/S("). By Exercise
3, Section 29, S(y!) =S and hence is contractible. Thus MO(1) ~ D(y")
~ BO(1) = RP*®. Thus the composition

RP® A+ ARP® - MO(n)— K(Z,,n)
induces an isomorphism in A" ; Z,) and is therefore the map considered in

Exercise 9, Section 28. The conclusion follows. §

Proposition 30.13 Let E be a properly convergent spectrum. Suppose that
every element in 7,(E) has order p and A*(E; Z,) is a free module over A(p)
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generated by classes {x,} and that there are only finitely many « in each di-
mension. Then m,(E) is free over Z, generated by classes {u,} of the same
dimension and {x,, ph(u,)> =1 where h: n(E)— H,(E) is the Hurewicz
homomorphism, p: H,(E)— H(E; Z,) is the coefficient homomorphism,
and { , ) is the Kronecker product. In particular, 4 is a monomorphism.

Proof Let
X,= [l KZ,, n+dimx,).

dima<n

A"E; Z,) = A™*"(E,; Z,) for n > r. If dim x, < n choose ¢,: E, ~ K(Z,, n +
dim x,) representing x,. Let ¢: E,— X, have components {¢,}. Then
o*: A"(X,; Z,) - A"(E,; Z,) is an isomorphism if r < 2n. The statement about
nx(E) will be proved in dimensions less than m if we show that
¢x: T,i(E,) -7, (X, is an isomorphism for r<m <n. By 2520
¢« BH(E,; Z,) > H,(X,; Z,) is a(2n — 1)-equivalence. Thus by the generalized
Hurewicz theorem (Exercise 11, Section 22), ¢y n,5(E,; Z,) » n,5(X,; Z,) is
a (2n — 1)-equivalence. We now consider the universal coefficient exact
sequences (Exercise 8, Section 25). Note that if every element of m has
order p, 1 ® Z, = n = Tor(rn, Z). Thus we have a commutative diagram

0—— R,S(E”) - nrs(En; Zp) — TIf_ I(En) —0
l‘h l?t l'h
00— an(Xn) —_— ﬂ:rs(Xn; Zp — nf—l(Xn) —0

which is exact for r < 2n — 1. Since ¢, in the middle is an isomorphism, ¢,
on the left is a monomorphism and ¢, on the right is an epimorphism.
Thus ¢4: 7,5(E,) - n,5(X,) is an isomorphism for r < 2n — 1. We have thus
calculated n,(E) in dimensions less than » — 2; it is free on generators
U, Stimxtr , F with gu, ~ *. Let

aa = h(‘p*(ua)) € Hn+dim Xa (K(Zp » R + dlm xa))'
Let <i,, pa,y = 1. Then ¢*(,) = x, and

<xa’ phuz> = <(p*(la)’ Ph”> = <la’ (p*(ph(ua))>
=<la9 ph(¢*(ua))> = <laa paa> =1 l

Corollary 30.14 N, =, (MO) is a Z, vector space with one generator
for each #(2) free generator in A*(MO; Z,).
Proof Clearly MO is properly convergent for
A" Y (MO(n + 1)/SMO®); Z,) = H'(BO(n + 1), BO(n); Z,) =0
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if r <n+ 1. By 30.6 every element in n,(MO) has order 2. Thus by 30.12 and
30.13 we are done. |

As yet we have not determined the multiplicative structure in n,(MO).
To do this one must calculate the multiplicative structure in H.(MO; Z,).

Let U"e H*'(MO(n); Z,) be a generator. Then we have a commutative
diagram

SMO(m — 1)L\ SK(Z,, n — 1)
mo(n=1) (hZ3)n—1

MO(n)———— K(Z,, n).
Hence mo(n — 1)*(Sq" U") = 0. On the other hand, consider
o: RPP A+ ARP® = MO(n).

