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Let A be a ring with 1. Let P(A) = &P 4 denote the exact category of finitely-
generated projective A-modules. Finally, let Al denote the exact category
whose objects are all pairs (P, f) with P e P(A) and f an automorphism of P,
whose arrows from (P, f) to (P',f") are all maps & P — P’ such that gf = f'8
and whose exact sequences are those lying over exact sequences in # 4. In this
paper we examine the higher algebraic K-theory of these categories, defined by
Quillen [5].

Let Aut; A be the kernel of the forgetful map KA uty) —> K(A), where
K(4) = K{(Z4) For commutative rings A, we defined in [3] a map

¢ Aut; A — Kin4, )
and showed that for i = 0, this map is a surjection which expresses K;4 as the
group with one generator [P, f] for each object (P, f)

(1) [P, f] B [Pl,fr] + [P/ny”] for each eact Sequence 0 — (P', f,) s
(P,f)——*(P",f")—*Oin&{z//A,
Giy [P,fIPf1 =B Jf]

The first goal of this paper s to formulate a definition of the map (1) when 4
This is done in Section 1 using an idea of

of «Zwt 4 , and the relations:

and

is not necessarily commutative.
Waldhausen [6] which he calls Mayer—Vietoris representations.
we may replace the category of vector bundles on the projective line by a more
tractable category without altering the K-theory. This category has the advantage
that every object has a projective resolution of length 1, and thus the techniques
of [2] may be applied to it.

The proof that our new definition agrees with the old in the commutative case

Using them,

occupies Section 2.
The remainder of the paper is devoted to explicit calculations of the map for
i=1:
c: Aut, A — KA.
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Milnor [4, p. 63] defines 2 bimultiplicative skew-symmetric pairing f*gin Kp4;
here f and g are commuting elements of GI,A. Notice that g gives an automor-
phism of the object (4", —f) 10 Al 4. Given an automorphism of an object
in an exact category, one can construct a certain element of K, . In our case,
because Aut, 4 — K; ot 4 18 split, we obtain an element f * g in Auty A. One
immediately suspects that ¢(f = g) should be f % g, at least up to sign. We prove
that this is so.

In Section 3 we compute c(f=g)

E |
0
o
L
-
.
|
o

¥

in terms of a certain exact sequence

_—

0 - K,A — G(A) — GI(4) » GI(A) ~ KA~ 0.

The group GI(4) X Gi(4) acts on each group in the sequence; it acts by con-
jugation on itself and trivially on K4 and K, A. The key to the computations is
to describe the group G(4) and the action of GI(A) X GI(A) on i, fully, in terms
of the Steinberg group St(A4).

In Section 4 we define an action of GI(4) x Gl(A4)on the semi-direct product
H(A) = Gl(4) X St(A), and show that it fits into the same context as G(A). The
technique involves the extension of Milnor’s pairing f x £ € K,A to a pairing
x: GI(4) x GI(4)— St(A) which lifts the commutator pairing Gl(4) X
Gli(4)— GI(A), and satisfes certain familiar identities. The reader should notice
that Section 4 makes no appeal to higher algebraic K-theory.

In Section 5 we show that G(A) = H(4) and that the actions agree, and
complete the computation ¢(f * g =fT1%g This computation should be
compared with those in Proposition 2.2.3 of [7], which are analogous.

Bass has asked the following question: Is K, A generated by the f % g ? Clearly,
K,A is generated by elements

(fo * &)(fo % &) = (fn % 8n)
Where [fl ’gll[fz’gQ] [fn 7gn] =

shorten these commutator identities.
Is Aut, A —> Kp4 surjective ?

.

Ty

1 € GI(4), but there may be no way to
One can, however, ask the weaker question:

s R

1. CONSTRUCTING THE Mar

In this section we define the map (1) by modifying a construction of Wald-
hausen’s [6] which he calls Mayer—Vietoris resolutions.

