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(S2) sy,5,€S=5,5,€S,
(S3) s,€S,aeR=3beR, s,€8: 5, b=as,,

The K-Theory of Semilinear Endomorphisms (S4) s5,€S, acR, s,a=0=3s5;€5:a5,=0.

These conditions are the most general which ensure that the ring of right
fractions RS~ ' exists. If the elements of S are nonzero divisors (as will be
the case here) then (S4) can be omitted. If S'= {s":n>0} for some s, we
write R[s~']=RS™ " . .

The axioms for a left denominator set are analogous. If S is both a right
and a left denominator set, we will call it a denominator set; in this case the
ring of left fractions SR is isomorphic to RS~

We let k be a (not necessarily commutative) ring, and @ an
automorphism of k. The twisted polynomial ring R = kET ;(p].ls the
ring of polynomials a, 7"+ --- + do, a,e€ k, where multiphcan'on satisfies a
T= To(a). The multiplicative set generated by T is a denominator set, so
the localization R* := k[T, T ;9] := k[T; @][T~'] is defined; we see
that kK[T~L, (T 50 ' 1=k[T, T™} 9], s0 R* is also a localization of
R :=k[T Yo ']

We define a right X-module M to be a triple M =(M*, M, 8,,), where
M* is a right R7T-module, M~ is a right R™-module, and
0, =M [T '13M" [(T~')~']is an isomorphism of right R*-modules.
Here X = P!(p) denotes the “twisted projective line” with respect to k an.d
¢ and remains undefined. A map fiM, - M, of X—mod.ules is a pair
friMyp My fMp oMy of homomorphisms with 8, -f "=
[ 0. .

The category of right X-modules is an abelian category. Let .#, denote
the exact category of right X-modules M for which M* and M~ are
finitely generated; it is an abelian category if R* and R~ are noetherian,
and thus if k is noetherian (according to [FH, Lemma 247). Let % denote
the exact category of finitely generated projective right R-modules, and let
2, be the exact category of “vector bundles on X,” i.e., those X-modules M
where M* € P~ and M~ € %,-. Let
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In this paper we study the K-theory of semilinear endomorphisms and
automorphisms over noncommutative rings. For commutative rings and. |
linear endomorphisms we did this in [G3].

In Section 4 we produce an exact sequence (4.6) involving the K-groups
of semilinear automorphisms over a field. The main tool is the introduction
of the “twisted projective line,” together with the fact that it admits an
interesting localization at {0, oo }. In Section 5 we use the Frobenius on an
algebraically closed field to produce an example of a semilocal domain B
with nonzero radical J so that K,(B)= K,(B/J), i>0.

In Sections 1 and 2 we give another application of the twisted projective
line: we prove the natural generalization (2.3) to the higher K-groups of the
results of Farrell and Hsiang [FH] about Whitehead groups of twisted
Laurent polynomial rings. The proof is a straightforward rewriting of
Quillen’s proof of the Fundamental Theorem [G2] (in which the adjoined
variable was central). The difference between our proof and Ranicki’s proof
in [R, pp. 427-428] is that we emphasize the role of the twisted projective
line, and we identify the group F,(¢) as the homotopy group of the
homotopy fiber of the map 1 — ¢*.

Other proofs are available. When the ground ring is regular noetherian,
the theorem is an exercise in [Q1, pp. 114-1227. One could also obtain a
proof by rewriting the proof of Theorem 18.1 of {W], which is much more
general.

K. X:= K, %
1. THE TWISTED PROJECTIVE LINE If Ris R*, R-, or R*, then ¢ extends to an automorphism of R by
setting @(T)=T. Tensor product gives an exact functor (p*:g’Rag"R.
Define N{nd>= (¢ ")* (N) for NeZ and nelZ. One' may also obtain
N{n) from N by replacing the scalar multiplication with x * f = x@"( i8]
for xeN and feR If M is an X-module, we let M{n)=(M"*{n>,
M_<n>’ GM) . .
For k-modules V and W, a @-semilinear map f: V — W is an additive
map satisfying f(va)=f(v) @(a) for veV, ack. This is the same as a