Then «*(Sq" U™) = (1 A++- A 1)? # 0. Since the kernel of the homomorphism
H"(BO(n); Z,) > H'(BO(n — 1); Z,) is generated by w,, we have 0,(w,) =
Sq" U™ 1t follows that 8(w,) = Sq" U where

6: H¥(BO; Z,) » H*(MO; Z,)

is the isomorphism from 30.9 and U = 6(1).
Fix m, n > k and let u: MO(m) A MO(n) - MO(m + n) be the map giving
the ring spectra structure. Let u, = Sq* U™*". Then
p*(u) = Sq pH(U™ ") = SqU" R U")
= [l S U™RSQ U"= Y wu;Au;.
i+j=k i+ 7=k
This determines the coalgebra structure in H*(MO; Z,).

Now the maps y™ x y" —y™*" classifying the Whitney sum determine
compatible maps BO(m) x BO(n) — BO(m + n). Thus BO is an H space. By
the definition of 6, it preserves the coalgebra structure. Hence the diagonal
in H*(BO; Z,) is given by Y(wp) =Y ;4 j=, w; @ w;.

The multiplication in BO makes H,(BO; Z,) into an algebra, whose multi-
plication is the dual to .

Proposition 30.15 H,(BO; Z,) = Z,[y,, y;,...]

Proof We first study the map BO(n) x BO(l) = BO(n + 1). By the
above analysis, (i, )*(W)=w;®1+w;_;®@w; for j<n and (¥, )*
(Wp+1) = w, ® wy. Consider the composition

n

BO(1) x ++ x BO(1)> -+~ = BO(n — 1) x BO(1) - BO(n)
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By induction one sees that y*(w;) = jth elementary symmetric function in the
polynomial generators of H*(BO(1) x -+ x BO(1); Z,). Thus Im ¥* is the
subring of symmetric polynomials and in particular, /* is a monomorphism.
It follows that \, is an epimorphism. Since every element of H(BO(1) x
-+ x BO(1); Z,) is a tensor product of elements in H(BO(1); Z,) it follows
that the images of these elements generate H,(BO;Z,) as a ring. Let
y. € H(BO; Z,) be the element in dimension » which is in the image of
H,(BO(1); Z,). Then the elements y; generate H,(BO; Z,). Since the diag-
onal in H*(BO; Z,) is cocommutative, H,(BO; Z,) is commutative. Since
the rank of H,(BO; Z,) is the same as the rank of Z,[y,, ..., ¥, ...] in each
dimension, the conclusion follows. [

Now one can easily check that the isomorphism H(MO; Z,) = H(BO; Z,)
is multiplicative by using the diagrams

D(y") x DGy™)—— D("*™)

BO(n) x BO(m)—— BO(n + m)
Consequently,

Corollary 30.16 H,(MO; Z,) = Z,[y1, s Vns -1 1

Now H¥MO; Z,) = A(2) ® C for some vector space C. Hence H,(MO;Z,)
=~ 4,(2) ® C,. Furthermore, C, = im h(r,(MO)). h is also multiplicative,
so Cy = n(MO) as algebras. Since A,(2) = Z,[¢,, &,, ...] with one poly-
nomial generator &, for each i = 2" — 1 by 28.21, we have

Corollary 30.17 (Thom) N, = 1, (MO)xZ,[x,, X4, X5, ...] With one
generator x; for each i#2"—1. h(x;) =y, (modulo decomposable ele-
ments). [l

Definition 30.18 If £ is a vector bundle over X, we will define classes
wi(€) € H(X; Z;) by wi(&) = f*(w;) where f* X — BO is a classifying map for
& wy(&) is called the ith Stiefel-Whitney class of £.

Proposition 30.19 The Stiefel-Whitney classes have the following (charac-
teristic) properties:

(a) If & is an n-plane bundle, wi(£) =0 for i > n.

(b) If: W X, w(f*&) =/*(wi(d)

(¢) (Whitney Formula) wi(§ @ n) = X4 j= wl Ow,(n).