Let A4 be the exact category whose objects are all pairs of arrows (P=30)
from # 4. There are two types of standard projective objects in A, namely,
(0=xP)and (P =% P @ P). Given any object (P=30) of A4, there is an exact
sequence

R

0—»(0:;K)—>(P:;P®P)@(0:;Q)—+(P:;Q)—+O. @)

g
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Thus A is a hereditary category (i.e. has global projective dimension <(1). the long exact sequence resulting from (3) as in [3]. For this purpose we use the
We may identify o/«¢ 4 with the full subcategory of .44 whose objects are pairs isomorphism

of isomorphisms: (P ,::f Q). Using the results on hereditary categories contained % (hy — o » o) KiA @ KA KN (6)
in [2], we obtain a homotopy cartesian square ! 0> 07 T ¢ A

@

%

"

where b, (resp. hy): QP4 — QN4 is the exact functor P (0=%P) (resp.
P> (P=x P @ P)). The exact sequence (2) in which K = P@ P and the
exactness theorem [5] show that

Kt%ﬂ[A_»Kz‘/VA

S-LE cfwt g ——> STUEN 4 = pt

|

— QN 4.

e

QAul 4

Here E &7« (resp. EA) denotes a category whose objects are short exact % l /1—' Ty
sequences § KA
0>B—>C—>D—0 @) . ’

is a commutative diagram, where the left-hand map is the forgetful map. It
follows from (3) that we have an exact sequence

0

in A with B and C projective, and D € oZut, (resp. D € A); S denotes the .
category whose arrows are all isomorphisms of projective objects in A; S
denotes a certain construction of Quillen [1]. (It should cause no confusion to use
the same letter S in association with categories other than o/«/4; it will always
take its meaning from the context. For instance, S~1S(Z#,) denotes the loop § We can see that the injection A comes from the functor S~1S(Z#,) — SE ALty
space S1S of Q4 discussed in [1].) ¥ given by (P, Q) > (P, 0 — hQ — heQ — 0 — 0) by using the fibration up to
It is an easy exercise, using the exact sequence (2), to characterize the pro- - homotopy

jective objects of A7y as those pairs (P = Q) for which PPP—Qis an
admissible monomorphism (i.e. has a cokernel in 2 ,); let #A", denote the full
subcategory of all projective objects of A7. We define two exact functors § Since oty = Toho = 1, the map ¢ kills the image of A and factors through Aut; 4
Fo»Tw: PN 4=3 P 450 that 7 (resp. 7.;) sends an object (f, g: P=3Q) to ckrg fg to yield the desired map

(resp. ckr f). Let fa) o Aut, 4 — Kinnd %

0— Ki+1A l’ 7TZ'+1S_1E M{(#A — AutlA - 0.

SAS(PN g —» STE Aaty—Q uty.

¢: SALE ol ul 4 — STES(P 4) (5)

We shall now modify the definition of c a bit to make computations in Section 3
casier. The two maps g, 7wl S(PN ) =3 S(# 4) are not naturally isomorphic,
but it is true that for an object of A’ of one of the standard types, (0 = P) or
(P= P @ P), thetwo cokernels are isomorphic; this isomorphism is natural and
compatible with direct sum, provided we restrict attention to one type or the
other. So, let S’ denote the category whose objects are all objects (P=20) of
PN together with a splitting of P @ P >—> (), and whose arrows are all isomor-
phisms of such data. The point is that the splitting determines a direct sum
decomposition of (P = Q) into the two standard types. The map S" — S(PN4)
of monoidal categories is cofinal, so

be the functor which sends (E, 0— B — C—>D—0)to(r, @ 7o C, 7,C @D ro.E).
This definition extends to arrows because (i) if ¢’ — C is an admissible mono-
morphism with cokernel in Aty , then rC' = r,C and r,C" = 7,,C, and (ii)
if E' is an object of #A then 1B @r.E = 1 E @ 7,E', so an arrow in
S-1E o/ wt , resulting from adding E’ maps to an arrow in S-18(#,) given by
adding 7,E' @ 7. E’.

The K-groups of #A7, are easily calculated. Any projective (P=xQ)is,ina
natural way, an extension of standard projective objects

0> (P=xPOP)—»(P=30Q)— 0=z0/P&®P)—0.
( DF) 9= o ) SE sfuty = STE Sty
Making use of the additivity of K-theory [5; sect. 3, Cor. 1], we see that the map
QFPNy — QP4 X QP4 given by (P=30) — (P, Q/P @ P) is 2 homotopy
equivalence, with homotopy inverse given by (P, Q) — (P = POP®O).