A right denominator set S in a ring R is a subset with the following
properties [St, p. 52]:

(S1) 1es,
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such that N[T~ 11=0, fora resolution of N may

be begun with a free R*-module (which extends to X). Observe that for
any right R*-module P, the subgroup P-T' 1s an R~ -submodule;
moreover, if p=R", then P/P: Ti is a free k-module on the gengators
LT, T I Now the argument of [G2, p. 236} shows that any N 1n Z*
is projective as k-module, so # 7 is equivalent to the category.}l_ll(tp)
whose objects are pairs (v, f) with ve® and fiV— J a nilpotent

@-semilinear endomorphism, f (va) = f(v) p(a). (In the untwisted case
¢ =1 this equivalence is implicit in [B, proof of the fundamental theorem ]

and explicit in [sil.)
The exact functors

of projective dimension 1

k-linear map V — W{1). If M is an R*-module, then right multiplication
by Ton Misa @-semilinear endomorphism of the k-module underlying M,
and all @-semilinear endomorphisms of k-modules arise this way.
If M is an X-module, we define M(n):= (MT, M= —nd, Oy p(T7"))
where p(T ") denotes right multiplication by T-" One checks that
M(n) € %, and M(m)(n)=M(m+n). -
If ¥V is a k-module, define an X-module V(0):= (V®«R?,
V®,R,1) and XY-modules V(n):= V(0)(n). Let h,. . — Py denote the
exact functor h,(V)= V(n).

TueoreM 1.1. The map

(hge, hyo): Kik ® Kik = KiX

# - Nillp),  Nil(¢)=>Z
Vi (V,0), (V,f)\——»V

is an isomorphism. The relation hm.+hm+2<1>*=hm+,,*+hm+l<1>*
holds for all me Z.

Proof. The proof can be done essentially as in [Ql, Theorem 3.1,
Sect. 8, p. 143]; the only change is that T is no longer central. Mul-
tiplication by T on an R*-module N is no longer an R-linear
endomorphism of N, but is an R-linear map N — N{1). Thus, one rewrites

Quillen’s proof by inserting notations like “{n)” in appropriate spots to
he maps involved. For example, the canonical exact

allow one to split

defining Nil (¢).
The ring homomorphisms

k—R*, ~ RT -k
a=a, (D)~ f0)

preserve linearity of t
sequence

0= O(m) - O(m+1)> > O(m+2) >0

becomes allow one to split

0— Vim)— V(im+1)@®V(m+1)X1) = Vim+2){1y =0 KR* = Kk® NK(0)

Q.ED. o
defining NK{@)- Similarly,

K,R-=Kk®NKlo" h.

for any Ve %, melL.

2. LOCALIZATION

There are localization exact sequences

In this section we discuss localization theorems for K-theory in the THEOREM 2.1.

twisted projective line. This allows us to relate the K-groups of the projec-
tive line with those of R*, R™, and R*. In the commutative case, the result
obtained is the “Fundamental Theorem” of Bass, generalized by Quillen to
the higher K-groups. In the case at hand, we obtain the result of Farrell
and Hsiang and generalize it to apply to the higher K-groups.

Let #* denote the exact category of X-modules M which admit a
resolution of length 1 by vector bundles of X and for which M~ =0. This
category is equivalent to the category of finitely generated R*-modules N

(a) ---Ki+1Ri—>K,-=9‘t”’+—»K,»R*—»K,Ri-n,
{b) ---K,-HR'——»K,-%*—»K,X—»K,R‘m, an
(c) NK(o 1) =Nil;,_1()-

ed in [G1]. For part {b) one checks that the
p.222] can be carried over into this context,

d

Proof. Part (a) was prov
proof in [G2, Theorem on
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using the preliminary material about the twisted projective line presented

above. One interprets the notation from [G2] as follows: KH'l R*
J*M =M lB
J M= (M ®R*, M, 1) Kk® Kk
I7"M = (M* . T, M~, 1) lA
SJs M. Kk@Nil,_ (¢ @ KKk@Nil,_ (o)
Part (c) follows from (b) as in [G2]. Q.ED. l
K,R*