(d) Let H be the canonical line bundle over RP*. Then w,(H) # 0.
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Proof (a), (b), and (d) are obvious. (c) follows from the formula y(w,) =
Zivjmwi®w; |

Definition 30.20 For any compact connected manifold M" and any homo-
geneous polynomial p(w,, ..., w,) of degree n, define the normal Stiefel-
Whitney number corresponding to p as

W), ..., wlV), M) e Z,

where v is the stable normal bundle of M.
Since w(v @ m) = Zw;(v)w;_ ,(m) = w(v), the cohomology class p(w,(v), .. .,
w,(v)) depends only on the stable isomorphism class of v.

Proposition 30.21 1If p(w,,...,w,) € H'(BO; Z,) and M is a compact
connected n-manifold, the Stiefel-Whitney number corresponding to p is
given by

<P(W1, erey Wk)7 O*h({M})>

where h: N,—- H(MO; Z,) is the Hurewicz homomorphism and
0*: H(MO; Z,) - H,(BO; Z,) is the dual to the Thom isomorphism (30.9).
In particular, two manifolds are cobordant iff all their Stiefel-Whitney
numbers are equal.

Proof Letf: M — BO(m) classify v. Then

pwi(v), o, W), [MD> = Cp(wy, ... W), [l IMD)).

Now h{M} = T(f)xr«(1) where 1 € H, ,(S"*¥; Z,) is nonzero, and r: $"**—
T(v). Thus 0*h{M} = f, @'r4(1) where ¢": H, (T(v); Z,) » H(M; Z,) is the
isomorphism in Exercise 1. Thus we need only show that ¢’r,(1) = [M]. By
Exercise 1, it is only necessary to show that the inclusion E(v) = E"**induces
an isomorphism in Hy( ; Z,). This follows since M is connected. ||

By calculating the normal Stiefel-Whitney classes for RP", one can prove

Proposition 30.22 x,, = {RP2"} (modulo indecomposable elements). That
is {RP*"} may be taken as a ring generator of N, in dimension 2n.

For details of the calculation, see [69]. Compare this result with Exercise 15,
Section 26.

We give a geometric description of the groups MO,(X, A) due to Atiyah
[7]. One should observe the similarity between this description and the classical
definition of singular homology. (See Exercise 9, Section 21.) Simplices are
replaced by manifolds.

For a fixed pair (X, 4) define a singular manifold in (X, 4) to be a mapping
S (M, M)~ (X, A) where M is a compact C® manifold of dimension a.
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Such a manifold will be said to bord when there is a compact C* manifold N
of dimension # + 1 and a mapping F: N — X such that (i) M is a submanifold
of ON, (ii) F|, =/, and (iii) F(ON — M)« A. Two singular manifolds
(M, oM, f) and (M', 0M’, ') will be called bordant if their disjoint union
(MuM, oM uodoM’, df u df') bords. This is an equivalence relation and
we write N, (X, A) for the set of equivalence classes. Clearly R, (*, ¢) =R,,.

Theorem 30.23 (Atiyah) 1f (X, A) € C82, there is a natural isomorphism
N.(X, A) = MO, (X, A).
The proof of this will be based on

Lemma 30.24 N.(X, A) is a homology theory with type 1 excision on
B2,

This is proved in {19, 1, 5.1].
Proof of 30.23 We construct a natural transformation
O:N(X,4A) - MO,(X, A

and prove that it is an isomorphism. Let f: (M,0M) — (X, A) be a
singular n-manifold, and E(v) the total space of the normal bundle to M — M.
A mapping a: E(v) —» E() x (M —dM) is defined by a(x) = (x, n(x)),
where 7: E(v) —» M —0M is the projection. This map is proper and
hence induces

«:T(W) - TG AMYOM?*,
since M¥/oM* = (M — dM)™. Thus the composition

TUEIAS
_—

S T(v)—=s T(v) A M* oM * MO()A X*/A*

defines an element of
lim 7, (MO(K) A(XH/A*)) = MO(X*|A*) = MO(X, A).