We will now show that 7, SE Swl 4 = Aut; A ® K,,,A4 by splitting up

is a homotopy equivalence [1]. We claim that the composite map S'"1E & wdy—
S-18(Z 4) is homotopic to the functor

—

¢'s SHAE ol ut g — SS(P4)

g

481/58/1-2
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given by (E, 0 — B — C — D — 0) = (,C, 7,C). We can define ¢’ on arrows v

because 7, = 7, on S’, and for the same reason we obtain a natural transformtion
¢ — c. Let by, by: S(#4) — S’ denote the maps /, and /; with splittings added.

2. AGREEMENT FOR COMMUTATIVE A

Let 4 be commutative. We must see that the map (7) agrees with the map
defined in [3]; for the duration of this section we adopt all terminology and nota-
tion introduced there.

Recall that 2, denotes the category of vector bundles on the projective line
over A. We begin by defining an exact functor b: A — Py. Given
(f, g: P=x0) in PN, consider the map of vector bundles

h = fT + gU: P(—1) —Q(0).

It is easy to see that /& is an admissible monomorphism; for instance, if p splits |
the monomorphism P @ P—Q, then pr, *p-f = l,and pr; -p-g = 0, so

pry - p splits f + gU: P[U] — Q[U]. We define b: PN — P to be the functor
which sends (P=30) to (ckr k).

Now b(0 = P) = P(0), and (P = P @® P) = P(1), so Quillen’s computation
QP = QP4 X QP 4 says that b: QPN — QP is a homotopy equivalence.

For technical reaons, it is convenient to introduce the full subcategory .47, of

N4 consisting of all pairs of admissible monomorphisms (f, g: P 23 Q). The
point is that b extends to a map b': A7, — P! and that A", contains Zwl,.
(Here 24! denotes the category of quasi-coherent sheaves on X which have

resolutions of length 1 by vector bunles. It is enough to show that A = fT + gU
is injective.) The resolution theorem says that the vertical maps in the square:

QPN ——> 0P
0Ny = OPF,
are homotopy equivalences; thus &’ is a homotopy equivalence.
Consider the following diagram:
Q Auby—> QN — OF'(Ry)

N

Q Aul s —> QPx' —> QP (Ry) ®)

Recall that the bottom row is the fibraction (up to homotopy) used in [3], and
that R, denotes the coordinate ring of the intersection, in the projective line X, of
the neighborhoods of the union of the O-section and the oo-section.
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We recall now the definition of the map (1) given in [3], rephrasing it, as we
may, in terms of the top fibration in (8). The long exact sequence of the fibration

18

> K Al y— KA® KA — KZ(RI) — K, Al y— -

which split up into shorter ones:

0—>KA—> KR, — K, Auly— K, ;4A—0.

. The map s, — 5.0 K;R; — K, A kills K;A, and thus factors through the cokernel

Aut,_, A. Here s, , 5,: R, = A are the two augmentations of R, .
Consider the following cube:

STES(A(Ry)) —— STEFR,))

SE dnly—— SEN, l
pt —————> OPYRy)

Qluly =———> QAN

The techniques developed in [2] for hereditary categories show that the front

_ and back squares are homotopy cartesian, and we know the bottom square is
_ homotopy cartesian. Thus the top square is homotopy cartesian; since S—LEA",
 and SIE(Z(R,)) are contractible, this means that S7E Zwt 4 — SUS(ZP(Ry)) is

a homotopy equivalence. If we compare the long exact sequence for the diagonal

| square:

STE Aul 4 — STENY

|

pt

— QP(R,)

. with those for the back and bottom, we see that

ST Al y 3 K Ry

N

K, olul,

commutes.
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-

fy to itself, we obtain a map (D?, 8D?) — (X, =) which we call yH. (Here D?
lenotes the 2-ball.)

Consider the map ¢': S’ VE &/wd s — Q fut g, we want to lift y H,(f, g) —
H,(1, g) along it. The path ¥,(f) - »,(1)7? lifts to a path

The map s, — S,: K; 1R — K; ;4 is represented by the functor

d: S“LS(P(R,)) — SLS(#(4))
(E, F)— (s¢E @ sIF, sqF @ siE).