Remark 2.2. If k is commutative, or if we are given an isomorphism:
k > k°P, then there is an isomorphism (R*)°® = R~. It follows from [Ql,
(13) on p.104] that K,R* =K,R™, and thus NK{p)=NK(p~") and
Nil(¢) = Nil,(¢ ~'). There is also an equivalence Nil(¢)°® X Nil(¢ ™4

The matrix of the map 4 is seen to be

defined by (V, f)— (V*, f'), where V* =Hom,(V, k) and f'=q@ 'of* 1 1

The isomorphism Nil(¢)=Nil(¢,') that this equivalence provides is 0 0

probably the same as the other one. 1 o*
0 O

Remark. One can use Quillen’s dévissage and resolution theorems to
prove that Nil (@) =0 when k is regular noetherian, thereby recovering his and because AB =0, we see that the matrix of B is
result that K;R* = K;k.

Define F (@)=, Q(K(k) —»"'~¢" K(k)), where K(k) is the space 2BQOZ,, ( g )
whose homotopy groups are the K-groups, and where Q(X — Y) denotes —&
the homotopy fiber of a map. If ¢=1, then F(p)=K(k)® K, (k).

Notice, also, that F(¢ ™ ')=F{o). | for some map g. This allows us to split off a K.k factor, yielding

1—*
THEOREM 2.3. There is, for i = 1, a canonical isomorphism 0 .
” ’ "'Ki+1Ri—g—)Kik'<_—0_)—’Kik®Nili 1(‘P71)®N11:‘«—1(§0)—’K1‘Ri"'

K.R*~F, Nil, Nil, -1,
' (@) ONil; (@) Nl (¢ Consider the diagram

Remark. For i= 1, this theorem was proved by Farrell and Hsiang and K., (RT)=>K(HT)
by Siebenmann. - l H

Proof. There is a restriction map from the sequence 2.1(b) to 2.1(a),
which is the identity on K, # *. A diagram chase yields a Mayer-Vietoris-
type exact sequence

Ki+1(R+)_’Ki+1(Ri)"Ki(9f+)

K, ,RE>KX->KR*®K,R™ > K,R*---.
with exact rows and columns. Application of the decompositions we know

We rewrite the terms using (1.1) and 2.1(c) yielding so far gives
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00
(01

K, k@ Nil(¢) —— Kk @ Nil(¢)

| H

KH—Ik@Nili((P‘l)_) K:'+1Ri —— K,k ® Nil(¢p)

(8?)] l

K:k® Nil (¢~ I) = Kk ® Nil (¢ Hl)
It follows that
K, R*=?7® Nil{¢)®Nil(p ")
and we get an exact sequence
) _,?_,K'_kﬂl, Kik— -

In order to identify *?” with F{(¢), we argue with the underlying spaces. We
get a map of fibrations

QK(R*)— K(k) L—P‘—l K(k)x NK(p ') x NK(¢p)

1 -

Fl) - K(k)—=2" » K(k)

where the notations NK and F for spaces ought to be self-explanatory. The
existence of the section s follows from Lemma 2.4 below. The spaces here
are homotopy-everything H-spaces with additive inverses, so we may split

QK(R*)= F(p) x Q(1).

Morepver, the homotopy fibers of the three vertical maps above form a
fibration which tells us that

Q)= QNK(¢p ') x QNK(¢p).
Thus
QK(R*)=F(p)x 2NK(p ') x QNK(p).

Taking homotopy groups yields the result. Q.ED.

LEMMA 24. Given maps of pointed spaces - A— X and g: A— Y, let
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G=Q(A—-%Y)and F=Q(A L8 X x Y). A null homotopy f ~ pt provides
a section for the projection F—G.

Proof. This follows immediately from the definition of the homotopy

fiber, namely G= A xy Y!' %, vy, Where {yo} is the base point of Y.
QED.