This is well defined by arguments similar to before, and gives the natural
transformation ¢. In particular, if X is a point, ¢ is an isomorphism by 30.6.
By induction (as in Exercise 10, Section 18) ¢ is an isomorphism for each CW
pair (X, A). The theorem will follow from 21.7 if we show that R,(S(X)) =
N.(X) where S(X) is the singular complex of X. Let (M, f) represent an
element of N, (X). Since M is a compact C* manifold, it is a CW complex
[52, I, Part 3]. Hence there exists g: M — S(X) with ng ~ f. The homotopy
H: M x I > X gives a cobordism from (M, f) to n.(M, g). Hence =, is onto.
Suppose n(M, f) =0 where f: M — S(X). Since every element of R, (S(X)
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can be represented by such a pair it is sufficient to show that (M, f) bounds.
Suppose N = M and h: N - X is a map with 4|, = nf. By 16.17 there is a
map g: N - S(X) with g|,, = 1. Hence (M, f) bounds and we are done. |

The homology and cohomology theories derived from unoriented cobor-
dism are not essentially different from ordinary Z, homology and cohomo-
logy because of the following.

Proposition 30.25 (a) If (Y, B)e C§?,
MO\(Y, B)= N, ® H(Y, B; Z,)
(b) If (Y, B)is a finite relative CW complex?®
MO*(Y, B) = N, @ H*(Y, B; Z,)

Proof In the proof of 30.13, we constructed a spectrum X = {X,, x,} with
X, =[Tdima<n K(Z,, n + dim o) and a map ¢: MO - X. ¢ induces natural
transformations

©: MO,(Y, B)— X,(Y, B), ¢: MO*(Y, B)—» X*(Y, B).

We now observe that N, @ H(Y, B; Z,) and N, ® H*(Y, B; Z,) are
homology and cohomology theories. The only point needing attention is the
exactness axiom, but for Z, modules 4 ® B~ A ®,, B and since all Z,
modules are free N, ® ,, is an exact functor. We produce natural trans-
formations

X.(Y, =5 0, ® H(Y, B; Z,)

X*(Y, B)—% R, @ HX(Y, B; Z,)
as follows.

Let ¢,: X, > K(Z,, n + dim «) be the projection if dim « <# and other-
wise trivial. This defines a map of spectra y,: X— E* where ES* =
K(Z,, n + dim a). Clearly E,*(Y, B) = H,,, gimo(Y, B; Z;) and similarly for
cohomology. The maps ¥, and ¥, are given by

i) =Y a®y, () and  Y(u) =) a® P (u).
Thus Y is a natural transformation:
MO(Y, B)-» N ® H(Y, B; Z;),  MO*(Y, B)-» N, ® HX(Y, B; Z,)

These transformations are isomorphisms if (¥, B) = (, &J). Hence by Ex-
ercise 10, Section 18 and 21.7 the first part of 30.25 is proven. The second part
is even easier. |

28 This can be improved. One only needs to assume that Y is compact of finite dimen-
sion and B is closed by [24, X, 10.1].
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We now define a natural transformation u: MO (X)— H.(X; Z,). For
each pair (M, f) let (M, f)) =fiu(IM]). If M =0N and h: N - X with
h|m =/, we have a commutative diagram

Je
H(M;Z,) —— H(X;Z))

l..

H,(N;Z,)
By Exercise 12, Section 26 there is a commutative diagram
H(N; Z;) = H(N, M; Z,)
> 0
H(M;Z,) = H, (M; Z,)

from which it follows that ¢ is an isomorphism and hence 1,([M]) = 0. Thus
f+([M]) = 0 and u is well defined.

Proposition 30.26 (Thom) u is onto.

Remark This says that every Z, homology class is represented by a map
from a manifold. The corresponding statement for integral homology is
false.