(To see this, show the map S—1S — S72S given by (P,Q)> (P20, 0 D P)
is zero on homotopy groups by restricting to BGI,* and then to BGI, , at which
level there is a natural transformation giving a null-homotopy.) Thus the triangle

SE ot wt s —> STS(P(Ry))

3:(0’ 0) — (A P, Gy)
<O, (4P, Gy(f)) <L (heP, G5) ~2> (B;P, Gy(1)

< (P, G,) <— (0, 0) in S7UE stuly,

0>—>0-—>>0
G]:<u' u u)y

c d

t SLS(2)

commutes, and we have shown the two definitions of Aut; ; 4 — K;A agree

when A is commutative. Po—s>P >0

3. THE PARING 0 — P F
wo-(I 1)
In this section we define the pairing f * g € Aut, A where f and g are com- > PO P 1
muting automorphisms of some PeZ,. We also compute the image of f*g ) 1,-5

in K,4 under the map defined in Section 1, in terms of a certain group G(4)
Let f and g be commuting endomorphims of P& #,. Then the diagram in

Q Auly:
2, —f)

o b N
NS

P, =)
commutes, and defines a homotopy H, of the loop
7(f): 0> (P, —f) =0

to itself. (This loop, itself, represents [P, —f] € Ky sfwtly = mQ Suty.) We
obtain an element of 7,Q 27«¢ 4 which may be represented by the diagram

\L -
WH(f, 8): 0 = (P, %f)*o g

P >——os> P—>0
G=1| U W ll)-
POP>>PPP—>0

given by the inclusion (): P— P @ P and by the identity or zero on other
parts of the diagrams. The automorphism g defines automorphisms of G,,G,,
G, which commute with the arrows in v, , and thus defines 2 homotopy H, of the
path y, to itself. Thus y,H, is a lifting of y,H,(f, g) — v Hi(1, £).

Now we apply the functor ¢’ to y,H, and obtain y;H, , where v, is the loop

vy : (0, 0) — (P, P) 225 (P, P)«<—0,

and H, is the homotopy defined by (g, ). Notice that y, represents the class of f
m KA =mS1S(Z,).

The final result is that ¢( f * g) is represented by the diagram in Figure 1.

The representation just found for ¢(f * g) is fairly explicit, but what we really
ant is an expression for ¢(f * g) as an element of the Steinberg group S#(4) in
rms: of its standard generators.

We define f*g as the class in K; uty = mQ Auty of y;H\(f,8) —
y.H,(1, g). This difference maps to zero in K; 4, thus lies in Aut; 4. In a similar
fashion, given any loop y, in a pointed topological space X, and a homotopy H
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: (v) mF is given by homotopy classes of pairs of base-point preserving
. maps:

S1 v E

(0,00 ——> (2,P) _ 0,8 . p,p) «—— (0,0 l
(9,9} Sin—%>B.
(9,9)

They may be represented pictorially as in Figure 2a, where e and b denote the
base-points in E and B.

FiGure 1
e b b
Recall that the exact sequence:
y | pY b e b z o
0 — K,A4 — St(4) —~ Gi(4) -~ K;A—~0
e
b
is part of the long exact sequence for the fibration (a) (b) >
F — B Gl(A) — B GI(4)*.
An examination of the map B GL,(A)— S1S(Z ), (1], reveals the arrows in th i3
image of this functor are pairs (1, f), with 1, f€ GL(4). Naturally, the fact th x Py :
arrows (g, g) occur in Figure 1leads us instantly into difficulties when computin px
¢(f * g) as an element of m,F. We would like to be able to lift at least one 2-si ¥ py| 2z P b
plex of Figure 1 to B Gi(A) from S-1S(# ), but we can’t. 5
The solution to this difficulty is obvious: construct the homotopy fibration * 2
F’ — B(GI(4) x GU(A)) * BGI(A)", ©

where y is the subtraction map. Part of the resulting long exact sequence ist FIGF’RE 2

0 K,A — G(A) — GI{4) x GI(A) ~ K,A—0, o) (vi) In terms of (v), mB — mF is the map induced by

where G(4) = mF’ is the group mentioned in the introduction. The group St > Pt
Gl(A) x Gl(A) acts on the fibration (in the homotopy category), and thus act
on the groups in (9). For the reader’s convenience, we recall the followin, . .
general facts about this action, which we will use repeatedly: SLAl——>StA St =5
Facts. Let F—~E—>Bbea fibration of pointed topological spaces. The with the evident pictorial representation in Figure 2b.
D .. .
m E acts on i, mkE, and m,B. (vii) The action of mE on mF is that represented pictorially in Figure
(i) mE acts on ;B through mB. 2—-x denotes a loop in E.