3. DEFINING MODULES LOCALLY

In this section, we prove a version of the theorem from commutative
algebra that says quasicoherent sheaves may be defined locally.

Suppose S and T are right denominator sets in R, and let U:= (S, T)
denote the multiplicative set they generate. It is easy to see that U is also a

right denominator set.
It follows from the universal property for localizations that RU ' is the

pushout (in the category of rings) of the diagram RS '« R—RT .
We call § and T compatible if ST= TS (=U), or equivalently, the
following axioms are satisfied: :

(ST1) s,€S, t,eT:»szeT,sless1r2=zzs2,'
(ST2) 1,€T, s,eS=135,€8, LeT 115, =515

Lemma 3.1. If S and T are compatible, then (RS )T '=R(ST) '=
(RT~') S~" are all isomorphic as rings.

Proof. One checks that the image of T in RS ' is a right denominator

set, then the statement follows from the universal property of localization.
Q.ED.

We introduce the following covering axiom for Sand T.
(ST3) seSand i€ T=sR+tR=R

This axiom implies that RS™'x RT ™' is faithfully flat as left R-module.
For if 0=M®x (RS’ xRT-Y=MS '@MT"' and meM, then
ms=mt =0 for some s€ S, teT, thus m =0, and M =0. Then one proves
the following in the usual way.

PrROPOSITION 3.2. Suppose S, T< R are right denominator sets which are
compatible and satisfy the covering axiom. Then the category of (right)
R-modules M is equivalent to the category of triples (P, Q, 0), where P is an
RS- '-module, Q is an RT'-module, and §: PT-'> QS is an
R(ST)~'-isomorphism.
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COROLLARY 3.3. In the equivalence of Proposition 3.2, M is finitely
generated (resp. finitely presented) iff P and Q are. If S and T are also left
denominator sets, then M is finitely generated projective iff P and Q are.

Proof. The proof of the first assertion is standard. For the second we
consider the sequence

0->M->MS''®MT ' M(ST) ' =0,

which is exact because it becomes exact under localization by S or by T.
The hypothesis implies that RS~!, RT "', and R((ST)~' are all right and
left flat over R, so M is also. Since M is flat and finitely presented, it
follows from Lazard’s theorem [La, Corollary 1.4] that M is projective.
Q.E.D.

4., A LOCALIZATION OF THE PROJECTIVE LINE

We now make the blanket assumption that k is a (skew) field. Let
S* < R* be the multiplicative set of all nonzero polynomials, and let
S¢ < R* be the multiplicative set of all polynomials with nonzero constant
term.

LEMMA 4.1. S* and S; are denominator sets (consisting only of nonzero
divisors).

Proof. First prove it for S*. Let R, denote the polynomials of degree
<j. Given feR* and seS", let m=deg f, n=degs, and consider the
map R, ®R,— R, , defined by (u, v) - fu—sv. This k-linear map has
nonzero kernel for dimension reasons. When fu —sv =0, then u€ S™* unless
u=v=0, for R* is an integral domain.

Next prove it for S;. Proceed as before: if u(0)=0, then v(0)=0
(because s(0) #0), so we may divide u and v by a suitable power of T to
achieve ue S¢§.

We've given the proof on the right side: the left side goes the same way.

Q.E.D.

In the ring B* :=(S§;) 'R*=R*(S;)"', the multiplicative set
generated by T still is a denominator set, so letting B* := B*[T 17, we
see that BT = R*(S*) ! is a skew field. Using by now obvious notation,
we also have the ring B~ := R™(S; )", and B* =B [(T~')"']. Define
B:=B"nB <= B*.

LEMMA 4.2. B consists of all fractions fg ', with f and ge R*, g(0) #0,
and deg g > deg f.
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Proof. Write a typical clement of BSB” in the form fg~' with
f, geR*, geS¢. Let n=max(deg f, deg g), and let G(T™"):=g(T) T,
FT Y := f(T)T"" so that fg'=FG~', and G, FeR". Since
FG~'e B, we may write FG~'=JH ' with H, Je R~ and He S;. By
definition of fractions, we may find K, L nonzero in R™ so that GK=HL
and FK=JL.