Proof Consider the composition
9: 9y ® Hy(X; Z,) > MOKX) — Hy(X; Z;)

Define ¢,(x) = (e ® x). ¢,: HAX; Z3) = H,r4imdX; Z;), and clearly
o(Zo; ® x)) = Lo, (x;). If dim « > 0, @, = 0 since for each n-dimensional CW
complex K, ¢, = 0. Thus ¢(x) = @4(x,) for some operation ¢,: H,(X; Z,) -
H(X; Z,). Since u # 0 when X =S". ¢, # 0 in this case. Let X be an n-
dimensional CW complex. Then we have a commutative diagram

0= Hn(K”_1§ Z))—— H(K; Z))— Hn(\/Sp"§ Z,)
1(00 [(ﬂo l¢o= 1
0= H(K"™;Z,)—— H(K; Z,) —— H,(\/S§"; Z,)

Thus ¢, = 1 in this case and thus for any CW complex. By 21.7, ¢, = 1 and
thus u(Ta; ® x;) = xo. p is clearly onto. |
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Other cobordism theories yield analogous results, but 30.25 and 30.26 do
not hold in general. The simplest generalization is to consider cobordism of
oriented manifolds. In this case, two oriented manifolds M and N are co-
bordant if there is an oriented manifold K with 6K = M U N and such that
the orientation induced on JK (through the isomorphism H,. (K, éK) =
H(9K)) agrees with that on M and is opposite to that on N. One writes this as
0K = M o — N. Thus it is no longer true that every element has order 2, since
oM x I)= M u — M. An orientation on M determines an orientation of both
the tangent and normal bundles. That is, the linear transformations that
occur in comparing coordinate neighborhoods must be orientation preserving
(as maps R"— R"). Such bundles are classified by maps into BSO(n), and
oriented cobordism is classified by n/(MSO) where MSO = {MSO(n),
mso(n)} is the Thom spectrum obtained from the universal bundle over
BSO(n). H(MSO; Z,) ~ Z,[u,, uy, ...]. The existence of elements of infinite
order in m,(MSQ) makes the calculation problem harder. The solution is
rather complicated (see [69; 19]).

This is the first example of cobordism of manifolds with “ structure.” The
structure given is an orientation of the stable normal bundle. (This is equivalent
to an orientation of the tangent bundle.) Such an orientation corresponds to a
choice of a homotopy class of liftings in the double covering:

’
’
’
/
.
’
’
.
B
,
’
/
’

M —2— BO

In more generality, we can consider pairs consisting of a manifold M and a
lifting A

BG

.
.
.
A,
%
/
,
K
.

.

M —— BO

where G is a suitable subgroup of O. (For example, U = U,‘?:lU(n), Sp =
{Uszy Sp(n). Such liftings are determined if M is a complex (simplectic)
manifold.)

The generalized Thom theorem says that such cobordism classes are
classified by n,(MG). ([69)).

The two cases U and Sp are of special interest. m, (MU) was calculated by
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Milnor [51] and has a particularly simple structure. m,(MU) = Z[x,, x,, ...]
where x,, = [CP"]. The cohomology theory MU* has turned out to be useful
in many applications to homotopy theory. ([63; 75]).

The case of MSp is at this time a mystery. n,(MSp) is not, as yet, completely
known, although much partial information is available [61; 58; 59; 60; 37].

Exercises

1. Let £ be a vector bundle over a compact manifold X. Then T(£) = E(£)*.
Prove that

A™"(T(&); Z,) = H'(M; Z,)
Hn+r(T(é)a ZZ) = Hr(M’ ZZ)

This is called the Thom isomorphism theorem and is true without assuming
that X is a compact manifold. (30.21).

2. The connected sum of two n-manifolds M and N is defined as follows.
Let U <« M and ¥ < N be coordinate neighborhoods. Remove disks D and D’
from U and V and attach a tube S" ! x I'to M — D U N — D’ by connecting
one end to the boundary of D and the other end to the boundary of D’ by
homeomorphisms. Prove that the quotient space M 4 N is a manifold. Show
that M # N is cobordant to M U N. (See Fig. 7.7.)