(ii) The image of moF — mF 18 central. Levnia 3.1, Assume P = A, and f, g are commuting elements of Gl,A =
Aut(P). Let h € G(A) be any element which maps onto (g, g) in GI(A) X Gl(4).

(iif) mE acts on itself by conjugation.
Then c(f + g) € KoA C G(4) is equal to kh 7.

(iv) The action of 7, F on itself induced by mF — mE is conjugation.
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Proof. We may represent B(GI(A) X GI(A)) as the classifying space of the ' (0) (0,0) === (0,0)
following category, modelled after the telescope construction used in [1]: There non -
is one object (n) for each n > 0, and Hom((m), (n)) = Gl(A4) x GlL(A) if n>m, (1‘) (? AT = (37,27
but = & if » < m. Composition is defined by the formula (f, g) - (f,g)= (n)(l’f) (l’f)(An A"y — a",a%)

(f (f ®lom) &g @ 1,_m)). Presumably, no confusion will result if we 1 Y N
denote this category by GI(4) X Gl(A4). The base-point is the object (0). The (0) (0,0) == (0,0
functor GI X GI—> S-1S is given by (n) — (A", A™) on objects, whereas the ! } / y
arrow (f,g): (m)— (n) is sent t0 the composite (4™, A™) — (4™ @ 4™, (n) ("%
Am @ An-my =00 (An, A7). N N CR-I L
The key to the arguments seems to be the observation that (‘{) (&7,
(0) (0,0) == (0,0)
An, Arn 2 L
(4, 47) & L
(n) @",a% = @",a"
a0 wol
(0, 0) (0:6) (?) (sz“,A“) —=(a",a"
\ 1
(0) (0,0) ==(0,0)
(4r, 4v)
() @",a"
is a commutative diagram in S—1S(Z ), but that T)(q,g) (g,q)Tn n \
(n (a7,
® ! PN
(0) (0,0) =={0,0)
F1GUrs 4
(0) e
\ We may make use of the commutative diagram:
(n)

(n) (1,7) (n)
does not commute in GI(4) X GI(A4).
Let us describe an element & which lifts (g, g) to G(4) = mF'; see Figure 3

(g;y) (g,9)

(0) (0’0) ______—————:—————-—-—‘_‘(O’o)

N
(I)(g,g) (Ii ’A(;,E//

édeform Figure 4 into the representative of #='A(1, f) depicted in Figure 5.
The diagram in Figure 5 represents an element in the image of K,4 — G(4),
d a little rearrangement yields Figure 1, which represents ¢(f * £). Q.E.D.

(n) (a",2"
T 1 \ 4. Tar PAIRING IN THE STEINBERG GRoOUP
(0) (0,0) —_——— (0,0)
This section is devoted exclusively to those computations which can be

Ficure 3
performed without any reference to higher K-theory. We define an element
% g of the Steinberg group, St(A), for any elements f, g € GI(A). When f and g
ommute, this agrees with Milnor’s pairing. We use this pairing to define an
action of GI(4) x GI(A) on H(4) = St(A) = GI(A).

In 2 similar fashion, we may depict the element h1RA | where we let (0) —
(n) =@ (n) < 0 be the loop which represents (1,f) € m(Gly X Gl,); see
Figure 4.




24 DANIEL R. GRAYSON
(0) (0,0) == (0,0) = (0,0) === (0,0}
$n n ; nL n nl n
@AM =(a",n) == (& ,A)
(1,0 (1,8 l \

(g9,9) (g,9)

(a",a") = (A“L,A“)
(1,,f)T (1,£) Y
aD,a" = (a",a")
1
(0,0)
(a,9) L
(a",a"
(g,9) T
(a",a™ (A’T‘,A") — (a",a"