We may assume 7' does not divide both K and L. Then if 7' divides
G, it follows that 7' | L and T~'[ K, and so T-'| F. But T~' does not
divide both Fand G, so T~'} G, and n=deg g > deg /. Q.E.D.

Let p,: B* —k be the ring homomorphism with po(7)=0, and let
Po: B~ —k be the homomorphism with p_ (T~ NY=0.If po( fg ') #0, then
f(0)#0, so gf "'eB” and fg~'is a unit in B. Thus I,=kerp, is a
maximal (left, right, or 2-sided) ideal whose complement consists of units,
and is the only maximal (left or right) ideal. The same remarks apply to
1, =ker po< B~. Thus the rings B*, B~ are local.

Let Jo:=I,nB, J,.:=I1.nB 1If fg~'eB, and po(fg~")#0,
po(fg~")#0, then it follows that f(0)#0 and degg=deg f,s0 fg~'isa
unit in B (by Lemma 4.2). It follows that J,, J . are the only maximal (left
or right) ideals of B. For if Cis another maximal left ideal, take fe C\J,
and ye C\J . ; one of f, 7, f+7y is in C\(JouJ,.)=Cn B*, a contradic-
tion. We conclude that the radical J:= rad(B)=JoNJ.. and is the kernel
of the surjective homomorphism

p=1(po, P): B> kxk.

LemMa 4.3. B*, B, and B* are all left (or right) rings of fractions
of B.

Proof. Suppose fg 'eB*, with g feR” and g(0)#0. Let
b:= max{0, degf—degg}, and h=(l+ T)".g. Then fg''=
(=1 +T)"*)"", and fh™'€B, (1+ T)~"e B, which shows B™ is a
right ring of fractions of B. The proof for B~ is similar (replace Tby 77'),
as is the proof on the left side. Since we didn’t use the condition g(0) #0 in
arranging deg / > deg f, the proofs for B* and B~ combine to show B* is
a localization of B. Q.E.D.

According to the lemma, we may write

T+ = BA(B*)" = {fe "1 g(0)#0, f(0)#0, deg f <degg}
BA(B™)* ={fzg '1g(0)#0, deg f=deg g}
B~ (B*)" =B\{0}

NN
+ |
(I
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B+ ____(T+)—1 B
B =(T")'B
B*=(T*) 'B.

LEMMA 4.4. Proposition 3.2 and all of Corollary 3.3 apply to the mul-
tiplicative sets T+ and T~ in the ring B.

Proof. Given fg 'eT* with f.geR", we may write fg =
(1+ 7))~ “ (1 + 7)Y f)g ') with a=degg—deg f>0. This makes
(1+7T)fg'eT” and (1+7) “eT", so T*=T+*T~. By symmetry
(writing denominators on the other side) we see that T*=T"-T7, and
thus 7+ and T~ are compatible.

The covering condition follows from T+=B\J,, T~ =B\J,, and the
fact that J, and J, are the only maximal right ideals of B. Q.ED.

Remark. Tt follows that B is a ring of global dimension 1, because B*
and B~ are

COROLLARY 4.5. There are exact functors My— My and Py— Py
defined by (M*, M~ , 8) — pullback of (M* ®g+ B™, M~ ®r- B7,0®1).

We may think of this functor as a localization functor. Indeed, as in the
commutative case, we may think of B as the semilocal ring at {0, co } in the
projective line.

We denote the functors of (4.5) with M > M® B, for M e My Let K
denote the exact category of all those X-modules M which have a
resolution of length 1 on X by vector bundles on X, and for which
M®yB=0.

Define Aut{¢p) to be the exact category consisting of all pairs (¥, f) with
Ved, and f: V-V a @-semilinear automorphism, f(va)=f(v) ¢(a). An
arrow (V, f)— (V',f')is a map g: V' = V' with gf = f g, as usual

THEOREM 4.6. (a) There is a long exact “localization” sequence
K H# ->KX>KB->K,_H -
(b) There is an equivalence X = Aut(@) of exact categories.