3. Calculate H¥(BU) and H*(BSp) as rings.

4. Prove the exactness and homotopy axioms for R, (X, 4). (See Exercise
9, Section 20.)
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Table 1

TABLE 1
b=1 2 3
a 0 3 0
23 0 31 5, 4.1
22 23.11 5.1
21 23.10 0 5.2
20 23.9, 22.10 21.10 0
19 23.8 219 0
18 23.7,22.8,21.9 21.8,20.9 19.9
17 23.6, 21.8 217 19.8
16 23.5,22.6, 20.8 21.6,20.7, 19.8 19.7, 18.8
15 234 21.5, 19.7 19.6
14 23.3,22.4,21.5,19.7 21.4,20.5,18.7 19.5,18.6, 17.7
13 23.2,21.4, 19.6, 21.3 19.4, 17.6
12 23.1,22.2,20.4 21.2,20.3, 19.3, 18.4, 16.6
19.5, 18.6 194, 17.6
11 23,194 21.1,19.3,17.5 19.2
10 22,21.1, 184, 17.5 18.3,17.4, 19.1, 18.2,
21, 20.1, 16.5 17.3, 15.5
9 21,174 17.3 19, 17.2, 15.4
8 20, 16.4 19,163,154 18, 16.2,
15.3, 14.4
7 0 15.3 15.2
6 153 14.3 14.2,13.3
5 15.2 0 13.2
4 15.1, 14.2 13.2 12.2
3 15 13.1 0
2 14, 13.1 13,121 11.1
1 13 0 11
b=12 1 10

The notation a. b represents Sq°Sq®, and the notation x, y represents



Table 1

ADEM RELATIONS S4°Sq® FOR a < 2b <12

4 5 6 a
5 0 7 1
6, 5.1 6.1 7.1 2
7 7.1 0 3
71,62 9,81,72 10, 8.2 4
7.2 9.1 11,9.2 5
7.3 92,83 11.1,102,9.3 6
0 9.3 11.2 7
0 9.4 11.3, 10.4 8
17.8 0 11.4 9
17.7 0 11.5 10
17.6, 16.7 15.7 0 11
17.5 15.6 0 13
17.4,16.5, 15.6 15.5, 14.6 13.6 12
17.3, 15.5 154 13.5 11
17.2, 16.3, 14.5 15.3, 14.4, 135 134,125 10
17.1 15.2,13.4 13.3 9
17, 16.1, 15.1,14.2,12.4 13.2,12.3,11.4 8
152,134

15.1, 13.3 15 13.1,11.3 7
14.1,13.2, 12.3 14, 13.1, 11.3 13,12.1, 10.3 6
13.1 13,11.2 0 5
121, 11.2 12, 11.1, 10.2 11,9.2 4
11.1 11 9.1 3
10.1 10, 9.1 9,8.1 2
0 9 0 1

9 8 7

x + y. Thus for example, 15.5, 14.6 represents Sq'*Sq*® +Sq!*Sq°®.
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Cocycle, 191
Coefficient groups, 177
Coefficient operations, 294
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Cohomology theory

reduced, 170

unreduced, 183
Cohomology with compact supports, 284
Commute, 9
Compact open topology, 55
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cell, 113
Complex K-theory, 332
Composite, 17
Composition (of paths), 72
Comultiplication, 314
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reduced, 63
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(n-)Connected, 130
Connected sum, 45, 357
Connective, 180
Connective covering space, 164
Continuity, 209
Contractible, 31
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Convex hull, 98
Coordinate neighborhood, 35, 77
Counit, 314
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CW complex, 115

regular, 147

semisimplicial, 146

simplicial, 147
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Dimension axiom, 186
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system, 122
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Duality theorems, 283, 291