(0) (0,0) == (0,0) == (0,0) == (0,0)

|

/

FIGURE 5

We observe first that there is a natural map @y St(M,(4)) — St(A) compatibl
with the identification GI(M,(4)) = GI(A) obtained by splitting a matrix U
into 1 X n-blocks. Here M,(A) denotes the ring of 7 X n-matrices with coeffi
cients in 4. In terms of Milnor’s generators, we may define xfj(a) = Pa(%(2)) =
1T %rinti-v.s +ﬂ(7-#1)(ocrs)eSt(zél), where o€ M,A, and the product runs ove
1 <1i,j < n The order of terms in this product does not matter, because al
the terms commute. It is a simple exercise to check that g, satisfies the relation
and thus is well-defined. Following Milnor’s notation now, we may also defin
elements wjj(a) = @n(wy;(x)) and h() = @u(his(@)). The point is that thes
elements xJ; , wj; and Y, satisfy the same identities that their counterparts

ij

Kyi > Wig s Mug satisfy over a not—necessarily-commutative ring. In particular we

have the following [4, Lemma 9.6]:

Levma 4.1. Given f, g € GL(A), the commutator [Bu(f), his(g)] equal to

R fo)hits(f ) His(g)
We also have:

Levmva 4.1bis.  [H(f), Fa(@)] = Rio(f) Fiale) Fialef )™
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Thus we may define f x g = [R5(), ()] for any i and j distinct from each
other and 1. The image of fx g in GI(4) is f® ©1,g®1@g =
1f,g), and if [f, gl = 1then fxge K,A.

Levma 4.2, The definition of fxg for [,€€ GI(A) is independent of the
smber n chosen so that f, 8 € Gl (4).

Proof. This follows from the fact that B} ) = B, (f) for m,n > 1.
Q.E.D.

Lovva 4.3, If f, g are elementary matrices which commute, (i.e. f,8 € E(4))
thew our definition of f * g agrees with Milnor’s.

~ Proof. Ourjfxg is actually Milnor’s (f @ ! DD *x(eD1Dg which
is just fx g+ (frx D+ xg Y =f*x8 according to [4, Lemmas 8.7
and 8.1]. Q.E.D.

pDerintioN.  Let H(4) denote the group Gl (A) x St(4), the semidirect
product of Gl(A) and St(A) with respect to the usual action of GI(4) on St(A).
"The existence of an action of GI(A) on St(4) follows from the fact that St(A)
the universal central extension of E(A), which is a normal subgroup of GI(4).
' T.ét the map St(4) — GI(4) be denoted by x — &. We choose the action so that
o = & = fi&f e GI(4).

We use letters x, y, 2 to denote elements of St(4), and letters f, g, h to denote

jements of GI(4).
Let j, k, p denote the indicated maps in the short exact sequence

0 — St(4) > H(A) _’”? GI(A) — 0.
The multiplication in H (A) is defined so that j(x) k(f) = k(f) FICAR

. Lemma 4.4. Suppose x € im(Sty(4) — St(A)), feGl(d), m = 3. Then
o = h, () *hi(f)-

Proof. We begin by verifying that the expression AL, (f Y lwhy,(f) is inde-
pendent of m. If x were of the form a35(g) or x4 (g) then this would follow from
[4, Cor. 94], which asserts that Jy,.(f Y lx,5(g) Pl ) = x0(f ) and
Rl ) 22(8) hlf) = xq1(gf). It is easy to see that elements of the form
xl(g) and 3 (g) generate im(Staa(A) — St(A)), so the independence follows in
general. In fact, the expression is also independent of n, because B} mia(f) =
B a(f), as before.

We may define an automorphism of St(4) in this way which is compatible
with the action of f on E(4) C GI(4). Thus, by universality of the central
 extension St(4) — E(A), this automorphism agrees with x — 7. Q.E.D.
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LemmaA 4.5. The map ¢, St(M,(A)) — St(A) is an isomorphism.* (Sa)  (j(x)F D)9 = (j(x)2-0)N)
Proof. We know that the square: (5b) (k(h)(f,f>)<1,gf> = (k(h)-9)FP
St(M(4)) —— G(M,A) (62) jEyn =@ if f=1
on 2 . (6b) k)" =k(g) i f=1
SHA) —— GI4) (Ta) @ =j) i f=1

U =k if f=1.
commutes, and that the horizontal arrows express St(IM,,(4) (resp. St(A4)) as th (7b) k(8) (&) it f

universal central extension of the commutator subgroup of the group GI(M,,4) =
Gl(4). QE.D

The following lemma is an easy exercise.

These properties are equivalent to the following identities:

(Ib) (fHg)f x by ™ = f % (gh)
) (fx guo0™ = #/(f 7 * g)
@) (frxhp(et k) = (fo)t xh
(5b") (g2 * b = (g™ x hY
(6b") lxg=1,

Lemma 4.6. Given m # 1 and fe Gl (A), b, (f7) differs from kL, (f)"
by an element of K, A. Moreover, b7, (1) = 1.