Proof. (a) We reread Quillen’s proof of the localization theorem for
projective modules [G2, p. 2297 to verify that it works in our context. The
crucial Lemma 2 there is rephrased as follows: for each Ne %, the
category C, of pairs (M, B), with Me?,, and B an isomorphism
B: M®y B 3 N, is equivalent to a filtering ordered set. (One may compare
C, with %, of [G1].) To convince ourselves of this statement, we first, for
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cach M, replace M * by its isomorphic image in N7, and similarly for M ™.
This gives a retraction of C, onto a partially ordered set @y, consisting of
certain “submodules” of N. Since M, + M,e Py when M, M,e %y, we see
that @, is filtering. (The reason M, +M,e Dy is that R* and R~ are
(noncommutative) Euclidean domains, for which any finitely generated tor-
sion free module is projective.)

(b) A functor F: # — Aut(¢p) can be defined by M - (M ™", mul-
tiplication by T). A functor G: Aut(@)— # can be deﬁneq by (V, f) -
(Vs Vy, 1), where V, denotes the R *-module whose underlying k-module is
V. but on which T acts as f, and where V, also denotes the R~ -module
which is ¥ with T~ acting as f 1. Certain details must be checked, the
only obvious one being that FoG=1.

To see that Go F=1, we must verify that for M € #, T acts invertibly on
M* and T-' acts invertibly on M~, sO that M* =M™ [T ']z
M-[(T~")"']=M". From M*(S¢)~ ' =0 it follows that for any xeM™
there exists s€ S¢ with xs=0. Writing s=ag+a, T+ -+ +a, T (ag#0)
we see that x=(—x(a,;+ --- +a,T" ") @ *ag')) T, showing that mul-
tiplication by T'is surjective. For injectivity, the assumption x7' =0 implies
xa, =0, whence x = 0.

To see that Fis well-defined, we must check that if M € #, then M*tisa
finite-dimensional k-vector space; this is clear, for we may express M * as a
quotient of (R/sRY, some s € Sg, some j.

To see that G is well-defined we must, given (V, f)e€ Aut(¢p) and ve Vy,
locate se S so thatv-s — 0. This is done in the usual way, by considering
{v, vT, vT2,..} < V. We must also check that G(V, f) has a resolution of
length one by X-vector bundles; it is easy to establish the exactness of the
sequence

0 V(—1)— V(0)— G(V, f) =0,
where k is the obvious map, and g consists of
VOR* - V®R™
v@p-f W)@ Tp—v®p
and
VOR (1> V®R™
b@q—f 0@ @) —v®gT "

This is the characteristic sequence of the semilinear automorphism f (cf. B,
p. 630; G3, p. 442; and FH, Lemma 91 Q.ED.

Remark. 1f ¢ =1, then as in [G3], K, Aut(e) contains Kk as a direct
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factor, because (V, 1) € Aut(g) for any Ve .. If ¢ # 1 then this no longer
works. For this reason, it is not possible to describe K, Aut(e) as in [G3,
Theorem 2]. The localization sequence for R* — B* does, however, split
into short exact sequences, yielding the decomposition

K,B* =K,R* @K, Aut(o).

5. THE CASE ¢ = FROBENIUS .

In this final section we assume k is an algebraically closed (commutative)
field of characteristic p, and ¢ is the Frobenius, ¢(a) = a’. We let [, denote
the prime field. The functor L: %, — Aut(e) defined by W—(W® k,
1,® ) is know to be an equivalence of categories [Q1, p. 115] or [L}
This “deep descent” presents the possibility of using (4.6) and (1.1) to
compute K;B.

Remark. To extract the statement that L is an equivalence one
proceeds as follows. Given (V, f)e Aut(g), choose a basis of V and let 4
be the matrix of f with respect to that basis; then [L] provides a matrix B
with BWB~!= A. One can check that B provides a change of basis for V
so that f fixes each element of the basis. This shows that the functor
Aut(p) - %, defined by (V, f)— {veV| f(v)=v} is well-defined and an
inverse equivalence for L.