E

Eilenberg-MacLane space, 158
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Equivalence,
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homotopy, 30

k-equivalence, 135

of vector bundles, 325
Euclidean space, 4
Euler characteristic, 199, 283, 287, 291
Evaluation mapping, 55
Exact sequence, 74

of a fibering, 84

of a pair, 74

of a triad, 88
Exactness axiom, 184
Excess, 311
Exicision axiom, 184, 209
Excisive, 40
Exterior algebra, 311
Exterior power operations, 329
External product, 233
Extraordinary cohomology, 168n
Extraordinary homology, 168n
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Fiber, 77, 86

Fiber bundle, 77

Fibration
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Serre, 79

Five lemma, 142
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Fixed point theorem
Brouwer, 108
Lefschetz, 288

Folding map, 64

Forgetful functor, 19

Freudenthal suspension theorem, 108, 145

Freyd conjecture, 145
Function space topology (in C8), 55
Functor

covariant, 18

contravariant, 19
Fundamental category, 27
Fundamental class, 271
Fundamental group, 23
Fundamental theorem of algebra, 38

G

Gauss map, 326

Geometric finite simplicial complex, 91
Giever-Whitehead theorem, 149
Graded abelian group, 169

Graded commutative, 235

Graded module, 235

Graded ring, 235

Grassmanian, 327

Grothendieck construction, 328
Group ring, 89

H space, 64
Ham sandwich theorem, 287
Handle, 48
HLP, 79
Homologous, 191
Homology
of CW complexes, 187
of simplicial complexes, 196-197
singular, 214
Homology operation, 180
Homology theory
ordinary, 186
reduced, 170
nureduced, 183
Homomorphism (of graded abelian
groups), 169

Index

Homotopic, 13, 15, 21, 30
relative to A4, 22
Homotopy, 13, 15, 21, 30
relative, 22
Homotopy associative, 67
Homotopy axiom, 184
Homotopy class, 14, 16, 21
Homotopy commutative, 68
Homotopy equivalence, 30
Homotopy group, 64
relative, 70
of a spectrum, 177
Homotopy inverse, 67
Homotopy lifting property (HLP), 79
Homotopy type, 30
Hopf algebra, 315
Hopf construction, 334
Hopf invariant, 320, 334
Hopf map, 44, 78
Hopf theorem, 167
Hurewicz fibering, 86, 89
Hurewicz homomorphism, 216, 217
Hurewicz theorem, 216, 217

Identity functor, 19
Inessential, 69
Intersection pairing, 292
Invariance of domain, 285
Inverse system, 122
Isomorphic, 21
(k-)Isomorphism, 135
Isotopic, 345

Join, 93, 334
Jordan separation theorem, 284

K

K-theory, 328

Kill, 160

Klein bottle, 48

Knot, 46

Knot equivalence, 46

Kronecker product, 242

Kiinneth theorems, 261-263, 267, 268
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Lebesgue’s covering lemma, 3
Lefschetz fixed point theorem, 288
Lens space, 49
Leray-Hirsch theorem, 293
Limit

direct, 123

inverse, 128

right, 123
Linear, 92
Linear dimension, 92
Linearly independent (vector fields), 337
Locally trivial bundle, 77
Long exact sequence, 175, 186
Loop, 22
Loop space, 65

M
Manifold, 269
with boundary, 290
Map

of a category, 18

of spectra, 180
Mapping cone, 118
Mapping cylinder, 134
Mayer-Vietoris sequence, 214
Mesh, 96
Milnor-Moore theorem, 348
Module spectrum, 225
Mobius band, 49, 270
Monodromy theorem, 36
Moore space, 159
Morphism, 17
Multiplication, 64

N

Natural transformation, 19
Neighborhood extension property, 209
Nondegenerate base point, 144
Normal bundle, 343

Null homotopic, 68
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Object, 17