Lemma 4.7. We may define an action of Gly X Gly on H(A) by setting

JE)®D = j(«")

Kg)O = (F * £) K(g) _ L
j@n = () () [l 2 = [ 92

Hg)™ = k(g) ) e = 2 o)

(i) [« =) - [y 2] = ()7 2]

() [y 2] = [y 2]

) 1,y =1

ether with the previous Lemmas 4.1-4.6. Q.E.D.

which, in turn, follow from the usual commutator identities:

Proof. We must verify:

(1a) Fay) N = ()N j( p)eLn)
(1b) k(gh)W" = k(g) LI R(h)0)
(1e)  ()k(g) ™" = (k(g) )"
(2a) Fy) D = )N ()
(2b) k(gh) 1 = k(g)/-DR(B)F)
(2c)  (j()k(g)" " = (k(g)j(x7)"7
(3a) ()N 99 = j(x)9:79)

(3b)  (k(h)! )09 = k(R)U9-79)

(4a) (Jx)BN)L9 = j(x).f9)

(4b)  (k(h)L1YL9) = R(R)1LSa)

The following lemma is easy to prove:

| Lewma 4.8. Let H(A) — GI(A) x GI(A) be the map defined by j(x) — (1, X)
k(f)— (f, f). This map is a group homomorphism which is compatible with
the action of GI(4) x GI(A).

5. ComPUTATION OF G(A)

In this section we identify G(4) (defined in section 3) with H(4) = GI(4) x
| St(A4), and show that the action of GI{A) x GI(A) on G(A) agrees with the action
_on H(4) defined in Section 4.

 We begin by defining a map j': St(A)— G(4), analogous to the map j: St(4)—

* This result is well known; see, for instance, S. Klasa, On Steinberg Groups, pp. 131-
138 in the Proceedings of the Conference on Orders, Group Rings and related topics,
Lecture Notes in Math, #353, Springer-Verlag, Berlin, 1973.
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Proof. Consider the map St(A)— St(A) defined by » }—»j"l(l.e'(f)’ L ()k' ()
*his map lies over the map £ — g on GI(A), so by universality of the central
xtension St(A4) — E(A), it must be the map x — &7 Q.ED.

H(A) of Section 4. Consider the map Gl(A)— GI(4) X GI(A) defined b
f—(1,f). There is a map induced on the homotopy fibers:

— BGl*+

F ——— BGl,

|

F'— > B(Gl, x Gl;)— BGL4*,

: LevMa 5.4. Givenge Gl(4), conjugation by g induces a homotopy equivalence
(GI(A))+ — B(GI(A))* which is homotopic to the identity.

Proof. 'This is a consequence of the fact that B GI(4)", being an H-space, is
imple, and thus its fundamental group acts trivially on it in the homotopy

category. Q.E.D.
Lenma 5.5. Given f, g e GL(A), K()"" = J ()™ B ()] (hi(£))-

oof. For convenience, suppose m = 2. We know that the right-hand
of the proposed equation is k'( f)“'”@g—l’. Let F., denote the homotopy
of the map B(GI,(4) X Gl,(A)) ~ B(Gl(A))*. Now g @ g! and g act the

way on Gl,(A4), so we get the diagram, commutative up to homotopy:

which induces the map j': mF = St,— mF' = G(4).
Let p': G(4) — Gl be the composite G(A) — Gl(4) x GI(4y — Gl(4)
where the second map is projection on the first factor.
Consider the diagonal map GI(4)— Gl{4) x GI(A). The composit
B(GI(A4)) — B(GI(A4) x GI(A))—~ B Gl (A)* is nuli-homotopic so we get a ma
B(GI(A)) — F’, which induces a map Gl(A) — mF = G(A4) which we call ¥

LemMA 5.1.  The diagram in Figure 6 has exact rows and columns, andp'k’ =

In particular, G(A) = St(4) x Gl(A).
B(Gl,(A4) x Gl(A)) — BGI(A)*+

/|

1
BGI(A)y |

I

F,—
0 0

l L

0 —>=K.A —= St {A) ——— G1(A) —————>—K1A —0

T I u

0 —>K,A ——>G(A) —= 61(A) X G1(A) ——>KA—>0

SIS

‘ — B(Gl,(4) x GlL(A)