THEOREM 5.1. Under the  assumptions made above, the map
K(B)— K/(B/J) is an isomorphism for i>0, and thus KB~ Kk xKk.

Proof. We make explicit the dotted arrow in the following diagram:

K# —— KX

L “{ NI k3 kD)

KF, ~ » Kkx Kk

The characteristic sequence of (4.6) is natural in V, so we find that
i*o L* = (h¥ — h* ) j*, where we let j denote the inclusion Fp,— k. The
natural exact sequence of (1.1) yields hg‘—h‘t,=(¢")* (h* —hg). The
isomorphism V{1>® R+ —» V®R* (1) defined by v®p — v ® @(p), with
a similar one for R, provides an isomorphism V(n){m) = V{m>(n); thus
@*hX =h}¥p*. Since Q*j* = j* we get i*o L* = (h¥ —h&)o j*, so the dotted
arrow is (4"). The matrix of the composite map

KkxKk—KX—KB— K,B/J=Kkx Kk
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1 1
C= .
(1 <p*>
Quillen has shown [Q2, pp. 583-585] that j* is injective when k 15 an
algebraic closure of F,; commutativity of K-theory with filtering direct

limits and the Hilbert Nullstellensatz extend this result to arbitrary k. Thus
from (4.6) one obtains the diagram

is easily seen to be

0——>K,»[F,,—>K,~k><K,»k———> K.B -0

H

0——>K,~1F,,——>K,-k><K,~k——C—> KkxKk—0

in which the upper row is known to be exact. The exactness of the lower
row would follow from the exactness of

0 K, ~ Kk——>Kk—0 (*)

by a simple diagram chase. Quillen has shown [H, Corollary 5.2] that
@* =y’ the pth Adams operation. The exactness of () is Quillen’s conjec-
ture, shown by Hiller [H, Theorem 7.2] to be equivalent to Lichtenbaum’s
conjecture that K{F,)— K,(k) has cokernel a rational vector space (here
Fp=algebraic closure of F,). The latter conjecture was proved by Suslin
[Sul. Q.E.D.
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Let K be a field of characteristic zero, X = X, ..., X, several variables, and
K[[x]] the ring of formal power series in x,, .., x, over K. We call
feK[[x]] D-finite (or differentiably finite) if the set of all derivatives
(8/dx,)" -+ (8/dx,)" f (i;eN) lie in a finite-dimensional vector space over
K(x), the field of rational functions in x,, ..., X,. This is equivalent to saying

that f satisfies a system of linear partial differential equations of the form

a\" o\ !
{a,-,,l(x) (8—’() + a1 (X) (5?> + e +a,-0(x)}f=0, i=1,.,n (1)

where the a,(x)e K[x]. We shall also write these equations as 4,(xy, .., X,;
8/0x,) f=0,i=1,..,n The theory of D-finite power series in one variable
is worked out in [9]. We call fe K[[x]] rational if € K(x) and algebraic
if it is algebraic over K(x). If f=2% a, . x4y xm we define the primitive
diagonal 15(f)=2 Qiiis- i, xixis ... xi The other primitive diagonals /;
(for i < j) are defined similarly. By a diagonal we mean any composition of
the /;, and by the complete diagonal (or just the diagonal) of f we mean
11315 "'1n~ln(f)=2aii---ixi1'

In this paper we will show (Theorem 1) than any diagonal of a D-finite
power series is again D-finite. In [67] it is shown that the diagonal of a
rational power series in two variables is algebraic and that in the case that
K has characteristic p #0 any diagonal of a rational power series in any
number of variables is algebraic. (In characteristic 0 the diagonal of a
rational power series in three variables need not be algebraic.) In [2,3] it
is shown, in the case that K has characteristic p # 0, that the diagonal of an
algebraic power series in any number of variables is algebraic and that if
feZ,[x]]is algebraic (Z, the p-adic integers) then any diagonal of f is
algebraic mod p* (for all s). In [7, 107 it is claimed that the diagonal of a
rational function in any number of variables is D-finite, but the proofs con-
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