Obstruction set, 166

Obstruction theory, 165-166

Operation (homology or cohomology), 180

Ordinary cohomology, 166, 186
spectral reduced, 170

Ordinary homology, 186

Orientable, 271

(E-)orientable, 271

Orientation, 269

(E-)orientation, 271

Oriented along {X}, 271

Oriented cobordism, 356

Orthogonal group, 89

Pairing, 224
Path, 22
based, 22
Path component, 15n
Path connected, 15n
Path lifting property, 35
Peterson imbedding theorem, 307
Phantom map, 165
Poincaré duality, 283
Pointed category, 20
Polyhedron, 91
Positively graded, 169
Postnikov
section, 163
system, 163
tower, 163
Principal ideal domain (module theory),
256
Product bundle, 78
Product topology in CS, 53
Projective space, 44
homology of, 195, 252
sphere bundles over, 78
Properly convergent, 182

Q

Quadratic construction, 297
Quaternions, 46
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Real K-theory, 332

Reduced cone, 63

Reduced cohomology theory, 170
Reduced homology theory, 170
Reduced X-theory, 329
Reduced suspension, 62
Regular CW complex, 147
Relative cell complex, 120
Relative (n-)cell, 99

Relative CW complex, 120
Relative homeomorphism, 209
Relative homotopy group, 70
Resolution, 134, 137, 257
Right limit, 123

Ring spectrum, 225

Scalar product, 9
Semisimplicial CW complex, 146
abstract, 155
Serre exact sequence, 213, 214
Serre fibering, 79
Serre’s theorem, 311
Simple system (of generators), 310
Simplex, 4
Simplicial approximation theorem, 97
Simplicial complex, 91
Simplicial CW complex, 147
abstract, 155
Simplicial homology, 196-197
Simplicial map, 97, 149
Simply connected, 32
Singular chain complex, 214
Singular cohomology, 214
Singular complex
ad hoc, 134, 145
functorial, 146
Singular extraordinary cohomology and
homology, 200
Singular homology, 214
Singular manifold, 352
Skeleton, 91, 113
Slant product, 233
Smash product, 58

Index 367

Spectral cohomology (reduced), 170
Spectral homology (reduced), 170
Spectrum, 169

suspension, 169

Q-, 169
Sphere, 4
Sphere bundle, 343
Spherical, 277

stably, 277
Split, 85
Stable cohomology operation, 180
Stable cohomotopy, 179
Stable equivalence (of vector bundles), 330
Stable homology operation, 180
Stable homotopy group, 145
Stably spherical, 277
Standard simplex, 90
Steenrod algebra, 312
Steenrod operation, 301
Steenrod pth power operation, 308
Steenrod square, 296, 301
Stiefel manifold, 337
Stiefel-Whitney classes, 351
Stiefel-Whitney number, 352
Strong deformation retract, 32
Subcomplex, 91, 114, 120
Surface, 45
Suspension, 311

functor, 107, 112

reduced, 62

theorem, 109

unreduced, 69
Suspension spectrum, 169
Symplectic K-theory, 332

Tangent, bundle, 78, 325
Taosim, 17n
Tensor product

of chain complexes, 247

of graded groups, 245

of graded homomorphisms, 248n

of vector bundles, 329
Thom imbedding theorem, 307
Thom space, 343
Torsion coefficients, 192
Trace, 288
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Track groups, 62

Trefoil, 46

Triad, 88

Triangulation, 91

(k-) Trivial, 165

Trivial map, 64

Trivial vector bundle, 326

Tubular neighborhood theorem, 343
Type 1 excision, 184

Type 2 excision, 184
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Universal coefficient theorems, 262-264,
266, 268

Universal property (covering spaces), 47

Unreduced cohomology theory, 183

Unreduced cone, 68

Unreduced homology theory, 183

Unreduced suspension, 69
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Van Kampen theorem, 40
Vector bundle, 324
Vector field, 10

Vector field problem, 338
Vertices, 90

w

Weak absolute neighborhood extensor
(WANE), 204

Weak homotopy equivalence, 133, 137

Weak topology, 115

Wedge axiom, 179

Wedge product, 58

Well-pointed, 144

Whitehead theorem, 139, 217

Whitney formula, 351

Whitney imbedding theorem, 344

Whitney sum, 328
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