K /
I

____L_, B(GI(4) x GI(A)) —> B(GI(A)"

J

Gl(a) == G1(A) i
l 5 B(GIA) x GUA) —— BGI(4)*
0 0
‘FIGURE 6 Here o and B represent conjugation by (1, g) and (1, ¢ @ g). By Lemma 5.4
o the maps on the right, parallel to « and j3, are the identity. The result follows from

fact that &'(f) comes from mF., , and both K(f)*? and k'(f)(l-”@”d) may be

Proof. 'The rows are exact because they are part of long exact sequenc smputed using the single map . Q.E.D.

associated to fibrations. The column containing GI(4) X GI(4) is certain!
exact. A diagram chase shows that j" is injective. The identity p’j' = 1 is clea

A 5.6. The isomorphism H(A) = G(A) defined by sending j(x) — 7' ()
as is p’k = 1. Another diagram chase shows that ker p’ = imj’. Q.E. JEMMA ¢ P )

and R(f)—>K(f) s compatible with the action of GI(4) x GI(A) on H(A) and
Ay

. Proof. We must show:

(@) jx)®" =jE)

®) Ko =j(f" * k@)

(© @ =7

(d) k()" =K

LemMaA 5.2. Given f, g€ GL A, j'(c(f* £) = E(g)y Uk (g) 1.
Proof. 'This follows from Lemma 3.1. QED.
The following lemma shows that the action of GI(A) on St(A) resulting,

from Lemma 5.1 is the usual one.

LevMa 5.3. For xe St(A) and f< GI(A), j'(x) K(f) = k() ().
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In the proof of Lemma 5.3 we obtained (c), and (a) is immediate from an exa
nation of Figure 6. To obtain (d) is easy: E(g") = K (gF" = K(g)7.

obtain (c) we use Lemmas 5.5 and 4.4: Golodidvea|e der Gestalt a N b

F(g)0 = j (£ k()] (i)
= U R R (g)
— ) N K (e
— JU YT K )
= J IR, B2 K ()
=j(f 1 xg) K(g).
Lemma 5.7. For f, g € Gl (A4) which commute, c(f xg) =f 1 % g.

Proof. From 5.2 we have Fe(f*g) = k(g UK ()", which, by 5.5
just j/(f L x g)@? =j(f7! xg).
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In seiner Arbeit [7] hat G. Levin den Begriff des Golodhomomorphismus
gefithrt, mit dessen Hilfe man in vielen Fillen Ringwechselsitze fiir Poincaré-
en beweisen kann.

eispiele von Golodhomomorphismen sind in [7], [8] und [1] angegeben.

B soll hier untersucht werden, unter welchen Umstinden fiir zwei Ideale
b eines lokalen Rings R der kanonische Epimorphismus R — RjaNb ein
Jodhomomorphismus ist.

Alle betrachteten Ringe sollen noethersch und lokal sein. Unter einer Alge-
uflssung X des Restklassenkorpers k eines lokalen Rings (R, m, k) wollen
eine graduierte, differentielle Algebra verstehen, die als Komplex eine
minimale freie Auflésung des Restklassenkdrpers k darstelit. Jeder lokale Ring
esitzt nach [4] eine solche Algebraauflosung des Restklassenkdrpers. Wir wollen
ier kurz die Definition eines Golodhomomorphismus zitieren.

_Essei p: R — S ein lokaler Homomorphismus, der einen Isomorphismus der
Restklassenksrper & induziert und X eine Algebraauflésung von k.
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DernvitioN 1 (G. Levin, [8], 1.4; 1.3). ¢ heift Golodhomomorphismus,
enn X Qg S triviale Masseyoperationen besitzt, d.h. fiir jede Folge von
mogenen Elementen oy ,..., ¥ € H(X ®p S) gibt es ein homogenes Element
s yoens Tp) € (X Qg S), S0 daB folgende Regeln gelten:

(b) Fir alle 2 ,..., 0, € H(X @ S) ist

n—1
dy(vq 5eees V) = Z P(¥g 5e0s Vg) Y(Vpi1 reos Tp)-
k=1

Dabei sei fiir ein homogenes Element w einer graduierten Algebra @ =
{—1)irdeevly gesetat.




